

SIP / H.323 / AIX telephone customization

Submitted in partial fulfilment

of the requirements of the degree

Bachelour of Science Honours in Computer Science

at Rhodes University

Brendan Ronald Marlborough

Supervised By:

Professor Alfredo Terzoli

Professor Peter Clayton

November 2005

 1

Acknowledgements

I would like to thank Alfredo Terzoli and Peter Clayton for supervising my project

and providing guidance throughout the year. I would also like to thank Fred and Justin

for helping with Asterisk and iLanga, and Hannah for proof reading my paper. Lastly

I would like to thank the Department of Computer Science and all my project

sponsors – Telkom, Comverse, Verso Technologies, and Thrip – for making this

project possible.

 2

Abstract

VoIP has become a cheap alternative to using the traditional phone network. Many

people however don’t have access to a computer and require hardware VoIP phones.

The Palm 1 is a cheap VoIP phone that is currently being used at Rhodes University.

The phone does however have a few negative features, which can be improved. It

comes with an API which allows it to be reprogrammed and all of its source code is

available to the public. This report describes the hardware and software modules that

form the phone, and how this enables the phone to be customised in order to improve

some of its features.

 3

Contents

CHAPTER 1: INTRODUCTION...5
1.1. INTRODUCTION ...5
1.2. VOIP HISTORY ..6
1.3. COMPARISON OF COST AND FUNCTIONALITY...7
1.4. ILANGA AND ASTERISK...8
1.5. PROBLEM AND SOLUTION ...9

CHAPTER 2: PA1688 HARDWARE ..10
2.1 CHIP STRUCTURE ..10
2.2 CHIP ARCHITECTURE ..12

2.2.1 Controller ...12
2.2.2 DSP ..13
2.2.4 SDRAM Interface ..14
2.2.5 AC97 Codec...14
2.2.6 Keyboard interface...14
2.2.7 Network interface...15

2.3. PALM1 HARDWARE ...15
2.4. BANK SWITCHING ...16

CHAPTER 3: SOFTWARE..17
3.1. DATA STRUCTURE ..17
3.2. DMA BUFFER STRUCTURE ..19
3.3. PROGRAM STRUCTURE..21

3.3.1. Languages and Code Structure ...21
3.3.2. Program Flow..22

3.4. API LIBRARIES ...24
3.5. DISPLAY..25

CHAPTER4: DEVELOPMENT ENVIRONMENT AND COMPILING............27
4.1. COMPILER AND ENVIRONMENT ...27
4.2. OTHER COMPILERS ...28
4.3. COMPILING ...28
4.4. UPDATING FIRMWARE...29
4.5. UPGRADE ISSUES ..30
4.6. FAILURE RECOVERY..31

CHAPTER 5: CHANGES IMPLEMENTED ...33
5.1. MODIFYING THE DISPLAY AND SHOWING THE TIME33

5.1.1. Modifying message strings ..33
5.1.2. UI update handler...34
5.1.3. Displaying the time ..35

 4

5.2. MISSED CALLS ..37
5.2.1. Storing miss call data ...37
5.2.2. Showing if there is a missed call..38

5.3. MUTE BUTTON..40
5.3.1. Key Event Handler...40
5.3.2. Muting the input Volume...41

5.4. HIDING THE ILANGA PASSWORD...42
5.5. FEATURES NOT IMPLEMENTED ..44
5.6. IMPLEMENTATION CHALLENGES ...45

CHAPTER 6: CONCLUSION AND FUTURE WORK ..47
6.1. CONCLUSION...47
6.2. FUTURE WORK ...47

6.2.1. Phone Security ...48
6.2.2. Encrypting the media stream ...48

REFERENCES...49

 5

Chapter 1

Introduction

This chapter introduces Voice over IP (VoIP) and gives a history of the trend in

telecommunications. The need for a cost effective VoIP end device will be

highlighted, and a comparison between the cost and functionality of VoIP devices will

be discussed. Finally, the problem statement for this project and the solution will be

explained.

1.1. Introduction

The phone has been the preferred way to communicate since the 1900’s. The phone

network grew and now almost everyone in the developed world has access to a

handset. Until recently the phone network was the largest communication network in

existence, providing voice and fax services to billions. Unlike the phone network, the

internet is a public network and connection to it is cheap, costing a local call at the

most. When the internet started to grow and become more popular, email was soon

adopted and could be used to send documents anywhere in the world for free. As

technology grew and internet connection speeds started increasing, people started to

make voice calls using this vast network.

Organizations with network infrastructures in place could also start replacing their

private branch exchange systems with cheaper VoIP systems. Calls to offices in

different geographical locations could also be routed over an existing data link rather

than having to pay for a costly national or international call.

It is now possible to call someone anywhere in the world for only the price of the

connection to the internet. The problem with this is that people like to use things that

they know and understand. Everyone knows how to use a phone, but you cannot use a

 6

normal phone to make calls over the internet. Because of this, people started

developing techniques to make people more comfortable with using VoIP, by making

the interface as much like a traditional phone as possible.

1.2. VoIP history

The first way to communicate by VoIP was by running software on a PC. Vocaltec,

Inc. released the first internet phone software in 1995 [5], with software that was

designed to run on a 33MHz 486 PC. There are still many software phones which

allow you to communicate with VoIP using a PC. These software phones essentially

turn the PC into a phone by providing similar interfaces of a conventional phone. The

PC requires speakers, a microphone and an on-screen button display for dialling.

These software phones work well, however a computer is needed to perform the

encoding and decoding of audio and sending and receiving of network packets. The

user is also required to be computer literate and many of today’s phone users don’t

necessarily know how to use a computer.

Using phone adapters [7] is another way to enable VoIP services. These devices allow

you to convert a conventional phone into an IP phone. These devices typically have

two interfaces: an Ethernet interface and an analogue phone interface. These devices

allow you to have more than one phone device on a single Ethernet link. By using a

phone adapter, a phone and a fax machine can be operated on the same Ethernet link

with different numbers, essentially mimicking two different phone lines. These

devices allow users to keep their old phones, while making it possible to call on an IP

network.

The use of phone adapters is a way to enable VoIP with traditional phones, however

one can not use adapters forever and eventually traditional phones will stop being

produced. This has caused developers to start manufacturing phones specifically for

VoIP. These phones plug directly into an Ethernet port and have a built in processor

for handling Ethernet and IP packets. These phones come in a variety of form factors,

feature sets and user interfaces [14]. The primary distinction between phone forms is

if they are designed for desktop or mobile use. Desktop phones are typically used on

 7

an office desktop and usually have a 2 line LCD display. Mobile phones are smaller

and are portable, some may have a base station that connects to the network while

others use an 802.11 network for connectivity.

Rhodes University is currently using hardware VoIP phones on its network. One of

these phones is the Palm1 from Centrality Communications. This phone is cheap

compared to other hardware VoIP phones, but does lack some of the functionality of

more expensive VoIP phones. The next section describes the trade-off between cost

and functionality in VoIP phones.

1.3. Comparison of cost and functionality

VoIP phones are becoming very popular and there are a wide variety of them

available. As with most modern devices there is a trade-off between the cost and

functionality of these phones. Two phones will be discussed with regard to their cost

and functionality: the Palm1 from Centrality Communications, [2] and the IP10S from

Swiss Voice [13].

The Palm1 and Swiss Voice are desktop phones that have 2 Ethernet connections (this

allows the phone to act as a switch and lets you plug in a PC to the phones freeing up

an Ethernet port). They also support the common VoIP protocols: SIP, H.323, MGCP;

as well as common IP protocols such as DHCP. Most of the low level features of the

phones are very similar, as well as features such as call lists, number lists and speed

dialling.

One thing that is quickly noticeable is the overall quality of the phones. The Palm1 is

bulkier and the plastic used is of lower quality than that of the Swiss Voice phone.

