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Abstract  i

Abstract 

 
The purpose of this thesis is to expose the inner-workings of the Windows music 

Local Area Network (mLAN) driver to aid in further research of the mLAN system. 

mLAN represents an innovative environment for networked high-speed transmission 

of real-time audio and MIDI streams. mLAN extends the IEEE 1394 architecture, 

which encapsulates the essential features of a networked real-time multimedia system.  

An exploration of the mLAN architecture and the Windows Driver Model gives us 

insight into the core concepts central to the creation of the mLAN driver. The 

Windows Driver Model is the required form a driver must follow. DriverStudio is a 

driver development tool that encapsulates the Windows Driver Model in a C++ 

library framework. A dynamic and static analysis of the mLAN driver is performed 

using the Windows Driver Model and the DriverStudio framework as reference. This 

understanding will be expressed by developing an object model of the mLAN driver, 

and the documentation of the I/O Control codes.  
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1. Introduction 
 

1.1 Problem Statement 
 

The music Local Area Network (mLAN) is a proprietary technology that Yamaha 

began developing in 1993 [AE Notes, 2005]. IEEE 1394 (Firewire) was chosen as the 

networking technology for mLAN. The objective of mLAN is to replace the myriad of 

cables, plugs and "in", "out" and "through" sockets on synthesizers, mixers and other 

A/V equipment with a single connector. The mLAN system represents a solid 

advance in terms of networked real-time multimedia systems. It is characterised by 

two important features in real-time multimedia systems; high bandwidth and low 

latency.   

 

Importance is attached to research within the Windows context, as Windows 

represents a more commercially viable marketing option. The driver is responsible for 

the PC interacting with the self-managed Firewire bus, which has mLAN extended 

nodes interfacing to audio studio equipment. The PC, through the driver, becomes a 

powerful tool as it can engage in connection management, and audio recording and 

playback, available as an application suit that comes with the system.  Investigation 

into the full potential or the pursuing of other ideas within the mLAN system can be 

done through the use of applications.  

 

1.2 Project Motivation 
 

The aim of the project is to critically analyse the Windows mLAN driver with regards 

to an object oriented approach. In an effort to streamline the development of 

applications for research purposes, or the possible modification of the mLAN driver, 

an understanding of the driver is required. This understanding will be represented 

with use of an object oriented model.  
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1.3 Document Structure 
 

Chapter two covers the mLAN system. This entails examining the underlying 

technology in use by the mLAN system. The IEEE 1394 bus architecture and the IEC 

61883 specification for audio and data transmission are the technologies covered. The 

reasons supporting the features, as to why the technologies were chosen, are 

discussed. 

 

There are not a lot of approaches to driver development, which is a wholly intricate 

and complicated process. One is constricted in developing a driver by the operating 

system and the type of driver it requires to interface with the hardware. To be more 

specific, each operating system has a model in which drivers must fit to interface with 

the hardware. In this instance, the focus of chapter three will be on the usage of the 

Windows Driver Model (WDM) in driver development.  

 

Chapter four extends the previous chapter as the mLAN driver makes use of a 

proprietary Driver Development Tool from Compuware called DriverStudio. This 

makes use of the WDM, and in essence uses the Windows Driver Development Kit to 

build a driver. DriverStudio represents a framework of C++ libraries and classes that 

encapsulate driver development. It is relevant in examining the framework model of 

classes in order to understand the object model of the mLAN driver, and how they fit 

into the WDM. 

 

Chapter five introduces the extrapolated model of the mLAN driver, explaining the 

usage of the classes and how they fit into the DriverStudio framework. A description 

of the methodology of analysis used in abstracting the object model and class 

interactions is presented. This chapter involves an overview of the class model 

structure, the classes involved and how they relate to each other. This takes a 

conceptual look at the underlying driver technology used by the mLAN driver, such 

the Windows Kernel Streaming architecture.    
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Chapter six discusses the work done to document the I/O Control (IOCTL) codes of 

the driver. The IOCTL codes represent the core functionality of the driver, as a 

majority of the processing occurs in response to IOCTL calls to the driver. It is 

through the IOCTL codes that applications can communicate with the driver.   

 
Finally, chapter seven concludes the paper.  
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2. Music Local Area Network 
 

Yamaha began developing a system to provide single cable connections between the 

arrays of standard audio studio equipment in an attempt to standardise digital audio 

data transmission. IEEE 1394 (Firewire) was chosen as the foundation on top of 

which to build the mLAN system, for it addressed the many aspects required of the 

proposed system. The mLAN system can operate independently of a central server or 

a host controller, not requiring the use or the power of a computer. Responsibility of 

management and control of the bus is automatic and falls to selected nodes on the bus. 

Using the computer as a tool to visually model the bus and to manage the connection 

of nodes, it extends the functionality of the mLAN system. This chapter briefly 

introduces the mLAN system by firstly covering the underlying technology. This 

deals with relevant IEEE 1394 and IEC 61883 concepts. Finally, the mLAN 

extensions to those technologies are presented. 

 

2.1 IEEE 1394 

 

2.1.1 The IEEE 1394 Architecture 
 

IEEE 1394 is a specification that defines a serial bus architecture with a common set 

of core features that is an extension to the Control and Status Registers (CSR) 

architecture [Anderson, 1999]. The CSR is a standard definition to permit easier 

implementation of software, and allows interoperability between Firewire on different 

platforms. It is based on the ISO/IEC 13213 specification that standardises the offset 

locations within the initial register address space. The CSR specifies the arrangement 

of an addressable space range containing data structures that identify the components 

of the bus, be it a bus, a bridge or a node, the components state and other information.  

 

A node is contained within the module and this represents a logical entity. A unit is a 

functional subcomponent of a node, for example, a 1394 node could have a Video and 

an Audio unit, each operated and controlled independently by its own software. Each 

node has its own Control and Status Registers (CSRs), as well as space for bus 
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dependant registers, defined by IEEE 1394 [Anderson, 1999]. These registers allow 

for interoperability between Firewire implementations on different hardware 

platforms, for easier implementation of the software, and bridging between different 

buses types using the same CSR architecture. There is also a configuration ROM for 

identifying the vendor and node specific details. Up to 63 nodes can sit on one bus, 

except that a data item can be passed a maximum distance of 16 hops. Buses have 

unique ID’s which allow for 1024 buses theoretically bridged together, although there 

are other physical limitations such as the maximum cabling distance [AE Notes, 

2005].  

 

Each bus has certain features that one node must handle (one that is capable), these 

being the bus management aspects of the bus. A single node, the determined root 

node, has the responsibility of commencing communication with the other nodes by 

sending cycle start packets, synchronising the nodes. Other responsibilities include the 

isochronous resource manager and the bus manager. Bus configuration is automatic 

and occurs upon the detection of a new node or the disappearance of a node, or a bus 

reset. The root is identified automatically, as well as the responsibilities allocated to 

capable nodes nearest the root [AE Notes, 2005]. The Firewire bus, as a result, 

manages all aspects of the bus itself.  

 

Firewire supports two means of data transmission. One is asynchronous transfers 

which do not require a constant transfer rate, and targeted to specific unique node 

addresses. The other is isochronous transfers that require a transfer of data at constant 

intervals. The data is broadcast on a channel instead of to a unique node address, 

allowing one or more nodes to pick up on that channel. This transfer type requires 

regular bus access and thus has a higher bus bandwidth priority [AE Notes, 2005].  

 

In figure 2.1, an overview of the IEEE 1394 protocol layers is shown. The protocol 

layers are a representation of the communication functionality of a Firewire node, 

simplifying and encapsulating the inherent concepts [AE Notes, 2005]. The Physical 

layer provides the physical interface to the serial bus, receiving and transmitting bits 

on the bus. The link layer is an interface for both isochronous and asynchronous data 

transactions. For asynchronous transactions, the link layer provides the interface 

between the transaction layer and the physical layer. The link layer for isochronous 
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transactions interfaces the application level and the physical layer.  The transaction 

layer is responsible for translating asynchronous transactions into the appropriate 

requests.   

 

 
Figure 2.1: IEEE 1394 Protocol Layers [Anderson, 1999] 

 

2.1.2 Virtual and Physical Devices 
 

A computer must have a driver to know how to interface to any attached hardware 

device. IEEE 1394 is a bus, such that each device on the bus is seen as a node. A host 

controller (the card that allows the computer to connect to the bus) must appear as a 

node in order for the computer to interact with the bus [McKenzie, 2003]. In terms of 

the operating system interacting with the bus, it does so through the use of a bus 

driver and a host controller. A bus driver is responsible for interpreting requests to 

communicate with the Firewire bus from an application or a client driver. The host 

controller controls the physical I/O operations between the PCI bus and the IEEE 

1394 bus.  

 

A node on the IEEE 1394 bus needs a driver to tell the PC how to interact with the 

device. There can only be one driver for a host controller in a PC, limiting the number 

of concurrent drivers using the bus to one. A host controller is required for physical 

access to the bus, and if only one driver can use the bus at a time then the potential of 

IEEE 1394 technology is limited [McKenzie, 2003]. The Windows XP and later 
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versions of the 1394 bus driver allow a user to enumerate devices through the 1394 

bus using custom device IDs. These devices do not have to correlate to real hardware, 

and therefore allow the use of virtual devices. Virtual IEEE 1394 devices represent 

considerable work in rectifying the limitation of peer-to-peer 1394 communication. A 

virtual device represents a logical device that has the same functionality and 

privileges as physical devices. It has an address space and can engage in 

communication with nodes on the bus, and nodes on the bus can communicate with 

the virtual device. The diagram below presents the use of enumerated virtual Firewire 

devices between two PC’s over a Firewire bus. The Plug and Play manager (Refer to 

Chapter 3) can be used to enumerate a virtual device such that it appears as a physical 

device. The ovals are to draw attention to the implementation of a new driver stack 

implemented to achieve the usage of virtual devices. The same driver stack is 

applicable for a PC-to-Firewire bus communication. 

 

Figure 2.2: IEEE 1394 Peer-To-Peer Communication [McKenzie, 2003] 
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2.1.3 Summery of Firewire Features 
 

Features responsible for the usage of Firewire as the mLAN system are as follows: 

• High speed bus with scalable performance 

The throughput speed of the bus satisfies the high bandwidth of any real-

time audio processing system, allowing a network of many devices 

capable of transmitting and receiving streams of audio data. 

• Plug and play support 

The bus orchestrates the automatic configuration of newly added devices. 

Each time a device is added or removed the bus automatically re-

enumerates itself, forming a new bus topology. This is done independently 

and without the intervention of a host system. 

• Eliminate host processor/memory bottleneck  

Processing any amount of multimedia data requires a robust system to 

handle the large and time-dependant flow of data. By eliminating the need 

for a central server the bus is free to automatically direct the transfer of 

data between the devices, thereby removing a potential bottleneck. This is 

supported by the use of peer-to-peer transactions 

• Support for Isochronous data streams 

Firewire provides support for isochronous packet streaming, satisfying the 

need for a constant transfer rate in an audio system. This is a high-priority 

transfer mode that guarantees delivery of data at constant rate.  

 

2.2 The mLAN extension 
 

The mLAN system extends the IEEE 1394 CSR architecture by implementing several 

different registers and by using a series of application level chips [AE Notes, 2005]. 

The chips, ASICs (Application Specific Integrated Chips), provide an interface 

between the IEEE 1394 node and the studio equipment. These chips interface with 

different IEEE 1394 protocol layers to integrate different functionality. Their 

particular concern is translating incoming and outgoing stream and control 

information between the studio equipment and the link layer of the IEEE 1394 node. 
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This encapsulates the formatting and timing of audio data, based on the IEC 61883 

specification. 

 

In terms of the driver, Microsoft ships low level drivers for all the major device and 

bus types for the vendor-supplied drivers to make use of. These vendor drivers form 

client drivers that provide access to the vendor specific functionality of the device. 

The Windows mLAN driver is a client Firewire driver that makes use of the Windows 

supplied IEEE 1394 driver. The mLAN driver is able to manipulate the Unit Directory 

(in the CSR) of the host controller via the underlying IEEE 1394 driver to make it 

appear as a mLAN device.  

 

2.2.1 The IEC 61883 Specification 
 

IEC 61883 is a set of standards that are related to the transmission of audio, music and 

multimedia over IEEE 1394 [AE Notes, 2005]. The mLAN technology uses two of 

these standards. Firstly, mLAN uses IEC 61883-1 for the general packet format, 

dataflow and connection management, and general transmission rules for command 

controls. Specifically, these are encapsulated in the definitions of the Function 

Control Protocol (FCP), the Common Isochronous Packet (CIP) format and the 

Connection Management Procedures (CMP) [Haig, 2002].  

Secondly, there is IEC 61883-6, a standard based on a set of documents presented to 

the IEEE 1394 Trade Association (1394 TA) by Yamaha. Yamaha introduced the 

concept and specifications for mLAN, which described a specification for the 

transmission of audio and music data [AE Notes, 2005]. Thus began a 1394 TA 

document describing the Audio and Music Data Transmission Protocol (A/M 

Protocol). This document was adopted as an IEC (International Electrotechnical 

Commission) standards specification.  

 

The specification controls the transfer bit-rate, the encapsulation and extraction of 

audio and MIDI data into sequences, and the construction of the Common 

Isochronous Protocol (CIP) packets. These CIP packets (comprising a CIP header and 

several CIP data blocks) make up the payload data of the isochronous packets that in 

turn form the isochronous streams. The CIP formatting is based on the IEC 61883-1 
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specification for data flow and connection management [AE Notes, 2005]. The 

payload of the CIP packet is the AM824 (8 bit label and 24 bit Audio/Music data) 

block format given by the IEC 61883-6 specification. The CIP header contains data 

that provides a mechanism for synchronising the reassembly of the audio/music data.  

 

2.2.2 Data Transmission 
 

The isochronous packets are constructed by the IEEE 1394 node Link Layer. Packets 

are identified by a channel number that has a single corresponding stream. Each 

packet within a stream comprises several data blocks, which are made up of a number 

of quadlets (4-byte blocks) [AE Notes, 2005]. Sequences are designated by the series 

of quadlets corresponding to a position in each data block of that packet. Sequences 

and plugs are core to the functionality of the mLAN system, in that each sequence is 

issued from an output plug and gathered by an input plug [AE Notes, 2005]. A plug is 

an abstraction formed by the Enabler, representing the input and output capabilities of 

the studio equipment. The Enabler is software on the computer that interacts with the 

Transporters (device-specific enumeration of the plugs) and allows connection a 

management. It is the plugs that the studio equipment can send and receive data on the 

bus. 

 

2.3 Chapter Summary 
 

Firewire is a flexible bus architecture that is ideally suited to real-time systems, as 

time-dependant data can be transferred in a deterministic manner. Through extensions 

to the architecture, the potential of Firewire is realised. One such extension is the 

mLAN usage of integrated chips to achieve the required audio and control 

requirements for a real-time multimedia system. Analysing the mLAN driver will give 

insights into the usage of technologies presented in this chapter. In order to 

understand the driver, the Windows driver model architecture is presented in the next 

chapter. 
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3. The Windows Driver Model  
 

3.1 Introduction 
 

The Windows Driver Model (WDM) is a framework for designing and developing 

drivers for NT based Windows platforms. WDM drivers have well-defined 

responsibilities in facilitating I/O operations for applications and other drivers [Oney, 

2003]. 

  

WDM drivers are kernel-mode drivers that share many of the design goals of the 

windows operating system. By coding a driver in C and avoiding using the standard C 

runtime libraries, the driver becomes portable among the Windows platforms. There 

is a kernel mode run-time library available for drivers to make use of; which includes 

string and list management routines. Also taking care not to use data types that are 

size dependant on the platform will ensure portability. Having the ability to 

dynamically configure the hardware requires the driver to be more flexible. This 

implies that the device and its driver support Plug and Play. The driver also has to be 

able to cope with being interrupted by other events, and suffer less processing time 

without locking up the system [MSDN, 2005]. 

 

The core concept of the WDM is the driver stack. According to Oney, the Windows 

operating system comes with base drivers that take care of generic I/O operations for 

standard hardware devices. In this architecture, a driver is supported by a chain of 

other drivers below it. This is moving away from monolithic drivers, which handle 

every action between an application making a request of a hardware device and the 

application receiving the desired response. The layered approach is such that at each 

level of the stack a driver in that stack has the opportunity to act on a request being 

sent down. If the driver cannot fulfil the request it will pass the request down the stack 

until the request can be satisfied. The results are then passed back up the stack and 

back to the application that made the request. This approach allows drivers to focus 

on a small area of functionality and specialisation [Oney, 2003].  
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Figure 3.1 illustrates a hypothetical driver stack, showing the different types of drivers 

a stack could have. Our focus is on the kernel-mode drivers, and there is a need to 

clarify their functions. The kernel-mode client driver handles requests from an 

application via the Win32 API. The class driver, usually supplied by Microsoft, 

provides the system-required but hardware-independent support for a class of device. 

The miniclass driver is usually supplied by the hardware vendor to integrate any 

unique functionality their device may have. The port driver (or in some cases, the host 

controller or host adapter driver) supplies required I/O operations on underlying 

physical devices or busses connected to the device. Once again, the miniport driver is 

tailored for vendor specific operations. The hardware bus driver is supplied by 

Microsoft and should not be replaced. 

 

Figure 3.1: Layered Driver Architecture [MSDN, 2005] 
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An application trying to make use of a hardware device will do so through the Win32 

API. It is the bridge between the user and kernel mode. In the kernel mode, a thread or 

a driver has access to system memory and hardware [MSDN, 2005].  In order for an 

application to access these system resources, their requests have to be mediated by the 

kernel components. There are two important concepts that have to be dealt with here, 

one being the driver communication channel and the other being the kernel mode 

operating system components. The kernel mode system communicates with the driver 

stack through I/O Request Packets (IRP’s). These are reusable objects that have a 

predefined and unique code identifying them and their function. This will be covered 

in more depth later in this chapter.  

 

3.2 Operating System Components 
 

The operating system has certain components that monitor and allocate system 

resources as they are required. There are three core components that are relevant to 

drivers functioning within the kernel mode space. These are the PnP manager, the I/O 

manager and the Power manager. Another component relevant to the functioning of 

the kernel but specifically for kernel-mode drivers is the object manager. The Object 

Manager stores and manages all system objects, including device and driver objects. 

The I/O Manager makes use of the Object Manager to access and store the objects it 

uses [MSDN, 2005]. 

 

3.2.1 Plug and Play Manager 
 

The PnP manager is firstly responsible for identifying the device that has been added 

to the system’s environment. Each device is registered with a GUID, making it 

identifiable to the OS. As part of the Windows OS, a registry keeps track of vendor 

specific device hardware, identifiable through a unique identifier called a GUID 

(Global Unique ID). The GUID is a 128bit device identifier that is published for use 

in the IT industry, creating a unique association identifying the device with a GUID 

[Oney, 1999]. That means each device is registered with a GUID, making it 

identifiable to the OS, allowing the OS to load the correct driver. A driver is released 
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with an INF file containing the GUID of the class of device the driver is responsible 

for, as well as other driver related information. 

