

Validation of Pseudo Random Number Generators

through Graphical Analysis

Submitted in partial fulfilment

of the requirements of the degree

Bachelor of Science (Honours)

in the Department of Computer Science

at Rhodes University

Andrew Cronwright

7th November 2005

 2

Acknowledgements

I would like to thank my supervisor, Barry Irwin, for his support and enthusiasm

throughout my project.

I must acknowledge the financial and technical support of this project of

Telkom SA, Business Connexion, Comverse SA, and Verso Technologies through

the Telkom Centre of Excellence at Rhodes University.

 3

Abstract
In a many computer applications, pseudo random number generators (PRNGs) are

used, their uses range from producing unique keys for security purposes to creating

random samples for physics experiments. The use of a poor PRNG in these

applications can lead to highly undesired results and/or consequences. This project

will highlight how one can go about visually testing a PRNG, or any suspect random

number sequence, to decide whether it is suitable or not. It will describe a graphical

method of testing a PRNG which can draw attention to problems within a PRNG

using methods that can be faster and easier than statistical testing. It will draw specific

attention to the Transmission Control Protocol (TCP) Initial Sequence Number

generator and the issues surrounding its level of randomness and need for randomness

in terms of security.

 4

Table of Contents

List of Figures ..6
Chapter 1 Introduction..7

1.1. Pseudo Random Number Generators defined..7
1.2. Overview of this report ..9

Chapter 2 Problem Domain and Methodology...11
2.1. True random numbers ..11
2.2. Pseudo Random Numbers..12
2.3. Current PRNGs ..13
2.4. Qualities a good PRNG must possess..15
2.5. Selecting a Seed ...17
2.6. Testing a PRNG ...17
2.7. Summary ..21

Chapter 3 Uses and Testing of PRNGs ..22
3.1. Applications of PRNG ...22

3.1.1. Cryptography ...22
3.1.2. Network Security ...23
3.1.3. Monte Carlo/Statistical (physical) simulations....................................27

3.2. Testing of a PRNG...28
3.3. Summary ..31

Chapter 4 System Design and Implementation ..32
4.1. Randomness in three dimensions...32
4.2. Colour, an extra dimension ..36
4.3. Construction and Testing of a hardware RNG...37
4.4. Design features / considerations ..39
4.5. Implementation details...40
4.6. Application...40
4.7. Summary ..42

Chapter 5 Results..43
5.1. Operating Systems ...43

5.1.1. Windows 95 ...43
5.1.2. Windows 98 ...45
5.1.3. Windows 98 Second Edition (SE) ...46
5.1.4. Windows ME ...46
5.1.5. Windows 2003 Server..48
5.1.6. Windows XP ..49
5.1.7. Cisco ..54
5.1.8. Fedora Core 3...56
5.1.9. FreeBSD...57
5.1.10. Solaris ..59
5.1.11. DSL..61
5.1.12. VoIP Phone ..62

5.2. Hardware RNG Results..63
5.3. Summary ..67

Chapter 6 Conclusion ...69
6.1. Summary of Findings...69

 5

6.2. Future Work ...70
References..71
Appendix A..74
Appendix B ..75

 6

List of Figures

Figure 1 – IBM’s RANDU ..13
Figure 2 – Example of ISN attack..24
Figure 3 – Monte Carlo Estimate of Pi ..28
Figure 4 – Phase Space control image ...34
Figure 5 – Lattice Space control image ...35
Figure 6 – Noise Sphere control image..35
Figure 7 – HSV colour mapping..36
Figure 8 – Noise Sphere control image with colour ..36
Figure 9 – Voltage fluctuations on a resistor ...38
Figure 10 - Circuit Diagram of hardware RNG...39
Figure 11 – Class diagram ...40
Figure 12 - Application..42
Figure 13 – Windows 95 Phase Space...44
Figure 14 – Windows 95 Lattice Space ...45
Figure 15 - Windows 98 Phase Space..46
Figure 16 - Windows ME Phase Space..47
Figure 17 - Windows ME Noise Sphere ..47
Figure 18 - Windows 2003 Server Phase Space ..48
Figure 19 - Windows 2003 Server Noise Sphere...48
Figure 20 - Windows XP original Phase Space ...49
Figure 21 - Windows XP original Noise Sphere ...50
Figure 22 - Windows XP SP1 Phase Space ...50
Figure 23 - Windows XP SP1 Noise Sphere ...51
Figure 24 - Windows XP SP2 Phase Space ...52
Figure 25 - Windows XP SP2 Noise Sphere ...52
Figure 26 - Window XP fully patched, Phase Space ...53
Figure 27 - Window XP fully patched, Noise Sphere ...53
Figure 28 – Cisco Phase Space ..54
Figure 29 - Fedora Core 3 Phase Space ...56
Figure 30 - Fedora Core 3 Phase Space ...56
Figure 31 - FreeBSD 4.1 Phase Space ...57
Figure 32 - FreeBSD 4.1 Lattice Space ...57
Figure 33 - FreeBSD 4.1 Noise Sphere ...58
Figure 34 - Solaris 5 Phase Space..59
Figure 35 - Solaris 9 Phase Space..60
Figure 36 - Solaris 9 Noise Sphere ..60
Figure 37 - dslam Lattice Space...61
Figure 38 - dslam Noise Sphere...61
Figure 39 - VoIP phone Phase Space...62
Figure 40 – Hardware RNG Phase Space ..65
Figure 41 – Hardware RNG Phase Space ..66
Figure 42 – Hardware RNG Lattice Space ..66
Figure 43 – Hardware RNG Noise Sphere ..67

 7

Chapter 1

Introduction

1.1. Pseudo Random Number Generators defined

The understanding of random numbers and how a number is defined to be random is

essential to the understanding of this paper. In a statistical sense, there is no such

thing a single random number. This is because it is impossible to perform any

statistical tests on a single number. Instead it is better to define a sequence of numbers

to be random, or speak of a number chosen from a random sequence of numbers.

[Knuth]

A random number can be defined as a number from an independent set of numbers

which is the output of a natural event and has a very high degree of uncertainty. The

next number generated is completely independent from all previous numbers

generated and is selected purely by chance. The set of numbers produced will have a

given distribution [Knuth]. Here, it is assumed that all random sequences have a

uniform distribution between zero, and one, excluding which is written as [0,1)

mathematically. All possible numbers in this range has an equal probability of being

selected. Randomness is easier understood as the outcome of some natural process or

event. A true random number generator has an infinite period and given the same

input parameters, will never produce the same output.

Secondly, a pseudo random number can be defined as a number from a set of

numbers, which is the output of a mathematical function, which tries to “mimic” a

true random number. This therefore makes them completely deterministic [Jansson].

Since most pseudo random number generators (PRNGs) are of the form of a recursive

mathematical functions (as is discussed in Chapter 2) each new random number

generated is completely dependent on one or more previous numbers in the sequence.

This contradicts one of the assumptions that every number in a random sequence is

 8

independent of all others. However, a well designed PRNG overcomes this shortfall

by ensuring that the sequence produced “hides” this dependence. It does this by the

chaotic nature of the generator and is discussed later in Chapter 2. Most PRNG’s have

a set period and given the same input parameters, will always produce the same

sequence of numbers.

Pseudo random numbers are used in a wide variety of applications. In most cases

where random numbers are needed in applications, such as security application, they

are provided by a piece of software known as a pseudo random number generator, or

PRNG. There are numerous implementations of PRNG’s that are being used today,

but some of them produce numbers are not statistically random or do not meet the

needs of the parent application. This for example, can cause security applications,

which rely on a good PRNG, to be compromised [Schneier]. Aside from security

applications, if the PRNG is not capable of producing suitable random numbers, then

this can result in poor performance of the parent application. Poor PRNG’s have been

an issue since the release of IBM’s RANDU generator in the early 1960’s. In its day,

the RANDU generator was the PRNG of choice. Upon further investigation, this

PRNG proved to be heavily flawed. It was designed to be computationally efficient

and as a result RANDU was a flawed generator which had very non-random

characteristics [Entacher 2000].

Although statistical tests produce conclusive results that a sequence of numbers is, or

is not random, they however do not give any idea as to how the sequence of numbers

is, or is not random. Statistical testing is often a very specialised field in which a

person needs to have a statistical background in order to understand why, or how a

test is failing and to interpret the results. This is why a graphical method for viewing a

sequence of numbers, described in Chapter 2, that may or may not be random, can be

a quick and powerful method for testing whether a sequence of numbers is random.

However, one must not completely discard the need for statistical testing.

This project’s main focus is to discus and highlight the importance of PRNGs in

computer communication. The Transmission Control Protocol (TCP) uses a unique

identifying number, known as the Initial Sequence Number (ISN), which is selected at

the beginning of every new TCP connection and identifies a single unique packet

 9

within in a series of packets making up a TCP connection [RFC793]. The ISN has,

and can be an area of focus of a would be attacker due to the fact that ISNs have been

easily predictable. If the next ISN can be predicted, an attacker can forge a packet and

cause the receiver to either drop the TCP connection, or possibly take control of the

connection and inject any data into a packet. Hijacking a connection is however fairly

trivial if the hacker is directly in between, or has access to the traffic between the two

communicating parties and can “sniff” the packets. If this can happen, the hijacker

can immediately find out what the sequence number is and forge the packet.

This project will deliver a tool together with a method with which anyone can use

(without extensive background knowledge in Statistics) to graphically evaluate

sequences of numbers for patterns and/or randomness. Specific attention will be paid

to common TCP/IP stacks and will result in an evaluation of these stacks using

standard statistical tests and the tools developed in this project.

1.2. Overview of this report

Chapter 2 deals with and explains the concept of randomness. How randomness is

obtained in a deterministic environment such as the computer. Common pseudo

random number generators’ (PRNG) methods are explained together with an

introduction to the mathematics behind them. A graphical method of testing [pseudo]

random sequences will be introduced and explained.

