
GPF: A FRAMEWORK FOR GENERAL PACKET
CLASSIFICATION ON GPU CO-PROCESSORS

Submitted in fulfilment
of the requirements of the degree of

MASTER OF SCIENCE

of Rhodes University

Alastair Nottingham

Grahamstown, South Africa
October 2011

Abstract

This thesis explores the design and experimental implementation of GPF, a novel
protocol-independent, multi-match packet classification framework. This frame-
work is targeted and optimised for flexible, efficient execution on NVIDIA GPU
platforms through the CUDA API, but should not be difficult to port to other plat-
forms, such as OpenCL, in the future.

GPF was conceived and developed in order to accelerate classification of large
packet capture files, such as those collected by Network Telescopes. It uses a multi-
phase SIMD classification process which exploits both the parallelism of packet
sets and the redundancy in filter programs, in order to classify packet captures
against multiple filters at extremely high rates. The resultant framework - com-
prised of classification, compilation and buffering components - efficiently lever-
ages GPU resources to classify arbitrary protocols, and return multiple filter re-
sults for each packet.

The classification functions described were verified and evaluated by testing an
experimental prototype implementation against several filter programs, of varying
complexity, on devices from three GPU platform generations. In addition to the
significant speedup achieved in processing results, analysis indicates that the pro-
totype classification functions perform predictably, and scale linearly with respect
to both packet count and filter complexity. Furthermore, classification throughput
(packets/s) remained essentially constant regardless of the underlying packet data,
and thus the effective data rate when classifying a particular filter was heavily in-
fluenced by the average size of packets in the processed capture.

For example: in the trivial case of classifying all IPv4 packets ranging in size from
70 bytes to 1KB, the observed data rate achieved by the GPU classification kernels
ranged from 60Gbps to 900Gbps on a GTX 275, and from 220Gbps to 3.3Tbps on a
GTX 480. In the less trivial case of identifying all ARP, TCP, UDP and ICMP pack-
ets for both IPv4 and IPv6 protocols, the effective data rates ranged from 15Gbps
to 220Gbps (GTX 275), and from 50Gbps to 740Gbps (GTX 480), for 70B and 1KB
packets respectively.

Acknowledgements

I would like to thank my supervisor, Dr. Barry Irwin, who provided tremendous
support and guidance throughout the course of this research, and my co-supervisor
from DPSS, Joey van Vuuren, who provided both valuable support and funding for
this research. In addition, I would like to thank Jeremy Baxter of the Rhodes
University Department of Statistics, who sacrificed his own free time to help with
the analysis of the performance results. Finally, I would like to thank my family,
for everything they have to done to help make this research possible.

This work was performed in and funded by the Centre of Excellence in Distributed
Multimedia at Rhodes University, with financial support from Telkom SA, Com-
verse, Verso Technologies, Tellabs, StorTech, EastTel and THRIP. Funding for GPU
equipment was also received from the National Research Foundation Thutuka Pro-
gram, via my supervisor thought Grant number 69018. Thanks are also expressed
to Defense Peace Safety and Security (DPSS) unit of the Council for Scientific and
Industrial Research (CSIR) for providing generous funding to me for the degree.

Contents

1 Introduction 1

1.1 Network Telescopes . 2

1.2 Problem statement . 3

1.3 Research Method . 5

1.4 Scope . 5

1.5 Summary of Goals . 6

1.6 Additional Notes . 7

1.7 Document Structure . 7

2 Packet Filters 8

2.1 Packets . 9

2.2 Packet Headers . 10

2.3 Packet Filters . 14

2.4 Target Hardware . 18

2.5 Algorithms for IP Processing . 22

2.6 Protocol-Independent Algorithms . 36

2.7 Summary . 41

i

CONTENTS ii

3 Graphics Processing Units 43

3.1 General Purpose Computation on GPUs 44

3.2 CUDA Hardware Model . 47

3.3 CUDA Programming Model . 50

3.4 Memory Regions . 53

3.5 Data Transfer Optimisation . 58

3.6 Improving Processing Efficiency . 63

3.7 Packet Filtering Considerations . 66

3.8 Summary . 70

4 GPU Accelerated Packet Classification 72

4.1 Introduction to GPF . 73

4.2 Processing Packets in Parallel . 76

4.3 Rule Evaluation . 83

4.4 Evaluating Filters . 91

4.5 High-Level Grammar . 95

4.6 Packet Collection and Buffering . 101

4.7 Analysis Extensions . 108

4.8 Future Functionality . 110

4.9 Summary . 114

CONTENTS iii

5 Evaluation and Testing 116

5.1 Testing Configuration . 117

5.2 Verification . 122

5.3 Timing Results Validation . 125

5.4 Packet Throughput . 133

5.5 Filter Program Performance . 139

5.6 Performance Comparison . 150

5.7 Summary . 155

6 Conclusion 157

6.1 Future Work . 160

6.2 Other Applications . 161

Bibliography 162

A GPF Filter Programs 173

A.1 IP Protocols (IPP) . 173

A.2 Single Simple Filter (SSF) . 174

A.3 Multiple Simple Filter (MSF) . 174

A.4 Single Compound Filter (SCF) . 174

A.5 Multiple Compound Filters (MCF) . 175

A.6 Large Simple Filters (LSF) . 175

B List of Publications 179

C Contents of Multimedia DVD 181

List of Figures

2.1 Example TCP/IP packet, decomposed into its abstract layers. 10

2.2 Stack level traversal when transmitting a packet to a remote host
using the TCP/IP model. 12

2.3 Layer comparison between the OSI and TCP/IP models. 13

2.4 Example Set Pruning Tree created from the filter set shown in Table
2.1. Adapted from [78]. 25

2.5 Grid-of-Tries structure, equivalent to the Set Pruning Tree shown in
Figure 2.4. Adapted from [78]. 26

2.6 Geometric representation of a 2-dimensional filter over 4-bit address
and port fields. Adapted from [78]. 28

2.7 Hierarchical Intelligent Cuttings data-structure applied to filters de-
picted in Figure 2.6. Adapted from [78]. 29

2.8 Example of Modular Packet Classification using the filter set shown
in Table 2.2. Adapted from [78]. 30

2.9 Example Parallel Bit-Vector classification structure over the filters
depicted in Figure 2.6. Adapted from [78]. 32

2.10 Example Crossproducting algorithm. Adapted from [78]. 34

2.11 Example P 2C range encoding, matching the port values (y-axis) of
the filters depicted in Figure 2.6. Adapted from [78]. 35

iv

LIST OF FIGURES v

2.12 Timeline of protocol-independent packet filters. 37

2.13 Example high-level Control Flow Graph checking for a reference to a
host “foo”. Adapted from [50]. 38

3.1 Abstract overview of the NVIDIA GTX 280. 49

3.2 Coalescing global memory access for 32-bit words on the GTX 280. . 55

3.3 Synchronous execution versus asynchronous execution in memory-
bound kernels. 60

3.4 Affect of thread block sizes on GTX 280 multiprocessor occupancy. . 64

3.5 Employing unroll-and-jam to reduce iteration overhead. 65

3.6 Overview of Gnort NIDS. Adapted from [83]. 69

4.1 Abstract architecture of GPF. 75

4.2 Synchronous vs. Streamed classification. 77

4.3 Memory layout comparison for 16 packets processing 4 rules. 80

4.4 High-level memory architecture of the Rule kernel. 83

4.5 Geometric proof that 32-bit Rule fields span no more than two con-
secutive 32-bit integers. 85

4.6 Iterative Rule evaluation. 86

4.7 Example extraction of a field spanning both cache integers. 89

4.8 Iterative predicate evaluation. 92

4.9 Precedence hierarchy in parenthesis-free predicate evaluation. . . . 92

4.10 Filter code representation of the predicate in Figure 4.9. 95

4.11 Overview of the GPF compilation process. 99

4.12 Peak theoretical transfer rate comparison. 104

LIST OF FIGURES vi

4.13 Example effects of edge cropping optimisation on packet size. 106

4.14 Comparative WinPcap dumpfile filtering times for HDD vs. RAM
disk. 107

4.15 Dividing a 128-bit IPv6 address field into multiple sub-fields. 111

5.1 Mean completion time of the IP Filter program. 127

5.2 Absolute σ of performance validation tests, in milliseconds. 128

5.3 Relative σ of performance validation tests, as a percentage of the mean.129

5.4 Host component timing results for 107 packets over 100 iterations. . 130

5.5 CUDA component timing results for 107 packets over 100 iterations. 131

5.6 Percentage of processing time spent performing component functions. 134

5.7 Execution time against packet count for all three packet sets. 135

5.8 Single Simple Filter (SSF) program performance. 140

5.9 Multiple Simple Filter (MSF) program performance. 142

5.10 Single Compound Filter (SCF) program performance. 145

5.11 Multiple Compound Filters (MCF) program performance. 147

5.12 Large Simple Filter program performance. 149

5.13 Comparison of estimated performance 154

List of Tables

2.1 Example Filter Set, showing source and destination IP address pre-
fixes for each filter. Adapted from [78]. 25

2.2 Example filter set, containing 4-bit port and address values. Adapted
from [78]. 27

3.1 Configurations and compute capabilities of various GPUs. 48

3.2 Keywords for thread identification. 52

3.3 GTX 280 memory regions. 53

5.1 Technical comparison of test graphics card specifications. 119

5.2 Packet sets used in testing. 120

5.3 Results of regression analysis . 138

5.4 Projected packets per hour and filtering rates for varying average
packet size. 139

5.5 Predicted Single Simple Filter (SSF) throughput and resultant data
rate for varying packet size. 141

5.6 Multiple Single Filters (MSF) program performance measurements
and comparison. 143

5.7 Predicted Single Compound Filter (SCF) throughput and resultant
data rate for varying packet size. 144

vii

LIST OF TABLES viii

5.8 Multiple Compound Filter (MCF) performance measurements and
comparison. 146

5.9 Large Single Filter set performance measurements and comparison. 150

5.10 Observed data rate and throughput for RAM disk 151

5.11 Derived Libtrace throughput and data rate for a simple BPF filter . 152

5.12 Comparative performance of different graphics cards for each filter
program vs. GTX 275 results. 155

List of Code Listings

1 Time difference between synchronous and asynchronous execution. . 61
2 Improving division and modulo performance. 66
3 EBNF for rule code . 87
4 Psuedocode for field extraction. 90
5 EBNF for Filter and Subfilter Code . 94
6 EBNF for the GPF Grammar . 97
7 Example high-level filter program classifying packets against two

distinct port ranges. 98
8 Example Decisional Execution . 112
9 Hypothetical use of an IP protocol definition. 113

ix

1
Introduction

PACKET classifiers, also known as packet filters, are ubiquitous components
in modern networked environments, and are fundamental to many net-
work, security and monitoring applications. These applications require

fast, efficient and flexible identification of both live packet streams and offline
packet captures, in order to identify malicious activity, to analyse local traffic, and
to facilitate network security related research [11, 38]. Packet classification is a
computationally expensive process, however, and achieving multi-gigabit classifi-
cation rates is thus difficult without expensive, non-commodity hardware. Further-
more, most modern algorithms target select protocol-specific fields, and thereby
sacrifice flexibility in order to meet the throughput demands of modern high-speed
networks.

This thesis describes the design and implementation of GPF (GPU Packet Filter):
a flexible, protocol-independent, multi-match packet classifier, developed specifi-
cally for execution on modern commodity NVIDIA GPU (Graphics Processing Unit)
hardware. The development of GPF was primarily motivated by a need to ac-
celerate the data-intensive analysis of large packet sets captured from Network

1

1.1. NETWORK TELESCOPES 2

Telescopes [38], which is often an extremely slow and tedious process when using
existing Central Processing Unit (CPU) frameworks.

In the following section, the reader is introduced to Network Telescopes, and the
original motivation for developing a GPU classification algorithm. This section
is provided to supply context for the work undertaken, and reflects only a single
instance of a wider problem. The research problem statement which follows ap-
proaches the problem from a more general perspective, and explains briefly the
approach adopted to address this problem.

1.1 Network Telescopes

Network telescopes are passive, low interaction traffic collectors (or sensors) which
are used extensively in the analysis of Internet Background Radiation (IBR). IBR
consists of non productive Internet traffic; for example, packets destined for ad-
dresses that do not exist, or for servers which are either offline, or are not con-
figured to receive the incoming transmission [65]. Network telescopes collect and
record IBR packet traces by passively monitoring large segments of unused Inter-
net Protocol (IP) address space, such as an otherwise unallocated large Class A
(/8) or a small Class C (/24) network [38, 65]. As these segments are devoid of
hosts, there is no need to filter out productive traffic from the collected IBR, and
little threat of a successful attack — besides packet floods or Distributed Denial of
Service (DDoS) attacks — from external hosts.

Packets collected at network telescopes fall into one of three broad categories:
backscatter, misconfigured transmissions, and aggressive or hostile traffic [38].
Backscatter comprises benign nonproductive traffic transmitted in response to mis-
configured or spoofed traffic that originated elsewhere, while misconfigured trans-
missions are typically produced by badly configured hosts. The majority of IBR
traffic, however, is aggressive or potentially hostile [38], and includes TCP and
ICMP scans, UDP packets with malicious payloads, and other virus and malware
related activity. This malicious traffic, once captured, may be analysed to identify
new Internet-based vulnerabilities and threats, to determine the level of infection
of known malware, and to study the propagation dynamics of this malware over
time.

1.2. PROBLEM STATEMENT 3

Packets traces are collected by network telescopes over regular daily, weekly or
monthly intervals, and stored in Pcap dump files for later processing in network
analysis tools such as WireShark1, TcpDump2 and Libtrace3 [38]. The number of
packets in these traces is dependent on the interval of collection and the rate of
packet arrival, which in turn is affected by the size of the telescope being used.
While small (/24) telescopes typically only receive in the order of 1000 packets per
hour, large Class A (/8) telescopes may receive several million. As a result, some
long term IBR captures may contain tens or hundreds of billions of packets, which
may take hours or days to process [11]. When captures include productive traffic
from active hosts in addition to IBR, these counts may grow by one or more orders
of magnitude, thereby making analysis of the captured data entirely impractical.

For instance, assuming an average packet arrival rate of 10 packets per IP address
per hour, a large Class A (/8) network telescope — with roughly 16.7 million ad-
dresses — may expect to receive over 167 million packets every hour. This equates
to roughly 4 billion packets per day, 120 billion packets a month, and 1.4 trillion
packets per year. Given that Libtrace achieves a throughput of roughly 6 million
packets per second when filtering for TCP traffic on port 80 [11], performing a simi-
lar operation on 1.4 trillion packets would require almost three days. Consequently,
analysing long-term traces collected from large telescopes can be an extremely slow
and tedious process, which ultimately inhibits exploration and near-real-time anal-
ysis of the captured telescope data.

For more information regarding the benefits and applications of network telescopes,
the reader is encouraged to consult “A Framework for the Application of Network
Telescope Sensors in a Global IP Network” by Barry Irwin [38].

1.2 Problem statement

Applications such as WireShark and Libtrace are often employed to diagnose anoma-
lies, monitor and analyse traffic, and perform general network and security related
research [10]. Many of these scenarios operate on live traffic or offline packet cap-
tures collected from high-bandwidth networks with hundreds of active hosts. Such

1http://www.wireshark.org/download.html
2http://www.tcpdump.org/
3http://research.wand.net.nz/software/libtrace.php

http://www.wireshark.org/download.html
http://www.tcpdump.org/
http://research.wand.net.nz/software/libtrace.php

1.2. PROBLEM STATEMENT 4

networks have the collective potential to generate tens of millions of packets per
second, which is significantly greater than the peak performance of either Libtrace
or WireShark. This throughput limitation thus makes thorough, long term moni-
toring and analysis of high-speed traffic impractical.

The most significant limiting factor affecting the throughput of these network anal-
ysis tools is the underlying classification mechanism. This mechanism has tradi-
tionally relied on the CPU of the host machine to provide the necessary flexibility
to classify any arbitrary protocol field, without requiring expensive, specialised
hardware. As CPUs are primarily sequential processors, packets are filtered one
at a time, resulting in a significant bottleneck when millions of packets are col-
lected each second, and are classified against a non-trivial filter set. Consequently,
protocol-independent classifiers match packets to only a single filter, in order to
help reduce per packet filtering times.

While the protocol-independent packet classifiers used in network analysis tools
opt to process packets sequentially (so as to cater to the strengths of CPUs), packet
classification is itself a highly parallelisable process. As the order of packet ar-
rival cannot be guaranteed, each incoming packet must be classified independently
against a constant filter set, thereby allowing for parallelism at the packet level.
The task of packet classification is thus potentially well-suited to massively paral-
lel architecture, such as modern commodity GPUs. Unfortunately, existing protocol-
independent packet classification algorithms are not easily ported to this medium,
due to their heavy reliance on sequential optimisations that are extremely ineffi-
cient when performed on GPU hardware. As a result, very little research exists
regarding the utilisation of GPUs to perform this task.

This thesis details the design and implementation of GPF, a novel filtering ar-
chitecture targeting Compute Unified Device Architecture (CUDA) enabled GPU
co-processors explicitly, which has been developed, in part, to assess the potential
benefit of GPUs in accelerating packet classification. This framework dramatically
accelerates the filtering process, and bridges the gap between filter throughput
and modern high-bandwidth interface speeds. In addition, GPF returns results
for each filter independently, and allows for multiple overlapping filters to be run
concurrently, without obscuring potential results.

1.3. RESEARCH METHOD 5

1.3 Research Method

This research was undertaken to evaluate the viability of GPU accelerated pro-
cessing to improve packet classification throughput, achieved through the method
of experimental synthesis. In essence, a classifier tailored to GPU hardware was
designed, and subsequently implemented as a functional prototype. This prototype
was then evaluated to measure its accuracy and performance over a range of test
cases.

The design for this classifier was derived by considering a wide range of specialised
and general classification algorithms, in order to identify effective strategies which
may be adapted, reconstituted and combined to effect an efficient GPU solution.
This preliminary research, in combination with a relatively thorough review of the
performance characteristics of GPU devices, directed the conceptual development
of both the GPU classification functions, and the classification system in general.
With the exception of the GPU functions described, many architectural and tech-
nical elements which support the classification process (such as packet buffering
and program compilation) have been discussed extensively elsewhere, and do not
warrant detailed exploration or extensive testing at this point.

A prototype implementation — modified to facilitate validation and performance
measurement at a program component level — was utilised to evaluate the classi-
fiers performance potential. The prototype implementation was modified to allow
each component of the system to measured independently, one at a time, both to
aid in identifying any potential bottlenecks, and to ensure the measurements col-
lected for classification functions were not skewed by the performance and resource
utilisation of other system components.

1.4 Scope

While the scope of the design presented in Chapter 4 includes discussion of all rel-
evant GPU and CPU components, the primary focus of this work is developing and
assessing the core classification process executed within the GPU context, and not
to develop and test a complete classification system. The scope of implementation
is thus limited to a functional prototype, capable of measuring the performance of
the GPU classification functions.

1.5. SUMMARY OF GOALS 6

In order to test the primary filtering functionality being developed, the prototype
system needs to accept both filter programs and packet data as input. Due to this
requirement, the prototype facilitates both high-level filter compilation — which
converts GPF filter specifications into instructions for the GPU classification func-
tions — and packet collection from capture files. While support for filtering live
network interfaces will likely be incorporated in the future, this functionality has
been left out of scope for the time being, as it is not particularly useful when mea-
suring classification performance. Packet capture files are better suited to this pur-
pose, as, unlike live captures, they are not restricted by the speed of the interface
being processed, they may be accessed on demand, and they allow for independent
verification of results. In addition, functions supporting packet analysis has been
left out of scope, as their usefulness depends on the viability of the classification
method. Analytical extensions and future functionality are, however, briefly dis-
cussed in the classifiers design.

Hence, while the prototype is essentially a functional classification system, it lacks
many of the optimisations and refinements described in the design to improve us-
ability and component level performance. The prototype thus reflects a perfor-
mance baseline for the GPU classification process, which is expected to be ex-
panded and improved upon in future work.

1.5 Summary of Goals

In summary, the goal of this research is to determine the viability and usefulness
of GPU accelerated packet classification through the following method:

• Design a flexible classification framework, capable of classifying against mul-
tiple arbitrary filters, that is optimised for efficient, parallel execution on
GPU hardware.

• Implement a functional prototype of this framework which includes all GPU
classification functions and necessary supporting architecture.

• Evaluate the classification performance of this prototype to infer the potential
value of employing GPUs to accelerate packet classification.

1.6. ADDITIONAL NOTES 7

1.6 Additional Notes

• The terms packet classifier and packet filter are used interchangeably through-
out this thesis, as they are largely treated as being synonymous in the Litera-
ture. While the traditional term, packet filter, was used almost exclusively in
earlier works, the arguably more accurate term, packet classifier, has become
increasingly prominent in recent years.

• This thesis depends heavily on references published online. While undesir-
able, the cutting-edge nature of both the GPGPU field and the tools employed
in this thesis made this difficult to avoid.

1.7 Document Structure

The remainder of this document is structured as follows:

• Chapter 2 introduces the domain of packet classification and its core concepts,
and investigates a selection of diverse packet filter designs.

• Chapter 3 provides an introduction to NVIDIA GPU hardware, and examines
the CUDA programming model and its performance characteristics in detail.
The chapter concludes by considering why existing classification algorithms,
such as those discussed in Chapter 2, would not perform efficiently on GPU
hardware.

• Chapter 4 introduces the filtering strategy employed, and describes the high-
level architecture of the GPF classification system, before providing design
and implementation information for individual components.

• Chapter 5 presents the results of testing performed on a prototype implemen-
tation of GPF, with specific focus on performance and accuracy.

• Chapter 6 concludes with a summary of research findings, a discussion possi-
ble applications, and an overview of future work.

2
Packet Filters

THIS chapter introduces the reader to the domain of packet filtering and
a selection of existing IP-specific and protocol-independent filtering algo-
rithms, in order to provide suitable context for the design of the GPF algo-

rithm presented in Chapter 4. The chapter is organised as follows:

• Section 2.1 begins with a brief introduction to the structure and use of packets
in digital networks.

• Section 2.2 details the role of packet headers in facilitating packet-based com-
munication, and describes how packet headers are constructed in order to
fulfill this role.

• Section 2.3 introduces the abstract filtering mechanisms employed to classify
packets using components of these headers, and details some of their various
attributes and properties.

• Section 2.4 considers four common programmable hardware mediums on which
packet filters have been deployed, and how the capabilities of these mediums
are exploited in classifier design.

8

2.1. PACKETS 9

• Section 2.5 explores a diverse selection of IP-specific classification algorithms,
which operate on the Internet Protocol exclusively in order to meet the packet
throughput demands imposed by modern high-bandwidth networks.

• Section 2.6 briefly examines several important protocol-independent packet
filter implementations, before concluding with a summary in Section 2.7.

Much of the content covered in this chapter was derived and expanded from
research previously published by the researcher in the proceedings of the
2009 SAICSIT conference, South Africa [52].

2.1 Packets

Data is transferred between network interfaces contained within binary arrays
known as packets [50, 77]. Packets typically comprise a data segment — known as
the payload — combined with a series of protocol headers used for transmitting,
routing and receiving packets. Packet sizes vary dramatically depending on their
payload, function, protocol and transportation medium, but all protocols define a
Maximum Transmission Unit (MTU) which specifies the maximum size a partic-
ular packet type may be [68]. Some protocols, such as the Internet Protocol [68],
allow payloads which exceed the MTU to be divided over multiple packets, termed
fragments. Fragments may be reconstituted into a single payload by the receiv-
ing host once they have arrived at their destination, achieved through the use of
fragment related information contained within the packet header [77].

Packet headers contain vast amounts of useful network-related data, including ad-
dress and port information, protocol flags, and other information relevant to suc-
cessful transmission [77, 78]. Packet classifiers use this information to rapidly
categorise incoming packets, and have been employed in a variety of domains, in-
cluding packet routing between remote hosts [45, 76], demultiplexing incoming
packet streams [50], analysing packet set composition [38], providing network re-
lated security through firewalls [49], and facilitating intrusion detection [83].

2.2. PACKET HEADERS 10

Figure 2.1: Example TCP/IP packet, decomposed into its abstract layers.

2.2 Packet Headers

Conceptually, packet headers are organised as a stack. Each level in the stack is
associated with a different type of service, and the stack is organised such that
each layer receives services from the layer directly below it, and provides services
to the layer directly above it. The Transmission Control Protocol / Internet Protocol
(TCP/IP) model, for instance, is divided between four broad layers, whereas the
Open Systems Interconnection (OSI) model is divided among seven discrete layers.
This section introduces these models, and describes how they are used to facilitate
the transmission of packets between remote hosts.

2.2.1 The TCP/IP Model

TCP/IP, also known as the Internet Protocol Suite [22], is leveraged in the trans-
mission of the vast majority of modern network traffic, and has been pivotal to the
success of the Internet. Although not an explicit design choice, TCP/IP may be
viewed as a four layer stack, consisting of the Link Layer, Internet Layer, Trans-
port Layer and Application Layer [69, 77]. A high-level overview of the structure
of a TCP/IP packet mapped onto these four layers is provided in Figure 2.1.

The Link Layer is responsible for preparing packets for dispatch, as well as the
physical transmission of packets to a remote host or the next-hop router. This
layer is only responsible for delivering a packet to the next router or host in the
chain, and it is up to the receiving interface to direct the packet on to a router or
host closer to the transmission end-point. This process is repeated by each node
in the chain, until such time as the packet arrives at its destination. To achieve
this, a frame header is added to the packet, containing the relevant information

2.2. PACKET HEADERS 11

to deliver the packet to the target host or the next-hop router over the specified
network medium. As a result, the Link Layer is associated with protocols which
support this physical transmission, such as Ethernet II or WiFi (802.11 a/b/g/n).

The Internet Layer, located directly above the Link Layer in the TCP/IP stack,
is responsible for the delivery of packets between end-points in a transmission.
The Internet Layer’s functionality is contained within the Internet Protocol (IP),
which facilitates logical, hierarchical end-point addressing through IP addresses,
and enables packet routing by specifying the terminal node in the transmission.
The Link Layer uses the address information encapsulated in IP, as well as routing
tables, to derive the physical address of the next network interface between the
sending and receiving host. In this way, the Link Layer provides a service to the
Internet Layer by determining the delivery route a packet navigates to arrive at
its remote destination, and transmitting it along that route. IP has two widely
used implementations, namely IP version 4 (IPv4), which supports just over four
million 32-bit addresses, and IP version 6 (IPv6), which uses 128-bit addresses that
provide roughly 3.4× 1038 unique address values.

The Transport Layer is entirely independent of the underlying network [22, 77],
and is responsible for ensuring that packets are delivered to the correct appli-
cation through service ports. The two most common Transport Layer protocols
are the Transmission Control Protocol (TCP) [69] and the User Datagram Protocol
(UDP) [67]. TCP is a connection-orientated protocol which addresses transmission
reliability concerns by:

• discarding duplicate packets

• ensuring lost or dropped packets are resent

• ensuring packet sequence is maintained

• checking for correctness and corruption through a 16 bit check-sum

In contrast, UDP is a connectionless protocol which provides only best-effort deliv-
ery and weak error checking. Unlike TCP, UDP sacrifices reliability for efficiency
[77], making it ideal for applications such as Domain Name Service (DNS) look-ups,
where the overhead necessary for maintaining a connection is disproportionate to
the task itself.

2.2. PACKET HEADERS 12

Figure 2.2: Stack level traversal when transmitting a packet to a remote host using
the TCP/IP model.

Both TCP and UDP define two 16-bit service ports, namely Source Port and Des-
tination Port, which are used to determine which application a particular packet
should be delivered to. As has been noted, both TCP and UDP are network agnos-
tic, and leave network related functionality to lower layers in the protocol stack
[67, 69].

The top-most layer in the TCP/IP stack is the Application Layer, which simply en-
capsulates the data to be delivered to the waiting application. This data may itself
contain further application specific headers, which are handled by the receiving
process. The packet is terminated by the Frame Footer, associated with the Link
Layer, which delimits the packet, and provides additional functionality such as
error checking.

Figure 2.2 illustrates the process by which a TCP/IP packet is transmitted from
a sending host to a distant receiving host via two routers. When an application
executing on the sending host wishes to transmit a payload to the receiving host,
it descends the TCP stack, applying relevant headers to the payload at each level.
First, the Application layer headers are applied, then the Transport Layer head-
ers, and so on. Once all headers have been applied, the packet is transmitted to
the next-hop router, Router A. Router A receives the packet and, using informa-
tion contained in the Internet Layer and routing tables, determines the shortest
path to the Receiving host. It then re-sends the packet with a new Link Layer
header, destined for Router B. Router B repeats this process, delivering the packet

2.2. PACKET HEADERS 13

Figure 2.3: Layer comparison between the OSI and TCP/IP models.

to the Receiving Host. The payload is then extracted and delivered to the waiting
application by ascending the stack, removing headers at each layer.

2.2.2 The Open Systems Interconnect (OSI) Model

The OSI Model, a product of the International Organisation for Standardisation,
is a seven layer standard model for network communication. Unlike the TCP/IP
model, layering is both explicit and an integral part of the model’s design [5]. In
practice, however, the OSI model’s seven explicit layers are functionally quite sim-
ilar to the four general layers in the TCP/IP model, and provide the same basic
services. Due to this inherent similarity, it is possible to outline the OSI model in
terms of the TCP/IP model.

The seven layers defined by the OSI model, from lowest to highest, are the Physical
Layer, Data-Link Layer, Network Layer, Transport Layer, Session Layer and Appli-
cation Layer [5]. The Physical and Data-Link layers are essentially encapsulated
by the Link Layer of the TCP/IP stack, decomposing it into two distinct processes;
physical transmission and packet framing. The Network layer is roughly equiv-
alent to the Internet Layer of the TCP/IP model, although there is some overlap
with the TCP/IP Link Layer. Similarly, the Transport Layer, and a small subset of
the Session layer, are contained within the Transport Layer of the TCP/IP model,

2.3. PACKET FILTERS 14

while the remainder of the Session Layer, as well as the Presentation and Applica-
tion Layers are left as application specific data, contained within the Application
Layer of the TCP/IP Model. A diagrammatic representation of this breakdown is
provided in Figure 2.3.

While the TCP/IP model is considered exclusively from this point on, any discus-
sion of the TCP/IP model applies generally to the OSI model as well, given their
similarities.

2.3 Packet Filters

A filter is a boolean valued predicate function, operating over a collection of crite-
ria, against which each arriving packet is compared [17, 50, 78]. A packet is said
to be classified by a filter if the filter function returns a boolean result of true, in-
dicating that the packet has met the specific criteria for that filter. Filter criteria
are boolean valued comparisons, performed between values contained in discreet
bit-ranges in the packet header and static protocol defined values [78]. For exam-
ple, in the Ethernet II Frame Header, the Type field is a two-octet (16-bit) value,
offset 12 bytes from the start of the header by two six-octet (48-bit) Media Access
Control (MAC) addresses [77]. If the packet is an IP datagram, then the type field
will be set to a hexadecimal value of 0x800 [77], equivalent to 2048 in decimal.
Thus, any filter targeting IP datagrams need only compare the 16-bit range offset
12 bytes from the beginning of the packet to the value 2048 in order to determine
if the filter succeeds. In most cases however, a filter will contain multiple criteria,
in multiple levels of the protocol stack, which must be met in order for the filter to
classify a packet.

Since the packet payload is typically application specific [50, 77], packet filtering
generally focuses on evaluating the data contained within the packet header, ignor-
ing the payload entirely. An exception to this rule may be found in Network Intru-
sion Detection Systems (NIDS) such as Snort, where string matching techniques
are used to scan payloads for threats. String matching is expensive however, and
so NIDS typically pre-filter incoming packets using a fast IP-specific algorithm (see
Section 2.5) to determine which payloads may be of interest, thereby reducing the
number of packets which need to be matched against each threat detection string.

2.3. PACKET FILTERS 15

In general, packet filtering involves the comparison of each arriving packet against
a set of one or more filters in order to determine important information about the
packet; for example, its type, purpose and origin. Packet filters have been em-
ployed in many distinct areas of the network domain, including but not limited to
packet demultiplexing, IP routing, firewalls and packet dumpfile analysis. These
domains have different requirements, resulting in filters with different areas of
specialisation, classification mechanisms and properties.

The remainder of this section explores some of the primary areas of filter differ-
entiation, and considers some properties which affect the performance of all filters
to some degree, in order to provide context for discussions regarding specific filter
implementations later in the chapter.

2.3.1 Filter Specialisation

Packet filters may be categorised as being either protocol-independent or protocol
specific. Protocol-independent classifiers are general and flexible, and are capable
of classifying a packet against any number of arbitrary protocol header values [17].
In contrast, protocol specific algorithms are more specialised and rigid, targeting
a specific protocol or protocol suite. In practice, virtually all protocol specific algo-
rithms target the Internet Protocol suite exclusively, due to its ubiquity in modern
networks. For simplicity, these algorithms are referred to as IP-specific algorithms.

Given the increasing throughput demands of modern classifiers [13], the majority
of recent work has focused on IP-specific algorithms, as their rigidity allows for a
broader range algorithmic strategies and optimisation opportunities. IP-specific al-
gorithms and protocol-independent algorithms are considered in detail in Sections
2.5 and 2.6 respectively.

2.3.2 Match Cardinality

The match cardinality of a filter refers to the number of match results the filter
returns per packet. A single match per packet is sufficient for many applications
— such as in packet routing and demultiplexing, where packets are delivered to
a single destination — although recent research has tended toward multi-match

2.3. PACKET FILTERS 16

filtering in order to promote higher accuracy in security and network monitoring
applications, such as NIDS [39, 40, 46].

Single-match filters often aim to identify the most appropriate matching filter to
a given packet in as little time as possible, and are well suited to selecting the
most appropriate action to perform with respect to a particular packet. Multi-
match filters, on the other hand, produce a more complete set of results at greater
computational expense, thereby providing more precise and detailed information
for security and forensic functions [39, 40, 46], where accuracy is of greater concern.
In particular, multi-match classification ensures that potentially important results
are not missed, and increases the flexibility of filter set designs by allowing many
filters to execute without accidentally obscuring results.

As a simple example of filter hiding, consider a filter set intended to count the
number of incoming TCP packets, while simultaneously determining the number
of packets with a source IP address of x. Using a multi-match filter, an accurate
count for both queries could be found using two filters:

1. Source = x

2. Protocol = TCP

However, if this filter set were to be used by a classifier returning only a single
match, then all TCP packets with a source address of x would be hidden by the
first filter, resulting in an inaccurate count of the total incoming TCP packets. An
accurate count would instead require three filters:

1. Source = x and Protocol = TCP

2. Source = x

3. Protocol = TCP

Hidden filters are not always easy to identify or avoid — particularly in large fil-
ter sets — and are sensitive to human error, providing the potential for important
classifications to be missed. Multi-match functionality is thus essentially a prereq-
uisite for classifiers intended for network security and packet analysis.

2.3. PACKET FILTERS 17

2.3.3 Redundancy and Confinement

This subsection highlights two important properties of filter sets which may be
intelligently exploited to improve the efficiency of packet classifiers, allowing for
higher classification throughput. Taylor [78] refers to these characteristics as the
Match Condition Redundancy and Matching Set Confinement properties.

The Match Condition Redundancy property derives from the observation that fil-
ters in a filter set often share a number of match conditions. For instance, filters
which classify TCP/IP traffic will typically test the packet header to ensure the
packet is an IP datagram [17]. As a large proportion of network traffic uses this
protocol, it follows that the same test must be contained within multiple filters of
the filter set [17, 78]. With regard to IP-specific algorithms, match condition re-
dundancy may refer to similar port numbers or address prefixes [78]. As a result
of this property, for a given filter field, there are often significantly fewer unique
match conditions than there are filters in the filter set [17, 26, 78].

