

Analysis of SQL injection

prevention using a filtering

proxy server

Submitted in partial fulfilment of the degree of

Bachelor of Science with Honours

of

By David Brodie Rowe
Project Supervisor: Barry Irwin

Department of Computer Science

Rhodes University

November 2005

 - i -

Abstract

This paper details an analysis of SQL injection prevention. This work is separated

into two parts. The first highlights methods that should be adopted in order to

reduce the risk of an SQL injection attack. The second details the creation of a

filtering proxy server used to prevent a SQL injection attack and analyses the

performance impact of the filtering process on web transactions. The test

implementation focuses on Microsoft SQL Server 2000 although the guidelines are

applicable to all database management systems. This is because SQL is a standard

used by most databases.

- ii -

Keywords
SQL injection, fault injection, SQL poisoning, prevention, preventing.

ACM classification categories relevant to this project

C.2.0 Security and protection (e.g., firewalls) (REVISED)

D.4.6 Security and Protection

K.4.4 Security

K.4.2 Abuse and crime involving computers

K.6.5 Security and Protection

- iii -

Acknowledgements

I would like to thank Seven Fountains Digital for their support. Many thanks go to

Professor Peter Wentworth for his patience, understanding and guidance.

I thank my supervisor, Mr Barry Irwin for his invaluable guidance and support

throughout this project. I would also like to thank the Rhodes University Computer

Science Department lecturers and my peers for their constructive feedback regarding the

project.

Lastly, I would like to thank my family, honours lab peers and friends for their constant

encouragement.

- iv -

Table of Contents

ABSTRACT .. I

ACKNOWLEDGEMENTS.. III

TABLE OF CONTENTS.. IV

LIST OF FIGURES... VI

LIST OF CODE BOXES ... VIII

LIST OF TABLES.. VIII

LIST OF TEXT BOXES... IX

CHAPTER 1 - INTRODUCTION ..1

1.1 INTRODUCTION ...1

1.2 EXAMPLE OF SQL INJECTION ..3

1.3 PROBLEM STATEMENT ...4

1.4 DOCUMENT STRUCTURE ..5

1.5 INTRODUCTION SUMMARY ...5

CHAPTER 2 - RESEARCH..6

2.1 INTRODUCTION ...6

2.2 L ITERATURE REVIEW ...6

2.3 PREVENTION METHODS ...12

2.3.1 Database Privileges ...12

2.3.2 Error Trace..13

2.3.3 Suppressing Error Messages ..14

2.3.4 Sanitising...15

2.3.5 SQL Signatures - Filtering SQL Injection ...17

2.4 EXISTING PRODUCTS..20

2.5 CONCLUSION ...21

2.6 RESEARCH SUMMARY ..22

CHAPTER 3 – SYSTEM DESIGN...24

- v -

3.1 INTRODUCTION ...24

3.3 DESIGN CONCLUSIONS..30

3.4 SYSTEM DESIGN SUMMARY ..31

CHAPTER 4 – SYSTEM IMPLEMENTATION ..32

4.1 INTRODUCTION ...32

4.2 IMPLEMENTATION ..32

4.2.1 Design Decisions ...33

4.2.2 Methodology ..34

4.2.3 Testing and validation...34

4.2.5 Problems Encountered..47

4.2.6 Web transaction tests ..51

4.2.7 Conclusions ...54

4.3 SYSTEM IMPLEMENTATION SUMMARY ..54

CHAPTER 5 - CONCLUSION ...56

5.1 CONCLUSION ...56

5.2 FUTURE WORK ..57

REFERENCES...59

APPENDIX A – PROJECT POSTER..65

APPENDIX B – CD CONTENTS...67

APPENDIX C – CODE OVERVIEW ..69

APPENDIX D – TIMING TESTS...74

- vi -

List of Figures

Figure 1: The OSI stack [Davis, 2005]... 7

Figure 2: Major Vulnerabilities in a multi-tier system [Microsoft, 2003a]...................... 8

Figure 3: Example of an error message returned by the database.................................. 15

Figure 4: Information flow diagram... 25

Figure 5: High level design view.. 26

Figure 6: XML file containing the settings of TDSProxy.. 27

Figure 7: Flowchart of the TDSProxy server ... 28

Figure 8: State Change Diagram for Client Query... 30

Figure 9: Proxy server connecting NetCat clients to a NetCat server 35

Figure 10: Proxy server listening on port 4444 .. 36

Figure 11: NetCat simulating a server listening on port 5555.. 36

Figure 12: NetCat simulating one client connected to the proxy 37

Figure 13: NetCat simulating a second client connected to the proxy 37

Figure 14: Proxy server code setting up a view before connecting to the database....... 37

Figure 15: SQL server database view created via the proxy server 38

Figure 16: Use of OSQL and error message on shutdown of proxy server.................... 39

Figure 17: Ethereal packet capture compared to proxy server packet analysis.............. 40

Figure 18: Typical Usage sequences for TDS [FreeTDS, 2005].................................... 41

Figure 19: Packet format of all TDS packets [FreeTDS, 2005] 41

Figure 20: Code showing the extraction of the query from TDS query packet.............. 42

Figure 21: Successful SQL injection in the database... 43

Figure 22: Dropping a table using SQL injection... 43

Figure 23: Database view of the dropped table .. 45

Figure 24: Login error – not a trusted SQL server connection....................................... 47

Figure 25: Packet capture showing a successful login directly to the database 49

- vii -

Figure 26: Attempted login from data access page through proxy server..................... 50

Figure 27: The average web transaction processing time on hons08............................ 52

Figure 28: The average web transaction processing time on Netserv 52

Figure 29: Graph showing the average web throughput for the client or server 53

Figure 30: Graph showing the average processing time of TDSProxy 54

Figure A.1: Project Poster .. 66

Figure B.1: Contents of project CD.. 68

Figure C.1: TCPSock Class.. 70

Figure C.2: ProxyBackend Class.. 71

Figure C.3: Logger Class.. 71

Figure C.4: Filter Cass.. 72

Figure C. 5: UDPServer Class.. 73

Figure D.1: Graph showing hons08 select page – direct to database............................. 76

Figure D.2: Graph showing hons08 insert page – direct to database 77

Figure D.3: Graph showing hons08 select page, TDSProxy, no filter 78

Figure D.4: Graph showing hons08 select page, TDSProxy, filter 79

Figure D.5: Graph showing hons08 insert page - TDSProxy, no filter 80

Figure D.6: Graph showing hons08 insert page – TDSProxy, filter 81

Figure D.7: Graph showing netserv select page – direct to database............................. 83

Figure D.8: Graph showing netserv insert page – direct to database 84

Figure D.9: Graph showing netserv select page, TDSProxy, no filter 85

Figure D.10: Graph showing netserv select page, TDSProxy, filter 86

Figure D.11: Graph showing netserv insert page, TDSProxy, no filter 87

Figure D.12: Graph showing netserv insert page TDSProxy, filter 88

- viii -

List of code boxes

Code Box 1: A typical SQL statement ... 3

Code Box 2: Resultant query.. 4

Code Box 3: Code showing a SQL injection vulnerability .. 4

Code Box 4: Code to replace a single quote with two single quotes.............................. 16

Code Box 5: Stored procedure code to produce a denial of service attack 18

Code Box 6: A stored procedure that is vulnerable to SQL injection 18

Code Box 7: Code showing a vulnerable stored procedure.. 19

Code Box 8: The resulting SQL ... 19

Code Box 9: Editing the connection string to stipulate a trusted connection................. 48

List of tables

Table 1: Google search... 3

Table 2: TDS Packet Types and their descriptions [FreeTDS, 2005] 41

- ix -

List of text boxes

Text Box 1: User input ... 4

Text Box 2: User input to delete the users table... 4

Text Box 3: The parameter passed to @custname ...19

Text Box 4: SQL injected queries executed by the database ... 44

Text Box 5: Login error.. 47

CHAPTER 1 - INTRODUCTION

Page 1 of 88

Chapter 1 - Introduction

1.1 Introduction

According to [Kline, 2004], in the early 1970s, the seminal work of IBM research

fellow Dr. E. F. Codd led to the development of a relational data model product called

SEQUEL, or Structured English Query Language. SEQUEL ultimately became SQL, or

Structured Query Language. American National Standards Institute (ANSI) has released

standards for SQL in 1986, 1989, 1992, 1999, and 2003.

Structured Query Language (SQL) is a textual relational database language. Its

command set has a basic vocabulary of less than 100 words. According to [Anley,

2002a], there are many varieties of SQL; however, the differences among the various

dialects are minor. Most dialects are loosely based around SQL-92. According to

[Kline, 2004], some of the popular dialects of SQL include:

• PL/SQL, found in Oracle.

• Transact-SQL, used by both Microsoft SQL Server and Sybase Adaptive Server.

• PL/pgSQL, implemented in PostgreSQL.

• SQLPL (SQLProcedural Language) is the newest dialect by DB2 .

SQL functions fit into two categories:

• Data definition language (DDL): used to create tables and define access rights.

• Data manipulation language (DML): SQL commands that allow one to insert,

update, delete, and retrieve data within database tables [Rob and Coronel, 2002].

CHAPTER 1 - INTRODUCTION

Page 2 of 88

The typical unit of execution of SQL is the query, which is a collection of statements

that typically return a single result set [Anley, 2002a].

SQL injection is a method by which users take advantage of dynamic SQL through

which parameters of a web-based application are chained together to create the query to

the backend database [Finnigan, 2002] [Anley, 2002a]. [Chuvakin and Peikari, 2004]

add that SQL injection is not only an attack on the database but an attack on the

database-driven application. There are many measures that can be taken to prevent SQL

injection including ensuring that database privileges are to a minimum, using input

validation programming techniques, suppressing error messages returned to the client,

checking error logs and filtering malicious SQL statements [Finnigan, 2003].

Doing a Google search on "sql injection flaw vulnerability" returns over 171 000 hits.

According to [OWASP, 2004] and [WebCohort Inc., 2004], injection flaws has been

sixth in the top ten vulnerabilities for the past two years and that 62% of web

applications are vulnerable to SQL injection attacks. Many web applications have been

developed and deployed with SQL injection vulnerabilities. The problem is that most of

the application owners do not even know that their applications are vulnerable to SQL

injection. At least 92% of web applications are vulnerable to some form of hacker

attacks [WebCohort Inc., 2004].

According to Google and the United States Computer Emergency Readiness Team (US-

CERT), there has been an increase in the number of SQL injection vulnerabilities

reported over the past five years. The number of vulnerabilities on the US-CERT

website has almost doubled in the last year (see Table 1).

Google Search String Hits

sql injection vulnerability US-CERT 2005 85,400

sql injection vulnerability US-CERT 2004 38,800

sql injection vulnerability US-CERT 2003 31,100

sql injection vulnerability US-CERT 2002 16,600

sql injection vulnerability US-CERT 2001 524

CHAPTER 1 - INTRODUCTION

Page 3 of 88

Table 1: Google search

According to [Hoglund and McGraw 2004], fault injection tools can be used to inject

malformed or improperly formatted input to a target software process to cause failures.

With the advent of automated tools such as Acunetix Web Vulnerability Scanner

[Acunetix Ltd., 2005], Absinthe (which used to be known as SQueal) [Nummish and

Xeron, 2005] and Whitehat Sentinel [WhiteHat Security, Inc., 2005] the risk of SQL

injection exploits has risen. This was limited in the past by exploits having to be carried

out manually. This was tedious and time consuming.

In research and commercial products, there is evidence proving SQL injection can be

prevented using means not so closely related to the database and web application

[Ristic, 2005] [Seclutions, 2003]. These methods of approach have been developed to

produce a more generic solution to a problem that requires a lot of attention to detail at

the root of the problem - the application code and database deployment. Traditional

means of protecting against attacks include source code auditing, protecting dynamic

input and limiting database privileges granted to users. However, auditing all of the

source code and protecting dynamic input is not trivial, neither is reducing the

permissions of all applications users in the database itself [Finnigan, 2003]. Therefore,

developing a filter seems to be the best solution to preventing SQL injection. This

project will provide an independent application that will sit between the web application

and the database in order to provide security against SQL injection attacks.

1.2 Example of SQL Injection

A typical SQL statement is shown in Code Box 1.

select id, forename, surname from authors where for ename = ‘Joe’ and

surname = ‘Bloggs’

Code Box 1: A typical SQL statement

An important point to note is that the string literals are delimited by single quotes. The

user may be able to inject some SQL if the user provides the input shown in Text Box 2.

