

Analysis and Modelling

of the Windows mLAN Driver

A thesis submitted in partial fulfilment of the requirements for

the degree of

BACHELOR OF SCIENCE

WITH

HONOURS IN COMPUTER SCIENCE

Rhodes University

2005

By

Shaun Miles

Supervised by

Professor Richard Foss

Abstract i

Abstract

The purpose of this thesis is to expose the inner-workings of the Windows music

Local Area Network (mLAN) driver to aid in further research of the mLAN system.

mLAN represents an innovative environment for networked high-speed transmission

of real-time audio and MIDI streams. mLAN extends the IEEE 1394 architecture,

which encapsulates the essential features of a networked real-time multimedia system.

An exploration of the mLAN architecture and the Windows Driver Model gives us

insight into the core concepts central to the creation of the mLAN driver. The

Windows Driver Model is the required form a driver must follow. DriverStudio is a

driver development tool that encapsulates the Windows Driver Model in a C++

library framework. A dynamic and static analysis of the mLAN driver is performed

using the Windows Driver Model and the DriverStudio framework as reference. This

understanding will be expressed by developing an object model of the mLAN driver,

and the documentation of the I/O Control codes.

Acknowledgments ii

Acknowledgments

I would like to thank my supervisor, Prof. Richard Foss for his limitless help. Also

thanks to Melekam Tsegaye who spent many hours helping me, and giving insights

into the wonderful nature of drivers.

 iii

Table of Contents

ABSTRACT .. I
ACKNOWLEDGMENTS...II
LIST OF FIGURES...V
1. INTRODUCTION ..1

1.1 PROBLEM STATEMENT..1
1.2 PROJECT MOTIVATION..1
1.3 DOCUMENT STRUCTURE ...2

2. MUSIC LOCAL AREA NETWORK ...4
2.1 IEEE 1394..4

2.1.1 The IEEE 1394 Architecture ..4
2.1.2 Virtual and Physical Devices ...6
2.1.3 Summery of Firewire Features...8

2.2 THE MLAN EXTENSION ..8
2.2.1 The IEC 61883 Specification ...9
2.2.2 Data Transmission ...10

2.3 CHAPTER SUMMARY...10
3. THE WINDOWS DRIVER MODEL ...11

3.1 INTRODUCTION ...11
3.2 OPERATING SYSTEM COMPONENTS ..13

3.2.1 Plug and Play Manager ...13
3.2.2 Power Manager ...14
3.2.3. I/O Manager..15

3.3 I/O REQUEST PACKETS ...16
3.3.1 IRP Data Structure ..16
3.3.2 I/O Stack ..17
3.3.3 IRP Queues ..18
3.3.4 I/O Control Codes..18

3.4 DRIVER AND DEVICE OBJECTS ...19
3.4.1 Driver Object ...19
3.4.2 Device Objects ...20

3.5 ENTRY ROUTINES ...22
3.5.1 DriverEntry ..22
3.5.2 AddDevice ..23
3.5.3 Dispatch Routines ..23
3.5.4 StartIO ...25

3.6 CHAPTER SUMMARY...25
4. COMPUWARE DRIVERSTUDIO...26

4.1 KDRIVER ..27
4.1.1 DriverEntry ..27
4.1.2 DispatchFilter ..28
4.1.3 AddDevice ..28

4.2 KDEVICE AND SUBCLASS KPNPDEVICE..28
4.3 KLOWERDEVICE AND SUBCLASS KPNPLOWERDEVICE ..29
4.4 NON-DRIVER FRAMEWORK CLASSES..31

4.4.1 KIrp..31
4.4.2 KDriverManageQueue...32

4.5 DRIVERSTUDIO’S KERNEL STREAMING SERVICES FRAMEWORK ..32
4.6 COMPILING A DRIVER ...34
4.7 VERSIONING ISSUES..34
4.8 CHAPTER SUMMARY...35

5. OBJECT-ORIENTED MODEL OF THE MLAN DRIVER..36

 iv

5.1 METHODOLOGY OF ANALYSIS...36
5.2 OVERVIEW OF THE CLASS STRUCTURE ...37
5.2.1 ENTRY POINTS ...38

5.2.2 Kernel Streaming Minidriver ...40
5.2.3 IOCTL Dispatching..43

5.3 CHAPTER SUMMARY...43
6. IOCTL ANALYSIS AND API DESIGN ..44

6.1 MLAN DRIVER IOCTL CODES ..44
6.1.1 IEEE 1394 based mLAN IOCTL codes ..45
6.1.2 Stream based mLAN IOCTL codes ..49
6.1.3 61883 based mLAN IOCTL codes..51
6.1.4 ASIO based mLAN IOCTL codes ...53
6.1.5 WDM Streaming based mLAN IOCTL codes...55

6.2 IMPLEMENTATION ISSUES ...57
6.3 CHAPTER SUMMARY...58

7. CONCLUSION...59
7.1 PROJECT SUMMARY..59
7.2 FUTURE EXTENSIONS..60

8. REFERENCES ...61
APPENDIX ...62

A. IOCTL ANALYSIS AND DOCUMENTATION:...62
IEEE 1394 based mlan IOCTL codes ...62
Isochronous Stream based mlan IOCTL codes ...72
IEC 61883 based mlan IOCTL codes..76
ASIO based mlan IOCTL codes ..83

B. ANALYSIS AND DOCUMENTATION OF DATA STRUCTURES USED: ..87
IEEE 1394 based structs ...87
Isochronous Stream based structs...94
IEC 61883 based structs ...94
Sundry structs contained within main structs ...100

List of Figures v

List of Figures

Figure 2.1: IEEE 1394 Protocol Layers…………………………………………….....9

Figure 2.2: IEEE 1394 Peer-To-Peer Communication……………………………….10

Figure 3.1: Layered Driver Architecture……………………………………………..15

Figure 3.2: I/O Request Packet Structure…………………………………………….20

Figure 3.3: IRP Structure Relating to Stack Locations………………………………21

Figure 3.4: DRIVER_OBJECT Structure……………………………………………23

Figure 3.5: Device object creation……………………………………………...……24

Figure 3.6: Relationship between I/O manager and IRP processing………………...27

Figure 4.1: DriverStudio Classes…………………………………………………….29

Figure 4.2: Hypothetical Driver Stack……………………………………………….33

Figure 4.3: IRP versus KIrp usage…………………………………………………...35

Figure 4.4: AVStream Architectural Overview……………………………………...36

Figure 4.5: DriverStudio Kernel Streaming Framework…………………………….36

Figure 5.1: Object Model of mLAN Driver………………………………………….40

Figure 5.2: The DriverEntry Routine………………………………………………...41

Figure 5.3: The AddDevice Routine…………………………………………………42

Figure 5.4: The DispatchFilter Routine……………………………………………...43

Figure 5.5: The mLAN Kernel Streaming Minidriver Class Diagram……………....44

Figure 5.6: Sequence Diagram for Creating Minidriver……………………………..45

Figure 5.7: Sequence Diagram of IOCTL Dispatching……………………………...46

Figure 6.1: Code excerpt from “mlbusdrvioctl.h”…………………………………...47

Figure 6.2: ASIO Finite State Diagram……………………………………………...57

Figure 6.3: Extract from mlanbus.INF………………………………………………59

Figure 6.4: Kernel Streaming Architecture………………………………………….60

1. Introduction 1

1. Introduction

1.1 Problem Statement

The music Local Area Network (mLAN) is a proprietary technology that Yamaha

began developing in 1993 [AE Notes, 2005]. IEEE 1394 (Firewire) was chosen as the

networking technology for mLAN. The objective of mLAN is to replace the myriad of

cables, plugs and "in", "out" and "through" sockets on synthesizers, mixers and other

A/V equipment with a single connector. The mLAN system represents a solid

advance in terms of networked real-time multimedia systems. It is characterised by

two important features in real-time multimedia systems; high bandwidth and low

latency.

Importance is attached to research within the Windows context, as Windows

represents a more commercially viable marketing option. The driver is responsible for

the PC interacting with the self-managed Firewire bus, which has mLAN extended

nodes interfacing to audio studio equipment. The PC, through the driver, becomes a

powerful tool as it can engage in connection management, and audio recording and

playback, available as an application suit that comes with the system. Investigation

into the full potential or the pursuing of other ideas within the mLAN system can be

done through the use of applications.

1.2 Project Motivation

The aim of the project is to critically analyse the Windows mLAN driver with regards

to an object oriented approach. In an effort to streamline the development of

applications for research purposes, or the possible modification of the mLAN driver,

an understanding of the driver is required. This understanding will be represented

with use of an object oriented model.

1. Introduction 2

1.3 Document Structure

Chapter two covers the mLAN system. This entails examining the underlying

technology in use by the mLAN system. The IEEE 1394 bus architecture and the IEC

61883 specification for audio and data transmission are the technologies covered. The

reasons supporting the features, as to why the technologies were chosen, are

discussed.

There are not a lot of approaches to driver development, which is a wholly intricate

and complicated process. One is constricted in developing a driver by the operating

system and the type of driver it requires to interface with the hardware. To be more

specific, each operating system has a model in which drivers must fit to interface with

the hardware. In this instance, the focus of chapter three will be on the usage of the

Windows Driver Model (WDM) in driver development.

Chapter four extends the previous chapter as the mLAN driver makes use of a

proprietary Driver Development Tool from Compuware called DriverStudio. This

makes use of the WDM, and in essence uses the Windows Driver Development Kit to

build a driver. DriverStudio represents a framework of C++ libraries and classes that

encapsulate driver development. It is relevant in examining the framework model of

classes in order to understand the object model of the mLAN driver, and how they fit

into the WDM.

Chapter five introduces the extrapolated model of the mLAN driver, explaining the

usage of the classes and how they fit into the DriverStudio framework. A description

of the methodology of analysis used in abstracting the object model and class

interactions is presented. This chapter involves an overview of the class model

structure, the classes involved and how they relate to each other. This takes a

conceptual look at the underlying driver technology used by the mLAN driver, such

the Windows Kernel Streaming architecture.

1. Introduction 3

Chapter six discusses the work done to document the I/O Control (IOCTL) codes of

the driver. The IOCTL codes represent the core functionality of the driver, as a

majority of the processing occurs in response to IOCTL calls to the driver. It is

through the IOCTL codes that applications can communicate with the driver.

Finally, chapter seven concludes the paper.

2. Music Local Area Network 4

2. Music Local Area Network

Yamaha began developing a system to provide single cable connections between the

arrays of standard audio studio equipment in an attempt to standardise digital audio

data transmission. IEEE 1394 (Firewire) was chosen as the foundation on top of

which to build the mLAN system, for it addressed the many aspects required of the

proposed system. The mLAN system can operate independently of a central server or

a host controller, not requiring the use or the power of a computer. Responsibility of

management and control of the bus is automatic and falls to selected nodes on the bus.

Using the computer as a tool to visually model the bus and to manage the connection

of nodes, it extends the functionality of the mLAN system. This chapter briefly

introduces the mLAN system by firstly covering the underlying technology. This

deals with relevant IEEE 1394 and IEC 61883 concepts. Finally, the mLAN

extensions to those technologies are presented.

2.1 IEEE 1394

2.1.1 The IEEE 1394 Architecture

IEEE 1394 is a specification that defines a serial bus architecture with a common set

of core features that is an extension to the Control and Status Registers (CSR)

architecture [Anderson, 1999]. The CSR is a standard definition to permit easier

implementation of software, and allows interoperability between Firewire on different

platforms. It is based on the ISO/IEC 13213 specification that standardises the offset

locations within the initial register address space. The CSR specifies the arrangement

of an addressable space range containing data structures that identify the components

of the bus, be it a bus, a bridge or a node, the components state and other information.

A node is contained within the module and this represents a logical entity. A unit is a

functional subcomponent of a node, for example, a 1394 node could have a Video and

an Audio unit, each operated and controlled independently by its own software. Each

node has its own Control and Status Registers (CSRs), as well as space for bus

2. Music Local Area Network 5

dependant registers, defined by IEEE 1394 [Anderson, 1999]. These registers allow

for interoperability between Firewire implementations on different hardware

platforms, for easier implementation of the software, and bridging between different

buses types using the same CSR architecture. There is also a configuration ROM for

identifying the vendor and node specific details. Up to 63 nodes can sit on one bus,

except that a data item can be passed a maximum distance of 16 hops. Buses have

unique ID’s which allow for 1024 buses theoretically bridged together, although there

are other physical limitations such as the maximum cabling distance [AE Notes,

2005].

Each bus has certain features that one node must handle (one that is capable), these

being the bus management aspects of the bus. A single node, the determined root

node, has the responsibility of commencing communication with the other nodes by

sending cycle start packets, synchronising the nodes. Other responsibilities include the

isochronous resource manager and the bus manager. Bus configuration is automatic

and occurs upon the detection of a new node or the disappearance of a node, or a bus

reset. The root is identified automatically, as well as the responsibilities allocated to

capable nodes nearest the root [AE Notes, 2005]. The Firewire bus, as a result,

manages all aspects of the bus itself.

Firewire supports two means of data transmission. One is asynchronous transfers

which do not require a constant transfer rate, and targeted to specific unique node

addresses. The other is isochronous transfers that require a transfer of data at constant

intervals. The data is broadcast on a channel instead of to a unique node address,

allowing one or more nodes to pick up on that channel. This transfer type requires

regular bus access and thus has a higher bus bandwidth priority [AE Notes, 2005].

In figure 2.1, an overview of the IEEE 1394 protocol layers is shown. The protocol

layers are a representation of the communication functionality of a Firewire node,

simplifying and encapsulating the inherent concepts [AE Notes, 2005]. The Physical

layer provides the physical interface to the serial bus, receiving and transmitting bits

on the bus. The link layer is an interface for both isochronous and asynchronous data

transactions. For asynchronous transactions, the link layer provides the interface

between the transaction layer and the physical layer. The link layer for isochronous

2. Music Local Area Network 6

transactions interfaces the application level and the physical layer. The transaction

layer is responsible for translating asynchronous transactions into the appropriate

requests.

Figure 2.1: IEEE 1394 Protocol Layers [Anderson, 1999]

2.1.2 Virtual and Physical Devices

A computer must have a driver to know how to interface to any attached hardware

device. IEEE 1394 is a bus, such that each device on the bus is seen as a node. A host

controller (the card that allows the computer to connect to the bus) must appear as a

node in order for the computer to interact with the bus [McKenzie, 2003]. In terms of

the operating system interacting with the bus, it does so through the use of a bus

driver and a host controller. A bus driver is responsible for interpreting requests to

communicate with the Firewire bus from an application or a client driver. The host

controller controls the physical I/O operations between the PCI bus and the IEEE

1394 bus.

A node on the IEEE 1394 bus needs a driver to tell the PC how to interact with the

device. There can only be one driver for a host controller in a PC, limiting the number

of concurrent drivers using the bus to one. A host controller is required for physical

access to the bus, and if only one driver can use the bus at a time then the potential of

IEEE 1394 technology is limited [McKenzie, 2003]. The Windows XP and later

Application

Transaction Layer

Asynchronous Isochronous
Link Layer

Physical Layer

Bus Management
Layer

 Bus Manager

Isochronous
Resource
Manager

Cycle Master

2. Music Local Area Network 7

versions of the 1394 bus driver allow a user to enumerate devices through the 1394

bus using custom device IDs. These devices do not have to correlate to real hardware,

and therefore allow the use of virtual devices. Virtual IEEE 1394 devices represent

considerable work in rectifying the limitation of peer-to-peer 1394 communication. A

virtual device represents a logical device that has the same functionality and

privileges as physical devices. It has an address space and can engage in

communication with nodes on the bus, and nodes on the bus can communicate with

the virtual device. The diagram below presents the use of enumerated virtual Firewire

devices between two PC’s over a Firewire bus. The Plug and Play manager (Refer to

Chapter 3) can be used to enumerate a virtual device such that it appears as a physical

device. The ovals are to draw attention to the implementation of a new driver stack

implemented to achieve the usage of virtual devices. The same driver stack is

applicable for a PC-to-Firewire bus communication.

Figure 2.2: IEEE 1394 Peer-To-Peer Communication [McKenzie, 2003]

2. Music Local Area Network 8

2.1.3 Summery of Firewire Features

Features responsible for the usage of Firewire as the mLAN system are as follows:

• High speed bus with scalable performance

The throughput speed of the bus satisfies the high bandwidth of any real-

time audio processing system, allowing a network of many devices

capable of transmitting and receiving streams of audio data.

• Plug and play support

The bus orchestrates the automatic configuration of newly added devices.

Each time a device is added or removed the bus automatically re-

enumerates itself, forming a new bus topology. This is done independently

and without the intervention of a host system.

• Eliminate host processor/memory bottleneck

Processing any amount of multimedia data requires a robust system to

handle the large and time-dependant flow of data. By eliminating the need

for a central server the bus is free to automatically direct the transfer of

data between the devices, thereby removing a potential bottleneck. This is

supported by the use of peer-to-peer transactions

• Support for Isochronous data streams

Firewire provides support for isochronous packet streaming, satisfying the

need for a constant transfer rate in an audio system. This is a high-priority

transfer mode that guarantees delivery of data at constant rate.

2.2 The mLAN extension

The mLAN system extends the IEEE 1394 CSR architecture by implementing several

different registers and by using a series of application level chips [AE Notes, 2005].

The chips, ASICs (Application Specific Integrated Chips), provide an interface

between the IEEE 1394 node and the studio equipment. These chips interface with

different IEEE 1394 protocol layers to integrate different functionality. Their

particular concern is translating incoming and outgoing stream and control

information between the studio equipment and the link layer of the IEEE 1394 node.

2. Music Local Area Network 9

This encapsulates the formatting and timing of audio data, based on the IEC 61883

specification.

In terms of the driver, Microsoft ships low level drivers for all the major device and

bus types for the vendor-supplied drivers to make use of. These vendor drivers form

client drivers that provide access to the vendor specific functionality of the device.

The Windows mLAN driver is a client Firewire driver that makes use of the Windows

supplied IEEE 1394 driver. The mLAN driver is able to manipulate the Unit Directory

(in the CSR) of the host controller via the underlying IEEE 1394 driver to make it

appear as a mLAN device.

2.2.1 The IEC 61883 Specification

IEC 61883 is a set of standards that are related to the transmission of audio, music and

multimedia over IEEE 1394 [AE Notes, 2005]. The mLAN technology uses two of

these standards. Firstly, mLAN uses IEC 61883-1 for the general packet format,

dataflow and connection management, and general transmission rules for command

controls. Specifically, these are encapsulated in the definitions of the Function

Control Protocol (FCP), the Common Isochronous Packet (CIP) format and the

Connection Management Procedures (CMP) [Haig, 2002].

Secondly, there is IEC 61883-6, a standard based on a set of documents presented to

the IEEE 1394 Trade Association (1394 TA) by Yamaha. Yamaha introduced the

concept and specifications for mLAN, which described a specification for the

transmission of audio and music data [AE Notes, 2005]. Thus began a 1394 TA

document describing the Audio and Music Data Transmission Protocol (A/M

Protocol). This document was adopted as an IEC (International Electrotechnical

Commission) standards specification.