Furthermore, as a field is usually comprised of only a few bits, it has a limited
number of possible values. A field n bits wide can have a maximum of 2n possible
values, and often far fewer values are actually defined for larger fields. Thus, the
number of possible field values contained in a filter set is typically quite small,
and remains small independent of filter count. This is termed the Matching Set
Confinement property [78].

While these properties were derived from observations made with regard to IP-
specific algorithms, they remain true with regard to protocol-independent classifi-
cation as well, if to a slightly lesser extent.

2.3.4 Arbitrary Range Matching and Filter Replication

It is common for a filter to accept an arbitrary range of values for ports (and ad-
dresses) in order to classify a packet as a particular type. In order to avoid testing
each discreet value — which may be extremely expensive for large ranges — filters
attempt to match multiple elements in a single operation. This is relatively trivial
when working at the byte level and above, as most ranges can be expressed using
only a few comparison operations. For instance, testing to see if a 32-bit value x
falls within the range 853 to 14, 521 — written as 853:14,521 — requires only two

2.4. TARGET HARDWARE 18

comparisons: x ≥ 853 and x ≤ 14, 521. When working at the bit level, however,
many more comparisons are often required.

Ranges expressed in bits typically leverage ternary strings, which differ from bi-
nary strings in that they allow for a third ’*’, or don’t care digit. For instance,
the ternary string 1** matches the values 4:7 (100 − 111), while the 11*1 matches
the values 13 and 15 (1101, 1111). Unfortunately, this method of specifying ranges
requires multiple filters when the range is not of the form 2n : 2n+1 − 1 for some
positive integer n.

Consider, as a simple example, a two-bit port range of 1 to 2. In binary, these
ports would be 01 and 10, necessitating a ternary string of ** to match both ports
with a single rule. Unfortunately, such a string will also match ports 0 (00) and
3 (11), ultimately rendering it useless. Thus, matching this range requires two
distinct bit-masks, specifically 10 and 01, thereby necessitating two separate rule
(or prefix) entries for the same field classification [46, 75].

For a more extensive example, consider the filter set used in the Modular Packet
Classification illustration, shown in Figure 2.8 (see Section 2.5.5). While this is the
same filter set given in Table 2.2, the filter set in Figure 2.8 is roughly 36% larger
due to filter replication required to classify the included port ranges. In the worst
case, a w-bit port range may require 2(w − 1) prefixes, and a filter containing two
port ranges may require up to 4(w− 1)2 entries (900 entries when using 16-bit port
numbers) [46].

2.4 Target Hardware

The hardware environment on which a particular packet filter is intended to run
provides the motivation for the structural design of the algorithm. Packet filters
have been utilised in a variety of both general and specialised hardware contexts.
Each platform provides distinct benefits and weaknesses, which are capitalised on
and mitigated respectively within the algorithms design to meet the requirements
of its intended deployment environment. This section provides a brief, high-level
overview of four prominent hardware mediums often utilised in the packet filtering
domain, namely Central Processing Units [17], Network Processors [85], Ternary
Content-Addressable Memory (TCAM) [75] and Field Programmable Gate Arrays

2.4. TARGET HARDWARE 19

(FPGAs) [39, 40, 74]. A comparison between these hardware mediums and CUDA
capable GPUs is provided in Section 3.7.

2.4.1 Central Processing Units

Until recently, CPUs have been almost exclusively sequential processors, contain-
ing a single processing element and varying amounts of fast cache memory. While
modern multi-core processors provide some measure of parallelism, and are thus
well-suited to multi-tasking, the relative cost of each individual processing core
remains high, minimising their applicability to massively parallel processing prob-
lems. Despite these limitations, CPUs are extremely flexible and, due in part to
their sequential heritage, are highly amenable to run-time optimisation through
mechanisms such as arbitrary code branching, dynamic code generation [26] and
Just-In-Time (JIT) compilation [17].

CPUs have been leveraged directly in a wide variety of protocol-independent algo-
rithms (see Section 2.6), and facilitate most packet analysis applications [8, 47].
Unfortunately, as network bandwidth continues to increase exponentially [51], the
applicability of CPUs to the domain of packet filtering continues to decline [44], as
the volume of information to be filtered in a given time delta generally exceeds the
available processing capacity of a typical desktop computer over that delta.

CPU-based algorithms employ a wide range of techniques to minimise the amount
of time it takes a single packet to be evaluated against a filter set, but rely predom-
inantly on eliminating redundant calculations by dynamically adjusting control
flow using a tree structure. These optimisations have allowed software firewalls
to filter at up to gigabit interface speeds, assuming suitably powerful CPUs are
leveraged. For more demanding applications, such as multi-gigabit packet routing,
network intrusion detection [39, 83] or high-speed firewalls, specialised hardware
is necessary in order to meet throughput requirements.

2.4.2 Network Processors

Network processors are a relatively recent addition to packet classification hard-
ware, providing specialised functionality to accelerate packet filtering tasks [44].
Network processors may have one or more processing cores, depending on their

2.4. TARGET HARDWARE 20

make and model [44]. They behave similarly to modern CPUs processors in many
respects, and act as dedicated co-processors, reducing CPU load. While some Net-
work Processors provide multiple cores to accelerate processing, NPUs remain pre-
dominantly sequential processors, and thus suffer from the same throughput prob-
lems as CPUs when attempting filter fast interfaces.

Algorithms targeting NPUs tend to depend heavily on their dedicated functionality,
and as such are difficult to port efficiently to different hardware contexts.

2.4.3 Ternary Content-Addressable Memory

Content-Addressable Memory (CAM) is a specialised type of associative computer
memory which is often employed when efficient searching is of critical importance.
In contrast to Random Access Memory (RAM), which uses a memory index value to
return the data word stored at the index location, CAM instead accepts a specific
data word value, and returns the first memory index location (and sometimes all
memory index locations) that a matching word is found [7]. The simplest form of
CAM is Binary CAM, which accepts a binary string as an input word. Ternary
CAM (TCAM), in contrast, accepts ternary strings, which include the values 0, 1
and * [46]. The * bit allows the TCAM to locate any binary strings which fit the
general pattern specified by the ternary string, but which differ in areas with no
contextual relevance to the task at hand.

TCAMs prove to be well suited to the packet processing domain [75], due to their
natural applicability to the problem of matching header field values to rules in an
Access Control List (ACL) or filter set [13]. Unfortunately, while TCAMs excel at
finding matches to exact values and prefixes, they are highly inefficient at match-
ing against arbitrary ranges of values (such as ports) due to the bit level filter
replication problem (see Section 2.3.4). Because Ternary CAMs must be able to
store three values per bit rather than two, they also have lower density and con-
sume more power than other memory types [74]. A more advanced alternative,
called Extended TCAM, addresses these issues by providing circuits which help to
reduce power draw and accelerate arbitrary range matching [75].

2.4. TARGET HARDWARE 21

2.4.4 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are functionally equivalent to Appli-
cation Specific Integrated Circuits (ASICs), and are capable of fulfilling any pro-
grammable function which could otherwise be implemented as an integrated cir-
cuit. They differ from ASICs in that they are soft-configurable, a feature which
allows the circuit logic to be programmed on the fly in the field, rather than dur-
ing the fabrication process [86]. FPGA circuit logic may be stored using anti-fuses,
static random access memory (SRAM), or electrically erasable programmable read
only memory (EEPROM) [33].

An anti-fuse prevents current from flowing until the fuse is blown, essentially pro-
viding the reverse functionality of a traditional fuse. Logic is programmed into an
anti-fuse FPGA by blowing the anti-fuses between logic cells to form connections
in the circuit. Like standard fuses, anti-fuses cannot be unblown, thus prevent-
ing the connections on FPGAs which employ them from being programmed more
than once. Conversely, SRAM based FPGAs are entirely volatile, and must be re-
programmed each time the FPGA loses power or is rebooted. EEPROM based FP-
GAs provide a compromise between write-once memory and volatile memory [33],
maintaining logic in non-volatile re-writable memory. This allows the FPGA logic
to persist without a power supply, similar to anti-fuse FPGAs, but further facili-
tates that logic may be altered and updated as necessary, much like SRAM based
FPGAs.

FPGAs allow for multiple identical circuits to be programmed onto the device in
order to facilitate massive parallelism. FPGAs have a finite number of logic gates
available on the die, however, and thus the number of circuits which can be pro-
grammed in parallel is proportional to the total number of gates available, and
inversely proportional to the complexity of the circuit being programmed. FPGAs
are commonly employed by decomposition algorithms (see Section 2.5.6) largely as
a result of this parallelism.

Having considered the hardware mediums typically employed by packet filters,
the following two sections provide an overview of select IP-specific and protocol-
independent algorithms, focusing on the diverse strategies employed to improve
classification throughput.

2.5. ALGORITHMS FOR IP PROCESSING 22

2.5 Algorithms for IP Processing

IP specific algorithms operate exclusively on a subset of the Internet Protocol com-
monly referred to as the IP 5-tuple [78], where an n-tuple is an ordered list of n
elements. The IP 5-tuple comprises the source IP address, destination IP address
and protocol fields of the IP protocol, as well as the source and destination port
numbers contained in the TCP or UDP header, these being the most common trans-
port protocols. IP-specific algorithms are heavily optimised with respect to both the
IP 5-tuple and the underlying hardware (in order to maximise throughput) at the
expense of flexibility and protocol independence, making IP-specific algorithms dif-
ficult to re-target toward arbitrary protocols or complex match conditions. They do,
however, employ a wide variety of techniques to improve filtering speed, many of
which may be adapted to support protocol-independent classification.

The simplest class of IP algorithm, termed exhaustive search, compares packets
against each and every filter in the filter set until such time as a suitable match is
found [75, 78]. These algorithms are generally slow, and therefore not very useful.
Other classes of algorithm include decision tree, decomposition and tuple space.

Decision tree algorithms are diverse in design, but all leverage a sequential tree-
like traversal of a specialised data structure in order to narrow down the number
of criteria against which the packet needs to be compared [17, 72, 76]. Decision
trees are also employed extensively by protocol-independent algorithms, as they
are well suited to sequential evaluation (see Section 2.6)[17, 26, 90] .

In contrast, Decomposition algorithms target parallel processing hardware such as
FPGAs and TCAM, typically breaking down filter classifications into smaller sub-
classifications which can be performed in parallel [14, 45, 78]. A final classification
step consolidates the output from each sub-classification and evaluates the result
to determine the best matching filter. Lastly, Tuple Space algorithms attempt to
rapidly narrow the scope of multi-field matches through filter set partitioning [78].
In the interests of scope, Tuple Space algorithms will not be discussed further.

In the remainder of this section, some of the most commonly implemented IP-
specific algorithms are examined, in order to infer the general mechanisms which
benefit classification. Many of the discussions and examples used in this section
are derived from Taylor’s “Survey and Taxonomy of Packet Classification Tech-
niques” [78], which provides a detailed high-level overview of the most prominent

2.5. ALGORITHMS FOR IP PROCESSING 23

techniques used in IP-specific classification, and facilitates comparisons between
algorithms through simple common examples.

2.5.1 Exhaustive Search

The simplest and most reliable method of classifying packet data is an exhaus-
tive search through the filter set, most commonly performed either sequentially
(termed a linear search), or completely in parallel [78]. In a linear search, filters
are iteratively compared to the packet data until such time as either a specific filter
matches the packet, in which case the packet is classified by the filter, or iteration
through the filter set completes without finding a suitable match. This form of ex-
haustive search is reliable and easy to implement, but extremely slow. In contrast,
an exhaustive search performed using TCAM (see Section 2.4.3) provides signifi-
cantly better performance by performing all comparisons in parallel, but requires
greater computational resources as a result. While exhaustive search techniques
are not typically used as the primary classification method due to relatively poor
performance in comparison to other approaches, it is often used as a component
within more sophisticated decision tree algorithms [30, 78].

2.5.2 Decision Tree Algorithms Overview

A decision tree approach to packet classification involves converting a filter set
into a directed acyclic graph (DAG), where the leaves of the graph represent filter
classifications. Nodes within the graph contain various match types, including
exact, longest prefix (see Section 2.3.2), and arbitrary range matches (see Section
2.3.4), where each match returns either true or false.

Decision tree approaches facilitate efficient run-time optimisation in sequential
processing environments, and have thus been leveraged in a variety of both IP
specific and protocol-independent algorithms (see Section 2.6) [17, 26, 78]. The fol-
lowing sections describe a variety of algorithms based on decision trees, including
Trie algorithms (Section 2.5.3), Cutting algorithms (Section 2.5.4) and the Modular
Packet Classification algorithm (Section 2.5.5).

2.5. ALGORITHMS FOR IP PROCESSING 24

2.5.3 Trie Algorithms

Trie algorithms are decision tree algorithms which employ tries to perform classi-
fication. A trie is essentially an associative array of string based keys, where each
individual path through the trie combines to specify a unique match condition [18].
When a string is matched by a trie, each node tests a successive character index of
the string, determining which successor node the data should be processed by. If
no candidates are found, the string is not matched.

Trie algorithms use bit-wise tries, which operate over binary digits rather than
characters. Bit-wise tries help eliminate redundancy by combining common pre-
fixes into a single string of nodes, and map well to both exact and longest prefix
match classification. As an example of a longest prefix match, consider two fil-
ters specifying similar destination addresses — for instance 192.168.5.17/32 and
192.168.0.0/16 — to be matched against an incoming packet. In this instance, if
the packet destination address is 192.168.5.17, then the longest prefix match is
the first filter, as it is more explicit. If, on the other hand, the packet destination
address differs from the first filter in the last 16 bits, then the longest match is the
second filter. Unfortunately, as bit-wise tries operate at the bit level, they often re-
quire multiple filters to classify an arbitrary range of acceptable values (see Section
2.3.4). As a result of this limitation, trie-based methods tend to focus on classifying
address prefixes, rather than port ranges. The remainder of this section introduces
three algorithms which leverage bit-wise tries to efficiently filter packets.

The Set Pruning Trees method [25] is designed to operate on two dimensional fil-
ters, specifically those providing both source and destination address prefix values.
The algorithm constructs a single trie for the first dimension (destination address),
and several tries for the second dimension (source address). The result of classifi-
cation within the first dimension is used to determine which trie in the second di-
mension to use for classification. Unfortunately, this results in substantial storage
costs when the same second dimension values occur for multiple first dimensional
values — for example, when the same source address prefix is specified for multi-
ple destination address prefixes — as these second values need to be replicated in
multiple second dimension tries [76]. An example set pruning tree, based on the
filter set shown in Table 2.1, is shown in Figure 2.4.

The Grid-of-Tries method [76] alleviates the replication problem evident in the Set
Pruning Trees algorithm by restricting the replication of identical sub-tries. This

25

Filter F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

DA 0* 0* 0* 00* 00* 10* * 0* 0* 0* 111*
SA 10* 01* 1* 1* 11* 1* 00* 10* 1* 10* 000*

Table 2.1: Example Filter Set, showing source and destination IP address prefixes
for each filter. Adapted from [78].

Figure 2.4: Example Set Pruning Tree created from the filter set shown in Table
2.1. Adapted from [78].

2.5. ALGORITHMS FOR IP PROCESSING 26

Figure 2.5: Grid-of-Tries structure, equivalent to the Set Pruning Tree shown in
Figure 2.4. Adapted from [78].

is achieved by using switch pointers to jump between second dimension tries [76],
allowing one trie to redirect classification to an appropriate node in another trie
which performs the same classification.

In order to utilise Grid-of-Tries for packet matching in higher dimensions, the au-
thors propose partitioning the filter set into classes through pre-processing, with
each class directed at a separate Grid-of-Tries structure. For instance, when pro-
cessing the typical IP routing 5-tuple, the set may first be partitioned into protocol
classes (TCP or UDP), with each protocol class subdivided into four specific port
classes. Port classes are derived from the existence or absence of specified field val-
ues, including: none, destination port only, source port only, and both destination
and source ports. Each port class contains a hash table of applicable port values,
with each element of the table pointing to an applicable trie structure for classi-
fying source and destination address values [76]. The Grid-of-Tries algorithm is
illustrated in Figure 2.5 (also derived from the filter set contained in 2.1) with the
small dotted arrow lines representing switch pointer jump operations.

A similar approach which attempts to improve matching on multiple fields, called
Extended Grid-of-Tries (EGT) [13], uses the grid-of-tries data structure in a pre-

2.5. ALGORITHMS FOR IP PROCESSING 27

Filter a b c d e f g h i j k
Port 2 5 8 6 0:15 9:15 0:4 0:3 0:15 7:15 11

Address 10 12 5 0:15 14:15 2:3 0:3 0:7 6 8:15 0:7

Table 2.2: Example filter set, containing 4-bit port and address values. Adapted
from [78].

liminary matching function. As with the standard Grid-of-Tries approach, the tries
are used to correctly classify source and destination address prefixes. However, un-
like the multiple field restrictions employed by Grid-of-Tries, which necessitated a
pre-filtering operation, EGT places the grid-of-tries before other evaluations, with
pointers at classifying nodes directed toward a list of applicable filters. As these
lists are expected to be small, a simple linear search (see Section 2.5.1) is applied
at this stage to identify a matching filter [13].

2.5.4 Cutting Algorithms

Cutting algorithms are a form of decision tree algorithm which view a filter with
d fields geometrically, as a d dimensional object (or area) in d dimensional space
[30, 72]. Each dimension reflects an ordered range of acceptable, discreet input
values, while the space occupied by a filter in a particular dimension is derived
from the field value corresponding to that dimension. Should a field value or range
not be specified, the filter simply fills the entire dimensional space. Figure 2.6
shows a two dimensional geometric representation of the example filter set pro-
vided in Table 2.2. Light-grey areas represent single filters, while dark-grey areas
represent overlapping filters.

Conceptually, Cutting algorithms operate by cutting the d dimensional space into
successively smaller partitions, until such time as the number of filters contained
within a particular partition is below some specified threshold value. By treating
each incoming packet as a point in this d dimensional space, the packet filtering
problem can be expressed as selecting the partition within which the point falls. If
the threshold value is larger than one, then the highest priority filter within the
partition is accepted [30, 72].

Hierarchical Intelligent Cuttings (HiCuts) [30] performs filtering by pre-processing
the filter set into a decision tree. The root node represents the d dimensional geo-
metric space, which is subdivided into equal sized partitions, each represented as

2.5. ALGORITHMS FOR IP PROCESSING 28

Figure 2.6: Geometric representation of a 2-dimensional filter over 4-bit address
and port fields. Adapted from [78].

a child node. If a particular child partition contains fewer filters than a specified
threshold value, then the partition points to a leaf node containing those filters.
If, however, the node contains more filters than the prescribed threshold, it is sub-
divided further. This process is recursed until such time as all partitions contain
an acceptable number of nodes [30]. A number of sophisticated heuristic measures
are defined to intelligently partition the geometric space, in order to minimise the
depth of the resultant decision tree. An illustration of the HiCuts algorithm is
shown in Figure 2.7.

Another algorithm, called HyperCuts [72], uses multiple cuts in each dimension to
form uniform regions in geometric space. This uniformity allows the HyperCuts
algorithm to efficiently encode pointers to successive nodes using indexing, thus
eliminating the memory penalty incurred by using multiple arbitrary cuts.

2.5.5 Modular Packet Classification

Modular Packet Classification [88] is a three stage classification process which op-
erates on ternary strings (see Section 2.3.4). The algorithm converts a filter into a

2.5. ALGORITHMS FOR IP PROCESSING 29

Figure 2.7: Hierarchical Intelligent Cuttings data-structure applied to filters de-
picted in Figure 2.6. Adapted from [78].

ternary string by first converting all field values in the filter into ternary strings,
and then concatenating these resultant strings together. Because the algorithm
classifies arbitrary ranges at the bit level, certain ranges may necessitate filter
replication (Section 2.3.4) which, while undesirable and costly, is considered an
acceptable expense. The resultant ternary strings are stored in an n × m array,
where n is the number of ternary strings and m is the length of these strings. To
accelerate matching, each string is given a weight proportional to the frequency of
classification relative to other strings.

The next step involves selecting the bits to be used for addressing the index jump
table. When a packet arrives, the appropriate bits are used to select the correct
position in the table. The number of bits used determines the number of unique in-
dexes within the index jump table, such that for q bits, a total of 2q index positions
are required. Ideally, bits should be selected such that all ternary filter strings
specify them, as any filters which specify a * in a selected bit index will be repli-
cated in multiple index positions within the jump table. If this is not possible, bits
which are specified in the greatest number of filters are used.

Each index in the jump table points to either a filter bucket leaf node containing
subset of filters, or another independent binary decision tree — composed of a root
node, and any number of child nodes and leaf nodes. Each node in the decision

2.5. ALGORITHMS FOR IP PROCESSING 30

Figure 2.8: Example of Modular Packet Classification using the filter set shown in
Table 2.2. Adapted from [78].

tree specifies a test on another index of the incoming packet, selected such that the
subset of filters is divided up further. If a filter specifies a * rather than a specific
value, that filter will be included in both sub-trees. When one of these subsets
contains an appropriate number of filters below a threshold value, the associated
edge leaving the node points to a filter bucket containing these filters, rather than
another node. The Modular Packet Classification algorithm is illustrated in Figure
2.8.

This method allows for rapid packet classification of IP packets by reducing the
number of filters to be searched using only a few bit comparisons.

2.5.6 Decomposition Algorithms Overview

Where decision tree algorithms sequentially classify each packet against a range
of criteria, decomposition techniques break down multiple-field match conditions
into several instances of single-field match conditions, making them suitable for
processing individual packets in parallel [78]. Such algorithms require efficient
aggregation of results from multiple independent matches, an area focused on by
many techniques [78]. Decomposition approaches typically target FPGAs, due to
the massive parallelism offered by the hardware medium. The following sections
describe a selection of different decomposition approaches, including Bit-Vector al-

2.5. ALGORITHMS FOR IP PROCESSING 31

gorithms (Section 2.5.7), Crossproducting (Section 2.5.8), and Parallel Packet Clas-
sification (Section 2.5.9).

2.5.7 Bit-Vectors

Bit-vector algorithms take a geometric view of packet classification, treating filters
as d dimensional objects in d dimensional space, similar to Cutting algorithms (see
Section 2.5.4). The first technique, known as Parallel Bit Vector classification [45],
defines the basic approach used by this subset of decomposition strategies.

In each dimension d, a set of N filters is used to define a maximum of 2N + 1 ele-
mentary intervals on each axis (or dimension), and thus up to (2N+1)d elementary
d dimensional regions in the geometric filter space. Each elementary interval on
each axis is associated with a binary bit-vector of length N . Each index in this
N -bit vector represents a filter, sorted such that the highest order bit in the vec-
tor represents the highest priority filter. All bit vectors are initialized to arrays of
zeros, and then wherever a filter in a specific dimension d overlaps an elementary
range on d’s axis, the corresponding bit-vector index is set to 1. Thus an elementary
interval’s bit-vector represents a priority ordered array of filters, where the value
at each index represents whether a particular filter is active in the corresponding
interval in that dimension. An example of Parallel Bit-Vector partitioning is shown
in Figure 2.9.

A data structure is constructed for each dimension, which locates the elementary
interval in which a particular field value lies, and returns the corresponding bit
vector. Packet classification is run in parallel, with each field processed indepen-
dently, returning a collection of d bit-vectors. To aggregate these independent re-
sults, a simpleAND operation is performed, and the filter correlating to the highest
order 1 bit is selected. Using the example shown in Figure 2.9, a packet with an ad-
dress value of 10 and a port value of 6 would return the bit-vectors 100 1000 0010
and 000 1100 0100 respectively. The bit-wise conjunction of these binary strings
results in the bit-vector 000 1000 0000, indicating that the packet matches the
filter d, as expected.

Improving upon this approach, Aggregate Bit-Vector classification [14] exploits the
observation that for any given packet, the number of filters matching its data suc-
cessfully is typically significantly less than the total number of filters — a result of

2.5. ALGORITHMS FOR IP PROCESSING 32

Figure 2.9: Example Parallel Bit-Vector classification structure over the filters de-
picted in Figure 2.6. Adapted from [78].

the Matching Set Confinement property (see Section 2.3.3) — which in turn implies
that most elementary interval’s bit-vectors are sparsely populated by 1 values. The
technique divides each N -bit vector into A chunks, where each chunk contains N

A

bits. For each chunk, the algorithm determines if any constituent bits contain a
1 value, and if so, sets the appropriate index in an A-bit vector to 1. 0therwise,
this value is left as 0. Thus, the N -bit vector is replaced with a corresponding A-
bit aggregate vector, where each index of the aggregate vector is associated with
an N

A
-bit sub-vector comprising the subset of the filters matching that elementary

interval. When a packet is processed, aggregate vectors are combined through a
bit-wise AND, and should any index result with a 1 value, the associated sub-
vectors of that index are combined using a second AND operation to check for
individual matching filters. As the number of matching filters is expected to be
small, the number of sub-vectors containing values should also be small. As the
sub-vectors containing only 0s are of no use to the classification process, they may
be discarded. Thus the majority of matching processing is done on significantly
shorter bit-vectors, improving overall performance.

A further improvement is made by storing the priority of filters in an independent
array, allowing for filters to be reordered to promote clustering of 1 values [14]. This
reduces the number of 1 values contained in the A-bit aggregate vector, further

2.5. ALGORITHMS FOR IP PROCESSING 33

optimizing the solution at the expense of a final stage filter priority check. As the
number of filters matching is limited, such operations can be performed at minimal
cost.

2.5.8 Crossproducting

The Crossproducting method [76] is motivated by the observation that the number
of unique values for a given field in a filter set is significantly less than the number
of filters in that set (see Section 2.3.3). For each field to be compared, a set of unique
values for that field appearing in the filter set is constructed. Thus, classifying
against f fields results in f independent Field Sets, with each Field Set containing
the unique values associated with a particular field. When given a value from an
associated packet field, the Field Set returns the best matching value in that set.

When classifying d fields, this results in a d-tuple, created by concatenating the re-
sults from each Field Set. These initial field matches may be done in parallel. The
d-tuple result is used as a hash key in a precomputed table of crossproducts, which
contains entries providing the best matching filter for all combinations of results.
This method reduces an n-tuple comparison to n independent field searches, pro-
cessed in parallel, followed by a single hash look-up, at the expense of exponential
memory requirements for the table of crossproducts [76]. Specifically, the table re-
quires

∏n
i=1 (| di |) unique entries, where | di | is the cardinality of the set of unique

entries for the ith Field Set, and n is the number of fields being matched. An exam-
ple of the Crossproducting algorithm, using three fields, is depicted in Figure 2.10.
The authors also describe a hybrid grid-of-tries approach for matching IP routing
5-tuples, where address prefix matching is performed by a grid-of-tries, while port
and protocol matching is done by the Crossproducting technique.

2.5.9 Parallel Packet Classification (P 2C)

Parallel Packet Classification (P 2C) [82] is a relatively complex, multi-stage decom-
position technique. For each field to be evaluated in the filter set, the field axis (for
instance port number) is divided geometrically into its constituent elementary in-
tervals, as in the bit-vector techniques (see Section 2.5.7). Above this axis, n layers
are defined, where each layer contains a non-overlapping subset of filters, such that

2.5. ALGORITHMS FOR IP PROCESSING 34

Figure 2.10: Example Crossproducting algorithm. Adapted from [78].

each filter is positioned over the range of elementary intervals corresponding to ac-
ceptable values for that field. The filters contained in each layer are selected such
that the number of layers necessary for non-overlapping subsets is minimised. The
P 2C algorithm is illustrated in Figure 2.11, using the filter set provided in Table
2.2.

In each layer, the algorithm associates a locally unique binary value (using a mini-
mum number of bits) to each filter contained in that layer, while empty regions are
given a binary value of zero. Thus, in each layer, each elementary interval is asso-
ciated with a single binary value of either zero, or the locally unique identifier of
the filter occupying that elementary interval. Once all filters have been assigned a
binary identifier, an intermediate bit-vector is created for each elementary interval
by concatenating the binary values of each layer in that interval.

Once all intermediate bit-vectors have been created for the field, they are used to
derive the matching conditions for incoming packets. For each filter in the filter set,
a Ternary Match Condition is created, such that the intermediate vectors of each
matching elementary interval fit this ternary string. If all intermediate vectors
matching a given filter share a common value at a particular bit index, this value
is used in the filter ternary string. If, on the other hand, the bit differs in any of the
intermediate vectors, the *, or “don’t care” value is used. For example, the filter h

2.5. ALGORITHMS FOR IP PROCESSING 35

Figure 2.11: Example P 2C range encoding, matching the port values (y-axis) of the
filters depicted in Figure 2.6. Adapted from [78].

in Figure 2.11 overlaps three distinct elementary intervals — 0:1, 2 and 3 — which
correspond to the bit-vectors 01 01 000, 01 01 001 and 01 01 000 respectively. The
ternary match condition for h is thus 01 01 00*, as the three intermediate bit-
vectors only differ in the last bit. This process is repeated for each field specified
in the filter set, such that for each field to be evaluated, a collection of ternary
match conditions for each filter is created. The final filter strings are created by
concatenating the ternary match conditions for each field of each filter, resulting
in a single ternary filter sting for each filter in the filter set. These ternary filter
strings are then stored in a priority ordered list for classification.

When a packet arrives, each field is processed in parallel, and the resulting bit
vectors are concatenated together to form a single binary string. This string is
then matched against the precomputed filter strings, in order of priority, to find
the correct matching filter. It is worth noting that an alternate intermediate vector
encoding may be more applicable than the variant used here, given different run-
time requirements.

2.6. PROTOCOL-INDEPENDENT ALGORITHMS 36

2.6 Protocol-Independent Algorithms

In contrast to algorithms for processing IP family traffic, which only operate on
a small subset of fields within the TCP/IP suite, protocol-independent algorithms
are structurally agnostic, so as to support arbitrary headers fields — and thus ar-
bitrary applications — without the need for algorithm modification. Classifying
arbitrary protocol headers requires fields to be specified manually, typically as a
bit-index range within the binary packet data array. These fields may then be com-
pared to a set of target values using the standard boolean comparison operators.

Protocol-independent algorithms were first developed to support packet demulti-
plexing, which involves determining which end-point a particular packet should be
sent to on arrival at a host’s network interface [50], but have since been utilised in
a variety of network related applications, including protocol analysers [8, 47] and
firewalls [49]. While different algorithms employ different strategies to improve
classification throughput, the abstract classification mechanism — traversing a
Control Flow Graph — remains largely unchanged. As a result, many protocol-
independent algorithms focus on incorporating and optimising domain specific func-
tions — such as packet fragment re-composition, multiple endpoint delivery and
fast run-time filter updates — which are not essential functions in packet analysis
or network traffic monitoring.

Due in part to the historical lack of cost-effective, widely available parallel process-
ing hardware for personal computers, all protocol-independent algorithms employ
specialised decision tree approaches (see Section 2.6), given their sequential na-
ture and their ability to prune redundant computation at run-time. Unfortunately,
decision tree approaches rely heavily on divergent code branches, which cannot be
processed efficiently on GPU hardware (see Section 3.7.1).

Sections 2.6.1 to 2.6.5 provide an overview of a selection of influential algorithms,
in chronological order of release (see Figure 2.12), while Section 2.6.6 details recent
research activity in this field. Given the similarities between protocol-independent
filters, and their limited utility on GPUs, these filters will only be discussed briefly.

2.6. PROTOCOL-INDEPENDENT ALGORITHMS 37

Figure 2.12: Timeline of protocol-independent packet filters.

2.6.1 BSD Packet Filter

BSD Packet Filter (BPF) is an early protocol-independent packet filter, and the
first to be tailored for efficient execution on register-based CPUs [50]. It uses a vir-
tual RISC (Reduced Instruction Set Computing) psuedomachine, residing in kernel
space, to rapidly execute arbitrary low-level filter programs over incoming packet
data [50].

BPF filters treat packet data as an array of bytes, and are specified programmati-
cally using an assembly language that maps to the psuedomachine’s instruction
set. Supported instructions include various load, store, jump, comparison and
arithmetic operations, as well as a return statement which specifies the total num-
ber of bytes to be saved by the filter [50]. BPF filters may be viewed conceptually as
a Control Flow Graph (CFG), where each node in the tree contains any necessary
pre-comparison operations — such as loading values into a register — followed by
a boolean comparison which directs computation to one of two possible successor
nodes, where further computation is performed. An example CFG is shown in Fig-
ure 2.13. Any number of paths may lead to acceptance or rejection, allowing for
significant flexibility. Furthermore, as the packet is treated as an array of bytes,
with no explicit internal protocol definitions, arbitrary protocols may be added on
the fly [50].

BPF was succeeded by several different packet filters, each designed to optimize or
extend upon the functionally provided by BPF to both improve packet classification
throughput, and introduce additional domain specific functionality.

2.6.2 Mach Packet Filter

Mach Packet Filter, or MPF, was developed to provide efficient packet demultiplex-
ing for Mach micro-kernel architecture [90]. MPF extended BPF by adding packet

2.6. PROTOCOL-INDEPENDENT ALGORITHMS 38

Figure 2.13: Example high-level Control Flow Graph checking for a reference to a
host “foo”. Adapted from [50].

fragment handling, achieved through recording information found only in the first
IP fragment to correctly dispatch subsequent fragments, and postponing process-
ing of fragments when the first fragment has yet to be received [90]. An extra
associative match function was also added in order to support fast comparisons
against multiple immediate values. This was done to improve scalability when
dispatching packets to multiple end-points during demultiplexing [90].

2.6.3 Pathfinder

Pathfinder was released in the same year as MPF, and utilised pattern matching
techniques to facilitate both software and hardware based implementations, tar-
geting CPUs and FPGAs respectively [16]. The software version employs DAGs,
which prevent circular graph node traversal. This section only considers the soft-
ware version, as the hardware version is somewhat limited in comparison [16].
Pathfinder will be discussed in more detail than other protocol-independent algo-
rithms, as it informs some of the techniques employed in the GPF classifier (dis-
cussed briefly in Section 4.6.3).

In Pathfinder, pattern matching is facilitated through cells and lines [16]. A cell
is defined as the 4-tuple (offset, length, mask, value), which is used to classify a
packet header field — located offset bytes from the start of the protocol header
and spanning length bytes — against a target specified by value. As header fields
typically span bits rather than bytes, the mask is used to remove unwanted bits

2.6. PROTOCOL-INDEPENDENT ALGORITHMS 39

from the classification. A line is composed of one or more cells, and a packet is said
to have matched a line if all specified cell comparisons return true.

Patterns are specified as a protocol specific header declaration, which indicates the
total length of the protocol header, in combination with a set of one or more lines.
Patterns are organised hierarchically as a DAG, where the results of each pattern
determine the next pattern to apply. If a pattern specifies multiple lines, the next
pattern is determined by the best matching line. The global offset of a field in a
packet header is calculated by summing all previous matching pattern’s specified
header lengths, and adding the local offset for the cell being matched in the current
pattern. Because offsets are propagated, and not statically defined, Pathfinder only
requires a single definition for each protocol which may succeed multiple variable
or fixed length protocol patterns. Other features include packet fragment handling
and mechanisms to manage out-of-order packet delivery.

2.6.4 Dynamic Packet Filter

DPF (Dynamic Packet Filter) exploits run-time information to optimise filters on
the fly, achieved using dynamic code generation [26]. DPF treats filters as chains of
atoms that specify bit comparisons and index shifts, which are converted into filters
and merged into a trie data structure (see Section 2.5.3) to minimise prefix match
redundancy of common fields [26]. Other optimisations included dynamically con-
verting run-time variables into immediate values, while optimising disjunctions at
run-time to improve efficiency.

DPF also introduces atom coalescing and alignment estimation. Atom coalescing
combines adjacent atoms operating on consecutive bytes into a single atom in or-
der to reduce instruction overhead. For instance, adjacent atoms testing 16-bit
TCP source and destination ports may be coalesced into a single 32-bit atomic com-
parison. Alignment estimation (or alignment information propagation) involves
recording the effect of each individual shift of the index register in order to predict
word alignment. Repetitive shift operations may also be avoided by dynamically
propagating this information to subsequent atoms in the classification chain [26].