CHAPTER 1 - INTRODUCTION

Page 4 of 88

Forename: Jo’e Surname: Bloggs

Text Box 1: User input

The query string formed from the input shown in Text Box 1 is shown in Code Box 2.

select id, forename, surname from authors where for ename = ‘Jo’e’ and

surname = ‘Bloggs’

Code Box 2: Resultant query

In this case, the database engine will return an error due to incorrect syntax in the SQL

query that it received.

In many web languages, a critical vulnerability is the way in which the query string is

created. An example is shown in Code Box 3.

var SQL = "select * from users where username = ‘" + username + "’

and password = ‘" + password + "’";

Code Box 3: Code showing a SQL injection vulnerability

If the user specifies the input shown in Text Box 2, the 'users' table will be deleted,

denying access to the application for all users [Anley, 2002a].

Username: ‘; drop table users—

Text Box 2: User input to delete the users table

1.3 Problem Statement

The aim of this project is to produce software that will prevent SQL injection by

filtering SQL query strings through a filtering proxy server. This will be done by

analysing the structure of SQL query commands and investigating common SQL

injection techniques. This will then be followed by building a filtering proxy server

which will use attack signatures to prevent SQL injection. This aims to allow protection

of vulnerable applications or complex applications that are difficult to audit for

vulnerability bugs.

CHAPTER 1 - INTRODUCTION

Page 5 of 88

In an effort to reduce the deployment of vulnerable applications an extension of this

project is to produce a list of best practices for Database Administrators and Software

Developers with respect to preventing SQL injection.

1.4 Document Structure

• Chapter 1 presents an introduction to the project and outlines the work being

presented in this document.

• Chapter 2 outlines some of the literature that was used to aid the design and

implementation of the project.

• Chapter 3 details the design of the project software

• Chapter 4 runs through the implementation and results of the project.

• The final chapter, chapter 5, draws conclusions on the work done and provides

possible project extensions.

1.5 Introduction Summary

SQL injection makes use of dynamic SQL. Dynamic SQL happens when parameters are

chained together to create the database query. Most web applications are vulnerable to

SQL injection or some form of hacker attack. There are many measures that can be

implemented to reduce the chance of an attack. However, filtering malicious SQL

statements seems to be the best solution in preventing SQL injection. Therefore, this

project aims to produce a filtering proxy server to prevent SQL injection. In addition, a

list of best practices that will provide a reference point to reduce the chance of

deploying vulnerable applications.

The next chapter outlines the literature relevant to the project in an attempt to analyse

the background and seek a direction for the design and implementation of the project.

This is then followed by chapters showing the results and conclusion of the project.

CHAPTER 2 - RESEARCH

Page 6 of 88

Chapter 2 - Research

2.1 Introduction

This chapter will present some of the literature related to this project as well as some

suggested prevention methods. The chapter aims to put SQL injection into perspective

by outlining some of the material and research that has already been completed. The

section on suggested methods of mitigating SQL injection aims to clarify some

misconceptions about SQL injection prevention and provides some useful tips to

software developers and database administrators. A brief review of existing products

concludes the chapter.

2.2 Literature Review

According to David Litchfield [Litchfield, 2005], one of the first publications revealing

SQL injection was a 1998 Phrack 54 issue [Phrack, 2005], which was published on

Christmas Day that year. The article by rain forest puppy in that publication did not use

the term SQL injection but contained details of exploits.

SQL injection is a way to attack a database through a firewall by taking advantage of

non-validated SQL vulnerabilities. It is a method by which the parameters of a Web-

based application are modified in order to change the SQL statements that are passed to

a backend database. An attacker is able to insert a series of SQL statements into a query

by manipulating the data input, for example, by adding a single quote (‘) to the

parameters. It is possible to cause a second query to be executed with the first.

CHAPTER 2 - RESEARCH

Page 7 of 88

In his paper entitled “Advanced SQL injection”, Chris Anley [Anley, 2002a]

demonstrated that application developers often chain together SQL commands with

user-provided parameters, and can therefore embed SQL commands inside these

parameters. This is known as dynamic SQL. According to Peter Finnigan [Finnigan,

2002], dynamic SQL must be used in the application otherwise SQL injection is not

possible. SQL injection has been described [Overstreet, 2004] as a “code hole” that is as

serious as any IIS hole.

According to Pete Finnigan [Finnigan, 2002], existing SQL can be short-circuited to

bring back all data. This technique is often used to gain access via third party-

implemented authentication schemes.

Figure 1: The OSI stack [Davis, 2005]

It must be noted that firewalls, which traditionally operate at the network layer or layer

3 or the OSI stack, cannot protect against SQL injection as it takes place at layer 5 or

the session layer of the OSI stack [Vicomsoft Ltd., 2003]. This can be clearly seen in

the OSI stack diagram in Figure 1 above and is supported by [Imperva Inc., 2004].

Figure 2 shows the major points of vulnerability in a simple multi tier system. SQL

injection takes place at the client.

Because the coding hole has created a direct tunnel for SQL injection from the client to

the database, an attack is possible via a web server when the user has legitimate

database access. According to Pete Finnigan [Finnigan, 2002], an attack against a

database using SQL Injection could be motivated by three primary objectives:

1. To steal data from a database from which the data should not normally be available.

CHAPTER 2 - RESEARCH

Page 8 of 88

2. To obtain system configuration data that would allow an attack profile to be built.

One example of this would be obtaining all of the database password hashes so that

passwords can be brute-forced.

3. To gain access to an organisation’s host computers via the machine hosting the

database.

Figure 2: Major Vulnerabilities in a multi-tier syst em [Microsoft, 2003a]

According to David Litchfield [Litchfield, 2001] and Pete Finnigan [Finnigan, 2002],

the following are some programming languages, APIs and tools that can access

databases and be part of a Web-based application.

• Java Server Pages (JSP)

• Active Server Pages (ASP)

• XML, XSL and XSQL

• JavaScript and Asynchronous JavaScript and XML (Ajax)

• Visual Basic, C sharp, Java and other ODBC-based tools and APIs

• 3- and 4GL-based languages such as C, PHP and COBOL

• Perl, Python, Ruby and CGI scripts.

None of the above languages implicitly provide ways to protect against SQL injection.

According to Greg Hoglund and Gary McGraw [Hoglund and McGraw 2004] in their

book entitled “Exploiting software: how to break code”, deep operating system

integration leads to a security risk because integration runs counter to the principle of

CHAPTER 2 - RESEARCH

Page 9 of 88

compartmentalization. They also mention that one common assumption made by

developers is that users of their software will never be hostile. Unfortunately this is a

bad assumption to make as there are malicious users who will try to break software.

[Hoglund and McGraw 2004] also state that accepting anything blindly from the client

and trusting it is a bad idea, and yet this is often the case with server side design. A

potential hacker should not be implicitly trusted by a software system. Yet, most

software happily accepts raw input from the user to perform database queries, file

operations and system calls.

According to Maor and Shulman [Maor and Shulman, 2003], SQL injection attacks

have been on the rise in the last few years. They outline research that has proved that

suppressing error messages - going back to the “security by obscurity” approach

[Finnigan, 2003] - cannot provide a real solution to application level risk but can add a

measurement of protection. This is because no information can be inferred from error

messages sent back to the client by the database.

[Microsoft, 2003b] offers the following tips for preventing SQL injection:

• Validate all user input before transmitting it to the web or database server.

Authentication on the client side is vulnerable to SQL injection. According to

[Hotchkies, 2004], it is possible to bypass the authentication on the client side.

Therefore, the server must validate the input received in order to protect the

database from unauthorised access.

• Permit only minimally privileged accounts to send user input to the server.

• Run SQL Server itself with the least necessary privileges.

Chuvakin and Peikari, in their book entitled “Security Warrior” [Chuvakin and Peikari,

2004], state that there are four types of SQL injection:-

• Unauthorised data access permits the attacker to trick the application into

returning data that the attacker should not be able to see.

• Authentication bypass allows unauthorised access to data-driven applications

without proper authentication credentials. The attacker is then allowed to

observe data from the database.

CHAPTER 2 - RESEARCH

Page 10 of 88

• Database modification lets the attacker insert, modify or destroy database

content without authorisation.

• Escape from a database allows the attacker to compromise the database host and

possibly even attack other systems.

The novel presentation by Hotchkies [Hotchkies, 2004], at a Black Hat USA 2004

convention outlines automated blind SQL injection techniques. Because the automation

tools are able to ask the database as many yes/no questions as they like, it is possible to

use a binary search, for example, to discover an 8 character long username with 62

requests. Discovering the full database schema would take a few days, depending on the

size of the database. Blind holes give the user a false sense of security. He mentions that

string comparison is suitable for error based SQL injection but not blind SQL injection.

He also mentions that there are three kinds of SQL injection:-

• Redirecting and reshaping a query involves inserting SQL commands into the query

being sent to the database. The commands allow a direct attack on the database.

• Error message based SQL injection makes use of the database error messages

returned to the client. The messages provide clues as to the database type and

structure as well as the query structure.

• Blind SQL injection which involves a certain amount of guesswork and thus

requires a larger investment in time. The attacker tries many combinations of attack

and makes the next attack attempt based on their interpretation of the resulting html

page output received from the target website. They are then able to infer the

database type and structure. It should be noted that SQL injection can still occur if

there is no feedback to the client. So, one could create a new valid user in a database

without receiving errors and then log on.

David Litchfield [Litchfield, D 2005], in his recent paper titled “Data-mining with SQL

Injection and Inference” defines three classes of SQL injection, namely inband, out of

band and inference. They are outlined below:-

• Inband uses the existing connection to the database to manipulate the database. An

example of this would be to use the data returned in a well formed web page or an

error message.

CHAPTER 2 - RESEARCH

Page 11 of 88

• Out of band requires a new channel to be opened between the client and the

application. This usually requires the database to connect out to the client using

email, http or a database connection.

• Inference does not require any data transfer at all but uses properties such as web

server response time or web server response codes. This allows the attacker to infer

the value of the data they are enquiring about. Inference can be done at the bit level

and the core of the attack is a simple question. If the answer is A, do Y; if the

answer is B, do Z. David Litchfield has termed this very slow data-mining process

“data chipping”. In the appendix to the paper there are advanced methods to avoid

using single quotes, spaces, angle brackets, the ampersand and the equals’ character.

[Microsoft, 2003a] provides a good background into the problem of SQL injection by

providing explanations of the components of SQL injection strings and the syntax

choices. The examples include SQL injection attacks and show the creation of a secure

data access component using Java’s regular expressions.

[Beyond Security Ltd., 2002] provides concise examples of SQL injection and database

error messages as well as methods on how to prevent SQL injection.

[Spett, 2002] of SPI Dynamics presented a paper that describes SQL injection in

general. It goes through some common SQL injection techniques and proposes data

sanitizing and better coding as some of the solutions to the problem. The paper provides

a list of database tables that are useful to SQL injection in MS SQL Server, MS Access

and Oracle. It also provides examples of SQL injection using select, insert, union, stored

procedures. The examples work with a web service that returns information to the user.

The paper deals primarily with the structure of the SQL injection commands and

guidelines to reducing errors returned by the database.

Mr. Grossman, CEO of White Hat Security, Inc., in his presentation at the Black Hat

Windows Security 2004 convention, outlines the challenges of scanning web

application code for vulnerabilities. He points out that the scanner is restricted to

looking for classes of vulnerabilities such as SQL injection or cross site scripting. The

reason for this being that the benefit of known security issues is lost because the remote

scanner does not have access to the source code. Without the source code, knowledge of

CHAPTER 2 - RESEARCH

Page 12 of 88

the programming language or even what platform the application resides on, it is

virtually impossible for a remote vulnerability scanner to pick up known critical

vulnerabilities. He states that the problem with automated web application scanning is

in detecting "known security issues in unknown code" [Grossman, 2004].

[Kc, Keromytis, and Prevelakis, 2003] presented their paper on “Countering code-

injection attacks with instruction-set randomization” in Proceedings of the 10th ACM

conference on Computer and communication security in Washington D.C. in 2003. This

intriguing work describes a new, general approach for safeguarding systems against any

type of code-injection attack. This is done by creating process-specific randomized

instruction sets (e.g., machine instructions) of the system executing potentially

vulnerable software. An attacker who does not know the key to the randomization

algorithm will inject code that is invalid for that randomized processor, causing a

runtime exception. This method of protection can be used to protect scripting and

interpreted languages from code injection attacks.

2.3 Prevention Methods

There are many preventative measures that can be implemented by the administrator of

the database and web application interfaces. These include ensuring that the users have

the minimum database privileges possible, using input validation programming

techniques, suppressing error messages returned to the client, checking error logs and

filtering malicious SQL statements. These are explained below in more detail.