Chapter 3 shows and explains some of the areas where pseudo random number

generators’ are critical and what the effects are of using a poor PRNG are. Statistical

tests used to test for randomness are explained as well.

Chapter 4 shows how and applies chapters two and three and discusses how

randomness can be identified graphically. A design for a hardware random number

generator is discussed and implemented. This chapter also discusses the design and

implementation of the application developed for this paper. It shows the class diagram

together with some implementation details. The application’s GUI is also briefly

discussed

 10

Chapter 5 discusses the initial sequence numbers captured and graphically analyses

them. The hardware random number generator’s results are shown and tested together

with some common PRNG’s in use.

Chapter 6 concludes this paper with an explanation of the findings and concluding

comments together with possible extensions to the work.

 11

Chapter 2

Problem Domain and Methodology

2.1. True random numbers

The need for true random numbers is needed in many applications, this has resulted in

specialized hardware being built to produce a sequence of true random numbers

instead of using a software method of producing random like number sequences.

There are many natural occurring events that exhibit true random behaviour. The

world of quantum physics is characterized by purely random events as well as natural

decay of radioactive material are just two examples of many, truly random events.

These processes, although very good sources of random data, are not practical for

many computing needs. There are however more practical ways of generating true

random data sequences.

 One such method is by allowing a current to flow thought a resistor. Thermal

agitation of free electrons causes small voltage fluctuations. It is this random noise

that circuit designers try to minimise as much as possible [Ghausi]. If the amplitude

of the voltage fluctuations across the resistor are made large enough to use practically,

a true random number generator could be constructed [Connor]. This can be used,

together with a comparator and a microprocessor to feed a sequence of “random” bits

into the PC via the COM port. This is explained in detail in Chapter 4. This sequence

of bits will of course have to be tested statistically to make sure that it does actually

exhibit random properties. Another possible way to generate random data is to

connect an antenna to an amplifier and measure the noise picked up. This is very

similar to measuring the noise from a resistor, except that the sequence collected will

have to be analyzed using Fourier analysis to check that there are no dominating

frequencies in the data. This does however have its drawbacks, if the antenna is

placed next to any device emitting an electro-magnetic field (which all electronic

devices do), the data collected will be skewed and hence non-random. To try and

reduce this effect, one could pass the random bits through a hashing function (MD5 or

 12

SHA). Summing up all that has been said above; if a set of uniformly distributed

numbers is selected in a truly random manner, then each possible number has an equal

probability of being selected.

2.2. Pseudo Random Numbers

Obtaining random numbers from a physical source can often be impractical in many

applications such as portable web applications. This led to the development of a

mathematical method to create a sequence of numbers that could mimic true random

numbers. Because a mathematical source is not a true source of random numbers, it is

called a pseudo random number. This is due to the mathematical function being

completely deterministic and hence, non-random. In the 1940’s von Neuman

developed the first mathematical algorithm to create random numbers. This was

known as the middle-square method, and while it could produce seemingly random

number sequences, it quickly proved to be a very poor source of pseudo random

numbers. These methods of producing pseudo random numbers are known as pseudo

random number generators or PRNG for short.

A key feature of a PRNG is that it should be chaotic. Even though they are completely

deterministic mathematical functions, their output must be very erratic and non-

predictable to an onlooker. Chaitin [Chaitin] and Kolmogorov have shown that to

produce a random sequence by means of a computer program, then the program has to

be approximately the same length as the random sequence itself. This therefore leads

to the fact that a true random sequence can never be produced by a computer program.

This is because a true random sequence of numbers can be infinite in length and never

repeat themselves after a set period. PRNGs however do begin to repeat themselves

after a set period which leads to the fact that infinite space is needed if one wants a

computer program to produce a true random data sequence.

Hardware random number generators are commercially available which in some

applications are essential. But in many applications issues due to availability,

performance and especially portability, make the use of a hardware random number

generator an impractical option. PRNGs also have the defect that in a set of uniformly

distributed numbers selected by a PRNG, as is discussed above, each possible number

 13

does not have an equal probability of being selected. This is due to the process of

generating pseudo random numbers is flawed by the method of using the previous

result in generating the next number. Hence giving rise to its deterministic nature.

2.3. Current PRNGs

The first reliable PRNG algorithm was proposed by D. H. Lehmer in 1949, called the

Linear Congruential Generator (or Linear Congruential Method, LCM). This method

has been one of the most well known and widely used methods for generating random

sequences. However, this method is not without flaws. It is well know that the

sequence generated forms a lattice structure in 3-space. 3-space are three sets of

coordinates (3-tuple) plotted against three sets of axis. This concept can be extended

to 4,5… n-space. One of the most famous poor PRNG’s was IBM’s RANDU which

did not have a full period and it had some extremely non-random characteristics

[Entacher 1998]. Knuth described it as ``really horrible''. [Knuth pg. 173]

Figure 1 shows what one of the problems with this PRNG was. All points fall onto a

finite number of planes, which has been a problem of many subsequent PRNGs. This

is a problem because a random sequence is supposed to be evenly distributed over a

defined interval. Figure 1 clearly shows that the sequence is not evenly distributed

over the space it lies in.

Figure 1 – IBM’s RANDU

 14

 “It is well-known that all linear congruent generators (LGC) suffer from the inherent

flaw that, in 3-space for example, the points (Zi, Zi+1, Zi+2), (Zi+1, Zi+2, Zi+3), (Zi+2, Zi+3,

Zi+3) all fall on a finite – and possibly small – number of parallel (hyper)planes.”

[Park pg. 1197]. The LCG is of the form of a recursive method and is as follows:

 where m is the modulus; a is the multiplier; c is the increment and X0 is the

starting value, or seed. It has also been shown that it is possible, by observing some of

the output from an LCG, to recover all the parameters of an LCG in polynomial time.

This makes an LCG PRNG unsuitable for any security applications [Bellare].

If a, c and m are chosen correctly, it is possible for the generator to have a maximum

period of length m [Knuth]. Many other types of PRNGs are based on the LCM as

will be shown.

Lagged Fibonacci Generators

 Where, ⊕ stands short for one of the binary operations + (addition), -

(subtraction), x (multiply), or the exclusive-or operation (XOR)

This is essentially the same as the LCG except that it has been extended to deal with a

longer “lag”, different types of operators and also more terms.

Shift Register Generators

 ⊕ is the XOR function.

A very popular shift register generator is the Mersenne Twister, developed in 1997 by

Makota Matsumoto and Takuji Nishimura from Keio University, this algorithm

produces a sequence of 219937 – 1 numbers and has 623-dimensional equidistribution

Xi = Xi-p ⊕ Xi-q

R250 generator uses: Xi = Xi-250 . Xi-103

Xi = (a1Xi-1 + … + arXi-r) mod m or

 Xi = (Xi-r ⊕ Xi-s) mod m

xn+1 = (a.xn + c) mod m

 15

(compared to the 5-dimensional equidistribution of LCM generators). The name,

Mersenne Twister, is actually derived from the fact that it has a Mersenne-prime

period. A Mersenne-prime is a prime number defined as (2n – 1). This generator is not

suitable for security applications because it is possible to analyze the output and

recognize the numbers as being non-random, or reconstruct the internal state of the

PRNG. The developers of this algorithm do however advise that a secure hashing

function be used with the output or a simple linear transformation to help get around

this issue. It is, however, a very good PRNG for other applications such as Monte

Carlo simulations due to its good statistical properties. This PRNG is fast becoming

the PRNG of choice for such application. [Matsumoto]

As stated earlier, all numbers produced by a PRNG are dependent on previous

numbers produced, hence the fact that they are deterministic. The LCM and similar

type PRNGs (attempt to) hide this shortfall by using the mod operator. If one obtained

a number from a pseudo random sequence and also knew the inner workings of one of

these generators, it would still be almost impossible to calculate previous numbers in

the sequence. This is because the mod operator disregards some of the seeding value

which results in the chaotic nature of the PRNG.

For example given a seed value, xn = 1234, a = 105, c = 0, and m = 106. By using the

LCM method: xn+1 = (a.xn + c) mod m, we are left with a result of 400 000. As one

can see, we are left with a result that has “lost” some of its data. This is the reason

why most PRNG’s either use the mod operator, or one of the binary logic operators.

There are of course brute force methods to recover the seed [Ferguson], but with a

good choice of seed, a, c and m values, this task can be made tedious. It is this feature

that makes PRNG’s chaotic.

2.4. Qualities a good PRNG must possess

A good PRNG can be designed and built following a few simple guide lines. This

however does not make the actual task of designed such an algorithm a menial task.

These six characteristics are as follows:

• Since processing power is not limited to the extent as it was a few

decades ago, PRNG algorithms must still be short and efficient. This

 16

will allow pseudo random numbers to be generated in only a few clock

cycles to allow the processor to continue with the main calling function

or program [Jansson, Atreya].

• Since PRNG’s are of the form of a mathematical function, it is noted

that they will, at some stage, begin to repeat themselves [Park]. It is

this period of a PRNG that must be as long as possible [Jansson,

Atreya].

• There are statistical tests in use that can test the possibility of

randomness with high levels of accuracy. The sequence produced from

a PRNG should be checked against these tests, and pass them

[Jansson].

• By analysing the outputs of a PRNG, it should not be possible to

predict the next number that will be generated [Atreya].

• A random number sequence, in its binary representation, must have, on

average, an equal amount of 1’s and 0’s. Furthermore, there must be no

noticeable patterns in the bit string. [Atreya].

• A PRNG must be seeded with a value, and given the same value, the

same sequence of numbers must be produced (this is especially

important for Monte Carlo simulations discussed later). For systems

where the PRNG must behave in a more random manner, the seed

must not be known or must not be able to be calculated. In this aspect,

it is important that the seed contain a high level on entropy. “Entropy is

the measure of uncertainty” … “The more entropy we have in an

event, the more random the event is expected to be. Keys used for

encryption are expected to be extremely random in nature and thus

have high entropy levels” [Atreya pg. 5]. This is why many of the

cryptographic PRNGs rely on many techniques to create a seed value

from known random events on a computer system (interrupts, key

presses, etc.).