The display of the Swiss Voice is also better quality having a 128x64 pixel full

graphic display rather than a two line array of 8x5 character blocks as in the case of

the Palm1. The Swiss Voice phone also supports power over Ethernet while the

Palm1 must be plugged in to an AC outlet. This is important, as in traditional

telephony a simple phone does not need to be plugged in to mains power and can

operate off the voltage supplied through the phone cable. The Palm1 also has some

 8

annoying features such as constantly displaying the firmware version on the display,

and flashing an LED whenever there is network traffic.

Some IP phones go one step further from being just a replacement for a traditional

phone. Cisco Systems range of phones for example can support additional information

services including XML capabilities. XML-based services can be customized to

provide users with access to a diverse array of information such as stock quotes,

employee extension numbers, or any Web-based content [3]. These phones are

primarily for users who want top of the range equipment. Most customers who can

afford Cisco Systems phones will have computers that can provide similar

functionality anyway. As mentioned before, the Swiss Voice is a better quality phone

which costs around R800. The Palm1 is cheaper at around R450, and performs the

same functions as the Swiss Voice.

1.4. iLanga and Asterisk

iLanga is a computer based PBX which was built in the Computer Science department

at Rhodes University. The main component of iLanga is Asterisk. Asterisk is an open

source, converged time division multiplexing (TDM) and packet based

communication system [9]. iLanga also consists of two other components, they are:

SIP express router and Open H323 gatekeeper [9].

The Palm1 is used as an end device to iLanga within the Computer Science

department at Rhodes University, and was recently provided to students in residence.

Because the Palm1 is commonly used as an end device to iLanga, it would be

preferable to customise some of the features of the phone, so that it works better in the

iLanga environment.

The use of iLanga is free, however it does have connections to the external phone

network. Dialling to an outside line is billed for and requires the authentication of the

user. The user will be asked to enter their details while on the phone, the problem with

this is that the phone displays all the characters when they are pressed on the keypad,

 9

therefore the phone will also display the password on the display. A way to conceal

the password would be a good feature to be implemented.

Asterisk also provides voicemail accounts. When a user receives a voicemail

message, the user is notified by email. It would also be nice for the user to be notified

on the display of the phone. This would be made possible by a SIP notify message,

which provides support for message waiting indicator messages [8].

1.5. Problem and Solution

The decrease in cost to connect to the internet has caused many people to start using

VoIP. The majority of people however do not have access to a computer and a

cheaper way of gaining access to VoIP is needed. Hardware VoIP phones are still a

new technology and are therefore are quite expensive. A cheap VoIP phone has been

found and is being used at Rhodes University. The phone has a few negative features

and could be integrated better with iLanga. The Palm1 comes with an API which

allows it to be re-programmed, and all its source code has been released to the general

public. Because of this, the phones negative features can be improved to make it a

cost effective solution to providing access to VoIP.

In order to fix the negative features of the phone, the hardware and software of the

phone will need to be understood. A good understanding of the API functions will

also need to be gained, as well as the tools used to compile the code and update the

phones firmware. The improvements will have to be implemented in the code, and the

phone will need to be tested to see whether the changes were successful. The

remainder of this report will address these negative features, along with a detailed

description of the steps I have taken to rectify the problems.

 10

Chapter 2

PA1688 Hardware

This chapter gives an explanation of the hardware used in the Palm1 IP phone. The

structure of the PA1688 chip will be discussed, as well as its architecture. The

peripheral hardware will also be discussed in some detail. Most of the content from

this chapter was obtained from the phones development guide [1].

2.1 Chip Structure

The Palm1 phone is powered by a PA1688 processor which is manufactured by

Centrality Communications. The PA1688 is a single chip which consists of a

controller, dual processor, digital signal processor and other interfaces for SDRAM,

flash memory, and AC97 audio chips. By supporting common peripheral interface

chips which are well supplied and low in cost, the overall manufacturing cost of the

phone is reduced. The chips small die and software size make the chip itself a low

cost solution for phone manufacturers. It also allows customisation for different

systems with different customer requirements [10]. Figure 1 below gives an overview

of the structure of the PA1688 chip, as well as the buses linking each part of the chip.

 11

The core of PA1688 chip consists of two parts.

• Controller Enhanced Intel MCS8051 instruction compatible controller. This is

used to control general purpose tasks such as dealing with key presses and

updating the display. It also handles the Ethernet protocols such as TCP/IP and

DHCP and the VoIP protocols such as H.323 and SIP. The operation rate of the

PA1688 chip is 50 MHz, taking between 4 and 8 clock cycles per instruction. This

is equivalent to a standard MCS8051 processor operating at 100MHz due to the

integrated controller.

• An ADSP2181 instruction compatible digital signal processor. The main purpose

of the DSP is to compress the raw digital audio from the AC97 chip into one of

the VoIP audio formats, as well as decompress from these formats into

uncompressed audio. The phone supports the following audio codecs: g729,

g7231, g711u, g711a, GSM, iLBC. The DSP runs at 33MHz, equivalent to the

standard 2181 DSP. By having a dedicated chip to handle compression /

decompression of audio, the main processor can be much less powerful while still

being able to perform general purpose tasks.

Figure 1: Structure of the PA1688 chip [1]

 12

Apart from the two core components mentioned above, the PA1688 chip also has

interfaces for RS323, USB, SDRAM, AC97codec, keypad and LCD display. RS232

and USB are not used in the phone at present.

2.2 Chip Architecture

This section describes the architecture of the chip, including the memory architecture

of the controller and its peripheral interfaces such as SDRAM and flash memory. An

understanding of the memory architecture is required for Chapter 3.

2.2.1 Controller

The controller core consists of the main controller as well as the CPU. The CPU is an

8 bit micro-controller and is completely compatible with the Intel 8051 instruction set.

The controller has an internal cache memory of 256 bytes and 64Kb of external data

memory. Of the 64Kb of external memory 4.5 Kb can be used for program data, the

remainder is allocated for internal registers, DSP memory allocations, and memory

exchange buffers. As can be seen in figure 2, the 4.5Kb of program data memory

consists of a 512 byte data exchange buffer which is used to transfer data to and from

the larger amount of SDRAM. The speed at which these various types of memory can

be accessed differs greatly, with internal cache being the fastest and SDRAM being

the slowest. The variable types that can be used to access the different memory spaces

will be discussed in Chapter 3.

 13

2.2.2 DSP

The DSP is an ADSP2181 compatible instruction set DSP and is used for specific

processing tasks such as encoding and decoding audio. The controller manages the

execution of the DSP and transfers data to and from the DSP through the 512 byte

exchange buffer located in the controller core. None of the code written for the DSP

was studied or modified during this project and no further investigation into the

operation of the DSP was needed.

2.2.3 Program Flash Interface

The PA1688 has an integrated interface for flash memory. The interface supports 8 bit

data line width flash memory up to 16MB. Only the first 8MB can be used for

programming content. The flash memory contains all the program memory as well as

initializing data. The main controller fetches its instructions from the program flash

while running. It therefore has a similar function to read only memory (ROM),

however unlike with ROM, flash memory can be read and erased one sector at a time.

Figure 2: Controller Memory Structure [1]

 14

2.2.4 SDRAM Interface

The PA1688 supports up to 16MB of SDRAM. The SDRAM is used for temporary

data such as AC97 and DSP buffers as well as other data such as missed, answered

and dialled calls. When the phone boots, all TCP/IP address and routing information

is loaded from the flash memory into SDRAM. The content of the SDRAM is

separated into blocks with some blocks reserved for programming use.