2.3.1 Database Privileges

According to [Howard and LeBlanc, 2003], when developers use ‘sa’ accounts to

ensure that everything works so that no extra configuration is required at the back are

also ensuring that everything works for the attackers too.

Prevention is better than cure. One should adopt the principle of least privilege by

ensuring that the users created for the applications have the privileges needed and all

extra privileges (such as PUBLIC ones) are not available. According to [Microsoft,

2003a], this principle can be extended by permitting only minimally privileged accounts

CHAPTER 2 - RESEARCH

Page 13 of 88

to send user input to the server and running the database server itself with the least

necessary privileges. The application generally does not need ‘dbo’ or ‘sa’ permissions.

By limiting the permission granted to the database, one is able to limit the vulnerability

of the database. Generally, users should not be allowed to delete records from a

database. They should only be granted the minimum privileges required for the tables

that they need whilst not having any rights to access tables that they do not require.

Read only access is far safer than read write access. Both read only and read write are

far safer than full control.

With Microsoft SQL Server, if the database connection string uses the security context

of ‘dbo’ , it is possible to use Data Definition Language (DDL) SQL commands such as

drop and create. If the database connection uses the security context of ‘sa’, it is

possible to control the entire SQL Server, and under the correct configuration even

create user accounts to take control of the Windows server hosting the database

[Overstreet, 2004]. [Overstreet, 2004] suggests that one should consider using a

separate account for each component with data access capabilities to isolate

vulnerabilities. For instance, a front-end public interface to one’s Web site needs more

restricted database access than an internal content management system.

 [Finnigan, 2003] is an extension of a two-part paper on investigating the possibilities

for an Oracle database administrator to detect SQL injection. The paper provides many

scripts on SQL injection and extracting logs and goes through worked examples of SQL

injection attacks. The paper focuses on detecting SQL injection by auditing the error

message log files and attempts to highlight the fact that during a hacking attempt, the

error messages leave a trail that can help expose the vulnerabilities of the database being

attacked. According to [Finnigan, 2003], there is no way to provide everyone with the

minimum privileges necessary and thus his paper explores some simple techniques in

extracting the logging and trace data that could be used for monitoring. This will be

discussed in the next section.

2.3.2 Error Trace

Some detection is better than none at all. It is easier to detect if SQL injection has

occurred by auditing the errors generated when the hacker is trying to gain access to the

CHAPTER 2 - RESEARCH

Page 14 of 88

database as opposed to auditing of the SQL commands executed. These error messages

can be as useful to the hacker as they are to the database administrator building up

database queries and stored procedures [Finnigan, 2003]. According to [Finnigan,

2003], SQL injection detection is possible but not in real time. One should use the log

files of traced data to scan for irregular SQL statements. A few of the disadvantages of

this are that it requires a large computational overhead, a large amount of disk space

may be required to store the logs and by the time one has found that a table name or a

view has been changed, it is too late - the damage has already been done. One other

point that [Finnigan, 2003] makes is that an attacker can steal the admin account,

making it hard to distinguish normal administration from an attack on the database.

2.3.3 Suppressing Error Messages

Error messages typically contain information that can be used to make informed

decisions on the next attack method. Security by obscurity tries to reduce the

unnecessary information from being sent back to the client. According to [Cerrudo,

2004], [Anley, 2002a] and [Litchfield, 2001] error messages can be used to determine

information such as the database type and table structure.

An example of a useful error message is shown in Figure 3. By entering 'group by

(username) -- into the input box, the error message returned gives information about

the type of database as well as the table and column name.

[Microsoft, 2003a] and [Overstreet, 2004] advise removing any technical information

from client-delivered error messages. [Maor and Shulman, 2003] makes the point that

the absence of error messages makes it harder but not impossible to use SQL injection if

the application is vulnerable. They also outline research that has proved that suppressing

error messages - the “security by obscurity” approach - cannot provide a real solution to

application level risk. Applications have still proven to be vulnerable despite all efforts

to limit information returned to the client. According to [Chuvakin and Peikari, 2004],

the obfuscation method of defence is a poor means of defence and should be coupled

with good coding.

CHAPTER 2 - RESEARCH

Page 15 of 88

Figure 3: Example of an error message returned by the database

2.3.4 Sanitising

[Microsoft, 2003a] says that web applications should validate all user input before

transmitting it to the server. Programmers should not make use of dynamic SQL that

uses concatenation anywhere in the application [Finnigan, 2002] [Finnigan, 2003]. If

concatenation is necessary then the input should be checked for malicious code, i.e.

unions in the string passed in or meta-characters such as quotes. Using numeric values

CHAPTER 2 - RESEARCH

Page 16 of 88

for the concatenation part is a way to ensure that SQL strings cannot be injected into the

query [Finnigan, 2002].

Fortify Software Inc. [Fortify Software Inc., 2004] aims to give companies an

automated way to discover flaws in code that could lead to threats such as buffer

overflows, format string errors and SQL injection exploits. When reviewing the source

code for dynamic SQL where concatenation is used, one should find the call that parses

the SQL or executes it. Input values must be validated, quotes must be matched and

meta-characters must be checked [Finnigan, 2002]. Kavado’s ScanDo web application

scanner [Kavado, 2005] creates a report showing how to eliminate web application

vulnerabilities after scanning the entire website.

Web Application Vulnerability and Error Scanner (WAVES, an open-source project

available at http://waves.sourceforge.net) is presented by [Huang, Huang, Lin, and Tsai,

2003] at the 12th international conference on World Wide Web table of contents in

Budapest, Hungary. This security assessment tool has the ability to learn from previous

experience and build up its injection knowledgebase. WAVES detects SQL injection by

using a black-box “complete crawling” mechanism and reverse engineering the web

application to determine all data entry points and then applying fault injection

techniques. This intriguing project is presented in their paper “Web Application Security

Assessment by Fault Injection and Behavior Monitoring” [Huang, Huang, Lin, and

Tsai, 2003].

When using Active Server Pages (ASP) technology with Active Data Objects (ADO),

[Litchfield, 2001] suggests that the fix for the SQL injection problem is better coding

which includes the replace() function for strings is a way to escape single quotes in

SQL. [Overstreet, 2004] reaffirms these sanitization techniques, adding that one should

check all input received from any ASP request object e.g. Request.QueryString. An

example of this is shown in Code Box 4. However, this will not work on fields that do

not require string inputs or if the user uses a hex equivalent of the word [Howard and

LeBlanc, 2003].

Replace(Request.Querystring("foobar"), "'", "' '")

Code Box 4: Code to replace a single quote with two single quotes

CHAPTER 2 - RESEARCH

Page 17 of 88

[Chuvakin and Peikari, 2004] advise regular penetration testing and web application

scanning. These tests will provide reports on how to patch vulnerabilities in the

application. A web shield should be used for additional layered security.

2.3.5 SQL Signatures - Filtering SQL Injection

Data Definition Language (DDL) can be injected if DDL is used in a dynamic SQL

string. Other databases can be injected through the first by using database links

[Finnigan, 2002]. According to [Microsoft, 2005], Microsoft® SQL Server™ 2000 uses

reserved keywords for defining, manipulating and accessing databases. Reserved

keywords are part of the grammar of the Transact-SQL language used by SQL Server to

parse and understand Transact-SQL statements and batches. Although it is syntactically

possible to use SQL Server reserved keywords as identifiers and object names in

Transact-SQL scripts, this can only be done using delimited identifiers. In addition, the

SQL-92 standard defines a list of reserved keywords. Avoid using SQL-92 reserved

keywords for object names and identifiers. The ODBC reserved keyword list is the

same as the SQL-92 reserved keyword list. The SQL-92 reserved keywords list

sometimes can be more restrictive than SQL Server and at other times less restrictive.

For example, the SQL-92 reserved keywords list contains INT, which SQL Server does

not need to distinguish as a reserved keyword.

[Microsoft, 2005] also adds that transact-SQL reserved keywords can be used as

identifiers or names of databases or database objects, such as tables, columns, views,

and so on. Use either quoted identifiers or delimited identifiers. The use of reserved

keywords as the names of variables and stored procedure parameters is not restricted

[Microsoft, 2005]. The effect of this possible overlap with keywords being used is that

filtering out false negatives is more likely. The filter will not be able to determine if the

words are legitimate or are part of an attack query. By the same token, allowable words

based on the database schema may lead to harmful code passing through the filter

undetected.

CHAPTER 2 - RESEARCH

Page 18 of 88

Existing SQL can be short-circuited to bring back all data. This technique is often used

to gain access via third party-implemented authentication schemes. A large selection of

installed packages and procedures are available on Microsoft SQL Server 2000. These

include packages to read and write O/S files. [Beyond Security Ltd., 2002] suggests that

stored procedures such as xp_cmdshell, xp_startmail, xp_sendmail and

sp_makewebtask in the master database should be deleted if they are not going to be

used.

Executing the stored procedure shown in Code Box 4 will prevent the SA account from

logging onto the server, a powerful denial of service attack [Lawson, 2005].

XP_REVOKELOGIN{[@LOGINAME=]’SA’}

Code Box 5: Stored procedure code to produce a denial of service attack

Users should not be able to perform direct CRUD (Create, Read [Select], Update and

Delete) statements. Erland Sommarskog [Sommarskog, 2005], SQL Server MVP

(Microsoft Valued Professional) advises that stored procedures should be used because

they increase performance. For example, with a long select statement that relies only on

the where clause being changed, using a stored procedure can limit the amount of data

transferred. Another reason for using stored procedures is because SQL server caches

the first execution of the stored procedure. Consequent calls to the procedure will be

executed in less time.

According to [Anley, C 2002b], it is possible for stored procedures to be vulnerable to

SQL injection. In his example shown in Code Box 5, by default, the

'sp_msdropretry' system stored procedure is accessible to 'public' and allows SQL

injection.

sp_msdropretry [foo drop table logs select * from s ysobjects], [bar].

Code Box 6: A stored procedure that is vulnerable to SQL injection

Consider the procedure in Code Box 4, as illustrated by [Sommarskog, 2005]:

 CREATE PROCEDURE search_orders @custname varchar(60) = NULL,

CHAPTER 2 - RESEARCH

Page 19 of 88

 @prodname varchar(60) = NULL AS

 DECLARE @sql nvarchar(4000)

 SELECT @sql = 'SELECT * FROM orders WHERE 1 = 1 '

 IF @custname IS NOT NULL

 SELECT @sql = @sql + ' AND custname LIKE ''' + @custname + ''''

 IF @prodname IS NOT NULL

 SELECT @sql = @sql + ' AND prodname LIKE ''' + @prodname + ''''

 EXEC(@sql)

Code Box 7: Code showing a vulnerable stored procedure

Assume that the input for the parameters @custname and @prodname comes directly

from user-input fields. Assume further that a malicious user passes the value in Text

Box 3 to @custname, the resulting query is shown in Code Box 6.

 ' DROP TABLE orders --

Text Box 3: The parameter passed to @custname

SELECT * FROM orders WHERE 1 = 1 AND custname LIKE '' DROP TABLE

orders --'

Code Box 8: The resulting SQL

According to [Anley, 2002b], the vulnerability is caused by the ‘exec’ statement. Any

stored procedure that uses the 'exec' statement to execute a query string that contains

user - supplied data should be carefully checked for SQL injection. [Howard and

LeBlanc, 2003] suggest using the quotename() function for object names and using

sp_executesql to execute dynamically built SQL statements.

According to Litwin [Litwin, 2005], using parameterized SQL greatly reduces the

hacker's ability to inject SQL into your code. Paul Litwin is a lead programmer with

Fred Hutchinson Cancer Research Center in Seattle. He is the chair of the Microsoft

ASP.NET Connections conference and the owner of Deep Training, a .NET training

company. [Howard and LeBlanc, 2003] advise the use of strongly typed parameters in

the web application because parameterised queries are faster and more secure.

According to [Finnigan, 2002] and [Finnigan, 2003], common attack techniques include

the use of:

CHAPTER 2 - RESEARCH

Page 20 of 88

• UNIONS that can be added to an existing statement to execute a second

statement;

• SUBSELECTS which can be added to existing statements;

• A large selection of installed packages and stored procedures which include

packages to read and write O/S files;

• Data Definition Language (DDL) can be injected if DDL is used in a dynamic

SQL string;

• INSERTS, UPDATES and DELETES; and,

• Other databases can be injected through the first by using database links.

According to [Chuvakin and Peikari, 2004], there are two types of external filtering that

only allow legitimate requests to pass through the system. SQL shielding protects the

database and web shielding protects the web application itself. Patiently trying various

innovative injection types may result in the attacker bypassing this method of defence.