 17

2.5. Selecting a Seed

Selecting a seed number for a PRNG can be a very important process in the correct

operation of a PRNG. In some applications it is acceptable to use a predefined seeding

value or, for example the time of day. In security applications, this method of seeding

a PRNG is not so simple. If the seeding value can be discovered, the entire security of

an application can be broken [Ferguson]. A good seeding value is one which can not

be calculated or discovered, the only possible way a secure seeding value should be

able to be discovered, is by using a brute force approach. Since the seeding value is

often a 32 bit integer, this makes a brute force approach a tedious affair, if the

generator has a long period. Also, if the PRNG is given a new seed value at regular

intervals, this can increase the security many fold [Atreya].

But how is a good seeding value chosen? A good secure seed should contain a high

degree of entropy. This means that the seed should essentially be a true random

number. This can prove to be a difficult affair for a computer. But since a computer is

exposed to a “random” external environment (a lot of unpredictability, or entropy

exists in the environment), in the form of a network, a user etc., creating a true

random seed can possibly be performed. Certain PRNGs have what is known as an

entropy pool. This is essentially a program that monitors these random, external

sources and pools the data. When a seed is needed, the PRNG obtains one from the

entropy pool. The external sources can be:

1) The time intervals between keystroke of the user.

2) Time intervals between network traffic received.

3) The sound card can be used as a source of entropy.

These are just a few of the possible sources; the more of these sources used

concurrently, the more entropy the seed will contain [Kelsey].

2.6. Testing a PRNG

The need for testing a PRNG makes it possible to be able to conclusively say that a

specific PRNG is good or bad in terms of cryptographic strength and / or statistical

strength. Many statistical tests have been developed to test sequences of random

numbers. One of the most useful methods is the Chi-square test of independence

 18

[Knuth]. The Chi-square test can be used to test the dependence of a given sequence

of numbers. This is especially important in this case as random numbers, by

definition, are supposed to be completely independent. Thus, if the Chi-square test

returns a result saying that a given sequence of numbers is dependent, one can

confidently say that the sequence is not random.

The spectral test, formulated by Coveyou and MacPherson (1967), is probably one of

the best and well known tests for LCM PRNGs. The pseudorandom sequences

produced by these generators, when plotted in 3-space using (Zi, Zi+1, Zi+2), (Zi+1, Zi+2,

Zi+3), (Zi+2, Zi+3, Zi+3)… as coordinates for the points, all fall on a finite number of

parallel hyperplanes. The spectral test finds the maximal distance ds between adjacent

hyperplanes. This method of viewing sequences has consequently been implemented

in the visualisation tool developed for this project. This test can only be applied to

LCM generators and thus provides no direct comparison to any other PRNG using

other techniques. Knuth describes this test as being especially significant because all

known good LCM PRNGs pass it, but even more significant because all known bad

LCM PRNGs fail the test [Golder].

This is why statistical tests must be used to test the output of various PRNG so that a

direct comparison can be made. The National Institute of Science and Technology

(NIST) provide a statistical test suite for testing PRNG for cryptographic applications.

This test suite runs various, intensive tests, on the output of PRNG, in bit array form.

A full description of the NIST test suite is discussed later in Chapter 3.

The human eye is the most advanced pattern recognition “device”. It is therefore

obvious to use a method to plot pseudo random data on a set of axis. If one knows

what a good known data source looks like, then this can then be used as a reference

for other pseudo-random numbers in question [Chambers]. There are three such

methods that will be implemented to plot random/pseudo-random data. One such

method is the one that Michael Zalewski used in his paper titled “Strange Attractors

and TCP/IP Sequence Number Analysis”. This method transforms 1-dimensional data

sequences into 3-dimensional data to be visually analysed:

 19

Equation 1 – Phase Space

This technique is known as delayed coordinates and can be explained as a comb being

passed through a set of numbers to pick out, or identify, any patterns in the data. This

can be extended to as many dimensions as one likes also known as n-dimensional

space. Three dimensions are used so that it is easy to plot on set of three axes. An

extra dimension is possible in the form of displaying time data. This will show how

the sequence is being generated and whether there is some pattern in the generation

process. Also, by modifying the lag it is possible to find dependencies in the data that

is not immediately obvious [Hoglund].

Another very similar method as the one above is to check how dependent a number in

a sequence is from its predecessor [Bowman].

Equation 2 – Lattice Space

This can, like the above method, be extended to as many dimension as one likes

[Atkinson]. Plotting sequences using this method allows one to visualise lattice

structures, if there are any, in the sequence. Lattice structures will be a result of any

dependencies in the data. If the numbers in the sequence are completely independent

of each other, then one can expect all the points to lie in no apparent order in a three

dimensional cube. The above methods have all been plotting numbers in Cartesian

coordinates. Cartesian coordinates is a coordinate system in which each axis in

perpendicular to each other.

If s[n] is a set of random numbers and n represents the nth random number in
s, then the transformation to 3-space is as follows.

X[n] = s[n]
Y[n] = s[n-1]
Z[n] = s[n-2]

If s[n] is a set of random numbers and n represents the nth random number in
s, then the transformation to 3-space is as follows.

X[n] = s[n-2] – s[n-3]
Y[n] = s[n-1] – s[n - 2]
Z[n] = s[n] – s[n-1]

 20

The third method which will be used to plot a sequence of numbers will be using

spherical coordinates [Pickover]. Spherical coordinates is a coordinate system that

describes r, the radius, or the distance from to origin to a point, φ, the polar angle or

the angle of separation from the z-axis and θ to be the angle of separation in the x-y

plane from the x-axis. This method, much like the method above can be used to

highlight problems of independence of a pseudo-random number sequence. Instead of

mapping the above 3-Tuple method to Cartesian coordinates, it is mapped to spherical

coordinates using the following transformation:

Equation 3 – Noise Sphere

Equation 3, also known as a Noise Sphere, is very similar to the Lattice Space, so

similar information will be displayed. It might however highlight some flaw or

dependence that is not easily visible using the Lattice Space. If a function is

increasing by using linear increments, the Lattice Space will often result in a straight

line in 3-space. This is particularly important in the results section of this paper. The

Noise Sphere however, will show that random increments are being used as the points

will appear to be more randomly distributed. This is because the transformation is

much more volatile to minor changes compared to the Lattice Space transformation

because it is a linear transformation. The Noise Sphere transformation is a non-linear

transformation because of the cosine and sine functions.

The reason for using these graphical methods is to provide a very quick mechanism to

test random sequences. This can however be extended to testing many suspect random

events in general. For example, the results of lotto numbers are supposed to be

random. These results can be displayed graphically, and if any attractors appear in the

image, then it is possible to say that there is a pattern in the results. An attractor can

If s[n] is a set of random numbers and n represents the nth random number in
s, then the transformation to 3-space is as follows.
 θ[n] = 2 * PI * s[n-2]
 φ[n] = PI * s[n-1]
 r[n] = √(s[n])

X[n] = r * Cos(θ) * Sin(φ)
Y[n] = r * Sin(θ) * Sin(φ)
Z[n] = r * Cos(φ)

 21

be defined as a set of points in the phase space which attract all other points in that

space [Eric W. Weisstein, http://www.mathworld.wolfram.com/Attractor.html]. These

graphical methods are not meant to replace statistical testing; they merely provide a

different method of quickly testing for randomness. Statistical tests should always be

used when objective results are required. Any results obtained using these graphical

methods alone can be very subjective and open to interpretation.

2.7. Summary

This chapter has described true randomness and how a computer can generate

random-like numbers. Methods of generating pseudo random numbers together with

the issues surrounding the construction of a PRNG have been discussed. Three visual

methods of testing “random” (or sequences of numbers) numbers in three space were

introduced and explained.

The following chapter will introduce and explain the importance of PRNG’s and some

applications of PRNG’s. The testing of random numbers will also be explained

 22

Chapter 3

Uses and Testing of PRNGs

3.1. Applications of PRNG

3.1.1. Cryptography

This area of computer science is probably the most critical when it comes to

the need of good random number sources. A poor source of predictable pseudo

random numbers would lead to the break down of the entire cryptographic

process, leaving ones encrypted data open to any malicious activity. In

cryptographic terms, it is important that the PRNG produces pseudo-random

numbers that are statistically indistinguishable from true random numbers. In

many other applications it is not too critical if it is found out exactly how a

sequence was generated. But in cryptography special care must be taken at all

stages of the sequence generation process.

Issues such a seeding, reseeding, entropy and generation process must all be

considered and dealt with [Kelsey]. In the design of the Yarrow cryptographic

PRNG all these issues were dealt with resulting in an extremely safe

cryptographic PRNG. Yarrow uses a very “intelligent” system for generating

seeds whereby it has a system monitor that captures data with known levels of

entropy. This can include keyboard events, mouse movement events and even

“into using the random fluctuations in hard-disk access time caused by

turbulence inside the enclosure” [Ferguson].

Another PRNG that has very good cryptographic properties is the Blum-Blum-

Shub generator. This generator is very similar to the LCG PRNG, except it is

of the form:

Equation 4 – Blum-Blum-Shub

xn+1 = xn
2 mod M

 23

where M is the product of two large distinct prime numbers. The output is the

least significant bit (or parity) of xn+1. What makes this PRNG so

cryptographically strong is the fact that its parameters are not polynomial time

computable. It has been shown that trying to crack this PRNG is as hard as

trying to break RSA public-key encryption [Blum].

In 1995 the security offered in the Netscape Navigator web browser was

compromised. The success of this attack was due to the fact that it was aimed

at the PRNG [Schneier]. More specifically it was aimed at the algorithm used

to seed the PRNG. The algorithm implemented to create a seed value

depended on three values, namely: the time of day, the process ID, and the

parent process ID. These values can be easily predicted by an adversary. Once

the seed was known, assuming the attacker knew the PRNG algorithm (which

he/she did), the internal state of the PRNG could be recreated making the

attack fairly trivial [Dobb’s].