Because the MCS8051 is an 8-bit controller it can only address up to 256 bytes. In

order to address the entire 16MB of SDRAM, 3 pointers are needed, giving an

effective 24 bit pointer. The 16 MB can therefore be regarded as 256*256*256. The

SDRAM is therefore broken up into 65536 blocks of 256 bytes, and the pointers

consist of a high-byte index, a low-byte index and a length pointer. The use of these

pointers will be explained further in Chapter 3.

2.2.5 AC97 Codec

The AC97 chip is used to convert analogue audio to digital audio and vice versa. The

phone has two microphones and two speakers, one pair for the handset and one pair

for when the phone is in speaker / hands free mode. The sound signal is

decoded/encoded at 8 KHz which is the sampling rate used in most VoIP codec’s.

When the phone is in operation the controller, copies the uncompressed digital audio

from the AC97 codec into the SDRAM voice buffer. The DSP then gets the

uncompressed audio from the buffer, encodes it to the selected VoIP codec and puts it

back into SDRAM. The controller then adds the RTP / TCP/IP headers and sends the

packet over the network. The reverse occurs when a packet is received from the

network, which eventually gets played as analogue sound to one of the speakers.

2.2.6 Keyboard interface

The CMOS Logic chip used in the PA1688 for the keypad input has several pins

which create a 3x4 array. This is enough for a traditional phone that only has 12

 15

buttons, however it is not enough for the IP phone which has many other functions

and the amount of pins are expanded using programmable IO to create a 4x7 array.

2.2.7 Network interface

The network interface is a NE2000 10MB interface which is used in most 10M

network cards.

2.3. Palm1 hardware

There are different variations of the PA1688, specifically regarding the type and

amount of Flash Memory and SDRAM. Although there are a large number of phones

with different designs with regard to button layout and casing, there are only a few

different hardware designs. The Palm1 is based on a variation of the PA1688 known

as the PA168s. Figure 3 shows a picture of the Palm1 phone.

The PA168s contains the PA1688 chip and uses 1MB of AM29LV008T memory

from AMD. It also has 2MB of SDRAM.

The way the code is organised in the flash memory depends on what flash memory is

being used. Each different type contains a different number of sectors of different

sizes. The AM29LV008T memory used in the PA168s design contains fifteen 64Kb

sectors, a 32Kb sector, a 16Kb sector and two 8Kb sectors. Because writing and

reading from smaller sectors is much faster all the phones settings are stored in the

first of the 8Kb sectors. This enables the phone to update its settings much faster than

if the settings were in a larger sector.

Figure 3: Palm1 IP phone

 16

2.4. Bank Switching

As mentioned previously the controller only has 64 KB of external memory and can

only address up to 64 KB. This is not enough for all the code needed to control the

phone and so bank switching is used.

Bank switching allows the controller to access more memory than it can actually

address. The PA168s has 1MB of flash memory however the controller can only

address 64 KB. With bank switching, the code is split up into different segments and

during execution the controller switches between these segments, allowing the code

size to be much bigger [6]. The flash memory used is split up into 64 KB sectors,

allowing 1 segment of code to fit into 1 sector of memory. The flash memory used in

the PA168s has fifteen 64 KB sectors and the size of the final binary code file is 960

KB (15*64KB) when compiled.

The way the code is split into the different banks as well as how to switch between

banks is discussed in Chapter 3.

 17

Chapter 3

Software

All the code for the phone has been released to the open source community, with the

recent addition of all the phones libraries. This chapter describes the data structures of

the PA1688 chip and how they can be used in code. The structure of the DMA buffer,

which is used to access the SDRAM, is also discussed. Finally the structure and flow

of the code which controls the phone is explained.

3.1. Data Structure

The MCS8051 micro-controller has several data buffers, these buffers are controlled

with different variable types. By using the different variable types correctly, one can

improve the efficiency of the program. The different variable types that correspond to

each memory type will now be described separately.

Figures 4 and 5 show a graphical representation of the allocation of these data types,

highlighting the size and position of each data structure.

• data

This is located in the internal cache of the controller. Its address range is from 0 –

127 bytes. Because the data is located in the internal cache it can be written to and

127 25532 47

bit
data idata

Figure 4: Internal cache memory allocation

0

 18

read from faster than the other variable types, however there is little space

available.

• idata

This is also located in the internal cache however it is used for the program stack.

It address space is from 128 – 255 bytes and the stack pointer moves from the end

of the address space to the beginning.

• bit

The bit type is also located in the internal cache in the 0x20 - 0x2f address

space. The read / write speed is the same as data and idata but every variable

uses only one bit. The length of this field is 16 bytes or 128 bits allowing for 128

variables.

• xdata

This data type is located in the built in 4.5 KB of SRAM in the controller. The

address range is from 0x6000 to 0x71FF. Because this data is located outside

the controller core it is slower than data and idata. The 4.5 KB or SDRAM is

divided into two parts. The first 4 KB can be addressed by the xdata type. The

remaining 512 bytes can also be addressed by the xdata type but is also used as

a DMA buffer used to access the SDRAM.

• code

The code type is located in the flash memory outside the controller and is 64 KB

in size. Because the flash memory is located outside the controller on a separate

interface it is the slowest variable type to access.

0xFFFF0x6000 0x71ff

xdata

Figure 5: Controller SRAM memory allocation

0x0000

......
DMA buffer

0x7000

 19

The data fields described above correspond to the following data types which can be

used in the code for the phone:

• DCHAR, DSHORT, DLONG: Used to define char, short and long variables in the

data field.

• BOOLEAN: Used to define Boolean variable in bit field.

• XCHAR, XSHORT, XLONG: Used to define char, short and long variables in the

xdata field.

• CCHAR, CSHORT, CLONG: Used to define char, short and long variables in the

code field.

• PXCHAR, PXSHORT: Pointers to XCHAR or XSHORT.

• PCCHAR, PCSHORT: Pointers to CCHAR or CSHORT.

3.2. DMA buffer structure

The DMA buffer is located in the last 512 bytes of the xdata memory space of the

controller. The DMA buffer is used whenever the SDRAM is written to or read from.

In the code for the phone there are 4 buffers defined as follows:

Sdram_pDataCache 0x7000

Sdram_pDataCache1 0x7080

Sdram_pDataCache2 0x7100

Sdram_pDataCache3 0x7180

Each of these buffers is 128 bytes in length giving a total of 512 bytes. With the

following two functions and the buffers above, it is possible to read from and write to

SDRAM. The two functions are as follows:

SdramRead (iIndexHigh, iIndexLow, iLength)

 20

SdramWrite (iIndexHigh, iIndexLow, iLength)

SdramRead will copy the data at the specified address in SDRAM to the beginning of

the DMA buffer.

SdramWrite will copy the data in the DMA buffer into the specified address in the

SDRAM.

For example if one wanted to read the data in SDRAM at the address 0x041125, it

would be done in the following way.

iIndexHigh = 0x04

iIndexLow = 0x11

iLength = 0x25 = 37, (37 / 4) + 1 = 10

iLength is calculated as a DWORD (double word) so it must be divided by four.

The data in the SDRAM can be copied into the DMA buffer using the SdramRead

function.

SdramRead (0x04, 0x11, 10);

The data will now be in the DMA buffer (Sdram_pDataCache) and can be accessed

directly. The specific byte of data can be obtained by using the last two hexadecimal

digits as the offset.

someData = Sdram_pDataCache[0x25];

Data can be written to SDRAM by first writing the data into the DMA buffer and then

calling the SdramWrite function as described above.

 21

3.3. Program Structure

This section describes the source code which is distributed with the phone. An

explanation of the languages used and the overall structure of the code will be given.

The basic flow of the code when the phone boots will also be explained.

3.3.1. Languages and Code Structure

All the code for the phone is written in a specialised form of C. As explained above

there are different variable types for the different areas of memory space. If one were

to declare a character variable in flash memory then the type would be CCHAR, one

could not use normal C variable types such as char or int. The phone also comes

with a tool which allows its settings, ring tones, speed dials and other options to be set

from a PC. This tool is also used to update the phones firmware over the network. All

the source code for this tool is available and is written in C++ using Microsoft’s

Visual Studio 6 as a development environment.