2.4 Existing Products

Applications have still proven to be vulnerable despite all efforts to limit information

returned to the client. There are a few applications that have been developed by

companies in an effort to provide a solution to this problem. Some have been outlined

below:

• SecureSphere [Imperva Inc., 2005] uses advanced anomaly detection, event

correlation, and a broad set of signature dictionaries to protect web applications and

databases. It also uses error responses from the same user to identify an attack.

• ModSecurity is an open source intrusion detection engine for web applications,

which may provide helpful tips on how to detect SQL injection. [Ristic, 2005] has

developed ModSecurity for Java which is a Servlet 2.3 filter that stands between a

browser and the application, monitors requests and responses as they are passing by,

and intervenes when appropriate in order to prevent attacks.

• AirLock combines secure reverse proxy with intrusion prevention, content filtering,

user authentication enforcement, and application-level load balancing and failover

[Seclutions, 2003]. (Seclutions’ AirLock was awarded the Swiss Technology Award

2003)

CHAPTER 2 - RESEARCH

Page 21 of 88

• McAfee® Entercept® Database Edition [Networks Associates Technology, Inc.,

2005] provides many sophisticated proactive database protection techniques. The

SQL interception engine screens all incoming database queries and blocks any that

would cause malicious activity; database shielding blocks both outside penetration

and malicious use

• Amongst many features, Connectra Web Security Gateway [Check Point Software

Technologies Ltd., 2004] can prevent users from accessing confidential data using

directory traversal or SQL injection attacks whilst providing connectivity at the

same time.

2.5 Conclusion

"A true SQL injection tool would involve writing a parser or filter to analyse the SQL

statements" [Finnigan, 2003]. The ideal solution is to build a filter that checks for all

cases of SQL injection possible. The problem with this is that a list of all possible

injection strings is not possible to define [Finnigan, 2003]. This is suggested by [Maor

and Shulman, 2004] in their paper on “SQL Injection Signatures Evasion”. However,

going back to the principle of least privilege, by using a white list, it is possible to

define what is allowed and thus prevent invalid signatures.

The filtering application should sit as close to the database as possible. Ideally it should

sit on the same machine as the database; however, this may have a performance impact

due to the filtering process of the filtering proxy server. If the filtering application and

the database are on different machines, there is a security risk as the network traffic

passes from one machine to the other. With the filtering application sitting on the same

machine as the database, there are several advantages.

• There is an additional security as network traffic is limited.

• Processing time is reduced as network latency has no additional effect on the

transaction round trip time.

• The filtering application provides a last means of defence for the database.

There are some advantages to using SQL signature filtering as a preventative measure to

SQL injection. These are:

CHAPTER 2 - RESEARCH

Page 22 of 88

• Real time analysis does not impact the database [Finnigan, 2003].

• Any flaws in the configuration of database privileges or coding of the application

would not affect the database security.

However, there are also several disadvantages.

• False positives may also be filtered out in the filtering process [Imperva Inc., 2004].

• Packet filtering does not show internal dynamic SQL execution [Finnigan, 2003].

• This method will not work if the data is encrypted because the strings cannot be

viewed in plain text without decryption [Finnigan, 2002] [Linux Journal, 2004].

• Filtering all incoming http packets may turn out to be resource intensive. A large

amount of traffic may need to be handled at the webserver [Finnigan, 2003].

To be a useful intrusion detection system, the filter should be able to find the attackers.

Finding the user or attacker means logging login information for inspection. The filter

would need a timestamp as well as the source and destination IP address [Finnigan,

2003].

Most of the suggestions above apply to future deploying of web applications. The (open

web application security project) OWASP guide with its many precautions is now

becoming an accepted standard [OWASP, 2004].

2.6 Research Summary

There are many vulnerable applications whose code will not be reviewed or patched and

it is common knowledge that programmers will continue to produce vulnerable

applications. According to [Finnigan, 2003], there are no commercial solutions to SQL

injection. However, several post 2003 software packages have been found that claim to

prevent SQL injection attacks.

Auditing all of the source code and protecting dynamic input is not trivial, neither is

reducing the permissions of all applications users in the database itself. Checking

through log files and relying on the least privileges principle does not seem sufficient.

Passively detecting SQL injection is not as useful as preventing it in real time. The use

CHAPTER 2 - RESEARCH

Page 23 of 88

of packet sniffers does not allow for the SQL injection prevention as the removal of

malicious SQL query statements from the packets is not possible.

This chapter has introduced SQL and SQL injection, outlined background research,

discussed methods of protecting against SQL injection and presented existing software

on the market today. Given the fact that there is a finite set of words in the SQL

vocabulary, it seems possible to develop a filter to prevent SQL injection.

The following chapter outlines the design of a filtering proxy server. The design process

makes use of unified modelling language (UML) in an iterative process with the

implementation of the design. Following the design chapter are chapters on

implementation, the results and conclusions of this project.

CHAPTER 3 – SYSTEM DESIGN

Page 24 of 88

Chapter 3 – System Design

3.1 Introduction

This chapter outlines the design of the filtering proxy server. The project aims to

eliminate the possibility of SQL injection by the use of a filtering proxy server, which

will be placed in between the two communicating devices, namely the web application

or client and the database. This added layer of protection will allow for the filtering of

possible SQL injection attempts and provide the database with a last means of defence.

Protecting the database can be best achieved by keeping the proxy server and database

close together. This is achieved by having them run on the same machine. It is possible

for the filtering proxy server to run as a standalone application on a separate machine

sitting between the two communicating devices. It is also possible to run the application

on the web server or database server. The intended outcome is to set up an environment

that provides protection against SQL injection by filtering bad SQL queries and only

allowing good queries to be executed by the database.

3.2 Design

The information flow diagram in Figure 4 shows the flow of information between a

TDSProxy server within the domain of this project and the other entities and

abstractions with which it communicates. The diagram helps to discover the scope of

the system and identify the system boundaries. The system under investigation

(TDSProxy) is represented as a single process interacting with various data and resource

flow entities via an interface. As can be seen from the diagram, the web application

CHAPTER 3 – SYSTEM DESIGN

Page 25 of 88

provides the query to TDSProxy which in turn provides safe queries to the database and

attack reports to the Database Administrator. The response from the database is routed

back to the web application through TDSProxy. Should the need arise, log files in the

database application provide information for auditing purposes at a later stage.

Figure 4: Information flow diagram

The reason for naming the application TDSProxy is because Microsoft SQL Server

2000 uses the Tabular Data Stream (TDS) protocol to communicate with its clients. The

application being developed is a proxy server that filters queries being carried by the

TDS protocol. Therefore, the name came about by a combination of the acronym TDS

and the word Proxy to form TDSProxy.

The design and implementation steps of the project used the Rational Unified Process

(RUP) with the aid of UML (Unified Modelling Language). The process was iterative,

started off with a simple application and developing into a more complex system in

subsequent iterations. This methodology was chosen to overcome problem areas in

segments.

One of the problems was not being able to create a connection from a client application

– a Microsoft Access data access page - through the proxy server to the database. The

approach to solving this problem was to break it down into its components, making sure

that the proxy server could create a connection to the database, ensuring that the data

TDS Proxy

Database
Server

Web
Application

DBA

Provide query

Provide safe
query

Provide attack reports

Provide response

Provide response

CHAPTER 3 – SYSTEM DESIGN

Page 26 of 88

access page was connecting to the proxy server and finally ensuring that the data was

passed through the transparent proxy server without being changed. Once the basic

concept was conceived and implemented, more advanced features were added to flesh

out the software used for this proof of concept project.

The web application is where the queries are formed from the input parameters. These

queries are sent to the database through TDSProxy. The bulk of the system operations

take place at the TDSProxy. When the TDSProxy has filtered the query, the clean query

is sent to the database server. Incoming requests are filtered and only clean queries are

passed on to the database for processing (Figure 3). For security reasons, the proxy

server will sit on the same machine as the database.

Figure 5: High level design view

The diagram in Figure 5 shows all the components in the high level view of the system.

The web interface is the tool used by the client to send requests to the database. The

web application is pointing to TDSProxy so that all requests and responses must go

through TDSProxy.

The client’s web application request triggers the formation of the SQL statement which

uses the input parameters of the web form to create the correct SQL statement. This

SQL statement is then sent to TDSProxy. When the SQL statement is received, it is first

filtered. Only clean SQL statements are then sent to the database. The database

processes the request and sends its response through TDSProxy. TDSProxy in turn

TDSProxy Server

Receive

Send

Client

Send

Receive

 Database

Filter

CHAPTER 3 – SYSTEM DESIGN

Page 27 of 88

sends the response to the web application for processing to produce the correct view for

the client.

At start-up, TDSProxy loads a configuration file, shown in Figure 6, by extracting the

parameters. This is an xml file that contains, filter settings and options as well as the

settings required for the passing of data to the correct destination. The filter signatures

are also loaded from text files. These text files are easily updatable.

Figure 6: XML file containing the settings of TDSProxy

The flowchart in Figure 7 focuses on the internally driven processes as opposed to

external events, capturing the actions performed at system start-up and run time. The

action states in the diagram represent the decisions and behaviour of the processing.

TDSProxy is not a passive application but analyses the TCP payload for TDS query

packets. For simplicity of testing and real time analysis, one client application can

connect TDSProxy.

CHAPTER 3 – SYSTEM DESIGN

Page 28 of 88

Figure 7: Flowchart of the TDSProxy server

By following the flowchart in Figure 7, once the system has started, it is able to start

receiving data from the client. When data is received from the client, the TCP payload is

analysed for a TDS query packet. If the payload contains a SQL query, the query is

extracted, logged and then filtered for any bad SQL commands. If the filter process

finds that there is a potential attack, the attack is logged. After logging the attack, the

attack information is sent via UDP to the DBA. The original query is discarded and a

CHAPTER 3 – SYSTEM DESIGN

Page 29 of 88

false query is sent to the database. The response from the database is then returned to

the client through TDSProxy.

If the filter process did not pick up an attack, the query is sent to the database and the

database response is returned to the client. If the payload does not contain a TDS query

packet, for example, it contains a login packet; the data is simply passed on to the

database. The responses are then forwarded to the client.

The operations and methods of the system transform the query from one state to another

depending on what route the information is flowing. These changes are shown in Figure

8. The various states depend on the route taken as illustrated in the flowchart in Figure

7.

The raw string becomes part of the query string through processing at the client

interface. This happens when the input parameters are selected from the client interface

and inserted into the hard coded query. The query may be formed at the client side or

the parameters may be passed to the web application server. Once the SQL query has

been formed, it is sent to TDSProxy where it is analysed for SQL injection. The query is

logged and then filtered for SQL injection. If the query contains SQL injection, the

attack is logged, the dangerous SQL is discarded, the DBA is notified via a UDP alert

and a false query is sent to the database. The database response is then relayed to the

client. If the filtered query does not contain SQL injection, the query becomes a

database query and is sent to the database. The database response is then relayed the

client interface through TDSProxy.

CHAPTER 3 – SYSTEM DESIGN

Page 30 of 88

Figure 8: State Change Diagram for Client Query

3.3 Design conclusions

There are several advantages and disadvantages to producing TDSProxy.

� The advantages are:

� It is a standalone application independent of flaws in the client

application coding and database privileges.

� TDSProxy can be deployed on a separate server, the database server or

web application server.

� TDSProxy adds an extra layer of protection with real time analysis and

prevention against SQL injection.

� Disadvantages include:

� False positives may be passed on to the database for execution if a

hacker enters a valid malicious query that is not detected by the filter.

� False negatives may be filtered out when words from a valid clean query

match words that are in the signature lists that block SQL injection.

CHAPTER 3 – SYSTEM DESIGN

Page 31 of 88

� TDSProxy will not work if the data is encrypted. This is because of the

use of a matching method with plain text signatures. This method checks

if the query sent by the client matches signatures in the signature files.

� As the signature files increase, the filtering process may turn out to be

resource intensive.

3.4 System Design Summary

When a TDS query packet is received, the query string is analysed for possible a SQL

injection attack. This is done by regular expressions checking for matches with SQL

injection signatures. Bad queries are logged and an alert is sent to the Database

Administrator. Only when the query has successfully passed through the filter is it sent

to the database for processing. This means that there are no words in the query that are

in the list of blocking signatures.

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 32 of 88

Chapter 4 – System

Implementation

4.1 Introduction

This chapter presents the implementation of TDSProxy by outlining the design

decisions and methodology used. An important part of the implementation was the TDS

protocol analysis which lead to the development of the filter used in TDSProxy. This

part of the implementation is outlined in the section on testing and validation. The end

of the chapter highlights a few of the problems encountered. After the development of

the filter and creation of the signature lists used by the filter, some testing was done on

the impact of the filtering process on web transactions. The results are presented in the

form of graphs showing the average processing times and average throughput available

during the transaction processing. The detailed data is available in Appendix D. The

chapter concludes with conclusions regarding the implementation stage are drawn at the

end of the chapter.