 

The PnP manager reacts to a newly detected device by searching for the correct driver 

to load if it has not already been loaded. If the PnP Manager cannot find the device it 

will ask the user to provide the system with locations for it to search. It responds to 

run time hardware events, for instance the addition or removal of a device from a bus 

[MSDN, 2005].  

 

Resource requirements for devices are determined by the PnP Manager and are 

allocated appropriately. Dynamic reconfiguration of the hardware resource allocation 

can take place as required. Hardware resources include assignable, addressable bus 

paths that allow devices and system processors to communicate with each other. The 

PnP Manager handles power requests such as stopping or starting the device, 

indicating the intention to remove a device, and responds to other power related 

events. These requests are sent via the I/O Manager in IRP’s using power function 

codes. 

 

Finally, the PnP Manager is responsible for enumerating a newly added device, and 

any subsequent devices that the driver controls on its bus. This means that the device 

object stored in system memory is linked to the driver by calling the driver AddDevice 

routine and passing it the pointer to the device object. The PnP Manager keeps track 

of which devices are active through a list of the Device Objects. Device objects will 

be addressed further on in the chapter [MSDN, 2005]. 

 

3.2.2 Power Manager 
 

The Power Manager is responsible for maintaining different power states for the 

entire system and the connected components. At certain times a device can sit idle 

allowing the power state to be lowered, so that the efficiency of the power usage can 

be increased. This is achieved through different power policies which can be acted on 

depending on the use of the device. The Power Manager, via the I/O Manager, can 

send power function codes contained in an IRP to the relevant driver. Drivers should 
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implement the required power functionality in terms of handling the IRP’s that are 

sent to it [MSDN, 2005]. 

 

3.2.3. I/O Manager 
 

The I/O Manager forms part of the I/O Model for the Windows operating system. The 

I/O Manager’s function is to facilitate I/O communication between an application and 

a device via a driver stack. This communication stream centres on the usage of IRP’s 

to formulate a request to the driver stack that indirectly controls the device.  These 

IRP’s are routed to the driver stack where each driver has the chance to respond to the 

IRP until the request is satisfied. Higher level drivers break the IRP into smaller 

requests and route them to lower level drivers appropriately [Cant, 1999].  

 

The I/O Manager also defines a set of required and optional routines that drivers 

should implement. Further, each driver should have a handler routine for each IRP of 

that set, which are basically entry points into the driver code and thus allows the 

driver to react to a request. In the table below, an example of a small set of IRP major 

function codes that have to be implemented, with their WIN32 function that will 

result in the relevant IRP being dispatched [Cant, 1999]. 

Win32 Function IRP Major Code Base Driver Routine 

CreateFile IRP_MJ_CREATE Create 

CloseHandle IRP_MJ_CLOSE Close 

ReadFile IRP_MJ_READ Read 

WriteFile IRP_MJ_WRITE Write 

DeviceIoControl IRP_MJ_DEVICE_CONTROL DeviceControl 

 

The I/O Manager knows implicitly what entry routines there are for each driver, and 

this is achieved by the I/O Manager keeping a list of Driver Objects. A driver object is 

equated with a Physical Device Object (PDO). A driver object is created by the I/O 

Manager when a driver is first loaded and installed. During the driver initialisation, 

the driver object is passed to the first driver entry routine called DriverEntry, which 

then associates its other entry routines with the driver object [MSDN, 2005].   
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The WIN32 API communicates with the I/O manager, which builds the appropriate 

request to be sent to the correct driver. The driver is represented by a driver object, 

while a device that belongs to the driver is represented as a device object. These 

objects are stored in system memory, and are created by the system as they are 

needed. On the receipt of an I/O request, the I/O manager knows the target device of 

the request (from the DeviceIoControl call of the application) and requests from the 

object manager a pointer to the driver object responsible for the device. An IRP is sent 

to the dispatch routine of the driver object, which then picks out which device it is 

targeted at and routes the IRP there.   

 

3.3 I/O Request Packets  
 

The core function of a driver is to respond to I/O requests from the system or 

application. The driver handles the request by processing the IRP; if the driver cannot 

do that then it passes the IRP to the driver below it in the stack. Each driver in the 

stack should be ready to receive any IRP and handle any error.  

 

3.3.1 IRP Data Structure 
 

IRPs are essentially data structures that contain certain fields, defining the type of 

action to be performed. Each IRP has an action defined by a function code. There are 

two types of function codes for an action. One is a major function code which 

indicates the main action, while the minor function code further specifies the action.  

 

When an application sends a request for a certain operation from a driver controlled 

device, the I/O Manager accesses the object manager in order to resolve the request 

[MSDN, 2005]. The object manager is a core system component that manages all 

stored system created objects and data structures, keeping pointers to their locations. 

The request will want to make use of some service offered by a device and the object 

manager returns a pointer to the device object.  

 

From here the I/O Manager builds and allocates memory for the IRP, and initialises 

certain fields which relate to the positions of drivers in the I/O stack.  The IRP is 
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passed to the top of the relevant driver stack. The driver then accesses the I/O stack to 

determine the current operation it has to complete. 

 

 
Figure 3.2: I/O Request Packet Structure [Oney, 2003] 

 

3.3.2 I/O Stack 

When an IRP is created, an array of IO_STACK_LOCATION structures are created 

and associated with that IRP [Oney, 2003]. Each stack location represents one of the 

drivers that will process the IRP, basically defining the driver stack. Each structure 

contains the function codes and parameters that describe the action of the IRP. The 

I/O stack location can also save contextual information about the operation of the 

current driver. This way the drivers can act on different levels, allowing the 

incremental completion of the task.  
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Figure 3.3: IRP Structure Relating to Stack Locations [Cant, 1999] 

It falls to the current driver to access its associated I/O stack location structure, 

thereby accessing the IRP function code and its parameters. When the driver is done 

with the processing, the driver increments the I/O stack pointer to the next stack 

location and then passes the IRP to the next driver [MSDN, 2005].  

3.3.3 IRP Queues 
 

Since the system supports asynchronous requests within a multitasking and 

multithreaded context, drivers may not be able to finish processing the current IRP 

before another arrives. WDM drivers should then support driver queues, which the 

I/O Manager associates with each device object a driver creates [MSDN, 2005].  The 

lower-end drivers that support the I/O operations of a device supply a StartIO routine. 

IRPs that are queued by a driver using the I/O Manager’s support routine, are then 

queued to the StartIO routine. 

 

3.3.4 I/O Control Codes 
 

Due to the nature of this project, an understanding of I/O Control Codes (IOCTLs) is 

important in the core features of any driver. I/O control codes are a communication 

channel between user-mode applications and drivers [MSDN, 2005]. Typically, 

IOCTLs are sent to drivers by applications using the DeviceIoControl call. When this 

happens, the I/O Manager creates an IRP concerning device or internal device control, 
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including the IOCTL code. This results in the IRP being sent to the upper-most driver 

in the stack. This allows your driver to respond to an IOCTL sent by an application. 

 

3.4 Driver and Device Objects 
 

These objects form the core representation of the WDM architecture for the OS. They 

represent the driver and the devices under the driver’s control, and store information 

relevant to the driver’s operation. An in depth explanation of these objects is required 

to further understand the WDM architecture. 

 

3.4.1 Driver Object 
 

The I/O Manager creates a driver object for each driver that has been loaded and 

installed. They are defined using DRIVER_OBJECT structures. The driver object 

represents the driver itself and contains a list of pointers to all the device objects of 

the devices under the control of the driver [Oney, 2003]. 

 

The driver object sets the pointers to driver entry-point functions during driver 

initialisation. For a driver to receive IRPs, it needs to contain the corresponding entry 

point to the IRP handler routine. For instance, to receive an IRP major code of PNP 

there has to be a PNP dispatch routine published by the driver object so that the I/O 

manager knows the location of the function to dispatch the IRP to. Each entry point 

corresponds to an IRP major and minor function code. If a driver manages its own 

IRP queue then the driver object should contain an entry point to a StartIO routine. 

For non-persistent drivers, an entry point to the Unload routine can be called to free 

up system resources [MSDN, 2005].  
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Figure 3.4: DRIVER_OBJECT Structure [MSDN, 2005] 

 

Figure 3.4 depicts a typical driver object containing the accessible fields of the data 

structure. PtrDeviceObject is the pointer to the list of device objects for which the 

driver is responsible. The I/O Manager uses this list to connect the devices together. 

PtrDriverExtension contains the address of the AddDevice routine the PnP Manager 

will use to add and enumerate new devices under the control of the driver. The 

DDDispatchXXX entry points correspond to each of the major IRP codes the driver 

will handle. 

 

3.4.2 Device Objects 
 

The operating system represents devices using device objects. These are the target for 

all functional operations. The driver object holds pointers to the routines contained in 

the device object. There are usually multiple device objects for a device, one for each 

driver in the stack [Oney, 1999]. 

 

The device object uses a structure called DEVICE_OBJECT to represent itself, which 

is managed by the Object Manager. Each object can be named and as result has a 

handle to easily access it. Additionally, each device object has dedicated system 

storage space for maintaining device state and storing other driver related data 

structures. This space is represented in another data structure called the driver 

extension, particular to a driver and will incorporate all the devices that it is 
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responsible for [MSDN, 2005]. The I/O Manager’s IoCreateDevice and 

IoCreateDeviceSecure routines allocate non-paged memory for the device object and 

extension. Every standard driver routine that receives an IRP can also access the 

driver extension via the pointer to the device object contained within the IRP.  

 

 
Figure 3.5: Device object creation [MSDN, 2005] 

 

To create a device object, the driver calls the AddDevice routine. The actual object is 

created through a system call IoCreateDevice, which then initialises the object. The 

device object has certain properties defined through accessible fields, as shown above. 

These properties describe how the device object interacts with the system. There are 

different types of devices, with a corresponding type of driver, each interacting with 

the system in a different manner. Security and exclusivity aspects of the device and 

the driver are defined here [MSDN, 2005]. 

 

There are three kinds of WDM device objects: 

• Physical Device Object (PDO) 

• Functional Device Object (FDO) 

• Filter Device Object (Filter DO) 
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The PDO represents and is created by a bus driver, with certain responsibilities and 

functions. These include enumerating and administrating the devices on the bus, 

responding to PnP and Power IRPs. 

The FDO is the functional driver’s device object, which is the main driver for the 

device. Its purpose is to provide an interface to the operation of the device. 

A Filter DO is an optional driver that can modify the behaviour of the driver 

depending on what is required. For instance, if you wanted to monitor the functioning 

of the device, or you wanted the device to conform to expected specifications, this 

would be done using a filter driver [MSDN, 2005]. 

 

3.5 Entry Routines 
 

As established above, IRPs are the communication streams from an application to a 

device in order access its resources [Oney, 1999]. Entry routines are the entry points 

into the driver code. They represent the different functionality of the driver by 

implementing standard routines. These standard routines are called under different 

circumstances, and are required to provide the functionality for which they are named. 

The amount of required routines increases as the amount of functionality and support 

the driver is designed to implement. Lower-end drivers, those that directly control 

access to the devices resources will have more required routines than the higher-end 

drivers.  

 

3.5.1 DriverEntry 
 

As discussed earlier, the DriverEntry routine is called by the I/O Manager the first 

time a driver is loaded and installed by the system [MSDN, 2005]. Any initialisation 

is taken care of here, setting up any required parameters. The main purpose of the 

DriverEntry routine is to fill in various pointers to functions in the driver object. 

These are pointers to the other subroutines of the driver. The I/O Manager makes use 

of these pointers when it builds an IRP. The subroutines represent the other entry 

points to the driver, including the dispatch routines, which receive and dispatch IRPs. 
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A pointer to the driver object is passed as a parameter of the DriverEntry routine 

when the driver is first loaded.  

 

3.5.2 AddDevice 
 

The AddDevice routine’s responsibility is to create and initialise the driver’s 

representation of the device object for each device enumerated by the PnP Manager 

[MSDN, 2005].  AddDevice routines are called during system initialization (when 

devices are first enumerated), and any time a new device is enumerated while the 

system is running. During device object creation, an association between the driver 

object and the new device object is created. Memory is allocated for the device object 

by the kernel system, and a pointer to the object is passed as a parameter of the 

AddDevice routine. The driver must provide storage, usually in the device extension 

of a device object, for pointers to certain objects obtained from the I/O manager or 

other system components. 

 

3.5.3 Dispatch Routines 
 

In order for a driver to process an IRP, it must have handler code for that IRP 

[MSDN, 2005]. Dispatch routines are supplied to handle one or more IRP major 

function codes. The driver’s DRIVER_OBJECT structure has within it a dispatch 

table that holds the dispatch routines supplied by the DriverEntry routine. The I/O 

Manager uses the pointer to the relevant dispatch routine to dispatch the IRP for 

processing. The exact functionality a dispatch routine should provide depends on the 

I/O function code it handles, on the driver’s position in the stack, and on the type of 

physical device it supports. This is where the driver decides how to process the IRP, 

or pass it on down the stack. This is an integral part of the driver’s functionality in 

handling IRPs. There are certain dispatch routines a driver must support. These 

routines can be supported as far as the driver requires.  
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Figure 3.6: Relationship between I/O manager and IRP processing  

 

The above figure is a sequence diagram expressing the relationship between the I/O 

manager and the driver’s IRP processing mechanism. Firstly, the I/O manager will 

respond to an application’s request for an I/O operation, or some request that has to be 

handled by a client driver. As an aside, the PnP manager can generate its own IRPs 

although it has to go through the I/O manager. An I/O operation is always directed at 

a device object, represented as a handle in user-mode. The I/O manager finds the 

driver object responsible for the device to get the device object. The object manager is 

in charge of managing system objects, and will return a pointer to an object should a 

request be made. The I/O manager then builds an IRP, specifying the relevant fields 

and in particular, using the driver and device object pointers in specifying the target 

for the I/O operation. The location of the dispatch routine is extracted from the driver 

object’s table of dispatch routines, and is used to call the routine to pass it the IRP. 

The driver will route the IRP to the target device’s IRP handler routine for that IRP 

major function code to be processed.   
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3.5.4 StartIO 
 

The StartIO routine is used exclusively with an IRP queue, and is called in response 

to an IRP being ready in the queue for serialised IRP processing. In higher-end drivers 

this may inhibit performance, and may face certain inoperability factors [MSDN, 

2005]. The processing of IRPs may be slower due to the StartIo routine becoming a 

bottleneck. It is recommended that higher-end drivers use internal queues. 

 

For lower-end drivers, the support of the StartIo routine becomes the foremost focus, 

especially when considering that StartIo is responsible for starting any I/O operation 

on a physical device [MSDN, 2005]. Control over the processing of IRPs can be 

instituted by creating queues for their different function codes. Serialising the 

incoming IRPs can increase the throughput processing of I/O requests.   

 

3.6 Chapter Summary 
 

Following the Windows Driver Model is explicitly required for any kernel-mode 

driver, ensuring a reliable architecture for the representation of drivers and decoupled 

modularised driver stack for I/O operations. This separation and specialisation of 

drivers is inherently more flexible and sturdy than the legacy monolithic driver 

approach. In terms of development, drivers can be written to take advantage of 

established drivers supplied by Microsoft for generic I/O operations on standard 

device hardware. There is still a proportion of non-core driver code that the WDM 

requires of the driver to implement for administrative purposes. This is code that most 

drivers are required provide, specifically the handling of IRPs the driver may not 

explicitly need. The next chapter deals with a driver development tool that smoothes 

the driver production process by providing a framework of classes to neatly 

encapsulate required generic driver functionality.         

 
 
 



4. Compuware DriverStudio  26

4. Compuware DriverStudio 
 

The development of the Windows mLAN driver was done with the help of a 

proprietary Driver Development Environment called DriverStudio. Any kernel-mode 

driver has to conform to the WDM and support Plug and Play functionality. So there 

is basic functionality that any and every driver should implement. In order to 

streamline and optimise the development of a driver, Compuware developed 

DriverStudio to work in conjunction with Microsoft Visual Studio. DriverStudio is a 

C++ class library that forms a framework for driver development [DriverStudio, 

2004]. It is an object-oriented approach to writing drivers, with the DriverStudio 

classes denoted by a leading ‘K’. This also allows for code generation of classes and 

features of the required aspects of a driver.  This involves the use of special classes to 

encapsulate the concepts inherent in driver writing, forming a hierarchy of classes. 

However, a developer can deviate from the structured framework supplied by 

DriverStudio if the driver’s functionality requires special support.    

Figure 4.1: DriverStudio Classes [DriverStudio, 2004] 

 

The above diagram depicts a subset of the DriverStudio classes used by the mLAN 

driver. The framework is a collection of objects and classes that form a foundation 

and a skeleton for the quick and efficient development of a driver. The classes and 

objects are built specifically to closely model the WDM architecture. The classes that 
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driver writers use to derive their own classes for their drivers contain functionality 

and resources to allow for the integration of the driver into the framework. The 

objects provide functionality to allow for the ease of working with data structures 

within the driver context. The purpose of the framework is to provide a model for the 

communication between the different components, which encapsulates the flow of 

data required to facilitate the functioning of the driver.  There are certain classes that 

require subclasses to be derived from them, in order for the driver to provide specific 

functionality.  

 

4.1 KDriver 
 

The driver object is implemented by the class KDriver, which contains the entry 

points into a driver. It is the class responsible for initializing the driver, and for 

directing I/O requests to the device objects to which they are targeted. It is an abstract 

class that requires that a class be derived from it and certain member functions be 

overridden. Each driver built using the framework distinguishes one class as the 

driver class, such that only one instance of KDriver can exist for a driver. KDriver has 

a macro member function called DECLARE_DRIVER_CLASS which must appear 

exactly once, outside of any function. This sets up the framework for the class derived 

from KDriver. The macro dynamically allocates an instance of the specified class 

from the non-paged pool. By default the class library framework routes and handles 

the IRPs for processing. This can be changed by overriding the DispatchFilter 

member function, and informing the framework that it should use this method.  

 

4.1.1 DriverEntry 
 

All classes derived from KDriver must implement this member function. KDriver’s 

DriverEntry differs slightly from that specified by MSDN. In the MSDN 

documentation there are two parameters, a pointer to the DRIVER_OBJECT structure 

created by the I/O Manager and a pointer to a string containing the path to the driver’s 

registry key. KDriver’s DriverEntry just takes the registry path parameter, loads and 

validates the path. Using the registry path, member variables can be updated with 
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values stored in that key. Any initialization of the driver object will take place here. 

For example, explicit use of the DispatchFilter routine can be set up here. 