The code for the phone is distributed in a compressed format. When uncompressed a

root directory called PalmH323 is created with various sub-directories in it. The

directory structure of the phones code is related to the bank switching style of the

processor. Each directory maps to a certain bank of code. For example the code for

the page0 code bank will be located in the directory \PalmH323\page0.

The code for the phones update tool is located in the directory \Palmtool. All

header files are located in the directory \inc. The batch files for setting up path

information as well as compiling are all located in the root directory. Compiling will

be explained in chapter 4.

The code that is provided by the chip manufacturers is for all the different versions of

hardware that is used with the different types of phones. The code for each different

hardware type must therefore be separated in the code. The way this is done is with

 22

the use of #ifdef statements in C. For example if a certain function was only called

for PA168s hardware then one would use the following code:

#ifdef PA168s

Function();

#endif

This method is used not only for the different hardware types but also for which of the

different VoIP protocols are being used as well as which language (English, Chinese,

etc.) is being used. These parameters are all specified at compile time.

The header files containing all variable and function declarations are not found in the

directories for each bank. They are all located in the directory \inc. Any new

function that is written should be declared in the appropriate header file. When

writing code for the phone, there are many places where memory addresses need to be

referenced. Rather than using ‘magic’ numbers in the code, one should declare

constants in the appropriate header files. This allows for easier changes and also

makes the code more readable.

3.3.2. Program Flow

The flow diagram as seen in figure 6 shows the different banks that are used as the

phone boots up. The diagram shows the program flow when using AM29LV008T

flash memory, phones types with different memory will have code banks in different

sectors and the flow diagram for these phones will be different.

 23

The controller starts executing code at page0 as seen in Figure 5. This code is used to

perform recovery, testing and read G711 dsp code from flash memory into SDRAM.

The program then switches to the next code bank depending on what type of flash

memory is used. In the PA168s the flash memory is AM29LV008T so the controller

switches to page 15 (the code in the settings directory) as shown in the code

below.

#if defined AM29LV004T || defined MX29LV004T

 SwitchPage(7);

#elif defined AM29LV008T || defined MX29LV008B || defined MT28F016

 SwitchPage(15);

In the settings code bank all the phones settings are loaded from flash memory

into SDRAM. The code for controlling the phones menu is also located here. The

controller then switches to the g723 and g729 code banks where the DSP is initialised

and DTMF and Ring data are loaded into SDRAM.

The controller switches to the next bank depending on which VoIP protocol is being

used. The protocols supported are: SIP, H323, MGCP, N2P and IAX2. In earlier

versions of the phone, the code was compiled with all protocols and the protocol to be

Figure 6: Program flow for AM29LV008T flash memory [1]

 24

used could be changed without needing to update the firmware. In later versions

however, the code became too large and the protocol to be used needed to be

determined at compile time. To change the protocol one needs to recompile the source

code and update the firmware.

Once all initialisation has occurred, the code in the main bank is run. This code is

located in the directory \main. Most of the code which deals with the normal

operation of the phone is found here. The main.c file in this directory contains the

main loop which is run when the phone has finished initialising. Here the phone runs

through the loop, running tasks such as updating the display and calling the TCP/IP

library. Other events such as key presses will generate an interrupt, which then gets

handled.

3.4. API Libraries

There are a number of functions in the API libraries which can simplify programming

greatly. It hides a large amount of low level manipulation of the PA1688, making it

more powerful and easier to use. The main functions of each library are described

below. Each library contains one .lib file in the \lib directory and one .h file in the \inc

directory.

Many of these libraries have been declared open source and the code is provided. The

code for the P_SIP library can be found in the \P_SIP directory for example.

PALM1LIB.

This is the library which is used to control the PA1688. The functions it contains all

perform low level manipulation of the controller such as setting control registers. It

also optimises assembly to make the system more efficient.

P_DSP.

This library contains all the functions for initializing and controlling the digital signal

processor. The aim is to shield the user from the internal workings of the DSP and

make it look like it is part of the main controller.

 25

P_TCPIP.

This library contains functions for the lower level network protocols such as TCP/IP,

UDP and DHCP. There are many other functions external to this library which enable

the use of higher level protocols such as FTP and DNS.

P_RTP.

This library contains the functions for the RTP protocol. RTP is used to transmit the

media stream and therefore is used whether SIP, H323 or any other signaling protocol

is being used.

P_H323 / P_SIP / P_MGCP.

These libraries contain functions for handling each of the signaling protocols

supported by the phone.

P_UTIL.

The P_UTIL library is similar to the standard function library in C. It contains

functions for string manipulation and comparison, random number generation and

conversion functions.

3.5. Display

The phone’s display consists of a 2 line display, with each line displaying 16

characters. Each line of the phones display can therefore be represented as an array of

characters. The display buffer is called _pDisplayCache and is of type XCHAR, which

is located in the controllers SRAM.

To simplify writing to the display there are three functions that can be used.

DisplayLine(PXCHAR pBuf, UCHAR iLine)

DisplayString(PCCHAR pDisplay, UCHAR iLine)

DisplayVal(USHORT iVal, PCCHAR pPrefix, UCHAR iLine)

 26

To display a string of characters the first two functions can be used. The first

argument of DisplayLine takes a pointer to an array of characters in the xdata

memory space. DisplayString takes a pointer to an array of characters in the code

memory space in flash memory. DisplayString converts the PCCHAR to a

PXCHAR and calls DisplayLine, which saves the user from doing the conversion.

DisplayVal takes both a string and a value. It displays the string as a prefix and then

displays the value afterwards. This is useful when the value needing to be displayed is

not known or can change. For example to show the volume of the phone one would

pass the value of the volume level, for example 12, and pass a prefix string of

“Volume”. The output on the display would be “Volume:12”.

All three functions also take an argument iLine. This is to indicate which line of the

phones display should be written to. The top line of the display is indicated by 0 and

the bottom line is indicated by 1. All of these functions also write to the phones

display buffer, and therefore the phone will continue displaying the same string until

the display buffer is updated to a different value.

These functions are located in the p_apps directory in the file lcd.c. This file also

contains other functions for initialising the display as well as lower level control of

the display. Although there is an easy way to display a value with a string as a prefix,

there is no function to display a prefixed value with a string after it.

In some cases it is better to have the value prefixed to the string, as in the case of

showing something like how any missed calls there are. It would be easier for a user

to read 2 missed calls than Missed calls:2. A function has been written that

will do this. This is discussed in Chapter 5.

Some other display functions can be found in the file display.c also in the directory

p_apps. These functions have more specific purposes. One such function is

DisplayOutputVol() which takes no parameters, but gets the volume level and calls

the DisplayVal function prefixing “volume” before the volume level.

 27

Chapter 4

Development Environment and compiling

This chapter describes the development environment of the project. The compiler

used to compile the code is discussed as well as the tools required to update the

phones firmware. The steps to compile the code will be explained as well as some

issues encountered while compiling, and how to recover the phone should something

go wrong. Throughout this chapter, any unreferenced content has been obtained from

[1].

4.1. Compiler and environment

There are various tools used to compile the code and update the phone’s firmware. To

compile the code, we have used the Keil7 compiler. The Keil7 compiler compiles the

C code into the 8051 instruction set that is understood by the controller. Only the

compiler and linker of the Keil suite are used and not the development environment.

The Keil compiler is meant for commercial use and is therefore very expensive for an

individual user. Keil provides a free version of this compiler that only compiles object

files up to 2 KB. This is too small for some of the phones object files and the full

firmware binary file cannot be produced. Fortunately a test version of the Keil7

compiler was obtained which is able to compile the full sized objects required to make

the firmware binary. There are other C to 8051 cross-compilers available and they

will be discussed below.