3.1.2. Network Security

Over the recent few years network security has become one of the most

important areas of focus of a network administrators. If the network security

can be broken, an intruder can obtain sensitive information or perform

malicious activities. The implementation of Transmission Control Protocol

(TCP) requires that an Initial Sequence Number (ISN) be selected at the

beginning of every new TCP connection. The ISN must also be unique as to

avoid an overlap of connections which would result in packets of data being

reassembled in the wrong order [CIAC]. During a connection, if multiple

packets are sent, the original ISN is incremented sequentially.

The original implementation of TCP used a simple linear method of

generating ISN’s. A 32 bit clock was used which was incremented every four

microseconds. The value of this clock was then used as an ISN when needed.

This led to ISN’s to begin repeating after only 4.55 hours [RFC 793]. A

security flaw was discovered in the TCP/IP protocol suite, initially using

4.2BSD Unix, that if an intruder could cause a packet to be dropped, sent by a

 24

host machine to a connecting machine and the intruder could forge a return

packet in which the correct ISN is guessed, the intruder could gain control of

the connection and data may be injected [Morris].

A typical TCP connection is created using the three way handshake. Below

shows how the three way handshake normally should take place. Following

this, data transmission can take place.

C, the client, selects an ISN and sends it to S, the server. S receives this, and

selects its own ISN and sends it together with an acknowledgement to C. C

then sends an acknowledgement of this back to S, after which data

transmission can take place.

Figure 2 – Example of ISN attack

In a connection between Alice, the client and Bob, the trusted host packets

will only be accepted if, amongst other reasons, they have the correct ISN. If

an intruder, Eve (eavesdropper), forges a packet so that Alice “sees” it as

coming from Bob and is able to predict the correct ISNS, it is possible for Eve

to send any data in the packet with the possibility that Alice executes code that

was in the malicious packet. This type of attack is known as spoofing.

Together with this discovered flaw and the original implementation of the

Three way handshake.

C → S:SYN(ISNC)
S → C:SYN(ISNS), ACK(ISNC)
C → S:ACK(ISNC)
Data transmission can now take place

 25

TCP ISN generator, an attacker could very quickly and easily predict the next

ISN and successfully launch an attack.

In 2001 Michael Zalewski released a paper highlighting obvious flaws in the

then current operating systems’ TCP/IP implementation. In this paper a

method of plotting the ISNs was described which allowed one to visualise the

ISNs. This method resulted in attractors forming which would allow any

hacker to exploit this fact and obtain control of the TCP/IP connection with

relevant ease [Michael]. The first method of plotting sequences of numbers in

a Phase Space, described in this paper is the method that was used in Michael

Zalewski’s paper.

Another type of attack is the TCP reset attack. If two machines, host A and

host B have an established TCP connection. Host C (a malicious host) can

cause the TCP connection to be terminated by forging a packet from one host

(A or B) to the other and setting the reset (RST) bit. If enough bandwidth is

available to C, then it is easy enough to try all possible ISNs or a smaller

subset if the generation algorithm is known. But in most cases bandwidth is

limited resulting in the fact that host C must also be able to predict the correct

ISN that is being used in the connection for the forged packet to be accepted

by one of the hosts. This is an easy task if host C is directly in between, and

can “sniff” packets, the communicating hosts. But in most cases, host C

cannot do this. So if either hosts are using a system that has predictable ISNs,

host C can easily predict the ISN and terminate the connection.

It has been shown that the more random an ISN is chosen, the less likely it is

for this type of attack to occur. This is because an attacker has to guess the

next ISN by monitoring previous ISN’s and discover the ISN generation

method. His paper shows how easy it can be to create a set of ISNs which can

be used to create a spoofing set. By implementing a PRNG in the generation

of ISN’s results in the prediction of ISN’s to become a lot more tedious and/or

difficult.

Proposed fixes to this problem has been to use a function to generate ISN

which can be of the following form:

 26

It is essential that the function F is not computable by an outside source, or it

would allow an attacker to still predict the ISN’s. It has been recommended

that the function F be some secure cryptographic hashing function that takes

[localhostIP, localport, remotehost, remoteportIP] together with some random

data. The inclusion of random data is to ensure that there is and element of

unpredictability in the ISN. Although, when a sample of ISN’s, created

according to RFC 1948, is plotted using Lattice Space, the resulting image will

suggest that the ISN generator is using a completely linear ISN generator as

described in RFC 793. The Phase Space and Noise Sphere will highlight the

fact that the increment used between ISN’s is linear or not. This is where the

need for a good PRNG is necessary and the use of a poor PRNG would make

this method of cause the implementation of TCP/IP providing a false sense of

security [RFC 1948]. It is however noted that using random increments to

increase the ISN over time will not, according to the central limit theorem,

introduce enough variance in the ISN’s [CERT].

Another proposal has been to use a PRNG to generate the ISN, with no use of

localhostIP, localport, remotehost and remoteportIP. The PRNG used for this

method should be in accordance with RFC 1750. Although, problems can arise

using a PRNG as the ISN generator. If the generator, by “chance”, happens to

generate the same number in close succession, then it is possible for packets to

become intermixed and the data stream to be incorrectly reassembled.

ISN = M + F(localhostIP + localport + remotehost + remoteportIP)
or
ISN = M + R(t)
or
ISN = R(t)

Where: M is the standard 32 bit, four microsecond timer

F is a function which introduces some randomness or
unpredictability (as suggested in RFC 1948) and R(t) is a
PRNG complying with RFC 1750.

Equation 5

 27

3.1.3. Monte Carlo/Statistical (physical) simulations

Scientific computing has, since 1945, relied on random numbers to solve

many complex problems that cannot be solved analytically. The worlds first

super computer, MANIAC, used Monte Carlo methods to solve intense

numerical problems for the design of the atomic bomb. The maths behind

Monte Carlo is too advanced for the needs of this paper. However, the driving

force behind Monte Carlo simulations are good random numbers. As has been

said earlier, obtaining true random numbers can be a difficult affair. Hence the

need for a good PRNG. The only requirement here is that the PRNG exhibits

good statistical properties and that the same set of pseudo-random values can

be reproduced multiple times using the same initial seed value every time (this

allows for results to be validated) [Liu]. The integral, which is essential to

many scientific problems, can be solved computationally by mean of Monte

Carlo simulation.

Given:

 I = ∫Dg(x)dx, can be approximated by computational methods if we

have independent and uniformly distributed [pseudo] random numbers over D

using the following identity:

Now if m → infinity, then Ĭ → I. This is the basic principal behind the Monte

Carlo method and more advanced methods do exist [Liu].

This is the basic method behind Monte Carlo, and as one can see if a poor

PRNG is used (one which yields poor statistical results), the results from this

simulation can be disastrous [Buslenko].

An example of this can be shown by using the Monte Carlo method to find an

estimate value of PI. This is done by generating random (x,y) coordinates in

the range [0,1). If the point has a distance greater than one, it lies outside the

quarter circle of radius one, it does not get counted. Otherwise, all other point

get counted.

Ĭm = 1/m{g(x(1)) + … + g(x(m))}, where x(1) … x(m) are the random

values.

 28

 Now: total points = n

 Points inside circle = x

 Estimated PI = 4 * x / n

This is a crude example, but it does show how poor pseudo random numbers

can lead to a breakdown in a physicists experiments. Figure 3 shows how Pi

can be estimated using this method.

Estim ation of PI

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

x

y

Random <x,y>

Circle

Figure 3 – Monte Carlo Estimate of Pi

The better the PRNG used and the larger the random data sample is, the more reliable

the results will be.

3.2. Testing of a PRNG

Testing for randomness can prove to be a tedious process. Many statistical tests have

been developed for this process. For the needs of this project a statistical test suite

developed by the National Institute of Science and Technology (NIST) was used. It

was initially developed for testing PRNG’s for cryptographic applications and

consists of 16 common statistical tests. All data tested had to either be in bits in Ascii

 29

format or hex digits in binary format. Table 1 gives a brief overview of all the tests

performed in the NIST test suite.

Test Description

Frequency (Monobit) Test This tests the assumption that on average, the binary

stream should consist of 50% 0’s and 50% 1’s, which is

to be expected from a truly random sequence.

Frequency test within a

Block

The test sequence is divided up into smaller blocks, and

each block is tested as above.

Runs Test This test looks at the number of consecutive 0’s and

consecutive 1’s and considers whether the oscillation is

too fast or too slow.

Test for the Longest Run of

Ones in a Block

The test sequence is divided up into smaller blocks, and

each block is tested as above.

Binary Matrix Rank Test The test sequence is divided up into smaller blocks. Each

block is tested for linear dependence against the original

test sequence.

Discrete Fourier Transform

(spectral) Test

This tests for any period features (repeating substrings)

in the test sequence.

Non-overlapping Template

Matching Test

The Non-overlapping Template Matching test

determines whether there are too many occurrences of

predefined aperiodic patterns.

Overlapping Template

Matching Test

This test reject sequences which show too many (or few)

occurrences of m-runs of 1’s.

Maurer’s “Universal

Statistical” Test

This test is closely related to the per bit entropy of a

random sequence. It is mainly significant if testing

whether sequences are cryptographically strong. It

rejects sequences that can be compressed.

Lempel-Ziv Compression

Test

This test compresses the test sequence and determines

whether compression in statistically significant.

Linear Complexity Test This test uses linear complexity to test for randomness.

I.e. whether the sequence is complex enough to be

considered random.

 30

Serial Test This test is a battery of methods which tests the

uniformity of distributions of patterns on given lengths.

Approximate Entropy Test This test looks for repeating patterns of small sequences

within the main sequence.

Cumulative Sums (Cusum)

Test

This test determines whether sum of partial sequences

occurring in the sequence is too large, or too small.

Random Excursions Test The test is used to determine whether the number of

visits to a state within a random walk is greater than

what one would expect for a random sequence.