 

4.1.2 DispatchFilter 
 

If the DispatchFilter routine has been enabled in the framework, then all incoming 

IRPs to the driver will be routed to this routine first. This member function allows the 

preprocessing of IRPs, as well as the entry point for IRPs. This allows the driver to 

monitor all the I/O requests from a single point. Every IRP has to be processed, 

returning the status of the completed IRP to the I/O Manager.  

 

4.1.3 AddDevice 
 

The PnP Manager, by way of the I/O Manager, prompts the framework to call 

AddDevice when a new device that the driver is responsible for is detected. It receives 

a pointer to the device object created by the system to represent the newly detected 

device. This is generally the PDO created by the system to keep track of the 

enumerated devices. The AddDevice member function usually creates the driver’s 

functional representation of the physical device called the FDO. The FDO is created 

using the PDO (the physical representation of the device), and is usually represented 

by an instance of a subclass of KPnpDevice. The FDO has the responsibility of being 

the recipient of the IRPs sent by the system or the driver’s dispatch routine. An 

association between the PDO and FDO is formed by creating an instance of a 

KPnpLowerDevice object. This will be covered later on in this chapter. 

 

4.2 KDevice and subclass KPnpDevice 
 

As mentioned in the previous chapter, a device object represents the virtual or 

physical device that is the target of I/O operations. KDevice is the base class from 

which new classes are defined, and instances created. The member functions of 

KDevice model system services that deal with device objects. KPnpDevice is a 

subclass of KDevice that has extra support for PnP drivers. It is a class that requires 
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certain member functions to be overridden. A driver writer can set different policies 

regarding PnP and Power management. These policies allow the handling of PnP and 

Power related IRPs in specific ways, responding to a certain set of minor function 

codes.  

 

It is the responsibility of the device object to provide handler member functions in 

response to IRPs directed at it. The IRPs that get dispatched to the device object have 

to be handled in a way that satisfies the request. An IRP could contain a request for 

the driver to handle some I/O operation, a PnP or a Power state change. Member 

functions within the KDevice and KPnpDevice class streamline the handling of the 

IRPs.  The classes also have member functions available for the system (via the 

framework) to inform the device object of the resources under its control. Other 

member functions are for the release of these resources. Within the constructor of the 

subclass of KPnpDevice, it is critical to attach the KPnpLowerDevice object to the 

device object to register a clear path of communication. When this is done, the 

framework alerts the I/O manager to the addition of the lower device object to the 

driver stack. 

 

It is through the device object that the framework defines the upper edge of the driver. 

The upper edge of the driver is the part of the driver that provides an interface 

between the system and the lower edge, with communication through the use of IRPs. 

The lower edge driver is usually an interface directly to the hardware or to another 

driver. The lower edge device objects are distinguished as being un-owned by the 

driver class, which provides a different functionality set and allows the decoupling of 

the driver stack. The lower edge driver is the framework’s representation of the 

drivers lower down in the driver stack. These objects are described in the next section. 

 

4.3 KLowerDevice and subclass KPnpLowerDevice 
 

The Windows Driver Model is a layered architecture. Low level drivers interface to 

the hardware and provide access to its resources. Intermediate level drivers provide 

additional translation and support for requests. High level drivers handle the initial 

I/O requests and begin the processing of the IRPs [DriverStudio, 2004]. Drivers that 
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receive an I/O request have the option of handling the IRP and processing it, or 

passing it on down the stack, either in the form of the original request, or as a set of 

new requests.  In this way drivers can communicate with other drivers and can make 

use of services available from other drivers rather than redundantly implementing 

everything again. Requests are always addressed to a device object within the driver, 

although the request may have to go through several drivers before reaching the 

target. The lower device object is that system device object that receives and 

processes the hardware level I/O requests. The main purpose of the lower edge driver 

class is to decouple the upper and lower edge of a device, allowing the layering of 

drivers. The result is that drivers have a limited set of functions for which they are 

responsible. 

 

 
Figure 4.2: Hypothetical Driver Stack 

 

The above diagram illustrates the usage of a lower device object within a stack, 

further showing the benefit of the layered architecture. 

 

KPnpLowerDevice is a subclass derived from KLowerDevice that encapsulates extra 

PnP functionality. If a driver is WDM compliant (supports PnP and Power 

Management) then the lower device object will be of type KPnpLowerDevice. The 

PDO is modelled by the class KPnpLowerDevice [DriverStudio, 2004].  There are 

two ways to create and initialise a lower device instance; one way is to pass the PDO 

and the FDO pointers as parameters to the constructor, and the other way is to use a 

constructor without any parameters and call the Initialize member function. The 

Initialize routine takes the FDO pointer and the PDO, where the PDO is the device 
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object passed by the system when it called the AddDevice routine. When the driver 

creates an instance of a subclass of KPnpDevice, the PDO is a parameter of the 

constructor that is used to initialise the instance of KPnpLowerDevice. The FDO 

pointer is that of the KDevice subclass instance. During the lower device creation and 

initialisation the PDO is attached to the FDO, returning the pointer to the device 

object that was attached. It is then the responsibility of the KPnpDevice subclass 

constructor to call a member function SetLowerDevice.   

 

4.4 Non-Driver Framework classes 
 

These groups of classes represent the container and utility classes that provide 

structured support for developing kernel-mode drivers. To program kernel-mode or 

system components, the correct usage of objects and data types is required. These 

classes model system data types and objects, and required generic driver functionality 

and expose a high level abstraction for use by the driver. These classes are developed 

specifically for use by drivers of the DriverStudio framework, incorporating tedious 

but necessary functionality. The KInterLockedList class, for instance, provides an 

implementation of doubly linked lists that can be serialised and uses a built in spin 

lock to enable safe access to the list. Another example of useful functionality is the 

KIoWorkItem which encapsulates a system request to execute a callback, allowing the 

queuing of a work item that will get executed by the system’s worker thread. 

 

4.4.1 KIrp 
 

The KIrp class abstracts the IRP sent by I/O manager and simplifies its use. An IRP is 

a complex data structure that leads to code for interacting with an IRP to be as 

complex.  The difference in use is illustrated by the code snippet below, showing the 

easily readable usage of the KIrp object versus the relatively complex C equivalent.  

 

 

 

 

 



4. Compuware DriverStudio  32

// Straight C version 
PIRP pIrp; 
IO_STACK_LOCATION pStack; 
pStack = IoGetCurrentIrpStackLocation(pIrp); 
switch (pStack->Parameters.DeviceIoControl.IoControlCode) 
{ 
   . . . 
} 
  
// Using class library 
KIrp I(pIrp); 
switch (I.IoctlCode()) 
{ 
   . . . 
} 
Figure 4.3: IRP versus KIrp usage [DriverStudio, 2004] 

 

The KIrp class provides easy to use accessors for involved operations to access the 

various fields of the IRP. Simple operations are provided for generic operations on the 

IRP, closely modelling the behaviour of the IRP. 

 

4.4.2 KDriverManageQueue 
 

It is the responsibility of the driver to implement a queue for I/O requests, should the 

driver require serialised IRP processing. The KDriverManageQueue framework class 

provides a utility class for the serialised queuing of incoming IRPs. Conceptually, all 

incoming IRPs are routed to the queue to wait for when the driver is ready to process 

the next IRP. This saves the driver writers the extra effort of implementing a working 

queue. 

 

4.5 DriverStudio’s Kernel Streaming Services Framework  
 

Kernel Streaming (KS) services support kernel-mode processing of data streams for 

audio and for other types of continuous media [MSDN, 2005]. The current Windows 

provided multimedia streaming driver in use that encapsulates KS services is the 

AVStream minidriver. In order to utilise this service, you have to develop a 

minidriver that runs as an AVStream minidriver. Below is a diagram showing the KS 

architecture. 
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Figure 4.4: AVStream Architectural Overview [MSDN, 2005] 

 

The port class driver provides an implementation of a KS filter driver, encapsulating 

the model of kernel-mode nodes processing a stream between a start and end point. 

The Stream class driver is provided for backward compatibility with KS 1.0 version 

video drivers.  

DriverStudio provides a framework of classes for encapsulating the functionality of 

the KS Architecture, shown below in the object model of the framework. These 

classes are KStreamMinidriver, KStreamAdapter and KStream. 

 
Figure 4.5: DriverStudio Kernel Streaming Framework 

 

As a benefit of using the DriverStudio framework, driver writers do not have to worry 

about the specifics of the underlying KS architecture. It is required that there is a 

derivation of the three classes that make up the architecture. The Minidriver class is 

responsible for the control of the stream adapter class. In essence the Minidriver can 
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be viewed as a filter driver, because it acts on behalf of the mLAN driver to process 

data streams. An adapter is in turn responsible for control of a stream resource. The 

adapter class controls an individual physical hardware device or layered software 

components above a hardware driver. The minidriver and adapter objects provide 

control over the device driver and hardware while the stream object provides control 

and data handling for an individual media stream. Specifically, the stream class is 

where stream control, stream properties, and stream data buffers are managed 

[DriverStudio, 2004]. 

 

4.6 Compiling a driver 
 

Although DriverStudio is a driver development tool, it still requires the Windows 

DDK build utility to compile drivers. The DDK is required to be used by all kernel-

mode drivers as it builds the driver source code with kernel-specific headers, libraries, 

compilers and linkers. The build utility can be run from the Visual Studio IDE or a 

command prompt. The framework generates the SOURCES and MAKEFILE files that 

are used by the build utility when a new driver project is created, leaving 

customisation up to the developers. These files contain the location of the various 

source files, the libraries to be linked and the intended output used in the compilation. 

Building a driver is a critical event, as it has to be optimised to the platform (for 

example, x86 32-bit or IA64 64-bit builds) it is intended for. Thus the usage of the 

correct build options (of the correct DDK version) for the target platform is necessary 

for the driver to compile and function correctly.    

 

4.7 Versioning Issues 
 

It is important to note that the DriverStudio framework is a development tool that 

encapsulates the WDM architecture. It makes system calls and uses system objects, 

though the framework exposes a high level of abstraction. The classes of the 

framework are based on the WDM and are developed to use the recommended 

techniques. Microsoft allows developers to create drivers for their operating systems 

by providing the Windows Driver Development Kit (DDK), and it is the DDK that is 

responsible for the building of the driver. The DDK is versioned by release and 
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operating system, and documents the WDM, providing a design guide for developing 

drivers. Through each subsequent update to the operating system (for example, the 

Windows XP Service Pack 2) and the DDK, a change in the WDM or Microsoft core 

drivers may occur. This change has to be reflected in the DriverStudio framework, 

and it may be that different versions of DriverWorks (the specific module for driver 

development) will be incompatible. Consequently, code written for a driver using an 

earlier version of DriverStudio and the Windows DDK may not compile with later 

versions unless modification of the code occurs.  

 

4.8 Chapter Summary 
 

This chapter has explained the usefulness of using a framework like DriverStudio in 

driver development. It is also fundamental to understanding the analysis of the mLAN 

driver. The relevant concepts have been covered to allow the next chapter to begin 

explaining the analysis of the driver. It is evident from the previous two chapters that 

the relationship between the WDM and the DriverStudio framework, as the 

encapsulation of a complex model for drivers is simplified using class libraries.  
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5. Object-oriented model of the mLAN driver 
 

This chapter introduces the model of the mLAN driver, explaining the usage of the 

classes and how they fit into the DriverStudio framework. Firstly a brief description 

of the methodology of analysis used in abstracting the object model and class 

interactions is presented. Following that is an overview of the class model structure, 

the classes involved and how they relate to each other. This takes a conceptual look at 

the underlying driver technology used by the mLAN driver.    

 

5.1 Methodology of analysis 
 

The purpose of the previous DriverStudio chapter is to provide an understanding of 

the framework used to create the mLAN driver. DriverStudio contains different 

modules, providing development tools, extensive testing utilities and a powerful 

debugger called SoftIce. SoftIce requires that building the driver is done using the 

DDK “checked build” option, which includes debug information into the build. 

SoftIce is able to convert that debug information and the source code into a symbol 

table that allows the debugger to step through each line of code, examining the value 

of every variable and the memory allocation.  

 

The object model can be extrapolated from the source code by examining the classes 

used for the driver and devices, and relating their usage to the DriverStudio 

framework. This does not present a challenge, but the main focus of the project, is in 

essence to model the interaction between the classes, and in particular the servicing of 

I/O requests. SoftIce becomes a valuable tool in performing analysis of the driver 

source code, allowing the extraction of sequence diagrams through quick and accurate 

analysis. The usage of data structures and objects will become clearer through 

tracking IOCTL requests from an application to the driver code. The alternative is 

manually reading the code to document the driver.  
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5.2 Overview of the Class Structure 
 

The object-oriented model of the mLAN driver is represented in the class diagram 

below.  This is the mLAN driver, and in its compiled form is called “mlanbus.sys”. 

From a high level, the driver can be viewed as a kernel component, since it resides in 

system addressable memory space and operates in the kernel-mode. It can only be 

accessed by user-mode applications via the WIN32 API, which exposes driver 

functionality through IOCTL codes.  

 

Figure 5.1: Object Model of mLAN Driver 

 

The class that is conceptually seen by the system as the driver is the CmLanBusDriver 

class, which inherits from the KDriver class of the framework. This is the class that 

contains the entry points into the driver code. These will be covered in a later section 

with the aid of sequence diagrams. Every time the system detects a new device under 

the control of the driver, it calls the AddDevice routine of the driver code. The driver 

then instantiates a new device object of type CmLanBus, passing it the pointer to the 

system-created device object obtained from the AddDevice routine. Upon the creation 

of the device class object, it needs to initialise its lower device object of type 
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KPnpLowerDevice. This represents the driver technology on which the mLAN driver 

sits. The actual mechanics of this is handled by the framework and the I/O manager.  

 

The Minidriver object is a data structure representing another driver for making use of 

Kernel Streaming services, modelling the DriverStudio KS architecture. 

CmLanDriver_ManagedQueue is the class that makes up a driver-managed IRP 

queue. The rest of the classes (KIoWorkItem and KRegistryKey) are included as 

indication of how the mLAN driver makes use of the framework’s utility classes.   

 

5.2.1 Entry points 
 

There are three entry points into the driver code, these being the DriverEntry, 

AddDevice and DispatchFilter routines. The DriverEntry routine is called when the 

driver is first loaded, giving the driver a chance to initialise the driver state. This is 

depicted below in the sequence diagram. Driver state variables are retrieved from the 

system registry, stored from the last time the driver was loaded. The framework’s 

dispatch filter mechanism is enabled. 

 

 
Figure 5.2: The DriverEntry Routine 
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The next entry point is the AddDevice routine, which is called in response to a new 

device being detected. This creates and initialises a device class object, which in turn 

initialises its attached lower-device object. During initialisation of the device class 

object, the relative Power and PnP policies are set. These policies govern the way the 

device reacts to the various Power and PnP IRPs sent to it. For instance, this will 

allow or disallow a device being put into sleep mode. Finally, should there be no 

problems, the driver, via the framework, alerts the PnP manager of the power state of 

the new device. Below is the sequence diagram for the routine. 

 
Figure 5.3: The AddDevice Routine 

 

For the last entry point, as seen in the sequence diagram below, the DriverStudio 

framework neatly encapsulates the dispatching mechanism required by other WDM 

drivers by routing IRPs to a single routine. The DispatchFilter routine simply checks 

whether the IRP is targeted to a device under control of the driver, or a child 

minidriver object responsible for a stream. It is up to the target device to handle the 

IRP correctly. The minidriver object receives an IRP from the Streaming driver it 

represents in order to communicate with the mLAN driver. This is covered in the next 

chapter. An IRP for a device of the driver is dispatched to the device class to be 

handled there. The framework is aware of which IRP handler routine should be called 

by examining the IRP major function code.  
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Figure 5.4: The DispatchFilter Routine 

 

5.2.2 Kernel Streaming Minidriver 
 

As mentioned above, the mLAN driver makes use of a Kernel Streaming Minidriver 

to control the isochronous streaming between the PC and a node on the Firewire bus. 

It is a driver created with DriverStudio based on the Windows Kernel Streaming 

architecture. Below is a class diagram depicting the mLAN specific implementation 

of the framework’s KS architecture. The member functions and variables, for the most 

part, are left out because they have no direct bearing on this discussion.  
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Figure 5.5: The mLAN Kernel Streaming Minidriver Class Diagram 

 

The CmLanStrmDriver class is the inherited KStreamMinidriver class used to provide 

the entry points of the driver. The framework responds to the I/O manager’s call to 

create a new device by calling OnCreateAdapter, which creates the 

CmLanStrmAdapter object and initialises it. The CmLanStrmAdapter object contains 

objects representing all possible types of streams that it can handle, and will 

instantiate the required stream class. The stream child classes are all inherited from 

the same parent class, requiring upon creation to call InitializeBaseClass to set up the 

stream parameters. These stream classes represent the MIDI and audio data streams 

that exist in mLAN’s isochronous streaming. Unfortunately Microsoft’s IEEE 1394 

driver does not support the bridging of multiple busses due to limitations in the 

representation of the bus number of the driver. As a result, the bridge streams are not 

fully implemented, merely providing a skeleton for future work when support for 

multiple busses is implemented.  
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Figure 5.6: Sequence Diagram for Creating Minidriver 

 

The diagram above models the interaction between the mLAN driver and the KS 

minidriver in response to an application based request to begin streaming. The points 

before number four in the sequence diagram is generic IOCTL processing, while 

points five to nine represent the request for bus resources. In those requests, 

parameters for the stream are initialised. Points ten to fifteen represent the steps taken 

to create the minidriver object. Essentially, the minidriver is called to be created by 

the system call of IoCreateDevice, which is required to control an isochronous stream. 

This is created by the device object and stored in driver object for dispatching 

purposes. The minidriver object is removed when a PnP IRP updating the state of the 

device to be “removed” is received or the stream it is responsible for ceases 

streaming. 
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5.2.3 IOCTL Dispatching 
 

IOCTL codes are specified when using the IRP_MJ_DEVICE_CONTROL major 

function code of the IRP. As a result, the driver can pick out the IOCTL by having a 

handler routine for the IRP that switches the IOCTL code and calls the appropriate 

IOCTL handler routine.  

 

 
Figure 5.7: Sequence Diagram of IOCTL Dispatching 

 

This is a generic IOCTL dispatching mechanism which is relevant in understanding 

the communication aspects of a driver. There is no need to explicitly return 

information, as the input and output buffers are contained in the IRP, which the I/O 

manager returns to the application. 

 

5.3 Chapter Summary 
 

After discussing the structure of the driver, relating it to the WDM and the 

DriverStudio framework, it is now appropriate to move onto the chapter concerning 

the analysis and the documenting of the IOCTL codes. 
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6. IOCTL Analysis and API design 
 

This chapter represents the work done to document the IOCTL codes and the 

respective handler routines of the mLAN driver. The purpose of this is to provide 

information concerning the IOCTLs in order to propagate understanding of how the 

IOCTLs work and their intended usage. Firstly, an overview of the usage and form of 

IOCTLs in regard to the mLAN driver is given. Due to the number of IOCTL codes, it 

is prudent to group them according to their underlying function. Each group is 

identified and explained. Following that is a brief section describing the issues 

surrounding the analysis of the driver. 