2.6. PROTOCOL-INDEPENDENT ALGORITHMS 40

2.6.5 BPF+

BPF+ is built upon the foundations provided by earlier protocol-independent classi-
fiers — including BPF, MPF and DPF — and relies heavily on both local and global
optimisations to improve performance. BPF+ translates high-level filter code into
an acyclic CFG using an SSA (Static Single Assignment) intermediate form. SSA is
a compiler optimisation technique that ensures each register is written to exactly
once, allowing BPF+ to take advantage of numerous global data-flow optimisations
[17]. Both local and global optimisations are then applied to the intermediate con-
trol flow graph, resulting in the optimised BPF+ byte code which constitutes the
filter program. Once the filter is delivered to its target environment for execution,
a safety verifier ensures its integrity before passing the filter to a JIT assembler.
JIT compilation translates the optimised byte-code assembly into native machine
code, and may optionally perform machine specific optimisations when executed on
hardware rather than within an interpreted software environment [17].

An assortment of control flow graph reduction techniques are also used to reduce
the length of the intermediate CFG. These optimisations include partial redun-
dancy elimination, predicate assertion propagation and static predicate prediction,
as well as peephole optimisations [17]. Partial redundancy elimination removes
unnecessary instructions in a particular path, such as duplicate loads or compar-
ison predicates. Similarly, predicate assertion propagation and static predicate
prediction are used to eliminate predicates which can be determined from previous
comparisons. For instance, if a CFG node n contains some comparison x = y, and a
subsequent node m in the same path as n contains the comparison x 6= y, the result
of m may be statically determined from the result of n and thus omitted. If m is a
decedent of n = true, then m will always be false, and vice-versa. Peephole opti-
misations find inefficient and redundant instructions, replacing or removing them
respectively. Partial redundancy elimination, predicate assertion propagation and
static predicate prediction optimisations are repeated until such time as there are
no new changes, with peephole optimisations applied after each iteration.

2.6.6 Recent Work

Since the introduction of BPF+, there has been relatively little development within
the sub-domain of software-based protocol-independent packet classification — due

2.7. SUMMARY 41

in part to the performance limitations of CPUs — with focus shifting toward NPU-
based evaluation so as to leverage the hardware accelerated functions that they
provide (see Section 2.4.2). This section only considers CPU algorithms, as NPUs
provide native support for packet filtering operations (see Section 2.4.2) which cur-
rently have no existing analogs on GPUs.

The Extended Packet Filter (xPF) incorporated simple extensions for statistics col-
lection into the BPF model [37], while the Fairly Fast Packet Filter (FFPF) used
extensive buffering to reduce memory overhead, among other optimisations [20].
More recently, the Swift packet filter used a CISC based pseudo-machine to min-
imise filter update latency in order to further reduce instruction overhead and com-
mand interdependence [89].

An algorithm of particular interest, called Adaptive Pattern Matching [80], em-
ploys permutation optimisation over filter sets to reduce the number of redundant
nodes in a CFG. This is comparable to constructing an optimal binary decision
tree, which is NP-Complete [36, 53]. A GPU-accelerated adaptation of this pro-
cess, using Genetic Algorithms (GAs) to breed a near-optimal permutation [53],
was considered during the conceptual development of GPF. GAs are often effective
in NP-Complete problem spaces [15], and perform well on GPU co-processors [31].
Initial findings were promising, but research was ultimately halted once it became
apparent that a decision tree based algorithm could not be efficiently deployed on
GPU hardware (see Section 3.7.1).

2.7 Summary

This chapter introduced the reader to the fundamental concepts of packet clas-
sification, and explored a variety of divergent approaches to the packet filtering
problem. The chapter began by formally introducing packets and packet headers
in Sections 2.1 and 2.2 respectively, with the latter section describing the TCP/IP
and OSI models for network communication, which essentially provide the theo-
retical foundation for the abstract filtering process detailed in Section 2.3. Section
2.3 also introduced the concepts of filter specialisation and match cardinality, as
well as the match condition redundancy and matching set confinement properties,
which heavily influence many classification algorithms.

2.7. SUMMARY 42

The remainder of the chapter served as an abridged taxonomy of existing packet
filters, detailing typical target hardware and a selection of diverse algorithms. The
hardware platforms typically targeted by packet classifiers — namely CPUs, net-
work processors, TCAMs and FPGAs — were discussed in Section 2.4, followed
in Sections 2.5 and 2.6 by the architectural details of a variety of IP specific and
protocol-independent algorithms respectively.

An important observation regarding the algorithms presented is the importance
of optimising classification mechanisms for the intended target hardware environ-
ment. For instance, trie-based approaches avoid matching port ranges due to the
filter replication problem associated with arbitrary range matching, while decom-
position algorithms rely heavily on the parallelism provided for by FPGAs. Thus,
in order to design an effective GPU classification algorithm, it is first necessary to
consider the characteristics of modern GPUs.

With this in mind, Chapter 3 introduces the reader to GPU hardware and the
CUDA programming model, and considers a wide variety of performance charac-
teristics which affect GPU processing efficiency and memory throughput. Once
these topics have been covered, Section 3.7 returns to the topic of packet filter-
ing, detailing why existing approaches are poorly suited to a GPU implementation,
and elaborating on GPU classification related research. The GPF packet classi-
fier design, which is derived from the results of this exploration, is subsequently
presented in Chapter 4.

3
Graphics Processing Units

THIS chapter introduces the reader to General-Purpose computation on Graph-
ics Processing Units (GPUs), often referred to as GPGPU [29]. GPGPU
is a relatively recent high-performance computing (HPC) paradigm which

facilitates massively parallel general-purpose computation using programmable
graphics hardware, such as post-2006 NVIDIA Geforce and ATI Radeon GPUs.
GPUs may contain hundreds or thousands of processing cores, providing signifi-
cantly greater processing throughput than multi-core CPUs for highly parallelis-
able problems. This form of massively parallel processing became possible as
graphics cards adopted programmable shader architecture over traditional on-chip
graphics-specific functions [19], which allowed developers to leverage the inher-
ent parallelism provided by the GPUs to solve a variety of complex computation
problems.

This chapter is structured as follows:

• Section 3.1 elaborates on the history of GPGPU, and motivates the selection
of the NVIDIA specific CUDA Application Programming Interface (API) over

43

3.1. GENERAL PURPOSE COMPUTATION ON GPUS 44

other platforms, such as Open Compute Language (OpenCL), the ATI Ac-
celerated Parallel Processing (APP) Software Development Kit (SDK) , and
Microsoft Direct Compute.

• Section 3.2 provides an overview of CUDA-capable NVIDIA GPU hardware,
with specific reference to the GTX 280 processor and memory architecture, on
which this project is primarily based.

• Section 3.3 introduces the CUDA programming model and its associated ter-
minology, in order to explain how massively parallel computation is facilitated
programmatically in an elegant and accessible manner.

• Section 3.4 explores the various memory regions available for use on GPUs,
and describes relevant factors which improve or limit their overall perfor-
mance.

• Section 3.5 discusses the process of transferring data between CPU host mem-
ory and GPU device memory, and the various transfer options available which
could accelerate this process.

• Section 3.6 examines relevant factors which affect device side resource and
processing efficiency.

• Section 3.7 elaborates on the challenges associated with processing packets
using CUDA, and considers the limited existing research into GPU assisted
packet classification, before concluding with a summary of the chapter in Sec-
tion 3.8.

This chapter references the CUDA Programming Guide [64] and CUDA Best Prac-
tices Guide [63] extensively, as at the time of writing, they provided the most accu-
rate and complete sources of information on CUDA development and optimisation.

3.1 General Purpose Computation on GPUs

This section provides a brief history of the evolution of GPU co-processors, and
provides a concise overview of existing GPGPU technologies. This is followed by
an overview of available platforms, with a short discussion motivating the use of
CUDA over other alternatives.

3.1. GENERAL PURPOSE COMPUTATION ON GPUS 45

3.1.1 Brief History of GPGPU

The term Graphics Processing Unit was first coined in 1999, when NVIDIA intro-
duced the Geforce 256 and marketed it as “the world’s first GPU” [54]. While the
Geforce 256 incorporated transform, lighting, setup and rendering functionality on
to a single chip [54], it was the Geforce 3 chipset, introduced in 2001, which pro-
vided the first custom programmable vertex and pixel shaders to supplement the
previously fixed graphics pipeline [59].

It was this programmabiliy which first allowed researchers to investigate and ap-
ply graphics hardware to highly parallel non-graphical problems, in the hope of
improving performance over implementations targeting the then entirely sequen-
tial CPU, which was poorly suited to performing parallel computation. This lead
to the development of the Brook language specification at Stanford in 2003, an ex-
tension to the ANSI C specification designed to easily facilitate data parallelism
[23].

In 2006, with the release of DirectX10 and the Unified Shading Model, vertex and
pixel shaders were combined to form a unified shading core, providing greater flex-
ibility and better performance in both the well-established graphical domain and
the relatively new GPGPU domain [19]. Hardware vendors rapidly capitalised on
this evolution, introducing their own low-level APIs which removed the graphi-
cal abstraction and provided programmers with more direct access to underlying
hardware. GPGPU solutions are now widely available, with strong support from
industry giants such as NVIDIA, AMD and Microsoft [12, 21, 73].

3.1.2 Compute Unified Device Architecture (CUDA)

NVIDIA CUDA v1.0 was introduced in 2007 [87], and has recently moved on to
its fourth iteration [73]. Since its initial release, CUDA has become the dominant
GPGPU architecture for scientific computing [48], and is supported by most mod-
ern NVIDIA GPUs. NVIDIA Tesla® architecture, developed in conjunction with
CUDA, is designed specifically for professional GPGPU applications rather than
graphics acceleration [61], and supports additional GPGPU features exclusive to
Tesla hardware [60].

CUDA was ultimately selected for the development of GPF, as at the start of de-
velopment, it was both the dominant paradigm, and the most efficient and stable

3.1. GENERAL PURPOSE COMPUTATION ON GPUS 46

option available. Currently, however, there are three other prominent GPGPU
platforms on which GPF could potentially be implemented. These include:

• Open Compute Language (OpenCL) — Developed by Khronos Group in col-
laboration NVIDIA, AMD, Intel and many other industry leaders [42], OpenCL
provides an open, heterogeneous abstraction for parallel processing, with sim-
ilar syntax and architecture to CUDA [43]. OpenCL is supported by both
AMD and NVIDIA, making it the logical choice for a cross-platform solu-
tion. Unfortunately, OpenCL drivers only became available months after this
project’s conception, and due to their comparative immaturity, could not com-
pete with CUDA in terms of flexibility, tool-chain maturity and support base
at that time. As OpenCL and CUDA share similar syntax and functionality,
however, it should be possible to port the CUDA solution to OpenCL at a later
stage.

• AMD Accelerated Parallel Processing (APP) SDK — AMD APP (formerly ATI
Stream) is a GPGPU platform targeting AMD/ATI graphics hardware. While
the ATI Stream SDK originally utilised Brook+, an optimised platform spe-
cific high-level language for GPGPU programming, the recently re-branded
AMD APP SDK uses OpenCL exclusively instead [12]. As a result, the APP
SDK is arguably more of an AMD-optimised OpenCL implementation than it
is a standalone GPGPU platform in its own right, but has been included for
the sake of completeness.

• Microsoft DirectCompute — Introduced as part of the Windows-exclusive Di-
rectX11 API, DirectCompute executes HLSL (High Level Shader Langauge)
code, offloading computation to the GPU through an appropriate vendor sup-
plied driver [21]. Thus, it is essentially a generalised DirectX® wrapper for
GPGPU functions, and not a stand-alone implementation in and of itself. In
the context of Windows development this is beneficial — as it allows a sin-
gle code specification to be executed on any graphics card, using the best
available driver — but limits the portability of solutions to other operating
systems.

The remainder of this chapter considers CUDA exclusively, commencing with an
overview of the CUDA hardware model in the following section.

3.2. CUDA HARDWARE MODEL 47

3.2 CUDA Hardware Model

This section provides an abstract overview of NVIDIA GPU hardware, which in-
forms much of the functionality explored in later sections. The architectural dif-
ferences between different generations and revisions of CUDA capable GPUs are
considered first. This is followed by an abstract overview of CUDA capable GPU
hardware, and the GT200 series chipset in particular.

3.2.1 Architecture and Compute Capability

There are many NVIDIA GPUs which support CUDA applications, starting with
the Geforce G80 chipset, and including devices from the Geforce 8-series, 9-series
and 200-series, as well as the more recent Fermi line of Geforce and Tesla hard-
ware. The architecture of CUDA devices has evolved with each generation, adding
new functionality, improving flexibility and increasing performance. Thus, while
CUDA applications are often general enough to be executed on any CUDA capable
device, certain functionality performs less efficiently (or is not available at all) in
earlier device generations. A CUDA application can determine what functionality
is supported on a particular device by querying its compute capability [64].

The compute capability of an NVIDIA GPU provides information about the capabil-
ities of the device, and is defined by a major and minor revision number. Currently,
only two major revision numbers are defined. Fermi architecture cards, such as
those in the GTX 400 and 500 series, have a major revision number of 2, while
prior cards have a major revision number of 1. The minor revision number reflects
incremental improvements made to the primary architecture, with higher minor
revision numbers often indicating slightly different hardware configurations, re-
sulting in improved performance and support for additional features. Table 3.1
provides examples of the compute capability of four high-end GPUs from different
generations. A definitive list of CUDA capable GPUs and their compute capabili-
ties is available at http://developer.nvidia.com/cuda-gpus.

The GPF classifier was designed to target the GT200 family of GPUs, as cards using
Fermi architecture had yet to be introduced during the initial stages of the project.
These remain relatively expensive, while 200-series devices are both widely avail-
able and affordable. All 200-series devices support compute capability 1.3, and

http://developer.nvidia.com/cuda-gpus

3.2. CUDA HARDWARE MODEL 48

9800 GTX [55] GTX 280 [56] GTX 480 [57] GTX 580 [58]
Chipset Codename G92 GT200 GF100 GF110

Year 2008 2008 2010 2010
Compute Capability 1.1 1.3 2.0 2.0

CUDA Cores 128 240 480 512
Memory (MB) 512 1024 1536 1536

Table 3.1: Configurations and compute capabilities of various GPUs.

as such, discussion in the remainder of this chapter relates primarily to devices
with this compute capability, unless noted otherwise. The CUDA API is backward
compatible [63] with kernels compiled for earlier revisions, however, and thus pro-
grams designed for GT200 architecture may be executed on GF100 and GF110
(Fermi) chipsets without modification.

While the GPF classifier targets the GT200 series architecture in general, the
Geforce GTX 280 is used as an explicit example of the target hardware in the re-
mainder of both this chapter and Chapter 4. This has been done primarily because
more information is available for the GTX 280 in the CUDA API documentation
than for any other 200-series device. Discussions apply generally to all GT200-
based devices, however, as while they may differ in memory size, core count, and
architectural efficiency, they share the same compute capability, and thus the same
broad characteristics.

It is important to note that while the GTX 280 has been used extensively as an
example of GT200 architecture, this device was unfortunately unavailable during
testing. The GPF prototype was ultimately tested on four GPUs, including a 9600
GT, GTX 275, GTX 465 and GTX 480 (see Section 5.1.1). The GTX 2751 was used
as an analog for the GTX 280, as these cards share similar hardware architecture
and contain the same number of cores.

3.2.2 GTX 280 Hardware

This section provides a brief overview of NVIDIA GTX 280 hardware architec-
ture, in order to provide some context for discussions relating to the performance
characteristics of CUDA on GT200 series GPUs. Figure 3.1a provides an abstract

1http://www.nvidia.com/object/product_geforce_gtx_275_us.html

http://www.nvidia.com/object/product_geforce_gtx_275_us.html

3.2. CUDA HARDWARE MODEL 49

(a) NVIDIA GTX 280 GPU [63, 41].

(b) NVIDIA GTX 280 Multiprocessor [63, 41].

Figure 3.1: Abstract overview of the NVIDIA GTX 280.

overview of a GTX 280, while figure 3.1b shows the components of a GTX 280 mul-
tiprocessor.

The GTX 280 contains 30 multiprocessors, each comprising eight cores, providing
a total of 240 processing cores on each GPU [64]. Each multiprocessor provides
a shared instruction cache, 16KB of low latency shared memory (which acts as
an explicit cache) as well as 16,384 32-bit registers stored in an on-chip register
file [64]. Each multiprocessor also has access to 64 KB of off-chip read-only texture
cache, which can be used to reduce device memory access latency in some situations
[63]. The device has 1 GB of GDDR3 (Graphics Double Data Rate) global memory,
as well as 64KB of low latency constant memory which is readable by all multi-
processors, but can only be written to by the host thread [64].

It is important to note that this architecture is not consistent across all CUDA de-
vices. On Fermi architecture, for instance, each multiprocessor contains either 32
or 48 cores (depending on the compute capability of the device), twice the number
of registers and three times more shared memory than 200-series devices such as
the GTX 280. Fermi devices also include up to 48KB L1 cache on each multiproces-

3.3. CUDA PROGRAMMING MODEL 50

sor, as well as a globally accessible 768KB L2 cache, to accelerate reads from global
memory.

The GPU is controlled by a thread executing on the host system (henceforth re-
ferred to as the host) through either the high-level CUDA Run-time API, or the
low-level CUDA Driver API [64]. The host thread can schedule the transfer of data
to and from the device through the PCIE 2.0 bus, bind device memory to on-chip
texture cache, and schedule the execution of kernels [64]. The host thread runs
concurrently with kernel execution, allowing it to perform other tasks while pro-
cessing occurs simultaneously on the device.

The following section introduces the CUDA programming model, explaining how
programs are expressed to target CUDA capable parallel hardware.

3.3 CUDA Programming Model

The CUDA programming model is a programming abstraction designed to facilitate
massively parallel general processing in a GPU environment, with many elements
derived directly from underlying hardware. CUDA programs, known as kernels,
are written using CUDA C syntax (a subset of the C’99 language augmented to
facilitate massively parallel execution) and contained within CUDA files (typically
identified with the .cu extension). CUDA files may simultaneously contain C and
C++ code, as the NVIDIA CUDA Compiler (NVCC) will separate out host-side code
and pass it to the default compiler installed on the system. The CUDA Run-time
API and CUDA Driver API facilitate communication — and thus interoperability
between the host-side process and the CUDA device, achieved through calls to the
CUDA device drivers installed on the system.

3.3.1 CUDA Kernels and Functions

A CUDA program is known as a kernel. Kernels encapsulate all CUDA device-
side processing, in a similar manner to how the main method encapsulates a C++
application [64]. Kernels typically process data transferred to the device through
the PCIE 2.0 bus, and write the results of processing to a device-side output array.
They cannot return data to the host directly (all kernels require a void return

3.3. CUDA PROGRAMMING MODEL 51

type), so output must always be written to a return array in order to be retrieved
by the host thread. As device-side memory persists between kernel invocations, it
is also possible to chain multiple kernels together, with one kernel operating over
the output of another. Furthermore, some compute capability 2.0 devices allow
multiple kernels to be invoked concurrently [64], although this is not possible on
compute capability 1.3 devices or below. On such devices, kernels may only be
executed concurrently with data transfer, and not with other kernel programs.

Kernels are supplemented by CUDA functions, which are completely interchange-
able with host side functions, and may optionally be compiled to both CUDA device
code and host code so that a function may be used by either context. This one-
to-one mapping necessarily implies that CUDA functions may return values and
execute other functions, similar to their host side equivalents.

Kernels are declared using the __global__ keyword. CUDA functions are declared
using the __device__ keyword, which may be supplemented with the __host__ key-
word if host side execution is also required. All function in the CUDA file with no
prefix are implicitly assigned the __host__ prefix, which may also be specified ex-
plicitly if desired.

3.3.2 Expressing Parallelism

Kernels execute a collection of threads, typically operating over a large region of
device memory, with each thread computing a result for a small segment of data
[64]. In order to manage thousands of independent threads effectively, kernels are
partitioned into thread blocks, with each thread block being limited to a maximum
of 512 threads in devices supporting compute capability 1.3 or less [64]. Thread
blocks are conceptually positioned within a one or two dimensional Grid which
may contain thousands of thread blocks (up to 216 − 1 in each dimension [64]).
Each thread is aware of its own position within its Block, and its Block’s position
within the Grid. Thus, each thread can calculate its index in the global thread pool,
and, through an application specific algebraic formula — which elements of data
to operate on, and where to write output to [64]. A list of keywords which support
thread identification are provided in Table 3.2.

Each block is executed by a single multiprocessor, which allows all threads within
the block to communicate through on-chip shared memory. While thread blocks

3.3. CUDA PROGRAMMING MODEL 52

Keyword Components Description
gridDim x, y Blocks in each dimension of the grid.
blockDim x, y, z Threads in each dimension of the block.
blockIdx x, y, z Index of the block in each dimension of the grid.

threadIdx x, y, z Index of the thread in each dimension of the block.

Table 3.2: Keywords for thread identification.

may contain anywhere between 1 and 512 threads, compute capability 1.3 mul-
tiprocessors are capable of context switching between 1024 active threads at one
time. Thus, a single multiprocessor can execute multiple blocks simultaneously,
up to a maximum of 8 resident blocks per multiprocessor [63, 64]. Of course, if n
blocks execute on a single multiprocessor, then both the shared memory capacity
and registers available to each block are reduced by a factor of n.

3.3.3 Thread Warps

Conceptually, kernels support a parallel execution model called Single Instruction,
Multiple Thread (SIMT) [41, 64]. This model allows threads to execute indepen-
dent and divergent instruction streams, facilitating decision based execution which
is not provided for by the more common SIMD (Single Instruction Multiple Data)
execution model. SIMT support is imperfect, however, as GPU multiprocessors are
essentially SIMD processors, where multiple cores on a multiprocessor read from a
single shared instruction cache. This ultimately impacts the performance of highly
divergent code, due to the need to serialise multiple instruction streams to target
individual cores.

For instance, on the GTX 280, each physical multiprocessor contains a shared in-
struction cache which drives eight independent processing cores simultaneously
(see Section 3.2.2). Since the instruction cache cannot issue more than a single in-
struction at any one time, any divergence between threads executing on the same
multiprocessor forces the instruction cache to issue instructions for all thread paths
sequentially, whilst non-participating threads sleep [63, 64]. Furthermore, each
processing core can issue a single instruction to four distinct threads in the time
between each instruction register update, giving a total of 32 threads executing a
single instruction [41]. This SIMD grouping of 32 threads is called a thread warp.

Thread warp size is independent of hardware architecture, is constant across all

3.4. MEMORY REGIONS 53

Region Thread Access Resides In Size (GTX 280)
Global Thread Local Multiprocessor 1024 MB

Constant Block Local Multiprocessor 64 KB (16 KB Cache)
Texture Global Multiprocessor & DRAM 1024 MB (64 KB Cache)
Register Thread Local DRAM 16,384 32-bit registers
Shared Block Local Multiprocessor & DRAM 16 KB

Table 3.3: GTX 280 memory regions.

existing GPUs, and is unlikely to change in the near future. This has been done to
ensure that programs expecting a warp size of 32 do not need to be updated to sup-
port future GPUs. As a result, warp size is not determined by GPU architecture,
but rather informs it. For example, Fermi multiprocessors contain either 32 or 48
cores, depending on their compute capability [64]. To ensure a warp size of 32,
these cores are divided into banks of 16 cores, with each bank being serviced by an
instruction dispatch unit capable of issuing instructions to two threads at a time
[28], giving a total of 32 threads per dispatch unit. Thus, Fermi multiprocessors
retain the same warp size by allowing multiple warps to execute simultaneously
on a single multiprocessor.

Thread warps are organised sequentially, such that the first contiguous group of
32 threads in an executing kernel belong to warp 1, while the next group belong to
warp 2, and so on. Warp size is an important consideration for all GPU algorithms,
as any significant instruction divergence within a warp can dramatically impair
performance [41, 63, 64].

3.4 Memory Regions

All useful CUDA programs utilise device-side memory at some point during execu-
tion, if only to collect input or produce output. As indicated in Section 3.2, NVIDIA
GPUs provide several distinct memory regions, including global memory, constant
memory, texture memory, registers and shared memory. This section introduces
relevant performance considerations regarding these memory regions, as they are
pivotal to maximising performance, and thus directly inform the architecture of
GPF. A summary of the memory regions to be discussed is provided in Table 3.3,
showing the size of each region on the GTX 280.

3.4. MEMORY REGIONS 54

3.4.1 Global Memory

Global memory is the most abundant memory region available on CUDA devices,
and is capable of storing hundreds of megabytes of data. Unfortunately, while
global memory provides abundant data storage capacity, this comes at the expense
of access latency, with individual requests requiring between of 200 and 1000 clock
cycles to succeed [63, 64]. This introduces a critical bottleneck in kernel execu-
tion, which can significantly impoverish the processing throughput in data inten-
sive applications. Fortunately, CUDA devices support Memory Access Coalescing,
which effectively combines small global memory requests from multiple threads
in a thread warp into a single request [63], greatly improving warp-level access
latency. Coalescing is not always possible, and depends heavily on the physical
layout of data in device DRAM.

In a compute level 1.3 device, such as the GTX 280, threads in a half-warp will co-
alesce their memory access if and only if they request data from the same segment
of global memory [63]. The segment size used during a particular memory read is
determined by the size of the words being read from it. When reading 8-bit words,
such as bools or chars, segments are sized at 32 bytes, while reading 16-bit words
results in segments sized at 64 bytes. When reading either 32- or 64-bit words,
the segment size is set to 128 bytes. Thus, with the exception of 64-bit words, all
segments are sized at twice that of the total memory capacity utilised by the half-
warp in a single transaction. For instance, 32 byte segments are provided for a
half-warp accessing a total of 16 bytes (8-bit words), while 128 byte segments are
provided for a half-warp accessing a total of 64 bytes (32-bit words). Segments are
aligned, and thus the segment that a particular byte resides in may be determined
computationally by dividing the byte index by the segment size.

When issuing a memory read request for a particular half-warp (16 threads), the
GTX 280 determines which segment the first active threads request falls into, and
then finds all other threads in the half-warp whose memory reads fall into the same
segment. If all threads accessing the segment only access values in the same half
of the segment — for instance only accessing first 64 bytes of a 128 byte segment
— the device is able to crop the unused half of the segment from the memory trans-
action, effectively reducing transfer overhead. Once the transaction completes, the
participating threads are marked as inactive. This process is repeated until all
active threads have been serviced. Figure 3.2 shows the coalescing results of three
different access patterns, provided as an illustrative example.

3.4. MEMORY REGIONS 55

Figure 3.2: Coalescing global memory access for 32-bit words on the GTX 280.

The flexibility of coalescing requirements differ between device generations, and
have become progressively less restrictive over time. For instance, in compute
capability 1.0 - 1.1 GPUs, the kth thread in a half warp must access the kthdata
element of an aligned memory segment 16 times the size of the data elements,
although not all threads are required to be active. Therefore, on compute capability
1.0 - 1.1 devices, only the first example in Figure 3.2 would result in coalescing.
In contrast, compute capability 2.x devices which provide cached global memory
access reduce all requests to the minimum number of 128 byte requests (the size
of an L1 cache line) necessary to service all threads [63, 64]. Thus, while compute
capability 1.2 - 1.3 devices require a minimum of two transactions to service a
warp, Fermi GPUs often only need one [64].

GPF has been developed assuming compute capability 1.3 coalescing requirements,
which are forward compatible with Fermi GPUs.

3.4. MEMORY REGIONS 56

3.4.2 Constant Memory

Constant memory is a small read-only region of globally accessible memory which
resides in device DRAM [64]. In contrast to global memory, constant memory
has only 64KB of storage capacity, but benefits from an 8KB on-chip cache which
greatly reduces access latency [63]. While a cache-miss is as costly as a global
memory read, a cache-hit reduces access time to that of a local register, costing no
additional clock cycles at all, as long as all active threads access the same memory
index [63]. If active threads in a warp access different constant memory indexes,
these requests are serialised, negatively impacting total performance[63].

Constant memory’s limited size unfortunately prohibits its utilisation as a medium
for storing large data collections such as packet sets, but it is well suited to storing
device pointers, program directives, constant data structures and run-time con-
stant variables. While pointers and variables may be passed to a kernel via kernel
arguments, these arguments are physically stored within on-chip shared memory,
which is a limited resource of comparable speed to constant memory. By storing
such elements in constant memory, the access latency of shared memory may be
maintained without wasting shared memory capacity. This optimisation is gen-
erally only prioritised in kernels with long argument lists or significant shared
memory requirements [63].

3.4.3 Texture Memory

Texture memory essentially provides a compromise between global and constant
memory. The CUDA device contains a 64KB texture cache which can be bound to
one or more arbitrarily sized regions of global memory using a texture reference
[63, 64]. When a texture fetch results in a cache miss, latency is equivalent to a
standard global memory read. When a fetch operation results in a cache hit how-
ever, the texture cache significantly reduces latency. As a result, texture bound
memory performs consistently, with roughly the same performance of fully coa-
lesced global memory, making it ideal for accelerating data access [63]. Texture
memory, like constant memory, is read only, and thus only provides performance
benefits with regard to memory reads, and cannot be leveraged to accelerate global
memory writes [64].

3.4. MEMORY REGIONS 57

3.4.4 Registers

Registers are contained within a register file on each multiprocessor [64], and pro-
vide fast thread-local storage during kernel execution. In compute capability 1.2 -
1.3 devices, each multiprocessor contains 16,384 registers [64], which are shared
between all active thread blocks executing on the multiprocessor. Registers are
typically accessed with zero added clock cycle overhead, but may incur a slight
performance penalty due to read-after-write dependencies and register bank con-
flicts [63]. Executing threads have no direct control over register allocation, and
hence have little control in avoiding register bank conflicts. By ensuring that
thread blocks contain a multiple of 64 threads however, it is possible to improve
the chances of avoiding register bank conflicts and minimizing access latency [63].

Read-after-write dependencies, on the other hand, have a latency of 24 clock cycles
per occurrence, but this overhead is completely hidden when a compute capability
1.x multiprocessor has a minimum of 192 active threads (6 warps) [63]. On com-
pute capability 2.x devices (which provide 32,768 registers), a total of 768 active
threads (24 warps) are necessary to completely hide this latency, as these devices
have four times as many cores per multiprocessor. Thus, registers perform best
when the multiprocessor has enough active warps to hide read-after-write latency,
and executes thread blocks whose cardinality is a multiple of 64.

Another important consideration is the transparent use of high-latency local mem-
ory to supplement register storage. Under certain circumstances, a local variable
may be stored in an automatic variable instead of in the register file, termed reg-
ister spilling. This occurs when the NVIDIA CUDA Compiler (NVCC) determines
that there is insufficient register space to contain the variable, such as in the case
of large arrays or data structures, or when the register file is exhausted [63]. While
automatic variables are considered local memory, they are stored off-chip in device
DRAM and thus incur the same access penalties as standard global memory. It is
therefore important to avoid over-utilisation of registers, so as to avoid the slow-
down incurred due to unnecessary memory latency.

3.4.5 Shared Memory

Unlike register memory, shared memory is block-local, facilitating cooperation be-
tween multiple threads in an executing thread block [64]. On compute capability

3.5. DATA TRANSFER OPTIMISATION 58

1.x devices, shared memory is limited to 16KB per multiprocessor, while 2.x de-
vices support up to 48KB of shared memory storage per multiprocessor [64]. As
shared memory is divided evenly between all blocks executing on a particular mul-
tiprocessor, it is a severely limited resource. Nevertheless, as long as no shared
memory bank conflicts arise, access latency is equivalent to that of register mem-
ory — roughly 100 times lower than global memory [63].

In compute capability 1.x devices, each multi-processor’s shared memory is divided
between 16 separate 1KB memory banks [63]. A bank conflict arises when two
separate threads in a half-warp access the same memory bank at the same time,
in which case the request is split into as many conflict free memory requests as
possible [63]. Compute capability 2.x devices provide a total of 32 banks, and thus,
on these devices, bank conflicts can arise between threads in the first and second
halves of a warp. As a result, if care is not taken to ensure that two threads in the
same warp do not access the same memory bank at the same time, shared memory
performance can be significantly reduced. As long as each thread in a half-warp
only accesses a single consecutive shared memory address, however, bank conflicts
are entirely avoidable on all exisiting device generations.

3.5 Data Transfer Optimisation

The process of transferring data between host memory and device DRAM (Dynamic
RAM) is a necessary requirement in all useful kernels. Without this functionality,
a kernel would not be able to collect data to process, or communicate computational
results to the waiting host process. Memory transfer speed is limited by the band-
width of the PCIE 2.0 x16 bus, which provides a total of sixteen 1GBps channels.
These are divided evenly between dedicated upstream and dedicated downstream
channels, allowing for a maximum of 8GBps transfer in each direction [63].

This section considers various memory and execution options which help to accel-
erate the transfer process, allowing for the bandwidth of the PCIE 2.0 bus to be
fully utilised.

3.5. DATA TRANSFER OPTIMISATION 59

3.5.1 Memory Regions

CUDA supports both pageable and page-locked (pinned) memory regions. While
data stored in pageable memory may be removed from host DRAM and paged in
the page file to free up host resources, data stored in page-locked memory remains
in DRAM for its lifetime, and may not be offloaded to disk. Page-locked memory
provides significantly higher bandwidth than pageable memory, and allows for a
number of additional optimizations, such as asynchronous concurrent execution,
and write-combined memory. Page-locked memory is, however, a scarce system
resource, and should not be overused [63]. As pageable memory negatively impacts
overall performance [63], this section will focus explicitly on page-locked memory.
This is possible due to the relative abundance of host memory in modern desktops,
and warranted due to the performance requirements of packet filters.

3.5.2 Streams and Concurrency

CUDA allows for both synchronous and asynchronous data transfer between the
host and device memory. In synchronous transfer, the host process only regains
control after the memory copy has completed, and thus cannot execute a kernel
until all data has been transferred [64]. As most kernels operate on only a subset
of the input data, and could thus potentially begin executing select threads prior to
transfer completion, synchronous transfer often results in wasted processing time
[63]. Asynchronous transfer, in contrast, returns control to the host process as soon
as the transfer instruction has been scheduled. This, in turn, allows kernels to be
scheduled (but not necessarily executed) prior to transfer completion. By taking
advantage of asynchronous transfer, it is possible to begin executing a kernel on a
subset of input data prior to the completion of the entire transfer process [63, 64].

This concurrency is facilitated through streams of execution, which effectively al-
low a single kernel to be invoked multiple times with separate input parameters
[63]. Each stream is responsible for transferring and processing a subset of the
input data, and can be scheduled such that while one stream is executing a kernel,
another is transferring data.

3.5. DATA TRANSFER OPTIMISATION 60

(a) td > tk (b) td < tk

Figure 3.3: Synchronous execution versus asynchronous execution in memory-
bound kernels.

3.5.3 Overlapping Transfer and Execution

To overlap transfer and execution, the input data is partitioned between several
streams, which execute when their prerequisite data has completed transfer [63].
To quantify the relationship between asynchronous execution and processing time,
a simplified mathematical model is considered in Listing 1. This model ignores
host-side overhead and, as transfer and kernel execution times may vary between
individual launches, should only be considered a rough estimate. The derived
model is supported by Figure 3.3, which provides graphical illustrations of two
separate cases, in order to improve understanding.

Algorithm 1 suggests that, for kernels where either memory transfer overhead or
kernel computation dominate processing time, concurrent transfer and execution
provide only a minor performance improvement. When transfer and computation
are relatively balanced, however, the performance improvement is potentially sig-
nificant. Furthermore, it is evident that while increasing the number of streams
can improve performance to some degree, returns diminish rapidly. For instance,
two streams may process data up to 25% faster than one stream, while ten streams
can only perform up to 5% faster than five streams. In general, assuming y > x,
the performance gained by increasing the number of streams n from x to y is:

(
y − 1

y

)
tmin −

(
x− 1

x

)
tmin =

(
xy − x
xy

− xy − y)
xy

)
tmin =

(
y − x
xy

)
tmin

61

Listing 1 Time difference between synchronous and asynchronous execution.