4.2 Implementation

The development languages were initially Java and Perl: Java is platform independent

and Perl has powerful regular expressions capabilities.

In accordance with the guidelines by [Spolsky, 2000], the development language was

changed to C# to allow for better code management and integration with Microsoft

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 33 of 88

Visual Source Safe and to link in with other Microsoft products; Microsoft SQL server

2000 and Microsoft Windows XP professional.

The operating system, development language and database platforms are all Microsoft

based in order to prevent compatibility issues. Thus Windows XP Professional Edition,

SQL Server 2000 Developer Edition and Visual Studio .NET 2003 along with Visual

Source Safe version 6d [Spolsky, 2000] were used in the design and implementation

phase. UML modelling made use of Visual Paradigm for UML 5.0 Enterprise Edition.

4.2.1 Design Decisions

The server will listen on the specified port number and the proxy server can be set to

send the TDS packets to that port. According to the rfc on assigned numbers [Postel,

2004], port numbers ranging from 0 - 1023 because are restricted for well-known

services such as HTTP and FTP. Therefore, the port numbers chosen for the

development were 2222, 4444 and 5555.

Packets are not encrypted by default, but encryption can be enforced by the database. If

secure socket layer (SSL) is used, the filtering process on TDSProxy will not work as

SSL ensures that the data is encrypted. Filtering will work on plain text at this stage.

Since SQL injection cannot be stopped using firewalls, intrusion detection systems or

intrusion prevention systems, one should search for the following in all strings inputs

from users in order to prevent SQL injection:

• ‘ “ / \; Strings in many programming languages are delimited by the double

quote whilst in SQL, strings are delimited with a single quote.

• extended characters like NULL, carry return, new line;

• UNIONS which can be added to an existing statement to execute a second

statement;

• SUBSELECTS which can be added to existing statements;

• INSERTS, UPDATES and DELETES

• Public system stored procedures

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 34 of 88

Since Microsoft SQL Server 2000 uses the Tabular Data Stream (TDS) protocol to

communicate with its clients and TDS is carried by TCP, TDSProxy needs to handle

TCP sockets and connections. This allows the proxy server to analyse the payload of

TCP packets.

4.2.2 Methodology

The implementation was done iteratively, starting off with an application that piped text

(the TCP payload) through a proxy server. This was tested using a powerful networking

tool called NetCat [Giacobbi, 2004]. This testing phase was aimed at creating the proxy

server and ensuring it was transparent to the client application and database. After being

able to pipe text, plain text queries were sent to the database from a NetCat client

through the proxy server. This was followed by an attempt at using a data access page

as a client. This was abandoned when a tool call OSQL was able to connect to the

database through the proxy server. Once the proxy server was able to route information

effectively, TDS query extraction and filtering was implemented.

4.2.3 Testing and validation

Creating an echo client-server setup would aid the creation of a proxy server that would

sit between the client and server. The initial application consisted of a knock-knock

client-server that sent automated responses to each other based on the reply. This idea is

an implementation of a common verbal game played by school children. Next, the client

was extended to become the beginning of a proxy server that connected to a NetCat

server. The server responses were typed in manually and the client application returned

automated responses.

The next enabled a NetCat client to connect to the proxy server and send requests to the

NetCat server through the proxy server. One NetCat client instance sent plain text to the

port that the proxy server was listening on. The proxy server then rerouted the text to

the port that the NetCat server it had connected to. The NetCat server was listening on.

This is illustrated in Figure 9 below.

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 35 of 88

Figure 9: Proxy server connecting NetCat clients to a NetCat server

The purpose of this was to learn about the workings of a proxy server. One NetCat

instance was set up as the client sending the query to the database whilst another NetCat

instance simulated the database server receiving requests and sending responses to the

client. The proxy server was placed between the NetCat client and server. All TCP

traffic was logged to a text file. The payload of the TCP packets was plain text ASCII

characters. This was a good exercise in learning about ports, TCP routing and the basic

client server architecture.

Figure 10 to Figure 13 are screenshots of the proxy server connected to a NetCat server.

The proxy server has two clients connected to it and the server is sending responses to

each client. The order of start-up of the applications is important. The order should be

database server, proxy server and finally the querying client. Once there is a link from

the client to the server, transmission can begin. The value of this exercise was being

able to create a proxy server that routed information from one port to another.

Figure 10 shows the proxy server connecting to the NetCat server. The proxy server was

set to try and connect to port 5555. Port 5555 is the port that the NetCat client was

going to listen on. Figure 10 also shows the connection of Client 0. Client 0 then

transmits a message and receives a response. Client 1 connects, sends a message and

receives a response. Both clients then disconnect, Client 1 first and then Client 0.

 Proxy Server

Port 4444

 Port
5555

Netcat
Client

Netcat
Server Netcat

Client

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 36 of 88

Figure 10: Proxy server listening on port 4444

Figure 11 shows the NetCat server being created. It listens on port 5555 and waits for

connections. The proxy server connects once the NetCat server is ready. Once the proxy

server is connected to the NetCat server, it listens on port 4444 for clients to connect to

it. The NetCat server receiving a connection from the proxy server is also shown in

Figure 11. Once connected to the proxy server, the proxy server routes messages sent to

it from clients that have connected to it. Responses to the messages from the clients,

received from the proxy server, are sent by typing responses in the NetCat server

console. The responses are sent back to the client through the proxy server.

Figure 11: NetCat simulating a server listening on port 5555

Figures 12 and 13 show clients connecting to the proxy server. On connection they

receive an automatic welcome message. The proxy server is now waiting for a response

from the client that has just connected to it. Client details are kept in an ArrayList to

keep track of which client sent which message. This information is used when sending

replies to the client. The client sends a message to the proxy server. The message is

routed to the NetCat server. A message is typed and sent in response to the client

through the proxy server.

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 37 of 88

Figure 12: NetCat simulating one client connected to the proxy

Figure 13: NetCat simulating a second client connected to the proxy

The proxy server was then improved to connect to the database using a connection

string. There was a problem at this stage of the development. Initially the problem was

thought to be in the code, however on further investigation it was found that a database

setting had been causing the problems. With the correct username, password and rights,

the database was manipulated by entering the SQL text on a NetCat client instance.

Figure 14: Proxy server code setting up a view before connecting to the database

The next step involved sending hard coded SQL queries to the database at start-up of

the application. This confirmed that the username, password and privileges were

correct. This is illustrated in Figure 14 where a view was created in the database by

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 38 of 88

sending CREATE VIEW myView AS select * from db_keys as the query string to the

database. The proxy server is shown in the foreground and the background shows the

log file that was generated. Figure 15 shows the result of the query as shown in the

database.

Figure 15: SQL server database view created via the proxy server

4.2.4 Protocol Analysis

The querying client made use of OSQL, a tool that comes with MS SQL Server 2000.

Figure 13 shows the use of OSQL to query the database through the proxy server

listening on port 4444. OSQL is able to connect to the database by specifying the

machine name, port number, username and password.

OSQL was used to successfully query the test database and select all information from

the users table. When the proxy server was shut down, there was no link to the database

and a network error was returned as shown in Figure 16. The proxy server, OSQL tool

and the database are all sitting on the same machine. The result of Figure 13 shows that

the connection to the database on the local machine was made through the database. It

should be noted that without specifying ‘-S hons08, 4444’ , OSQL would connect to

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 39 of 88

the local database directly using the default port. This is undesirable as the queries must

be sent through the proxy server in order for the queries to be filtered.

The use of OSQL, along with packet sniffers Ethereal [Ethereal, 2005a] and Packetyser

[Network Chemistry, 2005] allowed for the development of the SQL extracting method.

This was done by analysis of the TDS protocol [FreeTDS, 2005] and lead to the

extraction of the query in the query packet sent to the database after the login challenge

[Bruns, Wheeler, Schaal, Ziglio et al., 2005]. Figure 16 shows the use of OSQL to query

the database through TDSProxy. After the second query has been sent, TDSProxy was

stopped. With the third query attempt using OSQL, there are two errors (shown in

Figure 16) due to no connectivity between OSQL and the database.

Figure 16: Use of OSQL and error message on shutdown of proxy server

Figure 17 shows a comparison of the extracted TDS packet data using TDSProxy and a

packet capture using Ethereal. The packet sizes are the same and so are the source and

destination names (Figure 17). The captured data shows a connection from hons09 to a

database sitting on Netserv. Netserv’s IP address is 146.231.131.136 and the database is

listening on the default port 1433. The logon request comes from hons09.ict.ru.ac.za

port 2222 and this is shown in the packet capture with Ethereal and TDSProxy. There is

no difference between the packet capture information on both Ethereal and TDSProxy,

showing that TDSProxy is capturing all the data effectively.

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 40 of 88

Figure 17: Ethereal packet capture compared to proxy server packet analysis

Ethereal does not support packet capture on the loop back on Windows [Ethereal,

2005b]. Since the Microsoft loop back adaptor on Windows XP is not very effective in

capturing the data sent between OSQL and MS SQL server 2000 for example, the

request was sent to Netserv, a remote machine, making an Ethereal packet capture

possible. By sending the data to another machine, a comparison could be made between

an Ethereal packet capture and the payload extracted by TDSProxy. This is illustrated in

Figure 18 which shows the packet capture using Ethereal as well as the payload capture

using TDSProxy. This was helpful during the creation of the SQL extraction methods.

The proxy server logs the traffic and is able to manipulate the packets sent to the

database as well as capture the SQL statements send to the database.

Figure 18 shows the typical usage sequences for the TDS protocol as used by Sybase

SQL Server and Microsoft SQL Server. Figure 19 and Table 2 show the structure of

TDS packets.

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 41 of 88

Figure 18: Typical Usage sequences for TDS [FreeTDS, 2005]

Packet type Description

0x01 TDS 4.2 or 7.0 query

0x02 TDS 4.2 or 5.0 login packet

0x03 RPC

0x04 responses from server

0x06 Cancels

0x07 Used in Bulk

0x0F TDS 5.0 query

0x10 TDS 7.0 login packet

Table 2: TDS Packet Types and their descriptions [FreeTDS, 2005]

Figure 19: Packet format of all TDS packets [FreeTDS, 2005]

During the development stages, TDSProxy made use of some of the code by [Kocak,

2004] in his application called Pacanal. Pacanal is a C sharp attempt at producing

Ethereal-like capabilities and currently supports up to fifteen protocols. The PacketSQL

code in Pacanal [Kocak, 2004] and the capture shown in Figure 19 proved to be very

useful in understanding the TDS protocol and how to extract the query string from the

TDS query packet. Figure 20 shows code used to extract the query string from the TDS

query packet. The variable msg is a byte array containing the TCP payload. If the packet

Unknown Last packet
indicator

Packet size Packet type

4 Bytes INT8

INT16

INT8

--> Login
<-- Login acknowledgement

--> INSERT SQL statement
<-- Result Set Done

--> SELECT SQL statement
<-- Column Names
<-- Column Info
<-- Row Result
<-- Row Result
<-- Result Set Done

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 42 of 88

being captured is a TDS query packet as indicated by the first byte of the packet being

0x01.

Figure 20: Code showing the extraction of the query from TDS query packet

The white paper by [Anley, 2002a] covers research into SQL injection as it applies to

Microsoft Internet Information Server/Active Server Pages/ MS SQL Server platform. It

addresses some of the data validation and database lockdown issues that are related to

SQL injection into applications. The paper provides examples of SQL injection attacks

and gives some insight into .asp login code and query error messages used to exploit

databases.

With TDSProxy now able to capture the query sent in the TDS query packet, a

vulnerable ASP application was developed [Anley, 2002a]. It comprises of an asp login

page that does a comparison of username and password with rows in the database. If

there is a match, the user is taken to an “Access Granted” page. Otherwise, the user is

taken to an “Access Denied” page. The ASP page was hosted on a remote machine and

connection to the database came through the proxy server by manipulating the

connection string to connect to the machine and port that the proxy server was listening

on. This ASP application allows the user to enter SQL injection text into the input

parameters and manipulate the database.

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 43 of 88

Figure 21: Successful SQL injection in the database

Entering the correct parameters present the user with an “Access granted” page (Figure

21). The query sent to the databases is shown at the top of the page as select * from

users where username = ‘<username parameter>’ and p assword =

‘<password parameter>’ . There is a row in the database where the username is “fred”

and the password is “otten”.