The specification controls the transfer bit-rate, the encapsulation and extraction of

audio and MIDI data into sequences, and the construction of the Common

Isochronous Protocol (CIP) packets. These CIP packets (comprising a CIP header and

several CIP data blocks) make up the payload data of the isochronous packets that in

turn form the isochronous streams. The CIP formatting is based on the IEC 61883-1

2. Music Local Area Network 10

specification for data flow and connection management [AE Notes, 2005]. The

payload of the CIP packet is the AM824 (8 bit label and 24 bit Audio/Music data)

block format given by the IEC 61883-6 specification. The CIP header contains data

that provides a mechanism for synchronising the reassembly of the audio/music data.

2.2.2 Data Transmission

The isochronous packets are constructed by the IEEE 1394 node Link Layer. Packets

are identified by a channel number that has a single corresponding stream. Each

packet within a stream comprises several data blocks, which are made up of a number

of quadlets (4-byte blocks) [AE Notes, 2005]. Sequences are designated by the series

of quadlets corresponding to a position in each data block of that packet. Sequences

and plugs are core to the functionality of the mLAN system, in that each sequence is

issued from an output plug and gathered by an input plug [AE Notes, 2005]. A plug is

an abstraction formed by the Enabler, representing the input and output capabilities of

the studio equipment. The Enabler is software on the computer that interacts with the

Transporters (device-specific enumeration of the plugs) and allows connection a

management. It is the plugs that the studio equipment can send and receive data on the

bus.

2.3 Chapter Summary

Firewire is a flexible bus architecture that is ideally suited to real-time systems, as

time-dependant data can be transferred in a deterministic manner. Through extensions

to the architecture, the potential of Firewire is realised. One such extension is the

mLAN usage of integrated chips to achieve the required audio and control

requirements for a real-time multimedia system. Analysing the mLAN driver will give

insights into the usage of technologies presented in this chapter. In order to

understand the driver, the Windows driver model architecture is presented in the next

chapter.

3. The Windows Driver Model 11

3. The Windows Driver Model

3.1 Introduction

The Windows Driver Model (WDM) is a framework for designing and developing

drivers for NT based Windows platforms. WDM drivers have well-defined

responsibilities in facilitating I/O operations for applications and other drivers [Oney,

2003].

WDM drivers are kernel-mode drivers that share many of the design goals of the

windows operating system. By coding a driver in C and avoiding using the standard C

runtime libraries, the driver becomes portable among the Windows platforms. There

is a kernel mode run-time library available for drivers to make use of; which includes

string and list management routines. Also taking care not to use data types that are

size dependant on the platform will ensure portability. Having the ability to

dynamically configure the hardware requires the driver to be more flexible. This

implies that the device and its driver support Plug and Play. The driver also has to be

able to cope with being interrupted by other events, and suffer less processing time

without locking up the system [MSDN, 2005].

The core concept of the WDM is the driver stack. According to Oney, the Windows

operating system comes with base drivers that take care of generic I/O operations for

standard hardware devices. In this architecture, a driver is supported by a chain of

other drivers below it. This is moving away from monolithic drivers, which handle

every action between an application making a request of a hardware device and the

application receiving the desired response. The layered approach is such that at each

level of the stack a driver in that stack has the opportunity to act on a request being

sent down. If the driver cannot fulfil the request it will pass the request down the stack

until the request can be satisfied. The results are then passed back up the stack and

back to the application that made the request. This approach allows drivers to focus

on a small area of functionality and specialisation [Oney, 2003].

3. The Windows Driver Model 12

Figure 3.1 illustrates a hypothetical driver stack, showing the different types of drivers

a stack could have. Our focus is on the kernel-mode drivers, and there is a need to

clarify their functions. The kernel-mode client driver handles requests from an

application via the Win32 API. The class driver, usually supplied by Microsoft,

provides the system-required but hardware-independent support for a class of device.

The miniclass driver is usually supplied by the hardware vendor to integrate any

unique functionality their device may have. The port driver (or in some cases, the host

controller or host adapter driver) supplies required I/O operations on underlying

physical devices or busses connected to the device. Once again, the miniport driver is

tailored for vendor specific operations. The hardware bus driver is supplied by

Microsoft and should not be replaced.

Figure 3.1: Layered Driver Architecture [MSDN, 2005]

3. The Windows Driver Model 13

An application trying to make use of a hardware device will do so through the Win32

API. It is the bridge between the user and kernel mode. In the kernel mode, a thread or

a driver has access to system memory and hardware [MSDN, 2005]. In order for an

application to access these system resources, their requests have to be mediated by the

kernel components. There are two important concepts that have to be dealt with here,

one being the driver communication channel and the other being the kernel mode

operating system components. The kernel mode system communicates with the driver

stack through I/O Request Packets (IRP’s). These are reusable objects that have a

predefined and unique code identifying them and their function. This will be covered

in more depth later in this chapter.

3.2 Operating System Components

The operating system has certain components that monitor and allocate system

resources as they are required. There are three core components that are relevant to

drivers functioning within the kernel mode space. These are the PnP manager, the I/O

manager and the Power manager. Another component relevant to the functioning of

the kernel but specifically for kernel-mode drivers is the object manager. The Object

Manager stores and manages all system objects, including device and driver objects.

The I/O Manager makes use of the Object Manager to access and store the objects it

uses [MSDN, 2005].

3.2.1 Plug and Play Manager

The PnP manager is firstly responsible for identifying the device that has been added

to the system’s environment. Each device is registered with a GUID, making it

identifiable to the OS. As part of the Windows OS, a registry keeps track of vendor

specific device hardware, identifiable through a unique identifier called a GUID

(Global Unique ID). The GUID is a 128bit device identifier that is published for use

in the IT industry, creating a unique association identifying the device with a GUID

[Oney, 1999]. That means each device is registered with a GUID, making it

identifiable to the OS, allowing the OS to load the correct driver. A driver is released

3. The Windows Driver Model 14

with an INF file containing the GUID of the class of device the driver is responsible

for, as well as other driver related information.

The PnP manager reacts to a newly detected device by searching for the correct driver

to load if it has not already been loaded. If the PnP Manager cannot find the device it

will ask the user to provide the system with locations for it to search. It responds to

run time hardware events, for instance the addition or removal of a device from a bus

[MSDN, 2005].

Resource requirements for devices are determined by the PnP Manager and are

allocated appropriately. Dynamic reconfiguration of the hardware resource allocation

can take place as required. Hardware resources include assignable, addressable bus

paths that allow devices and system processors to communicate with each other. The

PnP Manager handles power requests such as stopping or starting the device,

indicating the intention to remove a device, and responds to other power related

events. These requests are sent via the I/O Manager in IRP’s using power function

codes.

Finally, the PnP Manager is responsible for enumerating a newly added device, and

any subsequent devices that the driver controls on its bus. This means that the device

object stored in system memory is linked to the driver by calling the driver AddDevice

routine and passing it the pointer to the device object. The PnP Manager keeps track

of which devices are active through a list of the Device Objects. Device objects will

be addressed further on in the chapter [MSDN, 2005].

3.2.2 Power Manager

The Power Manager is responsible for maintaining different power states for the

entire system and the connected components. At certain times a device can sit idle

allowing the power state to be lowered, so that the efficiency of the power usage can

be increased. This is achieved through different power policies which can be acted on

depending on the use of the device. The Power Manager, via the I/O Manager, can

send power function codes contained in an IRP to the relevant driver. Drivers should

3. The Windows Driver Model 15

implement the required power functionality in terms of handling the IRP’s that are

sent to it [MSDN, 2005].

3.2.3. I/O Manager

The I/O Manager forms part of the I/O Model for the Windows operating system. The

I/O Manager’s function is to facilitate I/O communication between an application and

a device via a driver stack. This communication stream centres on the usage of IRP’s

to formulate a request to the driver stack that indirectly controls the device. These

IRP’s are routed to the driver stack where each driver has the chance to respond to the

IRP until the request is satisfied. Higher level drivers break the IRP into smaller

requests and route them to lower level drivers appropriately [Cant, 1999].

The I/O Manager also defines a set of required and optional routines that drivers

should implement. Further, each driver should have a handler routine for each IRP of

that set, which are basically entry points into the driver code and thus allows the

driver to react to a request. In the table below, an example of a small set of IRP major

function codes that have to be implemented, with their WIN32 function that will

result in the relevant IRP being dispatched [Cant, 1999].

Win32 Function IRP Major Code Base Driver Routine

CreateFile IRP_MJ_CREATE Create

CloseHandle IRP_MJ_CLOSE Close

ReadFile IRP_MJ_READ Read

WriteFile IRP_MJ_WRITE Write

DeviceIoControl IRP_MJ_DEVICE_CONTROL DeviceControl

The I/O Manager knows implicitly what entry routines there are for each driver, and

this is achieved by the I/O Manager keeping a list of Driver Objects. A driver object is

equated with a Physical Device Object (PDO). A driver object is created by the I/O

Manager when a driver is first loaded and installed. During the driver initialisation,

the driver object is passed to the first driver entry routine called DriverEntry, which

then associates its other entry routines with the driver object [MSDN, 2005].

3. The Windows Driver Model 16

The WIN32 API communicates with the I/O manager, which builds the appropriate

request to be sent to the correct driver. The driver is represented by a driver object,

while a device that belongs to the driver is represented as a device object. These

objects are stored in system memory, and are created by the system as they are

needed. On the receipt of an I/O request, the I/O manager knows the target device of

the request (from the DeviceIoControl call of the application) and requests from the

object manager a pointer to the driver object responsible for the device. An IRP is sent

to the dispatch routine of the driver object, which then picks out which device it is

targeted at and routes the IRP there.

3.3 I/O Request Packets

The core function of a driver is to respond to I/O requests from the system or

application. The driver handles the request by processing the IRP; if the driver cannot

do that then it passes the IRP to the driver below it in the stack. Each driver in the

stack should be ready to receive any IRP and handle any error.

3.3.1 IRP Data Structure

IRPs are essentially data structures that contain certain fields, defining the type of

action to be performed. Each IRP has an action defined by a function code. There are

two types of function codes for an action. One is a major function code which

indicates the main action, while the minor function code further specifies the action.

When an application sends a request for a certain operation from a driver controlled

device, the I/O Manager accesses the object manager in order to resolve the request

[MSDN, 2005]. The object manager is a core system component that manages all

stored system created objects and data structures, keeping pointers to their locations.

The request will want to make use of some service offered by a device and the object

manager returns a pointer to the device object.

From here the I/O Manager builds and allocates memory for the IRP, and initialises

certain fields which relate to the positions of drivers in the I/O stack. The IRP is

3. The Windows Driver Model 17

passed to the top of the relevant driver stack. The driver then accesses the I/O stack to

determine the current operation it has to complete.

Figure 3.2: I/O Request Packet Structure [Oney, 2003]

3.3.2 I/O Stack

When an IRP is created, an array of IO_STACK_LOCATION structures are created

and associated with that IRP [Oney, 2003]. Each stack location represents one of the

drivers that will process the IRP, basically defining the driver stack. Each structure

contains the function codes and parameters that describe the action of the IRP. The

I/O stack location can also save contextual information about the operation of the

current driver. This way the drivers can act on different levels, allowing the

incremental completion of the task.

3. The Windows Driver Model 18

Figure 3.3: IRP Structure Relating to Stack Locations [Cant, 1999]

It falls to the current driver to access its associated I/O stack location structure,

thereby accessing the IRP function code and its parameters. When the driver is done

with the processing, the driver increments the I/O stack pointer to the next stack

location and then passes the IRP to the next driver [MSDN, 2005].

3.3.3 IRP Queues

Since the system supports asynchronous requests within a multitasking and

multithreaded context, drivers may not be able to finish processing the current IRP

before another arrives. WDM drivers should then support driver queues, which the

I/O Manager associates with each device object a driver creates [MSDN, 2005]. The

lower-end drivers that support the I/O operations of a device supply a StartIO routine.

IRPs that are queued by a driver using the I/O Manager’s support routine, are then

queued to the StartIO routine.

3.3.4 I/O Control Codes

Due to the nature of this project, an understanding of I/O Control Codes (IOCTLs) is

important in the core features of any driver. I/O control codes are a communication

channel between user-mode applications and drivers [MSDN, 2005]. Typically,

IOCTLs are sent to drivers by applications using the DeviceIoControl call. When this

happens, the I/O Manager creates an IRP concerning device or internal device control,

IRP

IO_STACK_LOCATION

IO_STACK_LOCATION

IO_STACK_LOCATION

IO_STACK_LOCATION

Header

Stack
Locations Current

Stack
Location

MDLAddress IO Status

3. The Windows Driver Model 19

including the IOCTL code. This results in the IRP being sent to the upper-most driver

in the stack. This allows your driver to respond to an IOCTL sent by an application.

3.4 Driver and Device Objects

These objects form the core representation of the WDM architecture for the OS. They

represent the driver and the devices under the driver’s control, and store information

relevant to the driver’s operation. An in depth explanation of these objects is required

to further understand the WDM architecture.

3.4.1 Driver Object

The I/O Manager creates a driver object for each driver that has been loaded and

installed. They are defined using DRIVER_OBJECT structures. The driver object

represents the driver itself and contains a list of pointers to all the device objects of

the devices under the control of the driver [Oney, 2003].

The driver object sets the pointers to driver entry-point functions during driver

initialisation. For a driver to receive IRPs, it needs to contain the corresponding entry

point to the IRP handler routine. For instance, to receive an IRP major code of PNP

there has to be a PNP dispatch routine published by the driver object so that the I/O

manager knows the location of the function to dispatch the IRP to. Each entry point

corresponds to an IRP major and minor function code. If a driver manages its own

IRP queue then the driver object should contain an entry point to a StartIO routine.

For non-persistent drivers, an entry point to the Unload routine can be called to free

up system resources [MSDN, 2005].

3. The Windows Driver Model 20

Figure 3.4: DRIVER_OBJECT Structure [MSDN, 2005]

Figure 3.4 depicts a typical driver object containing the accessible fields of the data

structure. PtrDeviceObject is the pointer to the list of device objects for which the

driver is responsible. The I/O Manager uses this list to connect the devices together.

PtrDriverExtension contains the address of the AddDevice routine the PnP Manager

will use to add and enumerate new devices under the control of the driver. The

DDDispatchXXX entry points correspond to each of the major IRP codes the driver

will handle.

3.4.2 Device Objects

The operating system represents devices using device objects. These are the target for

all functional operations. The driver object holds pointers to the routines contained in

the device object. There are usually multiple device objects for a device, one for each

driver in the stack [Oney, 1999].

The device object uses a structure called DEVICE_OBJECT to represent itself, which

is managed by the Object Manager. Each object can be named and as result has a

handle to easily access it. Additionally, each device object has dedicated system

storage space for maintaining device state and storing other driver related data

structures. This space is represented in another data structure called the driver

extension, particular to a driver and will incorporate all the devices that it is

3. The Windows Driver Model 21

responsible for [MSDN, 2005]. The I/O Manager’s IoCreateDevice and

IoCreateDeviceSecure routines allocate non-paged memory for the device object and

extension. Every standard driver routine that receives an IRP can also access the

driver extension via the pointer to the device object contained within the IRP.

Figure 3.5: Device object creation [MSDN, 2005]

To create a device object, the driver calls the AddDevice routine. The actual object is

created through a system call IoCreateDevice, which then initialises the object. The

device object has certain properties defined through accessible fields, as shown above.

These properties describe how the device object interacts with the system. There are

different types of devices, with a corresponding type of driver, each interacting with

the system in a different manner. Security and exclusivity aspects of the device and

the driver are defined here [MSDN, 2005].

There are three kinds of WDM device objects:

• Physical Device Object (PDO)

• Functional Device Object (FDO)

• Filter Device Object (Filter DO)

3. The Windows Driver Model 22

The PDO represents and is created by a bus driver, with certain responsibilities and

functions. These include enumerating and administrating the devices on the bus,

responding to PnP and Power IRPs.

The FDO is the functional driver’s device object, which is the main driver for the

device. Its purpose is to provide an interface to the operation of the device.

A Filter DO is an optional driver that can modify the behaviour of the driver

depending on what is required. For instance, if you wanted to monitor the functioning

of the device, or you wanted the device to conform to expected specifications, this

would be done using a filter driver [MSDN, 2005].

3.5 Entry Routines

As established above, IRPs are the communication streams from an application to a

device in order access its resources [Oney, 1999]. Entry routines are the entry points

into the driver code. They represent the different functionality of the driver by

implementing standard routines. These standard routines are called under different

circumstances, and are required to provide the functionality for which they are named.

The amount of required routines increases as the amount of functionality and support

the driver is designed to implement. Lower-end drivers, those that directly control

access to the devices resources will have more required routines than the higher-end

drivers.

3.5.1 DriverEntry

As discussed earlier, the DriverEntry routine is called by the I/O Manager the first

time a driver is loaded and installed by the system [MSDN, 2005]. Any initialisation

is taken care of here, setting up any required parameters. The main purpose of the

DriverEntry routine is to fill in various pointers to functions in the driver object.

These are pointers to the other subroutines of the driver. The I/O Manager makes use

of these pointers when it builds an IRP. The subroutines represent the other entry

points to the driver, including the dispatch routines, which receive and dispatch IRPs.

3. The Windows Driver Model 23

A pointer to the driver object is passed as a parameter of the DriverEntry routine

when the driver is first loaded.

3.5.2 AddDevice

The AddDevice routine’s responsibility is to create and initialise the driver’s

representation of the device object for each device enumerated by the PnP Manager

[MSDN, 2005]. AddDevice routines are called during system initialization (when

devices are first enumerated), and any time a new device is enumerated while the

system is running. During device object creation, an association between the driver

object and the new device object is created. Memory is allocated for the device object

by the kernel system, and a pointer to the object is passed as a parameter of the

AddDevice routine. The driver must provide storage, usually in the device extension

of a device object, for pointers to certain objects obtained from the I/O manager or

other system components.

3.5.3 Dispatch Routines

In order for a driver to process an IRP, it must have handler code for that IRP

[MSDN, 2005]. Dispatch routines are supplied to handle one or more IRP major

function codes. The driver’s DRIVER_OBJECT structure has within it a dispatch

table that holds the dispatch routines supplied by the DriverEntry routine. The I/O

Manager uses the pointer to the relevant dispatch routine to dispatch the IRP for

processing. The exact functionality a dispatch routine should provide depends on the

I/O function code it handles, on the driver’s position in the stack, and on the type of

physical device it supports. This is where the driver decides how to process the IRP,

or pass it on down the stack. This is an integral part of the driver’s functionality in

handling IRPs. There are certain dispatch routines a driver must support. These

routines can be supported as far as the driver requires.