Let
td be the time it takes to transfer an array of data, d, to the GPU.
tk be the time it takes for an arbitrary kernel, k, to process d.
tS be the synchronous processing time.
tA be the asynchronous processing time.
n ∈ N+ be the number of streams used in asynchronous transfer.

Then:

tS = td + tk

To find tA, let:

tmin =

{
min(td, tk) | td 6= tk

tk | td = tk
, tmax =

{
max(td, tk) | td 6= tk

td | td = tk

Then:

td ≥ tk ⇒ td +
tk
n

= tmax +
tmin

n

td < tk ⇒ td
n
+ tk = tmax +

tmin

n

∴ tA = tmax +
tmin

n
, ∀td, tk ∈ R+

The performance difference between tS and tA is thus:

tS − tA = (tmax + tmin)− (tmax +
tmin

n
) =

(
n− 1

n

)
tmin

As there is no specified limit to n, the upper bound for improvement is:

lim
n→∞

((
n− 1

n

)
tmin

)
= tmin

⇒ lim
n→∞

(tA) = tS − tmin = tmax

∴ performance improves as tmin tends towards its upper bound, tmax.

3.5. DATA TRANSFER OPTIMISATION 62

This indicates that only a small number of streams are necessary to receive most of
the performance benefits of concurrent execution and transfer. This is only worth
pursuing, however, when transfer and kernel execution time are sufficiently simi-
lar for tmin to reflect a significant percentage of tS.

3.5.4 Write-Combined Memory

The rate at which data can be transferred to the device can also be improved by em-
ploying Write-Combined Memory [63]. In contrast to standard page-locked mem-
ory transfers, write-combined memory prevents host-side caching, effectively free-
ing up L1 and L2 resources, and transfers roughly 40% faster over the PCIE 2.0
bus [63]. This performance improvement comes at the expense of host-side read
and write speed, which is reduced due to the lack of caching.

Write-combined memory is well suited as a container for data being transferred to
the GPU device, as it is unlikely that the host would need to read this data after it
has been written. It is less useful as a container for data collected from the device
after processing, as it is highly likely this data will be read by the CPU, either
within subsequent calculations, or when being copied from host memory to long
term storage.

3.5.5 Mapped Memory

Memory transfer can be eliminated altogether through the use of Mapped Memory
[63]. Memory declared as mapped is read directly from host memory, and as such,
removes the necessity to explicitly transfer data to device memory [63]. Mapped
memory is most useful on integrated GPUs, as both the host and device share the
same memory, making transfer redundant. On discreet GPUs, mapped memory
is transferred through the PCIE 2.0 bus, which acts as a bottleneck [63]. Thus,
mapped memory is only of real interest when optimising for integrated GPUs, as it
does not provide any performance benefit for discreet devices.

3.6. IMPROVING PROCESSING EFFICIENCY 63

3.6 Improving Processing Efficiency

CUDA Kernels are highly sensitive to a wide array of factors which negatively
impact efficiency, with multiprocessor occupancy, iteration overhead and operator
performance being of the most significance with respect to the development of GPF.
This section focuses on these three factors, and indicates how they may be avoided
or capitalised upon. A fourth important factor — thread divergence within warps
— is discussed in Section 3.7.1.

3.6.1 Occupancy

Multiprocessor occupancy provides a measure of processing resource utilisation on
a GPU device. Specifically, it is the ratio of active warps on the multiprocessor to
the maximum number of possible active warps. When occupancy is high, the device
is able to hide access latency by executing other warps when a particular warp is
stalled waiting for a resource. If occupancy is too low, however, latency cannot be
hidden, and the multiprocessor must remain idle until a resource returns. At some
point, however, improving occupancy will have no further effect on performance.
This occurs when the number of active warps on the multiprocessor has exceeded
the amount needed to hide the access latency of each executing thread. While full
occupancy is not vital, it does ensure maximum utilisation of hardware, and thus
is worth pursuing. In general, occupancy is affected by block size, as well as shared
memory and register utilisation.

While multiple thread blocks may execute concurrently on a single multiproces-
sor, multiple multiprocessors cannot divide a single thread block between them.
This derives from the requirement that on-chip shared memory be accessible to
all threads executing in the current block, which would not be possible if a blocks
shared data was distributed between multiple multiprocessors. With respect to
the GTX 280, if the requested thread block size is not a factor 1024 (the maxi-
mum supported thread count per multiprocessor of this compute capability), then
a proportion of the multiprocessors processing resources must be left idle. Fig-
ure 3.4 expresses this diagrammatically. Considering the two presented cases of
partial occupancy, note that when the block size is 192 threads, 64 threads (or 2
warps) are wasted, while when a block size of 384 threads is used, 256 threads (or

3.6. IMPROVING PROCESSING EFFICIENCY 64

Figure 3.4: Affect of thread block sizes on GTX 280 multiprocessor occupancy.

8 warps) remain unused. This corresponds to 5% and 25% of the devices thread
capacity respectively.

As previously noted, block size is not the only kernel attribute which impacts
occupancy, with shared memory and register utilisation being of similar impor-
tance. Each multiprocessor contains a finite amount of on-chip shared memory
and register storage, which must be shared between all active blocks running on
the multiprocessor. Considering that the GTX 280 has 16KB of shared memory and
16,384 registers on each multiprocessor, if each block in a hypothetical CUDA ker-
nel utilised 8KB of shared memory, or 8,192 registers, then only two blocks could
be active on each multiprocessor at a time, regardless of how many threads each
block contains. To achieve full occupancy, with all 32 warps active, each thread
must consume 16 registers or less, and 16 bytes of shared memory of less.

Occupancy really only becomes a problem in extreme cases, where only a fraction of
the possible warps are active. As long as the device has enough active warps to hide
memory latency (typically when occupancy is moderate or better), no performance
degradation should be evident.

3.6.2 Iteration

While often necessary, iteration can be quite wasteful on GPUs, as it requires the
execution of additional branching and control logic. Where possible, it is often de-
sirable to fully or partially unroll loops to eliminate this unnecessary overhead and

3.6. IMPROVING PROCESSING EFFICIENCY 65

Note that this example only works when M is divisible by 4.

Figure 3.5: Employing unroll-and-jam to reduce iteration overhead.

improve efficiency. Unrolling may be performed automatically by the compiler (if
possible), using the #pragma unroll command; or manually by the kernel designer.
Unrolling loops is not guaranteed to improve efficiency, however, as unrolling of-
ten trades control logic for higher register utilisation. If all available registers are
consumed, the kernel is forced to store additional variables in slow but abundant
device memory (see Section 3.4.4)[64].

While simple unrolling is well suited to standard looping structures, unrolling
nested loops introduces additional complexity. To improve efficiency when eval-
uating nested loops, a method known as unroll-and-jam proves quite effective in
many situations. Unroll-and-jam, also referred to as outer-loop unrolling, involves
unrolling higher nested loops above the innermost loop, and jamming the resultant
loops together[34]. This ensures that the outer-loops do more work per iteration,
reducing the amount of control flow logic and branching performed per nested loop
evaluation. An example of employing unroll-and-jam to optimise a nested loop is
given in Figure 3.5.

3.7. PACKET FILTERING CONSIDERATIONS 66

Listing 2 Improving division and modulo performance.

If k = 2n where n ≥ 1, then
x/k = x� log2k, and
x% k = x&(k − 1), where x ∈ Z [63]

3.6.3 Integer Operator Performance

CUDA Kernels are expressed using C’99 syntax extended for parallelism, and as
such facilitate all requisite bit wise, algebraic, comparative and assignment oper-
ators [64]. Most operators perform relatively well, with the exception of integer
division and modulo operations, which are significantly more expensive as they
each translate to tens of instructions [63]. The cost of these operations can be
avoided in cases where the divisor or modulus is a power of two, as they can eas-
ily be translated into efficient bit-shift and bit-wise operations respectively. This
information is provided in Listing 2. As log2k and k − 1 can often be calculated at
design or compile time, both these methods generally require execution of only a
single bit-shift or bit-wise AND in order to determine a result.

On non-Fermi architecture devices, 32-bit integer multiplication also translates to
more than a single instruction, and, while significantly less expensive than divi-
sion or modulo operations, may still impact on processing efficiency in instruction-
bound kernels. In such cases, 24-bit multiplication may by used, via the intrin-
sic function __[u]mul24, to improve throughput. 24-bit integer multiplication is
natively supported in hardware, and thus translates to a single instruction. In
memory-bound kernels, however, 24-bit multiplication provides little benefit, and
may instead degrade performance by inhibiting compiler optimisations [64]. In
contrast, Fermi devices provide native 32-bit integer multiplication, and do not
support native 24-bit integer multiplication. Thus, on Fermi architecture, 24-
bit multiplication expands into multiple instructions, while 32-bit multiplication
translates to only a single instruction. Care should therefore be taken when decid-
ing which integer multiplication variant to employ.

3.7 Packet Filtering Considerations

GPU co-processors share little in common with the traditional packet classifica-
tion hardware mediums introduced previously in Section 2.4. CPUs and NPUs

3.7. PACKET FILTERING CONSIDERATIONS 67

are essentially sequential processors, and are not suited at all to the form of mas-
sively parallel processing at which GPUs excel. As a result, packet classification
algorithms which target on CPUs and NPUs do not map particularly well to an
efficient GPU implementation. Similarly, the associative memory provided for by
TCAM is not natively supported on GPUs, and is highly inefficient to simulate due
to the significant latency of GPU device memory (see Section 3.4.1).

FPGAs share the most in common with GPUs, as both are highly parallel proces-
sors which execute hardware specific kernels to accelerate computational tasks.
They employ a fundamentally different programming abstraction and hardware
design, however, with strengths and limitations inconsistent with one another [24].
Furthermore, the majority of FPGA algorithms target the IP protocol suite exclu-
sively [14, 39, 45, 72], and are not easily generalised to facilitate classification
of arbitrary protocol headers. To fully leverage the processing power of GPU co-
processors, it is necessary to avoid re-targeting an existing, ill-suited solution, and
instead derive an algorithm specifically tailored for GPU architecture. This does
not imply, however, that the strategies and techniques employed by existing high-
performance classifiers cannot provide insight into how an efficient GPU algorithm
may be implemented.

The remainder of this section examines the impact of thread divergence on the
efficiency of decision tree classification approaches, and subsequently examines
Gnort, a GPU accelerated implementation of the Snort NDIS.

3.7.1 Divergence

In Section 3.3.3, it was noted that divergence within a thread warp can dramati-
cally impact performance. This presents a problem for protocol-independent clas-
sification, as all algorithms rely heavily on divergence, in the form of CFGs, to
improve processing efficiency (see Section 2.6).

To illustrate the problem, consider a naive implementation where each thread tra-
verses the filter set CFG independently, in order to classify a single packet. As it
is impossible to predict in what order packets will arrive, or which filters they will
match, individual threads in a thread warp would be forced to regularly diverge.
As divergent execution is serialised within a thread warp (see Section 3.3.3), a sig-
nificant proportion of executing threads would thus remain idle while traversing
divergent instruction streams, wasting device resources.

3.7. PACKET FILTERING CONSIDERATIONS 68

To improve upon this, and attempt to reduce the impact of divergence, one could
decompose the CFG into two or more phases by dividing it into sub-trees, such as in
trie algorithms (see Section 2.5.3). For instance, an initial CFG could perform the
first phase of classification and divide packets into one of several protocol-derived
groups. Following this, a second phase evaluates each group of packets against a
group-specific CFG, which only contains a subset of filters relevant to packets in
that group. To reduce thread warp divergence, these second phase CFGs could be
processed either sequentially, or within a dedicated warp. Unfortunately, such a
technique only serves to slightly reduce divergence, and could still result in signif-
icant inefficiency.

Luckily, protocol-independent algorithms utilisation of decisional logic is primar-
ily due to their sequential heritage, and does not reflect a necessary architectural
requirement. Decomposition-based IP-specific algorithms such as Parallel Packet
Classification (see Section 2.5.9) and Crossproducting (see Section 2.5.8), for in-
stance, do not rely on decision trees, but instead process all fields in parallel [78].
These results are then aggregated for final classification. As decomposition-based
approaches evaluate all fields independently prior to classification, they are par-
ticularly well suited to multi-match classification (see Section 2.3.2), which is dif-
ficult to facilitate when employing decision trees. This essentially SIMD strategy
is far better suited to GPU implementation, as classification instructions remain
consistent across all packets, requiring no divergence. Of course, as all known de-
composition algorithms are IP specific, they do not provide sufficient flexibility to
support protocol-independent classification (see Section 2.3.1).

To provide the necessary classification flexibility, without simultaneously crippling
kernel performance through divergence, an alternative protocol-independent algo-
rithm based on the principles of decomposition is desirable. The algorithm devised
to facilitate this is described in Section 4.1.

3.7.2 Related Work

In this section, an overview of GPGPU work related to packet classification is pre-
sented. While a significant amount of research has been published relating to GPU
acceleration of known parallelisable algorithms, very little work has focused on the
task of packet classification, seemingly due to a perceived mismatch between GPU
processing capabilities and processing strategies employed to filter packets. This

3.7. PACKET FILTERING CONSIDERATIONS 69

Figure 3.6: Overview of Gnort NIDS. Adapted from [83].

is particularly true with regard to protocol-independent classification on GPUs, for
which no research at all was evident.

The most closely related work identified was that of Gnort, a ported version of the
Snort NIDS which offloads payload string-matching to a GPU co-processor to im-
prove throughput [83]. Gnort utilises the Pcap library to supply packets, which are
either captured from a live interface or collected from a packet dumpfile. Packets
are differentiated into a range of port groups, where each group represents a collec-
tion of packets with similar source and destination ports. Once classified, packets
are copied into a page-locked double buffer specific to their corresponding group.
Once a buffer is full or a timeout of 100ms is reached, the contents of the buffer is
transferred to the GPU device for payload classification, which is performed using
a ported version of the Aho-Corasick string matching algorithm [83]. The classifi-
cation results are then returned to the host for use by the user. Transfer between
the host and device leverages streaming and asynchronous execution (see Section
3.5.2), to allow the CPU to buffer packets while simultaneously executing device
kernels. The authors report that, in general, Gnort outperforms an unmodified
implementation of Snort by a factor of two, and is able to sustain 2.3 Gbps when
processing a synthetic packet set using a Geforce 8600 GT [83].

A notable drawback of the Gnort implementation is its reliance on the Pcap fil-
tering library to facilitate port group filtering. Snort defines several hundred port

3.8. SUMMARY 70

groups [83], and differentiating packets between these groups using a sequential
CPU implementation introduces a significant bottleneck on faster networks. This
bottleneck also affects packet drop rates which, in the best reported case, rose from
0% to 20% between 600 Mbps and 700 Mbps. It is unclear why pre-processing of
port groups on the GPU was not included in the scope of Gnort, but may be the
result of either the lack of a suitable algorithm, a need to limit scope, or because
string matching execution time was high enough that it presented the primary bot-
tleneck in the system, negating the need for fast header filtering. As the authors
do not supply per-component execution times, however, it is difficult to determine
exactly which components are most responsible for limiting throughput.

Unfortunately, Gnort provides little in the way of a solid foundation for protocol-
independent classification. The Gnort algorithm only performs the final string
matching operations intended for deep packet inspection on the GPU, while fil-
tering packets into groups is performed sequentially by the host process. Despite
this, Gnort provides a number of important insights into processing packets on a
GPU using CUDA. The importance of asynchronous execution, buffering and the
employment of page-locked and texture memory are all applicable to a protocol-
independent classifier, and thus similar strategies have been employed in devel-
oping GPF. Gnort also demonstrates how the SIMD nature of the Aho-Corasick
algorithm benefits overall performance, outperforming all other string matching
algorithms tested. This further motivates the need for a SIMD solution to ensure
the best possible throughput.

3.8 Summary

The purpose of this chapter was to introduce and familiarise the reader with the
GPGPU domain, GPU co-processors and the CUDA programming interface. Sec-
tion 3.1 provided a high-level overview of the history of GPUs, followed by a brief
consideration of CUDA and three other GPGPU APIs: OpenCL, the AMD APP
SDK, and Microsoft Direct Compute. CUDA capable GPU hardware was intro-
duced in Section 3.2, which addressed the differences between devices of different
compute capabilities, and concluded with an abstract overview of GPU hardware,
primarily focusing on details specific to the GTX 280.

Section 3.3 introduced the fundamentals of CUDA programming, including CUDA
kernels, threads and thread blocks, and the concept of thread warps, while Section

3.8. SUMMARY 71

3.4 explored the memory regions available to GPU kernels, detailing their use and
performance characteristics. In particular, this section explained how coalesced
Global memory access and the texture cache may be used to reduce memory la-
tency, and how the smaller memory regions may be capitalised upon to improve
overall performance.

Having introduced the memory regions available to CUDA kernels, Section 3.5 con-
sidered the transfer of data between the host and device memory regions through
the PCIE 2.0 bus, and described a range of important transfer optimisations, in-
cluding write-combined memory, asynchronous concurrent execution and mapped
memory. Section 3.6 concluded the discussion of GPU related performance char-
acteristics, providing an overview of three important factors which can negatively
impact performance: multiprocessor occupancy, iteration overhead, and the per-
formance of some arithmetic integer operators. Finally, Section 3.7 considered the
problems associated with performing packet classification on GPUs using existing
algorithms, and briefly explored the limited packet classification related research
on GPUs, which currently includes only the Gnort NIDS.

In the following chapter, the implementation of the GPF algorithm is described in
detail, which depends heavily on the information included in this chapter.

4
GPU Accelerated Packet Classification

THIS chapter describes the design of the GPF packet classifier, and explores
many important aspects of its implementation. This chapter is organised
as follows:

Section 4.1 introduces the GPF algorithm, and outlines its architecture from a
holistic perspective, describing how components cooperate to facilitate protocol-
independent packet classification.

Section 4.2 provides a general overview of the GPU specific classification compo-
nents, and explores some of the common optimisation strategies employed within
them.

Sections 4.3 and 4.4 examine the first and second phases of GPU classification,
referred to as rule evaluation and filter evaluation respectively, and explain how
classification directives are encoded and executed in each phase.

Section 4.5 details the GPF high-level grammar, and the process by which this
grammar is compiled into rule and filter evaluation programs.

72

4.1. INTRODUCTION TO GPF 73

Section 4.6 describes the components and strategies used to efficiently collect and
buffer packet data prior to classification.

Section 4.7 considers some examples of analytical and domain specific extensions
to the basic classification functionality, while Section 4.8 discusses some additional
general features that are expected to be integrated in future work.

The chapter concludes with a summary in Section 4.9.

4.1 Introduction to GPF

In this section the filtering strategy used by GPF is introduced, and is followed
by an overview of the complete classification system. This overview provides a
holistic view of the classification process, which is used to outline the remainder of
the chapter. Performance results collected using a limited prototype of this design
are presented in Chapter 5.

4.1.1 Classification Strategy

Packet classification may be considered conceptually as being composed of two dis-
tinct operations, which we refer to as rule evaluation and predicate evaluation.
Rule evaluation is concerned with comparing a single header bit-range to a single
static target value, while predicate evaluation uses the results of one or more rule
comparisons to determine which filters pass or fail. In decision tree approaches,
these processes are interleaved to allow unnecessary rule comparisons to be elim-
inated, thereby improving performance on sequential systems. Decomposition ap-
proaches, however, perform all rule evaluations in parallel, with predicate evalua-
tion occurring in a final aggregation step.

GPF adopts a multi-phase classification approach inspired by decomposition algo-
rithms, but differs in that it does not process each rule in parallel. Instead, GPF
processes each packet in parallel, performing all rule comparisons and predicate
evaluations sequentially, in unison with all other packets. As all threads evaluate
every rule and filter, and thus execute in a SIMD configuration, no divergence is
necessary during kernel execution. The exhaustive nature of evaluation further
ensures multi-match classification is natively supported (see Section 2.3.2).

4.1. INTRODUCTION TO GPF 74

The classification process employed (in its most basic form) is as follows:

1. The Rule Evaluation phase is performed by the Rule kernel, which reads the
packet data from texture memory, performs every requested rule compari-
son on every packet once, and stores all results in device memory. As every
packet is compared against an identical set of rules, divergence is completely
eliminated. Once all comparisons have completed, the packet data in texture
memory may be released and refilled, as it is only used in this phase.

2. The Filter Evaluation phase is performed in either one or two steps.

(a) The Subfilter kernel provides an optional intermediate classification phase
where common predicates are evaluated for use in other filters, in order
to minimise redundant computation. As with rule evaluation, all threads
execute an identical set of instructions and thus do not diverge.

(b) The Filter kernel reads the boolean output of the Rule and optional Sub-
filter kernels, and evaluates every filter specified against every packet,
storing results in device memory. Again, as each packet is compared to
an identical filter set, no divergence occurs.

3. Optional: Any requisite post-processing is performed on the results of either
kernel by additional, application specific kernels.

4.1.2 Implementation Overview

This section describes, at a high level, the implementation of the complete classi-
fication system, and highlights its primary components and their functions. This
is intended to provide context for the remainder of the chapter, which focuses on
the primary components independently, and in depth. A diagram representing the
abstract architecture of the GPF classification system is provided in Figure 4.1.

In order to classify packets, GPF requires two inputs: the packet dump file to be
evaluated, and the filter program to be executed. On invocation, the GPF pro-
gram is passed to the compiler, which uses a tree grammar to parse, optimise and
emit the program as multiple kernel programs for evaluation on the device. The
compiler also derives a range of configuration and run-time constant variables to

4.1. INTRODUCTION TO GPF 75

Figure 4.1: Abstract architecture of GPF.

support the classification system. The GPF compiler implementation and grammar
syntax are described in detail in Section 4.5.

Once compilation has concluded, GPF has enough information to begin collecting
packets in preparation for transfer, using a circular buffer for temporary storage.
Packet collection and buffering execute in an independent thread (indicated in Fig-
ure 4.1 by a dotted arrow) to allow for concurrency between data collection and clas-
sification execution. While packets are loaded from long term storage, the CUDA
classification host process is instantiated and configured using information derived
from both the filter program and packet dump file. Once configured, the classifier
copies the Rule kernel program into constant memory, and then waits to acquire
a buffer. Once acquired, the buffer is bound to texture memory and transferred
either synchronously, or asynchronously in two or more streams to the GPU (see
Section 3.5.2). Packet collection, buffering and transfer are considered in Section
4.6.

The GPU classification process (discussed in Section 4.2) is executed in a loop,
using the same number of streams as the transfer process. The number of clas-
sification iterations is determined by the number of buffers required to contain
all packets, which is itself dependent on several factors, including the size of each

4.2. PROCESSING PACKETS IN PARALLEL 76

buffer bucket, the amount of data collected from each packet, and the number of
packets in the packet set. During each iteration, the classifier issues transfer in-
structions to copy data between the host and device, and executes several kernels.
To begin with, it launches the Rule kernel (discussed in detail in Section 4.3), which
classifies all packets bound to texture memory against all rules stored in constant
memory, and writes the results to global memory using a fully coalesced memory
layout to improve throughput. Once Rule classification completes in a particular
stream, the packet data contained in texture memory can be released, and transfer
initiated for the next acquired buffer. This buffer may transfer concurrently with
the remainder of the executed filters.

Filter evaluation is performed next, facilitated by the Subfilter and Filter kernels.
These kernels operate in a similar way, using the results written to global mem-
ory in the Rule kernel to evaluate filter predicates, but differ in where they store
results in global memory. Subfilter results are intended to be reused from within
other filters and subfilters, and as such, their results are appended to the results
collected from the Rule kernel. Filters, in contrast, write their results to a global
memory array specifically for Filter results, which is ultimately transferred back
to page-locked host memory when the Filter kernel completes. Not all filter sets
define subfilters, however, and thus Subfilter kernel execution may be omitted if
it is not required by the GPF program. Filters and subfilters are considered in
Section 4.4.

To supplement the core classification kernels, each iteration may also invoke ex-
tension kernels to perform additional domain specific calculations and operations,
such as results aggregation or time stamp processing. While these kernels are not
within the scope of the classification algorithm, four extensions intended to aid in
packet analysis are briefly discussed in Section 4.7. The classification process con-
cludes once all iterations of the classifier loop have completed, and all results have
been transferred from device global memory to page-locked host memory.

4.2 Processing Packets in Parallel

This section details the architecture of the GPF classifier host process, as well as
the general strategies employed when developing the classification system. The

4.2. PROCESSING PACKETS IN PARALLEL 77

Figure 4.2: Synchronous vs. Streamed classification.

functionality discussed in this section has been implemented using C++, in con-
junction with the CUDA Run-time API, and compiled for x64 architecture on Mi-
crosoft Windows as a Dynamic Linked Library (DLL). This DLL is used by the C#
parent thread to perform classification.

4.2.1 Concurrent Execution and Transfer

Transferring data to and from the device concurrently with kernel execution, sup-
ported through streams, is often an effective way to reduce execution time, and
the only form of concurrent execution supported by non-Fermi graphics cards (see
Sections 3.5.2 and 3.5.3). Figure 4.2 compares synchronous and asynchronous clas-
sifications assuming, for simplicity, that all kernels and transfers take the same
amount of time.

When executed synchronously, kernels and data transfers cannot overlap, and the
classifier simply transfers the packet data, applies each kernel sequentially, and
collects the results. This process is repeated for each filled packet buffer, depicted
along the top of Figure 4.2. In contrast, because asynchronous execution allows
data transfer and kernel execution to occur concurrently, it is possible to evaluate

4.2. PROCESSING PACKETS IN PARALLEL 78

predicates against the rule results of one buffer while simultaneously transferring
the next full buffer to the device.

To ensure this is done efficiently, the number of streams utilised should be a multi-
ple of two, with half the streams processing even numbered buffers, and the other
half processing odd numbered buffers. This ensures that kernels in a particular
stream are not halted while waiting for packet data from the next iteration, which
could occur if those transfers were issued in the same stream. Figure 4.2 illustrates
this using six streams, where the first three streams process one buffer, while the
last three streams process another. If these six streams were condensed into three
streams, the first data transfers in streams 4 to 6 would occur in streams 1 to 3
directly prior to executing the Subfilter kernel. Thus, the transfer process in one
or more streams may potentially delay the Subfilter kernel’s execution if it takes
too long to complete. Using different streams to load alternate buffers, in contrast,
ensures that the transfer of one buffer cannot interfere with the processing of an-
other.

In Figure 4.2, all operations are assumed to take and identical amount of time.
The performance results collected during testing of the classifier — presented in
Chapter 5 — however, indicate that transfer operations complete much faster than
kernel execution (see Figure ??). This makes the likelihood of transfer delaying the
Subfilter kernel in the same stream very low. As a result, dividing alternate buffers
between two sets of streams is only beneficial in extreme cases, but is relatively
easy to implement if streaming is already in place. In particular, if post-processing
extension kernels need access to partial or complete packet data, the early release
and concurrent refilling of packet data would be prevented. By employing an ad-
ditional stream, packet data may be transferred to a second buffer, to be processed
by a subsequent kernel invocation while the first buffer is refilled, thereby facili-
tating continuous execution without emptying the packet buffer directly after rule
evaluation.

Whether using one or two sets of streams, concurrent execution and transfer per-
formed in this way allows kernels to execute continuously without interruption (see
Figure 4.2, bottom), thus effectively hiding the majority of transfer overhead and
reducing overall execution time.

4.2. PROCESSING PACKETS IN PARALLEL 79

4.2.2 Kernel Code

Each stage of the filtering process operates using its own set of specialised process-
ing directives which determine how packets are evaluated. Since each executing
thread in a classification kernel processes the same rule or filter instructions as all
other executing threads — a positive byproduct of non-divergent classification —
it follows that only a single set of global instructions is necessary for each kernel,
with each instruction accessed concurrently by all active threads in the executing
warp.

Kernel instructions are stored in constant memory, thereby leveraging the constant
cache to ensure low memory access latency. As all active threads access the same
index of constant memory at the same time, individual requests do not need to
be serialised, ensuring access latency is comparable to register memory, which is
essentially negligible (see Section 3.4.2).

The implementation of this feature is quite simple, and consistent across all rule
and filter evaluation kernels. First, a region of constant memory is declared which
is large enough to contain each set of kernel instructions independently. The rel-
evant kernel code is then transferred into this globally accessible region prior to
each kernel invocation. During execution of the kernel, each thread maintains
a program counter in register memory, containing the index position of the cur-
rent program instruction in constant memory. As instructions are performed, the
program counter is incremented until such time as the instruction stream is ex-
hausted. Instructions are encoded as 32 bit integers, so that they can contain
target values up to 32 bits in length.

The instruction stream syntax for Rule and Filter kernels is discussed in Sections
4.3.3 and 4.4.3 respectively.

4.2.3 Coalescing Results

Device memory access latency is dramatically improved through coalescing, which
occurs on compute capability 1.2 - 1.3 devices when threads in a half-warp access
memory indexes with close relative spatial locality (see Section 3.4.1). Coalescing
improves performance of both load and store operations [63], and is thus applicable
to both storing and retrieving the results of kernels. To achieve the best coalescing

4.2. PROCESSING PACKETS IN PARALLEL 80

Figure 4.3: Memory layout comparison for 16 packets processing 4 rules.

performance, threads in a half warp must access 16 consecutive m sized memory
locations (where m is the number of bytes per data element), with the first location
being divisible by 16 (see Figure 3.2). As results are encoded as single-byte boolean
values, m = 1 when coalescing these results.

As packets are processed in parallel, with all threads in a warp performing the
same set of rule or filter comparisons concurrently, it follows that storing rule or
filter results grouped by packet index will result in poor coalescing performance.
To illustrate this, consider a filter set containing r rules to be applied to p packets.
If rule results are grouped by packet index, then the first r memory locations will
contain all of the first packets rule results, while memory locations r + 1 to 2r

will contain the r rule results pertaining to packet two, and so on. Let thread x

be the thread operating on packet n, where 0 < n ≤ p. When writing out the
first rule result, thread x will access the memory location nr, while thread x + 1

simultaneously accesses the memory location r(n + 1) = nr + r. When storing the
second rule result, thread x will access the memory region nr+1, while thread x+1

writes to memory region nr+r+1. In general, for the kth rule in the rule set, thread
x and thread x+ 1 access the memory locations nr + k and (n+ 1)r + k = nr + k + r

respectively. This access pattern is ill-suited to coalescing, as sequential threads

4.2. PROCESSING PACKETS IN PARALLEL 81

access memory locations which are distributed r indexes apart from one another.
In Figure 3.2, for instance, the Standard Memory Layout has four rules, and hence
results for a particular rule are located four indexes apart from one another. Thus,
in order to collect all 64 bytes of data, four memory requests (one for each half-
warp) are needed per rule, and sixteen memory request are required to service all
64 threads.

To fully coalesce memory transactions, the access pattern employed to store kernel
results must be adjusted, such that consecutive threads read and write results of
rule and filter evaluation to memory locations directly adjacent to one another.
That is, results must be grouped by rule rather than by packet, with p results for
rule 1 grouped together, followed by p results for rule 2, and so on. Then, for the
kth rule in the rule set, thread x and thread x + 1 access the memory locations
kp + n and kp + n + 1 respectively, which are directly adjacent as required. The
Coalescing Memory Layout in Figure 3.2 illustrates this, showing all results for a
particular rule being directly adjacent to one another in each half warp, resulting
in four global memory transactions to collect all 64 bytes.

4.2.4 Kernel Implementations

This section briefly details the general architecture used in the implementation
of all classification kernels, and some of the common optimisations applied within
them. Design and implementation details specific to the rule or filter evaluation
kernels are discussed in Sections 4.3 and 4.4.

The classification kernels in GPF execute in blocks of 256 threads, which allows
multiprocessors to achieve full occupancy on all existing GPU hardware (see Sec-
tion 3.6.1). Full occupancy ensures that register latency is hidden, and as the block
size is a multiple of 64, the possibility of register bank conflicts is minimised (see
Section 3.4.4). On the GTX 280 GPU, each thread block may use up to 4KB of
shared memory and 16 registers while still achieving full occupancy. Other ar-
eas of kernel optimisation include reducing iteration, synchronisation and integer
operator related overhead. These are discussed briefly.

The kernel code used in rule and filter evaluation relies heavily on looping struc-
tures. Iteration is expensive in CUDA, and thus partially or completely unrolling
looping structures, either manually of through the use of the unroll pragma, can

4.2. PROCESSING PACKETS IN PARALLEL 82

improve performance. Classification kernels employ the loop unroll-and-jam method
(see Section 3.6.2), as it is well suited to unrolling the nested loops used to eval-
uate rules and filters. To avoid unnecessary overhead in kernel control logic, all
integer division and modulus operations have been substituted for equivalent and
efficient bit-wise expressions (see Section 3.6.3). Finally, as classification kernel
threads execute independently, they are able to execute with minimal synchroni-
sation, avoiding potentially significant overhead (see Section 3.6.3).

4.2.5 Classifier Outputs

The standard output of the GPU classification process is an ordered array of boolean
variables, grouped by filter, which represent the results of all filter evaluations for
every packet in the packet batch. This corresponds to the coalescing memory lay-
out used to store filter results, discussed in the Section 4.2.3. In general, for a set
p packets evaluated against a set of f filters, the output array would conceptually
comprise f groups of p boolean results. This array may be transferred back to the
host, or be passed as input to specific post-processing extension kernels to perform
additional analysis (see Section 4.7).

4.2.6 Modifications

The modular nature of the core packet evaluation kernels, which splits the clas-
sification process into two distinct processes, provides the basis for modifications
to the core filtering process. The core filtering mechanisms developed and dis-
cussed thus far have been designed to support any number of arbitrary protocols
and predicates, which ensures generality at the expense of processing overhead.
Suppose, instead, that a filter set which targets fields in the TCP/IP 5-tuple ex-
clusively needed to be executed as fast as possible, in order to accelerate a critical
system such as a NIDS. Generality, in this case, is not necessarily a benefit, and
greater throughput may potentially be achieved by replacing the general Rule ker-
nel with a kernel optimised for TCP/IP specific rule evaluation. As long as the
substituted kernel outputs rule results in the same manner as the general Rule
kernel, the exisiting filter evaluation kernels may be employed without modifica-
tion.

4.3. RULE EVALUATION 83

Figure 4.4: High-level memory architecture of the Rule kernel.

4.3 Rule Evaluation

Rule evaluation is facilitated by the Rule kernel, which transforms an incoming
packet stream into an array of boolean values in coalesced global memory. The
essential functionality thus comprises sequentially comparing every element in
the rule set, stored in constant memory, against arbitrary subsets of packet data
stored in texture memory, and writing the results to coalesced global memory. Con-
ceptually, the Rule kernel is quite simple: each executing thread is responsible for
comparing every rule supplied against a specific packet, so that these results can
be used during filter evaluation. The most expensive aspects of this process —
collecting packet data and writing results — involve reading from and writing to
high-latency device memory. As a result, the Rule kernel has been optimised to
reduce memory transaction overhead as much as possible, using a combination of
caching, grammar design and compile-time optimisations. A high-level illustration
of the the Rule kernels memory architecture is provided in Figure 4.4.

4.3.1 Representing Rules

Evaluating a rule involves comparing a single header field to one or more targets.
Fields indicate which region of the packet header to evaluate, and may be repre-
sented as a 2-tuple containing the fields starting index and length, specified in bits.
For instance, the Ethernet type field could be represented as the 2-tuple (96, 16),
as it is a 2 byte field which starts at the bit index 96. Fields in the Rule kernel
are encoded slightly differently in practice, as the field start index is recalculated

4.3. RULE EVALUATION 84

at compile time to reflect the bit-index from the start of the shared memory packet
cache (see Section 4.3.2), rather than from the start of the entire packet. This
improves throughput by eliminating the need to calculate a packet cache relative
index in each thread at run-time, which would otherwise be performed multiple
times; once for each field of each packet being classified.