Random Excursions

Variant Test

Similar to the test above, this test is to detect deviations

from the distribution of the number of visits of a random

walk to a certain state.
Table 1 – Description of NIST tests [NIST]

Another test program used to test sequences of numbers for randomness was used.

Ent, A Pseudorandom Number Sequence Test Program applies a smaller set of

statistical tests than the NIST test suite, but it returns actual test results and not

probabilities which the NIST test suite does. This can in useful when a quick, direct

comparison between sources was needed. Ent applies the following tests to a data file

[Walker]

Entropy This essentially returns how dense the information is, or

random the data is. The higher the entropy of a file, the

less it can be compressed

Chi-square Test This is exactly the same as is explained in the NIST test

suite and the test results returned shall not be used.

Arithmetic Mean The arithmetic mean of a random data sequence bounded

[0,1) should be 0.5

Monte Carlo Value for Pi A way to test a PRNG is to calculate the value of Pi by

means of a Monte Carlo simulation and then compare

this value to a known value of Pi.

 31

Serial Correlation

Coefficient

This tests how much each byte of data is dependent on

the previous byte. The closer the result is to zero, the

more independent each byte is. A good random sequence

should have a result very near to zero.
Table 2 – Description of Ent tests

3.3. Summary

This chapter has shown how different applications have different needs in terms of

PRNG’s. Cryptographic applications mainly require a high level of entropy in their

“random” numbers. The TCP ISN generator should use some sort PRNG, or some

sort of randomness in the ISN generator. ISN attacks were also discussed and

explained. The importance of PRNG’s in physical applications was highlighted,

especially the need for the PRNG to produce statistically good pseudo random

numbers. The NIST test suite was introduced and explained, as well as a smaller test,

the Ent test.

The next chapter shall introduce a method of visually testing sequences of numbers

for randomness in three dimensions. How to identify randomness in the images will

be explained. A hardware device to generate true random numbers will be explained

as well as its implementation details. Finally, the application developed for this

project will be explained.

 32

Chapter 4

System Design and Implementation

4.1. Randomness in three dimensions

A problem with the graphical method of identifying “randomness” has been “what is

randomness in an image?”. To identify a good random source one needs some sort of

control image with which a possible random source should be compared to. To find a

good source of random data, the NIST test package was used on multiple pseudo

random sources. The reason for using a pseudo random source was because the test

data would be readily available and of a high “random” quality. The /dev/urandom

device in the Linux1 system was found to be a very good source of data to construct

control images with which one can compare to. While the /dev/random device collects

and stores an entropy pool by timing the difference in keyboard interrupts, it can be

very slow. A major difference between the two devices is that /dev/random provides

truly random cryptographically strong random numbers. The /dev/urandom device is

simply a PRNG which does return statistically random output. A large data sample of

16 streams of 1000000 bit each was taken using the /dev/urandom device. Ent

returned the following results:

Test Result

Entropy 1.000000 bits per bit

Optimum compression Reduce file by 0%

Arithmetic mean 0.5000 (0.5 = random)

Monte Carlo value for Pi 3.142649923 (error 0.03 percent).

Serial correlation coefficient 0.000012 (totally uncorrelated = 0.0)
Table 3 – Ent results for /dev/urandom

As can be seen from the Ent test results all the values are either equal to, or very

nearly equal to what they should be for a true random sequence. The entropy of 1 bit

1 Kernel version 2.6.10-1.741_FC3smp

 33

per bit is the maximum entropy possible. The optimum compression of 0% means that

the file cannot be compressed. This is due to the fact that truly random files cannot be

compressed. The arithmetic of 0.5 is what is to be expected from a random source in

the range [0, 1)

The NIST test results are as follows:

Test Result

Frequency (Monobit) Test SUCCESS

Frequency test within a Block SUCCESS

Runs Test SUCCESS

Test for the Longest Run of Ones in a Block SUCCESS

Binary Matrix Rank Test SUCCESS

Discrete Fourier Transform (spectral) Test SUCCESS

Non-overlapping Template Matching Test SUCCESS

Overlapping Template Matching Test SUCCESS

Maurer’s “Universal Statistical” Test SUCCESS

Lempel-Ziv Compression Test 0% compression

Linear Complexity Test SUCCESS

Serial Test SUCCESS

Approximate Entropy Test SUCCESS

Cumulative Sums (Cusum) Test SUCCESS

Random Excursions Test SUCCESS

Random Excursions Variant Test SUCCESS
Table 4 – Results of /dev/urandom device

The results from both the Ent test and the NIST test suite are conclusive evidence that

the randomness of the /dev/urandom device is adequate for the construction of the

control images.

Figure 4 is an example of what a very good PRNG will produce using this graphical

method of analysis plotted in Phase Space. The images shown here are all created

using the program developed for the purposes of this project. Using the Phase Space

transformation on the sequence of random numbers, the shape in Figure 4 below is

 34

what is to be expected. Figure 5 show what Lattice Space looks like for this random

sequence. Figure 6 is an example of the Noise Sphere for the random sequence. This

method will (or should) create a sphere of random points in three dimensions with no

obvious attractor forming. The band of points clustered around the z-axis is due to the

spherical coordinate’s transformation and must not be confused with an attractor.

Figure 4 – Phase Space control image

 35

Figure 5 – Lattice Space control image

Figure 6 – Noise Sphere control image

 36

4.2. Colour, an extra dimension

The use of simple black point plotted on a white background (or vise versa) does not

give any indication of “how” the numbers were generated. The use of colour can

introduce an extra dimension and hence give some indication of how the data

sequence was generated. Two methods were implemented to give some insight into

the data.

Figure 7 – HSV colour mapping

Figure 8 – Noise Sphere control image with colour

The first method used was to take the sequence of numbers and by assigning

consecutive colours (in a continuous defined spectrum) to the consecutive numbers

(in a temporal sense) in the sequence. The colour model used was the HSV model.

Figure 7 shows how the HSV colour model is mapped to the sequence of numbers.

 37

Red is assigned to the first element in the array and successive assigned to successive

array elements, ending at red being assigned to the last element in the array. This was

because it made constructing a clear, continuous colour spectrum much easier than

using the RGB colour model. This is because it is very difficult to create a smooth

continuous spectrum of colours using the RGB colour model. By doing this one can

see whether the sequence was created in a specific order or if it was created in some

kind of random order.

A second method of adding colour that was used, was to take the sequence of

numbers, and divide each and every number but the maximum number in the

sequence. This will result in the sequence being in the range (0,1]. Then using the

HSV colour model, colours were assigned to numbers in the sequence according to

their size. This method of adding colour shows whether the sequence of numbers is

well distributed over the entire range. It also highlights the fact that every number in a

random sequence has equal probability of being selected.

Figure 8 is an example of the Noise Sphere using the temporal method of adding

colour. The colour is very well distributed with no attractors developing and is what is

to be expected. The Phase Space transformation will produce images like these with

the colour being randomly distributed. If any non-randomness exists in the sequence

to be tested, then attractors will result in the images. The use of colour is also a good

method to identify non-random features in the sequence. If the colours in the image

are clumped together (all the reds together for example) then this shows some

linearity (or pattern) in the sequence.

4.3. Construction and Testing of a hardware RNG

The use of a physical device to generate random numbers can possibly be one of the

most secure methods of generating random numbers for computational needs. It is

not, however, suited for all applications. Monte Carlo experiments, for example,

should not be performed using a physical random number generator. This is due to the

fact that the same sequence of numbers can never be obtained again which will result

in an experiment never being replicated exactly. This will have major implications

when results need to be verified by colleagues. Instead, a good PRNG should be used

 38

with very good statistical properties. But for purposes of security and cryptography,

the use of a physical device is desirable. This is because a hardware device, if

properly constructed, will have a high degree of entropy.

Hardware devices range from Geiger counters counting the decay of a radio-active

sample to devices that amplify and sample the noise on a resistor. The focus here will

be on a device that amplifies and samples the noise on a resistor. This noise is known

as Johnson noise and arises due to thermal agitation of electrons in a conductor which

cause small random voltage fluctuations in the signal [Ghausi]. The noise produced is

evenly distributed over all frequencies and is known as flatband noise, or white noise.

[Israelsohn]. To ensure that other common frequencies, like the 50Hz mains

frequency, don’t interfere and cause the “random” source to be skewed, one needs to

use filters to band-limit the noise produced. Figure 9 shows the output of the voltage

fluctuation across a resistor as a function of time.

Figure 9 – Voltage fluctuations on a resistor

For the purposes of this project, it was necessary to try and implement a hardware

random number generator. Figure 10 shows the circuit design of the generator. The

way this generator works is by amplifying the noise on a resistor. The output is then

used together with a comparator to produce a binary stream of data. The resistor

labelled R1 was initially used, but the results obtained were not promising. This could

be because the required amplification used to amplify the noise on the resistor is so

large that any other possible noise introduced by outside interference can potentially

dominate, which seemed to be the case here. This is explained in Chapter 6.

 39

Figure 10 - Circuit Diagram of hardware RNG

The resistor was then replaced with an antenna to capture free space noise. The results

obtained using this method were much more promising and showed signs of

randomness. It must be stated now that this is a very crude hardware RNG and that

while precautions were taken to eliminate external noise, noise was still introduced

which skewed the results. The test results are explained and shown in Chapter 6.

4.4. Design features / considerations

The implementation of this application was relatively simple. Figure 11 shows the

class diagram for the implementation of the application used to graphically analyse

the sequences. Table 5 gives a brief overview of the classes and their functions.

Class Use

easyform This is the GUI for the application.

glisn This class is the core class of the application. All button presses and

openGL drawing calls begin from this class

Mesh This class is used to read, create and plot the sequences of numbers.

