
An Investigation of Grid Computing

Submitted in partial fulfilment

of the requirements of the degree

Bachelor of Science (Honours)

of Rhodes University

Gregory Anthony Atkinson

November 6, 2006

Abstract

Many computational problems in modern science require the manipulation of large data-sets, massive
mathematical calculations or computationally intensive real-time processing, for which often the only
solution is distribution over multiple computational resources. Grid computing is a tool for managing,
coordinating and sharing large distributed interconnected computational, data storage and scientific
resources for the purpose of solving large problems. In recent years major progress has been made
in the field of Grid Computing and the paradigm shift of resource sharing and collaboration has
been readily accepted by scientific, engineering and commercial communities in truly an international
fashion.

This report documents investigative research into Grid computing from a review of modern literature
regarding the subject, through to the deployment of a Grid computer and the use thereof. The precise
definition and functionality of a Grid is explored, along with the design challenges of its deployment
and use. More specifically, the ProActive Grid Computing Infrastructure is investigated and deployed
in a realistic environment. An experiment is presented that benchmarks the ProActive infrastructure
against the Linda Coordination Language for distributed processing, the results of which illustrate that
ProActive can be a competitive solution for Grid computing while still providing high-level utilities
for monitoring, security and fault tolerance. This research lead to the development of a Java-based,
ProActive dependent, generic framework for simplifying application development for the Grid. The
framework is discussed and demonstrated with more than satisfactory results. Finally, possible exten-
sions to this research are presented along with a discussion of the future of Grid computing.

Acknowledgements

I would like to thank Amie for all her support and encouragement of my research; my supervisor,
Professor George Wells, for his input, guidance and time throughout the last year; and the Com-
puter Science department of Rhodes University for the resources that made this research possible.
Acknowledgement should also be made of the departmental sponsors: Telkom, Comverse, Business
Connexion, Verso, Thrip, Stortech and Tellabs.

Contents

1 Introduction 6

1.1 Intention for Researching Grid Computing . 6

1.1.1 Project Aims . 6

1.2 An Introduction to Grid Computing . 7

1.2.1 The Grid Defined . 8

1.2.1.1 Grid Computing Defined . 8

1.2.1.2 Computation and Data Clusters 9

1.2.1.3 The Grid Identification Checklist 9

1.2.2 Applications of Grid Computing . 10

1.2.2.1 Virtual Organisations . 10

1.2.2.2 Example Use of Grid Infrastructure 10

1.2.2.3 Classification of Grid Software Application 11

1.2.2.4 Benchmarking & Performance Testing 12

1.2.3 Non-Trivial Services . 12

1.2.3.1 Interfacing & Monitoring Services 13

1.2.3.2 Information Dissemination & Metadata Services 13

1.2.3.3 Resource Reservation, Scheduling & Management Services 13

1.2.3.4 Security, Authentication & Authorisation Services 13

1.2.3.5 Reliability, Check-pointing & Fault-tolerance Services 14

1.2.3.6 Storage & Replication Services 14

1.2.3.7 Deployment . 15

1.2.3.8 Heterogeneity . 15

1.2.3.9 Development Tools, APIs and SDKs 15

1

1.2.4 Standards & Models . 16

1.2.4.1 The Layered Architecture Model 16

1.2.4.2 Transparent Remote Objects . 17

1.2.4.3 Development Language Selection 17

1.2.5 Current Solutions . 18

1.2.5.1 Toolkits for Grid Construction 18

1.2.5.2 Currently Deployed Grids . 18

2 Grid Computing with ProActive 20

2.1 Introduction . 20

2.2 The ProActive Grid Infrastructure . 20

2.2.1 Cluster Configuration . 21

2.2.2 Peer-to-peer Configuration . 21

2.2.3 User Interface & Tools . 23

2.2.4 Fault-Tolerance & Checkpoint Mechanisms 24

2.2.5 Security Mechanism . 25

2.2.6 File Transfer Mechanism . 25

2.2.7 Interoperability Using Web Services . 26

2.3 The ProActive Programming Model . 27

2.3.1 Active Objects . 27

2.3.1.1 Properties and Features of ProActive Active Objects 29

3 Adapting the ProActive Grid 31

3.1 The Desired Configuration . 31

3.2 Deployment on the Linux Platform . 33

3.2.1 Configuration . 33

3.2.2 Problems Encountered . 34

3.3 Deployment on the Windows Platform . 35

3.3.1 Configuration . 35

3.3.2 Problems Encountered . 35

2

4 Benchmarking ProActive against the Linda Coordination Language 38

4.1 Introduction . 38

4.1.1 Bioinformatics . 38

4.2 The Grid Parallel Motif Searching Application . 39

4.3 Experimental Performance Results . 42

4.3.1 Experimental Environment . 42

4.3.2 Results . 42

4.4 Application Development for the ProActive Grid 45

5 A Framework for Distributed Computing on the ProActive Grid 46

5.1 Introduction . 46

5.2 Details of the Controller-Drone Distributed Processing Model 47

5.3 Possible Extensions . 49

5.4 Demonstration Application . 51

5.4.1 Introduction . 51

5.4.2 The Grid Mandelbrot Set Rendering Application 51

5.4.3 Results . 53

5.5 Motivating the Controller-Drone Framework . 53

6 Conclusion 55

6.1 Assessment of Research and Aims . 55

6.1.1 Further Investigation of the ProActive Grid Framework 55

6.1.2 A Comparative Investigation of the Globus Toolkit 56

References 58

A Framework 62

B GridMandelbrotset 68

3

List of Figures

1.1 The layered Grid architecture compared to the network protocol stack. Both stacks
extend from the network layer to the application layer. [6] 16

2.1 A network of hosts with some running the P2P Service [20]. 22

2.2 New peer trying to join a P2P network [20]. 22

2.3 A screen-shot of IC2D monitoring a small ProActive P2P Grid. 24

2.4 The process of calling an Active Object via SOAP. [20] 26

2.5 A comparison between standard (passive) and Active Objects. [23] 28

2.6 Activating an application for distribution. [23] . 28

3.1 Underlying network topology of the ProActive Grid. 31

4.1 Use case diagram for the GridPMS application. 39

4.2 Class diagram for the GridPMS application. 40

4.3 Sequence diagram for attaching to and disconnecting from the P2P ProActive Grid. . 40

4.4 Sequence diagram describing the problem domain component of the GridPMS appli-
cation. 41

4.5 Speedup achieved by GridPMS and the Linda-based PMS 43

4.6 Normalised execution time achieved by GridPMS 44

4.7 Normalised execution time achieved by GridPMS 44

5.1 Use case diagram illustrating the broad responsibility of the framework. 47

5.2 The framework’s class diagram demonstrates the relationships between objects that
comprise the framework and the attached application. 48

5.3 Sequence diagram illustrating the distribution of processing by the framework. 48

5.4 Use case diagram for the GridMandelbrotSet application. 51

5.5 Sequence diagram for the illustrating the process followed by the GridMandelbrotSet
application. 52

4

5.6 Class diagram for the GridMandelbrotSet application. 52

5.7 A demonstration of the asynchronous nature of the communication where the results
arrive out of order. 53

5.8 Zooming in and re-rendering a section of the Mandelbrot Set. 53

5

Chapter 1

Introduction

1.1 Intention for Researching Grid Computing

Modern science is becoming increasingly dependent on data reduction and modelling of huge data
sets complex problems requiring anywhere between hours and years of computational time. Grid
computing’s contribution to science is as a tool that coordinates all the resources required to solve
scientific problems in a cost effective manner, while encouraging the use of distributed resources and
collaboration between parties with similar interests.