Targets describe the comparison to perform against the rules field, and are com-
posed of a comparison operator and value. The six standard comparison operators
are supported, including equality (=), inequality (!=), less than (<), less than or
equal to (<=), greater than (>), and greater than or equal to (>=). Comparison op-
erators are encoded as an integer between 0 and 5, where each value corresponds
to a specific operator. Values may be any 32-bit unsigned integer. Extending the
original example, in order to determine if a packet is an IP datagram, the field
(96, 16) must be tested to see if it contains the hexadecimal value 800 (equal to 2048
in decimal notation). The target is represented as the 2-tuple (0, 2048) which indi-
cates an equality test of the fields contents to the value 2048. Thus the rule may
be represented as the 4-tuple (96, 16, 0, 2048).

This notation resembles that of cells in Pathfinder (see Section 2.6.3), but differs
in that a single field may define multiple targets, and therefore multiple rules, in
order to minimise the number of global memory transactions required during ker-
nel execution. For instance, the 6 tuple (96, 16, 0, 2048, 0, 2054) tests the Ethernet
type field against two targets — the values corresponding to IP and ARP packets
respectively — with each comparison writing a rule result to memory. Because all
unique targets are grouped by field, and each field contained in the set of rules is
defined only once, the Rule kernel is able to take full advantage of the high level of
redundancy in typical filter sets (see Section 2.3.3).

4.3.2 Accessing Packet Data

As evaluating a rule essentially comprises only a single comparison operation, the
performance of the Rule kernel is bounded by the speed at which packet data can
be accessed when evaluating a particular rule. In order to supply sufficient packet
data to maintain full multiprocessor occupancy, packets are stored in high-latency
DRAM as a one dimensional array of 32-bit unsigned integers. During execution of
the Rule kernel, packet data is incrementally copied into an on-chip packet cache,
using a texture reference to reduce memory access latency. Texture memory (see

4.3. RULE EVALUATION 85

Figure 4.5: Geometric proof that 32-bit Rule fields span no more than two consec-
utive 32-bit integers.

Section 3.4.3) is well suited to accessing large volumes of non-coalescing read-only
data, and is applied similarly within Gnort for this reason (see Section 3.7.2).

The packet cache is an array contained within the shared memory of a block which
temporarily stores small chunks of packet data in order to avoid multiple redun-
dant high-latency reads from texture memory. As each thread in the block accesses
different packet data, each thread is responsible for maintaining its own 8 byte
cache, which can store two 32-bit integers at a time. Thus, in total, each block of
256 threads uses 2KB of shared memory to cache packet data, which is 2KB less
than the maximum shared memory allowed by each block while still enabling full
occupancy (see Section 4.2.4).

Field sizes within packet headers vary significantly, and thus require a general
loading mechanism capable of supporting any field length. Fields are extracted
from cached integers using bit-wise operators (see Section 4.3.4) into a 32-bit reg-
ister, which is then compared to one or more target values in order to derive all
related classification results. Using registers places an upper-bound of 32 bits on
field size, although larger fields may be evaluated through rule subdivision (see
Section 4.8.1). As a result of this limitation, all legal fields span a data region
contained within no more than two consecutive 32-bit integers. This is proven ge-
ometrically in Figure 4.5.

Rules are executed in ascending order of field offset from the start of the packet.
This allows packet data to be loaded into cache iteratively, one or two integers at a
time, without loading the same packet chunk from texture memory more than once.
During kernel execution, the packet cache is evaluated against all rules which

4.3. RULE EVALUATION 86

Figure 4.6: Iterative Rule evaluation.

define fields contained within it, before the next chunk is loaded and the process
repeats. If one field spans integer offsets k and k + 1 and another spans integer
offsets k+1 and k+2, the integer at index k+1 can be transferred from the second
cache integer into the first cache integer, thereby avoiding a redundant texture
memory load. As no chunks of packet data are transferred to the multiprocessor
more than once, and only chunks which contain some part of a field are transferred
at all, device memory access is effectively minimised.

4.3.3 Rule Code

The rule evaluation process is essentially comprised of three stages: loading packet
data into the packet cache, extracting fields from the packet cache, and comparing
extracted fields to one or more target values. To minimise redundancy, each chunk
of packet data is loaded only once from global memory, after which all fields that
are contained in that data are extracted. Similarly, each field is extracted from
packet cache only once, and compared to all targets defined for it. To facilitate this
reuse, rule evaluation is performed within a three-tier nested loop. Each iteration
of the outer-most loop loads new packet data into the packet cache, and then enters
a nested loop which extracts all fields contained within the cached data. Each
extracted field is then evaluated against every target defined for that field in the
inner-most loop. This process is illustrated in Figure 4.6, although in practice
loops are partially unrolled using unroll-and-jam, in order to minimise iteration
overhead (see Section 3.6.2).

4.3. RULE EVALUATION 87

Listing 3 EBNF for rule code

rule program = load count , { cache group } ;
cache group = cache index , load width , f i e l d count , { f i e l d } ;
f i e l d = b i t index , length , target count , { target } ;
target = operator , value ;

load count = uint ; (* Number d i s t i n c t cache fetches . *)

cache index = uint ; (* Index of next int to load . *)
load width = "1" | "2" ; (* Number of ints to load . *)
f i e l d count = uint ; (* Number of f i e l d s contained . *)

b i t index = uint ; (* Field b i t l ocat ion in cache . *)
length = uint ; (* Field length in b i t s . *)

operator = "0" | "1" | "2"
| "3" | "4" | "5" ; (* Comparison operator . *)

value = uint ; (* 32−b i t target value . *)

uint = dig i t , { d i g i t } ; (* Unisgned integer *)
d i g i t = "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | " 9 " ;

Rule code comprises a stream of contextually sensitive commands which are se-
quentially read and executed by the Rule kernel. Rule code conforms to the struc-
ture of the kernel, and nests instructions for nested loops within instructions for
outer loops. The rule code grammar is provided in Listing 3, using Extended
Backus-Naur Form (EBNF) [79].

Rule code begins with the total load count, which specifies the number of packet
cache load operations that need to be performed. This value is used to control the
number of times the outer loop iterates, with each iteration evaluating a single
cache group. Each cache group begins with two instructions, cache index and
load width, which together identify a specific 32- or 64-bit data segment to be
loaded into the packet cache (“Load Cache” in Figure 4.6).

The cache index specifies the integer-based index of the segment within the packet,
while the load width indicates whether the segment is 32 or 64 bits wide, repre-
sented by the values 1 and 2 respectively. For instance, a cache group specifying
an cache index of 2 and a load width of 1 will load the 32-bit data segment be-
ginning at bit index 64, while a cache group with an cache index of 1 and load

4.3. RULE EVALUATION 88

width of 2 will transfer the 64-bit data segment located at bit index 32 within the
packet. Following these values, field count specifies the number of distinct fields
contained within the loaded cache group, and is used to control the number of it-
erations performed in the intermediate loop. Each iteration of this nested loop
extracts a specific field from the packet cache, and compares it to a set of targets.

Similar to cache group instructions, each field begins with two values, bit index
and length, which indicate the fields location and width respectively. The field’s
bit index is defined to be relative to the start of the packet cache, in order to
avoid having to calculate a cache-relative index at run-time. For example, a bit
index of 16 indicates that the field begins at bit 16 in the first integer in packet
cache, while a bit index of 52 indicates that the field begins at bit 20 in the second
integer. As packet cache is limited to 64 bits, and field lengths are limited to 32
bits, it follows that:

∀ field∈cache group,

bit index< 64,

length≤ 32,

bit index+ length≤ 64.

Each field is extracted using a combination of bit-shifting and bit-masking (see
Section 4.3.4), represented in Figure 4.6 by the “Extract Field” box. Once a field
has been extracted, the target count is used to limit the innermost loop, which
compares a single target to the previously extracted field value during each iter-
ation. A target is comprised of an operator (represented by an integer between
0 and 5) and a 32-bit value to compare to the extracted field. The operator value
is used in a non-divergent switch statement to select the appropriate comparison
to perform. After each evaluation, the boolean result is stored in global memory
using the coalescing memory pattern introduced in Section 4.2.3.

In summary, each rule program defines one or more cache groups, each containing
one or more fields, which in turn define one or more comparisons. Decomposing and
reconstituting the high level GPF filter specification into these groups, ordering
them so as to minimise texture memory overhead, and grouping them so as to
avoid redundant field extraction is the responsibility of the GPF compiler, and will
be discussed in Section 4.5.2.

4.3. RULE EVALUATION 89

Figure 4.7: Example extraction of a field spanning both cache integers.

4.3.4 Extracting Packet Data

Fields are extracted from the packet cache using bit-shifts, and is facilitated by a
separate device function. Detailed psuedocode for the extraction function is pro-
vided in Listing 4. While the function employs decisional branching, individual
threads never diverge, as all branch comparisons operate on constant variables
supplied by the rule program. Furthermore, the packet cache has been mapped to
prevent shared memory bank conflicts (see Section 3.4.5), by ensuring that adja-
cent threads access adjacent cache indexes.

To extract a particular field from packet cache, the function first determines if the
field begins in the first cache integer or the second by testing to see if the index of
the field is less than 32. If field_index≥ 32, then the field is entirely contained
by the second cache integer and may be extracted. If the field starts in the first 32
bits of packet cache, however, the function must determine whether the field spans
more than one integer, achieved by summing the field_index and field_width.
If the sum is less than 33, then the field is entirely contained within the first cache
integer, and may be extracted. If, however, the sum is greater than or equal to 33,
then bits from both cache integers need to be combined into a single field.

To achieve this, the first integer in the packet cache is shifted left to remove all

90

Listing 4 Psuedocode for field extraction.

/ /PACKET_CACHE[] − shared memory cache
/ / f i e ld_ index / f i e ld_ length − f i e l d information re la t i ve to

packet cache

unsigned int ans ;

i f (f i e ld_ index < 32) / / s tart index i s in f i r s t cached integer
{

ans = PACKET_CACHE[threadIdx . x] ;

/ / i f value contained in only the f i r s t int
/ / − crop surrounding b i t s using s h i f t s
i f (f i e ld_ length + f ie ld_ index < 33)
{

ans = (ans << f ie ld_ index) >> (32 − f i e ld_ length) ;
}

e l se / / value contained in two ints
{

ans = (ans << f ie ld_ index) >> (32 − f i e ld_ length) ;
ans += PACKET_CACHE[256 + threadIdx . x] >> (64 −

f i e ld_ index − f i e ld_ length) ;
}

}
e l se / / s tart index i s in second cached integer
{

ans = PACKET_CACHE[256 + threadIdx . x] ;
ans = (ans << f ie ld_ index − 32) >> (32 − f i e ld_ length) ;

}
return ans ;

4.4. EVALUATING FILTERS 91

leading bits, and then shifted right by the difference between the fields length
and the size of the register container. This positions the field such that it starts
field_length bits from the right-most bit in the register, with the bits correspond-
ing to the portion of the field stored in the second cache integer containing only
zeros. This value is stored in the extraction register. The portion of the field con-
tained in the second cached integer is then shifted as far to the right as possible
and added to the value contained in the extraction register, which results in the
extracted field value. An example of this extraction process for a field spanning
both cache integers is provided in Figure 4.7.

4.4 Evaluating Filters

Filter evaluation uses the results generated and stored in coalesced global memory
by the Rule kernel to classify each packet against every filter defined in the filter
set. This ensures that all possible results are collected for each packet, and allows
for divergence free classification by broadcasting identical instructions to all active
threads. An exhaustive approach such as this is, however, quite computationally
expensive, particularly when processing large filter sets. To mitigate this, the filter
evaluation mechanism uses a two stage classification process which allows common
sub-predicates to be reused.

This section motivates the filter evaluation process, and describes both the filter
code grammar, and how this code is interpreted within the executing kernels to
produce a complete set of classification results.

4.4.1 Predicate Evaluation

Evaluating predicates programmatically is often achieved through the use of a non-
deterministic recursive decent parser [9], as these are relatively easy to implement
by hand, and elegantly support arbitrary depth nested parenthesis. Recursive
function calls, however, are only supported on Fermi devices [64], and are typically
less efficient with regard to both speed and memory utilisation than comparable it-
erative methods [84]. Instead, filter evaluation is facilitated by a three-tier nested
predicate evaluation loop, depicted in Figure 4.8.

4.4. EVALUATING FILTERS 92

Figure 4.8: Iterative predicate evaluation.

Figure 4.9: Precedence hierarchy in parenthesis-free predicate evaluation.

This nested loop is structured to maintain the precedence relationships between
the logical conjunction (&&), logical disjunction (||) and logical inverse (!) operators
within a particular parenthesis-free predicate. Without parenthesis, these prece-
dence relationships remain constant; ! has a higher precedence than &&, which in
turn has higher precedence than ||. For instance, the logical predicate a || b && !c
|| !a && c || !b has implicit parenthesis a ||(b && (!c)) || ((!a) && c) || (!b) . Fig-
ure 4.9 illustrates the evaluation of this predicate using the iterative mechanism
depicted in Figure 4.8. The outer-most loop is ignored, given that only a single
predicate is defined.

The OR row in Figure 4.9 corresponds to OR Element loop in Figure 4.8, which

4.4. EVALUATING FILTERS 93

would in this case iterate four times, each time evaluating a particular OR element.
An OR element is a sub-predicate that does not itself contain an || operator. An
OR element contains one or more AND elements, each referencing a result stored
in global memory, which may be inverted when the value is collected, if desired.
The logical conjunction of the AND elements contained in an OR element is found
iteratively, and used by the outer OR Element loop, which iteratively finds the
disjunction of all OR element results. Once a predicate is evaluated, its result is
stored in global memory using the coalescing output format illustrated in Figure
4.3.

While this provides a sufficiently accurate overview of the iterative predicate eval-
uation process, it should be noted that actual Filter code is encoded differently in
order to improve execution efficiency (see Section 4.4.3).

4.4.2 Supporting Parenthesis

In order to support the evaluation of predicates containing parenthesis using the
parenthesis-free evaluation mechanism depicted in Figure 4.8, Filter evaluation
employs an optional Subfilter kernel, which evaluates common predicates and sub-
predicates, so that those results may be used during final classification. For in-
stance, the predicate a && (b || c) may be evaluated by first calculating x = b ||
c in the Subfilter kernel, and then finding a && x in the Filter kernel. The Subfil-
ter kernel may be further applied to reduce redundancy, as any other filter which
contains the predicate b || c may replace that operation with a reference to x.

Both the Subfilter and Filter kernels execute the same evaluation function, but
store results in different regions of global memory. The Subfilter uses the same
results array as the Rule kernel, while the Filter kernel outputs results to a sep-
arate classification results array. Like rule results, Subfilter results may be used
in other subfilters, as long as no circular references are defined. Filter results, on
the other hand, may not be used in other kernels. For example, the predicate !(a
&& (b || c)) may be evaluated using the subfilters x = b || c and y = a && x, and
the filter !y.

As with Rule kernel architecture, this optimisation exploits the underlying redun-
dancy found in typical filter sets (see Section 2.3.3), by effectively reducing the
evaluation of a redundant multi-rule sub-predicate (involving more than one high-
latency global memory read) into a single coalesced load operation.

4.4. EVALUATING FILTERS 94

Listing 5 EBNF for Filter and Subfilter Code

f i l t e r program = { f i l t e r } ;
f i l t e r = or count , { or element } ;
or element = and count , { and element } ;
and element = not value , rule index ;

or count = unsigned integer ; (* No. o f elements to OR. *)
and count = unsigned integer ; (* No. o f elements to AND. *)
not value = "0" , "1" ; (* 1 i f NOT, 0 otherwise . *)
rule index = unsigned integer ; (* Index of rule to load . *)

unsigned integer = dig i t , { d i g i t } ;
d i g i t = "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | " 9 " ;

4.4.3 Filter Code

Filter code, contained in constant memory, encodes instructions which direct the
execution of the Filter and Subfilter kernels. Similarly to rule code, the grammar
syntax of filter code — shown using EBNF notation in Listing 5 — is designed to
reduce the amount of processing performed by the kernels during each iteration. A
filter program contains one or more filter definitions, which are evaluated one at a
time during each iteration of the outer Filter loop (see Figure 4.8). The number of
filters defined in the filter set is stored separately in constant memory, and is used
to control the number of iterations performed in the outer loop.

Each filter begins with an or count, indicating the number of or elements that
need to be evaluated, followed by one or more or element definitions. Similarly,
each or element starts with an and count, specifying the number of and elements
that it contains. The or count and and count values are used directly by the
evaluation function to control the number of iterations performed by the OR loop
and AND loop respectfully. Finally, each and element comprises a not value and
a rule index, with the latter specifying the index of the value to be loaded from
rule memory, and the former indicating whether the value should be inverted or
not. Figure 4.10 illustrates this encoding scheme using the filter code for the pred-
icate depicted in Figure 4.9.

To improve efficiency in the future, the OR evaluation loop may be adjusted to fa-
cilitate logical short circuits. In the OR evaluation function, the evaluating loop

4.5. HIGH-LEVEL GRAMMAR 95

Figure 4.10: Filter code representation of the predicate in Figure 4.9.

short circuits to true if any of the OR elements returns a true value. Short circuit
evaluation cannot be easily and efficiently implemented in the AND loop, as this
would require thread synchronisation after each set of and elements is processed
in order to avoid significant warp-level divergence potential in the surrounding
OR loop. Unfortunately, any thread synchronisation performed within a divergent
execution path that only a subset of threads in a warp follow (which would be
expected in this case) will cause the kernel to either hang or malfunction [64]. In
contrast, when performing short circuit evaluation within the OR loop, a particular
thread simply sleeps until all threads are ready to write results to global memory.
As all filters will be evaluated, synchronisation can occur within the outer Filter
loop, prior to this global memory write, without negatively affecting kernel execu-
tion. Due to the SIMD nature of warp execution however (see Section 3.3.3), short
circuited logic only provides a performance benefit if all threads in the executing
warp are short circuited, and is therefore only truly useful when evaluating long
predicates which match only a small subset of packets. It is therefore a relatively
low-priority optimisation.

4.5 High-Level Grammar

Rule and filter evaluation depend heavily on error-free kernel specific instructions
— rule and filter code specifically — to direct packet classification. The grammars
used to encode these instructions are, however, relatively low-level with respect to
kernel architecture, and are difficult to program by hand. To address this, rule
and filter code is compiled on the fly from a unified high-level filter specification

4.5. HIGH-LEVEL GRAMMAR 96

language, which abstracts away low-level technicalities to improve usability. This
section details the syntax of this high-level grammar, and explains how GPF pro-
grams written in this syntax are optimised and compiled into efficient rule and
filter code.

4.5.1 Grammar Syntax

Filter sets are specified using a relatively small Domain Specific Language (DSL),
implemented in ANTLR v3 (ANother Tool for Language Recognition, Version 3)
and C# 4. A DSL is a language which targets a specific problem or application do-
main exclusively, and often supports specialised notation tailored for that domain
[66]. The DSL uses the filter specification to generate a tree structure, which is op-
timised and emitted as rule code and filter code for processing on the GPU device.
For further information regarding DSLs and their implementation using ANTLR,
the reader is directed to “The Definitive ANTLR Reference: Building Domain Spe-
cific Languages” by Terence Parr.

The EBNF for the high-level filter classification grammar, called GPF code for sim-
plicity, is provided in Listing 6.

GPF code allows for the specification of a variable number of filter and subfilter
declarations, utilising a syntax similar to that of structs and classes in C style lan-
guages. Filters are declared using the filter keyword, while sub filters are identi-
fied using the sub keyword. Both filters and subfilters require a unique identifier,
or label, which is included to allow for explicit reuse of the associated predicate in
other predicates, and when returning the filter classification results to the user.
Each filter and subfilter declaration concludes with a single predicate definition,
contained in braces, using the standard C-style boolean operators, with expected
precedence rules and full support for parenthesis.

Predicates may operate on both rule definitions, and id values referencing other
filters and subfilters. A rule definition specifies the location and dimension of the
field to be evaluated, using the notation index : length, and the comparison to be
performed on it. Comparisons are specified using one of the six standard compar-
ison operators, and a target value encoded as either an integer value, a hexadeci-
mal value, or an IPv4 address. Subnets are included to provide a simple notation
for specifying comparisons on networks with non-standard sub-network division

97

Listing 6 EBNF for the GPF Grammar

program = declaration , { declarat ion } ;
declarat ion = f i l t e r | sub f i l t e r ;

f i l t e r = f i l t e r , id , predicate ;
sub f i l t e r = sub , id , predicate ;

predicate = { , or node , } " ;
or node = and node , { || , and node } ;
and node = not node , { &&, not node } ;
not node = [!] , atom ;
atom = id | rule | sub predicate ;
sub predicate = (, or node ,) ;

rule = f i e ld , op , target ;
f i e l d = integer , : , integer ;
op = == | != | < | > | <= | >= ;
target = integer | ip address | hex value ;

ip address = ip byte , " . " , ip byte , " . " , ip byte , " . " , ip byte ,
[" / " , integer] ;

ip byte = integer | "*" ;

id = (l e t t e r | caps | " _ ") , { l e t t e r | caps | " _ " | d i g i t } ;
integer = dig i t , { d i g i t } ;
hex value = "0x " , hex , { hex } ;

d i g i t = "0" | "1" | "2" | "3" | "4"
| "5" | "6" | "7" | "8" | " 9 " ;

l e t t e r = "a" | "b" | " c " | "d" | " e " | " f " | "g " | "h" | " i "
| " j " | "k" | " l " | "m" | "n" | " o " | "p" | "q" | " r "
| " s " | " t " | "u" | "v " | "w" | "x " | "y " | " z " ;

caps = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | " I "
| "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R"
| "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" ;

hex = d i g i t | "a" | "b" | " c " | "d" | " e " | " f "
| "A" | "B" | "C" | "D" | "E" | "F" ;

4.5. HIGH-LEVEL GRAMMAR 98

Listing 7 Example high-level filter program classifying packets against two dis-
tinct port ranges.

/ / IPv4 && (TCP || UDP)
sub tcp_udp { 96:16 == 2048 && (184:8 == 6 || 184:8 == 17) }

f i l t e r srcport_big { tcp_udp && 272:16 >= 4000 }
f i l t e r srcport_small { tcp_udp && 272:16 < 100 }

points, and are defined using the standard IPv4 Classless Inter-Domain Routing
(CIDR) syntax [77].

Listing 7 shows an example GPF program, containing a subfilter and two filters.
The subfilter evaluates to true if the packet is an IP packet which uses either the
TCP or UDP protocols, while each filter passes if this subfilter evaluates to true
and certain source port requirements are met. As is evident, the GPF grammar is
still in early development, and currently depends on the filter set designer to know
the exact bit-offsets and lengths of fields, as well as the exact target values they
are to be compared to. A remedy to this issue is provided in Section 4.8.3.

4.5.2 Compiling GPF Code

The GPF code compilation process involves several stages of evaluation, which ulti-
mately yields the information necessary to emit rule and filter code. Firstly, lexical
analysis is performed to convert the GPF code character stream into an equiva-
lent stream of language specific tokens. This token stream is then parsed into an
intermediate data structure known as an Abstract Syntax Tree (AST), which is
subsequently walked by two different tree walkers, emitting rule code for the Rule
kernel and filter code for the Subfilter and Filter kernels respectively. An overview
of this process is shown in Figure 4.11. As ANTLR handles lexical analysis, pars-
ing, and the construction and modification of ASTs internally [66], this section
focuses on how the AST representation of the filter program is walked to produce
the data structures necessary for code emission. How these data structures are
used to emit rule and filter code is considered to Section 4.5.3.

The initial AST output by the parser is processed by the Rule Walker, a tree walker
which scans the AST for all rule declarations (see Listing 6). When the Rule

4.5. HIGH-LEVEL GRAMMAR 99

Figure 4.11: Overview of the GPF compilation process.

Walker locates a rule, it is passed to the Rule Set, which first ensures the rule
definition is unique, by comparing it to all other rules contained within it. If the
rule is unique, it is added to the Rule Set, and is given a unique identifier. The
rule in the AST is subsequently replaced by an AST node containing its corre-
sponding identifier in the Rule Set. If, however, a rule is added to the Rule Set
which has been previously defined, the Rule Set discards the rule, and replaces
its definition in the AST with the unique identifier of the equivalent existing rule
in the Rule Set.

Once the Rule Walker has completed its pass over the AST, and has replaced all
rule definitions with their corresponding Rule Set identifiers, the Filter Walker
begins construction on the Filter and Subfilter sets. The Filter Walker maintains
both a Filter Set and a Subfilter Set, each responsible for emitting a filter program.
The Filter Set and the Subfilter Set are instantiations of the same object class, and
thus operate in the same way. Each filter and subfilter definition is converted
by the Filter Walker into an equivalent Filter Tree object, which is ultimately re-
sponsible for emitting filter code.

As device-side filter evaluation does not support parenthesis, sub predicates must
be converted into subfilters. To begin, the sub predicate is compared to all ac-
cepted filters and subfilters, to see if an equivalent predicate has already been
defined. If no equivalent filter or subfilter is found to replace the sub predicate,
it is converted into an anonymous subfilter; a subfilter with a hidden, computer-

4.5. HIGH-LEVEL GRAMMAR 100

generated id, which cannot be referenced within other predicates. Once con-
verted, it is given a unique identifier, which then replaces its full definition in
the parent predicate. If, on the other hand, a matching filter or subfilter is found,
then the sub predicate is replaced by a reference to that filter or subfilter instead.
If the sub predicate matches an existing filter, then that filter is converted into an
anonymous subfilter, and replaced in the Filter Set by a filter containing its unique
identifier in the Subfilter Set.

Once a filter or sub filter has been converted into Filter Tree object, it is checked
to ensure no other filters have been referenced as sub predicates. If one of its con-
tained identifiers references a filter rather than a subfilter, then that filter is con-
verted into an anonymous subfilter and added to the Subfilter Set, and replaced in
the Filter Set by a filter referencing its unique identifier.

At this point, the Rule Set, Subfilter Set and Filter Set contain all the relevant
information needed to emit rule and filter code for each stage of classification.

4.5.3 Emitting Kernel Code

The process of emitting rule and filter code comprises three phases which are exe-
cuted sequentially. The first phase, handled by the Rule Set, emits rule code for the
Rule kernel as an unsigned integer array in unmanaged memory. To convert the
existing rule records into rule code, the Rule Set first groups all rules by field value,
and converts these groups into rules containing one field and multiple targets, such
that each resultant rule contains a field value that is unique.

Rule fields are comprised of both a start index and a length, which together deter-
mine if a particular field spans one or two cache integers in rule code (see Section
4.3.3). Using their field information, rules are divided into two groups: those which
span a single integer (narrow), and those which span two adjacent integers (wide).
Consider a rule r1, containing a field which spans a single integer at index n. Be-
cause r1 spans only a single integer, it may be placed into one of three possible
integer cache groups. Specifically, it may be included in:

1. a narrow cache group which spans only the integer at index n.

2. a wide cache group which spans the integers at n− 1 and n.

4.6. PACKET COLLECTION AND BUFFERING 101

3. a wide cache group which spans the integers at n and n+ 1.

Now consider a rule r2, whose field spans two integers at index positions m and
m + 1. By its definition, and in contrast to r1, r2 can only be contained in a single
cache group, which must span m and m + 1. These cache groups are thus created
first, with each containing at least one rule. The Rule Set then attempts to fit the
remaining rules which span a single integer into the already existing groups, and
only creates a new cache group if this cannot be done.

Once all rules have been assigned to a cache group, the Rule Set checks if any ad-
jacent narrow cache groups could be combined into a single wide cache group, in
order to reduce the number of distinct loads from texture memory in the Rule ker-
nel. As a final optimisation, the Rule Set uses the set of cache groups to determine
the first and last referenced integers in every packet, and passes this information
to the packet collector to facilitate edge cropping (see Section 4.6.3). Each field’s
start index is adjusted to reflect the removal of the leading unused integers, after
which the set is finally condensed and emitted as an unmanaged unsigned integer
array.

The second phase of the code emission process is performed within the Subfilter
Set, which uses the final order of the rules emitted in the first phase, as well as
the order of subfilter evaluation, to determine the rule result index locations corre-
sponding to each unique Rule Set and Subfilter Set identifier. These result index
values replace their corresponding identifiers within each subfilter, following which
the subfilter set is emitted as an unmanaged unsigned integer array. This process
is repeated for the Filter Set in the third phase. Once all three phases are com-
plete, the unsigned integer arrays are passed directly to the GPF host thread in
preparation for transfer to the CUDA device.

4.6 Packet Collection and Buffering

Before packets can be processed on the GPU, they must be collected from either
long term storage or a network interface, and stored in a buffer within host mem-
ory. Currently, packet collection is facilitated by the WinPcap library, as it already
comprises all requisite packet collection functionality, and is well tested. Packet
collection is at present limited to dump file captures exclusively, as in contrast

4.6. PACKET COLLECTION AND BUFFERING 102

to transient live captures, the classification and performance results produced by
dump files are verifiable and repeatable.

This section describes the design and implementation of the packet buffer, and
subsequently considers the bandwidth gap between host memory and long term
storage, and how this gap can be reduced.

4.6.1 Packet Buffering

Once collected from long term storage, packets must be stored in host memory be-
fore being dispatched to the GPU for processing. While small dump files that do
not exceed the available capacity in GPU DRAM can be processed in a single batch,
larger packet sets must be divided into smaller batches and processed sequentially.
These batches are stored temporarily within a circular buffer containing n packet
buckets, where n ≥ 1 is a user defined value. As all buffer buckets are stored in
page-locked host memory (see Section 3.5.1), the number of buckets, n, is limited
by the capacity of host memory, and should be kept small to ensure optimal perfor-
mance.

The packet buffer executes in its own thread, collecting packet data concurrently
with the execution of the main program thread. After the filter program has been
compiled and emitted (see Section 4.5), the main thread spawns the packet buffer
thread, specifying the dump file to process, the size of each batch, and the total
number of buffers to use. The packet buffer also uses information collected during
the compilation process to facilitate edge cropping (see Section 4.6.3).

During execution, each of the n buffer buckets is filled sequentially, until either all
buckets are full or the dump file is exhausted. When the filter program transfers
a batch of packets from the packet buffer, it requests a lock on the least recently
filled packet bucket, which it acquires if or when the bucket is full. Once a lock
is acquired on a buffer bucket, the filter program transfers all contained data to
device memory, bound to a texture reference. It then releases its lock on the buffer
bucket prior to classification, which allows the bucket to be refilled during rule
and filter evaluation. In the unlikely event that the buffer thread fills all allocated
buckets, it sleeps until a lock release is signaled by the program thread, after which
continues refilling the newly emptied buffer.

4.6. PACKET COLLECTION AND BUFFERING 103

Buffer configuration is designed to be flexible enough to facilitate a variety of us-
age scenarios. Using large buffer buckets ensures fewer kernel invocations and
full GPU occupancy, providing the best per packet performance for offline dump
files, but requires millions of packets to be collected before classification can com-
mence, resulting in increased latency. In contrast, by using a larger number of
much smaller buffers, packets may be dispatched to the GPU for classification more
frequently, providing lower latency between each iteration of classification.

The packet buffer is implemented in C#, while the filter is implemented in C++. As
such, there is the potential for conflict between managed and unmanaged memory
which would typically require an extra memory copy operation between the two
memory spaces to alleviate. This is avoided by declaring the buffers in unmanaged
memory, so that they can be passed, by reference, from the packet buffer directly
to the executing filter program. The buffers are initialised as page-locked, write-
combined memory (see Section 3.5) within the filter program using the CUDA Run-
time API, and are then passed by reference to the C# packet buffer to be managed.
This memory is ultimately released by the filter program on termination.

The remainder of this section considers various means of improving the rate of
transfer to and from the packet buffer, with particular focus on overcoming the
bandwidth gap between long term storage media and the host RAM.

4.6.2 Bandwidth Considerations

Before packet classification can commence, packet data must first be transferred
between long term storage media and a buffer bucket in host memory, before ul-
timately being copied from this bucket into device memory via the PCIE 2.0 bus.
This indicates that the maximum speed at which a particular packet set can be
transferred into device memory for processing is bounded by the rate at which
packets can be read from long term storage. A bar graph showing the peak theo-
retical bandwidths (using a logarithmic scale) of a typical 7200 RPM (Revolutions
Per Minute) Hard Disk Drive (HDD), the SATA II and III interfaces, the PCIE 2.0
bus (upstream only), and DDR3 1600 SDRAM (Synchronous Dynamic RAM) is pro-
vided in Figure 4.12. The figure shows that the maximum transfer rate supported
by the SATA III interface is over an order of magnitude slower than transfers be-
tween the PCIE 2.0 bus and host memory. This causes a significant bottleneck
in data transfer that is further exacerbated by the limited internal bandwidth of

4.6. PACKET COLLECTION AND BUFFERING 104

Figure 4.12: Peak theoretical transfer rate comparison.

HDD media, which falls far short of even the SATA II interface [71]. State-of-the-
art Solid State Drives (SSDs), which are both more expensive and less common
than HDDs, provide significantly better performance, but still fall short of the peak
transfer rates facilitated by the SATA III interface.

There are two primary ways to improve the transfer rate between long term storage
and the PCIE 2.0 bus: stripe data over multiple physical drives, or employ a vir-
tual drive residing in high bandwidth host RAM. Striping packet data over several
drives can dramatically improve read times — as packet data can be transferred
from multiple disks simultaneously — but requires a special storage configuration,
and is expensive in terms of both hardware and energy consumption.

The second alternative is to partition an area of host RAM as a virtual disk, and
transfer packet data to this RAM disk prior to packet collection. RAM disks pro-
vide bandwidth equivalent to host memory, and are therefore potentially faster
than the combined throughput of all eight upstream channels of the PCIE 2.0 bus.
Unfortunately, host memory is a scarce resource, and is generally not available in
abundance. Furthermore, long term packet captures may span well over 10 giga-
bytes of data, and it is for these packet sets that issues of performance are the
most relevant. Finally, as RAM disks are partitioned in volatile memory, packet
data must be copied from non-volatile long term storage media prior to processing,
which defeats the purpose of using a RAM disk if the dumpfile is only processed

4.6. PACKET COLLECTION AND BUFFERING 105

once.

Determining the best storage solution is thus subjective, as it largely depends on
the availability of system resources, the availability of specialised hardware, the
size of the dump file to be processed, and the number of times the dump file is ex-
pected to be read. Luckily, the filter program is essentially agnostic to the medium
being used, and will accept any hardware supported by the operating system.

4.6.3 Packet Cropping

An important observation when considering the collection of packets is that most
of the packet data is never used by the filter program. Consider, for instance, a
filter set identifying TCP/IP packets with various source address, source port and
destination port combinations, transported using the Ethernet II protocol. To iden-
tify the packet as a TCP/IP packet, the 2-byte type field of the Ethernet II frame
header is compared to the hexadecimal value 0x800, while the 1-byte IP protocol
header field is compared to the value 0x08 to determine if the packet uses the TCP
connection protocol. The packets 4-byte source address, 2-byte source port and
2-byte destination port header fields are also evaluated, such that packets which
pass all five tests are classified by the filter. In this example, only 11 bytes of data
per packet are actually used by the classifier, while the rest of the data is essen-
tially ignored. As memory bandwidth between long term storage, host memory and
device memory is a significant bottleneck, it is thus worthwhile to apply this obser-
vation to reduce the amount of packet data collected from disk and transferred to
the device.