  

6.1 mLAN driver IOCTL codes 
 

The mLAN driver implements IOCTL function codes in the custom range from 2048 

to 4095. The values from 0 to 2048 are reserved for use by Microsoft [MSDN, 2005]. 

This allows independent hardware vendors and other types of companies that write 

drivers to provide specialised IOCTL for their drivers, and removes any overlapping 

that might exist for devices of a similar type. The enumeration of the IOCTL codes 

for the mLAN driver can be found in “mlbusdrvioctl.h”. Below is an example of a 

macro for IOCTLs, defining the name of the control code.   

 
#define IOCTL_MLAN_ALLOCATE_STREAM CTL_CODE(FILE_DEVICE_UNKNOWN, 

0x800, METHOD_BUFFERED, FILE_ANY_ACCESS) 

#define IOCTL_MLAN_ASYNC_LOCK CTL_CODE(FILE_DEVICE_UNKNOWN, 0x906, 

METHOD_BUFFERED, FILE_ANY_ACCESS) 

Figure 6.1: Code excerpt from “mlbusdrvioctl.h” 
 

The first parameter specifies the type of device the IOCTL is targeted at. Microsoft 

has a list of device types predefined by the operating system, of which each device 

type has its own associated set of function codes. The usage of FILE_DEVICE_UNKOWN 

in this case is because a mLAN device must make use of custom IOCTL function 

codes and no device similar to the mLAN device exists. The second parameter is the 

function code of the IOCTL, which gives the action of the IOCTL. This is important, 
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as it is used in differentiating between different IOCTL codes for the same device 

type. The third parameter specifies how buffers are passed for I/O and file system 

controls.   Input and output buffers are used to store and access the data contained in 

the IRP. To recap, IRPs have fields for the input and output buffers used in the 

processing of the IOCTL and the data that is returned to the application. This is the 

IRP that the IO manager creates to communicate with the driver. The fourth parameter 

describes the access level that the IOCTL handler routine has over the IRP. 

 

The mLAN driver provides and implements 63 different IOCTL codes and their 

respective handler routines. Due to space limitations in this write up, the IOCTL 

codes are too lengthy to be dealt with individually and will be grouped by their core 

functionality. For example, all 61883 related IOCTLS will be grouped together. This 

is not a fair representation of the IOCTL codes as each IOCTL handles a specific 

action. For the documentation of each specific IOCTL, please refer to the Appendix. 

 

There are five groups into which each IOCTL code can be categorised. For each of 

these groups a brief discussion describing the intentions of the IOCTL codes will be 

given, followed by detailed documentation of one IOCTL code from that group. 

 

6.1.1 IEEE 1394 based mLAN IOCTL codes 
 

These IOCTLs are implementations of IEEE 1394 class calls based on the IEEE 1394 

bus driver. They are characterised by their function and communication with the IEEE 

1394 bus driver. Below is a table containing the IOCTL codes in this group with a 

brief description. 

IOCTL code Description 

IOCTL_MLAN_ADDRESS_RANGE_NOTIFY 
Returns the node address of the 
source of an I/O operation on the 
specified address range 

IOCTL_MLAN_SET_ADDRESS Sets the address of the allocated 
address range 

IOCTL_MLAN_GET_ADDRESS Retrieves the address of the node of 
the allocated address range 

IOCTL_MLAN_FREE_ADDRESS_RANGE Frees a previously allocated address 
range 

IOCTL_MLAN_ASYNC_LOCK Performs a locked asynchronous 
operation on the indicated 
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destination address 

IOCTL_MLAN_ASYNC_READ Performs an asynchronous read 
operation from the source address 

IOCTL_MLAN_ASYNC_WRITE 
Performs an asynchronous write 
operation on the indicated 
destination address 

IOCTL_MLAN_BUS_RESET_NOTIFY   Waits for a bus reset to occur 
IOCTL_MLAN_BUS_RESET Initiates a bus reset 
IOCTL_MLAN_GET_ADDR_FROM_DEVICE_OBJECT Not implemented 
IOCTL_MLAN_GET_LOCAL_HOST_INFO Returns local host information 
IOCTL_MLAN_GET_SPEED_TOPOLOGY_MAPS Obsolete 

IOCTL_MLAN_SEND_PHY_CONFIG_PACKET Sends PHY config packet request to 
the 1394 bus driver 

IOCTL_MLAN_GET_LOCAL_NODE_ADDRESS Returns the local node address  

IOCTL_MLAN_GET_CHANNELS_AVAILABLE Returns the bandwidth and channels 
currently available 

IOCTL_MLAN_ALLOCATE_CHANNEL Allocates the specified channel 
IOCTL_MLAN_RELEASE_CHANNEL Releases the allocated channel 

IOCTL_MLAN_GET_BANDWIDTH_AVAILABLE Returns the bandwidth and channels 
currently available 

IOCTL_MLAN_ALLOCATE_BANDWIDTH Allocates the specified bandwidth 
IOCTL_MLAN_RELEASE_BANDWIDTH Releases the allocated bandwidth 
 

The mLAN driver must do additional processing in the IOCTL handler routine, rather 

than submit the request straight to the underlying IEEE 1394 bus driver. There are 

some IOCTL calls that do not communicate with the Firewire driver, but instead act 

on or use IEEE 1394 related data structures. It is through this additional processing 

that the inherent functionality of the mLAN driver becomes apparent, as well as the 

layered nature of the WDM architecture. In order to communicate with the Firewire 

driver, an IRB has to be constructed with a function code specified, the IRB packaged 

into an IRP, and submitted to the Firewire driver. The actual mechanism uses a 

pointer to an IRB that is passed to the IRP, allowing (upon completion of the IRP) the 

response data to be extracted from the IRB. The function code dictates the data 

structure to be used, as it is forms a union with the IRB. Generally the packets sent to 

the bus tend to be transmitted asynchronously, as they are control packets.  

 

The usage of this group of IOCTLS can be further categorised into sub groups that 

either allocate or de-allocate IEEE 1394 resources, modify or return driver state 

information, initiate an asynchronous request, or setup a notification of some event. In 

order to effectively use the Firewire bus, certain configuration and driver state 
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information has to be known by the application. This will be used in subsequent 

requests of Firewire resources. For instance, the application has to know the bus speed 

in order to request bandwidth resources. A resource, in this case, is something 

controlled by the Firewire driver. For the mLAN driver to make use of the resource, 

an appropriate request has to be sent to the Firewire driver. If there are enough free 

resources to allocate, a handle to the requested resource is returned. If the resource is 

no longer used, it should be de-allocated and be returned to the pool of free resources. 

An address range, channel number, and bandwidth are resources that are allocated to 

the mLAN driver by the IEEE 1394 bus driver. These need to be allocated before any 

asynchronous requests can be made. There are times when an application needs to be 

notified of an event that takes place independent of any determinable factors. I/O 

operations on an allocated address range or a bus reset are two instances of events that 

an application would want to be aware of. A request for notification will return a 

pointer to an event object, which can be polled to check if the event has transpired. It 

is advisable to setup a waiting thread to avoid locking up the application.  

 

An in-depth explanation of an IOCTL code handler routine from the IEEE 1394 group 

will serve as an example, to give a template for those contained in the appendix. The 

code, IOCTL_MLAN_ALLOCATE_ADDRESS_RANGE, is chosen as an example.  

Given below is the extract of the IOCTL explanation from the appendix. First is the 

specification of the input buffer, followed by the output buffer. It depends on the 

IOCTL as to what data structures or data primitives are used as input and output. In 

this case it is a pointer to an ALLOCATE_ADDRESS_RANGE struct.  

Following that is a textual description of the IOCTL, giving a brief overview of the 

intended action to be performed. Below the description is a diagram representing a 

hybrid between a Ward and Mellor Structured Data Diagram [Ward, et al, 1985], and 

Larry Constantine’s Data Flow Diagram. It is hybridised because neither method 

neatly encapsulates the IOCTL handler, but rather taking elements from both methods 

and combining them yields a clearer picture. The entire diagram can be viewed as 

process instead of each full circle, as in the Ward and Mellor approach. The dotted 

circle still represents a trigger for the process, responding to the IRP dispatch routine. 

The parallel lines represent a data store, common to both methods of modelling. Each 

full circle represents a sub-process that acts on a data store. The dotted lines represent 

the flow of the trigger, while the solid lines represent the flow of data and control. 
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After the structured data diagram is the abovementioned data structure used as input 

and output in the IOCTL call. Note that the data structures are documented in a 

separate section of the appendix.  
 

Input Buffer: 

A Pointer to an ALLOCATE_ADDRESS_RANGE struct. 

 

Output Buffer: 

A pointer to the same ALLOCATE_ADDRESS_RANGE struct. 

 

Textual Description: 

The struct specifies the address range that will be allocated in Host Controller address 

space by the IEEE 1394 bus driver. An address range has to be allocated before the 

host controller can respond to any communication from that node. The mLAN driver 

sends an IRB containing the address range to the 1394 driver. The IRB function code 

is that of REQUEST_ALLOCATE_ADDRESS_RANGE. A handle to the address range is 

returned.  
 

 

 

 

 

 

 

 

 

 

 

 

typedef struct _ALLOCATE_ADDRESS_RANGE { 
    IN ULONG    fulAllocateFlags; 
    IN ULONG         fulFlags; 
    IN ULONG         nLength; 
    IN ULONG         MaxSegmentSize; 
    IN ULONG         fulAccessType; 
    IN ULONG            fulNotificationOptions; 
    OUT ADDRESS_OFFSET  Required1394Offset; 
    OUT HANDLE          hAddressRange;  
    IN UCHAR            Data[1]; 
} ALLOCATE_ADDRESS_RANGE, *PALLOCATE_ADDRESS_RANGE; 
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In this particular IOCTL call, the UCHAR Data[1] field of the data structure specifies 

the beginning of the address range to be used. The ULONG nLength field specifies 

how long the address range will be. In the IOCTL handler routine a buffer in system 

memory is created to hold the address range. This is used in the IRB union struct. The 

rest of the input fields are there to specify parameters to be used in the IRB. These 

relate to memory management, completion notification and broadcast features of the 

asynchronous request. The Firewire driver returns a handle to the allocated address 

range and an ADDRESS_OFFSET struct that contains the IEEE 1394 node address. 

The information is available from the struct that was used as input to the IOCTL. 

 

6.1.2 Stream based mLAN IOCTL codes 
 

The only difference between this group of IOCTLs and the previous is that these 

IOCTLs deal with the isochronous nature of the mLAN system. As before, some of 

these IOCTL handler routines do not communicate with the IEEE 1394 driver, they 

are grouped here by the manner in which they interact with stream related structs used 

by the mLAN driver. The main focus of this group is the management of stream data 

structures used to represent a stream, and the sequences that make up a stream. A 

stream is viewed as another IEEE 1394 resource. Like any other resource, it has to be 

allocated before it can be used, and de-allocated when it is not in use. An allocated 

stream exists in two states, started and stopped. There are IOCTLs that handle these 

actions, as well as return stream specific information. The table below contains the 

brief description of the IOCTLs contained in this group. 

 

IOCTL code Description 

IOCTL_MLAN_START_STREAM Starts the allocated stream 
IOCTL_MLAN_STOP_STREAM Stops the allocated stream 
IOCTL_MLAN_GET_STREAM_INFO Returns information of the stream 
IOCTL_MLAN_FREE_STREAM Frees the allocated stream 
IOCTL_MLAN_GET_DRIVER_VERSION Returns the driver version 

IOCTL_MLAN_CONNECT_SEQUENCES_TO_DEVICES Creates the connection map of 
sequences 

IOCTL_MLAN_SET_SYT_SOURCE  Sets the bus master field  
 

This group’s IOCTL showcase is the IOCTL_MLAN_ALLOCATE_STREAM 

handler routine. Following the same format as above, the IOCTL makes use of the 
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MLAN_ISOCH_PARAM struct. The mLAN driver communicates with the IEEE 1394 bus 

driver several times to request Firewire resources. These are requests for allocating a 

channel, bandwidth, and a resource handle for transactions. The resource handle is 

required for requesting and attaching buffers to the stream. In terms of the input 

required for the IOCTL, two mLAN structs form fields of the input struct used to pass 

information for use in the requests.  

Input Buffer: 

The input buffer uses a MLAN_ISOCH_PARAM struct, which specifies the type of the 

stream to be used. 

 

Output Buffer: 

The same struct is returned, specifying the allocated stream information. 

 

Textual Description: 

The request responds to the need to allocate an isochronous stream resource specified 

by the input struct. It goes through several steps to allocate a stream resource. It 

creates the specified stream type, and gets a channel from the underlying 1394 bus 

driver. The IRB function codes submitted to the Firewire driver are as follows: 
REQUEST_ISOCH_ALLOCATE_BANDWIDTH, REQUEST_ISOCH_ALLOCATE_CHANNEL, 

REQUEST_ISOCH_ALLOCATE_RESOURCES, REQUEST_ISOCH_ATTACH_BUFFERS. Inside 

the struct, a pointer is provided to a MLAN_STREAM_STATUS struct, which contains the 

information about the allocated stream.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

typedef struct _MLAN_ISOCH_PARAM { 
 OUT HANDLE                 hStream; 
 OUT MLAN_STREAM_STATUS     StreamStatus; 
 OUT ULONG       ErrorCode; 
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 OUT ULONG       aBitmapClient[MLAN_MAX_NUM_SEQUENCES 
                                 / ULONG_BITSIZE]; 
 IN MLAN_STREAM_CONFIG     mLANStreamConfig; 
 IN MLAN_DATA_FIELD_CONFIG  mLANDataFieldConfig; 
} MLAN_ISOCH_PARAM, *PMLAN_ISOCH_PARAM; 
 

The MLAN_STREAM_CONFIG struct describes the required stream configuration, in 

particular the bus speed, stream type, channel, and buffer related information. The 

MLAN_DATA_FIELD_CONFIG struct describes the intended configuration of the stream 

data, and will be returned with extra information concerning the individual sequences. 

A third struct, MLAN_STREAM_STATUS, returns information about the allocated stream 

and individual sequence status. The primary field in the MLAN_ISOCH_PARAM struct is 

the handle to the allocated stream. The stream handle is required for any subsequent 

stream related operation. 

 

6.1.3 61883 based mLAN IOCTL codes 
 

The IEC 61883 based group of IOCTL codes are characterised by the underlying use 

of the 61883 protocol driver and the 61883 specific structs that they act on. Similar to 

the use of the IEEE 1394 bus driver, the IOCTL handler routines utilises the 

functionality of the 61883 protocol driver and have to build an AV_61883_Request, 

specifying the function code and setting the correct data for input. The request is 

submitted to a process responsible for building a suitable IRP and sending it to the 

61883 protocol driver. It is possible to further divide this group into three sub groups 

featuring: 

• Notification requests 

• Function Control Protocol (FCP) packet requests 

• Plug related requests 

The notification sub-group sets up callback routines to wait for the specified event to 

occur.  

The Function Control Protocol sub-group allows the “send” and “get” of request and 

response FCP packets to and from the bus. An FCP packet is an AV/C command or 

response encapsulated in a FCP frame. The FCP packet is then received from or 

transmitted to a device on the bus by the IEEE 1394 drive via the IEC 61883 protocol 

driver.  
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The last sub-group has to do with plug-related requests such as creating and deleting a 

plug, connecting and disconnecting plugs, and setting and getting plug state 

information. The IOCTLs are briefly described below. 

 

IOCTL codes Description 

IOCTL_MLAN_61883_GET_PLUG_HANDLE Returns a handle to the specified plug  
IOCTL_MLAN_61883_CREATE_PLUG Returns a handle to a newly created plug 

IOCTL_MLAN_61883_PLUG_NOTIFY 
Returns an event handle that indicates 
when an operation is performed on the 
plug 

IOCTL_MLAN_61883_DELETE_PLUG Deletes a plug 
IOCTL_MLAN_61883_DISCONNECT_PLUG Disconnects the specified connection 

IOCTL_MLAN_61883_GET_FCP_REQUEST Returns the next FCP request packet 
from the queue 

IOCTL_MLAN_61883_GET_FCP_RESPONSE Returns the next FCP response packet 
from the queue 

IOCTL_MLAN_61883_GET_PLUG_STATE   Returns the state of the specified plug 
IOCTL_MLAN_61883_SEND_FCP_REQUEST Sends FCP request to the device 

IOCTL_MLAN_61883_SET_FCP_NOTIFY   Registers a client driver notification of 
FCP requests or responses 

IOCTL_MLAN_61883_SEND_FCP_RESPONSE Sends FCP response to the device 
IOCTL_MLAN_61883_SET_PLUG Changes transmission settings for a plug 
 

An example from this group is the IOCTL_MLAN_61883_CONNECT_PLUG 

handler routine. The input buffer receives a pointer to a CMP_CONNECT struct, with the 

same struct being returned. Of the input structs used for the various IOCTL calls, 

those that make use of the 61883 protocol driver mirror existing 61883 data 

structures. The CMP_CONNECT struct is no exception and provides handles to the input 

and output plugs that are intended to be connected. Two other 61883 structs are used 

to specify the connection type and data format to be used in the streams. These are the 

CMP_CONNECT_TYPE and the CIP_DATA_FORMAT structs. The output of the IOCTL call 

is a handle to a plug connection.  

 

Input Buffer: 

The input buffer takes a CMP_CONNECT struct. 

 

Output Buffer: 

The same struct is returned. 
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Textual Description: 

The request is forwarded to the underlying 61883 protocol driver, using the handles of 

plugs contained in the input struct to specify which plugs to connect. A function code 

of Av61883_Connect is used. A handle to the connection is returned. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
typedef struct _CMP_CONNECT { 
 
    IN HANDLE               hOutputPlug;     
    IN HANDLE               hInputPlug;     
    IN CMP_CONNECT_TYPE     Type;  
    IN CIP_DATA_FORMAT      Format;   
    OUT HANDLE              hConnect;  
} CMP_CONNECT, *PCMP_CONNECT; 
 

6.1.4 ASIO based mLAN IOCTL codes 
 

The next group of IOCTLs, shown below, is the ASIO based calls, which is a mLAN 

implementation of ASIO functionality.  