Timer This class is used to get frame rate information.
Table 5 - Class diagram explanation

 40

Figure 11 – Class diagram

4.5. Implementation details

The implementation of this application was done on the Linux platform using QT

Designer. The C++ language together with the OpenGL library was used to handle all

the graphical need. Care had to be taken when reading the sequences of numbers in

from the files. It was decided that all numbers be read in as unsigned int. This

decision came about after the fact that ISNs are unsigned 32-bit integers.

4.6. Application

The application itself is fairly simply to use, with Figure 12 being a screenshot of it.

The main visualisation display has the three axis in red, green and blue. They are as

follows:

 41

Red axis - x- axis

Green axis - y- axis

Blue axis - z – axis

• Phase 1 button will plot the coordinates using the Phase Space.

• Phase 2 button will plot the coordinates using the Lattice Space.

• Noise Sphere button will plot the coordinates using the Noise Sphere.

• The Screenshot button will take a screenshot of whatever is currently being

displayed in the visualisation window.

• Record and Stop buttons are used to capture sequences of screenshot which

can be used to create video clips. Creating video clips proved to be a difficult

process. This is because each frame had to be saved to disk, causing the frame

rate to drop dramatically resulting in it being very difficult to navigate around

the image.

• The three radio buttons, Black, Temporal and Spatial, select the method of

adding colour as is discussed in Section 4.2.

• The background checkbox selects whether the background of the main

visualisation window is either black or white.

• The zoom slider scales the image either up or down.

• The x and y sliders allow for fine adjustment when rotating the image around

the relevant axes.

x

y

z

 42

Figure 12 - Application

4.7. Summary

This chapter has shown what randomness should look like in three dimensions with

the use of control images. The random number sequence was obtained from a

statistically good source, the /dev/urandom device. Colour was shown how it can be

used to add an extra dimension to the data. Two methods of adding colour were

explained. An implementation of a hardware RNG was shown and some theory

behind it was explained. Finally the design of the application developed for this

project was shown together with the application itself.

The next chapter will show the results of the ISN’s of different operating systems

tested. The hardware RNG will also be tested and evaluated.

 43

Chapter 5

Results

5.1. Operating Systems

Multiple operating systems were tested to try and determine the amount of

randomness in its ISN generator. This will give an indication as to how secure they

are to ISN attacks. The ISNs were “harvested” using a Perl script specifically written

by Tom Vandepoel to obtain TCP ISNs. Usage of ISNProber is as follows:

Text Box 1 – Use of ISNProber

The use of different source ports and/or different target ports will most likely produce

an ISN sequence that appears to be random due to Equation 4. For the purposes of this

paper, it was decided to use a single source port and a single target port. This was

because an attack aimed at the ISN generator is most likely to occur in this fashion.

It was found that any patterns in the data began to clearly appear after about 10000

points were captured. To make sure that any patterns in the ISN’s would be identified,

larger data samples were captured. It was therefore decided that 35000 ISN’s was a

good number of ISN’s to capture and test. Also, 35000 ISN’s would allow the NIST

test use suite to be used.

5.1.1. Windows 95

The Windows 95 ISN generator appears to be very weak. Figure 13, shows an image

of the ISN’s plotted in Phase Space. As can be seen majority of the points are

clumped together in a region and not distributed according to the control image,

Figure 6. The colour in the image is also not well distributed implying that the ISNs

Single host mode:
isnprober [options] <ip>|<ip:port>
 where <ip> is the IP address of the target machine
 and <ip:port> is the port on the target machine

 44

were created in some sequential order. In the event of an attacker attempting a

spoofing attack, Windows 95 offers very little protection against ISN attacks which

can result in ISN attacks more likely than not, succeeding. Figure 14 is an image of

the ISN sequence plotted in Lattice Space. This image shows the linear nature of the

ISN generator. RFC 793 recommends that the ISN be generated using a 32 bit clock,

as seems to be the case here [RFC 793]. This linear method of ISN generation can

especially be seen in the smooth change in colour in Figure 14. Although Figure 14

suggests that no other information is being used to create the ISN, due to its very

linear nature, Figure 13 shows that the difference between ISNs in not a constant.

RFC 1948 recommends that the [localIP, localport, remoteIP, remoteport] be used to

introduce some sort of unpredictability in the ISN generator. But RFC 1948 does also

suggest that some randomness be introduced in the random increment. One can

conclude, from these images, that the security offered by Windows 95 by its ISN

generator, is very weak. When plotted using the Noise Sphere no useful information

was produced.

Figure 13 – Windows 95 Phase Space

 45

Figure 14 – Windows 95 Lattice Space

5.1.2. Windows 98

Figure 15 shows the ISN’s of the Windows 98 operating system plotted in Phase

Space. As can be seen there is some difference in terms of structure when compared

to the Windows 95 OS. Majority of the points lie in a small region of space, which

will allow an attacker to create a set of ISNs to be used in a spoofing attack fairly

easily. The Lattice Space and Noise Sphere images exhibit the exact same linear

structure as Windows 95. Obviously, this leads to the fact that Windows 98 provides

no better security than Windows 95 and uses a very similar IP stack.

 46

Figure 15 - Windows 98 Phase Space

5.1.3. Windows 98 Second Edition (SE)

The Windows 98SE OS tested did not reveal any differences from the original

Windows 98 OS and hence the same potential vulnerabilities exist in terms of its ISN

generator.

5.1.4. Windows ME

The Widows ME OS has shown a significant improvement to the previous version of

Windows tested. Figure 16 shows the ISN’s are creating using a bit more of a random

method. Although they are still appear to be created in a linear fashion, much like

Figure 14 when viewed in Lattice Space, the difference between successive ISN’s is

highlighted in Figure 16 to be of a much more random nature. Figure 17 shows the

ISN’s plotted using the Noise Sphere method. While not completely random, some

degree of unpredictability is evident. The points are relatively evenly distributed in

the sphere, but colour in the image suggests some linearity in the ISN generation

process. This is expected and shows that the ISN stack is implementing RFC 1948

and introducing some degree of randomness.

 47

Figure 16 - Windows ME Phase Space

Figure 17 - Windows ME Noise Sphere

 48

5.1.5. Windows 2003 Server

Figure 18 - Windows 2003 Server Phase Space

Figure 19 - Windows 2003 Server Noise Sphere

 49

Windows 2003 Server shows a pattern very similar to that of Windows ME in Figure

18. Figure 19 is also very similar to that of Windows ME, except that the noise sphere

is not as evenly distributed as Windows ME, with majority of the points lying at the

centre of the sphere and on the radius. This is most likely due to the fact that these

two OS’s are using very similar TCP stacks.

5.1.6. Windows XP

5.1.6.1. Original

Figure 20 - Windows XP original Phase Space

Figure 20 shows the original (non-patched) Windows XP OS. The Phase Space view

of the ISN’s shows how the ISN’s from windows XP appear to be random in the small

area of space they occupy. Figure 21 show the ISN’s plotted using the Noise Sphere

technique. As can be seen, there is very little randomness in this image.

 50

Figure 21 - Windows XP original Noise Sphere

5.1.6.2. Windows XP - Service Pack 1

Figure 22 - Windows XP SP1 Phase Space

 51

Figure 23 - Windows XP SP1 Noise Sphere

Figure 22 shows a marked improvement from the original Windows XP. The points

are a bit more distributed. Figure 23 highlights the fact that the “random” increments

suggested in RFC 1948 is being implements.

5.1.6.3. Windows XP - Service Pack 2

Figure 24 looks like there has been an improvement from service pack 1 as the points

are even more widely distributed. But looking at Figure 25, one can see that all the

points all lie on a line with no sign of random increments being used. This, as

discussed earlier, has security issues involved.

 52

Figure 24 - Windows XP SP2 Phase Space

Figure 25 - Windows XP SP2 Noise Sphere

 53

5.1.6.4. Current

Figure 26 - Window XP fully patched, Phase Space

Figure 27 - Window XP fully patched, Noise Sphere

 54

This Windows system tested was fully patched as of 4 November 2005. It is very

interesting to note that both these images are simlar to Windows XP with service pack

1. Figure 26, a Phase Space plot of the ISN’s, once again shows the clumping of

majority of the points in an area of space. Although, as the use of colour shows us, it

does appears to have some degree of randomness in it. Figure 27, a Noise Sphere plot

of the ISN’s, shows how the points look randomly distributed over the sphere,

although majority of the points lie at the centre of the sphere and on the radius.

5.1.7. Cisco

Figure 28 shows the ISN’s of a Cisco router running IOS 12.1. This image is very

closely matched to the control image, Figure 4. The “randomness” of the ISNs

produced show that the ISN generator implemented is a good quality PRNG. This is

confirmed in a software patch released by Cisco updating the software to use a PRNG

as the ISN generator. The ISN generator also has a window in which previous ISNs

are stored and used to compare newly generated ISNs with. If the newly generated

ISN is too close to previous ISNs, it is discarded and a new ISN is generated. This is

to ensure that and overlapping of ISNs. Equations 2 and 3 produce images very

similar to the control figures 5 and 6 respectively [Cisco].

Figure 28 – Cisco Phase Space

 55

Due to the graphical analysis of the Cisco ISN’s and the similarities to that of that

“random” control image, it was decided that NIST test suite be used to test the ISN

sequence. The results are as follows:

Test Result

Frequency (Monobit) Test SUCCESS

Frequency test within a Block SUCCESS

Runs Test SUCCESS

Test for the Longest Run of Ones in a Block SUCCESS

Binary Matrix Rank Test SUCCESS

Discrete Fourier Transform (spectral) Test SUCCESS

Non-overlapping Template Matching Test SUCCESS

Overlapping Template Matching Test SUCCESS

Maurer’s “Universal Statistical” Test SUCCESS

Lempel-Ziv Compression Test 0% compression

Linear Complexity Test SUCCESS

Serial Test FAILURE

Approximate Entropy Test FAILURE

Cumulative Sums (Cusum) Test SUCCESS

Random Excursions Test N/A

Random Excursions Variant Test N/A
Table 6

The Random Excursions Test and Random Excursions Variant Test could not be

performed because the NIST test suite returned the following error:

“WARNING: TEST NOT APPLICABLE. THERE ARE AN INSUFFICIENT

NUMBER OF CYCLES.”