Achieving this programmatically is relatively simple. Once the user has defined
the filter set using the Domain Specific Language (DSL) defined in Section 4.5.1,
the DSL compiler calculates which bytes in the packet header have been used in
the filter program, and which bytes can be ignored. From here, it is possible to ei-
ther remove all unused bytes, or crop the unused bytes at the beginning and end of
the packet. While removing all unused bytes would likely improve transfer speeds
to some degree, this comes at the expense of increased processing demands and
disk I/O requests during collection. In contrast, as field comparisons typically tar-
get a relatively small region of the header, edge cropping is effective at eliminating
a significant proportion of redundant transfer, without requiring multiple indepen-

4.6. PACKET COLLECTION AND BUFFERING 106

Figure 4.13: Example effects of edge cropping optimisation on packet size.

dent copy operations per packet. Figure 4.13 provides an example of the effects of
edge cropping for an arbitrary filter set.

Edge cropping provides an inexpensive means of both reducing per-packet transfer
overhead, and increasing the number of packets that can be processed on a par-
ticular device at one time. Edge cropping is not currently possible during packet
collection from long term storage, however, as it is not efficiently facilitated by
the WinPcap library. WinPcap and its limitations are discussed in the following
section.

4.6.4 Parsing Packet Data

The GPF design currently utilises the WinPcap library to facilitate dump file pars-
ing, largely for the sake of implementation simplicity. WinPcap is not, however,
particularly efficient with regards to dump file processing. This is most easily il-
lustrated when comparing between the parsing times of low and high bandwidth
storage media. Figure 4.14 shows the comparative parsing times of three packet
captures (described in Section 5.1.3), read from both a 7200 RPM SATA II HDD
and a DDR3 1600 RAM disk. Measurements were taken of both unfiltered and
filtered capture parsing, with the latter comprising three relatively simple filters.

With regard to the unfiltered test, as DDR3 1600 RAM provides just under 100x
the bandwidth of a SATA II HDD, one would expect to see a performance differ-
ence of around two orders of magnitude between these mediums when no filter is
applied. Instead, timings for filtered and unfiltered traffic on both storage media
were almost identical in Figures 4.14a and 4.14b, while in Figure 4.14c, the RAM
disk outperformed the SATA II HDD by up to only 13 percent. This indicates that
limitations in performance are not the result of slow hardware transfer rate or poor
filtering performance, but the architecture of WinPcap itself.

107

(a) Packet set A - 183,617 packets, roughly 1KB each

(b) Packet set B - 2,445,815 packets, roughly 70B each

(c) Packet set C - 26,334,066 packets, roughly 70B each

Figure 4.14: Comparative WinPcap dumpfile filtering times for HDD vs. RAM disk.

4.7. ANALYSIS EXTENSIONS 108

GPF currently utilises WinPcap despite these limitations, as it is sufficient for the
purposes of measuring GPU classification performance. The WinPcap dump file
parser will be replaced by a more efficient custom solution better suited to the task
at a later stage. For now, however, it should be noted that the dump file parsing
speeds presented in the remainder of this thesis do not reflect an upper bound
for performance, and should improve significantly when a more efficient parser is
used.

4.7 Analysis Extensions

While the primary components of GPF discussed thus far are sufficient to enable
general parallel packet classification, they lack features necessary to accelerate
packet analysis processes used in the calculation of metrics. These limitations are
addressed through extensions intended to supplement existing classification func-
tionality with additional analytical and domain-specific kernels. Such extensions
provide a mechanism to perform further calculations on both packet data and fil-
tering results, in order to derive further information relating to the composition of
the packet set.

This section introduces three relatively important extensions applicable to the do-
main of packet analysis, which collectively demonstrate how the basic filtering
functionality may be supplemented for domain specific purposes.

4.7.1 Aggregating Classifications

While the classification process is capable of collecting detailed filter results from
each individual packet, it does not provide a mechanism to count these results ef-
ficiently. As such, in order to determine the percentage of packets in the packet set
which match a particular filter, the filter results must be counted in the sequen-
tial host thread. This sequential step is potentially quite expensive, particularly
when classifying against several filters, which motivates the need for a device side
classification aggregation (or reduction) kernel.

The aggregation kernel is invoked after the core classification kernels complete,
and operates on specific filter results stored in device memory. As these results

4.7. ANALYSIS EXTENSIONS 109

have been stored using a layout conducive to both coalescing and aggregation, there
is no need to employ texture references to improve access latency. Once complete,
the aggregation kernel outputs an array of 32-bit unsigned integers, where each
index element corresponds to a specific requested filter.

This kernel may be implemented efficiently by employing the methodologies pre-
sented in the white paper “Optimising Parallel Reduction in CUDA” in the CUDA
SDK [32]. The interested reader is encouraged to consult the aforementioned white
paper for implementation information.

4.7.2 Returning Packet Data

A common task in analysis involves determining the distribution of packets with
regard to a particular field. For instance, one may wish to find the distribution
of source or destination ports specified in captured IP traffic, in order to identify
irregularities in running services. Performing this analysis using an exhaustive
classification mechanism is highly inefficient, as the core filtering kernels would
have to process a unique rule for each possible port value.

In order to address this problem, an extension may be incorporated to collect the
data in one or more arbitrary packet fields, and store these values, grouped first by
filter and then by field, in order to ensure coalescing. With this extension in place,
it would be possible to process those field values either sequentially on the host,
or within further extension kernels on the GPU, using the filter results to deter-
mine which values should be processed. For best performance in GPU functions,
however, packet data could instead be loaded directly from texture memory, with-
out the need for an expensive intermediate data collection kernel. This requires
that packet data persist beyond filter evaluation, which would prevent the early
concurrent packet data transfer discussed in Section 4.2.1. To allow for both GPU
accelerated post-processing of packet data and preemptive packet transfer, device
memory may be partitioned into a double buffer, allowing for packets to be trans-
ferred into one bucket, while post-processing filters operate on data contained in
the other bucket.

4.8. FUTURE FUNCTIONALITY 110

4.7.3 Time-stamp Processing

Inter-Packet Arrival Time (IPAT) is a useful metric for diagnosing software config-
uration issues and detecting security threats, such as packet floods. Determining
the inter-packet arrival time for a particular protocol requires processing the times-
tamps associated with the each of the classified packets; information contained in
the capture metadata, and not in the packet header itself. Timestamps also pro-
vide necessary context to allow for temporal observations such as the time of day,
week or year that certain network events occur, which may help in deriving their
cause.

To facilitate time-stamp processing, extension kernels may use both filter results
and time-stamp information to calculate the IPAT for specific protocols, or any
other useful metrics which may aid in analysing a packet set.

4.8 Future Functionality

This section considers additional functionality, not included in the design of GPF,
which may increase the flexibility, efficiency and ease of use of the GPF classifier.
These features will be considered and developed more thoroughly in future work,
but are worth introducing briefly nonetheless.

4.8.1 Arbitrary Field Sizes

A significant limitation of the core filtering functionality, with regard to packet
classification, is the lack of native support for evaluating fields larger than 32-bits
in width. This limitation results from numerous factors, including the access la-
tency limitations of global memory, the scarcity of on-chip multiprocessor memory,
and the added complexity introduced in kernel execution (see Section 4.3.2). This
effectively prohibits the evaluation of rules targeting larger fields, such as 128-bit
IPv6 addresses, and thus seems to limit the generality of filter architecture.

Overcoming this limitation is relatively simple, and may be achieved by breaking
down larger fields into multiple smaller fields during the compilation process. For
instance, consider an arbitrary 128-bit IPv6 address. While the 32-bit limitation

4.8. FUTURE FUNCTIONALITY 111

Figure 4.15: Dividing a 128-bit IPv6 address field into multiple sub-fields.

on field sizes makes evaluating this 128-bit address value in a single operation
impossible, note that the address is equivalent to a combination of eight 16-bit
fields, or alternatively, four 32-bit fields (see Figure 4.15). Thus, this address may
be evaluated by finding the disjunction of these sub-fields from within a subfilter.
This principle applies to any arbitrary length field exceeding 32-bits, and may be
supported with relative ease by extending the the compiler to identify such fields,
and divide them appropriately prior to code emission.

4.8.2 Decision Based Filter Evaluation

In Section 3.7.1 it was noted that divergent approaches typically employed to fa-
cilitate packet filtering do not perform well on GPUs, thereby motivating an al-
ternative non-divergent decompositional approach which compares all packets to
all rules and filters. However, some protocols and field values are not nearly as
common as TCP/IP, and may only occur in a very small percentage of packets. This
results in redundant memory transactions and computation in warps where no
packets match a particular filter. In such cases, where only a small subset of pack-
ets are expected to be applicable to a particular filter, support for decision based
evaluation becomes quite useful.

To facilitate this, the GPF DSL may be extended to include a C inspired decisional
mechanism, allowing a filter set designer to reduce the computational overhead
for classifications which are expected to only match a small fraction of packets.
An example of a possible syntax is shown in Listing 8, although this has not been
formalised or finalised. The if statement takes a predicate as a conditional argu-
ment, which determines whether the filters declared in the if-block are executed.

4.8. FUTURE FUNCTIONALITY 112

Listing 8 Example Decisional Execution

f i l t e r some_f i l ter { sub1 && sub3 }

i f (some_f i l ter || sub2)
{

/ / = { (some_f i l ter || sub2) && sub4 }
f i l t e r some_other_f i l ter { sub4 }

}

If this initial test fails, the thread simply writes a false result. When the test does
succeed, any additional rule and subfilter evaluations exclusive to filters in the
if-block are collected, after which the filter is evaluated.

In cases where very few packets match the condition, decisional evaluation can
avoid a significant amount of redundant processing by allowing non-participant
warps to escape kernels early and begin processing new packets.

4.8.3 Protocol Definitions

To ease filter creation, the GPF DSL may be extended to allow for the declaration
of arbitrary protocol definitions, which may be referenced by one or more filters
so as to avoid manually specifying field offsets and target values. Protocol defini-
tions may specify field indexes and lengths, define target values, and declare any
necessary preconditions. A hypothetical example of a protocol definition in use
is provided in Listing 9. In this example, the protocol field of the IP header is ac-
cessed using dot notation, and compared to either a statically defined target within
the fields definition, or to a manually defined value. Note that while TCP is a valid
target for the ip.proto field, it would not be valid for the ip.version field, or any
other field which did not explicitly define TCP as a possible target. In the case of
the example filter, the results of both rules is predicated on the packet being an IP
packet, which is not explicitly tested. This is the purpose of preconditions, which
specify the comparisons needed to determine if a packet employs the base protocol
or not. These preconditions are incorporated into the filter implicitly, thus reducing
filter specification complexity.

The syntax for specifying protocols has yet to be defined, but should alleviate much
of the complexity associated with creating filters once implemented.

4.8. FUTURE FUNCTIONALITY 113

Listing 9 Hypothetical use of an IP protocol definition.

f i l t e r some_f i l ter { ip . proto == tcp || ip . proto == udp }

4.8.4 Variable Header Field Lengths

Thus far, all fields have been treated as having a preset constant length, which
allows for the specification of fields using static index and length values when de-
scribing comparisons. However, many protocols — including IP and TCP — allow
for header lengths to vary, in order to facilitate rarely-used options in addition to
existing header fields when necessary [16, 77]. Such protocols typically specify
the length of a particular packet within a header field, which is used to determine
where the protocol header ends, and thus where the next protocol begins. Cur-
rently, catering for variable header field lengths requires the specification of rules
corresponding to each possible offset, which can be expensive if header lengths
are expected to vary by any significant amount. Because packets specifying vari-
able length headers are uncommon [16], supporting them has been designated a
relatively low priority. Mechanisms for incorporating this functionality have been
considered, however, and will be explored once the basic filtering mechanism has
been tested.

4.8.5 Instruction and Results Compression

Instruction and results compression is intended to improve memory efficiency in
both programs and results — as well as potentially reduce host-device transfer
time — at the expense of additional kernel logic. These are considered separately,
beginning with results compression.

Currently, results are stored in device memory as boolean values, and consume a
full byte of memory each. This results in wasted storage space and transfer band-
width, as each result could be encoded as a single bit without compromising accu-
racy. By compressing up to 8 results for each processed packet into a single byte
using bit-shifting and boolean algebra, memory utilisation and transfer overhead
may be reduced by up to a factor of eight. While this introduces overhead when
both loading and storing values, the added space efficiency allows more packets to

4.9. SUMMARY 114

be processed per batch, and significantly reduces the amount of data that has to be
transferred from the device.

Program compression operates on a similar premise to that of results compres-
sion, but is slightly more complex to employ. Note that while all program instruc-
tions for all kernels are stored as 32-bit integers, allowing for target values up to
32-bits in length, many instructions can be adequately described using far fewer
bits. Program compression is intended to capitalise on this, and reduce multiple
instructions into a single 32-bit word where possible. Not all instructions can be
compressed of course, and so implementing this compression will require an ad-
justed program syntax and specialised classification kernels.

Compression of this kind is likely to cause measurable kernel slowdown, and thus
should be limited to cases where filter program size and complexity is significant
enough to warrant its use.

4.9 Summary

This chapter described the design and implementation of GPF in some detail, be-
ginning with an outline of the basic classification process and an overview of the
system architecture in Section 4.1, and followed by details regarding specific com-
ponents in subsequent sections.

The common architectural components of the CUDA classification kernels were
presented in Section 4.2. This section covered, among other topics, the coalescing
memory pattern used to store results, the method used by kernels to execute filter
instructions, and details on an efficient concurrent execution configuration which
may be employed to improve overall efficiency. Sections 4.3 and 4.4 then detailed
the architecture of the rule evaluation and filter evaluation kernels respectively, in-
cluding their respective instruction grammars and the strategies used to minimise
memory overhead, divergence and redundancy.

Having considered how packets are actually classified by GPF, Section 4.5 intro-
duced the high-level DSL used to specify filter sets, and how this language is com-
piled and emitted as kernel specific instructions for rule and filter evaluation. Fol-
lowing this, the architecture of the packet buffer was described in Section 4.6, in
addition to considerations regarding how to transfer packet data from long term

4.9. SUMMARY 115

storage into the buffer efficiently. Finally, extensions to facilitate domain specific
functions, as well as future improvements to the flexibility, efficiency and ease of
use of GPF, were discussed in Sections 4.7 and 4.8 respectively.

In Chapter 5, a prototype implementation of this design is tested, with a primary
focus on the accuracy and performance of the the GPU classification mechanism.

5
Evaluation and Testing

THIS chapter details the testing performed on the GPF prototype. In general,
the testing focuses on overall performance and flexibility, as well as verify-
ing that the results generated are an accurate reflection of the packet sets

being classified.

Section 5.1 provides an overview of the testing procedure. In particular, it de-
tails the primary differences between the deign and prototype implementation, de-
scribes the test system and testing parameters, and lists the packet captures used
as well as the filter programs measured.

Section 5.2 describes how filter compilation and classification were verified as pro-
ducing accurate, meaningful output.

Section 5.3 considers the validity of timing results, by finding the mean and stan-
dard deviation of results for a particular packet set and filter program over 100
iterations.

Section 5.4 demonstrates how classification time for a particular filter program is
affected when the packet capture being processed is varied.

116

5.1. TESTING CONFIGURATION 117

Section 5.5 concludes testing by measuring how performance scales between filter
programs of varying complexity.

Section 5.6 contextualises the performance measurements collected by comparing
them to the performance of both WinPcap and Libtrace.

The chapter concludes with a summary in Section 5.7.

5.1 Testing Configuration

Testing was performed on a functional prototype of the design presented in Chap-
ter 4. It includes the core rule and filter evaluation kernels, encapsulated within a
64-bit C++ DLL, as well as a C# .NET management program, incorporating func-
tional yet limited implementations of the packet buffer and compiler components.
In most instances, functionality was deliberately deactivated in order to simplify
performance testing. A brief list of the most significant limitations and differences
is provided below:

• The classification kernels only process a single batch of packets, but return
per packet rule and subfilter results in addition to filter results, to aid in
results verification. Processing multiple batches is essentially superfluous,
as the same operations are performed, in an identical way, on each batch.
Thus, processing multiple batches does not impact the GPU side functions,
and therefore falls outside of testing scope.

• For simplicity, packet collection from long term storage is facilitated by Win-
Pcap, which dramatically inflates buffering time (see Section 4.6.4). Further-
more, because WinPcap copies the entire packet into its internal buffer au-
tomatically, the transfer minimisation techniques introduced in Section 4.6.3
cannot be employed when copying packets from long term storage. This is
acceptable, as these limitations have no direct impact on the performance of
the classification kernels.

• The packet buffer is executed by the host thread, and as such does not run
concurrently with the classification process. This ensures that concurrent
threads do not compete for system resources, and inadvertently skew results.

5.1. TESTING CONFIGURATION 118

• All kernels execute from within the same stream, and as such do not leverage
concurrent execution and transfer. This allows for each kernel to be discretely
timed, without the potential for interference or delay by other executing ker-
nels, or the data transfer process.

• Short-circuit evaluation logic has been disabled during predicate evaluation,
as its effectiveness is heavily dependent on packet arrival order, which may
potentially skew results. For instance, if very few packets in a particular
capture match a short-circuited filter, then the timing results may indicate
a much shorter execution time than would typically be expected. Further-
more, it is difficult to determine how the extra decisional overhead required
by short-circuit evaluation impacts overall performance in the general and
worst cases. By deactivating short-circuit evaluation, the performance re-
sults provide a better indication of baseline performance, which may be used
at a later stage to evaluate the comparative effectiveness of the short-circuit
mechanism.

• The parser does not yet accept IP addresses or hexadecimal numbers as target
values, and relies solely on integers as input.

Despite these adjustments and limitations, the prototype implementation remains
relatively complete, and is capable of reading in packet dump files, generating filter
code and classifying packets at high speed.

5.1.1 Test System

Testing was performed on an Intel Core2 Quad Q9550 2.83GHz Windows 7 x64
desktop PC, with 8 GB of DDR3 1600 RAM and several terabytes of 7200rpm SATA
II storage, using four separate CUDA capable graphics cards. The cards used
in testing were: an MSI N9600GT T2D512 OC (9600 GT), a Gainward GTX275
896MB (GTX 275), an MSI N465 GTX Twin Frozr II (GTX 465), and an MSI
N480 GTX (GTX 480). All cards used unmodified 263.06 Geforce drivers, acquired
through the NVIDIA website. A comparative overview of the technical specifica-
tions of these cards is given in Table 5.1.

5.1. TESTING CONFIGURATION 119

9600 GT GTX 275 GTX 465 GTX 480
Full Name MSI Gainward MSI MSI

Model N9600GT GTX275 N465GTX N480GTX
Version T2D512 OC GS 896MB Twin Frozr II M2D15

Compute Capability 1.1 1.3 2.0 2.0
CUDA Cores 64 240 352 480

Device Memory (MB) 512 896 1024 1536
Memory Type GDDR3 GDDR3 GDDR5 GDDR5

Core Clock (MHz) 650 633 607 700
Memory Bandwidth (GBps) 54.9 121.1 97.8 169.2

Table 5.1: Technical comparison of test graphics card specifications.

5.1.2 Recording Execution Times

To measure the performance of the various components of the GPF prototype, each
of the classifiers classification and supporting functions were timed independently.
Components of the system implemented on the host, such as the packet buffer
and compiler, were timed using a .NET timer object, which has a resolution of 1
millisecond. In contrast, CUDA kernels and transfers were timed using CUDA
events, which have a resolution of roughly 0.5 microseconds [62, 63].

Timing results collected from the executing host thread include:

• Code Emission — The time taken to parse GPF code into data-structures, and
compile and emit kernel code from these data-structures.

• Initialisation — The time taken to initialise the classifier and its associated
CUDA context, and allocate memory.

• Buffering — The time taken to collect and buffer packets on the host using
WinPcap.

The higher resolution device-side execution times reported include:

• Transfer — The time taken to transfer packet data to the GPU device.

• Rule kernel — The time taken to execute the Rule kernel.

• Subfilter kernel — The time taken to execute the Subfilter kernel.

• Filter kernel — The time taken to execute the Filter kernel.

• Collection — The time taken to collect the filter results from the GPU device.

5.1. TESTING CONFIGURATION 120

Packet Set A B C
Total Packets 183,617 2,445,815 26,334,066

Used In Testing All All 10,000,000
Average Packet Size 1036 bytes 69 bytes 70 bytes

File Size 184 MB 199 MB 2,157 MB
Duration 20 minutes 1 month 11 months

Table 5.2: Packet sets used in testing.

5.1.3 Packet Sets

Testing was performed using three packet sets, referred to for simplicity as A, B
and C, the details of which are summarised in Table 5.2.

• Packet set A was captured from a live network interface, and contains both
IPv4 and IPv6 packets. This packet set is the most representative of a live
packet stream, and is the only packet set tested which includes IPv6 packets.

• Packet set B contains packets collected from a network telescope over the
month of August, 2009. This packet capture does not include much payload
data, and thus consumes comparable disk space to packet set A, despite con-
taining over ten times as many packets. Despite their similarity in size, cap-
ture B takes significantly longer to process than A.

• Packet set C contains packets collected from a network telescope between the
1st of October 2009 and the 31st of August 2010. Due to its size, it was not
possible to load all 26 million packets onto any of the GPU devices tested.
Thus, the batch size for this set has been limited to 10 million packets, a
number small enough to be able to fit onto all three devices for all but one
test.

5.1.4 Filter Programs

The GPF prototype has been tested using six different filter programs of varying
complexity. The specifications for these programs are contained in Appendix A.
For the purposes of testing, filters are categorised as being either simple filters or
compound filters. A simple filter is a filter which only references a single rule, and
thus does not contain any predicate logic in emitted filter code. A compound filter

5.1. TESTING CONFIGURATION 121

is any filter which is not a simple filter. In reality, simple filters are not particularly
useful and would rarely be employed except in the most trivial of cases, but they
are nonetheless useful when benchmarking performance.

The filter programs used to test the prototype classification kernels are described
briefly below.

• IP Protocols (IPP) — This filter program is used exclusively in Sections 5.3
and 5.4, and classifies packets against two subfilters and five filters. The
subfilters test the type field in the Ethernet frame header, to identify any
IPv4 or IPv6 packets. Subsequently, this program identify all TCP packets
(IPv4 or IPv6), UDP packets (IPv4 or IPv6), ICMP packets (IPv4), ICMPv6
packets (IPv6), and ARP packets.

• Single Simple Filter (SSF) — The SSF program classifies all packets against
a single simple filter, comprising only a single rule, which tests if an Ether-
net packet uses the IP protocol. This filter set is used to measure best case
performance of classification.

• Multiple Simple Filters (MSF) — Expanding on SSF, the MSF program com-
prises four filters, each containing a single rule that targets a unique field.
These fields are: the Ethernet header type field, the IP header version and
protocol fields, and the TCP header source port field. This filter program
would not be particularly useful in a real world scenario, as testing for the
TCP source port of a packet which is not guaranteed to be a TCP packet — or
testing for the IP version of a packet which is not an IP packet — may result
in false positives.

• Single Compound Filter (SCF) — The SCF program specifies a single multi-
rule filter, which tests for TCP/IPv4 packets with a source or destination port
greater than or equal to 4000. This filter predicate is the first listed to employ
an anonymous subfilter.

• Multiple Compound Filters (MCF) — The MCF program defines three sub-
filters and four filters, which collectively find all TCP/IPv4 packets with: a
source port less than 150 or greater than or equal to 5000, a destination port
less than 150 or greater than or equal to 5000, both source and destination
ports less than 150 or greater than or equal to 5000, and both source and
destination ports greater than or equal to 150 and less than 5000. It employs
both named and anonymous subfilters, as well as all logical operators.

5.2. VERIFICATION 122

• Large Simple Filter (LSF) — the LSF program defines 60 simple filters, of
which half target 8-bit fields and half target 16-bit fields. Each filter contains
a unique field, eliminating the possibility of rule reuse, although the 8 and 16
bit filters operate on the same packet data (the 8 bit filters together target the
first 30 bytes of each packet, while the 16 bit filters target the first 31 bytes).
This filter set represents a relative worst case, as it is much larger than any
other filter set, and provides little opportunity for optimisation.

5.2 Verification

Verification was performed concurrently with performance evaluation, facilitated
by the network protocol analysis application WireShark (version 1.4.3). Test re-
sults were verified through inspection of both the kernel instruction inputs, and
the per packet boolean results produced by the Rule, Subfilter and Filter kernels.
This section details how this inspection was performed, and motivates why this
method of verification is sufficient for the purposes of this testing.

5.2.1 Code Emission

Verification of the code emitter involves comparing the high-level GPF code to emit-
ted kernel code, in order to ensure equivalence. This procedure may be broken
down into three steps:

1. The rule programs were inspected to ensure that all rules were defined,
grouped and sorted correctly, and that each rule contained a single unique
field value followed by one or more operator/targets pairs. Once verified, the
corresponding indexes of each rule in the rule output array were determined,
to aid in predicate verification. As rule indexes correspond to the position of
the rule in the kernel program (i.e. the result of the nth rule is stored in index
position n− 1), this was a relatively straight forward process.

2. The subfilter programs (if defined) were inspected to ensure that all subfilters
had been detected and included, that all subfilter predicates were encoded
correctly, and that the indexes contained in the subfilter predicates map to

5.2. VERIFICATION 123

the correct rule result indexes calculated in the previous step. Once com-
plete, the corresponding rule results index associated with each subfilter was
calculated, using the same method as in the previous step.

3. Finally, the filter programs were inspected for correctness, and their con-
tained predicates checked to ensure they reference the correct rule and sub-
filter indexes calculated in steps 1 and 2.

5.2.2 Classifier Outputs

In addition to the per packet results output at the culmination of classification,
the GPF prototype returns both rule and subfilter results, so that they may be
inspected as well. These results are written to a text file, grouped by kernel, and
then by each individual rule, subfilter or filter.

For instance, consider a rule program comprising r distinct comparisons, to be ap-
plied to a batch of p packets. The output produced by the Rule kernel is a boolean
array, containing r sets of p contiguous results. The results for the first, second
and last rules are stored in indexes 0 : (p − 1), p : (2p − 1), and (r − 1)p : (rp − 1)

respectively. Filter and subfilter results are stored similarly, although as subfilter
results are stored after rule results in the same boolean array, the first index of
the first subfilter must be adjusted to point to the end of the rule results, rp, rather
than 0. Thus, the first set of p subfilter results are stored in the rule index locations
rp : (rp+ 2p− 1). These sets of p results are summed on the host, to determine the
number of packets in the batch which match each specific rule, subfilter and filter.

Outputs are verified in two stages:

1. For each rule, subfilter and filter, the total number of matching packets is
calculated on the host and compared to the number of packets returned by
WireShark for the same comparison. This provides a strong initial indication
of results accuracy.

2. Next, results are inspected to ensure that they are stored at the correct in-
dexes. To do this, the pattern of ones and zeros generated by each rule, subfil-
ter and filter are compared to the filtered packet list in WireShark, to ensure
that they match. As it would be extremely time consuming to check every

5.2. VERIFICATION 124

packet in each set against every rule, subfilter and filter evaluated, only the
first 1024 packets — and a random selection of result groups at later indexes
in the packet set — were inspected in each test. Inspection was explicitly per-
formed on one iteration of each test case, while subsequent iterations were
checked by comparing the resultant classification counts to those generated
by the first iteration.

With regard to the first stage of verification, note that some naive filters produce
slightly different results to WireShark for certain packet sets. As an example,
consider the TCP protocol. In IPv4, the 8-bit TCP protocol flag is located at bit
index 184, while in IPv6 this flag is located at bit index 160. In WireShark, the
expression ip.proto == 6 returns all the TCP packets from both IPv4 and IPv6.
In most of the filters tested, however, rules relating to TCP reference the bit index
184, which not only means all IPv6 TCP classifications are missed (false negatives),
but also that some non-TCP packets may mistakenly be accepted due to correlating
values at bit index 184 in the IPv6 packet. Thus, this rule is only meaningful when
combined with other rules, which differentiate between IPv4 and IPv6 packets, in
a single filter. The IP Protocols filter program provides a good example of this (see
Appendix A.1). In such instances, when a particular result differs from WireShark,
verification was primarily supported by inspection of rule results and actual packet
data.

5.2.3 Validity of Verification Results

This form of verification is justified by a simple statistical observation, which shall
be discussed briefly. Consider a set of p packets, which is to be compared against
a single filter comprising a single rule. Suppose that, when classified by GPF, the
number of packets in p which match the filter is identical to the number produced
by a verified system such as WireShark. In this instance, if p is even remotely
large, the probability that GPF will classify the correct number of packets, while
simultaneously classifying packets incorrectly is extremely low. This probability
shrinks further when several different, somewhat complex filter sets are processed
against multiple packet traces with the same outcome. When multiple subsets of
per-packet results are individually verified, the probability that some classifica-
tions are wrong becomes effectively negligible.

5.3. TIMING RESULTS VALIDATION 125

Put differently, for the classifier to pass these verification mechanisms and simulta-
neously produce inaccurate classifications, it would have to classify the inspected
packet results correctly, while producing the same number of false positives and
false negatives in unobserved result indexes, over multiple filter programs and
packet sets. The probability of this occurring is minimal, making this simple veri-
fication mechanism highly effective.

5.3 Timing Results Validation

Performance testing was validated by providing a measure of results variance for
the IP Protocols (IPP) program (see Section 5.1.4) over packet capture C (see Sec-
tion 5.1.3). The number of packets processed was varied between one thousand,
one million, and ten million packets, in order to evaluate variance under low, mod-
erate and high load conditions. These three tests were repeated on each of the four
GPU devices. Tests were executed in batches of 20 at a time, after which the sys-
tem was rebooted and the process repeated, so as to allow for comparison between
uncached (cold) and cached (warm) classifications.

The IPP program classifies TCP, UDP and ICMP packets encapsulated in both IPv4
and IPv6, as well as ARP packets, by evaluating three field values: the Ethernet
protocol’s type field, and the protocol field for both IPv4 and IPv6 packets. Note
that the subfilter declarations used here are not optimal for the current prototype
system, and introduce a measure of redundancy. As both subfilters are simple fil-
ters, containing only a single comparison, the classifier is forced to load the results
of these rules into the Subfilter kernel and then restore them unchanged at an-
other index in rule result memory. This could easily be avoided by updating the
code emitter to search for and eliminate such simple subfilters, and replacing their
references in other filters with the rule results index they contained. This will be
addressed in the next development iteration.

The remainder of this section presents the arithmetic mean and standard deviation
of these results, concluding with a break down of the comparative performance
between GPUs.

5.3. TIMING RESULTS VALIDATION 126

5.3.1 Mean Execution Time

The arithmetic mean of execution times for 103, 106 and 107 packets are shown in
line graph form in Figure 5.1.

With respect to classification kernel times, the relative performance differences
between devices remains consistent across Figures 5.1b and 5.1c. This relationship
is not easily identified in Figure 5.1a, although a small performance boost is visible
between compute capability 1.3 and 2.0 device architectures. The remainder of
the components, with the exception of the WinPcap buffer, showed no significant
performance differences across platforms, which is expected.

These results demonstrate that, for large packet sets and similar filter programs,
the classification kernels can perform between one and two orders of magnitude
faster than the packet buffer, depending on the device they are executed on. Thus,
with a more efficient capture loading function, this method of classification appears
viable.

5.3.2 Standard Deviation

The standard deviation (σ) of the timing results provides a measure of the degree to
which results varied from the mean value across all 100 iterations. The standard
deviation for each of these tests in provided as both an absolute value in Figure
5.2, and as a percentage of the mean value in Figure 5.3.

The standard deviations of the timing results collected show that while host side
functions were prone to variance, the same was not true for kernel functions. For
instance, whilst the percentage standard deviation of kernel functions was near
100% in Figure 5.3a, the absolute values in Figure 5.2a show that this is due to
the mean value being extremely low (less than 0.05 ms), which ensures that even
extremely short time intervals register as significant. As the packet sets grow in
size, however, the absolute standard deviation remains small whilst the packet
count, and thus the mean execution time, increases exponentially. This results in
the standard deviation to mean ratio dropping to around 0.1%.

While the mean execution time is exponentially higher in the larger packet sets, it
does not reach a particularly high value, thereby inflating the significance of small

127

(a) 103 Packets

(b) 106 Packets

(c) 107 Packets

Figure 5.1: Mean completion time of the IP Filter program.

128

(a) 103 Packets

(b) 106 Packets

(c) 107 Packets

Figure 5.2: Absolute σ of performance validation tests, in milliseconds.

129

(a) 103 Packets

(b) 106 Packets

(c) 107 Packets

Figure 5.3: Relative σ of performance validation tests, as a percentage of the mean.

130

(a) 9600 GT

(b) GTX 275

(c) GTX 465

(d) GTX 480

Figure 5.4: Host component timing results for 107 packets over 100 iterations.

131

(a) 9600 GT

(b) GTX 275

(c) GTX 465

(d) GTX 480

Figure 5.5: CUDA component timing results for 107 packets over 100 iterations.

5.3. TIMING RESULTS VALIDATION 132

errors in comparison to host functions. Figures 5.4 and 5.5 plot the timing results
for 107 packets, for host and device related functions respectively. These plots pro-
vide several important observations. Firstly, the classification kernels returned
relatively uniform timings across all four devices, even during periods where host
side performance was severely impoverished. This, along with the low standard
deviations collected, show that performance of the classification kernels does not
differ significantly between iterations.

In contrast, transfer and collection processes were severely affected by periods of
poor performance on the host (indicated by arrows 1 and 2 in the figures). Arrow
1 points out artifacts that appear in the first iteration after a fresh reboot, which
may be the result of packet files being uncached, or due to other start-up processes
competing for resources. While these artifacts are relatively common in the host
side timings presented in Figure 5.4, CUDA related timings shown in Figure 5.5
seem largely unaffected (although a slight degradation of transfer performance is
visible in Figure 5.5d). Arrow 2 points out regions of sustained poor performance,
which occurred over two of the twenty reboot cycles. This slow down was likely
caused by one or more background processes on the operating system, and seems
to have reduced effective memory bandwidth, as only the packet buffer and the
transfer processes seem to be affected.

The standard deviation results indicate that the classification kernels perform con-
sistently over many iterations and system reboots, while host-side execution and
transfers between the host and the GPU device are sometimes slowed by both ex-
ecuting background services and uncached disk access. The level of consistency
between kernel execution times is useful, as it indicates that even a single timing
result provides a good approximation of average processing time for that filter.

5.3.3 Performance Breakdown

Figure 5.6 contains a set of bar graphs, showing the proportion of time spent per-
forming particular operations when classifying 107 packets on each GPU. These
illustrate that buffering accounted for the majority of processing time, despite rep-
resenting the collective time for only a single function. For instance, on the GTX
480, the amount of time taken to buffer packets was roughly 85 times longer than
the combined processing time for all three classification kernels. While buffering
throughput may be improved significantly by implementing an optimised packet

5.4. PACKET THROUGHPUT 133

reader, this reader cannot exceed the bandwidth of the storage medium being
utilised, and thus will likely not be able to reduce collection times enough to fully
eliminate this bottleneck.

Compilation and initialisation components only execute once per classification,
while buffering, transfer and collection, and kernel classification may be cycled
continuously until all packets have been processed. Since packet buffering, PCIE
transfer and classification may all occur concurrently, the throughput of the clas-
sification process is effectively bounded by the speed of the slowest component.
This implies that the GPF classification kernels are capable of classifying packets
against this filter program faster than they can be collected from storage. This is
unlikely to change, even if a specialised packet parser is employed.

5.4 Packet Throughput

In order to determine the throughput of the classifier with respect to packet count,
the IPP program was used to classify packet batch sizes ranging, in increments of
1,000 packets, from 1,000 to either: 183,000 (packet set A), 2,445,000 (packet set
B) and 10,000,000 (packet set C). As these tests were extremely time consuming,
throughput was only measured on the GTX 275 and GTX 480.

While validation testing was performed over multiple fresh system reboots and
minimal background activity, throughput testing was performed in a typical live
environment, with a range of active competing processes. In addition, some of these
processes — such as the Internet Explorer 9 browser and Media Player Classic:
Home Cinema — offload processing to the GPU to improve performance, and thus
were in direct competition with the GPF classification kernels. These results thus
provide a good indication of real-world performance on typical desktops, and help
illustrate how external load affects processing time.