Figure 22: Dropping a table using SQL injection

Figure 22 shows the result of entering “’;drop table users--” as an input parameter

for username. The user is presented with an “Access denied” page because there is no

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 44 of 88

matching username “’;drop table users--” in the database. In this example, the two

SQL queries formed are shown in Text Box 4.

1. select * from users where username = ‘”’;

2. drop table users--

Text Box 4: SQL injected queries executed by the database

The first statement looks for a row in the table where the username is a double quote (“).

This statement is terminated by a semi colon. The next SQL query drops the users table.

The double dash (--) indicates that the rest of the statement is a comment and can be

ignored by the database. The problems with this scenario are:

• There is no input validation and so SQL injection is possible with the use of

dynamic SQL.

• The user being used to connect to the database has too many privileges because

they are allowed to execute a drop statement. A user who owns the object or has

database administrator (DBA) access can execute a drop statement.

Figure 23 shows the result of this SQL injection as seen from the database. The

database has executed the drop command and the users table has been dropped from the

database. This action was performed while Enterprise Manager was open. On trying to

access the dropped table, the database returned the error shown in Figure 19. Upon

refreshing the database, the view did not contain the users table.

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 45 of 88

Figure 23: Database view of the dropped table

A regular expression is an expression that concisely describes a set of characters

without having to list the whole set they describe. However, there are multiple patterns

that can describe a single set of characters. Regular expressions are used in pattern

matching thus the next step involved creating the filter by making use of powerful

regular expressions.

The filter method made use of black, white, gray and pattern matching signatures. A

black list contains lists of strings that are black listed. These strings are the signatures

that are considered bad. When the filter comes across queries containing strings that

match those in the black list, they are filtered out.

White lists, on the other hand are the exact opposite of black lists. White lists show

strings that are allowed. In between white lists and black lists are gray lists. They

contain strings that have the potential to be bad but may also be good. Thus the action

taken when a gray list is matched is alerting the DBA. The query is not halted but is

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 46 of 88

allowed to pass through. This option can be changed to a pessimistic mode where gray

lists act as black lists.

The regex list contains a list of pattern matching regular expressions. They are more

generic and can be used as input validations e.g. allow only ASCII alpha characters to

pass. Some of the strings contained in the regex list were built using a tool called regex

coach [Weitz, E 2005].

According to [Hoglund and McGraw, 2004], the problem with black lists being used as

a filter method to remove bad input is the creation and maintenance. An exhaustive list

is difficult to produce at best and mistakes in the black listing make the attacker’s job

easier. Therefore a much better approach is to use a white list approach, specifying

which input patterns should be allowed. This is a version of the principle of least

privilege which gives your program only as much power as it needs and no more. In

light of this, a decision was made to use a combination of lists. The filter uses SQL

injection signatures which are made up of a black list, white list, gray list and pattern

matching list. The filter is able to report whether the SQL query text matches any of the

given signatures.

At all stages of development, there is extensive logging of the queries captured. This

helps with the debugging. SQL injection attacks are logged along with the signature that

caught the attack. With the aid of the log files generated by TDSProxy and the database

log files, the DBA can ascertain which database is being attacked. The DBA can also

determine which web server or web page the attacker is using. The value of this is that

the security holes can be patched and the database protected from further attacks.

Alerts are sent via UDP to the database administrator with the SQL injection query, the

name of the machine hosting the web application and a timestamp. This will allow the

DBA to block further injection attacks from a particular user by checking the database

log file which should contain the IP address of the person who sent the query at that

time.

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 47 of 88

4.2.5 Problems Encountered

The default setup configuration of MS SQL Server 2000 allows Windows

authentication only. This needs to be changed to Windows and SQL Server

authentication; otherwise it will result in an error (TextBox5).

Login failed for ‘helpdesk’. Reason: not associated with a trusted SQL

server connection.

Text Box 5: Login error

During the testing stages, getting the proxy server to just route information was not

enough. There has to be some changing of the packet data variables. There seems to be

a need to change things like the destination machine, port numbers and the like in order

for the applications to accept the Transmission Control Protocol (TCP) and Tabular

Data Sream (TDS) packets.

Figure 24: Login error – not a trusted SQL server connection

An attempt at using a Microsoft Access 2003 data access page as the client was

unsuccessful and produced many login errors. When setting up the data access page,

Access 2003 only accepted the use of an actual machine name and not its IP address.

For testing purposes, a direct connection to the database was set up and querying the

database through the data access page was possible.

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 48 of 88

The next step was to be able to route the login through TDSProxy so that the database

would ‘think’ it was talking to an Access data access page. However, when trying to

connect to the database from the data access page through the proxy server, there was a

problem with the connection string. The database kept returning an error message

saying that the connection was refused because it was not associated with a trusted

database. This problem, shown in Figure 20, was overcome by hard coding

“trusted_server = true” into the data access page’s connection string in the htm

page. This was done by editing the htm file in a text editor as shown in Code Box 9.

The login errors continued and the database kept sending back reset packets. There was

no apparent reason for it not being able to log on after the data was being routed. The

packet data was altered so that the source and destination ports and IP addresses made

TDSProxy seem totally transparent. The first three login packets were forged from a

successful login without TDSProxy. However, this made no difference and an

alternative client tool was sought. The possibility of port or IP number mismatching was

eliminated by continuing the development on the same machine.

<a:ConnectionString>

Provider=SQLOLEDB.1; trusted_server = true ;Password=password123;Persist

Security Info=True;User ID=test;Initial Catalog=Tes t;Data

Source=hons08.ict.ru.ac.za,4444;Use Procedure for P repare=1;Auto

Translate=True;Packet Size=4096;Workstation ID=HONS 08;Use Encryption

for Data=False;Tag with column collation when possi ble=False

</a:ConnectionString>

Code Box 9: Editing the connection string to stipulate a trusted connection

With the proxy server still in place and routing the data to the SQL database, there was a

problem with logging into the database. The database kept sending back reset packets.

There was no apparent reason for it not being able to log on after the data was being

routed. Figure 25 shows an Ethereal packet capture of a successful login without using

the proxy server, there are two packets sent before a login packet is sent to the database.

These are part of the TCP three-way handshake.

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 49 of 88

Figure 25: Packet capture showing a successful login directly to the database

The first three packets were forged to look like the original TDS packets that were sent

when there was a successful logon with no proxy server in place. However, reset

packets were sent back to the Access data access page at what would have ordinarily

been the logon stage. Figure 26 shows the first three packets being sent to the SQL

server after which, there seems to be no apparent communication between the data

access page and the SQL Server. The first two are part of the synchronisation between

the server and data access page. The third packet is a TDS7/8 login packet.

After extensive research into the TDS packet structure along with analysis of Ethereal

packet captures, it was concluded that there may be a problem with the port numbers or

source and destination mismatches. These problems were eliminated by running

everything on the same machine. Thus there was no need to alter the machine address.

This left only the port as the problem. The proxy server was modified to be able to

change the port numbers. The source packet’s destination was changed from the proxy

server port to the port that the Microsoft SQL Server was listening on. This made it look

like the packet was sent from Microsoft Access directly to the Microsoft SQL Server.

The process was reversed on receiving a response from the server. However, this did not

have the desired effect and the login packet was not accepted.

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 50 of 88

Figure 26: Attempted login from data access page through proxy server

These problems were solved by using a MS SQL console tool called OSQL. Using this

tool, one is able to log into and query the remote database via the proxy server. The

query was routed through the proxy server to the database and this allowed for the

capturing of the SQL query. All the query information from logon to finish can be

captured, logged and manipulated.

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 51 of 88

Later on in the development stage, the error was found to be the size of the buffer being

used. As can be seen from Code Box 9, the size of the buffer should be at least 4096

bytes. The buffer being used was not big enough to hold all the data being sent to the

database and so it kept sending reset packets back to the client.

4.2.6 Web transaction tests

Web transaction tests were carried out and the results of these indicate the effect of

TDSProxy on web transactions. The tests were carried out on the local host (hons08)

where the database and TDSProxy were running. The tests were then repeated on

Netserv, a remote machine with TDSProxy and the database sitting on the hons08. A

summary of the results available in appendix D are shown below in the graphs below.

There is no substantial increase in web transaction processing time when comparing a

direct connection from the web application to the database and a connection from the

web application through TDSProxy without filtering. This is true for the cases of the

web application tests being done on both Netserv and hons08. Figure 27 and Figure 28

both show the first two scenarios’ average time is around 5 ms per query.

There is a jump in the average web application processing time when the filter is turned

on. The increase of about 20 ms per query in both Figure 27 and Figure 28 indicate that

the increase in the average web application processing time is due to the filtering

process. The slight increase in average web application processing time when doing the

tests on Netserv is attributed to the decrease in throughput due to network traffic. This

can be seen in Figure 29.

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 52 of 88

Average web transaction processing time
- Hons08 -

0

5

10

15

20

25

30

Direct Proxy - No filter Proxy - Filter

Query Scenario

T
im

e
(m

s)
/q

u
er

y

Select

Insert

Figure 27: The average web transaction processing time on hons08

Average web transaction processing time
- Netserv -

0

5

10

15

20

25

30

Direct Proxy - No filter Proxy - Filter

Query scenario

T
im

e
(m

s)
/q

u
er

y

Select

Insert

Figure 28: The average web transaction processing time on Netserv

Figure 29 shows a decrease in the throughput when the test is done on a remote server

as opposed to doing the tests on the local host. The average INSERT statement seems to

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 53 of 88

take longer to execute than selecting 100 records from the database. This accounts for

the decrease in throughput from selects to inserts along the same route – directly to the

database, through TDSProxy without filtering or through TDSProxy and its filter.

The effect of the decrease in throughput between SELECT and INSERT statements was

reduced by the network communication as the test scenario changed from hons08 to

Netserv. This is because the traffic spent more on the network whilst travelling to and

from the database. The effect described is highlighted by Figure 30 which shows that

there is an increase in the average processing time for TDSProxy. This is because

TDSProxy may still be waiting for all the traffic to arrive before it can process the

query.

Average throughput for client or server

0

200

400

600

800

1000

1200

select direct insert direct select no
filter

insert no
filter

select filter insert filter

Query Scenario

T
h

ro
u

g
h

p
u

t
(k

b
/s

ec
)

Hons08

Netserv

Figure 29: Graph showing the average web throughput for the client or server

Another test scenario made use of the OSQL tool’s ability to run scripts from files.

When filtering was turned off, the average processing time of TDSProxy was reduced

from 0.256845 milliseconds to 0.002469 milliseconds for a set of 5000 queries of varied

length and structure. Thus the filter process adds a 1% increase in average processing

time per query for a total signature set is 190.

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 54 of 88

Timing the latency of TDSProxy was done by subtracting the time that the database

spends processing the query from the roundtrip time for a client query and response.

The roundtrip time was calculated as the query enters and leaves the proxy sever on the

client side only. The database processing time was calculated by timing the query and

response time on the database side.

TDSProxy average processing times

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

select no filter insert no filter select filter insert filter

Query Scenario

T
im

e
(m

s)
/q

u
er

y

Hons08

Netserv

Figure 30: Graph showing the average processing time of TDSProxy

4.2.7 Conclusions

The time taken to process queries seems to be negligible given the default MS SQL

Server 2000 login timeout time is 4 seconds and the default query timeout time is 0

seconds. However, it is predictable that as the SQL injection signature set grows, there

may be an effect due to the filtering process.

4.3 System Implementation Summary

In this chapter, we provided an explanation of the implementation and discussed the

problems encountered. The solution to the problem was developed iteratively. The final

CHAPTER 4 – SYSTEM IMPLEMENTATION

Page 55 of 88

solution was developed in a fully Microsoft environment. Microsoft SQL Server 2000

was configured to listen on port 5555. TDSProxy routed TCP data from port 4444 to

port 5555. Thus, any application making use of TDSProxy to connect to the database

had to connect to port 4444. The port and address settings are maintained in the

configuration file as are the filter settings.

The filter makes use of SQL signatures that are maintained in separate files. There are

black, white, gray and pattern matching lists and these lists may be updated as more

matching signatures are identified. The lists are used by the filter method when

analysing the TDS payload for a SQL injection attack. Only clean queries are sent to the

database. If an attack is detected, an alert is sent out via UDP to the Administrators and

the attack time and query is logged.

The resulting software filters out SQL injection attack queries. The filter process is fast

enough to make TDSProxy seem invisible with the maximum processing time being

about one fortieth of a millisecond per query.