 28

4.2. Other Compilers

Another compiler that was considered was the Small Device C Compiler (SDCC)

which is a free, open source C to 8051 compiler [4]. Although this compiler would be

able to compile the code for the PA1688 micro-controller, it may not be able to

compile the code for the DSP. Another problem is that the developers of the phone

have set up all the batch files and version files to work with the Keil7 compiler. One

would require a good understanding of the SDCC compiler and would have to change

all these batch and version files in order to get the code to compile. This was outside

the scope of this project and there was not enough time to do this.

4.3. Compiling

The Keil7 compiler should be installed to the default directory otherwise the batch

files to compile the code must all be changed. The code for the phone should be

placed in the directory c:\PalmH323. A number of batch files can be seen in this

directory.

The first step in the compile process is to modify the version.h file in the \inc

directory. Here one specifies which hardware type the phone has, what protocol is

being used, as well as what language must be used on the display. The file contains a

number of commented out #define statements for each different hardware type,

protocol and language. To compile for a specific hardware type, the #define for that

hardware type should be un-commented. For example, to compile for this phone (the

PA168S), the line #define PA168S should be un-commented. The same applies for

the protocol, which should be #define SIP for the SIP protocol, and for the language.

To clean all files from a previous compile cleanall.bat can be used. This will

permanently delete all files in all directories that were created from a previous

compile including all object files and hex files. It will not delete any source code or

libraries.

 29

The setenv.bat file should then be called. This file sets up all environmental

variables and path information. If Keil7 is installed to a different directory to the

default or if the phones code is not in c:\PalmH323 then the correct locations should

be put in this file.

To compile the libraries for which the source code is available, makelibs.bat can be

used. Given no arguments it will attempt to compile all the libraries. To compile a

specific library give the name of the library as the argument. For example, to compile

the P_UTIL library enter the command makelibs p_util.

To compile each bank of code there is a file called make.bat in each of the

directories. There are also various other files for generating hex files and linking

everything together into a binary file. To simplify the whole process and to try and

speed it up a batch file has been created that does everything requiring only one

argument.

To use this batch file simply enter the command makebin <protocol> where

<protocol> is the name of the protocol. To compile for SIP type makebin sip. This

file automatically cleans all the directories and set up the environment variables. It

will compile for the PA168s in English. The final binary file will be created in the

root directory.

4.4. Updating firmware

Palmtool which is provided by the manufactures of the PA1688 chip is used to

transfer the compiled binary file to the phone over the network. The phones IP

address must be entered into Palmtool and the binary file to be transferred to the

phone must be selected. When the update process begins, the phone enters an upgrade

mode where it is unable to make or receive calls, the firmware is first transferred into

the phones SDRAM. Once all the data has been transferred over the network the

phone copies the firmware in the SDRAM to the flash memory and reboots.

 30

The firmware can also be upgraded from the web interface of the phone. Once logged

in there is an upgrade firmware button. The upgrade process occurs in the same way

as above, however it takes about 3 times longer. The times for updating the firmware

are listed below.

 Palmtool Web Interface

Copying over network 59 sec 201 sec

SDRAM to Flash 30 sec 30 sec

Total 89 sec 231 sec

It can be seen in Table 1 that updating the firmware from the web takes more than two

times longer than from Palmtool. Once the firmware has been transferred into the

SDRAM, it takes the same amount of time to copy the data into flash memory. The

difference in time between the two update methods must therefore be related to the

way the data is transferred over the network.

4.5. Upgrade Issues

Whether updating from Palmtool or updating from the web interface there are some

problems. After the firmware has been transferred to the SDRAM, the phone checks

that the file that has been uploaded is actually a firmware file, and that it is the correct

version for the phone. This however, does not work correctly, and even if the correct

firmware file is loaded to the phone an error occurs. After transferring the firmware

file over the network, Palmtool will display an error saying “invalid update method”.

The phone must then be switched off and back on again. This will cause the data in

the SDRAM to be lost and the phone will still have the old firmware.

One way to fix this problem is to set the debug mode of the phone to “no check” in

the phone settings [11]. This causes the phone not to check the firmware file and

overwrite the firmware in the flash memory. This can be dangerous as any firmware

can be written to the phone. If the wrong firmware is loaded onto the phone and the

Table 1. Update Times

 31

phone is unable to boot or go into upgrade mode then it will be impossible to correct

the problem.

4.6. Failure recovery

When there are errors in the firmware the phone may not be able to boot to a stage

where it is able to receive a new firmware file. In this case, the phone needs to be

restarted in recovery mode, so that a working firmware file can be loaded back on to

it. The remainder of this section describes what can cause the phone not to boot, and

how the phone can be recovered.

There are sometimes errors in the code that the compiler will not pick up. These errors

do however cause the phone to crash while it is booting up. During this project, this

happened when variables were not cast to the correct type, particularly when strings

were not cast as pointers to character arrays. The compiler did not give any warnings

or errors, but when the compiled firmware was loaded onto the phone, it did not boot.

When the phone has crashed during boot up, it will not be able to respond to any

update requests and it will not be possible to access the phone from Palmtool or from

the web interface.

To overcome this problem, there is a safety mechanism built into page0, which is the

first bank of code that is loaded when the phone is switched on. The code in page0

will check if the * key on the phone is pressed, and if so, the phone will go into

recovery mode. When the phone is in recovery mode it will be able to respond to

Palmtool. The errors in the code can then be fixed and the new firmware file can be

transferred to the phone.

Sometimes the phone will not be able to get an IP address and therefore can not

connect to the network. If this happens the phone can be switched off and switched on

again holding the * key. This will reset the phones IP address to the default of

192.168.1.100. To access the phone, the host PC that Palmtool is on will also need to

be configured to use the 192.168.1.* network.

 32

During the upgrade process, the phone copies its settings from flash memory to

SDRAM. The phone then copies the new firmware file into flash memory and finally,

copies the settings back to flash memory. If there is an error in the firmware however,

the phone sometimes can not copy the settings back to flash memory. If this happens,

some of the phones settings will become corrupted, and the last 3 digits of the phone’s

mac address will all be set to zero’s. In this case, the phone’s settings should be set

again and the mac address should be re-entered.

 33

Chapter 5

Changes Implemented

This chapter describes the modifications made to the phone. The implementation for

each modification will be explained. Finally some of the implementation challenges

will be discussed.

5.1. Modifying the Display and showing the time

The first change to be made to the phone was the display. The display is used to give

the user of the phone information about what it is doing and gives feedback when the

user does something. If the user picks up the handset, the display should respond,

displaying something such as ‘make a call’. An understanding of how to update the

display and where to update it was therefore essential for all the changes to be

implemented.

5.1.1. Modifying message strings

A good start to improving the phone was to change some of the strings that were

displayed on the screen. This was quite an easy task as all the strings are stored in a

single file. The file is found in the following directory: p_apps\lcd_en.c. This is

the file for all the English strings, if another language is to be used then the

appropriate file for that language should be changed.

All the message strings are stored as character arrays of type CCHAR. The strings are

thus located in the code memory space, or the flash memory. Any string declared in

 34

this file should be less than 16 characters in length as this is the maximum length that

will fit on the display. If a new string is added to the file it should also be declared in

the header file located at, inc\p_apps.h.

From here it is easy to modify the strings that the phone displays on its screen. For

example the string g_cWaitLogon[] can be changed from “Wait Logon” to

something more user friendly such as “Connecting…”. Now wherever the phone used

to display Wait Logon, it will now display Connecting….

5.1.2. UI update handler

After the phone has completed its initialisation and has connected to the server, the

function TaskLogonCompleted() is called. Welcome messages can be put here as the

function is only called once after the phone has booted. Instead of the phone showing

its hardware version when it has finished booting a welcome message is now shown.