The original proposal for this research project was to (a) investigate the precise definition of Grid
computing through an in-depth review of current literature, (b) investigate frameworks and methods
for developing Grids from commodity computers and (c) port an existing bioinformatics application
that searches DNA sequences to a Grid system and compare performance with the original.

The ACM Classification System (1998 Version, valid in 2006) [1] defines this research under the
following two sections,

D.1.3 Concurrent Programming - Distributed Programming - Parallel Programming

I.6.7 Simulation Support Systems - Environments

where the first applies to applications utilising a Grid and the second applies to the Grid infrastructure
itself.

1.1.1 Project Aims

A number of implementation aims were formulated to develop the best Grid for the resources and
user base that was already present. Firstly, and most importantly, the Grid needed to provide an
interface for application development that anyone could use without necessarily understanding the

6

technicalities of the Grid. Following on from this requirement is that the Grid would ideally be based
on the Java programming language because the potential users of the Grid are Java literate university
students and academics.

Secondly, the Grid infrastructure would be expected to make use of free CPU cycles on public work-
stations and ideally be portable across at least the major operating system platforms, namely Linux
and Microsoft Windows, to make optimal use of the available resources. It would need to be con-
structed as not to disadvantage any legitimate users of the shared workstations, while still being as
persistent and available as possible.

Lastly, for the sake of management and control, it would be necessary for the Grid infrastructure to
be centrally manageable and if possible implement access control and security, although securing the
Grid is beyond the scope of this research. The intention of these aims is to achieve maximum usabil-
ity and performance on the Grid without reducing the quality of service delivered by the resources
involved.

1.2 An Introduction to Grid Computing

The aspiration of utilising multiple distributed computing resources for a single application or project
has existed for several decades. During the late 1970s work was done toward networked operating

systems, which evolved into distributed operating systems in the late 1980s and early 1990s [2]. It
soon became possible to coordinate highly heterogeneous systems, where parallel distributed com-

puting employed parallel codes executing on distributed resources. This lead to meta-computing, and
then computing on the Grid [2].

The historical development of computers, computer networks and software models reveals that the
notion of Grid computing is evolutionary rather than revolutionary and it captures the existing tech-
nology trends toward networked computing [3]. Of these trends, the two most noteworthy are ap-
plication evolution and network evolution. Software applications have developed from monolithic
computer- or server-centric binaries to network-wide services evident in today’s Web Services and
Service-Orientated Architectures (SOAs) [3]. With the ease of network use and the explosive in-
crease in network bandwidth, most modern applications benefit largely from distributed systems of
storage, database and utility servers. The boundaries between computing resources have been eroded
by high-speed networks creating a fabric of interwoven resources from a system of once discrete
resource units [3].

The motivation for Grid computing is for the better utilisation of existing resources and for providing
a platform for global collaboration in an increasing number of scientific, engineering and industrial
disciplines. Modern research into these disciplines is requiring extremely high levels of processing
power and petabytes of storage capacity [4], which even with ever-increasing processor speeds, disk
capacities and network bandwidth, cannot be handled by discrete resources or even individual institu-
tions. There has been an increase in the number of applications and simulations requiring on-demand

7

episodic access to substantial computing resources, and thus while most low-end computers (desk-
top PCs) are idle for approximately 30% of the day—a massive, mostly untapped resource exists in
academic and commercial institutions [5]. Secondly, considering that the computational capability of
microprocessors is expected to increase by a factor of 100 in the next ten years [5], the potential of
idle resources is going to grow accordingly. Grid computing aims to tap this potential and produce a
super-computing environment.

Grid computing might appear to be in opposition to high-performance computers (HPCs), but may
ultimately increase, rather than decrease, demand for them. Certain computational problems will
always be better suited to the tightly coupled infrastructure, low latencies and high communication
bandwidths that HPCs offer [6]. HPCs will always provide a source of significant processing power,
but will become just another resource managed by the Grid. Grid computing endeavours to overcome
the final hurdles of complete distributed and ubiquitous resource sharing.

1.2.1 The Grid Defined

1.2.1.1 Grid Computing Defined

Grid computing has become highly popular in recent years, but due to this popularity and perhaps to
its non-descriptive name, the exact definition of the Grid has been clouded [6, 7, 8]. For this reason,
and with the addition of Compute Grids, Data Grids, Science Grids, Access Grids, Knowledge Grids,
Bio Grids, Sensor Grids, Cluster Grids, Campus Grids, Tera Grids and Commodity Grids [7], it is
necessary to provide a definition and evaluation criteria against which to measure a potential Grid
infrastructure.

The term Grid, coined in the mid to late 1990s [6, 8], is used to denote a distributed computing
infrastructure. It is often likened to that of an electrical power grid, which the Grid derived its name
from, where access to computation and data should be as easy, pervasive and standard as plugging in
an appliance into an outlet [8, 5]. A number of definitions have been proposed:

• “Grid architectures are collections of computational and data storage resources linked by com-

munication channels for shared use” [9],

• “A computational grid is a hardware and software infrastructure that provides dependable,

consistent, pervasive and inexpensive access to high-end computational capabilities” [5],

• “Ensembles of distributed, heterogeneous resources” [8],

• a Data Grid is a specialisation and extension of “the Grid” providing storage systems and

metadata management [4] or

• “A software system that provides uniform and location independent access to geographically

and organizationally dispersed, heterogeneous resources that are persistent and supported”

[10].

8

These definitions each capture facets of Grid computing, but not the generalised Grid, which incorpo-
rates possible resources such computational capabilities, data processing, data storage and specialised
sensors such as telescopes and particle accelerators executing in a heterogeneous distributed environ-
ment possible across organisational boundaries. The definition I put forward is,

The term “the Grid” refers to a network-based computing infrastructure providing secu-
rity, resource access, information and other non-trivial services that enable the controlled
and coordinated sharing of resources among “virtual organisations” formed dynamically
by individuals and institutions with common interests. [6]

1.2.1.2 Computation and Data Clusters

A related but subtly different concept is that of a cluster. A cluster is a localised homogeneous
network of computers connected by a high-speed local area network (LAN) designed to be used
as an integrated computing or data processing resource [5, 10]. The cluster nodes may differ in
configuration but not basic architecture and are usually centrally controlled by a single administrative
body having complete control of the cluster [5]. A Grid architecture may be deployed on a cluster or
a cluster may form part of the resources managed by the Grid.