CHAPTER 5 - CONCLUSION

Page 56 of 88

Chapter 5 - Conclusion

5.1 Conclusion

SQL injection takes advantage of application flaws to execute additional queries on a

database when parameters are chained together to create the database query and there is

no parameter input validation. Most web applications are vulnerable to SQL injection or

some form of hacker attack and it is common knowledge that many more vulnerable

applications will be developed. There are many measures that can be implemented to

reduce the chance of an attack. For instance, it is possible to ensure input validation,

check database error log files and reduce the permissions of all application users in the

database itself. However this is tedious and is often not put into practice by many

developers who may need to produce software in a hurry.

With the increase in awareness of SQL injection flaws and the availability of automated

vulnerability scanners, filtering malicious SQL statements seems to be the best solution

in preventing SQL injection. Therefore, the project produced a filtering proxy server to

prevent SQL injection. Ideally, the filtering application should sit on the same machine

as the database. However, the filtering process may have a performance impact such

that the filtering application and the database need to be on different machines.

Using SQL signature filtering as a preventative measure to SQL injection provides real

time protection against SQL injection. TDSProxy is an autonomous application

independent of flaws in the vulnerable application and independent of database

configuration flaws. However, false positives may be allowed through the filter and

false negatives may be blocked by the filter. This is due to the difficulty in creating and

maintaining an exhaustive list of SQL injection signatures despite there being a finite

CHAPTER 5 - CONCLUSION

Page 57 of 88

set of words in the SQL vocabulary. Black, white, gray and pattern matching lists are

maintained in separate files and are used by the filter method when analysing the TDS

packet for a SQL injection attack. However, going back to the principle of least

privilege, by using a white list, it is possible to define what is allowed and thus prevent

invalid signatures.

The design methodology made use of UML in an iterative process along with the

implementation. Thus the development was done in stages, allowing problems to be

tackled in manageable pieces. The final solution was developed iteratively in a fully

Microsoft environment.

Timing the web transaction processing time per query provided useful information on

the impact of the TDSProxy on web interface usage. The filter process is fast enough to

make TDSProxy seem invisible. However, it is predictable that as the SQL injection

signature set grows, there may be an effect due to the filtering process.

SQL injection will be around for a long time and the methods of defence other than

correct input validation coding will only hinder the chances of an attack. Ways to

overcome the obstacles are left up to the creative hacker to discover.

The project poster is available in Appendix A gives a good visual summary of the

project. A code overview is available in Appendix C. All project code, documentation,

references and software used are available on CD in the Rhodes University Computer

Science Department. The CD contents are described in Appendix B.

5.2 Future Work

The system only implemented a skeleton of the possible functionality for this

application. In order to be used commercially, several additions can be made to this

proof of concept project. Some of the additions are outlined below:

• The timing of the filtering process and web transaction processing provided

some interesting results. The order of filtering may have a performance impact

too. This can be investigated by changing the order that filter uses the signatures.

CHAPTER 5 - CONCLUSION

Page 58 of 88

• The project could be extended to handle other databases such as MySQL, Oracle

and Postgres as well as other operating systems.

• A further extension of the project could involve an investigation into the

performance impact of the proxy server on data transfer. One question worth

asking is: “What is the maximum number of connections or number of queries

possible?” [Beynon, Sussman and Saltz, 1999]. This can be investigated by

allowing multiple client to connect to TDSProxy by using threads

• The project could also be extended to work for SSL and allow for secure

connection to the proxy server.

• Another useful implementation could be to filter data coming back from the

database, checking for column names and data types that the user should not be

allowed to see.

• To be a useful intrusion detection system, the filter should be able to find the

attackers. Finding the user or attacker means logging login information for

inspection. The filter would need a timestamp as well as the source and

destination IP address [Finnigan, 2003].

REFERENCES

Page 59 of 88

References

[Acunetix Ltd. 2005] Acunetix Web Vulnerability Scanner – Features [Online].

http://www.acunetix.com/wvs/wvs2manual.pdf

[Last accessed: 07/11/05]

[Anley, C 2002a] Advanced SQL injection [Online]. Available:

http://www.nextgenss.com/papers/advanced_sql_injection.pdf

[Last accessed: 07/11/05]

[Anley, C 2002b] (more) Advanced SQL Injection [Online]. Available:

http://www.nextgenss.com/papers/more_advanced_sql_injecti

on.pdf

[Last accessed: 07/11/05]

[Beynon, M D,

Sussman, A,

and Saltz, J

1999]

Performance impact of proxies in data intensive client-server

applications. ACM Journal: Proceedings of the 13th

international conference on Supercomputing, Rhodes, Greece.

ACM Press, New York. pp: 383 – 390. ISBN:1-58113-164-X.

[Beyond Security Ltd.

2002]

SQL Injection Walkthrough [Online]. Available:

http://www.securiteam.com/securityreviews/5DP0N1P76E.ht

ml [Last accessed: 07/11/05]

[Bruns B, Wheeler B,

Schaal M, Ziglio F et

al. 2005]

TDS Protocol Documentation

[Online]. Available: http://www.freetds.org/tds.html

[Last accessed: 07/11/05]

[Cerrudo, C 2004]

Manipulating Microsoft SQL Server Using SQL Injection

[Online]. Available:

http://www.appsecinc.com/presentations/Manipulating_SQL_

Server_Using_SQL_Injection.pdf [Last accessed: 07/11/05]

[Check Point Software

Technologies Ltd.

2004]

Connectra Web Security Gateway [Online]. Available:

http://www.securehq.com/images/checkpoint/connectra_datas

heet.pdf [Last accessed: 02/10/05]

[Chuvakin, A and

Peikari, C 2004]

Security Warrior, O'Reilly Media Inc., Sebastopol. pp 374-

390

[Davis, L 2005] OSI Stack: OSI Protocol Description [Online]. Available:

http://www.interfacebus.com/Design_OSI_Stack.html

REFERENCES

Page 60 of 88

[Last accessed: 07/11/05]

[Ethereal 2005a] Ethereal [Online]. Available:

http://www.ethereal.com/download.html

[Last accessed: 07/11/05]

[Ethereal 2005b] Supported Capture Media [Online]. Available:

http://www.ethereal.com/media.html

[Last accessed: 07/11/05]

[Finnigan, P 2002] SQL Injection and Oracle, Part One [Online]. Available:

http://www.securityfocus.com/infocus/1644

[Last accessed: 07/11/05]

[Finnigan, P 2003] Detecting SQL Injection in Oracle [Online]. Available:

http://securityfocus.com/infocus/1714

[Last accessed: 07/11/05]

[Fortify Software Inc.

2004]

Fortify product overview [Online]. Available:

http://www.fortifysoftware.com/products/overview.jsp

[Last accessed: 07/11/05]

[FreeTDS 2005] TDS Protocol Documentation [Online]. Available:

http://www.freetds.org/tds.html [Last accessed: 07/11/05]

[Giacobbi, G 2004] The GNU Netcat project [Online]. Available:

http://netcat.sourceforge.net/ [Last accessed: 07/11/05]

[Grossman, J 2004] The Challenges of Automated Web Application Scanning

[Online]. Available:

http://www.blackhat.com/presentations/win-usa-04/bh-win-

04-grossman/bh-win-04-grossman-up.pdf

[Last accessed: 07/11/05]

[Hoglund G and

McGraw G, 2004]

Exploiting software: how to break code.

Addison –Wesley, pp 24, 41, 49, 56, 78 and 149

[Hotchkies, C 2004] Blind SQL Injection Automation Techniques [Online].

Available: http://www.blackhat.com/html/bh-media-

archives/bh-archives-2004.html#USA-2004

[Last accessed: 07/11/05]

[Howard, M and Writing secure code: Practical strategies and techniques for

REFERENCES

Page 61 of 88

LeBlanc, D 2003] secure application coding in a networking world. 2nd Edition,

Microsoft Press, Redmond, Washington, pp 400-411

[Huang, Y, Huang, S,

Lin, T, and Tsai, C

2003]

Web application security assessment by fault injection and

behavior monitoring in Proceedings of the 12th international

conference on World Wide Web, Budapest, Hungary.

SESSION: Data integrity. ACM Press, New York. pp: 148 –

159. ISBN:1-58113-680-3

[Imperva Inc. 2004] SQL injection - glossary [Online]. Available:

http://www.imperva.com/application_defense_center/glossary

/sql_injection.html [Last accessed: 07/11/05]

[Imperva Inc. 2005] SecureSphere™: Dynamic Profiling Firewall™

 [Online]. Available:

http://www.imperva.com/products/securesphere/resources.asp

?show=datasheet [Last accessed: 07/11/05]

[Kavado Inc. 2005] Kavado [Online]. Available:

http://www.kavado.com/pdf/ScanDo_Datasheet.pdf

[Last accessed: 07/11/05]

[Kc, G S, Keromytis, A

D, and Prevelakis V

2003]

Countering code-injection attacks with instruction-set

randomization in Proceedings of the 10th ACM conference on

Computer and communication security. Washington D.C.,

USA. ACM Press, New York. pp. 272 - 280

[Kline, K E 2004] SQL in a Nutshell, 2nd Edition, O'Reilly Media Inc.,

Sebastopol

[Kocak, F 2004] Packet Capture and Analayzer [Online]. Available:

http://www.codeproject.com/csharp/pacanal.asp

[Last accessed: 07/11/05]

[Lawson, L 2005] Introduction to SQL Injection Available:

http://www.securitydocs.com/pdf/3348.PDF

[Last accessed: 07/11/05]

[Linux Journal 2004] Real-world PHP security, vol. 2004, Issue 120 (April 2004)

pp. 1

[Litchfield, D 2001] Web Application Disassembly with ODBC Error Messages

[Online]. Available:

REFERENCES

Page 62 of 88

http://www.blackhat.com/presentations/win-usa-

01/Litchfield/BHWin01Litchfield.doc

[Last accessed: 07/11/05]

[Litchfield, D 2005] Data-mining with SQL Injection and Inference [Online].

Available:

http://www.ngssoftware.com/papers/sqlinference.pdf

[Last accessed: 07/11/05]

[Litwin, P 2005] Stop SQL Injection Attacks Before They Stop You [Online].

Available:

http://msdn.microsoft.com/msdnmag/issues/04/09/SQLInjecti

on/default.aspx [Last accessed: 07/11/05]

[Maor, O and Shulman,

A 2003]

Blind SQL Injection [Online]. Available:

http://www.imperva.com/application_defense_center/white_p

apers/blind_SQL_server_injection.html

[Last accessed: 07/11/05]

[Maor, O and Shulman,

A 2004]

SQL Injection Signatures Evasion [Online]. Available:

http://www.imperva.com/application_defense_center/white_p

apers/sql_injection_signatures_evasion.html

[Last accessed: 07/11/05]

[Microsoft 2003a] Secure Multi-tier Deployment [Online]. Available:

http://www.microsoft.com/technet/prodtechnol/SQL/2000/ma

intain/sp3sec03.mspx [Last accessed: 07/11/05]

[Microsoft 2003b] Checklist: Security best practices [Online]. Available:

http://www.microsoft.com/technet/prodtechnol/SQL/2000/ma

intain/sp3sec04.mspx [Last accessed: 07/11/05]

[Microsoft 2005] Reserved Keywords [Online]. Available:

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/tsqlref/ts_ra-rz_9oj7.asp [Last accessed: 07/11/05]

[Network Chemistry

2005]

Packetyzer - Packet Analyzer for Windows [Online].

Available:

http://www.networkchemistry.com/products/packetyzer/

[Last accessed: 07/11/05]

REFERENCES

Page 63 of 88

[Networks Associates

Technology, Inc. 2005]

McAfee System Protection: McAfee® Entercept® Database

Edition [Online]. Available:

http://www.mcafee.com/us/local_content/datasheets/ds_enterc

ept_dt_edition.pdf [Last accessed: 07/11/05]

[Nummish and Xeron,

2005]

Absinthe [Online]. Available

http://www.0x90.org/releases/absinthe/

[Last accessed: 07/11/05]

[Overstreet, R 2004] Protecting Yourself from SQL Injection Attacks [Online].

Available: http://www.4guysfromrolla.com/webtech/061902-

1.shtml [Last accessed: 07/11/05]

[OWASP (The Open

Web Application

Security Project) 2004]

Top Vulnerabilities in Web Applications [Online]. Available:

http://umn.dl.sourceforge.net/sourceforge/owasp/OWASPTop

Ten2004.pdf [Last accessed: 07/11/05]

[Phrack 2005] Phrack [Online]. Available:

http://www.phrack.org/show.php?p=54

[Last accessed: 07/11/05]

[Postel, J 2004] RFC 1700 - Assigned Numbers [Online]. Available

http://www.faqs.org/ftp/rfc/pdf/rfc1700.txt.pdf

[Last accessed: 07/11/05]

[Ristic, I 2005] ModSecurity for Java [Online]. Available:

http://www.modsecurity.org/projects/modsecurity/java/

[Last accessed: 07/11/05]

[Rob, P and Coronel, C

2002]

Database Systems: Design, Implementation, & Management.