To do this one can remove the code to display the hardware version and call the

DisplayString function as follows:

DisplayString((PCCHAR)"Welcome", 1);

This will display the string Welcome on the bottom line of the LCD display. The

DisplayString function takes a pointer to a character array as its first parameter and

therefore the string should be type cast to this type. The compiler will not pick up if

the string is not type cast, however the phone will not boot when it is switched on.

This will require the phone to be started in recovery mode and will need to be re-

flashed. The welcome string above should rather have been declared in the

p_apps\lcd_en.c file as a character array. This would allow it to easily be modified

and would reduce the chance of any type casting errors.

When the phone is in its normal state it continuously runs through its main loop.

Within this loop the function UIHandleTimer() is called on each repetition of the

loop. This function checks for certain conditions such as whether there is a call in

progress. The function also calls two other functions, DisplayNormalState() which

 35

is called whenever a call ends or the handset is put down, and

CommonUIHandleTimer() which is called when the phone is idle.

In the CommonUIHandleTimer() there is a timer called Sys_lCurrentTime. This

timer can be used to make the phone show alternate messages on its display. The

following code would alternate between showing “iLanga” and showing the phone

number.

if (!(Sys_lCurrentTime % 20))

{

 DisplayLine(Sys_pLocalNumber, 1);

}

else if (!(Sys_lCurrentTime % 15))

{

 DisplayString((PCCHAR)g_cReady, 0);

}

5.1.3. Displaying the time

One goal of improving the display was to be able to show the time. When

programming on a computer it is relatively easy to get the time, by simply calling a

function that gets the time from the computers real time clock. In the Palm1 however,

there is no real time clock, so the time cannot be obtained in this manner. It is also

infeasible to try and use the controller’s clock as this runs in the tens to hundreds of

megahertz. Even if keeping track of real time by using this clock was possible, the

time would have to be reset each time the phone is switched on.

Since this is an IP phone, it will always be connected to the network, therefore a more

efficient and accurate solution is to obtain the time from a time server. Rhodes

University has a time server which supports the SNTP or simple network time

protocol. When studying the code for the phone it was found that SNTP was already

implemented.

 36

The function that is used to send a request to the time server is

SntpDisplayHandleTimer(). When this function is called, it stores the time value in

a variable called Sys_lCurrentTime. To display the time and date on the display

there is a function called GetDateTimeDisplay. This function has been modified to

improve how the time value is formatted on the display. It takes two arguments, and is

defined as follows:
PXCHAR GetDateTimeDisplay(BOOLEAN bLcdDisplay, UCHAR timeOnly)

The first argument is to say whether the time string is to be returned as a string buffer

or to be written to a buffer in SDRAM. The second argument is to specify whether the

time, date or both should be written to the display buffer. The function returns a type

of PXCHAR which is a pointer to the temporary display buffer created in the

function.

The SNTP handler also has a variable called Sntp_bFinished which will be set to

true when the phone has received the time from the time server. Using this variable,

one can display a different string if the phone has been unable to connect to the time

server. The code below shows how the time can be shown on the display.

1 if (Sntp_bFinished)

2 {

3 DisplayLine(GetDateTimeDisplay(TRUE, 1), 1);

4 DisplayLine(GetDateTimeDisplay(TRUE, 2), 0);

5 }else{

6 DisplayLine(Sys_pLocalNumber, 1);

7 }

The GetDateTimeDisplay function returns a pointer to a character array, which is

what the DisplayLine function takes as its first argument, and therefore no

conversion or type casting is necessary. Line 3 will display the time on the bottom

line of the display, line 4 will display the date on the top line of the display, and line 6

will display the phones extension number, should the phone fail to connect to the time

server.

 37

5.2. Missed calls

One feature that the traditional phone lacks is the ability to tell if there had been a call

that was not answered. In cell phones this notification is commonly known as a

missed call. The Palm1 does record all the calls that are missed and has a dedicated

button for displaying these missed calls. The problem is that the phone does not

record which of the missed calls are new, neither does it inform the user that there

was a missed call. The user shouldn’t be expected to have to check each time they

come back to the phone to see if they missed a call. The phone should rather display if

there are any new missed calls.

5.2.1. Storing miss call data

The phones missed call data is stored in its SDRAM in the area where dialled calls,

and answered calls are stored. The space reserved for miss call data is 3840 bytes,

which is for a maximum of 40 missed calls.

The first way that was thought of to display if there were any missed calls was to read

this miss call data from SDRAM and then count how many missed calls there were.

This would not work however, as the phone does not keep any record of which of

these missed calls were new, and therefore the phone would always show that there

were missed calls. One way to get around this would be to clear all the missed calls

when the user presses the missed call button. This would not be ideal though, as

sometimes details of old missed calls may be needed.

Another way to keep track of whether there are any new missed calls is with the use

of a separate variable, which would be incremented each time the phone received a

missed call and cleared when the missed call button was pressed. The value of this

variable would then be displayed on the screen if it was greater than zero. This

technique was implemented in the code by creating a new variable named missed.

The variable was initialised to zero and was used as explained above. The phone

should have shown that there was a missed call, but when tested, it did not. The

problem was that the variable was created in the main segment of code. The variable

was also incremented in another bank of code which handles receiving calls. During

 38

the bank switching process it was possible that the variable was overwritten back to

zero. One way of ensuring that a value will not be changed during the operation of the

phone is to store it in SDRAM.

Using the same method as described above, a flag could be set in SDRAM to keep

track of whether there had been a missed call. There is a block in SDRAM which is

used to store flags, a reserved part of this block was used to store the missed call flag.

Before the flag can be used, it should be initialised. The flag should be initialised to

have a value of zero when the phone is starting up. This way of storing the flag did

work and will be described in more detail below.

5.2.2. Showing if there is a missed call

As described in chapter 3 the SDRAM needs to be accessed through the DMA buffer.

The function to read from SDRAM takes several arguments which are derived from

the memory address that is to be accessed. The reserved memory space in SDRAM

that is to be used has the address 0x000126. The high index is therefore 0, the low

index is 1 and the length is 10. When reading the flag the DMA buffer should be

offset by 26 hex, which is 38 in decimal. The following constants have thus been

defined in case the missed call flag should change to a different memory address.

#define MISSCALLFLAG_HIGH 0

#define MISSCALLFLAG_LOW 1

#define MISSCALLFLAG_LENGTH 10

#define MISSCALLFLAG_CACHE 38

The following functions initialise the missed call flag to zero before it is ever read.

XBYTE[Sdram_pDataCache+MISSCALLFLAG_CACHE] = 0;

SdramWrite(MISSCALLFLAG_HIGH, MISSCALLFLAG_LOW, MISSCALLFLAG_LENGTH);

As mentioned above, the phone does record call data such as received and missed

calls. All these functions are stored in main\callrec.c and this is a good place to

modify the miss call flag. Within this file there is a function which is called whenever

 39

the phone exits its call mode. If the user did not answer the call the call type will be

set to be a missed call. The code below shows how the missed call flag is incremented

if the last call was missed.

if (iType == CALL_TYPE_MISSED)
{

 //set the missed call flag in sdram

 SdramRead(MISSCALLFLAG_HIGH,MISSCALLFLAG_LOW,MISSCALLFLAG_LENGTH);

if((USHORT)XBYTE[Sdram_pDataCache+MISSCALLFLAG_CACHE] < 15)

 XBYTE[Sdram_pDataCache+MISSCALLFLAG_CACHE]++;

 SdramWrite(MISSCALLFLAG_HIGH, MISSCALLFLAG_LOW, MISSCALLFLAG_LENGTH);