3. The Windows Driver Model 24

Figure 3.6: Relationship between I/O manager and IRP processing

The above figure is a sequence diagram expressing the relationship between the I/O

manager and the driver’s IRP processing mechanism. Firstly, the I/O manager will

respond to an application’s request for an I/O operation, or some request that has to be

handled by a client driver. As an aside, the PnP manager can generate its own IRPs

although it has to go through the I/O manager. An I/O operation is always directed at

a device object, represented as a handle in user-mode. The I/O manager finds the

driver object responsible for the device to get the device object. The object manager is

in charge of managing system objects, and will return a pointer to an object should a

request be made. The I/O manager then builds an IRP, specifying the relevant fields

and in particular, using the driver and device object pointers in specifying the target

for the I/O operation. The location of the dispatch routine is extracted from the driver

object’s table of dispatch routines, and is used to call the routine to pass it the IRP.

The driver will route the IRP to the target device’s IRP handler routine for that IRP

major function code to be processed.

3. The Windows Driver Model 25

3.5.4 StartIO

The StartIO routine is used exclusively with an IRP queue, and is called in response

to an IRP being ready in the queue for serialised IRP processing. In higher-end drivers

this may inhibit performance, and may face certain inoperability factors [MSDN,

2005]. The processing of IRPs may be slower due to the StartIo routine becoming a

bottleneck. It is recommended that higher-end drivers use internal queues.

For lower-end drivers, the support of the StartIo routine becomes the foremost focus,

especially when considering that StartIo is responsible for starting any I/O operation

on a physical device [MSDN, 2005]. Control over the processing of IRPs can be

instituted by creating queues for their different function codes. Serialising the

incoming IRPs can increase the throughput processing of I/O requests.

3.6 Chapter Summary

Following the Windows Driver Model is explicitly required for any kernel-mode

driver, ensuring a reliable architecture for the representation of drivers and decoupled

modularised driver stack for I/O operations. This separation and specialisation of

drivers is inherently more flexible and sturdy than the legacy monolithic driver

approach. In terms of development, drivers can be written to take advantage of

established drivers supplied by Microsoft for generic I/O operations on standard

device hardware. There is still a proportion of non-core driver code that the WDM

requires of the driver to implement for administrative purposes. This is code that most

drivers are required provide, specifically the handling of IRPs the driver may not

explicitly need. The next chapter deals with a driver development tool that smoothes

the driver production process by providing a framework of classes to neatly

encapsulate required generic driver functionality.

4. Compuware DriverStudio 26

4. Compuware DriverStudio

The development of the Windows mLAN driver was done with the help of a

proprietary Driver Development Environment called DriverStudio. Any kernel-mode

driver has to conform to the WDM and support Plug and Play functionality. So there

is basic functionality that any and every driver should implement. In order to

streamline and optimise the development of a driver, Compuware developed

DriverStudio to work in conjunction with Microsoft Visual Studio. DriverStudio is a

C++ class library that forms a framework for driver development [DriverStudio,

2004]. It is an object-oriented approach to writing drivers, with the DriverStudio

classes denoted by a leading ‘K’. This also allows for code generation of classes and

features of the required aspects of a driver. This involves the use of special classes to

encapsulate the concepts inherent in driver writing, forming a hierarchy of classes.

However, a developer can deviate from the structured framework supplied by

DriverStudio if the driver’s functionality requires special support.

Figure 4.1: DriverStudio Classes [DriverStudio, 2004]

The above diagram depicts a subset of the DriverStudio classes used by the mLAN

driver. The framework is a collection of objects and classes that form a foundation

and a skeleton for the quick and efficient development of a driver. The classes and

objects are built specifically to closely model the WDM architecture. The classes that

KStreamMinidriver

KStreamAdapter

KStream

KDevice

KPnpDevice

KLowerDevice

KPnpLowerDevice

KFilterDevice

KDriver
KRegistryKey

KFile

KUstring

KList

KInterLockedList

KSpinLock

KIrp

KIOWorkItem

KTimer

Driver Framework
Utilities

Kernel Streaming

4. Compuware DriverStudio 27

driver writers use to derive their own classes for their drivers contain functionality

and resources to allow for the integration of the driver into the framework. The

objects provide functionality to allow for the ease of working with data structures

within the driver context. The purpose of the framework is to provide a model for the

communication between the different components, which encapsulates the flow of

data required to facilitate the functioning of the driver. There are certain classes that

require subclasses to be derived from them, in order for the driver to provide specific

functionality.

4.1 KDriver

The driver object is implemented by the class KDriver, which contains the entry

points into a driver. It is the class responsible for initializing the driver, and for

directing I/O requests to the device objects to which they are targeted. It is an abstract

class that requires that a class be derived from it and certain member functions be

overridden. Each driver built using the framework distinguishes one class as the

driver class, such that only one instance of KDriver can exist for a driver. KDriver has

a macro member function called DECLARE_DRIVER_CLASS which must appear

exactly once, outside of any function. This sets up the framework for the class derived

from KDriver. The macro dynamically allocates an instance of the specified class

from the non-paged pool. By default the class library framework routes and handles

the IRPs for processing. This can be changed by overriding the DispatchFilter

member function, and informing the framework that it should use this method.

4.1.1 DriverEntry

All classes derived from KDriver must implement this member function. KDriver’s

DriverEntry differs slightly from that specified by MSDN. In the MSDN

documentation there are two parameters, a pointer to the DRIVER_OBJECT structure

created by the I/O Manager and a pointer to a string containing the path to the driver’s

registry key. KDriver’s DriverEntry just takes the registry path parameter, loads and

validates the path. Using the registry path, member variables can be updated with

4. Compuware DriverStudio 28

values stored in that key. Any initialization of the driver object will take place here.

For example, explicit use of the DispatchFilter routine can be set up here.

4.1.2 DispatchFilter

If the DispatchFilter routine has been enabled in the framework, then all incoming

IRPs to the driver will be routed to this routine first. This member function allows the

preprocessing of IRPs, as well as the entry point for IRPs. This allows the driver to

monitor all the I/O requests from a single point. Every IRP has to be processed,

returning the status of the completed IRP to the I/O Manager.

4.1.3 AddDevice

The PnP Manager, by way of the I/O Manager, prompts the framework to call

AddDevice when a new device that the driver is responsible for is detected. It receives

a pointer to the device object created by the system to represent the newly detected

device. This is generally the PDO created by the system to keep track of the

enumerated devices. The AddDevice member function usually creates the driver’s

functional representation of the physical device called the FDO. The FDO is created

using the PDO (the physical representation of the device), and is usually represented

by an instance of a subclass of KPnpDevice. The FDO has the responsibility of being

the recipient of the IRPs sent by the system or the driver’s dispatch routine. An

association between the PDO and FDO is formed by creating an instance of a

KPnpLowerDevice object. This will be covered later on in this chapter.

4.2 KDevice and subclass KPnpDevice

As mentioned in the previous chapter, a device object represents the virtual or

physical device that is the target of I/O operations. KDevice is the base class from

which new classes are defined, and instances created. The member functions of

KDevice model system services that deal with device objects. KPnpDevice is a

subclass of KDevice that has extra support for PnP drivers. It is a class that requires

4. Compuware DriverStudio 29

certain member functions to be overridden. A driver writer can set different policies

regarding PnP and Power management. These policies allow the handling of PnP and

Power related IRPs in specific ways, responding to a certain set of minor function

codes.

It is the responsibility of the device object to provide handler member functions in

response to IRPs directed at it. The IRPs that get dispatched to the device object have

to be handled in a way that satisfies the request. An IRP could contain a request for

the driver to handle some I/O operation, a PnP or a Power state change. Member

functions within the KDevice and KPnpDevice class streamline the handling of the

IRPs. The classes also have member functions available for the system (via the

framework) to inform the device object of the resources under its control. Other

member functions are for the release of these resources. Within the constructor of the

subclass of KPnpDevice, it is critical to attach the KPnpLowerDevice object to the

device object to register a clear path of communication. When this is done, the

framework alerts the I/O manager to the addition of the lower device object to the

driver stack.

It is through the device object that the framework defines the upper edge of the driver.

The upper edge of the driver is the part of the driver that provides an interface

between the system and the lower edge, with communication through the use of IRPs.

The lower edge driver is usually an interface directly to the hardware or to another

driver. The lower edge device objects are distinguished as being un-owned by the

driver class, which provides a different functionality set and allows the decoupling of

the driver stack. The lower edge driver is the framework’s representation of the

drivers lower down in the driver stack. These objects are described in the next section.

4.3 KLowerDevice and subclass KPnpLowerDevice

The Windows Driver Model is a layered architecture. Low level drivers interface to

the hardware and provide access to its resources. Intermediate level drivers provide

additional translation and support for requests. High level drivers handle the initial

I/O requests and begin the processing of the IRPs [DriverStudio, 2004]. Drivers that

4. Compuware DriverStudio 30

receive an I/O request have the option of handling the IRP and processing it, or

passing it on down the stack, either in the form of the original request, or as a set of

new requests. In this way drivers can communicate with other drivers and can make

use of services available from other drivers rather than redundantly implementing

everything again. Requests are always addressed to a device object within the driver,

although the request may have to go through several drivers before reaching the

target. The lower device object is that system device object that receives and

processes the hardware level I/O requests. The main purpose of the lower edge driver

class is to decouple the upper and lower edge of a device, allowing the layering of

drivers. The result is that drivers have a limited set of functions for which they are

responsible.

Figure 4.2: Hypothetical Driver Stack

The above diagram illustrates the usage of a lower device object within a stack,

further showing the benefit of the layered architecture.

KPnpLowerDevice is a subclass derived from KLowerDevice that encapsulates extra

PnP functionality. If a driver is WDM compliant (supports PnP and Power

Management) then the lower device object will be of type KPnpLowerDevice. The

PDO is modelled by the class KPnpLowerDevice [DriverStudio, 2004]. There are

two ways to create and initialise a lower device instance; one way is to pass the PDO

and the FDO pointers as parameters to the constructor, and the other way is to use a

constructor without any parameters and call the Initialize member function. The

Initialize routine takes the FDO pointer and the PDO, where the PDO is the device

Client driver for
1394 camera

Client driver for
1394 scanner

1394bus.sys

ohci1394.sys

HAL of Firewire bus

Lower Device

Upper Device

4. Compuware DriverStudio 31

object passed by the system when it called the AddDevice routine. When the driver

creates an instance of a subclass of KPnpDevice, the PDO is a parameter of the

constructor that is used to initialise the instance of KPnpLowerDevice. The FDO

pointer is that of the KDevice subclass instance. During the lower device creation and

initialisation the PDO is attached to the FDO, returning the pointer to the device

object that was attached. It is then the responsibility of the KPnpDevice subclass

constructor to call a member function SetLowerDevice.

4.4 Non-Driver Framework classes

These groups of classes represent the container and utility classes that provide

structured support for developing kernel-mode drivers. To program kernel-mode or

system components, the correct usage of objects and data types is required. These

classes model system data types and objects, and required generic driver functionality

and expose a high level abstraction for use by the driver. These classes are developed

specifically for use by drivers of the DriverStudio framework, incorporating tedious

but necessary functionality. The KInterLockedList class, for instance, provides an

implementation of doubly linked lists that can be serialised and uses a built in spin

lock to enable safe access to the list. Another example of useful functionality is the

KIoWorkItem which encapsulates a system request to execute a callback, allowing the

queuing of a work item that will get executed by the system’s worker thread.

4.4.1 KIrp

The KIrp class abstracts the IRP sent by I/O manager and simplifies its use. An IRP is

a complex data structure that leads to code for interacting with an IRP to be as

complex. The difference in use is illustrated by the code snippet below, showing the

easily readable usage of the KIrp object versus the relatively complex C equivalent.

4. Compuware DriverStudio 32

// Straight C version
PIRP pIrp;
IO_STACK_LOCATION pStack;
pStack = IoGetCurrentIrpStackLocation(pIrp);
switch (pStack->Parameters.DeviceIoControl.IoControlCode)
{
 . . .
}

// Using class library
KIrp I(pIrp);
switch (I.IoctlCode())
{
 . . .
}
Figure 4.3: IRP versus KIrp usage [DriverStudio, 2004]

The KIrp class provides easy to use accessors for involved operations to access the

various fields of the IRP. Simple operations are provided for generic operations on the

IRP, closely modelling the behaviour of the IRP.

4.4.2 KDriverManageQueue

It is the responsibility of the driver to implement a queue for I/O requests, should the

driver require serialised IRP processing. The KDriverManageQueue framework class

provides a utility class for the serialised queuing of incoming IRPs. Conceptually, all

incoming IRPs are routed to the queue to wait for when the driver is ready to process

the next IRP. This saves the driver writers the extra effort of implementing a working

queue.

4.5 DriverStudio’s Kernel Streaming Services Framework

Kernel Streaming (KS) services support kernel-mode processing of data streams for

audio and for other types of continuous media [MSDN, 2005]. The current Windows

provided multimedia streaming driver in use that encapsulates KS services is the

AVStream minidriver. In order to utilise this service, you have to develop a

minidriver that runs as an AVStream minidriver. Below is a diagram showing the KS

architecture.

4. Compuware DriverStudio 33

Figure 4.4: AVStream Architectural Overview [MSDN, 2005]

The port class driver provides an implementation of a KS filter driver, encapsulating

the model of kernel-mode nodes processing a stream between a start and end point.

The Stream class driver is provided for backward compatibility with KS 1.0 version

video drivers.

DriverStudio provides a framework of classes for encapsulating the functionality of

the KS Architecture, shown below in the object model of the framework. These

classes are KStreamMinidriver, KStreamAdapter and KStream.

Figure 4.5: DriverStudio Kernel Streaming Framework

As a benefit of using the DriverStudio framework, driver writers do not have to worry

about the specifics of the underlying KS architecture. It is required that there is a

derivation of the three classes that make up the architecture. The Minidriver class is

responsible for the control of the stream adapter class. In essence the Minidriver can

4. Compuware DriverStudio 34

be viewed as a filter driver, because it acts on behalf of the mLAN driver to process

data streams. An adapter is in turn responsible for control of a stream resource. The

adapter class controls an individual physical hardware device or layered software

components above a hardware driver. The minidriver and adapter objects provide

control over the device driver and hardware while the stream object provides control

and data handling for an individual media stream. Specifically, the stream class is

where stream control, stream properties, and stream data buffers are managed

[DriverStudio, 2004].

4.6 Compiling a driver

Although DriverStudio is a driver development tool, it still requires the Windows

DDK build utility to compile drivers. The DDK is required to be used by all kernel-

mode drivers as it builds the driver source code with kernel-specific headers, libraries,

compilers and linkers. The build utility can be run from the Visual Studio IDE or a

command prompt. The framework generates the SOURCES and MAKEFILE files that

are used by the build utility when a new driver project is created, leaving

customisation up to the developers. These files contain the location of the various

source files, the libraries to be linked and the intended output used in the compilation.

Building a driver is a critical event, as it has to be optimised to the platform (for

example, x86 32-bit or IA64 64-bit builds) it is intended for. Thus the usage of the

correct build options (of the correct DDK version) for the target platform is necessary

for the driver to compile and function correctly.

4.7 Versioning Issues

It is important to note that the DriverStudio framework is a development tool that

encapsulates the WDM architecture. It makes system calls and uses system objects,

though the framework exposes a high level of abstraction. The classes of the

framework are based on the WDM and are developed to use the recommended

techniques. Microsoft allows developers to create drivers for their operating systems

by providing the Windows Driver Development Kit (DDK), and it is the DDK that is

responsible for the building of the driver. The DDK is versioned by release and

4. Compuware DriverStudio 35

operating system, and documents the WDM, providing a design guide for developing

drivers. Through each subsequent update to the operating system (for example, the

Windows XP Service Pack 2) and the DDK, a change in the WDM or Microsoft core

drivers may occur. This change has to be reflected in the DriverStudio framework,

and it may be that different versions of DriverWorks (the specific module for driver

development) will be incompatible. Consequently, code written for a driver using an

earlier version of DriverStudio and the Windows DDK may not compile with later

versions unless modification of the code occurs.

4.8 Chapter Summary

This chapter has explained the usefulness of using a framework like DriverStudio in

driver development. It is also fundamental to understanding the analysis of the mLAN

driver. The relevant concepts have been covered to allow the next chapter to begin

explaining the analysis of the driver. It is evident from the previous two chapters that

the relationship between the WDM and the DriverStudio framework, as the

encapsulation of a complex model for drivers is simplified using class libraries.

5. Object-oriented model of the mLAN driver 36

5. Object-oriented model of the mLAN driver

This chapter introduces the model of the mLAN driver, explaining the usage of the

classes and how they fit into the DriverStudio framework. Firstly a brief description

of the methodology of analysis used in abstracting the object model and class

interactions is presented. Following that is an overview of the class model structure,

the classes involved and how they relate to each other. This takes a conceptual look at

the underlying driver technology used by the mLAN driver.

5.1 Methodology of analysis

The purpose of the previous DriverStudio chapter is to provide an understanding of

the framework used to create the mLAN driver. DriverStudio contains different

modules, providing development tools, extensive testing utilities and a powerful

debugger called SoftIce. SoftIce requires that building the driver is done using the

DDK “checked build” option, which includes debug information into the build.

SoftIce is able to convert that debug information and the source code into a symbol

table that allows the debugger to step through each line of code, examining the value

of every variable and the memory allocation.

The object model can be extrapolated from the source code by examining the classes

used for the driver and devices, and relating their usage to the DriverStudio

framework. This does not present a challenge, but the main focus of the project, is in

essence to model the interaction between the classes, and in particular the servicing of

I/O requests. SoftIce becomes a valuable tool in performing analysis of the driver

source code, allowing the extraction of sequence diagrams through quick and accurate

analysis. The usage of data structures and objects will become clearer through

tracking IOCTL requests from an application to the driver code. The alternative is

manually reading the code to document the driver.

5. Object-oriented model of the mLAN driver 37

5.2 Overview of the Class Structure

The object-oriented model of the mLAN driver is represented in the class diagram

below. This is the mLAN driver, and in its compiled form is called “mlanbus.sys”.

From a high level, the driver can be viewed as a kernel component, since it resides in

system addressable memory space and operates in the kernel-mode. It can only be

accessed by user-mode applications via the WIN32 API, which exposes driver

functionality through IOCTL codes.

Figure 5.1: Object Model of mLAN Driver

The class that is conceptually seen by the system as the driver is the CmLanBusDriver

class, which inherits from the KDriver class of the framework. This is the class that

contains the entry points into the driver code. These will be covered in a later section

with the aid of sequence diagrams. Every time the system detects a new device under

the control of the driver, it calls the AddDevice routine of the driver code. The driver

then instantiates a new device object of type CmLanBus, passing it the pointer to the

system-created device object obtained from the AddDevice routine. Upon the creation

of the device class object, it needs to initialise its lower device object of type

5. Object-oriented model of the mLAN driver 38

KPnpLowerDevice. This represents the driver technology on which the mLAN driver

sits. The actual mechanics of this is handled by the framework and the I/O manager.

The Minidriver object is a data structure representing another driver for making use of

Kernel Streaming services, modelling the DriverStudio KS architecture.

CmLanDriver_ManagedQueue is the class that makes up a driver-managed IRP

queue. The rest of the classes (KIoWorkItem and KRegistryKey) are included as

indication of how the mLAN driver makes use of the framework’s utility classes.