As can be seen form the results in Table 6, the Cisco router implements a very good

ISN generator. The Cisco router obviously complies with RFC 1750 by implementing

a good PRNG as its ISN generator.

 56

5.1.8. Fedora Core 3

Figure 29 - Fedora Core 3 Phase Space

Figure 30 - Fedora Core 3 Phase Space

Fedora Core 3 uses kernel version 2.6.10-1.741. The TCP stack exists inside the

Linux kernel, so most, if not all, Linux distributions using this kernel will produce the

same ISN’s. As can be seen in Figure 29, the differences between successive ISN’s all

lie in a small region of space. Once again, the Lattice Space image shows that the ISN

 57

generator is RFC 1948 compliant. Figure 30 show that there is randomness introduced

into the ISN generator, but some structure is still evident. The fact that all the points

lie in such a small region of space in Figure 29 shows that if an attack on the ISN

generator had to take place, a spoofing set could be built up quite quickly.

5.1.9. FreeBSD

5.1.9.1. FreeBSD 4.1

Figure 31 - FreeBSD 4.1 Phase Space

Figure 32 - FreeBSD 4.1 Lattice Space

 58

Figure 33 - FreeBSD 4.1 Noise Sphere

As can be seen from Figure 31, all the points lie on the x-y, y-z and x-z planes. While

this seems to be a problem, all the points on the planes appear to be randomly

distributed. Looking at Figure 32, majority of the points lie on two planes, although

points lying on these two planes are evenly distributed with no appearance of

attractors forming. Figure 33 once again shows how majority of the points lie on a

plane.

5.1.9.2. FreeBSD 5.4

FreeBSD 5.4 produces very similar results as FreeBSD 4.1. This suggests that it uses

the exact same TCP stack as 4.1.

5.1.9.3. FreeBSD 6.0

FreeBSD 6.0 produces very similar results as FreeBSD 4.1. This suggests that it uses

the exact same TCP stack as 4.1. But this version of FreeBSD is pre-release so its ISN

generator might be changed.

 59

5.1.10. Solaris

5.1.10.1. Solaris 5

Figure 34 - Solaris 5 Phase Space

Figure 34 shows the ISN’s plotted in Phase Space of the Solaris 5 operating system.

As can be seen, Figure 34 is very similar to Figure 31 of the FreeBSD 4.1. Also, both

the Lattice Space and Noise Sphere images are very similar to the FreeBSD OS.

Solaris 5 is most likely using a very similar, if not the same, TCP stack as the

FreeBSD machines.

5.1.10.2. Solaris 9

Figure 35 shows the ISN’s from the Solaris 9 operating system plotted in Phase

Space. The points in this image appear to be randomly distributed much like the

control image, Figure 4, except that the points are grouped together in a much smaller

region of space. When plotted in Lattice Space, it is found that the ISN generator is

complying to RFC 1948 and using a linear method with random increments. Figure 36

shows the ISN’s plotted in the Noise Sphere. From this it can be seen that there is a

fair amount of randomness in the ISN generator.

 60

Figure 35 - Solaris 9 Phase Space

Figure 36 - Solaris 9 Noise Sphere

 61

5.1.11. Paradyne Hotwire 8610

Figure 37 - dslam Lattice Space

Figure 38 - dslam Noise Sphere

 62

This device is a dslam, which basically converts Ethernet to DSL. The dslam uses a

completely linear method of creating ISN’s. When the ISN’s are plotted in Phase

Space only a single point in plotted. The ISN generator being used is obviously still

complies with the original TCP recommendations in RFC 793. This can be seen in

Figure 37 and Figure 38. The security offered by the ISN generator is very weak and

an attacker could target this and easily cause connections to be dropped of perform a

spoofing attack.

5.1.12. VoIP Phone

Figure 39 - VoIP phone Phase Space

As can be seen in Figure 39, the Phase Space of the ISN’s captured from the VoIP

phone show that the ISN generator appears to be using a PRNG. There is a close

resemblance to the control image for a good random data source.

Test Result

Frequency (Monobit) Test FAILURE

Frequency test within a Block FAILURE

Runs Test N/A

Test for the Longest Run of Ones in a Block FAILURE

Binary Matrix Rank Test FAILURE

Discrete Fourier Transform (spectral) Test FAILURE

 63

Non-overlapping Template Matching Test 50% FAILURE / 50% SUCCESS

Overlapping Template Matching Test FAILURE

Maurer’s “Universal Statistical” Test FAILURE

Lempel-Ziv Compression Test 0% compression

Linear Complexity Test SUCCESS

Serial Test FAILURE

Approximate Entropy Test FAILURE

Cumulative Sums (Cusum) Test FAILURE

Random Excursions Test N/A

Random Excursions Variant Test N/A
Table 7 - NIST test results for VoIP phone

As can be seen in Table 7, the NIST test results show that the PRNG used in the ISN

generator is not a statistically good one. This is something that is not evident in the

graphical analysis of the image. It is for this case (and many cases like this) where

care must be taken in making a conclusion before statistical testing takes place.

5.2. Hardware RNG Results

Table 8 are the results of the NIST test suite from the hardware RNG implemented.

While the statistical results are not very promising, the images produced do shows

some potential in this device.

Testing the output of hardware random number generator showed quite a few flaws in

the generator. Majority of the tests failed, except for Test for the Longest Run of Ones

in a Block, Binary Matrix Rank Test and Linear Complexity Test. The results

returned from Ent, shown in Table 8, were:

Test Result

Entropy 0.985369 bits per bit

Optimum compression Reduce file by 1%

Arithmetic mean 0.4289 (0.5 = random)

Monte Carlo value for Pi 3.447587580 (error 9.74 percent)

Serial correlation coefficient 0.082591 (totally uncorrelated = 0.0)
Table 8 – Ent test results for hardware RNG

 64

From the above results one can see that this hardware RNG did deliver a high amount

of entropy. These results are promising in the fact that it is not too difficult to

implement a hardware RNG. It is however important that the device be properly

tested to ensure that sequences produced are in fact random.

Test Result

Frequency (Monobit) Test FAILURE

Frequency test within a Block FAILURE

Runs Test N/A

Test for the Longest Run of Ones in a Block FAILURE

Binary Matrix Rank Test SUCCESS

Discrete Fourier Transform (spectral) Test FAILURE

Non-overlapping Template Matching Test FAILURE

Overlapping Template Matching Test FAILURE

Maurer’s “Universal Statistical” Test FAILURE

Lempel-Ziv Compression Test 1% compression

Linear Complexity Test SUCCESS

Serial Test FAILURE

Approximate Entropy Test FAILURE

Cumulative Sums (Cusum) Test FAILURE

Random Excursions Test N/A

Random Excursions Variant Test N/A
Table 9 – NIST test results for hardware RNG

Table 9 shows the results from the NIST test suite. These results are not very

promising, but this test suite is very aggressive in the way it tests for randomness in

number sequences. If there are any patterns and or correlation in the data, the tests

will fail. In the images shown later, one can see that there are in fact patterns/attractor

in the data showing why the NIST tests failed. These patterns in the data can come

from several sources. The most probable source of noise would be from the 50Hz

mains power and the fact that the tests were performed next to a computer which is a

big producer of electromagnetic noise.

 65

The Runs Test could not be performed because the NIST test suite returned the

following error:

“PI ESTIMATOR CRITERIA NOT MET! PI = 4.281440e-001”

The Random Excursions Test and Random Excursions Variant Test could not be

performed because the NIST test suite returned the following error:

“WARNING: TEST NOT APPLICABLE. THERE ARE AN INSUFFICIENT

NUMBER OF CYCLES.”

Figure 40 – Hardware RNG Phase Space

Figure 40 shows the image plotted in Phase Space. As can be seen on closer

inspection in Figure 41 the points are distributed as can be expected for a true random

sequence, except many points lie in planes as can be seen. The red points “clump” in

the image results from the fact that these numbers were generated in close succession.

For a true random sequence this should not occur. Figure 42 shows the image plotted

in Lattice Space. The points in this image are fairly evenly distributed in the cube and

the same red “clumps” occurs in this image.

 66

Figure 41 – Hardware RNG Phase Space

Figure 42 – Hardware RNG Lattice Space

 67

Figure 43 – Hardware RNG Noise Sphere

Figure 43 is the image plotted using the Noise Sphere method. An interesting feature

highlighted by this image that is not shown in Figure 42 is that many of the points lie

in a plane in the sphere. This hardware RNG has shown many signs of random

features, but at the same time there are non-random features. This non-randomness is

most likely a result of external interference.

5.3. Summary

This chapter has shown how it is possible to graphically test sequences of numbers for

randomness. In particular, the ISN generator from several operating systems were

tested. The results have shown that ISN generators complying with RFC 1948

produce ISN’s that are easier to predict than the Cisco, FreeBSD and VoIP ISN

generators. In most of the graphical analysis it has been shown that when attractors

developed in the image, the sequence failed the statistical testing2. But when the

image did have a very close resemblance to the control image, a definite conclusion

could not be made. This was shown in the VoIP phone ISN generator. While the

2 Appendix B contains a table of results

 68

image did appear to be random, the ISN sequence failed the NIST test suite quite

badly.

The implementation of the hardware RNG did reveal some randomness in its output,

especially when one looks at the entropy in the results. Although the sequence did fail

majority of the NIST tests, the tests were promising in the fact that the true RNG

could easily be developed.

 69

Chapter 6

Conclusion

6.1. Summary of Findings

PRNG’s are a critical and integral part of many applications, the use of a poor or sub-

standard PRNG can result in poor performance. RFC 1750 proposes a set of

guidelines to produce pseudo-random sequences for security applications. It is critical

that applications that require the use of a PRNG, use a PRNG that has been shown to

produce output that is suitable for the application. For example, the use of a PRNG in

a cryptographic application, which is better suited in a Monte Carlo type application,

would fail horribly. The security produced by the application would easily be broken.