}

In the same file there is a function which is called when one of the call record buttons

is pressed. Here it can be checked if the missed call button was pressed and if so, the

missed call flag can be cleared to zero. Now that the flag is keeping track of how

many missed calls there are, the number of missed calls needs to be displayed on the

phone. There is a functions which displays a value with a prefixed string, but it would

look better if the value was displayed before the string in this case. A function which

does this was created, called DisplayVal2. A function called isMissedCall was

also created to help determine if the missed call flag is above zero. The code below

was written in the display update method and will show if there are any missed calls

until the user presses the miss calls button, whereby the miss call flag will be set to

zero.

if(isMissedCall()){

 SdramRead(MISSCALLFLAG_HIGH, MISSCALLFLAG_LOW, MISSCALLFLAG_LENGTH);

 if((USHORT)XBYTE[Sdram_pDataCache+MISSCALLFLAG_CACHE] == 1)

 DisplayVal2((USHORT)1, (PCCHAR)"Missed Call", 0);

 else

DisplayVal2((USHORT)XBYTE[Sdram_pDataCache+MISSCALLFLAG_CACHE],

(PCCHAR)"Missed Calls", 0);

}

 40

5.3. Mute Button

Some phones have a mute button, which allows the user to talk without being heard

on the other end of the line. This could be a useful feature when dialling into a

conference room, which would allow the user to have a private discussion on their

end, without interfering in the conference room.

In order to mute the input of the phone, a button would have to be pressed. There is a

button on the phone with the description “Flash”, which is used to save speed dials. It

was decided to use this button as the mute button as speed dial numbers can only be

saved when the phone is idle, and the input volume should only be allowed to be

muted while in a call. Because only one button was available for use, it would have to

be a toggle button, muting and un-muting the phone.

5.3.1. Key Event Handler

The code for handling key presses can be found in the file p_apps\key.c, here each

key is given a character value. The number keys are given their respective number

characters. The function keys of the phone are given character values from ‘A’

upwards. If the key pressed was a function key, HandleFunctionKeys() will be

called.

To find out which character is associated with which key the phone can be started in

recovery mode. In this mode the phone will display the character associated with a

certain key when it is pressed. In this way it was found that the “Flash” button had the

character “J” associated with it.

The HandleFunctionKeys() function is found in main\keypad.c. The file actually

has multiple declarations of this function, one for each hardware version of the phone.

The one used when compiling will be the one whose hardware version is defined.

Therefore the HandleFunctionKeys() which should be modified for the PA168s is

the one which is located under the statement #ifdefined PA168s. Here, the

 41

function to mute the input volume can be called if the key associated with the

character “J” is pressed.

5.3.2. Muting the input Volume

Because the mute button is going to be a toggle button, the mute status will have to be

kept in order to keep track of whether the input volume has been muted or not. A

mute flag was thus created and stored in SDRAM, in the same way as the missed call

flag was.

There are functions in the file main\ac97_0.c which are used to increase or decrease

the output volume of the phone, however there was no function to set the input

volume. When looking at the functions to change the output volume, it can be seen

that a function Ac97WriteReg is being called. This function writes a value to a given

register on the AC97 chip. To mute the input volume it can be called as follows.

Ac97WriteReg(AC97_RECORD_GAIN, AC97_MUTE_HI, AC97_MUTE_LO);

When the mute button is pressed the volume should be set to mute or back to its

original volume, by writing to the AC97 chip. The display should be updated telling

the user if the volume is being muted or un-muted, and the mute status flag should

also be toggled. This should only happen when the phone is in call mode. The code

required to do this is shown below.

if(IsCallMode())

{

 SdramRead(MUTEFLAG_HIGH, MUTEFLAG_LOW, MUTEFLAG_LENGTH);

 if((USHORT)XBYTE[Sdram_pDataCache+MUTEFLAG_CACHE] != 0){

 //set mute to off

 XBYTE[Sdram_pDataCache+MUTEFLAG_CACHE] = 0;

 SdramWrite(MUTEFLAG_HIGH, MUTEFLAG_LOW, MUTEFLAG_LENGTH);

 Ac97WriteReg(AC97_RECORD_GAIN, AC97_FULLVOL_HI, AC97_FULLVOL_LO);

 DisplayString((PCCHAR)"Mute Off", 1);

 }else{

 //mute the input volume

 42

 XBYTE[Sdram_pDataCache+MUTEFLAG_CACHE] = 1;

 SdramWrite(MUTEFLAG_HIGH, MUTEFLAG_LOW, MUTEFLAG_LENGTH);

 Ac97WriteReg(AC97_RECORD_GAIN, AC97_MUTE_HI, AC97_MUTE_LO);

 DisplayString((PCCHAR)"Mute On", 1);

 }

}

The mute status is constantly displayed on the phone will the call is still in progress.

This is done in the UIHandleTimer function by checking if the mute flag is set. If it

is, the string “Volume Muted” is displayed on the screen. The user may however

forget that the volume is muted when the call has ended and therefore the volume

should be set to normal when a new call is started. In the file main\vtask.c there is a

function Call_Initialize() which is called whenever a new call is started. Code

required to set the input volume to normal was written in this function ensuring the

volume is never left muted from a previous call.

5.4. Hiding the iLanga Password

The previous modifications have all been for general purpose uses of the phone, while

this one is specifically for iLanga. It was discussed in the first chapter that iLanga can

be set to ask the user for authentication when dialling out to the phone network. A

way to conceal the password from being typed onto the screen was thus needed.

In order to conceal the password the phone would have to know which characters are

part of the password. The way one enters their details when dialling externally is by

entering their phone number, followed by their password, followed by the # key.

Therefore a good way of identifying the password is to check if the last digits entered

match the phone number. If so, the next characters entered should be replaced with a

“*” and this should carry on until “#” is pressed.

Whenever a number key is pressed on the phone it is saved to a key buffer called

Key_pBuf. This buffer will contain the string of numbers that have been pressed since

the call was started. The last key that was pressed can also be obtained from the

 43

variable Key_iCurrentID. The function that is called when a number key is pressed is

handleNumberKeys(), this function is responsible for tasks such as playing the

DTMF tone associated with the number key. Changing the value of Key_iCurrentID

to a “*” in this function would make sure that the password characters were not

displayed, but would interfere with the operation of the phone. A better place to

change the value of Key_iCurrentID would be just before it is saved to the key

buffer.

There were two functions which were useful in comparing and finding the length of

strings. They are p_strlen_x which returns the length of a string and p_strcmp_x2x

which compares if two strings are equal. The problem with using the string compare

function is that it can only compare two exact strings. A user may have entered other

numbers before they were required to enter the phone number to dial externally.

Suppose the phone number is 2000, if the key buffer contains the numbers 12342000,

then the next character should be replaced with a “*”. However there is no function

that returns a substring, and the string compare function can only compare exact

strings. The string compare function does however take pointers to a character arrays

as its arguments. The pointer to the key buffer could be moved to point at the correct

place in the character array. The arithmetic to make the pointer point to the beginning

of the phone number is [start of key buffer] + [length of key buffer] – [length of

phone number]. The code below shows how this is done.

if(p_strlen_x(Key_pBuf) >= p_strlen_x(Sys_pLocalNumber))

{

if(!p_strcmp_x2x((PXCHAR)(Key_pBuf+(p_strlen_x(Key_pBuf)-

(p_strlen_x(Sys_pLocalNumber)*1))), (PXCHAR)Sys_pLocalNumber))

 {

 PassChars = 1;

 }

 if(PassChars)

 {

 if(Key_iCurrentID == '#')

 PassChars = 0;

 }

}

 44

It can be seen that the number is not changed to a “*” immediately, but a flag is set,

indicating that the number is actually a password character. In the function which

saves the last pressed key to the key buffer, the flag is checked to see if the number

should be replaced with a “*”. This can be seen in the code below.

iLen = p_strlen_x(Key_pBuf);

if(PassChars)

 Key_pBuf[iLen] = '*';

else

 Key_pBuf[iLen] = Key_iCurrentID;

When the “#” is pressed the password character flag will be cleared and the remaining

numbers will be displayed as normal.