5.2.1 Entry points

There are three entry points into the driver code, these being the DriverEntry,

AddDevice and DispatchFilter routines. The DriverEntry routine is called when the

driver is first loaded, giving the driver a chance to initialise the driver state. This is

depicted below in the sequence diagram. Driver state variables are retrieved from the

system registry, stored from the last time the driver was loaded. The framework’s

dispatch filter mechanism is enabled.

Figure 5.2: The DriverEntry Routine

5. Object-oriented model of the mLAN driver 39

The next entry point is the AddDevice routine, which is called in response to a new

device being detected. This creates and initialises a device class object, which in turn

initialises its attached lower-device object. During initialisation of the device class

object, the relative Power and PnP policies are set. These policies govern the way the

device reacts to the various Power and PnP IRPs sent to it. For instance, this will

allow or disallow a device being put into sleep mode. Finally, should there be no

problems, the driver, via the framework, alerts the PnP manager of the power state of

the new device. Below is the sequence diagram for the routine.

Figure 5.3: The AddDevice Routine

For the last entry point, as seen in the sequence diagram below, the DriverStudio

framework neatly encapsulates the dispatching mechanism required by other WDM

drivers by routing IRPs to a single routine. The DispatchFilter routine simply checks

whether the IRP is targeted to a device under control of the driver, or a child

minidriver object responsible for a stream. It is up to the target device to handle the

IRP correctly. The minidriver object receives an IRP from the Streaming driver it

represents in order to communicate with the mLAN driver. This is covered in the next

chapter. An IRP for a device of the driver is dispatched to the device class to be

handled there. The framework is aware of which IRP handler routine should be called

by examining the IRP major function code.

5. Object-oriented model of the mLAN driver 40

Figure 5.4: The DispatchFilter Routine

5.2.2 Kernel Streaming Minidriver

As mentioned above, the mLAN driver makes use of a Kernel Streaming Minidriver

to control the isochronous streaming between the PC and a node on the Firewire bus.

It is a driver created with DriverStudio based on the Windows Kernel Streaming

architecture. Below is a class diagram depicting the mLAN specific implementation

of the framework’s KS architecture. The member functions and variables, for the most

part, are left out because they have no direct bearing on this discussion.

5. Object-oriented model of the mLAN driver 41

Figure 5.5: The mLAN Kernel Streaming Minidriver Class Diagram

The CmLanStrmDriver class is the inherited KStreamMinidriver class used to provide

the entry points of the driver. The framework responds to the I/O manager’s call to

create a new device by calling OnCreateAdapter, which creates the

CmLanStrmAdapter object and initialises it. The CmLanStrmAdapter object contains

objects representing all possible types of streams that it can handle, and will

instantiate the required stream class. The stream child classes are all inherited from

the same parent class, requiring upon creation to call InitializeBaseClass to set up the

stream parameters. These stream classes represent the MIDI and audio data streams

that exist in mLAN’s isochronous streaming. Unfortunately Microsoft’s IEEE 1394

driver does not support the bridging of multiple busses due to limitations in the

representation of the bus number of the driver. As a result, the bridge streams are not

fully implemented, merely providing a skeleton for future work when support for

multiple busses is implemented.

5. Object-oriented model of the mLAN driver 42

Figure 5.6: Sequence Diagram for Creating Minidriver

The diagram above models the interaction between the mLAN driver and the KS

minidriver in response to an application based request to begin streaming. The points

before number four in the sequence diagram is generic IOCTL processing, while

points five to nine represent the request for bus resources. In those requests,

parameters for the stream are initialised. Points ten to fifteen represent the steps taken

to create the minidriver object. Essentially, the minidriver is called to be created by

the system call of IoCreateDevice, which is required to control an isochronous stream.

This is created by the device object and stored in driver object for dispatching

purposes. The minidriver object is removed when a PnP IRP updating the state of the

device to be “removed” is received or the stream it is responsible for ceases

streaming.

5. Object-oriented model of the mLAN driver 43

5.2.3 IOCTL Dispatching

IOCTL codes are specified when using the IRP_MJ_DEVICE_CONTROL major

function code of the IRP. As a result, the driver can pick out the IOCTL by having a

handler routine for the IRP that switches the IOCTL code and calls the appropriate

IOCTL handler routine.

Figure 5.7: Sequence Diagram of IOCTL Dispatching

This is a generic IOCTL dispatching mechanism which is relevant in understanding

the communication aspects of a driver. There is no need to explicitly return

information, as the input and output buffers are contained in the IRP, which the I/O

manager returns to the application.

5.3 Chapter Summary

After discussing the structure of the driver, relating it to the WDM and the

DriverStudio framework, it is now appropriate to move onto the chapter concerning

the analysis and the documenting of the IOCTL codes.

6. IOCTL Analysis and API design 44

6. IOCTL Analysis and API design

This chapter represents the work done to document the IOCTL codes and the

respective handler routines of the mLAN driver. The purpose of this is to provide

information concerning the IOCTLs in order to propagate understanding of how the

IOCTLs work and their intended usage. Firstly, an overview of the usage and form of

IOCTLs in regard to the mLAN driver is given. Due to the number of IOCTL codes, it

is prudent to group them according to their underlying function. Each group is

identified and explained. Following that is a brief section describing the issues

surrounding the analysis of the driver.

6.1 mLAN driver IOCTL codes

The mLAN driver implements IOCTL function codes in the custom range from 2048

to 4095. The values from 0 to 2048 are reserved for use by Microsoft [MSDN, 2005].

This allows independent hardware vendors and other types of companies that write

drivers to provide specialised IOCTL for their drivers, and removes any overlapping

that might exist for devices of a similar type. The enumeration of the IOCTL codes

for the mLAN driver can be found in “mlbusdrvioctl.h”. Below is an example of a

macro for IOCTLs, defining the name of the control code.

#define IOCTL_MLAN_ALLOCATE_STREAM CTL_CODE(FILE_DEVICE_UNKNOWN,

0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_MLAN_ASYNC_LOCK CTL_CODE(FILE_DEVICE_UNKNOWN, 0x906,

METHOD_BUFFERED, FILE_ANY_ACCESS)

Figure 6.1: Code excerpt from “mlbusdrvioctl.h”

The first parameter specifies the type of device the IOCTL is targeted at. Microsoft

has a list of device types predefined by the operating system, of which each device

type has its own associated set of function codes. The usage of FILE_DEVICE_UNKOWN

in this case is because a mLAN device must make use of custom IOCTL function

codes and no device similar to the mLAN device exists. The second parameter is the

function code of the IOCTL, which gives the action of the IOCTL. This is important,

6. IOCTL Analysis and API design 45

as it is used in differentiating between different IOCTL codes for the same device

type. The third parameter specifies how buffers are passed for I/O and file system

controls. Input and output buffers are used to store and access the data contained in

the IRP. To recap, IRPs have fields for the input and output buffers used in the

processing of the IOCTL and the data that is returned to the application. This is the

IRP that the IO manager creates to communicate with the driver. The fourth parameter

describes the access level that the IOCTL handler routine has over the IRP.

The mLAN driver provides and implements 63 different IOCTL codes and their

respective handler routines. Due to space limitations in this write up, the IOCTL

codes are too lengthy to be dealt with individually and will be grouped by their core

functionality. For example, all 61883 related IOCTLS will be grouped together. This

is not a fair representation of the IOCTL codes as each IOCTL handles a specific

action. For the documentation of each specific IOCTL, please refer to the Appendix.

There are five groups into which each IOCTL code can be categorised. For each of

these groups a brief discussion describing the intentions of the IOCTL codes will be

given, followed by detailed documentation of one IOCTL code from that group.

6.1.1 IEEE 1394 based mLAN IOCTL codes

These IOCTLs are implementations of IEEE 1394 class calls based on the IEEE 1394

bus driver. They are characterised by their function and communication with the IEEE

1394 bus driver. Below is a table containing the IOCTL codes in this group with a

brief description.

IOCTL code Description

IOCTL_MLAN_ADDRESS_RANGE_NOTIFY
Returns the node address of the
source of an I/O operation on the
specified address range

IOCTL_MLAN_SET_ADDRESS Sets the address of the allocated
address range

IOCTL_MLAN_GET_ADDRESS Retrieves the address of the node of
the allocated address range

IOCTL_MLAN_FREE_ADDRESS_RANGE Frees a previously allocated address
range

IOCTL_MLAN_ASYNC_LOCK Performs a locked asynchronous
operation on the indicated

6. IOCTL Analysis and API design 46

destination address

IOCTL_MLAN_ASYNC_READ Performs an asynchronous read
operation from the source address

IOCTL_MLAN_ASYNC_WRITE
Performs an asynchronous write
operation on the indicated
destination address

IOCTL_MLAN_BUS_RESET_NOTIFY Waits for a bus reset to occur
IOCTL_MLAN_BUS_RESET Initiates a bus reset
IOCTL_MLAN_GET_ADDR_FROM_DEVICE_OBJECT Not implemented
IOCTL_MLAN_GET_LOCAL_HOST_INFO Returns local host information
IOCTL_MLAN_GET_SPEED_TOPOLOGY_MAPS Obsolete

IOCTL_MLAN_SEND_PHY_CONFIG_PACKET Sends PHY config packet request to
the 1394 bus driver

IOCTL_MLAN_GET_LOCAL_NODE_ADDRESS Returns the local node address

IOCTL_MLAN_GET_CHANNELS_AVAILABLE Returns the bandwidth and channels
currently available

IOCTL_MLAN_ALLOCATE_CHANNEL Allocates the specified channel
IOCTL_MLAN_RELEASE_CHANNEL Releases the allocated channel

IOCTL_MLAN_GET_BANDWIDTH_AVAILABLE Returns the bandwidth and channels
currently available

IOCTL_MLAN_ALLOCATE_BANDWIDTH Allocates the specified bandwidth
IOCTL_MLAN_RELEASE_BANDWIDTH Releases the allocated bandwidth

The mLAN driver must do additional processing in the IOCTL handler routine, rather

than submit the request straight to the underlying IEEE 1394 bus driver. There are

some IOCTL calls that do not communicate with the Firewire driver, but instead act

on or use IEEE 1394 related data structures. It is through this additional processing

that the inherent functionality of the mLAN driver becomes apparent, as well as the

layered nature of the WDM architecture. In order to communicate with the Firewire

driver, an IRB has to be constructed with a function code specified, the IRB packaged

into an IRP, and submitted to the Firewire driver. The actual mechanism uses a

pointer to an IRB that is passed to the IRP, allowing (upon completion of the IRP) the

response data to be extracted from the IRB. The function code dictates the data

structure to be used, as it is forms a union with the IRB. Generally the packets sent to

the bus tend to be transmitted asynchronously, as they are control packets.

The usage of this group of IOCTLS can be further categorised into sub groups that

either allocate or de-allocate IEEE 1394 resources, modify or return driver state

information, initiate an asynchronous request, or setup a notification of some event. In

order to effectively use the Firewire bus, certain configuration and driver state

6. IOCTL Analysis and API design 47

information has to be known by the application. This will be used in subsequent

requests of Firewire resources. For instance, the application has to know the bus speed

in order to request bandwidth resources. A resource, in this case, is something

controlled by the Firewire driver. For the mLAN driver to make use of the resource,

an appropriate request has to be sent to the Firewire driver. If there are enough free

resources to allocate, a handle to the requested resource is returned. If the resource is

no longer used, it should be de-allocated and be returned to the pool of free resources.

An address range, channel number, and bandwidth are resources that are allocated to

the mLAN driver by the IEEE 1394 bus driver. These need to be allocated before any

asynchronous requests can be made. There are times when an application needs to be

notified of an event that takes place independent of any determinable factors. I/O

operations on an allocated address range or a bus reset are two instances of events that

an application would want to be aware of. A request for notification will return a

pointer to an event object, which can be polled to check if the event has transpired. It

is advisable to setup a waiting thread to avoid locking up the application.

An in-depth explanation of an IOCTL code handler routine from the IEEE 1394 group

will serve as an example, to give a template for those contained in the appendix. The

code, IOCTL_MLAN_ALLOCATE_ADDRESS_RANGE, is chosen as an example.

Given below is the extract of the IOCTL explanation from the appendix. First is the

specification of the input buffer, followed by the output buffer. It depends on the

IOCTL as to what data structures or data primitives are used as input and output. In

this case it is a pointer to an ALLOCATE_ADDRESS_RANGE struct.

Following that is a textual description of the IOCTL, giving a brief overview of the

intended action to be performed. Below the description is a diagram representing a

hybrid between a Ward and Mellor Structured Data Diagram [Ward, et al, 1985], and

Larry Constantine’s Data Flow Diagram. It is hybridised because neither method

neatly encapsulates the IOCTL handler, but rather taking elements from both methods

and combining them yields a clearer picture. The entire diagram can be viewed as

process instead of each full circle, as in the Ward and Mellor approach. The dotted

circle still represents a trigger for the process, responding to the IRP dispatch routine.

The parallel lines represent a data store, common to both methods of modelling. Each

full circle represents a sub-process that acts on a data store. The dotted lines represent

the flow of the trigger, while the solid lines represent the flow of data and control.

6. IOCTL Analysis and API design 48

After the structured data diagram is the abovementioned data structure used as input

and output in the IOCTL call. Note that the data structures are documented in a

separate section of the appendix.

Input Buffer:

A Pointer to an ALLOCATE_ADDRESS_RANGE struct.

Output Buffer:

A pointer to the same ALLOCATE_ADDRESS_RANGE struct.

Textual Description:

The struct specifies the address range that will be allocated in Host Controller address

space by the IEEE 1394 bus driver. An address range has to be allocated before the

host controller can respond to any communication from that node. The mLAN driver

sends an IRB containing the address range to the 1394 driver. The IRB function code

is that of REQUEST_ALLOCATE_ADDRESS_RANGE. A handle to the address range is

returned.

typedef struct _ALLOCATE_ADDRESS_RANGE {
 IN ULONG fulAllocateFlags;
 IN ULONG fulFlags;
 IN ULONG nLength;
 IN ULONG MaxSegmentSize;
 IN ULONG fulAccessType;
 IN ULONG fulNotificationOptions;
 OUT ADDRESS_OFFSET Required1394Offset;
 OUT HANDLE hAddressRange;
 IN UCHAR Data[1];
} ALLOCATE_ADDRESS_RANGE, *PALLOCATE_ADDRESS_RANGE;

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

6. IOCTL Analysis and API design 49

In this particular IOCTL call, the UCHAR Data[1] field of the data structure specifies

the beginning of the address range to be used. The ULONG nLength field specifies

how long the address range will be. In the IOCTL handler routine a buffer in system

memory is created to hold the address range. This is used in the IRB union struct. The

rest of the input fields are there to specify parameters to be used in the IRB. These

relate to memory management, completion notification and broadcast features of the

asynchronous request. The Firewire driver returns a handle to the allocated address

range and an ADDRESS_OFFSET struct that contains the IEEE 1394 node address.

The information is available from the struct that was used as input to the IOCTL.

6.1.2 Stream based mLAN IOCTL codes

The only difference between this group of IOCTLs and the previous is that these

IOCTLs deal with the isochronous nature of the mLAN system. As before, some of

these IOCTL handler routines do not communicate with the IEEE 1394 driver, they

are grouped here by the manner in which they interact with stream related structs used

by the mLAN driver. The main focus of this group is the management of stream data

structures used to represent a stream, and the sequences that make up a stream. A

stream is viewed as another IEEE 1394 resource. Like any other resource, it has to be

allocated before it can be used, and de-allocated when it is not in use. An allocated

stream exists in two states, started and stopped. There are IOCTLs that handle these

actions, as well as return stream specific information. The table below contains the

brief description of the IOCTLs contained in this group.

IOCTL code Description

IOCTL_MLAN_START_STREAM Starts the allocated stream
IOCTL_MLAN_STOP_STREAM Stops the allocated stream
IOCTL_MLAN_GET_STREAM_INFO Returns information of the stream
IOCTL_MLAN_FREE_STREAM Frees the allocated stream
IOCTL_MLAN_GET_DRIVER_VERSION Returns the driver version

IOCTL_MLAN_CONNECT_SEQUENCES_TO_DEVICES Creates the connection map of
sequences

IOCTL_MLAN_SET_SYT_SOURCE Sets the bus master field

This group’s IOCTL showcase is the IOCTL_MLAN_ALLOCATE_STREAM

handler routine. Following the same format as above, the IOCTL makes use of the

6. IOCTL Analysis and API design 50

MLAN_ISOCH_PARAM struct. The mLAN driver communicates with the IEEE 1394 bus

driver several times to request Firewire resources. These are requests for allocating a

channel, bandwidth, and a resource handle for transactions. The resource handle is

required for requesting and attaching buffers to the stream. In terms of the input

required for the IOCTL, two mLAN structs form fields of the input struct used to pass

information for use in the requests.

Input Buffer:

The input buffer uses a MLAN_ISOCH_PARAM struct, which specifies the type of the

stream to be used.

Output Buffer:

The same struct is returned, specifying the allocated stream information.

Textual Description:

The request responds to the need to allocate an isochronous stream resource specified

by the input struct. It goes through several steps to allocate a stream resource. It

creates the specified stream type, and gets a channel from the underlying 1394 bus

driver. The IRB function codes submitted to the Firewire driver are as follows:
REQUEST_ISOCH_ALLOCATE_BANDWIDTH, REQUEST_ISOCH_ALLOCATE_CHANNEL,

REQUEST_ISOCH_ALLOCATE_RESOURCES, REQUEST_ISOCH_ATTACH_BUFFERS. Inside

the struct, a pointer is provided to a MLAN_STREAM_STATUS struct, which contains the

information about the allocated stream.

typedef struct _MLAN_ISOCH_PARAM {
 OUT HANDLE hStream;
 OUT MLAN_STREAM_STATUS StreamStatus;
 OUT ULONG ErrorCode;

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

6. IOCTL Analysis and API design 51

 OUT ULONG aBitmapClient[MLAN_MAX_NUM_SEQUENCES
 / ULONG_BITSIZE];
 IN MLAN_STREAM_CONFIG mLANStreamConfig;
 IN MLAN_DATA_FIELD_CONFIG mLANDataFieldConfig;
} MLAN_ISOCH_PARAM, *PMLAN_ISOCH_PARAM;

The MLAN_STREAM_CONFIG struct describes the required stream configuration, in

particular the bus speed, stream type, channel, and buffer related information. The

MLAN_DATA_FIELD_CONFIG struct describes the intended configuration of the stream

data, and will be returned with extra information concerning the individual sequences.

A third struct, MLAN_STREAM_STATUS, returns information about the allocated stream

and individual sequence status. The primary field in the MLAN_ISOCH_PARAM struct is

the handle to the allocated stream. The stream handle is required for any subsequent

stream related operation.