1.2.1.3 The Grid Identification Checklist

Uncertainty developed regarding the definition of a Grid [6, 7] and so the following checklist was
developed to evaluate an architecture for constituting Grid or not. (This checklist was reproduced
from [7].)

A Grid System...

1. ...coordinates resources that are not subject to centralised control.

A Grid integrates and coordinates resources and users that live within different control domains—
for example, the user’s desktop vs. central computing; different administrative units of the
same company; or different companies; and addresses the issues of security, policy, payment,
membership and so forth that arise in these settings. Otherwise, we are dealing with a local
management system.

2. ...uses standard, open, general-purpose protocols and interfaces.

A Grid is built from multi-purpose protocols and interfaces that address such fundamental is-
sues as authentication, authorisation, resource discovery and resource access. It is important
that these protocols and interfaces be standard and open. Otherwise, we are dealing with an
application specific system.

9

3. ...to deliver nontrivial qualities of service.

A Grid allows its constituent resources to be used in a coordinated fashion to deliver various
qualities of service, relating for example to response time, throughput, availability and security,
and/or co-allocation of multiple resource types to meet complex user demands, so that the utility
of the combined system is significantly greater than the of the sum of its parts.

1.2.2 Applications of Grid Computing

1.2.2.1 Virtual Organisations

A concept central to Grid computing is the virtual organisation (VO). A VO is a dynamic organisation
formed by multiple institutions sharing instruments and computational resources with the purpose of
collaborative problem solving [6]. Each institution has complete control over the resources it shares
[6]. An example of a VO are the members of a large, international, multinational, multi-year high-
energy physics collaboration, which represents an approach to computing and problem solving based
on collaboration in computation- and data-rich environments [6].

The critical factor making VOs possible and motivating the move from HPCs to Grids is widespread
deployment of high-speed wide-area networks [8]. The dramatic increase in inter-network connec-
tivity has made wide-area, national and international deployment of distributed software applications
feasible [8] contributing significantly to scientific research. It is the high latency, highly distributed
nature of the VO that presents the incredible design challenges and requirements that Grid developers
need to meet [8].

1.2.2.2 Example Use of Grid Infrastructure

A National Grid: A government usually owns a few high-end resources typically a few HPCs,
petabytes of storage and hundreds of sites with thousands of smaller systems all interconnected with
the fastest networks [5]. These systems are coordinated for national projects such as disaster response,
national defense and long-term research and planning [5].

A Private Grid: Numerous technologies exist in research laboratories that could greatly benefit the
medical profession that have rarely been deployed in ordinary hospitals due to their vast computa-
tional needs [5]. A Grid for a health maintenance organisation would network a number of hospitals
owning a small number of high-end computers, hundreds of workstations, administrative databases,
medical image archives and specialised instruments [5]. The Grid could be used to enhance desktop
applications with computer-aided diagnostic and simulation applications, perform telerobotic surgery,
monitor sensors and even fraud analysis of financial systems [5].

A Scientific Grid: The relatively new field of computational genetics, but more specifically Bioinfor-
matics, which is a management information system for molecular biology [11]. Distributed comput-
ing is well suited to processing large data sets and [11] describes an experiment where a large set of

10

DNA sequences was searched using regular expressions in a distributed fashion. Their implementa-
tion utilised the TSpaces framework [12] based on the Linda coordination language [13] to distribute
the computation, but this task would also be well suited to Grid deployment.

A Scientific Grid: A Material Science Collaboratory is an hypothetical example that comprises an
international scientific group sharing a number of instruments, such as electron microscopes, particle
accelerators and X-ray sources in dozens of centres, with the aim of keeping a collective data archive,
specialised software and a number of supercomputers for the processing in an highly decentralised,
dynamic environment. [5]. The members are able to remotely control instruments and perform online
analysis utilising the full set of computational resources.

A Public Grid: The final community to have interest in Grid technology would be the general public
or private sector of a market economy. The Grid would be utilised by the vast and varied interests of
the general consumer base; various service providers such as financial modellers, graphics renderers,
and interactive gamers; banks; network providers; and numerous other [5].

There are a myriad of other avenues being explored and deployed in many other fields and projects
such as global climate change, high-energy physics, radio astronomy, financial modelling, space

exploration and vehicle design simulation.

1.2.2.3 Classification of Grid Software Application

The type of software application executed on the Grid will fall into one or more of the following
categories.

• Loosely Coupled

Applications in this category act on a large number of small jobs having low processing, mem-
ory and communication requirements [9]. The jobs are computationally expensive and therefore
suitable for largely distributed systems interconnected by low bandwidth, high latency networks
[9]. Two examples are the SETI@home [14] project discussed in section 1.2.5.2 and the DNA
sequence searching application discussed in section 1.2.2.2.

• Pipelined

Certain experiments generate more data than can be stored and consequently the data must be
processed in real-time. It is then necessary that the data stream be pipelined through a compu-
tational mechanism often requiring very high processor and memory capacities (possibly more
memory than can be available in a single computer), therefore needing frequent and complex
inter-process communication [9]. The signal processing requirements of large radio telescopes
or satellite feeds fall in this category, which is well suited to Grid computing [9].

• Tightly Synchronised

Class 3 applications are traditionally executed on HPC systems due to their high bandwidth,
heavy inter-process communication needs [9]. They may be quite data intensive and usually

11

have significant computational and memory requirements [9]. Examples include highly in-
teractive climate, physics and molecular simulations employing stencil algorithms or binary
cellular automata [9]. This class of application will remain in the domain of HPC systems until
Grid solutions with high bandwidth and very low latency are deployed.

• Widely Distributed

The final category pertains to applications that require little computation or memory, but are
often used to update, search or synchronise distributed databases [9]. They might be related to
data, but not necessarily data intensive [9].

1.2.2.4 Benchmarking & Performance Testing

Information regarding the capabilities of a Grid infrastructure are important for deriving quantitative
results for: the comparison of algorithms for improving the Grid software infrastructure; comparison
with other Grid technologies; providing users with performance parameters describing the system’s
capabilities allowing them to tune their applications [9]; and developing costing and scheduling mod-
els. It is therefore necessary to define a set of performance metrics to quantify the capability and
limitation one can expect from the Grid [6].

Grid benchmark efforts are divided into two main categories, computational intensity and data in-

tensity [9]. “Computation intensity of a Grid application is defined as the amount of computational
work per element of the data set(s) communicated between processes or read from a storage device.
Data intensity is the reciprocal of computation intensity. [9]” Common metrics for both categories
are turnaround time, the time between initiating a job and receiving the results, and throughput, the
volume of data submission possible without affecting turnaround time [9].