 

IOCTL codes Description 

IOCTL_MLAN_ASIO_INIT 
Returns the current state information of 
the ASIO driver and ASIO streams, and 
initialises the driver 

IOCTL_MLAN_ASIO_FREE Frees up ASIO allocated buffers 
IOCTL_MLAN_ASIO_ALLOC Allocates ASIO buffers and resources 
IOCTL_MLAN_ASIO_STOP Stops the ASIO driver 
IOCTL_MLAN_ASIO_CLEANUP Removes ASIO related objects 

IOCTL_MLAN_ASIO_INFO Returns the current state information of 
the ASIO driver and ASIO streams 

IOCTL_MLAN_ASIO_RESET  Resets the ASIO driver 
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ASIO (Audio Streaming Input Output) is an API that provides the basis for an audio 

streaming driver to make use of multiple channels, overcoming limitations of 

Microsoft supplied audio streaming drivers. The classes can be overridden such that 

the needed functionality can be extracted. The mLAN driver uses the ASIO classes to 

create a client ASIO driver for use by applications requiring audio recording and 

playback capabilities. The following diagram shows the finite state machine diagram 

of the driver, illustrating the operation states and the operation that changes the state.  

 

There are four states: Loaded, Initialised, Prepared and Running. The Loading state 

implies the driver code is accessible by the application or ASIO client. The operating 

state is Initialised when the driver is allocated by the application and can accept 

inquiries. The Prepared state is attained when buffers are allocated and is ready to 

move to the Running state. The Running state signifies that the hardware is active and 

streaming is taking place. 

 
Figure 6.2: ASIO Finite State Diagram [ASIO, 2005] 

 

The IOCTL calls mirror the operations that change states of the ASIO driver. There is 

an INIT IOCTL call that initialises the ASIO driver with mLAN specific information, 

and returns event objects to be used by the ASIO client. The ALLOC IOCTL 
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allocates buffers to be used by the application, hardware and driver, while the FREE 

IOCTL releases those buffers. The CLEANUP IOCTL returns the ASIO driver to the 

Loaded state. There are other IOCTL codes that specify an ASIO reset, and retrieve 

information about the ASIO driver. The IOCTL that will serve as this section’s 

example is IOCTL_MLAN_ASIO_START. The input struct is a single field 

specifying the result of the operation of the call. There is only ever one ASIO driver 

to be used by an application or ASIO client, though each stream can be associated 

with a set of ASIO buffers. This IOCTL call clears the buffers before recording 

begins. The ASIO driver is synchronised with the mLAN driver by pointing both 

drivers to same position in the buffer. The ASIO driver state is then set to Running. 

Input Buffer: 

The input buffer takes a MLAN_ASIO_COMMAND_PARAM struct. 

 

Output Buffer: 

The same struct is returned. 

 

Textual Description: 

The request starts ASIO processing, synchronising with the ASIO driver.  
 
 
 
 
 
 
 

 
typedef struct _MLAN_ASIO_COMMAND_PARAM { 
 ULONG errorCode; 
} MLAN_ASIO_COMMAND_PARAM, *PMLAN_ASIO_COMMAND_PARAM; 
 

6.1.5 WDM Streaming based mLAN IOCTL codes 
 

This group of IOCTLs is implemented for the express use by the WDM Streaming 

Minidrivers. The IOCTLs are used with the IRP_INTERNAL_DEVICE_CONTROL 

code. This is for inter-driver communication. Each minidriver object is created in 

order to control a stream resource. The minidriver object is created when there is a 

request to start streaming, and ownership is given to the mLAN bus driver. In essence, 

IRP IRP 
Dispatch 

for IOCTL 
codes 

IOCTL 
Handler 
Routine

Calls
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the minidriver becomes a child device of the mLAN bus driver, establishing another 

level in the driver stack.  

 

When the mLAN bus driver is required to create an extra child device to control a 

stream, it makes a system call IoCreateDevice. This creates a device object in system 

memory and returns a pointer to the newly created device object. The creator of the 

device object is responsible for maintaining the object, such as deleting it when it is 

no longer required. The driver that is used to create the object is determined by 

parameters contained in the IoCreateDevice call.  Specifying the device type will let 

the I/O manager know what device object to create, and will initialise the appropriate 

DEVICE_OBJECT fields.   

After this call, the I/O manager will have a driver object and device object stored in 

system memory (refer to Chapter 3). It will know what driver to load by the type 

specified in the creation call and by accessing the mLAN driver INF file. The INF file 

specifies driver related information to be stored in the registry, as is used by the PnP 

manager when a driver is first loaded. The INF file also specifies the drivers to be 

used for each device the driver is responsible for. In this way, the mLAN driver 

publishes its usage of the WDM Stream minidrivers. An extract from the INF file is 

shown below. The Version section specifies the type of device and GUID of the class 

of device, and the version of the driver. The mLanBus section publishes the devices 

the driver is responsible for (a mLAN device and the streams). 

 
[Version] 
Class=MEDIA 
ClassGUID={4d36e96c-e325-11ce-bfc1-08002be10318} 
Provider=%mLanBus.Provider% 
DriverVer=03/17/2004,1.1.53.0 
CatalogFile=mLanBus.cat 
 
[mLanBus] 
%mLanBus.DeviceDesc%=mLanBus.INSTALL, V1394\MLAN_BUS 
 
%mLanMIDIStrmDeviceDesc%=mLMIDIStrm, MLAN_BUS\COMPATIBLEMIDISTREAM 
%mLanMIDIOutStrmDeviceDesc%=mLMIDIStrm, MLAN_BUS\MIDIOUTSTREAM 
%mLanMIDIInStrmDeviceDesc%=mLMIDIStrm, MLAN_BUS\MIDIINSTREAM 
%mLanAudioOutStrmDeviceDesc01%=mLAudioStrm,MLAN_BUS\AUDIOOUTSTREAM&ADAPTER_01 
%mLanAudioOutStrmDeviceDesc02%=mLAudioStrm,MLAN_BUS\AUDIOOUTSTREAM&ADAPTER_02 
%mLanAudioOutStrmDeviceDesc03%=mLAudioStrm,MLAN_BUS\AUDIOOUTSTREAM&ADAPTER_03 
%mLanAudioOutStrmDeviceDesc04%=mLAudioStrm,MLAN_BUS\AUDIOOUTSTREAM&ADAPTER_04 
%mLanAudioInStrmDeviceDesc01%=mLAudioStrm, MLAN_BUS\AUDIOINSTREAM&ADAPTER_01 
%mLanAudioInStrmDeviceDesc02%=mLAudioStrm, MLAN_BUS\AUDIOINSTREAM&ADAPTER_02 
%mLanAudioInStrmDeviceDesc03%=mLAudioStrm, MLAN_BUS\AUDIOINSTREAM&ADAPTER_03 
%mLanAudioInStrmDeviceDesc04%=mLAudioStrm, MLAN_BUS\AUDIOINSTREAM&ADAPTER_04 

 
Figure 6.3: Extract from mlanbus.INF 
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The WDM Streaming Minidriver created by Yamaha is a separate DriverStudio 

project. It is based on the C++ framework of classes that encapsulates the Windows 

Kernel Streaming Architecture (See Chapter 3 for an explanation of the KS Streaming 

Architecture). In terms of this implementation, the mLAN bus driver forms the 

framework’s lower device object class for the adapter. This is to establish clear lines 

of communication within the driver stack. The diagram below describes the 

interaction of the three Kernel Streaming classes with the mLAN driver. 

 

 
Figure 6.4: Kernel Streaming Architecture  

 

The lower level drivers and hardware represents those drivers at the bottom of the 

stack closest to the HAL, responsible for receiving from and transmitting data onto 

the IEEE 1394 bus. Although the mLAN driver is the lower device for the WDM 

Streaming minidriver in the DriverStudio framework, conceptually the mLAN driver 

owns and is responsible for the Streaming minidriver. 

 

6.2 Implementation Issues 
 

As discussed in the DriverStudio chapter, versioning issues can halt progress in 

building a driver through incompatibility issues. The source code of the mLAN driver 

was released and built using version 2.7 of DriverStudio. Current analysis of the 

driver is done using the latest version 3.2, following several changes to the WDM. As 
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a result, a fundamental change in the underlying functioning of at least one class 

(relevant to its usage) is found, leaving the class obsolete. To build the driver with the 

current version of DriverStudio requires that the deprecated classes in the code be 

replaced with the new classes. This requires the modification of the driver source 

code. This was unsuccessful as a number of critical errors were found during this 

stage, unfortunately further work required more time and was out of the scope of the 

project. 

 

The purpose of rebuilding the driver is to include debugging information, and in 

particular is to use the “checked build” option of the DDK.  This results in state 

information about variables and memory allocation being readily available to 

debugger systems. In terms of the DriverStudio environment, a powerful debugger 

system called SoftIce is able to translate debug information included in the “checked 

build” option into a symbol table. This allows SoftIce to step through the execution of 

the driver code line by line and track variable state information and memory 

allocation. This provides a powerful tool for analysis of the operation of driver code.  

 

Lacking the use of the powerful debugger tool, analysis of the IOCTL code handler 

routines is carried out manually, examining the source code, requiring more time 

double checking the analysis.   

 

6.3 Chapter Summary 
 

The analysis of the mLAN driver is complete, although there remain areas lacking in 

clarity that can be resolved accurately through the use of a power debugger. It would 

be more conclusive if that form of analysis was carried out, unfortunately due to 

limitations of time and the scope of the project, it was not. The IOCTL codes can be 

grouped by the underlying usage of data structures and requests made, which neatly 

shows the modularisation of the driver. These modules represent a core area of 

functionality of the mLAN system by way of the driver. 
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7. Conclusion 
 

7.1 Project Summary 
 

Through the examination of the IEEE 1394 architecture, it is evident that Firewire is a 

flexible bus architecture that is ideally suited to networked real-time multimedia 

systems, as time-dependant data can be transferred in a deterministic manner. The 

mLAN extension demonstrates the flexible nature of Firewire, and with the use of 

integrated chips, it is possible to extend the IEEE 1394 architecture to interface with 

any media type. This raises the question about the usage of Firewire to transmit 

audio/visual media. 

 

The Windows Driver Model is explicitly required for any kernel-mode driver, 

ensuring a reliable architecture for the representation of drivers and decoupled 

modularised driver stack for I/O operations. This separation and specialisation of 

drivers is inherently more flexible and sturdy than the legacy monolithic driver 

approach. In terms of development, drivers can be written to take advantage of 

established drivers supplied by Microsoft for generic I/O operations on standard 

device hardware. Through the modularisation and compartmentalisation of driver 

functionality into a driver stack, the WDM represents the grouping of services. It is 

this concept that allows the development of drivers to focus on the core features it is 

designed to expose. Yet there is still the overhead of making the driver conform to the 

WDM by requiring the handling of non-core driver services.  

 

DriverStudio becomes a powerful tool for breaking down the development of the 

driver into its core and non-core components. DriverStudio smoothes the driver 

production process by providing a framework of classes to neatly encapsulate 

required generic driver functionality.  This allows the development team to focus on 

the core aspects of the driver. This framework then forms the basis for the object 

model of the mLAN driver.       
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The object model of the mLAN driver relates to the WDM through the use of the 

DriverStudio framework. In chapter five, the structure of the driver is presented. From 

this, it is possible to understand how the classes conform to the WDM. It is 

unfortunate that the ideal methodology of analysis could not have been pursued. This 

limits the analysis, where clarity is sacrificed through the manual approach of 

analysis, which can be resolved accurately through the use of a power debugger. It 

would be more conclusive if that form of analysis was carried out, unfortunately due 

to the incompatibility issues experienced and the limitations of time and the scope of 

the project, it was not.  

 

7.2 Future Extensions 
 

As a possible extension, modifying the driver such that it builds should yield 

interesting results through further analysis. The driver would then be ready to be 

modified to further investigate the potentiality of the mLAN system in audio 

streaming. Further extensions would be to investigate the possibility of extending the 

driver to be compatible with the next version of the Windows operating system, or to 

investigate the usage of video streaming should and AV capable device be developed.  

A further extension is to port the driver to the new driver architecture that will be seen 

in the next version of the Windows operating system.   

 

 



8. References  61

8. References 
 
[AE Notes, 2005]  Audio Engineering Course Notes, 2005 
 
[Anderson, 1999]  Anderson, D. FireWire System Architecture:  IEEE1394a, 2nd 
Edition, Mindshare Inc., Addison-Wesley, 1999 
 
[ASIO, 2005] Steinberg, Audio Streaming Input Output 2.1 SDK, 2005 
 
[Cant, 1999]  Cant, C. Writing Windows WDM Device Drivers, R&D Books, 
Lawrence, 1999 
 
[DriverStudio, 2004]  Compuware Corporation, DriverStudio Version 3.2, 2004 
 
[Haig, 2002] Haig, D. Firewire Breakout Box Driver, Honours Thesis, Rhodes 

University, 2002 

 
[McKenzie, 2003]  McKenzie, B. 1394 Node-Targeted Asynchronous Transfers 
[Online] http://www.wd-3.com/archive/ 1394NodeTransfers.htm, 2003  
 
[MSDN, 2005]  Microsoft Developers Network (MSDN) Library, April 2005 
 
[Oney, 1999]  Oney, W. Programming the Microsoft Windows Driver Model, 
Microsoft Press, Washington, 1999 
 
[Oney, 2003]  Oney, W. Programming the Microsoft Windows Driver Model, 2nd 
Edition, E-BOOK 2003 
 
[Ward, et al, 1985] Ward, P. and Mellor, S. Structured Development for Real-Time 
Systems, Prentice-Hall, Inc., New Jersey, 1985 



Appendix  62

Appendix 
  

A. IOCTL analysis and documentation: 
 
Each IOCTL has a specification of the input and output requirement for the IRP’s 
buffer. The actual description of each struct is detailed in Part B of the Appendix. 
There is a brief textual description of what the IOCTL handler routine does.  
 
Below the description is a diagram representing a hybrid between a Ward and Mellor 
Structured Data Diagram, and Larry Constantine’s Data Flow Diagram. It is 
hybridised because neither method neatly encapsulates the IOCTL handler, but rather 
taking elements from both methods and combining them yields a clearer picture. The 
entire diagram can be viewed as process instead of each full circle, as in the Ward and 
Mellor approach. The dotted circle still represents a trigger for the process, 
responding to the IRP dispatch routine. The parallel lines represent a data store, 
common to both methods of modelling. Each full circle represents a sub-process that 
acts on a data store. The dotted lines represent the flow of the trigger, while the solid 
lines represent the flow of data and control. 
 

IEEE 1394 based mlan IOCTL codes 
 
IOCTL_MLAN_ALLOCATE_ADDRESS_RANGE 
 
Input Buffer: 
A Pointer to an ALLOCATE_ADDRESS_RANGE struct. 
 
Output Buffer: 
A pointer to the same ALLOCATE_ADDRESS_RANGE struct. 
 
Textual Description: 
The struct specifies the address range that will be allocated in Host Controller address 
space by the IEEE 1394 bus driver. An address range has to be allocated before the 
host controller can respond to any communication from that node. The mLAN driver 
sends an IRB containing the address range to the 1394 driver. The IRB function code 
is that of REQUEST_ALLOCATE_ADDRESS_RANGE. A handle to the address range is 
returned.  
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IOCTL_MLAN_ADDRESS_RANGE_NOTIFY 
 
Input Buffer: 
A pointer to an ADDRESS_RANGE_NOTIFY struct. 
 
Output Buffer: 
A pointer to the same ADDRESS_RANGE_NOTIFY struct is returned, which will need a 
separate thread to wait for the completed IRP. 
 
Textual Description: 
The request adds the IRP to a notification queue for the allocated address ranges. The 
callback routine is signalled when an I/O operation is detected on that address range. 
The callback routine completes the IRP and fills in the node address of the source for 
that I/O transaction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_SET_ADDRESS 
 
Input Buffer: 
A pointer to a SET_ADDRESS_DATA struct. 
 
Output Buffer: 
Nothing is returned. 
 
Textual Description: 
This request copies the data contained within the input struct to the node specified by 
the allocated address range handle. 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_GET_ADDRESS 
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Input Buffer: 
A pointer to a GET_ADDRESS_DATA struct. 
 
Output Buffer: 
A pointer to the same GET_ADDRESS_DATA struct is returned. 
 
Textual Description: 
The request returns the node address and the data contained within that address 
specified by the allocated address range handle. 
  
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_FREE_ADDRESS_RANGE 
Input Buffer: 
A HANDLE to the intended address range. 
 
Output Buffer: 
Nothing is returned. 
 
Textual Description: 
The IOCTL handler routine will try to free the address range by sending an IRB 
containing the address range to the 1394 driver. The IRB function code is that of 
REQUEST_FREE_ADDRESS_RANGE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_ASYNC_LOCK 
 
Input Buffer: 
A pointer to an ASYNC_LOCK struct. 
 

Calls
Calls

IRP 

IRB 

IRP 

IRP 
Dispatch 

for IOCTL 
codes 

IOCTL 
Handler 
Routine 

Submit 
IRB to 

Firewire 
bus driver

Lower 
Device: 

1394 bus 
Driver 

Calls

IRP IRP 
Dispatch 

for IOCTL 
codes 

IOCTL 
Handler 
Routine

Calls



Appendix  65

Output Buffer: 
A pointer to the same ASYNC_LOCK struct is returned. 
 
Textual Description: 
The IOCTL code is used to perform a locked asynchronous operation on the indicated 
destination address. This is achieved by summiting an IRB to the 1394 driver with a 
function code of REQUEST_ASYNC_LOCK.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_ASYNC_READ 
 
Input Buffer: 
A pointer to an ASYNC_READ struct. 
 
Output Buffer: 
A pointer to the same ASYNC_READ struct is returned. 
 
Textual Description: 
The IOCTL code is used to perform an asynchronous read operation on the indicated 
destination address. This is achieved by summiting an IRB to the 1394 driver with a 
function code of REQUEST_ASYNC_READ. 
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IOCTL_MLAN_ASYNC_WRITE 
 
Input Buffer: 
A pointer to an ASYNC_WRITE struct. 
 
Output Buffer: 
Nothing is returned. 
 
Textual Description: 
The IOCTL code is used to perform an asynchronous write operation on the indicated 
destination address. This is achieved by summiting an IRB to the 1394 driver with a 
function code of REQUEST_ASYNC_WRITE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_BUS_RESET_NOTIFY 
 
Input Buffer: 
A pointer to a MLAN_BUS_RESET_NOTIFY struct. 
 
Output Buffer: 
A pointer to the same MLAN_BUS_RESET_NOTIFY struct is returned. 
 
Textual Description: 
The request sends the IRP to a bus reset notification queue, which will be signalled by 
the driver when a bus reset occurs. The struct is returned with the node address of the 
device that caused the reset. 
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IOCTL_MLAN_BUS_RESET 
 
Input Buffer: 
A ULONG type. 
 
Output Buffer: 
Nothing is returned. 
 
Textual Description: 
The input type is to specify the reset flags of the IRB that will be sent to the 1394 
driver. The IRB has a function code of REQUEST_BUS_RESET. This initiates a bus reset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_GET_LOCAL_HOST_INFO 
 
 
Input Buffer: 
A pointer to a GET_LOCAL_HOST_INFORMATION struct. 
 
Output Buffer: 
A pointer to the same GET_LOCAL_HOST_INFORMATION struct is returned. 
 