Figure 5.7 shows two scatter plots of classification time against packet count for
all three packet sets, performed on the GTX 275 and GTX 480 respectively. In this
case, classification time has been calculated as the sum of the rule, subfilter and
Filter kernels execution time, and does not include host side components, transfer,
or collection.

134

Figure 5.6: Percentage of processing time spent performing component functions.

• Compilat ion & Init iali sa t ion • Bufferi ng • Class ificat ion Kern els • Transfer & Co llec t ion

9600GT

0.30%

GTX 275

0.3 1%

GTX465

GTX480

0.33%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

135

(a) GTX 275

(b) GTX 480

Figure 5.7: Execution time against packet count for all three packet sets.

5.4. PACKET THROUGHPUT 136

These scatter plots demonstrate a linear relationship between the number of pack-
ets being processed and the time taken to perform classification, seemingly inde-
pendent of the underlying packet set. This is expected, as all packets are cropped
to the same size before transfer to the device, and are all subsequently evaluated
against the same classification instructions.

An anomaly, indicated by arrow 1 in Figure 5.7a, however, appears to challenge
this conclusion, due to a very noticeable increase in classification time near the
5,000,000 packet mark. At this point during testing, the GTX 275 being used tem-
porarily stopped functioning, and had to be replaced with an equivalent card. The
actual performance of the new card (an MSI N275GTX TwinFrozr) differed slightly
from that of the original Gainward card, resulting in this artifact. As throughput
testing was performed after all other tests, this hardware failure did not affect any
other results. This anomaly is interesting, as it demonstrates that performance
may differ between different physical cards of otherwise equivalent architecture.

Another interesting anomaly is the apparent variance of results — particularly for
larger packet counts, and most notably in Figure 5.7b — which were not evident
during performance validation testing. As the GTX 480 was acting as the primary
display card, and was thus under external load during testing, its variance was
slightly greater than that of the GTX 275. For instance, the slight slowdown no-
ticeable between packet counts 6,000,000 and 7,000,000 on the GTX 480 graph,
indicated by arrow 2, occurred while simultaneously performing GPU accelerated
HD video rendering in Media Player Classic - Home Cinema. This indicates that
while performance is certainly affected by external GPU load to some degree, over-
all throughput is not significantly impaired. This is beneficial, as it implies the
classifier can execute efficiently as a background process, without negatively af-
fecting the usability of the host, or the experience of the system’s user.

5.4.1 Linear Regression

Given evidence of a strong linear correlation between packet set size and process-
ing time in the collected results, simple least squares regression has been used to
derive a function td(x) = mx+ c, which is used to predict, for a given filter program,
the time to classify a packet set td(x) on device d using only the packet count x,
within some predetermined confidence level.

5.4. PACKET THROUGHPUT 137

Regression lines for both the validation and throughput results were calculated
and analysed using the Microsoft Excel function LINEST(), which uses the least
squares regression method [2]. The standard errors for both m and c were also cal-
culated, as well as the R2 and F statistics for each regression, for use in assessing
how well the regression lines fit the input data, and the likelihood that this fit is
statistically significant and not coincidental. A brief description of the statistics
gathered is provided below:

• The R2 statistic, or coefficient of determination, was used to measure how
accurately the regression models predict future outcomes [27, 70]. An R2

value of 1 indicates that the model perfectly fits the data set, while an R2

value of 0 indicates that the model does not fit the data at all. The R2 statistic
was produced by the LINEST() function.

• The F statistic was used to determine the probability that the correlation im-
plied by the R2 statistic above occurred by chance exc [2], Freund and Wilson
[27], Remington and Schork [70]. The FDIST() Excel function was used to
find this probability, using the F statistic and degrees of freedom output by
the LINEST() function [2]. The resultant F probability is a value between 0
and 1, where 1 indicates that correlation implied by by the coefficient of de-
termination is entirely coincidental, while an F probability of 0 indicates that
it is not coincidental at all.

• The t-Statistic was used to verify that the slope coefficient m is useful in esti-
mating future classification performance [1, 2]. This was calculated by divid-
ing the slope coefficientm by the estimated standard error form (both outputs
of the LINEST() function), and comparing the absolute value of the result to
the tcritical value generated using the TINV() function, using a confidence in-
terval of 99% (α = 0.01). If the absolute value of the result is greater than
tcritical, then according to the t-test, the coefficient m is statistically significant
in predicting td(x) [1, 2].

Each regression was performed using the performance results collected from all
three packet sets. Thus, each of the four regressions performed on validation times
included 300 elements, while the two regressions performed on the throughput
times included 12,628 elements. The results of regression analysis are provided in
Table 5.3.

5.4. PACKET THROUGHPUT 138

R2 F Probability t-test m error c error
9600 GT 0.999991 0 Passed 2× 10−8 0.116349
GTX 275 0.999995 0 Passed 4× 10−9 0.024165
GTX 465 0.999998 0 Passed 1× 10−9 0.00849
GTX 480 0.999998 0 Passed 1× 10−9 0.004675

(a) Validation Regression

R2 F Probability t-test m error c error
GTX 275 0.99975 0 Passed 5× 10−9 0.025156
GTX 480 0.999675 0 Passed 4× 10−9 0.015148

(b) Throughput Regression

Table 5.3: Results of regression analysis

The high R2 statistics captured, in combination with the results of both the F -tests
and t-tests performed, indicate that given a specific filter program and packet set,
the time taken to process an arbitrary number of packets is a function of the packet
count, within a 99% confidence interval. Note, however, that the results in Figure
5.3a are slightly higher than those in Figure 5.3b, while the m error is lower. This
is likely a product of the increased results variance of the throughput tests, which
unlike the validation tests, had to compete with other running processes for system
resources.

5.4.2 Estimating Throughput

The calculated regression coefficients for the IPP program were used to predict the
classification packet throughput (packets/time), as well as the data rate (Gbps) for
captures with three different average packet sizes (70 bytes, 300 bytes and 1024
bytes). This information is provided in Table 5.4.

These results are extremely promising, showing significant improvement over both
WinPcap and Libtrace results (see Section 5.6), despite classifying a more complex
filter program and producing multiple results. These results, however, only reflect
the captured times for one specific filter set. In the following section, classification
performance is measured over a range of different filter sets, in order to evaluate
how classification performance scales with respect to filter complexity.

5.5. FILTER PROGRAM PERFORMANCE 139

Packets / sec Packets / hour Gbps
(millions) (billions) 70 B 300 B 1 KB

9600 GT 8.5 30.6 4 19 65
GTX 275 29.9 107.7 16 67 228
GTX 465 62.1 223.5 32 139 474
GTX 480 98.3 353.9 51 220 750

(a) Validation Results

Packets / sec Packets / hour Gbps
(millions) (billions) 70 B 300 B 1 KB

GTX 275 29 104.3 15 65 221
GTX 480 97.2 349.5 51 217 741

(b) Throughput Results

Table 5.4: Projected packets per hour and filtering rates for varying average packet
size.

5.5 Filter Program Performance

This section shows the performance for different filter programs of varying com-
plexity. Results are presented for five increasingly complex programs, descriptions
for which are included in Section 5.1.4.

5.5.1 Single Simple Filter (SSF)

The SSF program (see Section 5.1.4) is the most basic of all filter sets evaluated,
and simply tests each Ethernet protocol’s type flag to distinguish IP packets. It
does not require subfilter evaluation, and as such, subfilter timings have been
omitted from results. The timing results for all three packet sets are shown in
Figure 5.8, given in milliseconds using a logarithmic scale.

Results are fairly consistent across packet sets, showing roughly equivalent orders
of magnitude difference in processing throughput for classification functions be-
tween GPUs, for all packet set sizes. While device functions, code emission and
initialisation perform in a consistent manner across all sets, however, Figure 5.8b
shows a slowdown of over two orders of magnitude for the 9600 GT during the
buffering phase of execution. This anomaly is almost certainly due to disk I/O or
host side thread conflicts outside of the control of the program. With regard to
classification kernel performance, the results indicate that the Rule kernel takes

140

(a) Packet set A

(b) Packet set B

(c) Packet set C

Figure 5.8: Single Simple Filter (SSF) program performance.

5.5. FILTER PROGRAM PERFORMANCE 141

Packets / sec Packets / hour Gbps
(millions) (billions) 70 B 300 B 1 KB

9600 GT 37.3 134.2 19 83 284
GTX 275 121.6 437.6 63 272 927
GTX 465 264.1 950.9 138 590 2,015
GTX 480 438.7 1,579.5 229 981 3,347

Table 5.5: Predicted Single Simple Filter (SSF) throughput and resultant data rate
for varying packet size.

longer to complete than the filter program. This is expected, as the Rule kernel
must load packet data from texture memory, crop the data correctly to determine
the value of the field, and then compare this value to a target. In contrast, the Fil-
ter kernel only needs to transcribe a single rule value into the filter output array.

It was made evident in Sections 5.3 and 5.4 that the classification kernels perform
relatively consistently, with minimal variance between times over multiple test
iterations. As such, it is possible to derive a rough estimate of packet throughput
using the Sum of Least Squares regression method. This throughput may then be
used to predict the bit rate achievable for three packet sets with differing average
packet sizes. This information is presented in Table 5.5.

5.5.2 Multiple Simple Filters (MSF)

The MSF program extends the SSF program by adding three more simple filters
(see Section 5.1.4). As with the SSF program, no subfilter results are reported for
this filter set. Results for this filter program are given in Figure 5.9.

With regard to performance results in Figure 5.9a, a slight slowdown is noticeable
for the 9600 GT during collection. This inconsistency is likely the product of the
operating systems overhead, as the instruction to transfer between the host and
the device occurs after the CUDA timer is started. As such, if the transfer operation
is not serviced by the host thread immediately after the CUDA timer is started,
or the bandwidth of system memory is exhausted by another process, the timing
results collected can be artificially inflated. Estimates of packet throughput and
data rates for each GPU when evaluating the MSF program are provided in Table
5.6a.

142

(a) Packet set A

(b) Packet set B

(c) Packet set C

Figure 5.9: Multiple Simple Filter (MSF) program performance.

5.5. FILTER PROGRAM PERFORMANCE 143

Packets / sec Packets / hour Gbps
(millions) (billions) 70 B 300 B 1 KB

9600 GT 10.7 38.6 6 24 82
GTX 275 31.7 114.1 17 71 242
GTX 465 71.2 256.2 37 159 543
GTX 480 119.4 429.9 62 267 911
(a) Predicted throughput and resultant data rate for varying packet size.

9600 GT GTX 275 GTX 465 GTX 480
SSF Rule (ms) 170 57 30 17
MSF Rule (ms) 549 216 107 62
Rule Multiplier 3.5x 3.8x 3.7x 3.6x
SSF Filter (ms) 99 26 9 6
MSF Filter (ms) 348 100 34 22
Filter Multiplier 3.5x 3.9x 3.8x 3.8x

(b) Comparison against Single Simple Filter processing times over capture C.

Table 5.6: Multiple Single Filters (MSF) program performance measurements and
comparison.

Thus, the MSF result set looks similar to that of the SSF program, with comparable
host timings and overhead related anomalies, and a similar relationship apparent
between the tested GPUs regarding kernel processing times. There is, however, a
noticeable difference in classification performance between this program and the
SSF program. One might expect that, since the MSF program performs four times
as many comparisons as the SSF program, timings would be roughly four times
greater. A comparison of results shows, however, that both kernels in the MSF
program consistently took less than four times as long to complete (see Table 5.6b),
indicating that the classifier scales well. Furthermore, the speedup associated with
the Rule kernel was slightly greater than that of the Filter kernel. This is likely
due to the caching mechanism, as the first two rules specified fall within the same
32-bit cache block, which reduces the number of texture loads per packet during
rule evaluation to three.

5.5.3 Single Compound Filter (SCF)

The SCF program is the first filter set to combine multiple rules using predicate
logic, and the first to employ an anonymous subfilter (see Section 5.1.4). It finds all
TCP/IPv4 packets which have a TCP source or destination port greater than 4000.

5.5. FILTER PROGRAM PERFORMANCE 144

Packets / sec Packets / hour Gbps
(millions) (billions) 70 B 300 B 1 KB

9600 GT 10.3 37.2 5 23 79
GTX 275 28.6 102.8 15 64 218
GTX 465 61.5 221.2 32 137 469
GTX 480 104 374.2 54 232 793

Table 5.7: Predicted Single Compound Filter (SCF) throughput and resultant data
rate for varying packet size.

Results for the SCF program are provided in Figure 5.10.

Results again are comparable to those of previous filter sets, with a similar overall
shape and relatively consistent host code times. Note, however, that the difference
between transfer and collection performance is more pronounced in these results
than in any other filter set considered thus far. As the Filter kernel only outputs
a single byte for each packet, the proportion of upstream transfer to downstream
transfer is increased, thereby reducing the collection time in relation to transfer
time by a measurable degree.

Another slight difference is the relative time difference between the Rule kernel
and the Filter kernel. In previous tests, the Filter kernels performance was much
closer to that of the Rule kernel, whereas in these results they differ by close to
an order of magnitude. The explanation for this is two-fold. Firstly, the predicate
being evaluated is split over both the Filter kernel and the Subfilter kernel. Sec-
ondly, the Filter kernel only writes a single byte of output for each packet, while
the Rule kernel is forced to load and store multiple values.

Another interesting observation which is not as easily explained is the compari-
son between the Filter and Subfilter kernel results. The Subfilter kernel, in this
instance, loads two bytes from rule memory, performs a logical OR operation, and
writes a single byte back into rule memory, which it repeats for each packet. In con-
trast, the filter program loads four bytes from rule memory, logically ANDs them
together, and stores a single byte in results memory. The Filter kernel therefore
performs twice as many loads and three times as many logical operations as the
Subfilter kernel, despite taking only slightly longer. The reason for this is unknown
at present, and will be investigated in the future.

145

(a) Packet set A

(b) Packet set B

(c) Packet set C

Figure 5.10: Single Compound Filter (SCF) program performance.

5.5. FILTER PROGRAM PERFORMANCE 146

Packets / sec Packets / hour Gbps
(millions) (billions) 70 B 300 B 1 KB

9600 GT 5.5 19.9 3 12 42
GTX 275 16.1 58.1 8 36 123
GTX 465 29.2 105.2 15 65 223
GTX 480 40.3 145.2 21 90 308
(a) Predicted throughput and resultant data rate for varying packet size.

9600 GT GTX 275 GTX 465 GTX 480
SCF Rule (ms) 720 290 132 77
MCF Rule (ms) 747 287 135 78
Rule Multiplier 1x 1x 1x 1x

SCF Subfilter (ms) 118 29 14 9
MCF Subfilter (ms) 605 152 75 48
Subfilter Multiplier 5.1x 5.2x 5.4x 5.4x

SCF Filter (ms) 131 33 13 11
MCF Filter (ms) 365 101 39 25
Filter Multiplier 2.8x 3.1x 3x 2.3x

(b) Comparison against Single Compound Filter (SCF) processing times over cap-
ture C.

Table 5.8: Multiple Compound Filter (MCF) performance measurements and com-
parison.

5.5.4 Multiple Compound Filters (MCF)

The MCF program uses a range of subfilters to classify four interdependent filters,
each specifying a different TCP port configuration (see Section 5.1.4). The timing
results collected are provided in Figure 5.11.

The timings collected for capture C over both the SCF and MCF programs, when
compared, show that while the MCF program processes two more rules than the
SCF program, the Rule kernel timing results are almost equivalent between these
two programs on all devices. To explain this, note that while the MCF performs
two more rule evaluations, both of these extra evaluations target the same field as
another rule in the set. Thus, the Rule kernel is able to evaluate both of these extra
rules without needing to load or crop more data from device memory than the SCF
program. This verifies the effectiveness of the optimisations employed within the
Rule kernel to reduce total classification time.

The timing results for both subfilters and filters, while not as good as those of

147

(a) Packet set A

(b) Packet set B

(c) Packet set C

Figure 5.11: Multiple Compound Filters (MCF) program performance.

5.5. FILTER PROGRAM PERFORMANCE 148

the rule set, do show a proportional increase in time considering the number of
predicates being evaluated and the number of results that need to be written to
the device. For instance, the MCF Subfilter kernel takes just over five times longer
to complete, while it processes six times as many subfilters of equal or greater
complexity than the SCF Subfilter kernel. Similarly, the MCF Filter kernel takes
between two and three times longer to complete than the equivalent kernel in the
SCF program, but returns four times as many results. Thus, all kernels performed
better in the MCF set than on the SCF set when the comparative number of rules
and predicates to be evaluated are taken into account. This implies that as filter
sets grow in complexity, the time taken to process them scales by a factor less than
1.

5.5.5 Large Simple Filter Set (LSF)

The LSF program is a large filter set comprising 60 distinct filters, each containing
a single unique rule. The filter program is split into two overlapping filter sets of
30 filters each. The first 30 filters test successive 1 byte chunks of the packet, while
the second 30 filters test successive 2 byte chunks. In both sets, chunks are space
1 byte apart, such that two successive 2 byte chunks overlap in one byte. Each 1
and 2 byte field is compared to the value correlating to that field in the first packet
of capture A, and as such, when executed over capture A, all filters are expected
to return true for the first packet, but will typically return false for most other
packets.

While this program may not be particularly useful, it does represent a relative
worst-case scenario due to the significant memory access overhead needed to pro-
cess it. The Rule kernel must load a total of 31 bytes from device storage and
perform a total of 60 comparisons on this data for each packet, and then store each
of the 60 results in device memory. The Filter kernel must then load the results
and store them in the filter results array, requiring a further 60 loads and stores
per packet. As memory latency and bandwidth are the most significant bottlenecks
in the classification system, this filter program provides a measure of worst-case
performance.

Because of the higher memory requirements demanded by the large number of rule
and filter results for each packet, it was not possible to evaluate performance over
10 million packets, as none of the devices used in testing had sufficient memory

5.5. FILTER PROGRAM PERFORMANCE 149

(a) Packet set A

(b) Packet set B

Figure 5.12: Large Simple Filter program performance.

capacity to store all the classification results. Packet capture B could not be pro-
cessed on the 9600 GT for similar reasons. Results for traces A and B are given in
Figure 5.12, while the predicted performance based on a linear regression of these
results is provided in Table 5.9a.

The LSF program produces results consistent with the results from other itera-
tions, with kernel times significantly higher than most others due to the volume
of data being processed and produced (see Table 5.9b). When compared with the
SSF program — which contains one 60th the number of rules and filters — it is
evident that the LSF kernels evaluate individual rules and filter faster than the
SSF kernels. This is most notable in the LSF Rule kernel evaluation, which only
took between 30 to 40 times longer than the SSF Rule kernel. This performance in-

5.6. PERFORMANCE COMPARISON 150

Packets / sec Packets / hour Gbps
(millions) (billions) 70 B 300 B 1 KB

GTX 275 2.7 9.7 1 6 21
GTX 465 7 25.2 4 16 54
GTX 480 11.2 40.2 6 25 85
(a) Predicted throughput and resultant data rate for varying packet size.

GTX 275 GTX 465 GTX 480
Single Rule 14 7 4
Large Rule 528 227 141

Rule Multiplier 38x 31x 33x
Single Filter 6 2 1
Large Filter 375 121 77

Filter Multiplier 58x 53x 53x
(b) Comparison against Single Simple Filter (SSF) processing
time over capture B.

Table 5.9: Large Single Filter set performance measurements and comparison.

crease is again due to the kernels ability to reduce memory overhead by combining
the load operations for all rules into seven groups targeting 32 and 64-bit memory
segments. A slight improvement in performance is also evident in the Filter ker-
nel results, again demonstrating the higher per element performance achieved by
larger filter programs.

5.6 Performance Comparison

In this section, the prototype classification kernels performance results, collected
in the preceding sections, are compared to the observed performance of WinPcap
(see Section 4.6.4), and the quoted performance of Libtrace [11]. As WinPcap and
Libtrace interleave disk access with classification, however, it is difficult to mea-
sure their classification performance independently of disk I/O and other support
operations, which is necessary when making a direct comparison to the prototypes
classification performance. The comparisons presented in this section are thus in-
tended to illustrate potential, rather than provide a critical and accurate measure
of classification specific performance differences.

5.6. PERFORMANCE COMPARISON 151

Test Filter Capture
A B C

1 no filter 2.82 0.91 0.88
2 ip 2.92 0.90 0.86
3 ip and (tcp or udp) 3.07 0.90 0.85
4 ip and (udp or tcp) 3.13 0.88 0.84

(a) RAM disk data rate (Gbps)

Test Filter Capture
A B C

1 no filter 0.37 1.77 1.70
2 ip 0.38 1.73 1.65
3 ip and (tcp or udp) 0.40 1.74 1.63
4 ip and (udp or tcp) 0.41 1.70 1.62

(b) RAM disk packet throughput (millions of packets/s)

Table 5.10: Observed data rate and throughput for RAM disk

5.6.1 WinPcap

As noted in Section 4.6.4, WinPcap’s dump file processing performance is measured
more accurately when utilising a high bandwidth RAM disk. As such, the RAM
disk data rate and packet throughput results, derived from the results provided in
Figure 4.14, are summarised in Tables 5.10a and 5.10b respectively.

The performance results for packet sets B and C were comparable, showing roughly
0.8 to 0.9 Gbps data transfer rate and between 1.6 and 1.8 million packets per
second, comparable to the rates reported in the Gnort paper [83]. Packet set A,
however, shows a significantly higher data rate in conjunction with a far lower
packet throughput rate. The lower packet throughput makes sense; the average
packet size in capture A is much larger than in B or C, so it takes more time to
process each packet. The high data rate, which in some cases exceeds the SATA II
interface, requires a closer look at WinPcap’s packet filter.

WinPcap uses the Netgroup Packet Filter (NPF), a packet filter based on BPF+
architecture (see Section 2.6.5). According to the NPF Driver Internals Manual
[3], NPF is capable of determining not only which packets to accept and which
to discard, but also how many bytes of accepted packets need to be copied. Since
the timing of capture A did not require access to any packet data at all, it seems
plausible that the NPF driver simply avoided copying the unused data from each

5.6. PERFORMANCE COMPARISON 152

Average Case Best Case
Throughput (millions of packets/s) 5.6 6
Throughput (billions of packets/h) 20.2 21.6

Data rate (Gbps) 2.4 2.6

Table 5.11: Derived Libtrace throughput and data rate for a simple BPF filter

packet, thereby improving the observed data rate. This is merely a hypothesis,
however, and is not known with any certainty.

5.6.2 Libtrace

For simplicity, Libtrace performance measurements were derived from published
results [11]. As the prototype classifier was tested using uncompressed Pcap cap-
tures, the BPF filter timing results for the uncompressed Pcap dump file were
considered exclusively.

The uncompressed Pcap dump file contained just over 36.5 million packets, each
cropped to 96 bytes, with packet data consuming 1997 MB in total [4, 11]. This
indicates that the average packet size of the cropped capture was roughly 58 bytes.
According to the authors, the capture was accessed from a RAID 0 striped array,
consisting of six 7200 RPM HDDs, using an LSISAS1068E SAS controller [6, 11],
theoretically providing over 6 Gbps aggregate bandwidth. The capture was com-
pared to a BPF filter identifying all TCP/IP packets using port 80, which was re-
peated 11 times (the results from the first iteration were discarded). A rough esti-
mate of Libtrace performance based on this information is provided in Table 5.11.

The derived peak data rate consumed less than half the storage bandwidth avail-
able, indicating that the observed data rate was primarily limited by overall clas-
sification throughput, and not disk I/O. While further testing would be necessary
to provide an accurate measure of Libtrace performance, this result provides suffi-
cient indication of the ballpark performance of Libtrace.

5.6.3 Performance Comparison

A rough performance comparison between WinPcap, Libtrace, and the GPF proto-
type is provided in Figure 5.13. This comparison has been made to provide some

5.6. PERFORMANCE COMPARISON 153

context for the GPU classification performance results presented, and does not con-
stitute a thorough performance benchmark.

For simplicity, only select results have been included. These results include:

• WinPcap Test 3 results

• Libtrace Best Case results

• Single Simple Filter (SSF) results for the GTX 275 and GTX 480

• IP Protocols (IPP) results for GTX 275 and GTX 480

• Large Simple Filter (LSF) results for the GTX 275 and GTX 480

Figure 5.13 shows that, despite classifying packets against more complex filter pro-
grams and producing more results, the classification kernels provided between 5x
and 75x greater throughput, and up to 1300x the observed data rate, of the fastest
CPU solution (Libtrace) in the best case. The best case performance of the clas-
sification kernels reflect a trivial program however, and in the more comparable
case of the IPP program (which performs similarly to the SCF program), through-
put was 5x greater on the GTX 275 and 16x greater on the GTX 480, while data
rate varied between 6x and 90x on the GTX 275, and between 20x and 290x on the
GTX 480. Even the LSF program, comprising 60 separate filters, exceeded CPU
classification times in all but the worst case GTX 275 results.

The comparative performance of the prototype classifier, in combination with the
native benefits of GPU based applications, indicates that there is significant po-
tential for performance optimisation using these techniques. In particular, GPU
applications consume minimal CPU resources, and are relatively unaffected by ex-
ternal CPU load created by other executing CPU tasks and applications (see Sec-
tion 5.3.2). In addition, CUDA applications may be executed over multiple GPU
devices, allowing for up to n times greater performance when using n CUDA ca-
pable graphics cards [63]. It is also evident, from the results presented in this
chapter (summarised in Table 5.12), that the performance of GPU coprocessors is
continuously improving at a relatively rapid rate, and should continue to do so into
the near future.

When considered in combination with GPF’s scalable multi-match classification,
native parallelism and predictable performance, the results presented in this sec-
tion show great promise, indicating the GPU acceleration of packet classification

154

(a) Throughput comparison

(b) Data rate comparison

Figure 5.13: Comparison of estimated performance

5.7. SUMMARY 155

Filter Program 9600 GT GTX 275 GTX 465 GTX 480
IPP 0.3x 1x 2.1x 3.3x
SSF 0.3x 1x 2.2x 3.6x
MSF 0.3x 1x 2.2x 3.8x
SCF 0.4x 1x 2.2x 3.6x
MCF 0.3x 1x 1.8x 2.5x
LSF N/A 1x 2.6x 4.1x

Table 5.12: Comparative performance of different graphics cards for each filter
program vs. GTX 275 results.

is not only possible, but surprisingly efficient. While many rough edges remain,
and some additional functionality necessary in a complete classification system —
such as support for variable length headers (see Section 4.8.4) — remains to be
implemented, the underlying principle seems both sound and highly beneficial.

5.7 Summary

This chapter provided results for a range of tests performed on the prototype GPF
classification kernels, which together demonstrate that GPU based classification is
fast, scalable, flexible, accurate and consistent.

Section 5.1 introduced the prototype implementation and the testing methodology,
serving as the foundation for the remainder of the chapter.

Section 5.2 described the methodology used to verify the output of both GPF com-
piler and the packet classifier. This methodology was motivated by the statistical
improbability of the prototype classifying the correct number of packets, for vari-
ous filter programs and tens of millions of packets, while simultaneously classifying
those packets incorrectly.

Section 5.3 demonstrated that the classification kernels perform relatively consis-
tently, regardless of background activity, by comparing the timing results for 100
independent test iterations of a single filter program.

Section 5.4 showed that GPU classification time is a program specific linear func-
tion of packet count, which is seemingly independent of the packet data being pro-
cessed. In combination with the low performance variance observed in the previous

5.7. SUMMARY 156

section, this indicates that packet throughput can be predicted with relatively high
accuracy after classifying only a few thousand packets.

Section 5.5 considered how a variety of different filter programs affected observed
performance, and highlighted any noteworthy anomalies with reference to the un-
derlying classification architecture.

Section 5.6 provided a rough comparison of the prototype performance results to
WinPcap and Libtrace, showing up to two orders of magnitude improvement in
some cases. The section subsequently concluded that the potential benefits of GPU
packet classification are significant and worth pursuing.

6
Conclusion

THIS thesis detailed the design of GPF, a CUDA based protocol-independent
multi-match packet classifier intended to accelerate the analysis of large
packet sets, such as those collected by network telescopes. In order to de-

termine the feasibility and potential usefulness of this approach, the classification
performance of the proposed design was evaluated using an experimental proto-
type. The results of evaluation indicate that the packet classification mechanism
is capable of throughput rates far exceeding the rough estimates made for both
WinPcap and Libtrace, while simultaneously providing scalable multi-match clas-
sification functionality not available in CPU based alternatives.

The theoretical foundations for GPF’s design were divided between two sequential
chapters; the domain of packet classification in Chapter 2, and the fundamentals of
GPU processing in Chapter 3. Chapter 2 began by familiarising the reader with the
basic principles underpinning network transmissions and the packet filtering pro-
cess, and subsequently considered the hardware on which packet classifiers have
typically been implemented. The remainder of the chapter considered a selection
of IP-specific and protocol-independent classification algorithms, focusing on archi-
tectural mechanisms to improve classification throughput. In this regard, IP spe-

157

158

cific algorithms were more diverse in their approaches, while protocol-independent
algorithms provided for greater classification flexibility.

Chapter 3 began by introducing the reader to GPU co-processors, GPU program-
ming, and the CUDA API in particular. This was followed by an overview of rel-
evant performance characteristics relating to memory access, data transfer and
processing throughput, with specific focus on how overall performance may be max-
imised. The chapter concluded by considering why existing protocol-independent
packet classifiers (such as those introduced in Section 2.6) are not suited to a paral-
lel implementation using CUDA, from both a software and hardware perspective.

Having discussed the underlying principles and techniques of both packet classifi-
cation and GPU processing, Chapter 4 detailed the design of the proposed classifier,
beginning with an overview of the basic approach, and a holistic description of the
system architecture. Subsequent sections addressed specific functionality in isola-
tion, first focusing on the classification mechanism and its associated CUDA ker-
nels. This was followed by discussions relating to filter program compilation and
input grammar, packet buffering and collection, analytical and domain specific ex-
tensions, and future functionality intended to improve the flexibility, generality,
and overall performance.

Chapter 5 detailed the evaluation of an experimental system prototype, adapted
to better facilitate the measurement of classification performance. Evaluation was
performed on four separate NVIDIA Geforce graphics cards, including a 9600 GT,
GTX 275, GTX 465 and GTX 480. To begin, the approach employed to verify the ac-
curacy of the classification output was described, which was followed by the results
of three separate performance tests.

• The first test measured the mean and standard deviation of various GPF com-
ponents over 100 iterations of an average sized filter program, which demon-
strated that the packet classification kernels performed consistently and pre-
dictably, and were not noticeably affected by host side overhead.

• The second test measured how packet throughput was affected when the
packet capture being classified was varied. The results of this test showed
that total kernel classification time for a specific filter program is a function
of packet count, and is seemingly independent of actual packet data, which
indicates that classification kernels scale well with respect to packet count,

159

and perform consistently regardless of packet size. This ultimately means
that while the packet throughput remains consistent, the perceived data rate
increases linearly with respect to packet size, allowing the classification ker-
nels to filter at extremely high rates when the average packet size of a capture
is large.

• The third and final test measured the classification performance across sev-
eral filter programs of varying complexity, which ultimately showed that the
classification engine scaled well with respect to filter program complexity.

The chapter concluded by providing a rough comparison of throughput and data
rates for the prototype classification kernels, as well as WinPcap and Libtrace, and
showed that in the majority of cases, the GPU classifier outperformed both frame-
works by well over an order of magnitude. While the kernel classification times
did not account for disk I/O overhead and data throughput, because classification
can occur concurrently with the buffering process, it is possible to classify packets
faster than they can be read from storage. In addition, as only a small section
of packet data is loaded for each packet, the time taken to load packet data from
storage may effectively be minimised.

From these results, it is evident that performing protocol-independent packet clas-
sification on GPU co-processors is both viable and efficient, and provides several
other distinct benefits, beyond basic performance, over comparable CPU algorithms:

• Scalable multi-match functionality, allowing for multiple filters to be effi-
ciently classified at once, with minimal redundant computation and memory
access.

• Significantly lower CPU overhead, as all data intensive functions are per-
formed on the GPU.

• Highly parallelisable processing abstraction, allowing for classification to oc-
cur concurrently on multiple GPUs.

• Modular and extensible classification system, potentially allowing for addi-
tional specialised filtering kernels to replace or extend existing functionality.

Many implementation aspects still remain that must be addressed before the clas-
sifier may be considered a complete alternative solution. In particular, some nec-
essary functions relating to flexibility and performance have yet to be developed

6.1. FUTURE WORK 160

and integrated, and most analysis extensions remain largely hypothetical. As the
underlying classification mechanism has proven highly successful, however, these
aspects are worth developing and pursuing.

6.1 Future Work

This section lists some additional functionality under consideration that was not
addressed directly in the design chapter.

• Multi-GPU support — Using multiple GPU co-processors allows for signif-
icant improvements to overall classification throughput, either by sending
each packet batch to the next available GPU, by dividing CUDA execution
streams between devices. This should result in a linear classification perfor-
mance increase when a set of equivalent graphics cards are used, although
given the comparatively poor performance of disk I/O, this may only be useful
when filtering against either large complex programs or high-bandwidth live
traffic.

• Modular extensions through plug-ins — Currently, incorporating additional
kernels into the classification system requires recompilation of the program,
which inhibits the creation of arbitrary domain specific kernels. To better
support extensions and adjustments to the GPU classification engine, mecha-
nisms need to be developed to support both arbitrary modification and kernel
execution manipulation. This may potentially be achieved through plug-in
architecture and a kernel development API.

• Run-time API and protocol library — In order to allow arbitrary applications
to take advantage of GPF, a run-time API wrapper is needed, which should
be accompanied by a library of predefined protocols to improve ease of use. In
addition, a cross-compiler to translate pre-existing BPF filter programs into
equivalent GPF programs would be useful, although this will only be possible
at a later stage.

• GUI front-end to support analysis — GPF was designed with the ultimate
goal of accelerating packet analysis, and thus a GUI interface which pro-
vides different mechanisms for displaying and interacting with the results

6.2. OTHER APPLICATIONS 161

generated by the classifier (or arbitrary extensions) is highly desirable. Re-
cent cutting edge advances in visualisation and human-computer interaction,
such the use of stereoscopic technology for displaying complex 3D graphs and
temporal visualisations, or the application of gesture recognition to provide a
natural interface between the user and the system, are of particular interest.

• Distributed live traffic monitoring — As GPUs are commodity hardware, many
modern workstations include CUDA capable hardware. It is thus possible to
use the CUDA capable hosts on a particular network to act as distributed
packet sensors, that continually monitor, classify and analyse network traffic,
and pass these results back to a central monitoring station. This would be
extremely useful for identifying and diagnosing performance anomalies, de-
tecting malicious activity propagated by hosts behind the network firewall,
and supporting general research of live networks.

6.2 Other Applications

In this section, other applications that may benefit from GPU accelerated packet
classification are considered. These applications are purely hypothetical, and have
not yet proven their viability. On the surface, however, they seem to correlate well
with the functions and outputs of GPF, and are thus worth exploring briefly.

6.2.1 Network Security Applications

Firewalls employ header based packet filtering as a foundational component, in
order to provide a measure of security in modern networks, and thus may bene-
fit from the high throughput of GPF. Hardware firewalls typically employ an IP
5-tuple approach, and leverage expensive ASICs (Application Specific Integrated
Circuits) or FPGAs, in order to handle multi-gigabit network traffic without drop-
ping packets [35]. Slower software firewall solutions are also widely available, and
have become relatively ubiquitous, due, in part, to Windows Firewall being active
by default on modern Windows workstations. They are, however, typically not fast
enough to support multi-gigabit interfaces. Given the high packet throughput of
the GPF classification kernels, it should be possible to accelerate firewall filtering

6.2. OTHER APPLICATIONS 162

significantly. Performance may be improved further by using a specialised filter-
ing kernel optimised for the IP 5-tuple, thereby limiting unnecessary flexibility in
exchange for higher throughput.