Chapter 3 introduced a graphical method for testing and evaluating possible random

sequences of numbers. This method of testing can be far more rapid than traditional

statistical testing. Another advantage of using a graphical method is that the eye can

detect patterns in images very quickly and accurately. None or very little background

knowledge in statistics is needed when performing graphical testing. Although it is

important to keep in mind that interpreting these results can be a very subjective task

and different people testing the same sequence can come to different conclusions.

That is why statistical tests are still an important role in testing.

The results obtained from testing the ISN’s from different operating systems showed

that there is no real standard when it comes to ISN generators. The Windows

generators, starting with Windows 95 showed a very linear function being used,

resulting in poor security. This continued through Windows 98 and Windows 98

Second Edition. From Windows ME and onwards it can be seen the the ISN generator

is complying to RFC 1948. This does result in an improvement of security in terms of

preventing ISN type attacks. But the very linear nature of the method RFC 1948 does

not make an ISN attack incredibly difficult. All the attacker need to find out is what

 70

state the internal clock is in and then use that state, together with his/her own random

increment. The attacker would not “guess” the correct ISN immediately, but

“guessing” it would be easier than guessing the ISN produced by a PRNG alone.

The Cisco ISN generator proved to very a very good PRNG. The images closely

resembled those of the control images and it passed majority of the NIST test suite

tests. This type of method of generating ISN’s makes it highly unlikely that a hacker

would be able to predict the ISN’s, hence making the system secure, in terms of its

ISN generator. The VoIP phone produced ISN’s that looked very similar to the

control images yet failed most of the NIST statistical tests. This shows that when

attractors and/or patterns are produced in the image, that statistical tests will most

likely fail. But, when a sequence of numbers appears to be random, statistical testing

should be used to avoid false positives.

The hardware RNG implemented was successful in the fact that it produced results

that showed some level of randomness. Graphically it showed signs of randomness

with many of the points being evenly distributed. The fact that attractors formed in the

graphical analysis did show that there were signs of non-randomness. In a hardware

generator, this non-randomness can be introduced by many external sources which

bias the output.

6.2. Future Work

Possible extensions to this work could be to implement a method to detect clustering

in the three dimensional space. This will help find and identify attractors in the

graphical analysis.

Also, using the open source Linux system, implementing a PRNG as the ISN

generator and conducting performance tests and comparing the results with other

methods of generating ISN’s.

 71

References

[Atkinson] - Atkinson, A. C., Tests of Pseudo-random Numbers, Imperial College,

Applied Statistics, Vol. 29, No. 2 (1980), pages 164-171

[Atreya] - Atreya, M., RSA Security article: Intoduction to Cryptography (part

4): Pseudo Random Number Generators, November 2000

[Bellare] - Bellare M., Goldwasser S., Micciancio D., ``Pseudo-Random''

Number Generation within Cryptographic Algorithms: the DSS Case,

Advances in Cryptology - Crypto 97 Proceedings, Lecture Notes in Computer

Science No. 1294. Springer-Verlag, 1997.

[Blum] - Blum L., Blum M., Shub M., A Simple Unpredictable Pseudo-

Random Number Generator, SIAM Journal on Computing, volume 15,

pages 364-383, May 1986

 [Bowman] - Bowman, R. L., Evaluating Pseudo-Random Number Generators,

Computer & Graphics, Vol. 19, No. 2, Pages 315-324, 1995

[Buslenko] - Buslenko, N. P., Golenko D. I., Schreider, Y. A., Sobol’, I. M.,

Sragovich, V. G., The Monte Carlo Method – The Method of Statistical Trials,

1966

[CERT] - CERT® Advisory CA-2001-09, Statistical Weaknesses in TCP/IP

Initial Sequence Numbers, online: http://www.cert.org/advisories/CA-2001-

09.html, May 2001

[Chambers] - Chambers, J. M., Cleveland, W. S., Kleiner, B., Tukey, P. A.,

Graphical Methods for Data Analysis, 1983

[Chaitin] - Chaitin, G.J., Randomness and mathematical proof, 1975, Science

America Vol. 232, No. 47

[CIAC] - Computer Incident Advisory Capabilty , Information Bulletin ,

http://www.ciac.org/ciac/bulletins/l-003.shtml

[Cisco] - Cisco Security Advisory, Online:

http://www.cisco.com/warp/public/707/ios-tcp-isn-random-pub.shtml, October 2004

[Connor] - Connor, F. R., Noise – Second Edition, 1982

 72

[Dobb’s] - Dr. Dobb’s Journal, Randomness and the Netscape Browser, January

1996, Online: http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html,

January 1996

[Entacher 1998] - Entacher, K., Bad Subsequences of Well_known Linear

Congruential Pseudorandom Number Generators, January 1998, University of

Salzburg, ACM Transactions on Modelling and Computer Simulation,

Volume 8, Number 1, Pages 61-70

[Entacher 2000] - Entacher, K., Linear Congruential Generator: LCG, Online:

http://crypto.mat.sbg.ac.at/results/karl/server/node4.html, June 2000

 [Eric] - Eric W. Weisstein, Attractor, MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/Attractor.html

[Ferguson] - Ferguson, N., Schneier, B., Practical Cryptography, 2003, pages

155-184

[Ghausi] - Ghausi, M. S., Electronic Circuits, New York University, 1971

[Golder] - Golder, E. R., Algorithm AS 98: The spectral Test for the Evaluation

of Congruential Pseudo-Random Generators, Royal Statistics Society,

Applied Statistics, Vol. 25, No. 2 (1976), pages 173-180

[Herring] - Herring, C., Palmore, J. I., SIGPLAN Notices, Vol. 24, No. 11,

[Hoglund] - Hoglund, G., Exploiting Software – How to break codes, 2004

[Israelsohn] - Israelsohn, J., Noise 101, Technical Editor – EDN, 2004,

http://www.edn.com/article/CA371088.html

[Jansson] - Jansson, B., Random Number Generators, 1966

[Kelsey] - Kelsey, J., Schneier, B., Ferguson, N., Yarrow-160: Notes on the

Design and Analysis of the Yarrow Cryptographic Pseudorandom Number

Generator, Sixth Annual Workshop on Selected Areas in Cryptography,

Springer Verlag, August 1999.

[Knuth] - Knuth, D. E., The Art of Computer Programming, Volume 2, 1969

[Liu] - Liu, J. S., Monte Carlo Strategies in Scientific Computing, Springer Series in

Statistics, 2001

[Marsaglia] - Marsaglia, G., Seeds for Random Number Generators,

Communications of the ACM, Vol. 46, No 5, May 2003

[Matsumoto] - Matsumoto M. , Nishimura T., Mersenne Twister: A 623-

Dimensionally Equidistributed Uniform Pseudo-Random Number Generator,

 73

January 1998, Keio Universit, ACM Transactions on Modelling and Computer

Simulation, Volume 8, Number 1, Pages 3-30

[Michael] - Michael Zalewski, Strange Attractors and TCP/IP Sequence Number

Analysis, 2001, BindView Corporation - www.bindview.com/

[Morris] -Morris, R.T. 1985. A Weakness in the 4.2BSD UNIX TCP/IP

Software. Technical Report No. 117, AT&T Bell Laboratories, 1985

[Network] - Network Working Group, Randomness Recommendations for

Security, RFC 1750, December 1994

[NIST] - Rukhin, A., Soto J., Nechvatal J., Smid M., Barker E., Leigh S.,

Levenson M., Vangel M., Banks D., Heckert A., Dray J., Vo S., A Statistical

Test Suite for Random and Pseudorandom Number Generators for

Cryptographic Applications., NIST Special Publication 800-22, 2001 (with

revisions dated May 15, 2001)

[Park] - Park, S. K., Miller, K. W., Random Number Generators: Good Ones Are

Hard to Find, Communications of the ACM, October 1988, Volume 31,

Number10

[Pickover] - Pickover, C.A., Picturing Randomness on a graphics supercomputer,

IBM J. Res. Develop. 35, Pages 227-230, 1991

[RFC 793] - Information Sciences Institute University of Southern California,

Transmission Control Protocol, RFC 793, September 1981

[RFC 1750] - Network Working Group, Randomness Recommendations for Security, RFC

1750, December 1994

[RFC 1948] - Network Working Group, Defending Against Sequence Number Attacks,

RFC 1948, May 1996

[Schneier] - Schneier, B., Yarrow PRNG – Press Release, Online:

http://www.schneier.com/yarrow-pressrel.html, 17 June 1998

[Walker] - Walker, J., Ent - A Pseudorandom Number Sequence Test Program,

Online: http://www.fourmilab.ch/random/, October 1998

 74

Appendix A – Glossary of Acronyms

ISN - Initial Sequence Number

LCM - Linear Congruential Method

LCG - Linear Congruential Generator

PRNG - Pseudo Random Number Generator

OS - Operating System

RFC - Request for Comments

RNG - Random Number Generator

Appendix B
Test Hardware

RNG

Windows

98SE

VoIP

Phone

Win 2003

Server

Fedora

Core 3

Windows

XP SP2

Cisco

Frequency (Monobit) Test

Frequency test within a Block

Runs Test N/A N/A N/A N/A N/A N/A

Test for the Longest Run of Ones in a Block

Binary Matrix Rank Test

Discrete Fourier Transform (spectral) Test

Non-overlapping Template Matching Test /

Overlapping Template Matching Test

Maurer’s “Universal Statistical” Test

Lempel-Ziv Compression Test 1%

compression

 0%

compression

Linear Complexity Test

Serial Test

Approximate Entropy Test

Cumulative Sums (Cusum) Test

Random Excursions Test N/A N/A N/A N/A N/A N/A N/A

Random Excursions Variant Test N/A N/A N/A N/A N/A N/A N/A
Table 10 – Comparison of NIST results for different OS’s ISN generators

 = Failure
 = Pass