The type of application executing on the Grid will require specific benchmark metrics for its applica-
tion classification. See section 1.2.2.3 for classifications of Grid applications.

1.2.3 Non-Trivial Services

In its highly abstracted, dynamic, distributed, heterogeneous environment, the Grid needs to imple-
ment a number of non-trivial services for its management and coordination—this is what sets the Grid
apart from ordinary parallel processing. Two critical observations, made in [8], state that the simple
client-server approach is not adequately flexible for most VOs, but rather an architecture ranging
from client-server to general peer-to-peer is required because VO members are alternately resource
providers and consumers. Secondly, currently available distributed computing technologies do not
fulfil the advanced sharing requirements or a decentralised mechanism for their control. This predica-
ment has led to the development of a Grid Software Infrastructure [8, 4].

12

1.2.3.1 Interfacing & Monitoring Services

Hiding complexity through the use of graphical components, interfaces and monitoring tools allows
the users of the Grid to concentrate on the computational task and their research rather than the
underlying complexity of the Grid architecture [15]. Abstraction is critical and the more thorough the
abstraction, the better the utilisation. An excellent example of a Grid visualisation package is IC2D
[16] which is part of the ProActive [17] Grid computing solution.

1.2.3.2 Information Dissemination & Metadata Services

Key to the distributed system and the vast shared resources is the Grid Information Service (GIS)
[8, 10, 9]. The GIS maintains detailed information regarding all resources available to the Grid
concerning their capacities, performances, allocations and statuses in the dynamic environment [10]
and it is the responsibility of the GIS to discover [8], track and index available resources keeping
a live, up-to-date metadata database. The GIS also acts as the central repository for user account
information and access rights. One solution demonstrated in the fields of high-energy physics and
astronomy is the Chimera system [18] which defines a data schema used to established a Virtual Data

Catalog [8]. The Globus Toolkit [19], discussed in section 1.2.5.1, implements the Grid Resource

Information Protocol (GRIP), the Grid Resource Registration Protocol (GRRP), the Grid Resource

Access and Management (GRAM) protocol and the Grid Resource Information Service (GRIS).

1.2.3.3 Resource Reservation, Scheduling & Management Services

A service that should not be neglected is that of resource scheduling, one of the most challenging and
well known Grid problems, especially for scarce resources such as large scientific instruments[10].
It is also important to co-schedule resources necessary to access the scarce resource, for example,
scheduling network bandwidth and disk storage along with a particle accelerator. The scheduler
should cope with applications based on systems built on-demand for limited periods of time [10]
and have the ability to make intelligent decisions about selecting the optimal resources for a project.
The scheduler is able to implement resource reservation, the basis on which quality of service and
predictability can be guaranteed [4, 5].

1.2.3.4 Security, Authentication & Authorisation Services

All relevant literature and Grid implementation recognise the need for security, a prerequisite in a
highly distributed, decentralised environment where code or data could be anywhere. Security is a
prime instance where complexity should be hidden from the user—ultimately the security infrastruc-
ture should be handled outside of application code. Data integrity and confidentially can be ensured
by implementing cryptographic based single-sign-on authentication [6, 10] and end-to-end encrypted
communication channels (provided for example by X.509 identity certificates) [10, 2]. A user should

13

be able to delegate his rights to another user or application, while also using local authentication util-
ities such as Kerberos and PKI [6]. Some Grid architectures, for example NASA’s Information Power

Grid (IPG), planned (in 2000) to deploy technologies such as IPSec and secure DNS to authenticate
IP packet origin and to secure gateway and switch administration [10]. The Globus Toolkit [19] uses
the Grid Security Infrastructure (GSI) protocol, based upon public-keys, for authentication, commu-
nication protection and authorisation to solve issues of single sign-on, delegation and integration with
various local security solutions [6]

1.2.3.5 Reliability, Check-pointing & Fault-tolerance Services

The Grid is by nature an unpredictable tool for several reasons: there is an absence of centralised
control; the user is never sure who else is utilising a shared resource; the bandwidth available to the
Grid will fluctuate depending on the type of application deployed, time of day, networks employed
and so on; machine loads vary; queue lengths vary; and many other systems may fluctuate leading to
variable behaviour [2]. Information concerning resource variance and reliability is required to make
allocation decisions to maintain an acceptable quality of service, since it has been found that users
do not only want fast execution times from their applications, but expect predictable behaviour and
would be willing to sacrifice some performance for more reliable execution [2]. Components may
suddenly leave the Grid due to its dynamic nature or simply lose connectivity for a multitude of rea-
sons. Therefore, it is necessary to implement fault-tolerance and checkpoint/restart mechanisms [10]
to recover from these circumstances and save weeks, if not years, of computational time guaranteeing
a high quality of service.

ProActive provides two mechanisms for fault-tolerance. Firstly, Communication Induced Checkpoint-

ing (CIC) that takes a snapshot of the global state every TTC (Time To Checkpoint) seconds and if
an error were to occur, the entire system would have to be restarted from the last checkpoint [20].
Secondly, Pessimistic Message Logging (PML) that logs all messages passed between objects and
checkpoints individual objects [20]. While the second method requires slightly more overhead, it
allows for restarting of individual objects of the application instead of the entire application [20].

1.2.3.6 Storage & Replication Services

The data storage system should be abstracted from an application which should not have to be aware
of data that is stored in physically separate locations on different hardware in different formats, but
rather an Application Programming Interface (API) should remove the low-level mechanisms for data
access and present a uniform view of the data [4]. It is this model of a global file system [10] that will
cope with large, even petabyte, storage requirements.

A second area pertaining to data storage, is that of replication management and selection, a point of
possible optimisation for the Grid, and it is the task of the replication manager [4] to manage duplicate
file instances. A storage facility may provide better performance to or from a specific location or

14

storage space might need to be freed up for incoming data, therefore the replication manager will
need to make a decision, in conjunction with its repository or catalog, as to how to produce optimal
results [4].

1.2.3.7 Deployment

The ease of deployment may seem to be an obvious prerequisite, but until recently, many large Grid
projects have not paid much attention to this area and starting up a testbed has proven to be rather
challenging. So much so, that [2] gives an example where on numerous occasions email has been
sent to the project managers of several large Grid projects along the lines of “I tried to install your
GridSoftwareX, but it proved rather difficult, so I decided to just write my own...” with, as one might
imagine, less than satisfactory results [2].

Currently the most common method propagating the Grid software infrastructure, once the first node
has been deployed, is to use something like UNIX’s secure shell (SSH), secure copy (SCP) or remote
copy (RCP). Thereafter updates can be propagated remotely in an automated fashion.