6.1.3 61883 based mLAN IOCTL codes

The IEC 61883 based group of IOCTL codes are characterised by the underlying use

of the 61883 protocol driver and the 61883 specific structs that they act on. Similar to

the use of the IEEE 1394 bus driver, the IOCTL handler routines utilises the

functionality of the 61883 protocol driver and have to build an AV_61883_Request,

specifying the function code and setting the correct data for input. The request is

submitted to a process responsible for building a suitable IRP and sending it to the

61883 protocol driver. It is possible to further divide this group into three sub groups

featuring:

• Notification requests

• Function Control Protocol (FCP) packet requests

• Plug related requests

The notification sub-group sets up callback routines to wait for the specified event to

occur.

The Function Control Protocol sub-group allows the “send” and “get” of request and

response FCP packets to and from the bus. An FCP packet is an AV/C command or

response encapsulated in a FCP frame. The FCP packet is then received from or

transmitted to a device on the bus by the IEEE 1394 drive via the IEC 61883 protocol

driver.

6. IOCTL Analysis and API design 52

The last sub-group has to do with plug-related requests such as creating and deleting a

plug, connecting and disconnecting plugs, and setting and getting plug state

information. The IOCTLs are briefly described below.

IOCTL codes Description

IOCTL_MLAN_61883_GET_PLUG_HANDLE Returns a handle to the specified plug
IOCTL_MLAN_61883_CREATE_PLUG Returns a handle to a newly created plug

IOCTL_MLAN_61883_PLUG_NOTIFY
Returns an event handle that indicates
when an operation is performed on the
plug

IOCTL_MLAN_61883_DELETE_PLUG Deletes a plug
IOCTL_MLAN_61883_DISCONNECT_PLUG Disconnects the specified connection

IOCTL_MLAN_61883_GET_FCP_REQUEST Returns the next FCP request packet
from the queue

IOCTL_MLAN_61883_GET_FCP_RESPONSE Returns the next FCP response packet
from the queue

IOCTL_MLAN_61883_GET_PLUG_STATE Returns the state of the specified plug
IOCTL_MLAN_61883_SEND_FCP_REQUEST Sends FCP request to the device

IOCTL_MLAN_61883_SET_FCP_NOTIFY Registers a client driver notification of
FCP requests or responses

IOCTL_MLAN_61883_SEND_FCP_RESPONSE Sends FCP response to the device
IOCTL_MLAN_61883_SET_PLUG Changes transmission settings for a plug

An example from this group is the IOCTL_MLAN_61883_CONNECT_PLUG

handler routine. The input buffer receives a pointer to a CMP_CONNECT struct, with the

same struct being returned. Of the input structs used for the various IOCTL calls,

those that make use of the 61883 protocol driver mirror existing 61883 data

structures. The CMP_CONNECT struct is no exception and provides handles to the input

and output plugs that are intended to be connected. Two other 61883 structs are used

to specify the connection type and data format to be used in the streams. These are the

CMP_CONNECT_TYPE and the CIP_DATA_FORMAT structs. The output of the IOCTL call

is a handle to a plug connection.

Input Buffer:

The input buffer takes a CMP_CONNECT struct.

Output Buffer:

The same struct is returned.

6. IOCTL Analysis and API design 53

Textual Description:

The request is forwarded to the underlying 61883 protocol driver, using the handles of

plugs contained in the input struct to specify which plugs to connect. A function code

of Av61883_Connect is used. A handle to the connection is returned.

typedef struct _CMP_CONNECT {

 IN HANDLE hOutputPlug;
 IN HANDLE hInputPlug;
 IN CMP_CONNECT_TYPE Type;
 IN CIP_DATA_FORMAT Format;
 OUT HANDLE hConnect;
} CMP_CONNECT, *PCMP_CONNECT;

6.1.4 ASIO based mLAN IOCTL codes

The next group of IOCTLs, shown below, is the ASIO based calls, which is a mLAN

implementation of ASIO functionality.

IOCTL codes Description

IOCTL_MLAN_ASIO_INIT
Returns the current state information of
the ASIO driver and ASIO streams, and
initialises the driver

IOCTL_MLAN_ASIO_FREE Frees up ASIO allocated buffers
IOCTL_MLAN_ASIO_ALLOC Allocates ASIO buffers and resources
IOCTL_MLAN_ASIO_STOP Stops the ASIO driver
IOCTL_MLAN_ASIO_CLEANUP Removes ASIO related objects

IOCTL_MLAN_ASIO_INFO Returns the current state information of
the ASIO driver and ASIO streams

IOCTL_MLAN_ASIO_RESET Resets the ASIO driver

Calls
Calls

IRP

AV 61883 Request

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit SRB
to 61883
Protocol
Driver

Lower
Device:
61883

Protocol
Driver

Calls

6. IOCTL Analysis and API design 54

ASIO (Audio Streaming Input Output) is an API that provides the basis for an audio

streaming driver to make use of multiple channels, overcoming limitations of

Microsoft supplied audio streaming drivers. The classes can be overridden such that

the needed functionality can be extracted. The mLAN driver uses the ASIO classes to

create a client ASIO driver for use by applications requiring audio recording and

playback capabilities. The following diagram shows the finite state machine diagram

of the driver, illustrating the operation states and the operation that changes the state.

There are four states: Loaded, Initialised, Prepared and Running. The Loading state

implies the driver code is accessible by the application or ASIO client. The operating

state is Initialised when the driver is allocated by the application and can accept

inquiries. The Prepared state is attained when buffers are allocated and is ready to

move to the Running state. The Running state signifies that the hardware is active and

streaming is taking place.

Figure 6.2: ASIO Finite State Diagram [ASIO, 2005]

The IOCTL calls mirror the operations that change states of the ASIO driver. There is

an INIT IOCTL call that initialises the ASIO driver with mLAN specific information,

and returns event objects to be used by the ASIO client. The ALLOC IOCTL

6. IOCTL Analysis and API design 55

allocates buffers to be used by the application, hardware and driver, while the FREE

IOCTL releases those buffers. The CLEANUP IOCTL returns the ASIO driver to the

Loaded state. There are other IOCTL codes that specify an ASIO reset, and retrieve

information about the ASIO driver. The IOCTL that will serve as this section’s

example is IOCTL_MLAN_ASIO_START. The input struct is a single field

specifying the result of the operation of the call. There is only ever one ASIO driver

to be used by an application or ASIO client, though each stream can be associated

with a set of ASIO buffers. This IOCTL call clears the buffers before recording

begins. The ASIO driver is synchronised with the mLAN driver by pointing both

drivers to same position in the buffer. The ASIO driver state is then set to Running.

Input Buffer:

The input buffer takes a MLAN_ASIO_COMMAND_PARAM struct.

Output Buffer:

The same struct is returned.

Textual Description:

The request starts ASIO processing, synchronising with the ASIO driver.

typedef struct _MLAN_ASIO_COMMAND_PARAM {
 ULONG errorCode;
} MLAN_ASIO_COMMAND_PARAM, *PMLAN_ASIO_COMMAND_PARAM;

6.1.5 WDM Streaming based mLAN IOCTL codes

This group of IOCTLs is implemented for the express use by the WDM Streaming

Minidrivers. The IOCTLs are used with the IRP_INTERNAL_DEVICE_CONTROL

code. This is for inter-driver communication. Each minidriver object is created in

order to control a stream resource. The minidriver object is created when there is a

request to start streaming, and ownership is given to the mLAN bus driver. In essence,

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

6. IOCTL Analysis and API design 56

the minidriver becomes a child device of the mLAN bus driver, establishing another

level in the driver stack.

When the mLAN bus driver is required to create an extra child device to control a

stream, it makes a system call IoCreateDevice. This creates a device object in system

memory and returns a pointer to the newly created device object. The creator of the

device object is responsible for maintaining the object, such as deleting it when it is

no longer required. The driver that is used to create the object is determined by

parameters contained in the IoCreateDevice call. Specifying the device type will let

the I/O manager know what device object to create, and will initialise the appropriate

DEVICE_OBJECT fields.

After this call, the I/O manager will have a driver object and device object stored in

system memory (refer to Chapter 3). It will know what driver to load by the type

specified in the creation call and by accessing the mLAN driver INF file. The INF file

specifies driver related information to be stored in the registry, as is used by the PnP

manager when a driver is first loaded. The INF file also specifies the drivers to be

used for each device the driver is responsible for. In this way, the mLAN driver

publishes its usage of the WDM Stream minidrivers. An extract from the INF file is

shown below. The Version section specifies the type of device and GUID of the class

of device, and the version of the driver. The mLanBus section publishes the devices

the driver is responsible for (a mLAN device and the streams).

[Version]
Class=MEDIA
ClassGUID={4d36e96c-e325-11ce-bfc1-08002be10318}
Provider=%mLanBus.Provider%
DriverVer=03/17/2004,1.1.53.0
CatalogFile=mLanBus.cat

[mLanBus]
%mLanBus.DeviceDesc%=mLanBus.INSTALL, V1394\MLAN_BUS

%mLanMIDIStrmDeviceDesc%=mLMIDIStrm, MLAN_BUS\COMPATIBLEMIDISTREAM
%mLanMIDIOutStrmDeviceDesc%=mLMIDIStrm, MLAN_BUS\MIDIOUTSTREAM
%mLanMIDIInStrmDeviceDesc%=mLMIDIStrm, MLAN_BUS\MIDIINSTREAM
%mLanAudioOutStrmDeviceDesc01%=mLAudioStrm,MLAN_BUS\AUDIOOUTSTREAM&ADAPTER_01
%mLanAudioOutStrmDeviceDesc02%=mLAudioStrm,MLAN_BUS\AUDIOOUTSTREAM&ADAPTER_02
%mLanAudioOutStrmDeviceDesc03%=mLAudioStrm,MLAN_BUS\AUDIOOUTSTREAM&ADAPTER_03
%mLanAudioOutStrmDeviceDesc04%=mLAudioStrm,MLAN_BUS\AUDIOOUTSTREAM&ADAPTER_04
%mLanAudioInStrmDeviceDesc01%=mLAudioStrm, MLAN_BUS\AUDIOINSTREAM&ADAPTER_01
%mLanAudioInStrmDeviceDesc02%=mLAudioStrm, MLAN_BUS\AUDIOINSTREAM&ADAPTER_02
%mLanAudioInStrmDeviceDesc03%=mLAudioStrm, MLAN_BUS\AUDIOINSTREAM&ADAPTER_03
%mLanAudioInStrmDeviceDesc04%=mLAudioStrm, MLAN_BUS\AUDIOINSTREAM&ADAPTER_04

Figure 6.3: Extract from mlanbus.INF

6. IOCTL Analysis and API design 57

The WDM Streaming Minidriver created by Yamaha is a separate DriverStudio

project. It is based on the C++ framework of classes that encapsulates the Windows

Kernel Streaming Architecture (See Chapter 3 for an explanation of the KS Streaming

Architecture). In terms of this implementation, the mLAN bus driver forms the

framework’s lower device object class for the adapter. This is to establish clear lines

of communication within the driver stack. The diagram below describes the

interaction of the three Kernel Streaming classes with the mLAN driver.

Figure 6.4: Kernel Streaming Architecture

The lower level drivers and hardware represents those drivers at the bottom of the

stack closest to the HAL, responsible for receiving from and transmitting data onto

the IEEE 1394 bus. Although the mLAN driver is the lower device for the WDM

Streaming minidriver in the DriverStudio framework, conceptually the mLAN driver

owns and is responsible for the Streaming minidriver.

6.2 Implementation Issues

As discussed in the DriverStudio chapter, versioning issues can halt progress in

building a driver through incompatibility issues. The source code of the mLAN driver

was released and built using version 2.7 of DriverStudio. Current analysis of the

driver is done using the latest version 3.2, following several changes to the WDM. As

6. IOCTL Analysis and API design 58

a result, a fundamental change in the underlying functioning of at least one class

(relevant to its usage) is found, leaving the class obsolete. To build the driver with the

current version of DriverStudio requires that the deprecated classes in the code be

replaced with the new classes. This requires the modification of the driver source

code. This was unsuccessful as a number of critical errors were found during this

stage, unfortunately further work required more time and was out of the scope of the

project.

The purpose of rebuilding the driver is to include debugging information, and in

particular is to use the “checked build” option of the DDK. This results in state

information about variables and memory allocation being readily available to

debugger systems. In terms of the DriverStudio environment, a powerful debugger

system called SoftIce is able to translate debug information included in the “checked

build” option into a symbol table. This allows SoftIce to step through the execution of

the driver code line by line and track variable state information and memory

allocation. This provides a powerful tool for analysis of the operation of driver code.

Lacking the use of the powerful debugger tool, analysis of the IOCTL code handler

routines is carried out manually, examining the source code, requiring more time

double checking the analysis.

6.3 Chapter Summary

The analysis of the mLAN driver is complete, although there remain areas lacking in

clarity that can be resolved accurately through the use of a power debugger. It would

be more conclusive if that form of analysis was carried out, unfortunately due to

limitations of time and the scope of the project, it was not. The IOCTL codes can be

grouped by the underlying usage of data structures and requests made, which neatly

shows the modularisation of the driver. These modules represent a core area of

functionality of the mLAN system by way of the driver.

7. Conclusion 59

7. Conclusion

7.1 Project Summary

Through the examination of the IEEE 1394 architecture, it is evident that Firewire is a

flexible bus architecture that is ideally suited to networked real-time multimedia

systems, as time-dependant data can be transferred in a deterministic manner. The

mLAN extension demonstrates the flexible nature of Firewire, and with the use of

integrated chips, it is possible to extend the IEEE 1394 architecture to interface with

any media type. This raises the question about the usage of Firewire to transmit

audio/visual media.

The Windows Driver Model is explicitly required for any kernel-mode driver,

ensuring a reliable architecture for the representation of drivers and decoupled

modularised driver stack for I/O operations. This separation and specialisation of

drivers is inherently more flexible and sturdy than the legacy monolithic driver

approach. In terms of development, drivers can be written to take advantage of

established drivers supplied by Microsoft for generic I/O operations on standard

device hardware. Through the modularisation and compartmentalisation of driver

functionality into a driver stack, the WDM represents the grouping of services. It is

this concept that allows the development of drivers to focus on the core features it is

designed to expose. Yet there is still the overhead of making the driver conform to the

WDM by requiring the handling of non-core driver services.

DriverStudio becomes a powerful tool for breaking down the development of the

driver into its core and non-core components. DriverStudio smoothes the driver

production process by providing a framework of classes to neatly encapsulate

required generic driver functionality. This allows the development team to focus on

the core aspects of the driver. This framework then forms the basis for the object

model of the mLAN driver.

7. Conclusion 60

The object model of the mLAN driver relates to the WDM through the use of the

DriverStudio framework. In chapter five, the structure of the driver is presented. From

this, it is possible to understand how the classes conform to the WDM. It is

unfortunate that the ideal methodology of analysis could not have been pursued. This

limits the analysis, where clarity is sacrificed through the manual approach of

analysis, which can be resolved accurately through the use of a power debugger. It

would be more conclusive if that form of analysis was carried out, unfortunately due

to the incompatibility issues experienced and the limitations of time and the scope of

the project, it was not.

7.2 Future Extensions

As a possible extension, modifying the driver such that it builds should yield

interesting results through further analysis. The driver would then be ready to be

modified to further investigate the potentiality of the mLAN system in audio

streaming. Further extensions would be to investigate the possibility of extending the

driver to be compatible with the next version of the Windows operating system, or to

investigate the usage of video streaming should and AV capable device be developed.

A further extension is to port the driver to the new driver architecture that will be seen

in the next version of the Windows operating system.

8. References 61

8. References

[AE Notes, 2005] Audio Engineering Course Notes, 2005

[Anderson, 1999] Anderson, D. FireWire System Architecture: IEEE1394a, 2nd
Edition, Mindshare Inc., Addison-Wesley, 1999

[ASIO, 2005] Steinberg, Audio Streaming Input Output 2.1 SDK, 2005

[Cant, 1999] Cant, C. Writing Windows WDM Device Drivers, R&D Books,
Lawrence, 1999

[DriverStudio, 2004] Compuware Corporation, DriverStudio Version 3.2, 2004

[Haig, 2002] Haig, D. Firewire Breakout Box Driver, Honours Thesis, Rhodes

University, 2002

[McKenzie, 2003] McKenzie, B. 1394 Node-Targeted Asynchronous Transfers
[Online] http://www.wd-3.com/archive/ 1394NodeTransfers.htm, 2003

[MSDN, 2005] Microsoft Developers Network (MSDN) Library, April 2005

[Oney, 1999] Oney, W. Programming the Microsoft Windows Driver Model,
Microsoft Press, Washington, 1999

[Oney, 2003] Oney, W. Programming the Microsoft Windows Driver Model, 2nd
Edition, E-BOOK 2003

[Ward, et al, 1985] Ward, P. and Mellor, S. Structured Development for Real-Time
Systems, Prentice-Hall, Inc., New Jersey, 1985

Appendix 62

Appendix

A. IOCTL analysis and documentation:

Each IOCTL has a specification of the input and output requirement for the IRP’s
buffer. The actual description of each struct is detailed in Part B of the Appendix.
There is a brief textual description of what the IOCTL handler routine does.

Below the description is a diagram representing a hybrid between a Ward and Mellor
Structured Data Diagram, and Larry Constantine’s Data Flow Diagram. It is
hybridised because neither method neatly encapsulates the IOCTL handler, but rather
taking elements from both methods and combining them yields a clearer picture. The
entire diagram can be viewed as process instead of each full circle, as in the Ward and
Mellor approach. The dotted circle still represents a trigger for the process,
responding to the IRP dispatch routine. The parallel lines represent a data store,
common to both methods of modelling. Each full circle represents a sub-process that
acts on a data store. The dotted lines represent the flow of the trigger, while the solid
lines represent the flow of data and control.

IEEE 1394 based mlan IOCTL codes

IOCTL_MLAN_ALLOCATE_ADDRESS_RANGE

Input Buffer:
A Pointer to an ALLOCATE_ADDRESS_RANGE struct.

Output Buffer:
A pointer to the same ALLOCATE_ADDRESS_RANGE struct.

Textual Description:
The struct specifies the address range that will be allocated in Host Controller address
space by the IEEE 1394 bus driver. An address range has to be allocated before the
host controller can respond to any communication from that node. The mLAN driver
sends an IRB containing the address range to the 1394 driver. The IRB function code
is that of REQUEST_ALLOCATE_ADDRESS_RANGE. A handle to the address range is
returned.

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

Appendix 63

IOCTL_MLAN_ADDRESS_RANGE_NOTIFY

Input Buffer:
A pointer to an ADDRESS_RANGE_NOTIFY struct.

Output Buffer:
A pointer to the same ADDRESS_RANGE_NOTIFY struct is returned, which will need a
separate thread to wait for the completed IRP.

Textual Description:
The request adds the IRP to a notification queue for the allocated address ranges. The
callback routine is signalled when an I/O operation is detected on that address range.
The callback routine completes the IRP and fills in the node address of the source for
that I/O transaction.

IOCTL_MLAN_SET_ADDRESS

Input Buffer:
A pointer to a SET_ADDRESS_DATA struct.

Output Buffer:
Nothing is returned.

Textual Description:
This request copies the data contained within the input struct to the node specified by
the allocated address range handle.