Another network security related application that may benefit from GPU classi-
fication is that of NIDS. While Gnort already provides GPU acceleration for deep
packet inspection, it lacks suitable initial header filtering to allow for optimum
performance (see Section 3.7.2). By combining the fast packet header filtering pro-
vided by GPF with the string searching capabilities of Gnort, however, it should be
possible to improve packet throughput, allowing for an efficient host based NIDS,
comparable in speed to specialised hardware NIDS, and deployable on most mod-
ern desktop systems without the need for additional non-commodity hardware.

6.2.2 Rapid Training Data Generation for Neural Networks

Training data generation is an interesting application of the GPF classifier. In
the domain of artificial intelligence and machine learning, training data is used
extensively to improve the accuracy of and test neural networks. Training data is
typically provided to the neural network as an array of expected input/output pairs
[81], which are compared to the outputs of a neural network function executed over
a related array of inputs. As the GPF classifiers output essentially represents an
array of targets for the input of a particular packet set and filter program, these
results could hypothetically be used to train a neural network to detect security
threats and network anomalies. Given that the results for each individual rule and
subfilter may also be extracted, these may be applied to training as well, allowing
for a range of interesting network-related research possibilities.

Bibliography

[1] Ap statistics tutorial: Hypothesis test for slope of regression line. Online. Last
accessed: 06/07/2011.
URL http://stattrek.com/AP-Statistics-4/Test-Slope.aspx?Tutorial=AP

[2] Microsoft office help: Linest. Online. Last accessed: 06/07/2011.
URL http://office.microsoft.com/en-us/excel-help/linest-HP005209155.
aspx?CTT=1

[3] Npf driver internals manual. Online. Last accessed: 06/07/2011.
URL http://www.winpcap.org/docs/docs_412/html/group__NPF.html

[4] Traffic trace info. Online. Last accessed: 06/07/2011.
URL http://tracer.csl.sony.co.jp/mawi/samplepoint-F/2010/
201004261400.html

[5] Information technology - vocabulary - part 26: Open systems interconnection.
Online, December 1993.

[6] Lsisas1068e: 8-port pci express to 3gb/s sas controller product brief. Online,
February 2006. Last accessed: 07/07/2011.
URL http://md-storage-data.com/DistributionSystem/User/AssetMgr.
aspx?asset=49651

[7] Content-addressable memory v6.1 - product specification. Online, September
2008. Last accessed: 14/07/2011.
URL http://www.xilinx.com/support/documentation/ip_documentation/
cam_ds253.pdf

[8] Tcpdump manpage. Online, March 2009. Last accessed: 16/05/2011.
URL http://www.tcpdump.org/tcpdump_man.html

163

http://stattrek.com/AP-Statistics-4/Test-Slope.aspx?Tutorial=AP
http://office.microsoft.com/en-us/excel-help/linest-HP005209155.aspx?CTT=1
http://office.microsoft.com/en-us/excel-help/linest-HP005209155.aspx?CTT=1
http://www.winpcap.org/docs/docs_412/html/group__NPF.html
http://tracer.csl.sony.co.jp/mawi/samplepoint-F/2010/201004261400.html
http://tracer.csl.sony.co.jp/mawi/samplepoint-F/2010/201004261400.html
http://md-storage-data.com/DistributionSystem/User/AssetMgr.aspx?asset=49651
http://md-storage-data.com/DistributionSystem/User/AssetMgr.aspx?asset=49651
http://www.xilinx.com/support/documentation/ip_documentation/cam_ds253.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cam_ds253.pdf
http://www.tcpdump.org/tcpdump_man.html

BIBLIOGRAPHY 164

[9] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley, August 2006. ISBN
0321486811.

[10] Alcock, S. Passive network analysis using libtrace. Online, November 2008.
Last accessed: 06/07/2011.
URL http://www.wand.net.nz/~salcock/pdcat08/slides/libtrace.pdf

[11] Alcock, S., Lorier, P., and Nelson, R. Libtrace: A trace processing and
capture library. Online, May 2010. Last accessed: 24/06/2011.
URL http://www.wand.net.nz/~salcock/libtrace/lt_imc11.pdf

[12] AMD Staff. Opencl and the amd app sdk v2.4. Online, March 2011. Last
accessed: 11/07/2011.
URL http://developer.amd.com/documentation/articles/pages/
OpenCL-and-the-AMD-APP-SDK.aspx

[13] Baboescu, F., Singh, S., and Varghese, G. Packet classification for core
routers: Is there an alternative to cams? In IEEE Infocom. 2003.

[14] Baboescu, F. and Varghese, G. Scalable packet classification. SIGCOMM
Comput. Commun. Rev., 31(4):199–210, 2001. ISSN 0146-4833. doi:http://doi.
acm.org/10.1145/964723.383075.

[15] Back, T. and Hoffmeister, F. Adaptive search by evolutionary algorithms.
In Models of Selforganization in Complex Systems (MOSES), pages 156–163.
December 1990.
URL ftp://lumpi.informatik.uni-dortmund.de/pub/EA/papers/moses91.ps.
gz

[16] Bailey, M., Gopal, B., Peterson, L. L., and Sarkar, P. Pathfinder:
A pattern-based packet classifier. In Proceedings of the First Sym-
posium on Operating Systems Design and Implementation, OSDI ’94,
pages 115–123. Monterey, California, November 1994. doi:10.1.1.46.1294.
Http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.1294&rep=
rep1&type=pdf.

[17] Begel, A., McCanne, S., and Graham, S. L. Bpf+: Exploiting global
data-flow optimization in a generalized packet filter architecture. SIGCOMM
Comput. Commun. Rev., 29(4):123–134, 1999. ISSN 0146-4833. doi:http:
//doi.acm.org/10.1145/316194.316214.

http://www.wand.net.nz/~salcock/pdcat08/slides/libtrace.pdf
http://www.wand.net.nz/~salcock/libtrace/lt_imc11.pdf
http://developer.amd.com/documentation/articles/pages/OpenCL-and-the-AMD-APP-SDK.aspx
http://developer.amd.com/documentation/articles/pages/OpenCL-and-the-AMD-APP-SDK.aspx
ftp://lumpi.informatik.uni-dortmund.de/pub/EA/papers/moses91.ps.gz
ftp://lumpi.informatik.uni-dortmund.de/pub/EA/papers/moses91.ps.gz

BIBLIOGRAPHY 165

[18] Black, P. E. trie. Online, December 2008. Last accessed: 16/06/2009.
URL http://www.itl.nist.gov/div897/sqg/dads/HTML/trie.html

[19] Borgo, R. and Brodlie, K. State of the art report on gpu visualisation. On-
line, February 2009. Last accessed: 01/04/2011.
URL http://www.viznet.ac.uk/reports/gpu/1

[20] Bos, H., Bruijn, W. D., Cristea, M., Nguyen, T., and Portokalidis, G. Ffpf:
Fairly fast packet filters. In Proceedings of OSDI04, pages 347–363. 2004.

[21] Boyd, C. Directx11 directcompute: Capturing the teraflop. Online, 2009. Last
accessed: 11/07/2011.
URL http://ecn.channel9.msdn.com/o9/pdc09/ppt/CL03.pptx

[22] Braden, R. Requirements for internet hosts – communication layers. Online,
October 1989. Last accessed: 11/07/2011.
URL http://tools.ietf.org/html/rfc1122

[23] Buck, I. Brook spec v0.2. Online, October 2003. Last accessed: 01/04/2011.
URL http://merrimac.stanford.edu/brook/brookspec-v0.2.pdf

[24] Che, S., Li, J., Sheaffer, J. W., Skadron, K., and Lach, J. Accelerating
compute-intensive applications with gpus and fpgas. In Symposium on Appli-
cation Specific Processors (SASP), 2008, pages 101–107. Anaheim, CA, June
2008. doi:10.1.1.143.4732.

[25] Decasper, D., Dittia, Z., Parulkar, G., and Plattner, B. Router plugins: a
software architecture for next generation routers. In SIGCOMM ’98: Proceed-
ings of the ACM SIGCOMM ’98 conference on Applications, technologies, ar-
chitectures, and protocols for computer communication, pages 229–240. ACM,
New York, NY, USA, 1998. ISBN 1-58113-003-1. doi:http://doi.acm.org/10.
1145/285237.285285.

[26] Engler, D. R. and Kaashoek, M. F. Dpf: Fast, flexible message demultiplex-
ing using dynamic code generation. In SIGCOMM ’96: Conference proceedings
on Applications, technologies, architectures, and protocols for computer com-
munications, pages 53–59. ACM, New York, NY, USA, 1996. ISBN 0-89791-
790-1. doi:http://doi.acm.org/10.1145/248156.248162.

[27] Freund, R. J. and Wilson, W. J. Regression Analysis: Statistical Modeling
of a Response Variable. Academic Press, San Diego, CA, 1998.

http://www.itl.nist.gov/div897/sqg/dads/HTML/trie.html
http://www.viznet.ac.uk/reports/gpu/1
http://ecn.channel9.msdn.com/o9/pdc09/ppt/CL03.pptx
http://tools.ietf.org/html/rfc1122
http://merrimac.stanford.edu/brook/brookspec-v0.2.pdf

BIBLIOGRAPHY 166

[28] Glaskowsky, P. N. Nvidia’s fermi: The first complete gpu computing archi-
tecture. Online, September 2009. Last accessed: 23/05/2011.
URL http://www.nvidia.com/content/PDF/fermi_white_papers/P.
Glaskowsky_NVIDIA’s_Fermi-The_First_Complete_GPU_Architecture.pdf

[29] GPGPU.org. About gpgpu.org. Online. Last accessed: 31/03/2011.
URL http://gpgpu.org/about

[30] Gupta, P. and McKeown, N. Classifying packets with hierarchical in-
telligent cuttings. IEEE Micro, 20(1):34–41, 2000. ISSN 0272-1732. doi:
http://doi.ieeecomputersociety.org/10.1109/40.820051.

[31] Harding, S. and Banzhaf, W. Fast genetic programming on gpus. In
Proceedings of the 10th European Conference on Genetic Programming, vol-
ume 4445 of Lecture Notes in Computer Science, pages 90–101. Springer,
Valencia, Spain, 11-13 April 2007. ISBN 3-540-71602-5. doi:10.1007/
978-3-540-71605-1_9.

[32] Harris, M. Optimising parallel reduction in cuda. CUDA SDK.
URL http://developer.download.nvidia.com/compute/cuda/1_1/Website/
projects/reduction/doc/reduction.pdf

[33] Hauck, S. The roles of fpgas in reprogrammable systems. In Proceedings of
the IEEE, volume 86, pages 615–639. IEEE, April 1998.
URL http://www.ecs.umass.edu/ece/tessier/courses/697c/mFPGAhard.pdf

[34] Hewlett Packard Company. Parallel programming guide for hp-ux systems.
Online, March 2000. Last accessed: 24/03/2011.
URL http://g4u0420c.houston.hp.com/en/B6056-96006/B6056-96006.pdf

[35] Hogg, S. Security at 10gbps. Online, February 2009. Last accessed:
09/07/2011.
URL http://www.networkworld.com/community/node/39071

[36] Hyafil, L. and Rivest, R. Constructing optimal binary decision trees is np-
complete. Information Processing Letters, 5:15–17, 1976.

[37] Ioannidis, S. and Anagnostakis, K. G. Xpf: Packet filtering for low-cost net-
work monitoring. In Proceedings of the IEEE Workshop on High-Performance
Switching and Routing (HPSR, pages 121–126. 2002.

http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA's_Fermi-The_First_Complete_GPU_Architecture.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA's_Fermi-The_First_Complete_GPU_Architecture.pdf
http://gpgpu.org/about
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://www.ecs.umass.edu/ece/tessier/courses/697c/mFPGAhard.pdf
http://g4u0420c.houston.hp.com/en/B6056-96006/B6056-96006.pdf
http://www.networkworld.com/community/node/39071

BIBLIOGRAPHY 167

[38] Irwin, B. V. W. A Framework for the Application of Network Telescope Sensors
in a Global IP Network. Ph.D. thesis, Rhodes University, Grahamstown, South
Africa, January 2011.

[39] Jiang, W. and Prasanna, V. K. Field-split parallel architecture for high
performance multi-match packet classification using fpgas. In SPAA ’09: Pro-
ceedings of the twenty-first annual symposium on Parallelism in algorithms
and architectures, pages 188–196. ACM, New York, NY, USA, 2009. ISBN
978-1-60558-606-9. doi:http://doi.acm.org/10.1145/1583991.1584044.

[40] Jiang, W. and Prasanna, V. K. Large-scale wire-speed packet classifica-
tion on fpgas. In FPGA ’09: Proceeding of the ACM/SIGDA international
symposium on Field programmable gate arrays, pages 219–228. ACM, New
York, NY, USA, 2009. ISBN 978-1-60558-410-2. doi:http://doi.acm.org/10.
1145/1508128.1508162.

[41] Kanter, D. Nvidia’s gt200: Inside a parallel processor. Online, August 2008.
Last accessed: 19/05/2011.
URL http://www.realworldtech.com/page.cfm?ArticleID=
RWT090808195242&p=1

[42] Khronos Group. Opencl overview. Online. Last accessed: 11/07/2011.
URL http://www.khronos.org/opencl/

[43] Khronos OpenCL Working Group. The opencl specification, version 1.0.
Online, April 2009. Last accessed: 10/05/2009.
URL http://www.khronos.org/registry/cl/specs/opencl-1.0.33.pdf

[44] Kohler, M. Np complete. In Embedded Systems Programming, pages 45–60.
November 2000.
URL http://www.netrino.com/Embedded-Systems/How-To/
Network-Processors

[45] Lakshman, T. V. and Stiliadis, D. High-speed policy-based packet forward-
ing using efficient multi-dimensional range matching. SIGCOMM Comput.
Commun. Rev., 28(4):203–214, 1998. ISSN 0146-4833. doi:http://doi.acm.org/
10.1145/285243.285283.

[46] Lakshminarayanan, K., Rangarajan, A., and Venkatachary, S. Al-
gorithms for advanced packet classification with ternary cams. SIGCOMM

http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242&p=1
http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242&p=1
http://www.khronos.org/opencl/
http://www.khronos.org/registry/cl/specs/opencl-1.0.33.pdf
http://www.netrino.com/Embedded-Systems/How-To/Network-Processors
http://www.netrino.com/Embedded-Systems/How-To/Network-Processors

BIBLIOGRAPHY 168

Comput. Commun. Rev., 35:193–204, August 2005. ISSN 0146-4833. doi:
http://doi.acm.org/10.1145/1090191.1080115.
URL http://doi.acm.org/10.1145/1090191.1080115

[47] Lamping, U. Wireshark developer’s guide: for wireshark 1.4. Online, 2010.
Last accessed: 16/05/2011.
URL http://www.wireshark.org/download/docs/developer-guide-us.pdf

[48] Lawlor, O. S. Message passing for gpgpu clusters: Cudampi. In Cluster
Computing, pages 1–8. 2009. doi:10.1109/CLUSTR.2009.5289129.

[49] Lidl, K. J., Lidl, D. G., and Borman, P. R. Flexible packet filtering: pro-
viding a rich toolbox. In Proceedings of the BSD Conference 2002 on BSD
Conference, BSDC’02, pages 11–11. USENIX Association, Berkeley, CA, USA,
2002.
URL http://portal.acm.org/citation.cfm?id=1250894.1250905

[50] McCanne, S. and Jacobson, V. The bsd packet filter: a new architecture for
user-level packet capture. In USENIX’93: Proceedings of the USENIX Winter
1993 Conference Proceedings on USENIX Winter 1993 Conference Proceed-
ings, pages 2–2. USENIX Association, Berkeley, CA, USA, 1993.

[51] Nielsen, J. Nielsen’s law of internet bandwidth. Online, 1998. Last accessed:
10/05/2009.
URL http://www.useit.com/alertbox/980405.html

[52] Nottingham, A. and Irwin, B. Gpu packet classification using opencl: a con-
sideration of viable classification methods. In Proceedings of the 2009 Annual
Research Conference of the South African Institute of Computer Scientists and
Information Technologists, SAICSIT ’09, pages 160–169. ACM, New York, NY,
USA, 2009. ISBN 978-1-60558-643-4. doi:http://doi.acm.org/10.1145/1632149.
1632170.
URL http://doi.acm.org/10.1145/1632149.1632170

[53] Nottingham, A. and Irwin, B. Investigating the effect of genetic algorithms
on filter optimisation within packet classifiers. In HS Venter, L. L., M Coet-
zee, editor, Proceedings of the ISSA 2009 Conference, ISSA 2009, pages 99–
116. Information Security South Africa (ISSA), University of Johannesburg,
South Africa, July 2009.
URL http://icsa.cs.up.ac.za/issa/2009/Proceedings/Full/21_Paper.pdf

http://doi.acm.org/10.1145/1090191.1080115
http://www.wireshark.org/download/docs/developer-guide-us.pdf
http://portal.acm.org/citation.cfm?id=1250894.1250905
http://www.useit.com/alertbox/980405.html
http://doi.acm.org/10.1145/1632149.1632170
http://icsa.cs.up.ac.za/issa/2009/Proceedings/Full/21_Paper.pdf

BIBLIOGRAPHY 169

[54] NVIDIA. Geforce 256: The worlds first gpu. Online, . Last accessed:
11/07/2011.
URL http://www.nvidia.com/page/geforce256.html

[55] NVIDIA. Geforce 9800 gtx. Online, . Last accessed: 11/07/2011.
URL http://www.nvidia.com/object/product_geforce_9800_gtx_us.html

[56] NVIDIA. Geforce gtx 280. Online, . Last accessed: 11/07/2011.
URL http://www.nvidia.com/object/product_geforce_gtx_280_us.html

[57] NVIDIA. Geforce gtx 480. Online, . Last accessed: 11/07/2011.
URL http://www.nvidia.com/object/product_geforce_gtx_480_us.html

[58] NVIDIA. Geforce gtx 580. Online, . Last accessed: 11/07/2011.
URL http://www.nvidia.com/object/product-geforce-gtx-580-us.html

[59] NVIDIA. Geforce3: The infinite effects gpu. Online, . Last accessed:
11/07/2011.
URL http://www.nvidia.com/page/geforce3.html

[60] NVIDIA. Tesla software features. Online, . Last accessed: 11/07/2011.
URL http://www.nvidia.com/object/software-for-tesla-products.html

[61] NVIDIA. Why choose tesla. Online, . Last accessed: 11/07/2011.
URL http://www.nvidia.com/object/tesla_computing_solutions.html

[62] NVIDIA Corporation. Cuda reference manual. Online, August 2010. Last
accessed: 22/02/2011.
URL http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/
docs/CUDA_Toolkit_Reference_Manual.pdf

[63] NVIDIA Corporation. Nvidia cuda c best practices guide, version 3.1.
Online, May 2010. Last accessed: 09/05/2010.
URL http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/
docs/NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf

[64] NVIDIA Corporation. Nvidia cuda c programming guide, version 3.1.
Online, May 2010. Last accessed: 09/05/2010.
URL http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/
docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

http://www.nvidia.com/page/geforce256.html
http://www.nvidia.com/object/product_geforce_9800_gtx_us.html
http://www.nvidia.com/object/product_geforce_gtx_280_us.html
http://www.nvidia.com/object/product_geforce_gtx_480_us.html
http://www.nvidia.com/object/product-geforce-gtx-580-us.html
http://www.nvidia.com/page/geforce3.html
http://www.nvidia.com/object/software-for-tesla-products.html
http://www.nvidia.com/object/tesla_computing_solutions.html
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_Toolkit_Reference_Manual.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_Toolkit_Reference_Manual.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

BIBLIOGRAPHY 170

[65] Pang, R., Yegneswaran, V., Barford, P., Paxson, V., and Peterson, L.
Characteristics of internet background radiation. In Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement, IMC ’04, pages 27–40.
ACM, New York, NY, USA, 2004. ISBN 1-58113-821-0. doi:http://doi.acm.org/
10.1145/1028788.1028794.
URL http://doi.acm.org/10.1145/1028788.1028794

[66] Parr, T. The Definitive ANTLR Reference: Building Domain-Specific Lan-
guages. The Pragmatic Programmers, p3.0 edition, 2008.

[67] Postel, J. B. User datagram protocol. RFC 768, Internet Engineering Task
Force, August 1980.
URL http://www.rfc-editor.org/rfc/rfc768.txt

[68] Postel, J. B. Internet protocol. RFC 791, Internet Engineering Task Force,
September 1981.
URL http://www.rfc-editor.org/rfc/rfc791.txt

[69] Postel, J. B. Transmission control protocol. RFC 793, Internet Engineering
Task Force, September 1981.
URL http://www.rfc-editor.org/rfc/rfc793.txt

[70] Remington, R. D. and Schork, M. A. Statistics with Applications to the
Biological and Health Sciences. Prentice-Hall, Inc., Eaglewood Cliffs, N.J.,
1970.

[71] Seagate. Performance considerations. Online. Last accessed: 17/06/2011.
URL http://www.seagate.com/www/en-us/support/before_you_buy/speed_
considerations

[72] Singh, S., Baboescu, F., Varghese, G., and Wang, J. Packet classifica-
tion using multidimensional cutting. In SIGCOMM ’03: Proceedings of the
2003 conference on Applications, technologies, architectures, and protocols for
computer communications, pages 213–224. ACM, New York, NY, USA, 2003.
ISBN 1-58113-735-4. doi:http://doi.acm.org/10.1145/863955.863980.

[73] Smith, R. Nvidia announces cuda 4.0. Online, February 2011. Last accessed:
09/07/2011.
URL http://www.anandtech.com/show/4198/nvidia-announces-cuda-40

http://doi.acm.org/10.1145/1028788.1028794
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.seagate.com/www/en-us/support/before_you_buy/speed_considerations
http://www.seagate.com/www/en-us/support/before_you_buy/speed_considerations
http://www.anandtech.com/show/4198/nvidia-announces-cuda-40

BIBLIOGRAPHY 171

[74] Song, H. and Lockwood, J. W. Efficient packet classification for net-
work intrusion detection using fpga. In FPGA ’05: Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable gate ar-
rays, pages 238–245. ACM, New York, NY, USA, 2005. ISBN 1-59593-029-9.
doi:http://doi.acm.org/10.1145/1046192.1046223.

[75] Spitznagel, E., Taylor, D., and Turner, J. Packet classification using ex-
tended tcams. In ICNP ’03: Proceedings of the 11th IEEE International Con-
ference on Network Protocols, page 120. IEEE Computer Society, Washington,
DC, USA, 2003. ISBN 0-7695-2024-3.

[76] Srinivasan, V., Varghese, G., Suri, S., and Waldvogel, M. Fast and scal-
able layer four switching. SIGCOMM Comput. Commun. Rev., 28(4):191–202,
1998. ISSN 0146-4833. doi:http://doi.acm.org/10.1145/285243.285282.

[77] Stevens, W. R. TCP/IP illustrated (vol. 1): the protocols. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1993. ISBN 0-201-63346-9.

[78] Taylor, D. E. Survey and taxonomy of packet classification techniques. ACM
Comput. Surv., 37(3):238–275, 2005. ISSN 0360-0300. doi:http://doi.acm.org/
10.1145/1108956.1108958.

[79] Terry, P. Compiling with C# and JAVA. Addison Wesley, 2005.

[80] Tongaonkar, A. S. Fast pattern-matching techniques for packet filtering. On-
line, 2004. Last accessed: 07/05/2009.
URL http://seclab.cs.sunysb.edu/seclab/pubs/theses/alok.pdf

[81] Turetsky, R. Training neural networks. Online, December 2000. Last ac-
cessed: 09/07/2011.
URL http://www.ee.columbia.edu/~rob/talks/neuralnet.ppt

[82] van Lunteren, J. and Engberson, T. Fast and scalable packet classifica-
tion. IEEE Journal on Selected Areas in Communications, 21(4):560–571,
May 2003.
URL http://alan.ipv6.club.tw/paper/Fast%20and%20scalable%20packet%
20classification.pdf

[83] Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E. P., and
Ioannidis, S. Gnort: High performance network intrusion detection us-
ing graphics processors. In RAID ’08: Proceedings of the 11th interna-
tional symposium on Recent Advances in Intrusion Detection, pages 116–134.

http://seclab.cs.sunysb.edu/seclab/pubs/theses/alok.pdf
http://www.ee.columbia.edu/~rob/talks/neuralnet.ppt
http://alan.ipv6.club.tw/paper/Fast%20and%20scalable%20packet%20classification.pdf
http://alan.ipv6.club.tw/paper/Fast%20and%20scalable%20packet%20classification.pdf

BIBLIOGRAPHY 172

Springer-Verlag, Berlin, Heidelberg, 2008. ISBN 978-3-540-87402-7. doi:
http://dx.doi.org/10.1007/978-3-540-87403-4_7.

[84] Vernon, P. M. Recursion. Online, 2005. Last accessed: 12/06/2011.
URL http://pages.cs.wisc.edu/~vernon/cs367/notes/6.RECURSION.html

[85] Vlaeminck, K., Stevens, T., Van de Meerssche, W., De Turck, F., Dhoedt,
B., and Demeester, P. Efficient packet classification on network processors.
Int. J. Commun. Syst., 21(1):51–72, 2008. ISSN 1074-5351. doi:http://dx.doi.
org/10.1002/dac.v21:1.

[86] Wain, R., Bush, I., Guest, M., Deegan, M., Kozin, I., and Kitchen, C.
An overview of fpgas and fpga programming; initial experiances at daresbury.
Online, November 2006. Last accessed: 09/06/2011.
URL http://epubs.cclrc.ac.uk/bitstream/1167/DL-TR-2006-010.pdf

[87] West, J. Nvidia releases cuda 1.0. Online, July 2007. Last accessed:
11/07/2011.
URL http://insidehpc.com/2007/07/14/nvidia-releases-cuda-10/

[88] Woo, T. Y. C. A modular approach to packet classification: Algorithms and
results. In IEEE Infocom, pages 1213–1222. 2000.

[89] Wu, Z., Xie, M., and Wang, H. Swift: a fast dynamic packet filter. In
NSDI’08: Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, pages 279–292. USENIX Association, Berkeley,
CA, USA, 2008. ISBN 111-999-5555-22-1.

[90] Yuhara, M., Bershad, B. N., Maeda, C., Eliot, J., and Moss, B. Efficient
packet demultiplexing for multiple endpoints and large messages. In Proceed-
ings of the 1994 Winter USENIX Conference, pages 153–165. 1994.

http://pages.cs.wisc.edu/~vernon/cs367/notes/6.RECURSION.html
http://epubs.cclrc.ac.uk/bitstream/1167/DL-TR-2006-010.pdf
http://insidehpc.com/2007/07/14/nvidia-releases-cuda-10/

A
GPF Filter Programs

This appendix lists the filter programs used in Chapter 5.

A.1 IP Protocols (IPP)

sub IPv4 { 96:16 == 2048 }

sub IPv6 { 96:16 == 34525 }

filter TCP { IPv4 && 184:8 == 6 || IPv6 && 160:8 == 6 }

filter UDP { IPv4 && 184:8 == 17 || IPv6 && 160:8 == 17 }

filter ICMP { IPv4 && 184:8 == 1 }

filter ICMPv6 { IPv6 && 160:8 == 58 }

filter ARP { 96:16 == 2054 }

173

A.2. SINGLE SIMPLE FILTER (SSF) 174

A.2 Single Simple Filter (SSF)

//eth.type == 0x800 (IP)

filter ip_packet { 96:16 == 2048 }

A.3 Multiple Simple Filter (MSF)

filter ip_packet { 96:16 == 2048 } //eth.type == 0x800

filter ip_version_4 { 112:4 == 4 } // ip.version == 4 (naive)

filter tcp_packet { 184:8 == 6 } //ip.proto == 6 (naive)

filter srcport { 272:16 >= 4000 } //tcp.srcport >= 4000 (naive)

This filter program is naive, as in its current form, the only truly valid filter is the
ip_packet filter. All other filters are predicated on this and other filters returning
true, which is never verified in filter code. In order to get the correct srcport result,
for instance, one would need to logically AND all the filter results together.

A.4 Single Compound Filter (SCF)

//eth.type == 0x800 && ip.version == 4 && ip.proto == 6

// && (tcp.srcport >= 4000 || tcp.dstport >=4000)

filter tcp_ipv4_packet

{

96:16 == 2048 && 112:4 == 4 && 184:8 == 6 &&

(272:16 >= 4000 || 288:16 >= 4000)

}

A.5. MULTIPLE COMPOUND FILTERS (MCF) 175

A.5 Multiple Compound Filters (MCF)

sub tcp_ipv4 { 96:16 == 2048 && 112:4 == 4 && 184:8 == 6 }

sub dst_ports { 288:16 >= 50000 || 288:16 < 150 }

sub src_ports { 272:16 < 150 || 272:16 >= 50000 }

filter src { tcp_ipv4 && src_ports }

filter dst { tcp_ipv4 && dst_ports }

filter both { src && dst }

filter neither { tcp_ipv4 && !(src_ports || dst_ports) }

A.6 Large Simple Filters (LSF)

//8 bit filters

filter f8_01 { 0:8 == 0 }

filter f8_02 { 8:8 == 31 }

filter f8_03 { 16:8 == 198 }

filter f8_04 { 24:8 == 51 }

filter f8_05 { 32:8 == 85 }

filter f8_06 { 40:8 == 184 }

filter f8_07 { 48:8 == 0 }

filter f8_08 { 56:8 == 19 }

A.6. LARGE SIMPLE FILTERS (LSF) 176

filter f8_09 { 64:8 == 169 }

filter f8_10 { 72:8 == 130 }

filter f8_11 { 80:8 == 135 }

filter f8_12 { 88:8 == 181 }

filter f8_13 { 96:8 == 8 }

filter f8_14 { 104:8 == 0 }

filter f8_15 { 112:8 == 69 }

filter f8_16 { 120:8 == 0 }

filter f8_17 { 128:8 == 0 }

filter f8_18 { 136:8 == 157 }

filter f8_19 { 144:8 == 21 }

filter f8_20 { 152:8 == 222 }

filter f8_21 { 160:8 == 64 }

filter f8_22 { 168:8 == 0 }

filter f8_23 { 176:8 == 128 }

filter f8_24 { 184:8 == 6 }

filter f8_25 { 192:8 == 78 }

filter f8_26 { 200:8 == 99 }

filter f8_27 { 208:8 == 192 }

filter f8_28 { 216:8 == 168 }

filter f8_29 { 224:8 == 10 }

filter f8_30 { 232:8 == 64 }

A.6. LARGE SIMPLE FILTERS (LSF) 177

//16 bit filters

filter f16_01 { 0:16 == 31 }

filter f16_02 { 8:16 == 8134 }

filter f16_03 { 16:16 == 50739 }

filter f16_04 { 24:16 == 13141 }

filter f16_05 { 32:16 == 21944 }

filter f16_06 { 40:16 == 47104 }

filter f16_07 { 48:16 == 19 }

filter f16_08 { 56:16 == 5033 }

filter f16_09 { 64:16 == 43394 }

filter f16_10 { 72:16 == 33415 }

filter f16_11 { 80:16 == 34741 }

filter f16_12 { 88:16 == 46344 }

filter f16_13 { 96:16 == 2048 }

filter f16_14 { 104:16 == 69 }

filter f16_15 { 112:16 == 17664 }

filter f16_16 { 120:16 == 0 }

filter f16_17 { 128:16 == 157 }

filter f16_18 { 136:16 == 40213 }

filter f16_19 { 144:16 == 5598 }

filter f16_20 { 152:16 == 56896 }

A.6. LARGE SIMPLE FILTERS (LSF) 178

filter f16_21 { 160:16 == 16384 }

filter f16_22 { 168:16 == 128 }

filter f16_23 { 176:16 == 32774 }

filter f16_24 { 184:16 == 1614 }

filter f16_25 { 192:16 == 20067 }

filter f16_26 { 200:16 == 25536 }

filter f16_27 { 208:16 == 49320 }

filter f16_28 { 216:16 == 43018 }

filter f16_29 { 224:16 == 2660 }

filter f16_30 { 232:16 == 25792 }

B
List of Publications

This appendix lists the publications that have resulted from this research.

Nottingham, A. & Irwin, B. “Investigating the effect of genetic algorithms on
filter optimisation within packet classifiers.” In Proceedings of the ISSA 2009 Con-
ference, Information Security South Africa (ISSA), 2009, pages: 99-116.

Nottingham, A. & Irwin, B. “gPF: A GPU Accelerated Packet Classification Tool.”
In Proceedings of the 2009 South African Telecommunication Networks and Ap-
plications Conference (SATNAC), Online, 2009. URL http://www.satnac.org.za/
proceedings/2009/papers/software/Paper%2063.pdf

Nottingham, A. & Irwin, B. “GPU packet classification using OpenCL: a con-
sideration of viable classification methods.” In Proceedings of the 2009 Annual
Research Conference of the South African Institute of Computer Scientists and
Information Technologists (SAICSIT), 2009, pages: 160-169.

Nottingham, A. & Irwin, B. “Conceptual Design of a CUDA Based Packet Clas-
sifier.” In Proceedings of the 2010 South African Telecommunication Networks and

179

http://www.satnac.org.za/proceedings/2009/papers/software/Paper%2063.pdf
http://www.satnac.org.za/proceedings/2009/papers/software/Paper%2063.pdf

180

Applications Conference (SATNAC), Online, 2010. URL http://www.satnac.org.
za/proceedings/2010/papers/software/Nottingham%20FP%20v2%20449.pdf

Nottingham, A. & Irwin, B. “Parallel packet classification using GPU co-processors.”
In Proceedings of the 2010 Annual Research Conference of the South African Insti-
tute of Computer Scientists and Information Technologists (SAICSIT), 2010, pages:
231-241.

http://www.satnac.org.za/proceedings/2010/papers/software/Nottingham%20FP%20v2%20449.pdf
http://www.satnac.org.za/proceedings/2010/papers/software/Nottingham%20FP%20v2%20449.pdf

C
Contents of Multimedia DVD

The accompanying DVD contains the following directories.

PacketData The packet sets used during testing.

PerformanceData Spreadsheets of performance data, with accompanying graphs.

OutputData Raw classification output, with timings, in compressed text files.

Validation Detailed timing results for validation tests (.csv)

Throughput Detailed timing results for throughput tests (.csv)

Filters Compressed results for SSF, MSF, SCF and MCF filters (.rar)

181

	Introduction
	Network Telescopes
	Problem statement
	Research Method
	Scope
	Summary of Goals
	Additional Notes
	Document Structure

	Packet Filters
	Packets
	Packet Headers
	Packet Filters
	Target Hardware
	Algorithms for IP Processing
	Protocol-Independent Algorithms
	Summary

	Graphics Processing Units
	General Purpose Computation on GPUs
	CUDA Hardware Model
	CUDA Programming Model
	Memory Regions
	Data Transfer Optimisation
	Improving Processing Efficiency
	Packet Filtering Considerations
	Summary

	GPU Accelerated Packet Classification
	Introduction to GPF
	Processing Packets in Parallel
	Rule Evaluation
	Evaluating Filters
	High-Level Grammar
	Packet Collection and Buffering
	Analysis Extensions
	Future Functionality
	Summary

	Evaluation and Testing
	Testing Configuration
	Verification
	Timing Results Validation
	Packet Throughput
	Filter Program Performance
	Performance Comparison
	Summary

	Conclusion
	Future Work
	Other Applications

	Bibliography
	GPF Filter Programs
	IP Protocols (IPP)
	Single Simple Filter (SSF)
	Multiple Simple Filter (MSF)
	Single Compound Filter (SCF)
	Multiple Compound Filters (MCF)
	Large Simple Filters (LSF)

	List of Publications
	Contents of Multimedia DVD