1.2.3.8 Heterogeneity

If Grids architectures are to be allowed to span institutions and even continents, it is critical that they
be constructed to operate in heterogeneous environments [15]. This involves the Grid being abstracted
from the underlying hardware, software and communication platforms and itself being constructed
with suitable development tools using a layer model to achieve the status of being mechanism and
policy neutral [4]. Significant motivation is given for using Java [15], which is discussed in section
1.2.4.3.

1.2.3.9 Development Tools, APIs and SDKs

Application Programming Interfaces (APIs) and Software Development Kits (SDKs) are pivotal be-
cause they:

• provide layered programming abstractions [8],

• enforce the correct use of protocol [8, 6],

• allow developers to create sophisticated applications in complex and dynamic execution envi-
ronments [6],

• allow users to utilise those applications [6],

• provide robustness and correctness [6],

• reduce development and maintenance costs by accelerating development [6],

15

• enable code sharing and increase portability [6].

An example of an SDK is the Commodity Grid, or CoG, Kit [21] developed to allow existing tech-
nologies such as Java, Python and Matlab to utilise the Globus Toolkit [19]. The Java CoG Kit [22]
provides access to Grid services through the Java framework.

1.2.4 Standards & Models

Availability of a consistent, standard service interface is fundamental [5]. The most active and ef-
fective body making progress for Grid standards is the Global Grid Forum (GGF) and their work on
defining the Open Grid Services Architecture (OGSA), with strong support from companies such as
IBM, Microsoft, Platform, Sun, Avaki, Entropia and United Devices, which hopefully one day will
allow both open source and commercial products to intercommunicate effectively [7]. Possibly the
most challenging problems are developing standards that encapsulate heterogeneity without compro-
mising high-performance execution [5] and having the standards widely supported and implemented
in the Grid architecture models.

1.2.4.1 The Layered Architecture Model

The following layered model is a description of the general component classes required. Layers
group similar services, which can build upon any services in a lower layer, see figure 1.1. Most of
these services have been described in section 1.2.3. This section is largely a summarised version of
section 4 in [6], Grid Architecture Description.

Figure 1.1: The layered Grid architecture compared to the network protocol stack. Both stacks extend
from the network layer to the application layer. [6]

16

1. FABRIC

The fabric layer serves the shared resources managed by the Grid. These may include dis-
tributed file systems, compute clusters, network resources, sensors, catalogs, code repositories,
computational resources and storage systems.

2. CONNECTIVITY

Communication and security protocols for all Grid transactions are defined by the connectivity
layer, which enables and manages all communication between resources in the fabric layer. The
security mechanisms are those as described in section 1.2.3.4.

3. RESOURCE

Secure negotiation, initiation, monitoring, control, accounting and payment operations imposed
on individual resources are defined by protocols, APIs and SDKs built into the resource layer.
Information protocols derive and maintain the details regarding the structure and state of a
resource and management protocols negotiate access to a shared resource.

4. COLLECTIVE

The collective layer holds the bigger picture that is the Grid. It provides services such as
directory services; co-allocation, scheduling and brokering services; monitoring and diagnostic
services; data replication services; Grid-enabled programming systems; workload management
systems and collaboration frameworks; software discovery services; community authorisation,
accounting and payment services; and collaboratory services.

5. APPLICATIONS

The top layer is the application layer where user applications reside. These applications are con-
structed mainly of the APIs defined in the lower layers calling routines for access to necessary
resources and services.

1.2.4.2 Transparent Remote Objects

Another model for distributed computation is the Transparent Remote Object (TRO) model. This
approach is ideally abstracted since application objects can be deployed on remote computers creating
a single, distributed application. The use of these objects is entirely transparent to the user and the
only difference to application code is the way in which objects are instantiated, otherwise the objects
are threaded and managed in the background and constructs such as polymorphism and inheritance
still apply. The discussion of this model is continued at length in section 2.3.1.

1.2.4.3 Development Language Selection

There is a significant motivation for utilising the Java programming language for distributed and Grid
computing [15, 23]. Java offers a sophisticated graphical interface framework, utilities for invoking

17

methods on remote objects and true cross-platform portability [15]. A significant feature for dis-
tributed computing is that some JVM implementations provide access to native system threads, which
when run on a multiprocessor machine, allows automatic allocation of Java threads to physical pro-
cessors, breaking the barriers between monoprocessor and multiprocessor shared memory machines
[23]. This feature improves performance on applications utilising concurrent mechanisms.

1.2.5 Current Solutions

1.2.5.1 Toolkits for Grid Construction

The open source Globus Toolkit [19] is the de facto standard in Grid computing and has been in de-
velopment for over 10 years [7]. It is a multi-institution research effort that aims to provide pervasive,
dependable, and consistent access to high-performance computational resources, in an environment
where users and resources may be geographical distributed [19]. The toolkit, produced by the Globus
Alliance and many developers around the world, has been widely accepted for building Grid systems.

ProActive [17, 20] is another Grid middleware solution, constructed using the Java programming
language and licensed under the GNU Lesser General Public License. It implements the transparent
remote object methodology discussed in section 1.2.4.2. ProActive provides a comprehensive API
for developing Grid applications, simple methods of deployment and both traditional and peer-to-
peer mechanisms for inter-node communication. Due to Java’s cross-platform nature, a Java enabled
browser is sufficient to join a computer as a node to the Grid network. ProActive was extensively
used throughout this research.

1.2.5.2 Currently Deployed Grids

The SETI@home project allows Internet users across the globe to participate in the Search for Ex-
traterrestrial Intelligence (SETI) by running a free application that retrieves and analyses data received
by radio telescopes [14]. These telescopes listen for narrow-bandwidth radio signals emanating from
outer space, signals believed not to occur naturally [14]. This is one of the oldest and most well
known experiments and a prime example of highly distributed computation and data processing.

The Grid Physics Network Project is experimenting with and developing a Grid solution for scientific
and engineering research requiring the collection and distribution of petabyte-scale data-sets [24].
The Grid solution in development is a Petascale Virtual Data Grid (PVDG) using the Virtual Data

Toolkit (VDT) [24].

The Information Power Grid is in long-term development by NASA and aims to develop an infras-
tructure and services to locate, aggregate, integrate and manage its vast distributed resources [25].
Its ultimate purpose is to provide engineering and scientific communities integrated access to its
resources and a substantial increase in their usability [25]. A side-effect of the project and the avail-

18

ability of the large computational potential will be that it can be used in exceptional circumstances
such as crisis response [25].

TeraGrid is the world’s biggest distributed cyberinfrastruture for open scientific research, with more
than 102 teraflops of computing power, more than 15 petabytes of online data storage providing
access to over 100 discipline-specific databases all integrated over high-performance networks [26].
It integrates high-performance computers, data resources, tools and large scientific instruments [26].