Textual Description: 
This receives a request for the local host information, which is attained by 
constructing an IRB with a function code of REQUEST_GET_LOCAL_HOST_INFO. The 
struct stores the input data as well as the host information when it is received.  
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IOCTL_MLAN_SEND_PHY_CONFIG_PACKET 
 
Input Buffer: 
A pointer to a PHY_CONFIGURATION_PACKET struct. 
 
Output Buffer: 
Nothing is returned. 
 
Textual Description: 
The handler forwards a send PHY config packet request to the 1394 bus driver. The 
IRB function code is REQUEST_SEND_PHY_CONFIG_PACKET.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_GET_LOCAL_NODE_ADDRESS 
 
Input Buffer: 
A pointer to a GET_LOCAL_NODE_ADDRESS struct. 
 
Output Buffer: 
A pointer to the same GET_LOCAL_NODE_ADDRESS struct is returned. 
 
Textual Description: 
This request returns the local host node bus and node number.  
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_GET_CHANNELS_AVAILABLE 
 
Input Buffer: 
This IOCTL code uses no input. 
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Output Buffer: 
This returns a LARGE_INTEGER struct (refer to MSDN for specification). 
 
Textual Description: 
It makes a request that returns the bandwidth and channels currently available on the 
IEEE 1394 bus. The returning information specifies a 64-bit number with a high and 
low part of 32-bits each. The IRB has  a function code of 
REQUEST_ISOCH_QUERY_RESOURCES. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_ALLOCATE_CHANNEL 
 
Input Buffer: 
A ULONG type. 
 
Output Buffer: 
This it returns the same type. 
 
Textual Description: 
This is to specify the requested channel number. The request is forwarded to the 1394 
bus driver, which allocates an isochronous channel to be used in subsequent 
operations. The IRB function code is REQUEST_ISOCH_ALLOCATE_CHANNEL. 
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IOCTL_MLAN_RELEASE_CHANNEL 
 
 
Input Buffer: 
A ULONG type. 
 
Output Buffer: 
No return value. 
 
Textual Description: 
This is to specify the channel number to release. The request is forwarded to the 1394 
bus driver, which releases an isochronous channel that was previously allocated. The 
IRB function code is REQUEST_ISOCH_FREE_CHANNEL. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_GET_BANDWIDTH_AVAILABLE 
 
Input Buffer: 
There is no required input for this IOTCL code. 
 
Output Buffer: 
A ULONG type. 
 
Textual Description: 
The request returns the bandwidth and channels currently available on the IEEE 1394 
bus. It returns to the application the available bandwidth as expressed in bytes per 
isochronous frame. The IRB function code is REQUEST_ISOCH_QUERY_RESOURCES. 
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IOCTL_MLAN_ALLOCATE_BANDWIDTH 
 
Input Buffer: 
A ULONG type. 
 
Output Buffer: 
It returns a handle to use to refer to the bandwidth resource. 
 
Textual Description: 
This is to specify the “max bytes per frame requested”. The request allocates 
isochronous bandwidth to be used in subsequent operations. The IRB function code is 
REQUEST_ISOCH_ALLOCATE_BANDWIDTH. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_RELEASE_BANDWIDTH 
 
Input Buffer: 
The input buffer takes the handle that was used as a reference to the allocated 
bandwidth. 
 
Output Buffer: 
There is no output returned. 
 
Textual Description: 
The request releases the isochronous bandwidth that was previously allocated. The 
IRB has a function code of REQUEST_ISOCH_FREE_BANDWIDTH. 
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Isochronous Stream based mlan IOCTL codes 
 
 
IOCTL_MLAN_ALLOCATE_STREAM 
 
Input Buffer: 
The input buffer uses a MLAN_ISOCH_PARAM struct, which specifies the type of the 
stream to be used. 
 
Output Buffer: 
The same struct is returned, specifying the allocated stream information. 
 
Textual Description: 
The request responds to the need to allocate an isochronous stream resource specified 
by the input struct. It goes through several steps to allocate a stream resource. It 
creates the specified stream type, and gets a channel from the underlying 1394 bus 
driver. The IRB function codes submitted to the Firewire driver are as follows: 
REQUEST_ISOCH_ALLOCATE_BANDWIDTH, REQUEST_ISOCH_ALLOCATE_CHANNEL, 
REQUEST_ISOCH_ALLOCATE_RESOURCES, REQUEST_ISOCH_ATTACH_BUFFERS. Inside 
the struct, a pointer is provided to a MLAN_STREAM_STATUS struct, which contains the 
information about the allocated stream.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_START_STREAM 
 
Input Buffer: 
The input buffer takes a MLAN_STREAM_COMMAND_PARAM struct, which contains the 
allocated stream resource handle. 
 
Output Buffer: 
A pointer to the same struct is returned. 
 
Textual Description: 
The request uses the allocated stream handle from the allocate stream IOCTL, checks 
if it is a send or receive stream, and then starts the stream. IRBs with function codes 
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of REQUEST_ISOCH_QUERY_CYCLE_TIME and REQUEST_ISOCH_TALK/LISTEN 
(depends on send or receive streams) are used.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_CONNECT_SEQUENCES_TO_DEVICES  
 
 
Input Buffer: 
The input buffer uses a MLAN_ISOCH_PARAM struct, containing a handle to the stream. 
 
Output Buffer: 
A pointer to the same struct is returned. 
 
Textual Description: 
The request uses the incoming handle of the stream that was previously allocated to 
process each sequence. It checks to see if the sequence type has changed and sets up 
the current connection map. 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_SET_SYT_SOURCE 
 
Input Buffer: 
The input buffer uses a MLAN_ISOCH_PARAM struct. 
 
Output Buffer: 
The request returns a pointer to the same struct. 
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Textual Description: 
The request is used to set the SYT source associated with the stream information 
struct. The allocated stream has to be a sending stream for this to work, and sets the 
SYT for the stream. If the stream is not the clock master it gets the SYT value from 
the corresponding receive stream.  
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_STOP_STREAM 
 
Input Buffer: 
The input buffer uses a MLAN_STREAM_COMMAND_PARAM struct. 
 
Output Buffer: 
The request returns a pointer to the same struct. 
 
Textual Description: 
The request stops the stream specified by the handle in the struct. The stream has to 
have all sequences free of use, in other words, the sequences have to be finished 
streaming. The same struct is returned regardless of whether the function succeeds or 
fails. The IRB uses a function code of REQUEST_ISOCH_STOP. 
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IOCTL_MLAN_GET_STREAM_INFO 
 
Input Buffer: 
The input buffer uses a MLAN_ISOCH_PARAM struct. 
 
Output Buffer: 
The request returns a pointer to the same struct. 
 
Textual Description: 
The request updates the status information of the allocated stream, including which 
sequences are in use.  
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_FREE_STREAM 
 
Input Buffer: 
The input buffer uses a MLAN_STREAM_COMMAND_PARAM struct. 
 
Output Buffer: 
The request returns a pointer to the same struct. 
 
Textual Description: 
The request frees up the memory allocated for the stream. The stream has to be 
stopped first before freeing up the stream. IRBs are dispatched with function codes of 
REQUEST_ISOCH_DETACH_BUFFERS, REQUEST_ISOCH_FREE_RESOURCES, 
REQUEST_ISOCH_FREE_CHANNEL and REQUEST_ISOCH_FREE_BANDWIDTH. 
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IOCTL_MLAN_GET_DRIVER_VERSION 
 
Input Buffer: 
There is no required input. 
 
Output Buffer: 
A ULONG type is returned specifying the driver interface version. 
 
Textual Description: 
This request returns the driver version. 
 
 
 
 
 
 
 
 
 
 

IEC 61883 based mlan IOCTL codes 
 
IOCTL_MLAN_61883_CONNECT_PLUG 
 
Input Buffer: 
The input buffer takes a CMP_CONNECT struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request is forwarded to the underlying 61883 protocol driver, using the handles of 
plugs contained in the input struct to specify which plugs to connect, using a function 
code of Av61883_Connect. A handle to the connection is returned. 
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IOCTL_MLAN_61883_CREATE_PLUG 
 
Input Buffer: 
The input buffer takes a CMP_CREATE_PLUG struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request is sent to 61883 protocol driver to create a plug, using a function code of 
Av61883_CreatePlug. A handle to the plug is returned in the struct. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_61883_PLUG_NOTIFY 
 
Input Buffer: 
The input buffer takes a MLAN_CMP_PLUG_NOTIFY struct. 
 
Output Buffer: 
The notification routine returns the same struct when it is signalled to run. 
 
Textual Description: 
The request adds the IRP to a queue for notification from the 61883 protocol driver 
that monitors access to the plug and then returns information in the struct.  
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IOCTL_MLAN_61883_DELETE_PLUG 
 
 
 
Input Buffer: 
The input buffer takes a CMP_DELETE_PLUG struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request tells the 61883 protocol driver to delete the plug (as a handle in the 
struct), using a function code of Av61883_DeletePlug. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_61883_DISCONNECT_PLUG 
 
Input Buffer: 
The input buffer takes a CMP_DISCONNECT struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request extracts the handle to the plug connection from the input struct. The 
connection is released by making the appropriate call to the underlying 61883 
protocol driver, using a function code of Av61883_Disconnect. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Calls
Calls

IRP 

AV 61883 Request 

IRP 

IRP 
Dispatch 

for IOCTL 
codes 

IOCTL 
Handler 
Routine 

Submit SRB 
to 61883 
Protocol 
Driver 

Lower 
Device: 
61883 

Protocol 
Driver 

Calls 

Calls
Calls

IRP 

AV 61883 Request 

IRP 

IRP 
Dispatch 

for IOCTL 
codes 

IOCTL 
Handler 
Routine 

Submit SRB 
to 61883 
Protocol 
Driver 

Lower 
Device: 
61883 

Protocol 
Driver 

Calls 



Appendix  79

IOCTL_MLAN_61883_GET_FCP_REQUEST  
 
Input Buffer: 
The input buffer takes a MLAN_FCP_GET_REQUEST struct. 
 
Output Buffer: 
The same struct is returned, but if the asynchronous method of communicating with 
the 61883 protocol driver then the IRP is sent to completion status queue routine. This 
routine will return the struct when that completion routine fires. 
 
Textual Description: 
The request uses the 61883 get FCP request of the 61883 driver, using a function code 
of Av61883_GetFcpReqeuest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_61883_GET_FCP_RESPONSE 
 
 
Input Buffer: 
The input buffer takes a MLAN_FCP_GET_RESPONSE struct. 
 
Output Buffer: 
The same struct is returned, but if the asynchronous method of communicating with 
the 61883 protocol driver then the IRP is sent to completion status queue routine. This 
routine will return the struct when that completion routine fires. 
 
Textual Description: 
The request uses the 61883 get FCP response of the 61883 driver, using a function 
code of Av61883_GetFcpResponse.  
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IOCTL_MLAN_61883_GET_PLUG_HANDLE 
 
Input Buffer: 
The input buffer takes a CMP_GET_PLUG_HANDLE struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request returns a handle to the plug specified by parameters in the struct, using a 
function code of Av61883_GetPlugHandle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_61883_GET_PLUG_STATE 
 
Input Buffer: 
The input buffer takes a CMP_GET_PLUG_STATE struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request returns the current status and information of the plug specified by the 
handle in the struct, using a function code of Av61883_GetPlugState. 
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IOCTL_MLAN_61883_SEND_FCP_REQUEST 
 
Input Buffer: 
The input buffer takes a MLAN_FCP_SEND_REQUEST struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request uses the 61883 send FCP request AV_request of the 61883 driver, using a 
function code of Av61883_SendFcpRequest.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_61883_SEND_FCP_RESPONSE 
 
Input Buffer: 
The input buffer takes a MLAN_FCP_SEND_RESPONSE struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request uses the 61883 send FCP response AV_request of the 61883 driver, using 
a function code of Av61883_SendFcpResponse.  
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IOCTL_MLAN_61883_SET_FCP_NOTIFY 
 
Input Buffer: 
The input buffer takes a SET_FCP_NOTIFY struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request uses the 61883 set FCP notify AV_request of the 61883 driver, using a 
function code of Av61883_SetFcpNotify. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_61883_SET_PLUG 
 
Input Buffer: 
The input buffer takes a CMP_SET_PLUG struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request uses the 61883 set plug AV_request of the 61883 driver, using a function 
code of Av61883_Setplug. 
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ASIO based mlan IOCTL codes 
 
IOCTL_MLAN_ASIO_INFO 
 
Input Buffer: 
The input buffer takes a MLAN_ASIO_INIT_PARAM struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request finds an output stream that has ASIO sequences, regardless of it being a 
send or receive stream. It extracts information about that stream it finds to put into the 
input struct. It does not modify the driver state. 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_ASIO_INIT 
 
Input Buffer: 
The input buffer takes a MLAN_ASIO_INIT_PARAM struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request finds an output stream that has ASIO sequences, regardless of it being a 
send or receive stream. It extracts information about that stream it finds to put into the 
input struct. It creates the handles to event related fields so the application can be 
aware of changes of the ASIO driver state. The mLAN driver sets the state of the 
ASIO driver to be active. 
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IOCTL_MLAN_ASIO_ALLOC 
 
Input Buffer: 
The input buffer takes a MLAN_ASIO_ALLOC_PARAM struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request will allocate the requested number of channels for use by the ASIO client 
sitting in user mode. The sequences will be identified as ASIO sequences, and input 
and output buffers will be allocated. 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_ASIO_FREE 
 
Input Buffer: 
The input buffer takes a MLAN_ASIO_COMMAND_PARAM struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request frees up any previously allocated buffers and ASIO data structures, and 
removes the sequences identified as ASIO sequences. These sequences can now be 
used as any other type of sequence. 
 
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_ASIO_START 
 
Input Buffer: 
The input buffer takes a MLAN_ASIO_COMMAND_PARAM struct. 
 
Output Buffer: 
The same struct is returned. 
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Textual Description: 
The request starts ASIO processing, synchronising with the ASIO driver.  
 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_ASIO_STOP 
 
Input Buffer: 
The input buffer takes a MLAN_ASIO_COMMAND_PARAM struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request stops ASIO processing, synchronising with the ASIO driver. 
 
 
 
 
 
 
 
 
 
IOCTL_MLAN_ASIO_CLEANUP 
Input Buffer: 
The input buffer takes a MLAN_ASIO_COMMAND_PARAM struct. 
 
Output Buffer: 
The same struct is returned. 
 
Textual Description: 
The request removes event objects generated by ASIO processing, and limits the 
access of the ASIO client in user mode. 
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IOCTL_MLAN_ASIO_RESET 
 
Input Buffer: 
There is nothing for input. 
 
Output Buffer: 
There is nothing for output. 
 
Textual Description: 
The request will specify an ASIO reset event which will be handled when it is 
convenient.  
 
 
 
 
 
 
 
 
 
 
Obsolete IOCTL codes 
 
IOCTL_MLAN_GET_ADDR_FROM_DEVICE_OBJECT 
 
Input Buffer: 
N/A 
 
Output Buffer: 
N/A 
 
Textual Description: 
This is not implemented. 
 
IOCTL_MLAN_GET_SPEED_TOPOLOGY_MAPS 
 
Input Buffer: 
Pointer to a GET_SPEED_TOPOLOGY_MAPS struct 
 
Output Buffer: 
If it does work, then it returns the same struct 
 
Textual Description: 
The IOCTL code handler uses an underlying request to the 1394 bus driver that is 
obsolete from Windows 2000 onwards.  
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B. Analysis and documentation of data structures used: 
 
The structs shown below may contain other structs, refer from page 101 onwards to 
view their contents.  

IEEE 1394 based structs 
 
ALLOCATE_ADDRESS_RANGE 
 
typedef struct _ALLOCATE_ADDRESS_RANGE { 
    IN ULONG    fulAllocateFlags; 
    IN ULONG         fulFlags; 
    IN ULONG         nLength; 
    IN ULONG         MaxSegmentSize; 
    IN ULONG         fulAccessType; 
    IN ULONG            fulNotificationOptions; 
    OUT ADDRESS_OFFSET  Required1394Offset; 
    OUT HANDLE          hAddressRange;  
    IN UCHAR            Data[1]; 
} ALLOCATE_ADDRESS_RANGE, *PALLOCATE_ADDRESS_RANGE; 
 
fulAllocateFlags 

Contains a flag that indicates the type of address scheme. 
fulFlags 

Specifies whether the address ranges use big-endian byte order. 
nLength 

Specifies the number of the IEEE 1394 addresses to allocate. 
MaxSegmentSize 

Specifies the maximum size for each range of addresses the bus driver 
allocates. 

fulAccessType 
Specifies access type using one or more of the following flags. 

fulNotificationOptions 
Specifies which asynchronous I/O request types will trigger the bus driver to 
the notify the device driver upon completion. 

Required1394Offset 
Specifies a hard-coded address in the computer's IEEE 1394 address space.  

hAddressRange  
Specifies the handle to use when freeing the allocated address ranges. 

Data[1] 
Provides the beginning address of the backing store for the allocated address 
range. The IEEE 1394 bus driver maps all asynchronous requests to this 
address space. 

[MSDN, 2005] 
 
 
ADDRESS_RANGE_NOTIFY 
 
typedef struct _ADDRESS_RANGE_NOTIFY{ 
 IN HANDLE   hAddressRange; 
 OUT ULONG   ulOffset; 
 OUT ULONG   fulNotificationOptions; 
 IN OUT ULONG  nLength; 
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 OUT NODE_ADDRESS  NodeAddress; 
 OUT UCHAR   Data[1]; 
} ADDRESS_RANGE_NOTIFY, *PADDRESS_RANGE_NOTIFY; 
 
hAddressRange 
 Specifies the handle to the allocated address range. 
ulOffset 
 Specifies the offset for the notification. 
fulNotificationOptions 

Specifies the reason for the notification. 
nLength 
 Specifies the length for the notification. 
NodeAddress 
 The address of the source node. 
Data[1] 
 Returns a fresh copy of the data from the notification IRP. 
 
 
SET_ADDRESS_DATA 
 
typedef struct _SET_ADDRESS_DATA { 
    IN HANDLE          hAddressRange; 
    IN ULONG           nLength; 
    IN ULONG           ulOffset; 
    IN UCHAR           Data[1]; 
} SET_ADDRESS_DATA, *PSET_ADDRESS_DATA; 
 
hAddressRange  

Contains a handle that specifies the IEEE 1394 addresses to which the data is 
written.  

nLength  
Indicates the length in bytes of the data in the buffer specified by the Data 
member.  

ulOffset  
Indicates the offset into the buffer at Data where the data is located.  

Data  
Contains a data buffer that holds the data that the SetAddressData writes to the 
IEEE 1394 address range specified in member hAddressRange.  