IOCTL_MLAN_GET_ADDRESS

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Address
Range

Callback

Calls

Application
thread

waiting for
IRP status

Signals

Appendix 64

Input Buffer:
A pointer to a GET_ADDRESS_DATA struct.

Output Buffer:
A pointer to the same GET_ADDRESS_DATA struct is returned.

Textual Description:
The request returns the node address and the data contained within that address
specified by the allocated address range handle.

IOCTL_MLAN_FREE_ADDRESS_RANGE
Input Buffer:
A HANDLE to the intended address range.

Output Buffer:
Nothing is returned.

Textual Description:
The IOCTL handler routine will try to free the address range by sending an IRB
containing the address range to the 1394 driver. The IRB function code is that of
REQUEST_FREE_ADDRESS_RANGE.

IOCTL_MLAN_ASYNC_LOCK

Input Buffer:
A pointer to an ASYNC_LOCK struct.

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

Appendix 65

Output Buffer:
A pointer to the same ASYNC_LOCK struct is returned.

Textual Description:
The IOCTL code is used to perform a locked asynchronous operation on the indicated
destination address. This is achieved by summiting an IRB to the 1394 driver with a
function code of REQUEST_ASYNC_LOCK.

IOCTL_MLAN_ASYNC_READ

Input Buffer:
A pointer to an ASYNC_READ struct.

Output Buffer:
A pointer to the same ASYNC_READ struct is returned.

Textual Description:
The IOCTL code is used to perform an asynchronous read operation on the indicated
destination address. This is achieved by summiting an IRB to the 1394 driver with a
function code of REQUEST_ASYNC_READ.

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

Appendix 66

IOCTL_MLAN_ASYNC_WRITE

Input Buffer:
A pointer to an ASYNC_WRITE struct.

Output Buffer:
Nothing is returned.

Textual Description:
The IOCTL code is used to perform an asynchronous write operation on the indicated
destination address. This is achieved by summiting an IRB to the 1394 driver with a
function code of REQUEST_ASYNC_WRITE.

IOCTL_MLAN_BUS_RESET_NOTIFY

Input Buffer:
A pointer to a MLAN_BUS_RESET_NOTIFY struct.

Output Buffer:
A pointer to the same MLAN_BUS_RESET_NOTIFY struct is returned.

Textual Description:
The request sends the IRP to a bus reset notification queue, which will be signalled by
the driver when a bus reset occurs. The struct is returned with the node address of the
device that caused the reset.

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Get Node
Address

Complete

Calls

Application
thread

waiting for
IRP status

Signals

Appendix 67

IOCTL_MLAN_BUS_RESET

Input Buffer:
A ULONG type.

Output Buffer:
Nothing is returned.

Textual Description:
The input type is to specify the reset flags of the IRB that will be sent to the 1394
driver. The IRB has a function code of REQUEST_BUS_RESET. This initiates a bus reset.

IOCTL_MLAN_GET_LOCAL_HOST_INFO

Input Buffer:
A pointer to a GET_LOCAL_HOST_INFORMATION struct.

Output Buffer:
A pointer to the same GET_LOCAL_HOST_INFORMATION struct is returned.

Textual Description:
This receives a request for the local host information, which is attained by
constructing an IRB with a function code of REQUEST_GET_LOCAL_HOST_INFO. The
struct stores the input data as well as the host information when it is received.

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

Appendix 68

IOCTL_MLAN_SEND_PHY_CONFIG_PACKET

Input Buffer:
A pointer to a PHY_CONFIGURATION_PACKET struct.

Output Buffer:
Nothing is returned.

Textual Description:
The handler forwards a send PHY config packet request to the 1394 bus driver. The
IRB function code is REQUEST_SEND_PHY_CONFIG_PACKET.

IOCTL_MLAN_GET_LOCAL_NODE_ADDRESS

Input Buffer:
A pointer to a GET_LOCAL_NODE_ADDRESS struct.

Output Buffer:
A pointer to the same GET_LOCAL_NODE_ADDRESS struct is returned.

Textual Description:
This request returns the local host node bus and node number.

IOCTL_MLAN_GET_CHANNELS_AVAILABLE

Input Buffer:
This IOCTL code uses no input.

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

Appendix 69

Output Buffer:
This returns a LARGE_INTEGER struct (refer to MSDN for specification).

Textual Description:
It makes a request that returns the bandwidth and channels currently available on the
IEEE 1394 bus. The returning information specifies a 64-bit number with a high and
low part of 32-bits each. The IRB has a function code of
REQUEST_ISOCH_QUERY_RESOURCES.

IOCTL_MLAN_ALLOCATE_CHANNEL

Input Buffer:
A ULONG type.

Output Buffer:
This it returns the same type.

Textual Description:
This is to specify the requested channel number. The request is forwarded to the 1394
bus driver, which allocates an isochronous channel to be used in subsequent
operations. The IRB function code is REQUEST_ISOCH_ALLOCATE_CHANNEL.

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

Appendix 70

IOCTL_MLAN_RELEASE_CHANNEL

Input Buffer:
A ULONG type.

Output Buffer:
No return value.

Textual Description:
This is to specify the channel number to release. The request is forwarded to the 1394
bus driver, which releases an isochronous channel that was previously allocated. The
IRB function code is REQUEST_ISOCH_FREE_CHANNEL.

IOCTL_MLAN_GET_BANDWIDTH_AVAILABLE

Input Buffer:
There is no required input for this IOTCL code.

Output Buffer:
A ULONG type.

Textual Description:
The request returns the bandwidth and channels currently available on the IEEE 1394
bus. It returns to the application the available bandwidth as expressed in bytes per
isochronous frame. The IRB function code is REQUEST_ISOCH_QUERY_RESOURCES.

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

Appendix 71

IOCTL_MLAN_ALLOCATE_BANDWIDTH

Input Buffer:
A ULONG type.

Output Buffer:
It returns a handle to use to refer to the bandwidth resource.

Textual Description:
This is to specify the “max bytes per frame requested”. The request allocates
isochronous bandwidth to be used in subsequent operations. The IRB function code is
REQUEST_ISOCH_ALLOCATE_BANDWIDTH.

IOCTL_MLAN_RELEASE_BANDWIDTH

Input Buffer:
The input buffer takes the handle that was used as a reference to the allocated
bandwidth.

Output Buffer:
There is no output returned.

Textual Description:
The request releases the isochronous bandwidth that was previously allocated. The
IRB has a function code of REQUEST_ISOCH_FREE_BANDWIDTH.

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

Appendix 72

Isochronous Stream based mlan IOCTL codes

IOCTL_MLAN_ALLOCATE_STREAM

Input Buffer:
The input buffer uses a MLAN_ISOCH_PARAM struct, which specifies the type of the
stream to be used.

Output Buffer:
The same struct is returned, specifying the allocated stream information.

Textual Description:
The request responds to the need to allocate an isochronous stream resource specified
by the input struct. It goes through several steps to allocate a stream resource. It
creates the specified stream type, and gets a channel from the underlying 1394 bus
driver. The IRB function codes submitted to the Firewire driver are as follows:
REQUEST_ISOCH_ALLOCATE_BANDWIDTH, REQUEST_ISOCH_ALLOCATE_CHANNEL,
REQUEST_ISOCH_ALLOCATE_RESOURCES, REQUEST_ISOCH_ATTACH_BUFFERS. Inside
the struct, a pointer is provided to a MLAN_STREAM_STATUS struct, which contains the
information about the allocated stream.

IOCTL_MLAN_START_STREAM

Input Buffer:
The input buffer takes a MLAN_STREAM_COMMAND_PARAM struct, which contains the
allocated stream resource handle.

Output Buffer:
A pointer to the same struct is returned.

Textual Description:
The request uses the allocated stream handle from the allocate stream IOCTL, checks
if it is a send or receive stream, and then starts the stream. IRBs with function codes

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

Appendix 73

of REQUEST_ISOCH_QUERY_CYCLE_TIME and REQUEST_ISOCH_TALK/LISTEN
(depends on send or receive streams) are used.

IOCTL_MLAN_CONNECT_SEQUENCES_TO_DEVICES

Input Buffer:
The input buffer uses a MLAN_ISOCH_PARAM struct, containing a handle to the stream.

Output Buffer:
A pointer to the same struct is returned.

Textual Description:
The request uses the incoming handle of the stream that was previously allocated to
process each sequence. It checks to see if the sequence type has changed and sets up
the current connection map.

IOCTL_MLAN_SET_SYT_SOURCE

Input Buffer:
The input buffer uses a MLAN_ISOCH_PARAM struct.

Output Buffer:
The request returns a pointer to the same struct.

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

Appendix 74

Textual Description:
The request is used to set the SYT source associated with the stream information
struct. The allocated stream has to be a sending stream for this to work, and sets the
SYT for the stream. If the stream is not the clock master it gets the SYT value from
the corresponding receive stream.

IOCTL_MLAN_STOP_STREAM

Input Buffer:
The input buffer uses a MLAN_STREAM_COMMAND_PARAM struct.

Output Buffer:
The request returns a pointer to the same struct.

Textual Description:
The request stops the stream specified by the handle in the struct. The stream has to
have all sequences free of use, in other words, the sequences have to be finished
streaming. The same struct is returned regardless of whether the function succeeds or
fails. The IRB uses a function code of REQUEST_ISOCH_STOP.

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

Calls

Signals
Signals

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Stop the
Stream

minidriver
 Remove

Minidriver
object

Appendix 75

IOCTL_MLAN_GET_STREAM_INFO

Input Buffer:
The input buffer uses a MLAN_ISOCH_PARAM struct.

Output Buffer:
The request returns a pointer to the same struct.

Textual Description:
The request updates the status information of the allocated stream, including which
sequences are in use.

IOCTL_MLAN_FREE_STREAM

Input Buffer:
The input buffer uses a MLAN_STREAM_COMMAND_PARAM struct.

Output Buffer:
The request returns a pointer to the same struct.

Textual Description:
The request frees up the memory allocated for the stream. The stream has to be
stopped first before freeing up the stream. IRBs are dispatched with function codes of
REQUEST_ISOCH_DETACH_BUFFERS, REQUEST_ISOCH_FREE_RESOURCES,
REQUEST_ISOCH_FREE_CHANNEL and REQUEST_ISOCH_FREE_BANDWIDTH.

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

Calls
Calls

IRP

IRB

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit
IRB to

Firewire
bus driver

Lower
Device:

1394 bus
Driver

Calls

Appendix 76

IOCTL_MLAN_GET_DRIVER_VERSION

Input Buffer:
There is no required input.

Output Buffer:
A ULONG type is returned specifying the driver interface version.

Textual Description:
This request returns the driver version.

IEC 61883 based mlan IOCTL codes

IOCTL_MLAN_61883_CONNECT_PLUG

Input Buffer:
The input buffer takes a CMP_CONNECT struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request is forwarded to the underlying 61883 protocol driver, using the handles of
plugs contained in the input struct to specify which plugs to connect, using a function
code of Av61883_Connect. A handle to the connection is returned.

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

Calls
Calls

IRP

AV 61883 Request

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit SRB
to 61883
Protocol
Driver

Lower
Device:
61883

Protocol
Driver

Calls

Appendix 77

IOCTL_MLAN_61883_CREATE_PLUG

Input Buffer:
The input buffer takes a CMP_CREATE_PLUG struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request is sent to 61883 protocol driver to create a plug, using a function code of
Av61883_CreatePlug. A handle to the plug is returned in the struct.

IOCTL_MLAN_61883_PLUG_NOTIFY

Input Buffer:
The input buffer takes a MLAN_CMP_PLUG_NOTIFY struct.

Output Buffer:
The notification routine returns the same struct when it is signalled to run.

Textual Description:
The request adds the IRP to a queue for notification from the 61883 protocol driver
that monitors access to the plug and then returns information in the struct.

Calls
Calls

IRP

AV 61883 Request

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit SRB
to 61883
Protocol
Driver

Lower
Device:
61883

Protocol
Driver

Calls

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Monitor
Plugs

Callback

Calls

Application
thread

waiting for
IRP status

Signals

Appendix 78

IOCTL_MLAN_61883_DELETE_PLUG

Input Buffer:
The input buffer takes a CMP_DELETE_PLUG struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request tells the 61883 protocol driver to delete the plug (as a handle in the
struct), using a function code of Av61883_DeletePlug.

IOCTL_MLAN_61883_DISCONNECT_PLUG

Input Buffer:
The input buffer takes a CMP_DISCONNECT struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request extracts the handle to the plug connection from the input struct. The
connection is released by making the appropriate call to the underlying 61883
protocol driver, using a function code of Av61883_Disconnect.

Calls
Calls

IRP

AV 61883 Request

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit SRB
to 61883
Protocol
Driver

Lower
Device:
61883

Protocol
Driver

Calls

Calls
Calls

IRP

AV 61883 Request

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit SRB
to 61883
Protocol
Driver

Lower
Device:
61883

Protocol
Driver

Calls

Appendix 79

IOCTL_MLAN_61883_GET_FCP_REQUEST

Input Buffer:
The input buffer takes a MLAN_FCP_GET_REQUEST struct.

Output Buffer:
The same struct is returned, but if the asynchronous method of communicating with
the 61883 protocol driver then the IRP is sent to completion status queue routine. This
routine will return the struct when that completion routine fires.

Textual Description:
The request uses the 61883 get FCP request of the 61883 driver, using a function code
of Av61883_GetFcpReqeuest.

IOCTL_MLAN_61883_GET_FCP_RESPONSE

Input Buffer:
The input buffer takes a MLAN_FCP_GET_RESPONSE struct.

Output Buffer:
The same struct is returned, but if the asynchronous method of communicating with
the 61883 protocol driver then the IRP is sent to completion status queue routine. This
routine will return the struct when that completion routine fires.

Textual Description:
The request uses the 61883 get FCP response of the 61883 driver, using a function
code of Av61883_GetFcpResponse.

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Get Fcp
Request

Complete

Calls

Application
thread

waiting for
IRP status

Signals

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Get Fcp
Response
Complete

Calls

Application
thread

waiting for
IRP status

Signals

Appendix 80

IOCTL_MLAN_61883_GET_PLUG_HANDLE

Input Buffer:
The input buffer takes a CMP_GET_PLUG_HANDLE struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request returns a handle to the plug specified by parameters in the struct, using a
function code of Av61883_GetPlugHandle.

IOCTL_MLAN_61883_GET_PLUG_STATE

Input Buffer:
The input buffer takes a CMP_GET_PLUG_STATE struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request returns the current status and information of the plug specified by the
handle in the struct, using a function code of Av61883_GetPlugState.

Calls
Calls

IRP

AV 61883 Request

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit SRB
to 61883
Protocol
Driver

Lower
Device:
61883

Protocol
Driver

Calls

Calls
Calls

IRP

AV 61883 Request

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit SRB
to 61883
Protocol
Driver

Lower
Device:
61883

Protocol
Driver

Calls

Appendix 81

IOCTL_MLAN_61883_SEND_FCP_REQUEST

Input Buffer:
The input buffer takes a MLAN_FCP_SEND_REQUEST struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request uses the 61883 send FCP request AV_request of the 61883 driver, using a
function code of Av61883_SendFcpRequest.

IOCTL_MLAN_61883_SEND_FCP_RESPONSE

Input Buffer:
The input buffer takes a MLAN_FCP_SEND_RESPONSE struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request uses the 61883 send FCP response AV_request of the 61883 driver, using
a function code of Av61883_SendFcpResponse.

Calls
Calls

IRP

AV 61883 Request

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit SRB
to 61883
Protocol
Driver

Lower
Device:
61883

Protocol
Driver

Calls

Calls
Calls

IRP

AV 61883 Request

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit SRB
to 61883
Protocol
Driver

Lower
Device:
61883

Protocol
Driver

Calls

Appendix 82

IOCTL_MLAN_61883_SET_FCP_NOTIFY

Input Buffer:
The input buffer takes a SET_FCP_NOTIFY struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request uses the 61883 set FCP notify AV_request of the 61883 driver, using a
function code of Av61883_SetFcpNotify.

IOCTL_MLAN_61883_SET_PLUG

Input Buffer:
The input buffer takes a CMP_SET_PLUG struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request uses the 61883 set plug AV_request of the 61883 driver, using a function
code of Av61883_Setplug.

Calls
Calls

IRP

AV 61883 Request

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit SRB
to 61883
Protocol
Driver

Lower
Device:
61883

Protocol
Driver

Calls

Calls
Calls

IRP

AV 61883 Request

IRP

IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Submit SRB
to 61883
Protocol
Driver

Lower
Device:
61883

Protocol
Driver

Calls

Appendix 83

ASIO based mlan IOCTL codes

IOCTL_MLAN_ASIO_INFO

Input Buffer:
The input buffer takes a MLAN_ASIO_INIT_PARAM struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request finds an output stream that has ASIO sequences, regardless of it being a
send or receive stream. It extracts information about that stream it finds to put into the
input struct. It does not modify the driver state.

IOCTL_MLAN_ASIO_INIT

Input Buffer:
The input buffer takes a MLAN_ASIO_INIT_PARAM struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request finds an output stream that has ASIO sequences, regardless of it being a
send or receive stream. It extracts information about that stream it finds to put into the
input struct. It creates the handles to event related fields so the application can be
aware of changes of the ASIO driver state. The mLAN driver sets the state of the
ASIO driver to be active.

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

Appendix 84

IOCTL_MLAN_ASIO_ALLOC

Input Buffer:
The input buffer takes a MLAN_ASIO_ALLOC_PARAM struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request will allocate the requested number of channels for use by the ASIO client
sitting in user mode. The sequences will be identified as ASIO sequences, and input
and output buffers will be allocated.

IOCTL_MLAN_ASIO_FREE

Input Buffer:
The input buffer takes a MLAN_ASIO_COMMAND_PARAM struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request frees up any previously allocated buffers and ASIO data structures, and
removes the sequences identified as ASIO sequences. These sequences can now be
used as any other type of sequence.

IOCTL_MLAN_ASIO_START

Input Buffer:
The input buffer takes a MLAN_ASIO_COMMAND_PARAM struct.

Output Buffer:
The same struct is returned.

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

Appendix 85

Textual Description:
The request starts ASIO processing, synchronising with the ASIO driver.

IOCTL_MLAN_ASIO_STOP

Input Buffer:
The input buffer takes a MLAN_ASIO_COMMAND_PARAM struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request stops ASIO processing, synchronising with the ASIO driver.

IOCTL_MLAN_ASIO_CLEANUP
Input Buffer:
The input buffer takes a MLAN_ASIO_COMMAND_PARAM struct.

Output Buffer:
The same struct is returned.

Textual Description:
The request removes event objects generated by ASIO processing, and limits the
access of the ASIO client in user mode.

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

Appendix 86

IOCTL_MLAN_ASIO_RESET

Input Buffer:
There is nothing for input.

Output Buffer:
There is nothing for output.

Textual Description:
The request will specify an ASIO reset event which will be handled when it is
convenient.

Obsolete IOCTL codes

IOCTL_MLAN_GET_ADDR_FROM_DEVICE_OBJECT

Input Buffer:
N/A

Output Buffer:
N/A

Textual Description:
This is not implemented.