Fifth Edition. Course Technology. Boston Massachusetts,

02210

[Seclutions, A G 2003] AirLock - application security gateway [Online]. Available:

http://www.seclutions.com/en/downloads/AirLock_Overview

_Nov_2003.pdf [Last accessed: 07/11/05]

[SoftLogica LLC.

2005]

Web Application testing (WAPT) Version 3 [Online].

Available: http://www.loadtestingtool.com/

[Last accessed: 07/11/05]

[Sommarskog, E 2005] The Curse and Blessings of Dynamic SQL [Online].Available:

 http://www.sommarskog.se/dynamic_sql.html

REFERENCES

Page 64 of 88

[Last accessed: 07/11/05]

[Spett, K 2002] SQL Injection Are Your Web Applications Vulnerable?

[Online].Available:

http://www.spidynamics.com/whitepapers/WhitepaperSQLInj

ection.pdf [Last accessed: 07/11/05]

[Spolsky, J 2000] The Joel Test: 12 Steps to Better Code [Online]. Available:

http://www.joelonsoftware.com/articles/fog0000000043.html

[Last accessed: 07/11/05]

[Vicomsoft Ltd. 2003] Firewall White Paper: What is the best firewall for me, and

how can it improve Internet security? [Online]. Available:

http://www.firewall-

software.com/firewall_faqs/firewall_network_models.html

[Last accessed: 07/11/05]

[WebCohort, Inc.

2004]

Only 10% of Web Applications are Secured Against Common

Hacking Techniques [Online]. Available:

http://www.imperva.com/company/news/2004-feb-02.html

[Last accessed: 07/11/05]

[Weitz, E 2005] The Regex Coach - interactive regular expressions [Online].

Available: http://www.weitz.de/regex-coach/

[Last accessed: 07/11/05]

[WhiteHat Security,

Inc. 2005]

WhiteHat Sentinel [Online]. Available:

http://www.whitehatsec.com/services.shtml

[Last accessed: 07/11/05]

Page 65 of 88

Appendix A – Project Poster

APPENDIX A – PROJECT POSTER

Page 66 of 88

Figure A.1: Project Poster

Page 67 of 88

Appendix B – CD Contents

APPENDIX B – CD CONTENTS

Page 68 of 88

Figure B.1: Contents of project CD

Page 69 of 88

Appendix C – Code overview

APPENDIX C – CODE OVERVIEW

Page 70 of 88

Figure C.1: TCPSock Class

APPENDIX C – CODE OVERVIEW

Page 71 of 88

Figure C.2: ProxyBackend Class

Figure C.3: Logger Class

APPENDIX C – CODE OVERVIEW

Page 72 of 88

Figure C.4: Filter Cass

APPENDIX C – CODE OVERVIEW

Page 73 of 88

Figure C. 5: UDPServer Class

Page 74 of 88

Appendix D – Timing tests

APPENDIX D – TIMING TESTS

Page 75 of 88

D.1 Local host tests

The following tests were done using a tool called web application testing (WAPT)

version 3 [SoftLogica LLC., 2005]. The local host tests were done on hons08 where

TDSProxy and the database were being hosted.

D.1.1 Select statement, direct to the database

--- Basic statistics ---

Page name: hons08 select page – direct to database

Min web transaction (without images): 3.56

Avg web transaction (without images): 4.05

Max web transaction (without images): 10.41

--- Network traffic details ---

Total bytes sent: 384891

Total bytes received: 601067

Average server bandwidth (Kbits/sec): 1076.37

Average user bandwidth (Kbits/sec): 1076.37

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P

1 1000 7328 136.46 7.33

Total work time: 7328

Total pages made: 1000

Total average pages per second: 136.46

--- HTTP response codes details ---

Code Count

200 1000

APPENDIX D – TIMING TESTS

Page 76 of 88

Figure D.1: Graph showing hons08 select page – direct to database

D.1.2 Insert statement, direct to the database

--- Basic statistics ---

Page name: hons08 insert page – direct to database

Min web transaction (without images): 4.03

Avg web transaction (without images): 4.85

Max web transaction (without images): 10.33

--- Network traffic details ---

Total bytes sent: 429891

Total bytes received: 628067

Average server bandwidth (Kbits/sec): 1014.46

Average user bandwidth (Kbits/sec): 1014.46

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P

1 1000 8343 119.86 8.34

Total work time: 8343

Total pages made: 1000

Total average pages per second: 119.86

APPENDIX D – TIMING TESTS

Page 77 of 88

--- HTTP response codes details ---

Code Count

200 1000

Figure D.2: Graph showing hons08 insert page – direct to database

D.1.3 Select statement, through TDSProxy without filtering

--- Basic statistics ---

Page name: hons08 select page, TDSProxy, no filter

Min web transaction (without images): 4.05

Avg web transaction (without images): 4.42

Max web transaction (without images): 42.74

--- Network traffic details ---

Total bytes sent: 384891

Total bytes received: 601067

Average server bandwidth (Kbits/sec): 963.32

Average user bandwidth (Kbits/sec): 963.32

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P

1 1000 8188 122.13 8.19

APPENDIX D – TIMING TESTS

Page 78 of 88

Total work time: 8188

Total pages made: 1000

Total average pages per second: 122.13

--- HTTP response codes details ---

Code Count

200 1000

Figure D.3: Graph showing hons08 select page, TDSProxy, no filter

D.1.4 Select statement, through TDSProxy with filtering

--- Basic statistics ---

Page name: hons08 select page, TDSProxy, filter

Min web transaction (without images): 24.33

Avg web transaction (without images): 25.33

Max web transaction (without images): 88.51

--- Network traffic details ---

Total bytes sent: 384891

Total bytes received: 601067

Average server bandwidth (Kbits/sec): 271.41

Average user bandwidth (Kbits/sec): 271.41

--- Summary times ---

APPENDIX D – TIMING TESTS

Page 79 of 88

Virtual Users statistics:

User Pages Time AP/S AT/P

1 1000 29062 34.41 29.06

Total work time: 29062

Total pages made: 1000

Total average pages per second: 34.41

--- HTTP response codes details ---

Code Count

200 1000

Figure D.4: Graph showing hons08 select page, TDSProxy, filter

D.1.5 Insert statement, through TDSProxy without filtering

--- Basic statistics ---

Page name: hons08 insert page - TDSProxy, no filter

Min web transaction (without images): 4.57

Avg web transaction (without images): 5.29

Max web transaction (without images): 41.86

--- Network traffic details ---

Total bytes sent: 429891

Total bytes received: 628067

APPENDIX D – TIMING TESTS

Page 80 of 88

Average server bandwidth (Kbits/sec): 908.90

Average user bandwidth (Kbits/sec): 908.90

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P

1 1000 9312 107.39 9.31

Total work time: 9312

Total pages made: 1000

Total average pages per second: 107.39

--- HTTP response codes details ---

Code Count

200 1000

Figure D.5: Graph showing hons08 insert page - TDSProxy, no filter

D.1.6 Insert statement, through TDSProxy with filtering

--- Basic statistics ---

Page name: hons08 insert page – TDSProxy, filter

Min web transaction (without images): 24.84

Avg web transaction (without images): 26.30

Max web transaction (without images): 89.76

APPENDIX D – TIMING TESTS

Page 81 of 88

--- Network traffic details ---

Total bytes sent: 429891

Total bytes received: 628067

Average server bandwidth (Kbits/sec): 281.53

Average user bandwidth (Kbits/sec): 281.53

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P

1 1000 30063 33.26 30.06

Total work time: 30063

Total pages made: 1000

Total average pages per second: 33.26

--- HTTP response codes details ---

Code Count

200 1000

Figure D.6: Graph showing hons08 insert page – TDSProxy, filter

D.2 Netserv tests

APPENDIX D – TIMING TESTS

Page 82 of 88

Netserv is the computor on which the following tests were run. TDSProxy and the

database were on hons08, a remote machine.

D.2.1 Select statement, direct to the database

--- Basic statistics ---

Page name: netserv select page – direct to database

Min web transaction (without images): 4.20

Avg web transaction (without images): 6.42

Max web transaction (without images): 17.57

--- Network traffic details ---

Total bytes sent: 402881

Total bytes received: 601067

Average server bandwidth (Kbits/sec): 553.90

Average user bandwidth (Kbits/sec): 553.90

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P

1 1000 14500 68.97 14.50

Total work time: 14500

Total pages made: 1000

Total average pages per second: 68.97

--- HTTP response codes details ---

Code Count

200 1000

APPENDIX D – TIMING TESTS

Page 83 of 88

Figure D.7: Graph showing netserv select page – direct to database

D.2.2 Insert statement, direct to the database

--- Basic statistics ---

Page name: netserv insert page – direct to database

Min web transaction (without images): 4.61

Avg web transaction (without images): 7.24

Max web transaction (without images): 11.36

--- Network traffic details ---

Total bytes sent: 459881

Total bytes received: 636067

Average server bandwidth (Kbits/sec): 572.56

Average user bandwidth (Kbits/sec): 572.56

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P

1 1000 15313 65.30 15.31

Total work time: 15313

Total pages made: 1000

Total average pages per second: 65.30

APPENDIX D – TIMING TESTS

Page 84 of 88

--- HTTP response codes details ---

Code Count

200 1000

Figure D.8: Graph showing netserv insert page – direct to database

D.2.3 Select statement, through TDSProxy without filtering

--- Basic statistics ---

Page name: netserv select page, TDSProxy, no filter

Min web transaction (without images): 4.79

Avg web transaction (without images): 6.70

Max web transaction (without images): 37.60

--- Network traffic details ---

Total bytes sent: 402881

Total bytes received: 601067

Average server bandwidth (Kbits/sec): 553.33

Average user bandwidth (Kbits/sec): 553.33

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P

1 1000 14515 68.89 14.52

APPENDIX D – TIMING TESTS

Page 85 of 88

Total work time: 14515

Total pages made: 1000

Total average pages per second: 68.89

--- HTTP response codes details ---

Code Count

200 1000

Figure D.9: Graph showing netserv select page, TDSProxy, no filter

D.2.4 Select statement, through TDSProxy with filtering

--- Basic statistics ---

Page name: netserv select page, TDSProxy, filter

Min web transaction (without images): 24.75

Avg web transaction (without images): 27.46

Max web transaction (without images): 100.62

--- Network traffic details ---

Total bytes sent: 402881

Total bytes received: 601067

Average server bandwidth (Kbits/sec): 227.14

Average user bandwidth (Kbits/sec): 227.14

--- Summary times ---

Virtual Users statistics:

APPENDIX D – TIMING TESTS

Page 86 of 88

User Pages Time AP/S AT/P

1 1000 35360 28.28 35.36

Total work time: 35360

Total pages made: 1000

Total average pages per second: 28.28

--- HTTP response codes details ---

Code Count

200 1000

Figure D.10: Graph showing netserv select page, TDSProxy, filter

D.2.5 Insert statement, through TDSProxy without filtering

--- Basic statistics ---

Page name: netserv insert page, TDSProxy, no filter

Min web transaction (without images): 5.96

Avg web transaction (without images): 8.02

Max web transaction (without images): 39.14

--- Network traffic details ---

Total bytes sent: 459881

Total bytes received: 636067

Average server bandwidth (Kbits/sec): 547.43

APPENDIX D – TIMING TESTS

Page 87 of 88

Average user bandwidth (Kbits/sec): 547.43

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P

1 1000 16016 62.44 16.02

Total work time: 16016

Total pages made: 1000

Total average pages per second: 62.44

--- HTTP response codes details ---

Code Count

200 1000

Figure D.11: Graph showing netserv insert page, TDSProxy, no filter

D.2.6 Insert statement, through TDSProxy with filtering

--- Basic statistics ---

Page name: netserv insert page TDSProxy, filter

Min web transaction (without images): 25.52

Avg web transaction (without images): 28.43

Max web transaction (without images): 88.65

Page 88 of 88

--- Network traffic details ---

Total bytes sent: 459881

Total bytes received: 636067

Average server bandwidth (Kbits/sec): 241.35

Average user bandwidth (Kbits/sec): 241.35

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P

1 1000 36328 27.53 36.33

Total work time: 36328

Total pages made: 1000

Total average pages per second: 27.53

--- HTTP response codes details ---

Code Count

200 1000

Figure D.12: Graph showing netserv insert page TDSProxy, filter