Numerous other projects include the International Virtual Data Grid Laboratory (iVDGL) [27], Dis-

tributed ASCI Supercomputer (DAS) [28] Particle Physics Data Grid [29] and Distance Computing
(DisCom) Grid [30].

The purpose and aims of ’An Investigation of Grid Computing’ were outlined and

the contribution to science by this research clearly stated. The subject and definition of

Grid computing was investigated in detail through the literature published by those at the

forefront of this technology. The next step in this research was to experiment with and

deploy a framework that constituted a Grid system.

19

Chapter 2

Grid Computing with ProActive

2.1 Introduction

The ProActive [17] Grid infrastructure is developed by the Active Objects, Semantics, Internet and Se-
curity (OASIS) project team [31] as a research initiative of The French National Institute for Research
in Computer Science and Control (INRIA) [32]. It inter-operates with and builds on several official
standards, namely: Web Service Exportation; HTTP Transport, JINI, OGSi1; SSH, RSH, RMI/SSH
Tunneling; LSF, PBS, OAR, Sun Grid Engine; Globus GT2, GT3 GT4; sshGSI; NorduGrid; UNI-
CORE and EGEE gLite. The project has also had contributions from a number of external developers,
which is made possible by the complete set of source code being licensed under the GNU Lesser Gen-
eral Public License (LGPL) [33, 20].

The LGPL permits significant freedom to developers designing software which links libraries licensed
under the LGPL. ProActive can be considered a library licensed under the LGPL and is therefore an
open source product that can freely be replicated, extended and distributed along with its original
copyright notice. Any software program that works with or links ProActive, that contains no portion
thereof, falls outside the scope of the LGPL and can be licenced at the developer’s discretion.

This chapter contains a discussion of the ProActive framework including the configurations it can
be deployed in, the non-trivial services it provides that define it as a Grid infrastructure and the
programming model it implements to facilitate distributed computation.

2.2 The ProActive Grid Infrastructure

In the previous chapter we discussed Grids, defined the Grid and outlined attributes and services
that separate Grid computing from distributed processing. ProActive has been discussed as a frame-
work for Grid computing but as yet this statement has not been qualified. The ProActive manual,

1Open Grid Services Infrastructure (OGSi)

20

A Comprehensive Solution for Grid Computing [20], defines ProActive as a Grid Java library for

parallel, distributed and concurrent computing, also featuring mobility and security in a uniform

framework and continues to assert that it provides a comprehensive API allowing [the simplification

of programming applications] that are distributed on Local Area Networks (LAN), on [a] cluster
of workstations, P2P desktop Grids, or on Internet Grids. ProActive is a middleware solution for
Grid computing that runs beneath applications designed to run on a ProActive Grid. This chapter will
explore and discuss the properties of ProActive that define it as framework for Grid Computing.

2.2.1 Cluster Configuration

ProActive’s simplest deployment is on a cluster2, where it is explicitly started on each cluster node and
each node is made aware of the the other nodes in the cluster. This allows each instance of ProActive
to know where objects can be distributed to via the desired communications protocol, which may be
Remote Method Invocation (RMI), Hypertext Transfer Protocol (HTTP), Remote Method Invocation
over a Secure Shell connection (RMISSH), Integrated On-Board Information System (IBIS) or the
Java Network Technology Protocol (JINI) [20]. Each ProActive instance on each cluster node listens
on the port related to the configured communications protocol for objects and commands from other
nodes. To clarify the definitions used, virtual nodes refer to network hosts, nodes to Java Virtual
Machines and Active Objects to distributed objects.

This configuration of ProActive was not explored through this research because no dedicated clus-
ter of computers was available for testing. A number of other Grid middleware solutions exist for
utilising a cluster, but it was found through experience that the advantage ProActive’s provides is its
ability to deploy in a peer-to-peer configuration, provide web services and execute in a cross-platform
environment.

2.2.2 Peer-to-peer Configuration

The ProActive peer-to-peer (P2P) infrastructure is built upon the standard cluster mode infrastructure,
but with extensions to facilitate a significantly more dynamic and distributed Grid. The purpose for
designing the P2P infrastructure is for maximum utilisation of an organisation or institution’s spare
desktop CPU cycles [20]. Very few organisations have a dedicated cluster, or are even prepared
to invest in one for distributed computing, but most organisations have a large number of desktop
computers that are very seldom utilised more than 60% of the day. It is significantly easier to convince
an organisation to invest in a tool that will extend computational capabilities by simply better utilising
resources they already own, rather than having to first acquire an additional resource base. Of course a
dedicated cluster would better suit a scientific institute that could utilise the Grid for a large proportion
of each day, but in the case of a university, research institute or business, a P2P Grid infrastructure
sharing available user workstation’s free CPU cycles is a better option.

2Cluster, as defined in section 1.2.1.2 and the glossary.

21

The advantage of using desktop workstations as Grid nodes is that nodes can dynamically join and
leave the Grid as they become available and unavailable, but this presents the problem that the
Grid needs to be completely decentralised, a problem solved by the ProActive P2P infrastructure’s
P2PService. The ProActive P2P infrastructure is overlayed on a dynamic network of Java Virtual
Machines (JVMs), as illustrated in figure 2.1, where each peer executes a P2PService and acts as a
computational node. The P2PService comprises a few Active Objects [20], as defined in section 2.3.1,
that facilitates the integration of the peers.

Figure 2.1: A network of hosts with some running the P2P Service [20].

When a new peer starts, its P2PService discovers and joins the P2P network. It does this by referring
to a list, specified in its configuration, of peers most likely to be available and connected to the P2P
network [20]. This procedure presents a bootstrapping problem for the peer that first starts, which is
solved by it attempting to re-contact its list of probable peers every Time To Update (TTU) minutes
[20]. When a peer joins a P2P network, it is introduced to all the other peers in the network so that in
the event that the peer through which it connected leaves, it can still remain part of the P2P network
[20]. Every TTU minutes every peer sends a heart beat to its list of acquaintances to verify their
presence. Figure 2.2 illustrates a peer joining the network. Of its list of peers that could potentially
be part of the ProActive P2P network two are currently connected and it joins the P2P network via
those nodes, which introduce it to the rest of the network.

Figure 2.2: New peer trying to join a P2P network [20].

22

Most important to the P2P infrastructure is a resource discovery mechanism. Each peer provides an
interface for enumerating the free computational nodes for deploying distributed applications and for
discovering new acquaintances. It is this mechanism that nodes use to find one another and thereafter
use to distribute computation.

2.2.3 User Interface & Tools

ProActive provides an exceptionally useful utility called Interactive Control and Debugging of Dis-

tribution (IC2D), which gives the user of the Grid complete control and monitoring capabilities over
all deployed applications. An application can be launched from within the IC2D interface or it can be
attached to an application that is already executing. IC2D works by installing a SpyListener Active
Object on each node. The SpyListeners intercept all messages passed to and from their respective
nodes and report this information, along with the state of each Active Object, back to IC2D. The user
can then monitor the application in real-time during its execution.