[MSDN, 2005] 
 
 
GET_ADDRESS_DATA 
 
typedef struct _GET_ADDRESS_DATA { 
    IN HANDLE          hAddressRange; 
    IN ULONG           nLength; 
    IN ULONG           ulOffset; 
    OUT NODE_ADDRESS   NodeAddress; 
    OUT UCHAR          Data[1]; 
} GET_ADDRESS_DATA, *PGET_ADDRESS_DATA; 
 
hAddressRange  

Contains a handle that specifies the IEEE 1394 addresses where the data to 
retrieve is stored.  
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nLength  

Indicates the length in bytes of the data in the buffer specified by the Data 
member.  

ulOffset  
Indicates the offset into the buffer at Data where the retrieved data is located.  

Data  
Contains a data buffer where the GetAddressData routine stores the data 
retrieved from the IEEE 1394 address range specified in member 
hAddressRange.  

[MSDN, 2005] 
 
 
ASYNC_LOCK 
 
typedef struct _ASYNC_LOCK { 
    IN ULONG           bRawMode; 
    IN ULONG           bGetGeneration; 
    IN IO_ADDRESS      DestinationAddress; 
    IN ULONG           nNumberOfArgBytes; 
    IN ULONG           nNumberOfDataBytes; 
    IN ULONG           fulTransactionType; 
    IN ULONG           fulFlags; 
    IN ULONG           Arguments[2]; 
    IN ULONG           DataValues[2]; 
    IN ULONG           ulGeneration; 
    IN ULONG           Buffer[2]; 
} ASYNC_LOCK, *PASYNC_LOCK; 
 
bRawMode  

Indicates, if TRUE, that bus and node number specified in the 
DestinationAddress will be used. If FALSE, the values in 
DestinationAddress are ignored. This flag must be set to TRUE when the 
caller sends an asynchronous read request to a virtual diagnostic driver 
(1394vdev.sys).  

bGetGeneration  
Indicates, when TRUE, that the generation count will automatically be set to 
the current generation count. If FALSE, the ulGeneration member holds the 
generation count.  

DestinationAddress  
Contains a structure of type IO_ADDRESS that specifies the 1394 64-bit 
destination address for this read operation. Caller must fill in the 
IA_Destination_Offset member of structure. The bus driver fills in the 
IA_Destination_ID member.  

nNumberOfArgBytes  
Specifies the number of argument bytes used in performing this lock 
operation. May be zero, 4 or 8. See the fulTransactionType member for 
details  

nNumberOfDataBytes  
Specifies the number of data bytes used in performing this lock operation. 
May be 4 or 8. See the fulTransactionType member for details.  

fulTransactionType  
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Specifies which atomic transaction to execute on the 1394 node.  
 
nBlockSize  

Specifies the size of each individual block within the data stream. If the value 
assigned to this parameter is zero, the bus driver breaks up the stream into 
packets that are the maximum packet size.  

fulFlags  
Specifies the settings for this operation that are different from the default 
settings.  

Arguments  
Contains a bitmap that indicates which bits to change in DestinationAddress.  

DataValues  
Contains the bit values to be assigned to DestinationAddress in the bit 
positions specified by the bitmask in Arguments.  

ulGeneration  
Specifies the bus reset generation count. If the generation count specified does 
not match the actual generation of the bus, this request is returned with a status 
of STATUS_INVALID_GENERATION.  

Buffer  
Contains a buffer to store the results of the operation. Caller must ensure that 
the buffer contains at least nNumberOfDataBytes bytes of data.  

[MSDN, 2005] 
 
 
ASYNC_READ 
 
typedef struct _ASYNC_READ { 
    IN ULONG           bRawMode; 
    IN ULONG           bGetGeneration; 
    IN IO_ADDRESS      DestinationAddress; 
    IN ULONG           nNumberOfBytesToRead; 
    IN ULONG           nBlockSize; 
    IN ULONG           fulFlags; 
    IN ULONG           ulGeneration; 
    OUT UCHAR          Data[1]; 
} ASYNC_READ, *PASYNC_READ; 
 
bRawMode  

Indicates, if TRUE, that bus and node number specified in the 
DestinationAddress will be used. If FALSE, the values in 
DestinationAddress are ignored. This flag must be set to TRUE when the 
caller sends an asynchronous read request to a virtual diagnostic driver 
(1394vdev.sys).  

bGetGeneration  
Indicates, when TRUE, that the generation count will automatically be set to 
the current generation count. If FALSE, the generation count will be taken 
from the ulGeneration variable.  

DestinationAddress  
Contains a structure of type IO_ADDRESS that specifies the 1394 64-bit 
destination address for this read operation. Caller must fill in the 
IA_Destination_Offset member of structure. The bus driver fills in the 
IA_Destination_ID member.  
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nNumberOfBytesToRead  
Specifies the number of bytes to read.  

nBlockSize  
Specifies the size of each individual block within the data stream. If the value 
assigned to this parameter is zero, the bus driver breaks up the stream into 
packets that are the maximum packet size.  

fulFlags  
Specifies the settings for this operation that are different from the default 
settings. 

ulGeneration  
Specifies the bus reset generation count. If the generation count specified does 
not match the actual generation of the bus, this request is returned with a status 
of STATUS_INVALID_GENERATION.  

Data  
Contains a buffer to store the results of the asynchronous read operation. 
Caller must ensure that the buffer contains at least nNumberOfBytesToRead 
bytes of data.  

[MSDN, 2005] 
 

 
ASYNC_WRITE 
 
typedef struct _ASYNC_WRITE { 
    IN ULONG           bRawMode; 
    IN ULONG           bGetGeneration; 
    IN IO_ADDRESS      DestinationAddress; 
    IN ULONG           nNumberOfBytesToWrite; 
    IN ULONG           nBlockSize; 
    IN ULONG           fulFlags; 
    IN ULONG           ulGeneration; 
    IN UCHAR           Data[1]; 
} ASYNC_WRITE, *PASYNC_WRITE; 
 
bRawMode  

Indicates, if TRUE, that bus and node number specified in the 
DestinationAddress will be used. If FALSE, the values in 
DestinationAddress are ignored.  

bGetGeneration  
Indicates, when TRUE, that the generation count will automatically be set to 
the current generation count. If FALSE, the generation count will be taken 
from the ulGeneration variable.  

DestinationAddress  
Contains a structure of type IO_ADDRESS that specifies the 1394 64-bit 
destination address for this write operation. Caller must fill in the 
IA_Destination_Offset member of structure. The bus driver fills in the 
IA_Destination_ID member.  

nNumberOfBytesToWrite  
Specifies the number of bytes to write.  

nBlockSize  
Specifies the size of each individual block within the data stream. If the value 
assigned to this parameter is zero, the bus driver breaks up the stream into 
packets that are the maximum packet size.  
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fulFlags  
Specifies the settings for this operation that are different from the default 
settings. 

ulGeneration  
Specifies the bus reset generation count. If the generation count specified does 
not match the actual generation of the bus, this request is returned with a status 
of STATUS_INVALID_GENERATION.  

Data  
Contains a buffer to store the results of the asynchronous write operation. 
Caller must ensure that the buffer contains at least nNumberOfBytesToRead 
bytes of data.  

[MSDN, 2005] 
 
 
MLAN_BUS_RESET_NOTIFY 
 
typedef struct _MLAN_BUS_RESET_NOTIFY{ 
 in NODE_ADDRESS  LocalNodeAddress; 
}MLAN_BUS_RESET_NOTIFY, *PMLAN_BUS_RESET_NOTIFY; 
 
LocalNodeAddress 
 The address of the node that should be notified of the bus reset event. 
 
 
GET_LOCAL_HOST_INFORMATION 
 
typedef struct _GET_LOCAL_HOST_INFORMATION { 
    OUT ULONG          Status; 
    IN ULONG           nLevel; 
    IN ULONG           ulBufferSize; 
    IN OUT UCHAR       Information[1]; 
} GET_LOCAL_HOST_INFORMATION, *PGET_LOCAL_HOST_INFORMATION; 
 
Status  

Indicates, on output, the status code set by the GetLocalHostInformation 
routine.  

nLevel  
Specifies what level of information requested in this call.  

ulBufferSize  
Indicates the size in bytes of the buffer at Information.  

Information  
Points to a buffer where the GetLocalHostInformation routine stores the 
local host information.  

[MSDN, 2005] 
 
 
GET_SPEED_TOPOLOGY_MAPS 
 
typedef struct _GET_SPEED_TOPOLOGY_MAPS { 
 OUT SPEED_MAP  speedMap; 
 OUT TOPOLOGY_MAP  topologyMap; 
} GET_SPEED_TOPOLOGY_MAPS, *PGET_SPEED_TOPOLOGY_MAPS; 
 
speedMap 
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Stores an IEEE 1394 bus speed map. 
topologyMap 

Used to store an IEEE 1394 bus topology map. 
 

 
PHY_CONFIGURATION_PACKET 
 
typedef struct _PHY_CONFIGURATION_PACKET { 
    IN ULONG           PCP_Phys_ID:6;           
    IN ULONG           PCP_Packet_ID:2;         
    IN ULONG           PCP_Gap_Count:6;         
    IN ULONG           PCP_Set_Gap_Count:1;     
    IN ULONG           PCP_Force_Root:1;        
    IN ULONG           PCP_Reserved1:8;         
    IN ULONG           PCP_Reserved2:8;         
    IN ULONG           PCP_Inverse;             
} PHY_CONFIGURATION_PACKET, *PPHY_CONFIGURATION_PACKET; 
 
PCP_Phys_ID  

Specifies the node address of the root. This member contains bits 0-5 of byte 0 
of the packet.  

PCP_Packet_ID  
This member must be PHY_PACKET_ID_CONFIGURATION to indicate it 
is a PHY configuration packet. This member contains bits 6-7 of byte 0 of the 
packet.  

PCP_Gap_Count  
If the PCP_Set_Gap_Count bit is set, the PHY register gap_count field is set 
to this value. This member contains bits 0-5 of byte 1 of the packet.  

PCP_Set_Gap_Count  
If this bit is set, the PHY register gap_count field is set to PCP_Gap_Count. 
This member contains bit 6 of byte 1 of the packet.  

PCP_Force_Root  
If set, the caller becomes the root node. This member contains bit 7 of byte 1 
of the packet.  

PCP_Reserved1  
Reserved. This member contains bits 0-7 of byte 2 of the packet.  

PCP_Reserved2  
Reserved. This member contains bits 0-7 of byte 3 of the packet.  

PCP_Inverse  
Specifies the logical inverse of the first quadlet of the packet.  

[MSDN, 2005] 
 
GET_LOCAL_NODE_ADDRESS 
 
typedef struct _GET_LOCAL_NODE_ADDRESS{ 
 OUT NODE_ADDRESS  LocalNodeAddress;  
}GET_LOCAL_NODE_ADDRESS, *PGET_LOCAL_NODE_ADDRESS; 
 
LocalNodeAddress 

Specifies the 10-bit bus number and 6-bit node number that serve as the node 
address for a 1394 node. 
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Isochronous Stream based structs 
 
 
MLAN_ISOCH_PARAM 
 
typedef struct _MLAN_ISOCH_PARAM { 
 OUT HANDLE                 hStream; 
 OUT MLAN_STREAM_STATUS     StreamStatus; 
 OUT ULONG       ErrorCode; 
 OUT ULONG       aBitmapClient[MLAN_MAX_NUM_SEQUENCES 
/ ULONG_BITSIZE]; 
 IN MLAN_STREAM_CONFIG     mLANStreamConfig; 
 IN MLAN_DATA_FIELD_CONFIG  mLANDataFieldConfig; 
} MLAN_ISOCH_PARAM, *PMLAN_ISOCH_PARAM; 
 
hStream 
 The handle to the stream resource that was allocted. 
StreamStatus 
 The struct that contains the status of each sequence. 
ErrorCode 
 The status code from the IOCTL.  
aBitmapClient[MLAN_MAX_NUM_SEQUENCES / ULONG_BITSIZE] 
 Not sure. 
mLANStreamConfig 
 A struct that contains specific information about that stream. 
mLANDataFieldConfig 
 A struct that contains audio specific information about the sequences. 
 
 
MLAN_STREAM_COMMAND_PARAM 
 
typedef struct _MLAN_STREAM_COMMAND_PARAM { 
 IN HANDLE        hStream; 
 OUT ULONG        ErrorCode; 
} MLAN_STREAM_COMMAND_PARAM, *PMLAN_STREAM_COMMAND_PARAM; 
 
hStream 
 The handle to the allocated stream resource. 
ErrorCode 
 The error code of the status from the completed IOCTL 
 

IEC 61883 based structs 
 
CMP_CONNECT 
 
typedef struct _CMP_CONNECT { 
 
    IN HANDLE               hOutputPlug;     
    IN HANDLE               hInputPlug;     
    IN CMP_CONNECT_TYPE     Type;  
    IN CIP_DATA_FORMAT      Format;   
    OUT HANDLE              hConnect;  



Appendix  95

} CMP_CONNECT, *PCMP_CONNECT; 
 
hOutputPlug     

Output plug handle. 
hInputPlug;     

Input plug handle. 
Type  

Requested connect type. 
Format  

Requested data format – transmission only. 
hConnect 

Returned connect handle. 
 
 
CMP_CREATE_PLUG 
 
typedef struct _CMP_CREATE_PLUG { 
 
    IN CMP_PLUG_TYPE            PlugType;     
    IN AV_PCR                   Pcr;     
    IN PCMP_NOTIFY_ROUTINE      pfnNotify;     
    IN PVOID                    Context;     
    OUT ULONG                   PlugNum;     
    OUT HANDLE                  hPlug;     
} CMP_CREATE_PLUG, *PCMP_CREATE_PLUG; 
 
PlugType     

Type of plug to create. 
Pcr     

PCR Settings. 
pfnNotify     

Notification Routine for Register. 
Context     

Notification Context. 
PlugNum     

Plug Number. 
hPlug     

Plug Handle. 
 
 
MLAN_CMP_PLUG_NOTIFY 
 
typedef struct _MLAN_CMP_PLUG_NOTIFY { 
 OUT ULONG    State; 
 OUT ULONG    PlugNum; 
 OUT ULONG    PlugType; 
 OUT AV_PCR   Pcr; 
} MLAN_CMP_PLUG_NOTIFY, *PMLAN_CMP_PLUG_NOTIFY; 
 
State 
 Returns the state of the plug. 
PlugNum 

Plug number. 
PlugType 
 Type of plug. 
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Pcr 
PCR settings. 

 
 
CMP_DELETE_PLUG 
 
typedef struct _CMP_DELETE_PLUG { 
    IN HANDLE                   hPlug;     
} CMP_DELETE_PLUG, *PCMP_DELETE_PLUG; 
 
hPlug     

Plug Handle 
 

 
CMP_DISCONNECT 
 
typedef struct _CMP_DISCONNECT { 
    IN HANDLE               hConnect;     
} CMP_DISCONNECT, *PCMP_DISCONNECT; 
 
hConnect 

Connection handle to disconnect 
 
 
MLAN_FCP_GET_REQUEST 
 
typedef struct _MLAN_FCP_GET_REQUEST { 
    OUT NODE_ADDRESS    NodeAddress; 
    IN OUT ULONG        Length; 
    IN OUT FCP_FRAME   Frame; 
} MLAN_FCP_GET_REQUEST, *PMLAN_FCP_GET_REQUEST; 
 
NodeAddress 

The node address of the device that sent the get FCP request, provided it is a 
virtual device. 

Length 
 The maximum available length of the frame payload, including FCP header. 
Frame 
 Defines a function control protocol (FCP) request. 
 
 
MLAN_FCP_GET_RESPONSE 
 
typedef struct _MLAN_FCP_GET_RESPONSE { 
    OUT NODE_ADDRESS    NodeAddress; 
    IN OUT ULONG        Length; 
    IN OUT FCP_FRAME   Frame; 
} MLAN_FCP_GET_RESPONSE, *PMLAN_FCP_GET_RESPONSE; 
 
NodeAddress 

The node address of the device that sent the get FCP response, provided it is a 
virtual device. 

Length 
 The maximum available length of the frame payload, including FCP header. 
Frame 
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 Defines a function control protocol (FCP) request. 
 
 
CMP_GET_PLUG_HANDLE 
 
typedef struct _CMP_GET_PLUG_HANDLE { 
    IN ULONG                PlugNum;      
    IN CMP_PLUG_TYPE        Type;     
    OUT HANDLE              hPlug;     
} CMP_GET_PLUG_HANDLE, *PCMP_GET_PLUG_HANDLE; 
 
PlugNum     

Requested plug number. 
Type     

Requested plug type. 
hPlug    

Returned plug handle. 
 
 
CMP_GET_PLUG_STATE 
 
typedef struct _CMP_GET_PLUG_STATE { 
    IN HANDLE               hPlug;     
    OUT ULONG               State;     
    OUT ULONG               DataRate;     
    OUT ULONG               Payload;     
    OUT ULONG               BC_Connections;     
    OUT ULONG               PP_Connections;     
} CMP_GET_PLUG_STATE, *PCMP_GET_PLUG_STATE; 
 
hPlug  

The handle of the plug to retrieve state information.  
State  

The state of the plug. 
DataRate  

The data rate of the plug. 
Payload  

The payload size for the plug.  
BC_Connections  

The number of broadcast connections associated with the plug.  
PP_Connections  

The number of point-to-point connections associated with the plug.  
 
 
MLAN_FCP_SEND_REQUEST 
 
typedef struct _MLAN_FCP_SEND_REQUEST { 
    IN NODE_ADDRESS     NodeAddress; 
    IN ULONG            Length; 
    IN FCP_FRAME       Frame; 
} MLAN_FCP_SEND_REQUEST, *PMLAN_FCP_SEND_REQUEST; 
 
NodeAddress 

The node address of the device that sent the send FCP request, provided it is a 
virtual device. 
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Length 
 The maximum available length of the frame payload, including FCP header. 
Frame 
 Defines a function control protocol (FCP) request. 
 
 
MLAN_FCP_SEND_RESPONSE 
 
typedef struct _MLAN_FCP_SEND_RESPONSE { 
    IN NODE_ADDRESS     NodeAddress; 
    IN ULONG            Length; 
    IN FCP_FRAME       Frame; 
} MLAN_FCP_SEND_RESPONSE, *PMLAN_FCP_SEND_RESPONSE; 
 
NodeAddress 

The node address of the device that sent the send FCP response, provided it is 
a virtual device. 

Length 
 The maximum available length of the frame payload, including FCP header. 
Frame 
 Defines a function control protocol (FCP) request. 
 
 
SET_FCP_NOTIFY 
 
typedef struct _SET_FCP_NOTIFY { 
    IN ULONG            Flags;    // Flags 
    IN NODE_ADDRESS     NodeAddress;    // Node Address 
} SET_FCP_NOTIFY, *PSET_FCP_NOTIFY; 
 
Flags  

Specifies the notification requested by the driver.  
NodeAddress  

Reserved for use by the operating system.  
 