IOCTL_MLAN_GET_SPEED_TOPOLOGY_MAPS

Input Buffer:
Pointer to a GET_SPEED_TOPOLOGY_MAPS struct

Output Buffer:
If it does work, then it returns the same struct

Textual Description:
The IOCTL code handler uses an underlying request to the 1394 bus driver that is
obsolete from Windows 2000 onwards.

IRP IRP
Dispatch

for IOCTL
codes

IOCTL
Handler
Routine

Calls

Appendix 87

B. Analysis and documentation of data structures used:

The structs shown below may contain other structs, refer from page 101 onwards to
view their contents.

IEEE 1394 based structs

ALLOCATE_ADDRESS_RANGE

typedef struct _ALLOCATE_ADDRESS_RANGE {
 IN ULONG fulAllocateFlags;
 IN ULONG fulFlags;
 IN ULONG nLength;
 IN ULONG MaxSegmentSize;
 IN ULONG fulAccessType;
 IN ULONG fulNotificationOptions;
 OUT ADDRESS_OFFSET Required1394Offset;
 OUT HANDLE hAddressRange;
 IN UCHAR Data[1];
} ALLOCATE_ADDRESS_RANGE, *PALLOCATE_ADDRESS_RANGE;

fulAllocateFlags

Contains a flag that indicates the type of address scheme.
fulFlags

Specifies whether the address ranges use big-endian byte order.
nLength

Specifies the number of the IEEE 1394 addresses to allocate.
MaxSegmentSize

Specifies the maximum size for each range of addresses the bus driver
allocates.

fulAccessType
Specifies access type using one or more of the following flags.

fulNotificationOptions
Specifies which asynchronous I/O request types will trigger the bus driver to
the notify the device driver upon completion.

Required1394Offset
Specifies a hard-coded address in the computer's IEEE 1394 address space.

hAddressRange
Specifies the handle to use when freeing the allocated address ranges.

Data[1]
Provides the beginning address of the backing store for the allocated address
range. The IEEE 1394 bus driver maps all asynchronous requests to this
address space.

[MSDN, 2005]

ADDRESS_RANGE_NOTIFY

typedef struct _ADDRESS_RANGE_NOTIFY{
 IN HANDLE hAddressRange;
 OUT ULONG ulOffset;
 OUT ULONG fulNotificationOptions;
 IN OUT ULONG nLength;

Appendix 88

 OUT NODE_ADDRESS NodeAddress;
 OUT UCHAR Data[1];
} ADDRESS_RANGE_NOTIFY, *PADDRESS_RANGE_NOTIFY;

hAddressRange
 Specifies the handle to the allocated address range.
ulOffset
 Specifies the offset for the notification.
fulNotificationOptions

Specifies the reason for the notification.
nLength
 Specifies the length for the notification.
NodeAddress
 The address of the source node.
Data[1]
 Returns a fresh copy of the data from the notification IRP.

SET_ADDRESS_DATA

typedef struct _SET_ADDRESS_DATA {
 IN HANDLE hAddressRange;
 IN ULONG nLength;
 IN ULONG ulOffset;
 IN UCHAR Data[1];
} SET_ADDRESS_DATA, *PSET_ADDRESS_DATA;

hAddressRange

Contains a handle that specifies the IEEE 1394 addresses to which the data is
written.

nLength
Indicates the length in bytes of the data in the buffer specified by the Data
member.

ulOffset
Indicates the offset into the buffer at Data where the data is located.

Data
Contains a data buffer that holds the data that the SetAddressData writes to the
IEEE 1394 address range specified in member hAddressRange.

[MSDN, 2005]

GET_ADDRESS_DATA

typedef struct _GET_ADDRESS_DATA {
 IN HANDLE hAddressRange;
 IN ULONG nLength;
 IN ULONG ulOffset;
 OUT NODE_ADDRESS NodeAddress;
 OUT UCHAR Data[1];
} GET_ADDRESS_DATA, *PGET_ADDRESS_DATA;

hAddressRange

Contains a handle that specifies the IEEE 1394 addresses where the data to
retrieve is stored.

Appendix 89

nLength

Indicates the length in bytes of the data in the buffer specified by the Data
member.

ulOffset
Indicates the offset into the buffer at Data where the retrieved data is located.

Data
Contains a data buffer where the GetAddressData routine stores the data
retrieved from the IEEE 1394 address range specified in member
hAddressRange.

[MSDN, 2005]

ASYNC_LOCK

typedef struct _ASYNC_LOCK {
 IN ULONG bRawMode;
 IN ULONG bGetGeneration;
 IN IO_ADDRESS DestinationAddress;
 IN ULONG nNumberOfArgBytes;
 IN ULONG nNumberOfDataBytes;
 IN ULONG fulTransactionType;
 IN ULONG fulFlags;
 IN ULONG Arguments[2];
 IN ULONG DataValues[2];
 IN ULONG ulGeneration;
 IN ULONG Buffer[2];
} ASYNC_LOCK, *PASYNC_LOCK;

bRawMode

Indicates, if TRUE, that bus and node number specified in the
DestinationAddress will be used. If FALSE, the values in
DestinationAddress are ignored. This flag must be set to TRUE when the
caller sends an asynchronous read request to a virtual diagnostic driver
(1394vdev.sys).

bGetGeneration
Indicates, when TRUE, that the generation count will automatically be set to
the current generation count. If FALSE, the ulGeneration member holds the
generation count.

DestinationAddress
Contains a structure of type IO_ADDRESS that specifies the 1394 64-bit
destination address for this read operation. Caller must fill in the
IA_Destination_Offset member of structure. The bus driver fills in the
IA_Destination_ID member.

nNumberOfArgBytes
Specifies the number of argument bytes used in performing this lock
operation. May be zero, 4 or 8. See the fulTransactionType member for
details

nNumberOfDataBytes
Specifies the number of data bytes used in performing this lock operation.
May be 4 or 8. See the fulTransactionType member for details.

fulTransactionType

Appendix 90

Specifies which atomic transaction to execute on the 1394 node.

nBlockSize

Specifies the size of each individual block within the data stream. If the value
assigned to this parameter is zero, the bus driver breaks up the stream into
packets that are the maximum packet size.

fulFlags
Specifies the settings for this operation that are different from the default
settings.

Arguments
Contains a bitmap that indicates which bits to change in DestinationAddress.

DataValues
Contains the bit values to be assigned to DestinationAddress in the bit
positions specified by the bitmask in Arguments.

ulGeneration
Specifies the bus reset generation count. If the generation count specified does
not match the actual generation of the bus, this request is returned with a status
of STATUS_INVALID_GENERATION.

Buffer
Contains a buffer to store the results of the operation. Caller must ensure that
the buffer contains at least nNumberOfDataBytes bytes of data.

[MSDN, 2005]

ASYNC_READ

typedef struct _ASYNC_READ {
 IN ULONG bRawMode;
 IN ULONG bGetGeneration;
 IN IO_ADDRESS DestinationAddress;
 IN ULONG nNumberOfBytesToRead;
 IN ULONG nBlockSize;
 IN ULONG fulFlags;
 IN ULONG ulGeneration;
 OUT UCHAR Data[1];
} ASYNC_READ, *PASYNC_READ;

bRawMode

Indicates, if TRUE, that bus and node number specified in the
DestinationAddress will be used. If FALSE, the values in
DestinationAddress are ignored. This flag must be set to TRUE when the
caller sends an asynchronous read request to a virtual diagnostic driver
(1394vdev.sys).

bGetGeneration
Indicates, when TRUE, that the generation count will automatically be set to
the current generation count. If FALSE, the generation count will be taken
from the ulGeneration variable.

DestinationAddress
Contains a structure of type IO_ADDRESS that specifies the 1394 64-bit
destination address for this read operation. Caller must fill in the
IA_Destination_Offset member of structure. The bus driver fills in the
IA_Destination_ID member.

Appendix 91

nNumberOfBytesToRead
Specifies the number of bytes to read.

nBlockSize
Specifies the size of each individual block within the data stream. If the value
assigned to this parameter is zero, the bus driver breaks up the stream into
packets that are the maximum packet size.

fulFlags
Specifies the settings for this operation that are different from the default
settings.

ulGeneration
Specifies the bus reset generation count. If the generation count specified does
not match the actual generation of the bus, this request is returned with a status
of STATUS_INVALID_GENERATION.

Data
Contains a buffer to store the results of the asynchronous read operation.
Caller must ensure that the buffer contains at least nNumberOfBytesToRead
bytes of data.

[MSDN, 2005]

ASYNC_WRITE

typedef struct _ASYNC_WRITE {
 IN ULONG bRawMode;
 IN ULONG bGetGeneration;
 IN IO_ADDRESS DestinationAddress;
 IN ULONG nNumberOfBytesToWrite;
 IN ULONG nBlockSize;
 IN ULONG fulFlags;
 IN ULONG ulGeneration;
 IN UCHAR Data[1];
} ASYNC_WRITE, *PASYNC_WRITE;

bRawMode

Indicates, if TRUE, that bus and node number specified in the
DestinationAddress will be used. If FALSE, the values in
DestinationAddress are ignored.

bGetGeneration
Indicates, when TRUE, that the generation count will automatically be set to
the current generation count. If FALSE, the generation count will be taken
from the ulGeneration variable.

DestinationAddress
Contains a structure of type IO_ADDRESS that specifies the 1394 64-bit
destination address for this write operation. Caller must fill in the
IA_Destination_Offset member of structure. The bus driver fills in the
IA_Destination_ID member.

nNumberOfBytesToWrite
Specifies the number of bytes to write.

nBlockSize
Specifies the size of each individual block within the data stream. If the value
assigned to this parameter is zero, the bus driver breaks up the stream into
packets that are the maximum packet size.

Appendix 92

fulFlags
Specifies the settings for this operation that are different from the default
settings.

ulGeneration
Specifies the bus reset generation count. If the generation count specified does
not match the actual generation of the bus, this request is returned with a status
of STATUS_INVALID_GENERATION.

Data
Contains a buffer to store the results of the asynchronous write operation.
Caller must ensure that the buffer contains at least nNumberOfBytesToRead
bytes of data.

[MSDN, 2005]

MLAN_BUS_RESET_NOTIFY

typedef struct _MLAN_BUS_RESET_NOTIFY{
 in NODE_ADDRESS LocalNodeAddress;
}MLAN_BUS_RESET_NOTIFY, *PMLAN_BUS_RESET_NOTIFY;

LocalNodeAddress
 The address of the node that should be notified of the bus reset event.

GET_LOCAL_HOST_INFORMATION

typedef struct _GET_LOCAL_HOST_INFORMATION {
 OUT ULONG Status;
 IN ULONG nLevel;
 IN ULONG ulBufferSize;
 IN OUT UCHAR Information[1];
} GET_LOCAL_HOST_INFORMATION, *PGET_LOCAL_HOST_INFORMATION;

Status

Indicates, on output, the status code set by the GetLocalHostInformation
routine.

nLevel
Specifies what level of information requested in this call.

ulBufferSize
Indicates the size in bytes of the buffer at Information.

Information
Points to a buffer where the GetLocalHostInformation routine stores the
local host information.

[MSDN, 2005]

GET_SPEED_TOPOLOGY_MAPS

typedef struct _GET_SPEED_TOPOLOGY_MAPS {
 OUT SPEED_MAP speedMap;
 OUT TOPOLOGY_MAP topologyMap;
} GET_SPEED_TOPOLOGY_MAPS, *PGET_SPEED_TOPOLOGY_MAPS;

speedMap

Appendix 93

Stores an IEEE 1394 bus speed map.
topologyMap

Used to store an IEEE 1394 bus topology map.

PHY_CONFIGURATION_PACKET

typedef struct _PHY_CONFIGURATION_PACKET {
 IN ULONG PCP_Phys_ID:6;
 IN ULONG PCP_Packet_ID:2;
 IN ULONG PCP_Gap_Count:6;
 IN ULONG PCP_Set_Gap_Count:1;
 IN ULONG PCP_Force_Root:1;
 IN ULONG PCP_Reserved1:8;
 IN ULONG PCP_Reserved2:8;
 IN ULONG PCP_Inverse;
} PHY_CONFIGURATION_PACKET, *PPHY_CONFIGURATION_PACKET;

PCP_Phys_ID

Specifies the node address of the root. This member contains bits 0-5 of byte 0
of the packet.

PCP_Packet_ID
This member must be PHY_PACKET_ID_CONFIGURATION to indicate it
is a PHY configuration packet. This member contains bits 6-7 of byte 0 of the
packet.

PCP_Gap_Count
If the PCP_Set_Gap_Count bit is set, the PHY register gap_count field is set
to this value. This member contains bits 0-5 of byte 1 of the packet.

PCP_Set_Gap_Count
If this bit is set, the PHY register gap_count field is set to PCP_Gap_Count.
This member contains bit 6 of byte 1 of the packet.

PCP_Force_Root
If set, the caller becomes the root node. This member contains bit 7 of byte 1
of the packet.

PCP_Reserved1
Reserved. This member contains bits 0-7 of byte 2 of the packet.

PCP_Reserved2
Reserved. This member contains bits 0-7 of byte 3 of the packet.

PCP_Inverse
Specifies the logical inverse of the first quadlet of the packet.

[MSDN, 2005]

GET_LOCAL_NODE_ADDRESS

typedef struct _GET_LOCAL_NODE_ADDRESS{
 OUT NODE_ADDRESS LocalNodeAddress;
}GET_LOCAL_NODE_ADDRESS, *PGET_LOCAL_NODE_ADDRESS;

LocalNodeAddress

Specifies the 10-bit bus number and 6-bit node number that serve as the node
address for a 1394 node.

Appendix 94

Isochronous Stream based structs

MLAN_ISOCH_PARAM

typedef struct _MLAN_ISOCH_PARAM {
 OUT HANDLE hStream;
 OUT MLAN_STREAM_STATUS StreamStatus;
 OUT ULONG ErrorCode;
 OUT ULONG aBitmapClient[MLAN_MAX_NUM_SEQUENCES
/ ULONG_BITSIZE];
 IN MLAN_STREAM_CONFIG mLANStreamConfig;
 IN MLAN_DATA_FIELD_CONFIG mLANDataFieldConfig;
} MLAN_ISOCH_PARAM, *PMLAN_ISOCH_PARAM;

hStream
 The handle to the stream resource that was allocted.
StreamStatus
 The struct that contains the status of each sequence.
ErrorCode
 The status code from the IOCTL.
aBitmapClient[MLAN_MAX_NUM_SEQUENCES / ULONG_BITSIZE]
 Not sure.
mLANStreamConfig
 A struct that contains specific information about that stream.
mLANDataFieldConfig
 A struct that contains audio specific information about the sequences.

MLAN_STREAM_COMMAND_PARAM

typedef struct _MLAN_STREAM_COMMAND_PARAM {
 IN HANDLE hStream;
 OUT ULONG ErrorCode;
} MLAN_STREAM_COMMAND_PARAM, *PMLAN_STREAM_COMMAND_PARAM;

hStream
 The handle to the allocated stream resource.
ErrorCode
 The error code of the status from the completed IOCTL

IEC 61883 based structs

CMP_CONNECT

typedef struct _CMP_CONNECT {

 IN HANDLE hOutputPlug;
 IN HANDLE hInputPlug;
 IN CMP_CONNECT_TYPE Type;
 IN CIP_DATA_FORMAT Format;
 OUT HANDLE hConnect;

Appendix 95

} CMP_CONNECT, *PCMP_CONNECT;

hOutputPlug

Output plug handle.
hInputPlug;

Input plug handle.
Type

Requested connect type.
Format

Requested data format – transmission only.
hConnect

Returned connect handle.

CMP_CREATE_PLUG

typedef struct _CMP_CREATE_PLUG {

 IN CMP_PLUG_TYPE PlugType;
 IN AV_PCR Pcr;
 IN PCMP_NOTIFY_ROUTINE pfnNotify;
 IN PVOID Context;
 OUT ULONG PlugNum;
 OUT HANDLE hPlug;
} CMP_CREATE_PLUG, *PCMP_CREATE_PLUG;

PlugType

Type of plug to create.
Pcr

PCR Settings.
pfnNotify

Notification Routine for Register.
Context

Notification Context.
PlugNum

Plug Number.
hPlug

Plug Handle.

MLAN_CMP_PLUG_NOTIFY

typedef struct _MLAN_CMP_PLUG_NOTIFY {
 OUT ULONG State;
 OUT ULONG PlugNum;
 OUT ULONG PlugType;
 OUT AV_PCR Pcr;
} MLAN_CMP_PLUG_NOTIFY, *PMLAN_CMP_PLUG_NOTIFY;

State
 Returns the state of the plug.
PlugNum

Plug number.
PlugType
 Type of plug.

Appendix 96

Pcr
PCR settings.

CMP_DELETE_PLUG

typedef struct _CMP_DELETE_PLUG {
 IN HANDLE hPlug;
} CMP_DELETE_PLUG, *PCMP_DELETE_PLUG;

hPlug

Plug Handle

CMP_DISCONNECT

typedef struct _CMP_DISCONNECT {
 IN HANDLE hConnect;
} CMP_DISCONNECT, *PCMP_DISCONNECT;

hConnect

Connection handle to disconnect

MLAN_FCP_GET_REQUEST

typedef struct _MLAN_FCP_GET_REQUEST {
 OUT NODE_ADDRESS NodeAddress;
 IN OUT ULONG Length;
 IN OUT FCP_FRAME Frame;
} MLAN_FCP_GET_REQUEST, *PMLAN_FCP_GET_REQUEST;

NodeAddress

The node address of the device that sent the get FCP request, provided it is a
virtual device.

Length
 The maximum available length of the frame payload, including FCP header.
Frame
 Defines a function control protocol (FCP) request.

MLAN_FCP_GET_RESPONSE

typedef struct _MLAN_FCP_GET_RESPONSE {
 OUT NODE_ADDRESS NodeAddress;
 IN OUT ULONG Length;
 IN OUT FCP_FRAME Frame;
} MLAN_FCP_GET_RESPONSE, *PMLAN_FCP_GET_RESPONSE;

NodeAddress

The node address of the device that sent the get FCP response, provided it is a
virtual device.

Length
 The maximum available length of the frame payload, including FCP header.
Frame

Appendix 97

 Defines a function control protocol (FCP) request.

CMP_GET_PLUG_HANDLE

typedef struct _CMP_GET_PLUG_HANDLE {
 IN ULONG PlugNum;
 IN CMP_PLUG_TYPE Type;
 OUT HANDLE hPlug;
} CMP_GET_PLUG_HANDLE, *PCMP_GET_PLUG_HANDLE;

PlugNum

Requested plug number.
Type

Requested plug type.
hPlug

Returned plug handle.

CMP_GET_PLUG_STATE

typedef struct _CMP_GET_PLUG_STATE {
 IN HANDLE hPlug;
 OUT ULONG State;
 OUT ULONG DataRate;
 OUT ULONG Payload;
 OUT ULONG BC_Connections;
 OUT ULONG PP_Connections;
} CMP_GET_PLUG_STATE, *PCMP_GET_PLUG_STATE;

hPlug

The handle of the plug to retrieve state information.
State

The state of the plug.
DataRate

The data rate of the plug.
Payload

The payload size for the plug.
BC_Connections

The number of broadcast connections associated with the plug.
PP_Connections

The number of point-to-point connections associated with the plug.