IC2D is capable of providing the following3:

• Graphical visualisation of

– Hosts, Java Virtual Machines, Active Objects

– Topology: referencing and communications between Active Objects

– Status of Active Objects

– Activity migration

• Textual visualisation of

– Messages in an ordered, causal, relative list

– Status of Active Objects

• Control and monitoring of

– Interactive mapping upon Active Object creation

– Interactive destination upon Active Object migration
3A list based upon table 34.1 of the ProActive Manual [20]

23

– Dynamic change of deployment

– Drag-and-Drop migration of executing tasks

The last item in the above list hints at an extremely useful and impressive feature of IC2D. Using
the IC2D interface, Active Objects can literally be dragged from one node and dropped onto another,
even while they are executing without any effect on the running application, providing a manual
mechanism for load balancing. This feature uses the Active Object migration facility discussed in
section 2.3.1.

Figure 2.3: A screen-shot of IC2D monitoring a small ProActive P2P Grid.

2.2.4 Fault-Tolerance & Checkpoint Mechanisms

An integral part of any Grid computing framework is a mechanism for recovering from resource
failure, because the greater the number of physical computers involved, the greater the probability of
overall application failure becomes. There could be many reasons for resource failure when working
in an highly distributed environment, such as hardware or network failure, but when working with a
dynamic Grid deployed on user workstations the probability of failure becomes more likely because
the user could revoke access to their workstation. The solution is to regularly checkpoint the state
of the executing applications and in the event failure occurs, roll-back to the last checkpoint and

24

resume execution. Of course this feature adds significant computational overhead to an application
and certain applications will not require fault-tolerance, but the benefit to a long running application
can be great.

ProActive features a fault-tolerance server that can transparently serve executing applications using
one of two possible methods. Firstly, using Communication Induced Checkpointing (CIC), where
every Time To Checkpoint (TTC) seconds a global state is formed by checkpointing every Active
Object in the system [20]. In the event failure occurs the whole application has to be restarted from
the previous global checkpoint. The overhead introduced by this method in the failure-free case is
usually low and mostly independent of the message communication rate [20]. The second method is
Pessimistic Message Logging (PML) [20]. Each Active Object is individually checkpointed, includ-
ing all the messages passed to it, at least every TTC seconds and no global application state is kept,
therefore if failure of an object occurs, only that specific object needs to be recovered from its last
checkpoint [20]. In the case of PML the overhead related to fault-tolerance checkpointing is more
tightly tied to the message communication rate. In both cases, a TTC should be selected based on
the predicted rate of failure, where a higher TTC value will generate less overhead in the failure-free
case, but more overhead in case of failure, and vise versa.

ProActive’s fault-tolerance server periodically queries each of the Active Objects in the system, nor-
mally every 10 seconds, to identify non-responsive objects. Finding a non-responsive object, it turns
to the P2P network, requests an available Grid node, deploys the last checkpoint of the failed object
on that node and resumes execution of that object, completely transparently to the currently executing
application [20].

2.2.5 Security Mechanism

The Java Cryptography Extension (JCE) is the basis of the the ProActive Security Mechanism, which
aims to allow dynamically deployed applications to have configurable security [20]. Security features
provided include basic confidentiality, integrity and authentication and higher level policies such as
migration security, hierarchical security and dynamically negotiated policies, all of which are trans-
parently used by all running applications and can be attached to Runtimes, Virtual Nodes, Nodes and
Active Objects [20]. A security policy is controlled using the Public Key Infrastructure (PKI) at three
levels: by the administrator, by the resource provider and by the application [20]. ProActive is also
capable of encrypting communications between Grid nodes. An investigation of Grid security was
beyond the scope of this research.

2.2.6 File Transfer Mechanism

It is often necessary to transfer files between Grid nodes either for application specific tasks, con-
figuration in the form of XML descriptors or even ProActive itself for on-the-fly node deployment.
The ProActive file transfer model supports a number of protocols for transferring files including the

25

ProActive File Transfer Protocol (PFTP), Secure Copy (SCP) based on SSH, Remote Copy (RCP)
base on Remote Shell (RSH) and the UNICORE [34] and NorduGrid [35] file transfer mechanisms.

The ProActive File Transfer Protocol uses a specially written API, which is part of the ProActive API,
to enable file transfer during any stage of an application’s execution, while the other external protocols
can only be invoked during application deployment and must be configured explicitly within the XML
(Extensible Markup Language) deployment descriptor [20]. The second advantage of PFTP is that as
long as the Grid is operable, files can be transferred between nodes even if the external protocols are
unavailable, but of course this requires ProActive to be resident on both the source and destination
machines [20]. The PFTP operates by deploying two service Active Objects, one on the source and
the other on the destination, and splitting the file into blocks and transferring it between the two [20].

2.2.7 Interoperability Using Web Services

Active Objects and ProActive components can be exported as Web Services allowing their calling
and monitoring from any client written in any programming language that is Web Services enabled
simply because the Web Services technology uses the XML and HTTP standards for communication
[20]. “A web service is a software entity, providing one or several functionalities, that can be exposed,

discovered and accessed over the network. Moreover, web services technology allow heterogeneous

applications to communicate and exchange data in a remotely [accessible] way. [20]” Messages
are exchanged using the Simple Object Access Protocol (SOAP) via a SOAP engine running on an
HTTP web server. These messages consist of an XML encoded serialisation format used to facilitate
communication over a network. The recommended configuration for ProActive based web services is
to use the Apache SOAP engine running on a Jakarta Tomcat web server [20]. Figure 2.4 demonstrates
the relationship and communication path between the client, SOAP interface and ProActive.

Figure 2.4: The process of calling an Active Object via SOAP. [20]

26

2.3 The ProActive Programming Model

A regular Java application only requires minor changes to enable it to operate on a ProActive Grid.
These changes include basic initialisation to make the application aware of the Grid and a change in
the method of instantiation for objects that require distribution, but once this has been completed, the
application continues to function as a single application unaware that its constituents may physically
reside on a distributed collection of computers. ProActive is completely composed of standard Java
classes and therefore requires no changes to the Java Virtual Machine [36]. It provides a compre-
hensive Application Programming Interface (API) and graphical interface based on an Active Object
pattern [36]. The API contains all the necessary tools required for creating, manipulating, grouping
and synchronising Active Objects.