 
CMP_SET_PLUG 
 
typedef struct _CMP_SET_PLUG { 
    IN HANDLE                   hPlug;     
    IN AV_PCR                   Pcr;     
} CMP_SET_PLUG, *PCMP_SET_PLUG; 
 
hPlug 

Plug handle. 
Pcr 

PCR settings. 
 
 
MLAN_ASIO_INIT_PARAM 
 
typedef struct _MLAN_ASIO_INIT_PARAM { 
 OUT ULONG numOutChannelsAvailable[MLAN_MAX_SEND_STREAMS]; 

OUT ULONG bitmapOutSequencesAvailable[MLAN_MAX_SEND_STREAMS] 
[MLAN_MAX_NUM_SEQUENCES / ULONG_BITSIZE]; 

 OUT ULONG numInChannelsAvailable[MLAN_MAX_RECEIVE_STREAMS]; 
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OUT ULONG bitmapInSequencesAvailable[MLAN_MAX_RECEIVE_STREAMS] 
[MLAN_MAX_NUM_SEQUENCES / ULONG_BITSIZE]; 

 OUT ULONG sampleRateBeingUsed; 
 OUT ULONG minimumBufferSizePerChannel;  
 OUT ULONG playbackBufferSizePerChannel;  
 OUT ULONG recordBufferSizePerChannel;  
 OUT HANDLE hBufferSwitchEvent; 
 OUT HANDLE hDriverResetEvent; 
 OUT ULONG sendBitSize; 
 OUT ULONG recvBitSize; 
 OUT BOOLEAN useIEEE32bitFloat; 
 OUT ULONG errorCode; 
 OUT ULONG *pNumEventsRequestedByDriver; 
 OUT ULONG *pOffsetForClientBufferByDriver; 
} MLAN_ASIO_INIT_PARAM, *PMLAN_ASIO_INIT_PARAM; 
 
numOutChannelsAvailable 
 The number of ASIO output channels available.     
bitmapOutSequencesAvailable 
 Not sure. 
numInChannelsAvailable 
 The number of ASIO input channels available 
bitmapInSequencesAvailablesampleRateBeingUsed 
 Not sure. 
minimumBufferSizePerChannel 

in samples - not bytes, 24bit data in 32bit containers, this is the mininum 
available buffersize. 

playbackBufferSizePerChannel 
in samples - used to report latency. 

recordBufferSizePerChannel 
in samples - usde to report latency. 

hBufferSwitchEvent 
 A handle to a buffer switch event (received in ASIO_INIT). 
hDriverResetEvent 
 A handle to the ASIO driver reset event (received in ASIO_INIT). 
sendBitSize 
 Not sure. 
recvBitSize 
 Not sure. 
useIEEE32bitFloat 

This will force the driver to report 32bit float as the format. 
errorCode 
 The error code status reported by the IOCTL after it returns. 
pNumEventsRequestedByDriver 

(received in ASIO_INIT). 
pOffsetForClientBufferByDriver 

(received in ASIO_INIT). 
 
 
MLAN_ASIO_ALLOC_PARAM 
 
typedef struct _MLAN_ASIO_ALLOC_PARAM { 
 IN ULONG   asioBufferSize;  
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IN ULONG   outputBuffersRequiredMap_StreamIndex 
[MAX_ASIO_CHANNELS];  
IN ULONG   outputBuffersRequiredMap_SequenceIndex 
[MAX_ASIO_CHANNELS];  

 OUT PULONG   pOutBuffers[MAX_ASIO_CHANNELS * 2];  
 IN ULONG   inputBuffersRequiredMap_StreamIndex 

[MAX_ASIO_CHANNELS];  
IN ULONG   inputBuffersRequiredMap_SequenceIndex 
[MAX_ASIO_CHANNELS]; 

 OUT PULONG   pInBuffers[MAX_ASIO_CHANNELS * 2];  
 OUT ULONG   errorCode; 
} MLAN_ASIO_ALLOC_PARAM, *PMLAN_ASIO_ALLOC_PARAM; 
 
asioBufferSize 

This is the requested buffersize, should not be smaller than the size reported in 
INIT_PARAM 
outputBuffersRequiredMap_StreamIndex  

Specifies the requested output buffers to be used for streams. 
outputBuffersRequiredMap_SequenceIndex  

Specifies the requested output buffers to be used for sequence. 
pOutBuffers 

A pointer to the output buffer that has 24bit data in 32bit containers. 
inputBuffersRequiredMap_StreamIndex 

Specifies the requested input buffers to be used for streams. 
inputBuffersRequiredMap_SequenceIndex 

Specifies the requested input buffers to be used for sequences. 
pInBuffers 

A pointer to the input buffer that has 24bit data in 32bit containers. 
errorCode 
 The error code specified by the completion of the IOCTL call. 
   
 
MLAN_ASIO_COMMAND_PARAM 
 
typedef struct _MLAN_ASIO_COMMAND_PARAM { 
 ULONG errorCode; 
} MLAN_ASIO_COMMAND_PARAM, *PMLAN_ASIO_COMMAND_PARAM; 
 
errorCode 
 The error code returned by the completion of the IOCTL. 
  

Sundry structs contained within main structs 
 
ADDRESS_OFFSET   
 
typedef struct _ADDRESS_OFFSET { 
    USHORT              Off_High; 
    ULONG               Off_Low; 
} ADDRESS_OFFSET, *PADDRESS_OFFSET; 
 
Off_High  

Specifies the high order offset for a IEEE 1394 address.  
 
Off_Low  
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Specifies the low order offset for a IEEE 1394 address.  
[MSDN, 2005] 
 
 
IO_ADDRESS 
 
typedef struct _IO_ADDRESS { 
    NODE_ADDRESS        IA_Destination_ID; 
    ADDRESS_OFFSET      IA_Destination_Offset; 
} IO_ADDRESS, *PIO_ADDRESS; 
 
IA_Destination_ID  

Holds a structure of type NODE_ADDRESS containing the destination node 
address.  

IA_Destination_Offset  
Holds a structure of type ADDRESS_OFFSET that specifies the index of the 
1394 address within the address array. 

[MSDN, 2005] 
 
 
SPEED_MAP  
 
typedef struct _SPEED_MAP { 
    USHORT              SPD_Length;              
    USHORT              SPD_CRC;                 
    ULONG               SPD_Generation;          
    UCHAR               SPD_Speed_Code[4032]; 
} SPEED_MAP, *PSPEED_MAP; 
 
SPD_Length  

Specifies the number of quadlets in the speed map.  
SPD_CRC  

Specifies the CRC value for the speed map.  
SPD_Generation  

Specifies the generation count for the bus reset that corresponds to this speed 
map.  

SPD_Speed_Code  
Specifies an array of speed codes. 

[MSDN, 2005] 
 
 
TOPOLOGY_MAP  
 
typedef struct _TOPOLOGY_MAP { 
    USHORT              TOP_Length;              
    USHORT              TOP_CRC;                 
    ULONG               TOP_Generation;          
    USHORT              TOP_Node_Count;          
    USHORT              TOP_Self_ID_Count;       
    SELF_ID             TOP_Self_ID_Array[];     
    SELF_ID             TOP_Self_ID_Array[4032];     
} TOPOLOGY_MAP, *PTOPOLOGY_MAP; 
 
TOP_Length  
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Specifies the length in quadlets of the topology map.  
TOP_CRC  

Specifies the CRC value for the topology map.  
TOP_Generation  

Specifies the bus reset generation for which the topology map was created.  
TOP_Node_Count  

Specifies the number of nodes in the topology map.  
TOP_Self_ID_Count  

Specifies the number of entries in TOP_Self_ID_Array. (Not used) 
TOP_Self_ID_Array  

Pointer to an array of SELF_ID and SELF_ID_MORE structures (the two 
structures are the same size). 

[MSDN, 2005] 
 
 
MLAN_STREAM_CONFIG  
 
typedef struct _MLAN_STREAM_CONFIG { 
 ULONG StreamType; 
 ULONG Speed; 
 ULONG Channel; 
 ULONG NumBufferGroups; 
 ULONG NumPacketsPerBufferGroup; 
} MLAN_STREAM_CONFIG, *PMLAN_STREAM_CONFIG; 
 
StreamType 
 Specifies the type of the stream. 
Speed 
 Specifies the speed of the bus. 
Channel 
 Specifies the channel the stream belongs to. 
NumBufferGroups 
 Specifies the number of buffers. 
NumPacketsPerBufferGroup 
 Specifies the number of packets per group of buffers. 
 
 
MLAN_STREAM_STATUS  
 
typedef struct  _MLAN_STREAM_STATUS{ 
     BOOLEAN bRunning; 
     ULONG   ReceivingSampleRate; 
     BOOLEAN receivingMatch; 
     ULONG   NumDBCErrorPacket; 
     ULONG   NumSequences; 
     ULONG streamIndex; 
     MLAN_SEQUENCE_STATUS  SequenceStatus[MLAN_MAX_NUM_SEQUENCES]; 
} MLAN_STREAM_STATUS, *PMLAN_STREAM_STATUS; 
 
bRunning 
 Specifies whether the stream is running or not. 
ReceivingSampleRate 
 Specifies the sample rate when receiving packets. 
receivingMatch 
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 Specifies whether the stream type required matches the stream type received  
NumDBCErrorPacket 
 Specifies the number of Data Block Count error packets. 
NumSequences 
 Specifies the number of sequences the stream has. 
streamIndex 
 Specifies the stream index in relation to the rest of the active streams. 
SequenceStatus[MLAN_MAX_NUM_SEQUENCES] 

Specifies the individual status of each sequence. 
 
 
MLAN_DATA_FIELD_CONFIG 
 
typedef struct _MLAN_DATA_FIELD_CONFIG{ 
 ULONG SampleRate; 
 BOOLEAN useIEEE32bitFloat; 
 ULONG bitDepthForWDMAudio; 
 MLAN_SYT_LOCAL_OR_EXT SytParam; 
 ULONG NumSequences; 
 MLAN_SEQUENCE_DATA_CONFIG SequenceData[MLAN_MAX_NUM_SEQUENCES]; 
} MLAN_DATA_FIELD_CONFIG, *PMLAN_DATA_FIELD_CONFIG; 
 
SampleRate 
 Specifies the sample rate of the isochronous stream. 
useIEEE32bitFloat 

Specifies whether the data is represented in IEEE 1394 32bit float format or 
not. 

bitDepthForWDMAudio 
 Specifies the resolution of the WDM audio sample. 
SytParam 
 Specifies the stream that is bus master. 
NumSequences 
 Specifies the number of sequences the stream has. 
SequenceData[MLAN_MAX_NUM_SEQUENCES] 
 Specifies the sequence type and corresponding allocated device number. 
 
 
MLAN_SEQUENCE_STATUS  
 
typedef struct  _MLAN_SEQUENCE_STATUS{ 

MLAN_SEQUENCE_DATA_CONFIG SequenceData; 
     ULONG   AudioSampleSize; 
     BOOLEAN    bCopyProtect; 
     ULONG   NumParityError; 
} MLAN_SEQUENCE_STATUS, *PMLAN_SEQUENCE_STATUS; 
 
SequenceData 
 Specifies the sequence type and corresponding allocated device number. 
AudioSampleSize 
 Specifies the size of each audio sample. 
bCopyProtect 
 Specifies whether the sequence data can be overwritten or not. 
NumParityError 
 Records the number of parity errors. 
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MLAN_SYT_LOCAL_OR_EXT  
 
typedef struct _MLAN_SYT_LOCAL_OR_EXT { 
 BOOLEAN bMaster; 
 HANDLE hStream; 
} MLAN_SYT_LOCAL_OR_EXT, *PMLAN_SYT_LOCAL_OR_EXT; 
 
bMaster 
 Specifies if the owner of the stream is the bus master or not. 
hStream 
 Specifies the handle to the stream resource that is the bus master. 
 
 
MLAN_SEQUENCE_DATA_CONFIG 
 
typedef struct _MLAN_SEQUENCE_DATA_CONFIG{ 
 ULONG SequenceType; 
 ULONG DeviceNumber;  
} MLAN_SEQUENCE_DATA_CONFIG, *PMLAN_SEQUENCE_DATA_CONFIG; 
 
SequenceType 
 The number of the sequence. 
DeviceNumber 

The device number associated with the sequence. The value is valid from 
number 1 to the number of allocated devices. 

 
 
CMP_CONNECT_TYPE  
 
typedef enum { 
    CMP_Broadcast = 0, 
    CMP_PointToPoint 
} CMP_CONNECT_TYPE; 
 
An enumeration of the connect type used in connecting 61883 plugs. 
 
 
CIP_DATA_FORMAT  
 
typedef struct _CIP_DATA_FORMAT { 
    UCHAR        FMT;     
    UCHAR        FDF_hi;     
    UCHAR        FDF_mid; 
    UCHAR        FDF_lo; 
    BOOLEAN      bHeader;     
    UCHAR        Padding;     
    UCHAR        BlockSize;     
    UCHAR        Fraction;     
    ULONG        BlockPeriod;     
} CIP_DATA_FORMAT, *PCIP_DATA_FORMAT; 
 
FMT     

This is the data type used in the CIP. FMT and FDF are either known, or 
discovered. 
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FDF_hi 
Ascertained via AV/C command. 

FDF_mid 
 Not sure.  
FDF_lo 
 Not sure. 
bHeader     

SPH (whether a transport time delay stamp has been added) as defined by 
IEC-61883. 

Padding 
    QPC (quadlet padding count) as defined by IEC-61883. 
BlockSize 

DBS (data block size) as defined by IEC-61883. 
Fraction 

FN (number of fractions the original packet was divided into) as defined by 
IEC-61883. 

BlockPeriod 
BlockPeriod - transmission only. 

 
 
CMP_PLUG_TYPE  
 
typedef enum { 
    CMP_PlugOut = 0,     
    CMP_PlugIn           
} CMP_PLUG_TYPE; 
 
An enumeration of the plug type. 
 
 
AV_PCR  
 
typedef struct _AV_PCR { 
    union { 
        OPCR    oPCR; 
        IPCR    iPCR; 
        ULONG   ulongData; 
    }; 
} AV_PCR, *PAV_PCR; 
 
oPCR  

Contains an OPCR structure that contains initialization values for an output 
plug.  

iPCR  
Contains an IPCR structure that contains initialization values for an input 
plug.  

ulongData  
Reserved for internal use. 

[MSDN, 2005] 
 
 
IPCR  
 
typedef struct _IPCR { 
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    ULONG   Reserved0:16; 
    ULONG   Channel:6; 
    ULONG   Reserved1:2; 
    ULONG   PPCCounter:6; 
    ULONG   BCCCounter:1; 
    ULONG   OnLine:1; 
} IPCR, *PIPCR; 
 
Payload  

Specifies the connection speed.  
OverheadID  

Specifies, for an unconnected output plug, the upper bounds for the bandwidth 
that the output plug needs for the transmission of an isochronous packet.  

DataRate  
Indicates the bit rate that the output plug uses to transmit an isochronous 
packet.  

Channel  
Indicates the channel number that the output plug shall use to transmit the 
isochronous data flow, for a suspended output plug. For an active output plug 
it indicates the actual channel number that the output plug uses to transmit the 
isochronous data flow. For an unconnected output plug it has no meaning.  

Reserved  
Reserved.  

PPCCounter  
Indicates the number of point-to-point connections to the output plug.  

BCCCounter  
Indicates, when one, that there is a broadcast-out connection to the output 
plug. When zero it indicates that there is no connection.  

OnLine  
Indicates, when one, that the corresponding output plug is on-line. When zero 
it indicates that the output plug is off-line.  

[MSDN, 2005] 
 
 
OPCR  
 
typedef struct _OPCR { 
    ULONG   Payload:10; 
    ULONG   OverheadID:4; 
    ULONG   DataRate:2; 
    ULONG   Channel:6; 
    ULONG   Reserved:2; 
    ULONG   PPCCounter:6; 
    ULONG   BCCCounter:1; 
    ULONG   OnLine:1; 
} OPCR, *POPCR; 
 
Reserved0  

Reserved.  
Channel  

Indicates the channel number that the input plug shall use to transmit the 
isochronous data flow, for a suspended input plug. For an active input plug it 
indicates the actual channel number that the input plug uses to transmit the 
isochronous data flow. For an unconnected input plug it has no meaning.  
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Reserved1  
Reserved.  

PPCCounter  
Indicates the number of point-to-point connections to the input plug.  

BCCCounter  
Indicates, when one, that there is a broadcast-in connection to the input plug. 
When zero it indicates that there is no connection.  

OnLine  
Indicates, when one, that the corresponding input plug is on-line. When zero it 
indicates that the input plug is off-line.  

[MSDN, 2005] 
 
 
FCP_FRAME  
 
typedef struct _FCP_FRAME { 
    UCHAR               ctype:4; 
    UCHAR               cts:4; 
    UCHAR               payload[511]; 
} FCP_FRAME, *PFCP_FRAME; 
 
ctype  

The command or response type as defined by the Command/Transaction Set 
(CTS) used for this request.  

cts  
The CTS used for this FCP request. The CTS specifies the command set, the 
structure of the command/response field, and the rules of transactions used for 
sending FCP commands and responses.  

payload  
The FCP request for this frame. 

 
 
ERR_MLAN_STREAM 
 
typedef enum{ 
 ERR_MLAN_SUCCESS = 0, 
 ERR_MLAN_STREAM_EXIST, 
 ERR_MLAN_BAND_OVER, 
 ERR_MLAN_CH_USED, 
 ERR_MLAN_NO_RES, 
 ERR_MLAN_STREAM_NOT_ALLOC, 
 ERR_MLAN_STREAM_RUNNING, 
 ERR_MLAN_FS_MISMATCH, 
 ERR_MLAN_CANNOT_GET_SYT 
}ERR_MLAN_STREAM_E; 
 
This is an enumeration of the error codes used in some of the data structures. Should 
an IOCTL call fail, depending on the IOCTL, it will return an error code. 
 
ERR_ASIO_MLAN 
 
typedef enum{ 
 ERR_ASIO_MLAN_SUCCESS = 0, 
 ERR_ASIO_MLAN_NOMEM,  
 ERR_ASIO_MLAN_NORES,  
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 ERR_ASIO_MLAN_NOTSETUP,  
 ERR_ASIO_MLAN_ALREADY_INITIALIZED, 
 ERR_ASIO_MLAN_NOTRUNNING,  
 ERR_ASIO_MLAN_NOTINITIALIZED,  
 ERR_ASIO_MLAN_ALREADYRUNNING,  
 ERR_ASIO_MLAN_ALREADYALLOCATED,  
 ERR_ASIO_MLAN_NOTALLOCATED, 
 ERR_ASIO_MLAN_INVALID_BUFFER_SIZE,  
}ERR_ASIO_MLAN_E; 
 
An enumeration of the error codes that are produced by ASIO related IOCTL calls. 
 
 