MLAN_FCP_SEND_REQUEST

typedef struct _MLAN_FCP_SEND_REQUEST {
 IN NODE_ADDRESS NodeAddress;
 IN ULONG Length;
 IN FCP_FRAME Frame;
} MLAN_FCP_SEND_REQUEST, *PMLAN_FCP_SEND_REQUEST;

NodeAddress

The node address of the device that sent the send FCP request, provided it is a
virtual device.

Appendix 98

Length
 The maximum available length of the frame payload, including FCP header.
Frame
 Defines a function control protocol (FCP) request.

MLAN_FCP_SEND_RESPONSE

typedef struct _MLAN_FCP_SEND_RESPONSE {
 IN NODE_ADDRESS NodeAddress;
 IN ULONG Length;
 IN FCP_FRAME Frame;
} MLAN_FCP_SEND_RESPONSE, *PMLAN_FCP_SEND_RESPONSE;

NodeAddress

The node address of the device that sent the send FCP response, provided it is
a virtual device.

Length
 The maximum available length of the frame payload, including FCP header.
Frame
 Defines a function control protocol (FCP) request.

SET_FCP_NOTIFY

typedef struct _SET_FCP_NOTIFY {
 IN ULONG Flags; // Flags
 IN NODE_ADDRESS NodeAddress; // Node Address
} SET_FCP_NOTIFY, *PSET_FCP_NOTIFY;

Flags

Specifies the notification requested by the driver.
NodeAddress

Reserved for use by the operating system.

CMP_SET_PLUG

typedef struct _CMP_SET_PLUG {
 IN HANDLE hPlug;
 IN AV_PCR Pcr;
} CMP_SET_PLUG, *PCMP_SET_PLUG;

hPlug

Plug handle.
Pcr

PCR settings.

MLAN_ASIO_INIT_PARAM

typedef struct _MLAN_ASIO_INIT_PARAM {
 OUT ULONG numOutChannelsAvailable[MLAN_MAX_SEND_STREAMS];

OUT ULONG bitmapOutSequencesAvailable[MLAN_MAX_SEND_STREAMS]
[MLAN_MAX_NUM_SEQUENCES / ULONG_BITSIZE];

 OUT ULONG numInChannelsAvailable[MLAN_MAX_RECEIVE_STREAMS];

Appendix 99

OUT ULONG bitmapInSequencesAvailable[MLAN_MAX_RECEIVE_STREAMS]
[MLAN_MAX_NUM_SEQUENCES / ULONG_BITSIZE];

 OUT ULONG sampleRateBeingUsed;
 OUT ULONG minimumBufferSizePerChannel;
 OUT ULONG playbackBufferSizePerChannel;
 OUT ULONG recordBufferSizePerChannel;
 OUT HANDLE hBufferSwitchEvent;
 OUT HANDLE hDriverResetEvent;
 OUT ULONG sendBitSize;
 OUT ULONG recvBitSize;
 OUT BOOLEAN useIEEE32bitFloat;
 OUT ULONG errorCode;
 OUT ULONG *pNumEventsRequestedByDriver;
 OUT ULONG *pOffsetForClientBufferByDriver;
} MLAN_ASIO_INIT_PARAM, *PMLAN_ASIO_INIT_PARAM;

numOutChannelsAvailable
 The number of ASIO output channels available.
bitmapOutSequencesAvailable
 Not sure.
numInChannelsAvailable
 The number of ASIO input channels available
bitmapInSequencesAvailablesampleRateBeingUsed
 Not sure.
minimumBufferSizePerChannel

in samples - not bytes, 24bit data in 32bit containers, this is the mininum
available buffersize.

playbackBufferSizePerChannel
in samples - used to report latency.

recordBufferSizePerChannel
in samples - usde to report latency.

hBufferSwitchEvent
 A handle to a buffer switch event (received in ASIO_INIT).
hDriverResetEvent
 A handle to the ASIO driver reset event (received in ASIO_INIT).
sendBitSize
 Not sure.
recvBitSize
 Not sure.
useIEEE32bitFloat

This will force the driver to report 32bit float as the format.
errorCode
 The error code status reported by the IOCTL after it returns.
pNumEventsRequestedByDriver

(received in ASIO_INIT).
pOffsetForClientBufferByDriver

(received in ASIO_INIT).

MLAN_ASIO_ALLOC_PARAM

typedef struct _MLAN_ASIO_ALLOC_PARAM {
 IN ULONG asioBufferSize;

Appendix 100

IN ULONG outputBuffersRequiredMap_StreamIndex
[MAX_ASIO_CHANNELS];
IN ULONG outputBuffersRequiredMap_SequenceIndex
[MAX_ASIO_CHANNELS];

 OUT PULONG pOutBuffers[MAX_ASIO_CHANNELS * 2];
 IN ULONG inputBuffersRequiredMap_StreamIndex

[MAX_ASIO_CHANNELS];
IN ULONG inputBuffersRequiredMap_SequenceIndex
[MAX_ASIO_CHANNELS];

 OUT PULONG pInBuffers[MAX_ASIO_CHANNELS * 2];
 OUT ULONG errorCode;
} MLAN_ASIO_ALLOC_PARAM, *PMLAN_ASIO_ALLOC_PARAM;

asioBufferSize

This is the requested buffersize, should not be smaller than the size reported in
INIT_PARAM
outputBuffersRequiredMap_StreamIndex

Specifies the requested output buffers to be used for streams.
outputBuffersRequiredMap_SequenceIndex

Specifies the requested output buffers to be used for sequence.
pOutBuffers

A pointer to the output buffer that has 24bit data in 32bit containers.
inputBuffersRequiredMap_StreamIndex

Specifies the requested input buffers to be used for streams.
inputBuffersRequiredMap_SequenceIndex

Specifies the requested input buffers to be used for sequences.
pInBuffers

A pointer to the input buffer that has 24bit data in 32bit containers.
errorCode
 The error code specified by the completion of the IOCTL call.

MLAN_ASIO_COMMAND_PARAM

typedef struct _MLAN_ASIO_COMMAND_PARAM {
 ULONG errorCode;
} MLAN_ASIO_COMMAND_PARAM, *PMLAN_ASIO_COMMAND_PARAM;

errorCode
 The error code returned by the completion of the IOCTL.

Sundry structs contained within main structs

ADDRESS_OFFSET

typedef struct _ADDRESS_OFFSET {
 USHORT Off_High;
 ULONG Off_Low;
} ADDRESS_OFFSET, *PADDRESS_OFFSET;

Off_High

Specifies the high order offset for a IEEE 1394 address.

Off_Low

Appendix 101

Specifies the low order offset for a IEEE 1394 address.
[MSDN, 2005]

IO_ADDRESS

typedef struct _IO_ADDRESS {
 NODE_ADDRESS IA_Destination_ID;
 ADDRESS_OFFSET IA_Destination_Offset;
} IO_ADDRESS, *PIO_ADDRESS;

IA_Destination_ID

Holds a structure of type NODE_ADDRESS containing the destination node
address.

IA_Destination_Offset
Holds a structure of type ADDRESS_OFFSET that specifies the index of the
1394 address within the address array.

[MSDN, 2005]

SPEED_MAP

typedef struct _SPEED_MAP {
 USHORT SPD_Length;
 USHORT SPD_CRC;
 ULONG SPD_Generation;
 UCHAR SPD_Speed_Code[4032];
} SPEED_MAP, *PSPEED_MAP;

SPD_Length

Specifies the number of quadlets in the speed map.
SPD_CRC

Specifies the CRC value for the speed map.
SPD_Generation

Specifies the generation count for the bus reset that corresponds to this speed
map.

SPD_Speed_Code
Specifies an array of speed codes.

[MSDN, 2005]

TOPOLOGY_MAP

typedef struct _TOPOLOGY_MAP {
 USHORT TOP_Length;
 USHORT TOP_CRC;
 ULONG TOP_Generation;
 USHORT TOP_Node_Count;
 USHORT TOP_Self_ID_Count;
 SELF_ID TOP_Self_ID_Array[];
 SELF_ID TOP_Self_ID_Array[4032];
} TOPOLOGY_MAP, *PTOPOLOGY_MAP;

TOP_Length

Appendix 102

Specifies the length in quadlets of the topology map.
TOP_CRC

Specifies the CRC value for the topology map.
TOP_Generation

Specifies the bus reset generation for which the topology map was created.
TOP_Node_Count

Specifies the number of nodes in the topology map.
TOP_Self_ID_Count

Specifies the number of entries in TOP_Self_ID_Array. (Not used)
TOP_Self_ID_Array

Pointer to an array of SELF_ID and SELF_ID_MORE structures (the two
structures are the same size).

[MSDN, 2005]

MLAN_STREAM_CONFIG

typedef struct _MLAN_STREAM_CONFIG {
 ULONG StreamType;
 ULONG Speed;
 ULONG Channel;
 ULONG NumBufferGroups;
 ULONG NumPacketsPerBufferGroup;
} MLAN_STREAM_CONFIG, *PMLAN_STREAM_CONFIG;

StreamType
 Specifies the type of the stream.
Speed
 Specifies the speed of the bus.
Channel
 Specifies the channel the stream belongs to.
NumBufferGroups
 Specifies the number of buffers.
NumPacketsPerBufferGroup
 Specifies the number of packets per group of buffers.

MLAN_STREAM_STATUS

typedef struct _MLAN_STREAM_STATUS{
 BOOLEAN bRunning;
 ULONG ReceivingSampleRate;
 BOOLEAN receivingMatch;
 ULONG NumDBCErrorPacket;
 ULONG NumSequences;
 ULONG streamIndex;
 MLAN_SEQUENCE_STATUS SequenceStatus[MLAN_MAX_NUM_SEQUENCES];
} MLAN_STREAM_STATUS, *PMLAN_STREAM_STATUS;

bRunning
 Specifies whether the stream is running or not.
ReceivingSampleRate
 Specifies the sample rate when receiving packets.
receivingMatch

Appendix 103

 Specifies whether the stream type required matches the stream type received
NumDBCErrorPacket
 Specifies the number of Data Block Count error packets.
NumSequences
 Specifies the number of sequences the stream has.
streamIndex
 Specifies the stream index in relation to the rest of the active streams.
SequenceStatus[MLAN_MAX_NUM_SEQUENCES]

Specifies the individual status of each sequence.

MLAN_DATA_FIELD_CONFIG

typedef struct _MLAN_DATA_FIELD_CONFIG{
 ULONG SampleRate;
 BOOLEAN useIEEE32bitFloat;
 ULONG bitDepthForWDMAudio;
 MLAN_SYT_LOCAL_OR_EXT SytParam;
 ULONG NumSequences;
 MLAN_SEQUENCE_DATA_CONFIG SequenceData[MLAN_MAX_NUM_SEQUENCES];
} MLAN_DATA_FIELD_CONFIG, *PMLAN_DATA_FIELD_CONFIG;

SampleRate
 Specifies the sample rate of the isochronous stream.
useIEEE32bitFloat

Specifies whether the data is represented in IEEE 1394 32bit float format or
not.

bitDepthForWDMAudio
 Specifies the resolution of the WDM audio sample.
SytParam
 Specifies the stream that is bus master.
NumSequences
 Specifies the number of sequences the stream has.
SequenceData[MLAN_MAX_NUM_SEQUENCES]
 Specifies the sequence type and corresponding allocated device number.

MLAN_SEQUENCE_STATUS

typedef struct _MLAN_SEQUENCE_STATUS{

MLAN_SEQUENCE_DATA_CONFIG SequenceData;
 ULONG AudioSampleSize;
 BOOLEAN bCopyProtect;
 ULONG NumParityError;
} MLAN_SEQUENCE_STATUS, *PMLAN_SEQUENCE_STATUS;

SequenceData
 Specifies the sequence type and corresponding allocated device number.
AudioSampleSize
 Specifies the size of each audio sample.
bCopyProtect
 Specifies whether the sequence data can be overwritten or not.
NumParityError
 Records the number of parity errors.

Appendix 104

MLAN_SYT_LOCAL_OR_EXT

typedef struct _MLAN_SYT_LOCAL_OR_EXT {
 BOOLEAN bMaster;
 HANDLE hStream;
} MLAN_SYT_LOCAL_OR_EXT, *PMLAN_SYT_LOCAL_OR_EXT;

bMaster
 Specifies if the owner of the stream is the bus master or not.
hStream
 Specifies the handle to the stream resource that is the bus master.

MLAN_SEQUENCE_DATA_CONFIG

typedef struct _MLAN_SEQUENCE_DATA_CONFIG{
 ULONG SequenceType;
 ULONG DeviceNumber;
} MLAN_SEQUENCE_DATA_CONFIG, *PMLAN_SEQUENCE_DATA_CONFIG;

SequenceType
 The number of the sequence.
DeviceNumber

The device number associated with the sequence. The value is valid from
number 1 to the number of allocated devices.

CMP_CONNECT_TYPE

typedef enum {
 CMP_Broadcast = 0,
 CMP_PointToPoint
} CMP_CONNECT_TYPE;

An enumeration of the connect type used in connecting 61883 plugs.

CIP_DATA_FORMAT

typedef struct _CIP_DATA_FORMAT {
 UCHAR FMT;
 UCHAR FDF_hi;
 UCHAR FDF_mid;
 UCHAR FDF_lo;
 BOOLEAN bHeader;
 UCHAR Padding;
 UCHAR BlockSize;
 UCHAR Fraction;
 ULONG BlockPeriod;
} CIP_DATA_FORMAT, *PCIP_DATA_FORMAT;

FMT

This is the data type used in the CIP. FMT and FDF are either known, or
discovered.

Appendix 105

FDF_hi
Ascertained via AV/C command.

FDF_mid
 Not sure.
FDF_lo
 Not sure.
bHeader

SPH (whether a transport time delay stamp has been added) as defined by
IEC-61883.

Padding
 QPC (quadlet padding count) as defined by IEC-61883.
BlockSize

DBS (data block size) as defined by IEC-61883.
Fraction

FN (number of fractions the original packet was divided into) as defined by
IEC-61883.

BlockPeriod
BlockPeriod - transmission only.

CMP_PLUG_TYPE

typedef enum {
 CMP_PlugOut = 0,
 CMP_PlugIn
} CMP_PLUG_TYPE;

An enumeration of the plug type.

AV_PCR

typedef struct _AV_PCR {
 union {
 OPCR oPCR;
 IPCR iPCR;
 ULONG ulongData;
 };
} AV_PCR, *PAV_PCR;

oPCR

Contains an OPCR structure that contains initialization values for an output
plug.

iPCR
Contains an IPCR structure that contains initialization values for an input
plug.

ulongData
Reserved for internal use.

[MSDN, 2005]

IPCR

typedef struct _IPCR {

Appendix 106

 ULONG Reserved0:16;
 ULONG Channel:6;
 ULONG Reserved1:2;
 ULONG PPCCounter:6;
 ULONG BCCCounter:1;
 ULONG OnLine:1;
} IPCR, *PIPCR;

Payload

Specifies the connection speed.
OverheadID

Specifies, for an unconnected output plug, the upper bounds for the bandwidth
that the output plug needs for the transmission of an isochronous packet.

DataRate
Indicates the bit rate that the output plug uses to transmit an isochronous
packet.

Channel
Indicates the channel number that the output plug shall use to transmit the
isochronous data flow, for a suspended output plug. For an active output plug
it indicates the actual channel number that the output plug uses to transmit the
isochronous data flow. For an unconnected output plug it has no meaning.

Reserved
Reserved.

PPCCounter
Indicates the number of point-to-point connections to the output plug.

BCCCounter
Indicates, when one, that there is a broadcast-out connection to the output
plug. When zero it indicates that there is no connection.

OnLine
Indicates, when one, that the corresponding output plug is on-line. When zero
it indicates that the output plug is off-line.

[MSDN, 2005]

OPCR

typedef struct _OPCR {
 ULONG Payload:10;
 ULONG OverheadID:4;
 ULONG DataRate:2;
 ULONG Channel:6;
 ULONG Reserved:2;
 ULONG PPCCounter:6;
 ULONG BCCCounter:1;
 ULONG OnLine:1;
} OPCR, *POPCR;

Reserved0

Reserved.
Channel

Indicates the channel number that the input plug shall use to transmit the
isochronous data flow, for a suspended input plug. For an active input plug it
indicates the actual channel number that the input plug uses to transmit the
isochronous data flow. For an unconnected input plug it has no meaning.

Appendix 107

Reserved1
Reserved.

PPCCounter
Indicates the number of point-to-point connections to the input plug.

BCCCounter
Indicates, when one, that there is a broadcast-in connection to the input plug.
When zero it indicates that there is no connection.

OnLine
Indicates, when one, that the corresponding input plug is on-line. When zero it
indicates that the input plug is off-line.

[MSDN, 2005]

FCP_FRAME

typedef struct _FCP_FRAME {
 UCHAR ctype:4;
 UCHAR cts:4;
 UCHAR payload[511];
} FCP_FRAME, *PFCP_FRAME;

ctype

The command or response type as defined by the Command/Transaction Set
(CTS) used for this request.

cts
The CTS used for this FCP request. The CTS specifies the command set, the
structure of the command/response field, and the rules of transactions used for
sending FCP commands and responses.

payload
The FCP request for this frame.

ERR_MLAN_STREAM

typedef enum{
 ERR_MLAN_SUCCESS = 0,
 ERR_MLAN_STREAM_EXIST,
 ERR_MLAN_BAND_OVER,
 ERR_MLAN_CH_USED,
 ERR_MLAN_NO_RES,
 ERR_MLAN_STREAM_NOT_ALLOC,
 ERR_MLAN_STREAM_RUNNING,
 ERR_MLAN_FS_MISMATCH,
 ERR_MLAN_CANNOT_GET_SYT
}ERR_MLAN_STREAM_E;

This is an enumeration of the error codes used in some of the data structures. Should
an IOCTL call fail, depending on the IOCTL, it will return an error code.

ERR_ASIO_MLAN

typedef enum{
 ERR_ASIO_MLAN_SUCCESS = 0,
 ERR_ASIO_MLAN_NOMEM,
 ERR_ASIO_MLAN_NORES,

Appendix 108

 ERR_ASIO_MLAN_NOTSETUP,
 ERR_ASIO_MLAN_ALREADY_INITIALIZED,
 ERR_ASIO_MLAN_NOTRUNNING,
 ERR_ASIO_MLAN_NOTINITIALIZED,
 ERR_ASIO_MLAN_ALREADYRUNNING,
 ERR_ASIO_MLAN_ALREADYALLOCATED,
 ERR_ASIO_MLAN_NOTALLOCATED,
 ERR_ASIO_MLAN_INVALID_BUFFER_SIZE,
}ERR_ASIO_MLAN_E;

An enumeration of the error codes that are produced by ASIO related IOCTL calls.