5.5. Features not implemented

One of the features of the phone to be improved was to use the status LED for

something useful, rather than having it flash whenever the phone receives network

traffic. The LED could have been used to indicate that there was a missed call instead

of showing it on the display, or it could have been used to indicate that the phone’s

input volume is muted in case the user forgets.

In the file palm1lib\Led.c there are functions to turn the LED on and off, as well as

to make it blink. These functions are called throughout the boot process to indicate the

status of the phone. When the phone is running through its main method these

functions are not called at all, so another function must be calling the Led_Blink

function. There is a call to the TcpipHandleTimer() function in the main loop which

was believed to cause the LED to blink. This was an API call and the source code for

the TCIP/IP library was not available. To try and stop the LED flashing a call to

Led_Off was placed in the code directly after the call to the TCP/IP library. When the

code was compiled and the firmware updated the LED continued to flash with no

noticeable difference. The code inside the Led_Blink function to control the LED

was then commented out and still the LED flashed in the same way.

 45

The support staff of the PA1688 [12] were then asked about the problem and it was

discovered that the LED is connected directly to the Ethernet chip. Because of this,

there is no way to control the status LED from software. The LED can be stopped

from flashing by disconnecting it from the Ethernet chip, but will not be able to serve

any useful purpose.

Another feature that was planned was to add SIP voicemail message support. As

mentioned in the first Chapter, Asterisk sends out a SIP notify message to a user’s

phone when they have received a voicemail. When investigating the SIP protocol

implementation in a new version of the code for the phone, it was found that support

for the Asterisk message waiting indicator (MWI) was already implemented. Code

was added to make the phone display the string “New message” whenever an MWI

was received from Asterisk.

This was tested with iLanga and a voicemail message was created. The user was sent

an e-mail notification that they had received a message, however, the phone did not

display that there was a new message. It was not known at this stage whether Asterisk

was not sending the SIP packets, or whether the implementation in the phone was not

correct. A packet capturer was then used with a soft-phone to see if the SIP packets

were being sent. Packets were captured from when the phone call was started until

after the user was notified by e-mail. No SIP notify packets were captured, this led to

the belief that Asterisk was not sending the packets at all. When testing with a

standalone version of Asterisk, that did not have SIP express router (SER) installed,

the packets were sent, and the phone displayed that there was a new message.

From this it can be concluded that SER is not set up to forward the packets that are

sent by Asterisk. Some configuration of SER will have to be done in order to allow

the phone to receive these MWI’s from iLanga.

5.6. Implementation challenges

It was mentioned in Section 4.4 that the time to update the phones firmware was quite

a lengthy process. When including the time to set up the compiler and compile the

 46

code and waiting for the phone to boot there is a large amount of time one has to wait

from changing the code to seeing the results. If there is a problem with the phones

firmware then the phone needs to be restarted in recovery mode and IP address

settings need to be changed. This can make implementation quite slow.

 To try and speed up the compile process a batch file was created that can compile the

code with one command. The batch file is called makebin.bat and can be used as

follows: makebin %, where % is the name of the VoIP protocol to be used, i.e. SIP,

H323, IAX2, and MGCP. This takes about 20 seconds to compile the code and

simplifies the compile process.

 47

Chapter 6

Conclusion and Future Work

6.1. Conclusion

The documentation for the Palm1 was studied with regard to the hardware and

software required to re-program it. A test version of the Keil7 compiler was installed

and the code was successfully compiled. An overall understanding of the Palm1’s

code was achieved and this allowed the various modifications to the phone to be

implemented. The implementation of these modifications also increased the

understanding of some of the more detailed operations in the code such as memory

access and event handling.

The Palm1 has also been modified to allow it to be integrated better as an end device

to the iLanga system. The Asterisk MWI implementation was also successfully tested,

however it was found that SER was not forwarding the SIP packets to the Palm1. The

Palm1’s negative features have been improved, making it a low cost, high value for

money VoIP device.

6.2. Future Work

This section will explain any future work that can be done on the phone. This work

will be partly based on the work done in this project.

 48

6.2.1. Phone Security

A big security risk with the phone is that Palmtool can connect to any phone without

authorisation; all that needs to be known is the phones IP address. This allows anyone

with access to Palmtool to update any phones firmware. If an invalid firmware file is

deliberately loaded, the phone could stop working. Palmtool also allows one to see

and change any of the phones settings, including the phones account number and

password. This would enable someone to steal these details and use another person’s

account, possibly using their credit to make phone calls.

There is a way to disable Palmtool from being able to access the phone at all. To do

this, the phones debug mode setting must be set to disable. In this mode however the

phone must be updated from the web, which is slow. It would also be a good feature

for an administrator to be able to update phones on a network remotely using a

common password. This would require the phone to check for a password before it

accepts a connection with Palmtool. This would require modification of the code for

the phone and for Palmtool for which the source code is available.

6.2.2. Encrypting the media stream

At the moment the phone uses the Real-time Transport Protocol (RTP) to transmit

audio across the network. This data is not encrypted and could be captured off the

network. A possible extension to this project would be to investigate and implement

encryption for the phone, either using Secure RTP to encrypt the media stream, or

IPSec to encrypt the IP packets being sent across the network. The phone would have

to be tested to see if its processor can handle the encryption / decryption process.

 49

References

[1] Centrality Communications (2004). PA1688 IP Phone Development guide,

Centrality Communications

[2] Centrality Communications (2004). PA1688 IP Phone Manual, Centrality

Communications

[3] Cisco Systems (2005). Cisco 7900 Series IP Phones. Cisco Systems Inc 2005.

http://www.cisco.com/en/US/products/hw/phones/ps379/

[4] Dutta, Sandeep. Small Device C Compiler. Sourceforge.net.

 http://sdcc.sourceforge.net/

[5] Dvorak, John C. Pirillo, Chris. Taylor, Wendy. (October 2003). Online! The

Book. Prentice Hall PTR.

[6] Keil Software. LX51 User's Guide, Bank Switching. Keil Software Inc 2005.

http://www.keil.com/support/man/docs/lx51/lx51_banking.htm

[7] Linksys. Feature-rich telephone service through your Internet connection.

Cisco Systems Inc 2005.

http://www.linksys.com/products/product.asp?grid=33&scid=38&prid=651

[8] Mahy, R. (August 2004). RFC3842, A Message Summary and Message

Waiting Indication Event Package for the Session Initiation Protocol (SIP).

Cisco Systems, Inc.

[9] Penton, J., Terzoli, A. (September 2004). iLanga: A Next Generation VoIP-

based, TDM-enabled PBX, South African Telecommunications Networks and

Appliances Conference, Spiers

 50

[10] Rongrong, Lin. (May 2004). PA1688 key-note speech on 5111soft VOIP.

Shanghai Business Conference. Centrality Communications

[11] Rongrong, Lin. (2005). PA1688 tech support. Yahoo Groups.

http://groups.yahoo.com/group/pa1688/message/2520

[12] Rongrong, Lin. (2005). PA1688 tech support. Yahoo Groups.

http://groups.yahoo.com/group/pa1688/message/3713

[13] Swiss Voice. IP Telephone Datasheet. Swiss Voice.

http://www.swissvoice.net/ww/htm_ww/01_index_followup/follow_up.html

[14] Wyss, Balz. (March 2003). White Paper: Microsoft® Windows® CE .NET

4.2 – An Integrated, Flexible Software Platform for Building VoIP-

Enabled Client Devices. Microsoft Embedded and Appliance Platforms

Group.