2.3.1 Active Objects

The Active Object model that ProActive employs is based on an ingenious concept called Transpar-

ent Remote Objects (TROs) [23, 37], mentioned in section 1.2.4.2, which builds extensively upon
Java’s Remote Method Invocation [38] (RMI) framework. This approach allows a single application
to be deployed over multiple distributed, interconnected resources [39] and is based on the Java//
(pronounced Java parallel) framework that aims to provide seamless sequential, multi-threaded and

distributed programming [23]. The Java// library is non-intrusive, provides high-level synchronisation
mechanisms, allows for the reuse of existing code and maintains constructs such as polymorphism and
inheritance [23, 39]. All that is required is a standard Java Virtual Machine resulting in the frame-
work implicitly supporting heterogeneous architectures and platforms [39]. Through using this model
the application developer needs only understand the paradigm of object orientated programming to
completely understand and conceptualise an application deployed on the ProActive Grid because in-
dividual objects, that comprise a autonomous application, can be instantiated on an arbitrary node of
the Grid, while remaining transparently accessible to the application [39].

The TRO model extends the standard Java object in several ways giving it: location transparency
that provides polymorphism between local and remote objects, activity transparency which conceals
the fact that method invocations on the object occur in a separate thread and advanced synchronisa-
tion that allows simple and safe implementation of possibly complex synchronisation policies [23].
Transparency is achieved by using the proxy pattern [40], see figure 2.5, where a local object (the
proxy) intercepts all communications so that the local objects do not know they are in fact communi-
cating with remote objects [23]. A ProActive Active Object owns its own thread [20] and is actually
composed of two objects, the standard object and a body [23]. The body receives and queues objects
of the MethodCall class and executes them in an order according to the object’s message acceptance
policy, which by default is first-in-first-out (FIFO) [23].

27

Figure 2.5: A comparison between standard (passive) and Active Objects. [23]

An application can be thought of as being divided into subsystems, each having one Active Object,
and therefore one thread, and any number of passive objects [20]. Each subsystem only executes the
methods within itself. All inter-subsystem communication occurs only between Active Objects and
hence no passive objects are shared between subsystems. Only the Active Object of a subsystem is
known to objects outside the subsystem, therefore any object, either active or passive, can reference
an Active Object, but passive objects can only be referenced from within their own subsystem [20].
Using this set of rules, an ordinary application can have an appropriate set of objects made into
Active Objects and hence distributed across multiple physical computers each with supporting passive
objects. Figure 2.6 demonstrates the process of dividing as sequential application into a number of
subsystems and distributing the subsystems across several network hosts.

Figure 2.6: Activating an application for distribution. [23]

ProActive Active Objects can be created in one of two ways, depending on whether the application
explicitly instantiates the object or if it is simply passed the object. Active Objects need to satisfy a
number of restrictions: no final classes of methods are permitted, no non-public classes are permit-
ted, the class must include an empty no-argument constructor and the serializable interface must be

28

implemented. It is also preferable to not to use primitive types that will force the class’s objects to be
treated synchronously.

• Instantiation based Active Object creation
Object[] constructorParams = {”text”, new Integer(7)};

myClass myObj = (myClass) ProActive.newActive(“myClass”, constructorParams, destinationNode);

• Object based Active Object creation
passedObject = (PassedObject) ProActive.turnActive(passedObject, destinationNode);

2.3.1.1 Properties and Features of ProActive Active Objects

SERIALISATION

All Active Objects, including any parameters sent to them or results received from them, need to be
serialisable because all these objects need to be sent over the network.

MIGRATION

Active Objects can be moved from one JVM to another [36, 20] during application execution.

GROUPING

A typed collection of Active Objects can be created so that function calls can be performed in parallel
on the collection as a whole [36].

SYNCHRONISATION

A function call on an Active Object returns immediately, regardless of whether that method has ter-
minated, and a Future object is returned in the place of the actual object that will be the result of
the function call. When the function call does terminate, it is the responsibility of that Active Object
to update the Future it returned to the correct result [36]. The calling thread continues execution
and only blocks if, (1) it requires the returned object and it is still a Future, or (2) the returned ob-
ject is a primitive, hence providing automatic continuation [20] and wait-by-necessity, asynchronous
communication. Asynchronous communication requires that Active Objects must have an empty,
no-argument constructor. Synchronisation can be performed explicitly through the ProActive API if
necessary.

REACTIVE ACTIVE OBJECTS

An Active Object can remain responsive to external events even when it is busy doing work, which
can be done by implementing ProActive’s RunActive interface [36].

According to the Grid Identification Checklist, outlined in section 1.2.1.3, a Grid

coordinates resources that are not subject to centralised control; uses standard, open,

general-purpose protocols and interfaces; and delivers nontrivial qualities of service.

29

ProActive provides a decentralised peer-to-peer infrastructure using standard and open

protocols to deliver nontrivial services such as fault-tolerance, security, monitoring, file

transfer and web services integration. It can therefore be concluded that ProActive is a

framework for Grid computing.

30

Chapter 3

Adapting the ProActive Grid

3.1 The Desired Configuration

The resources available to this research included a VMware Virtualising server capable of running
at least a dozen virtual machines depending on their memory requirements and a laboratory of just
over ninety workstations used daily by university students. The strategy was to first develop a testbed
of virtual machines, that are easy to create and recreate, to experimentally find a working solution
for deploying a ProActive Grid. Once a working solution had been developed the next phase was
to deploy on the laboratory of workstations, which consisted of a homogeneous collection of Intel
Pentium 4 3.00GHz machines with 1GB of memory interconnected by a 100Mbit Ethernet Local
Area Network (LAN) dual booting both Fedora Core 4 Linux and Microsoft Windows XP SP2. The
network topology of the workstations and hence the Grid is illustrated by figure 3.1.

Figure 3.1: Underlying network topology of the ProActive Grid.

31

To best meet the requirements of the Grid, outlined in section 1.1.1, and best utilise the resources
available, a number of deployment design decisions were made. Firstly, because the workstations
could arbitrarily be running in either Linux or Windows at any time, both operating systems needed
to be configured as Grid nodes as similarly and as simply as possible. As an aside, this was one of
the primary reasons for selecting the ProActive Grid framework—its cross-platform portability. The
highly dynamic nature of these workstations lead to the first design decision—using the peer-to-peer
infrastructure of ProActive. The P2P infrastructure, as discussed in section 2.2.2, would be completely
decentralised and consequently the Grid would not have to rely on any one node to function. It would
also allow for the workstations to join and leave the Grid as users made use of them or as they were
restarted into one of their two operating systems.

The second design decision was to disable and enable each Grid node on each workstation as users
logged in and out respectively. This policy would maximise the use of free CPU cycles, in an al-
ready dynamic Grid, without hindering the productivity of any of the users using the workstations,
an advantage when trying to convince any authority of the resources that the Grid will not adversely
affect existing users. This idea, simple as it may seem, proved to be significantly more difficult to
implement than originally anticipated.

Central storage of ProActive and its configuration would be an necessity and therefore the third design
decision. It would be incredibly tedious, if not almost impossible, to manually alter each of ninety
computers every time a change needed to be made to the Grid. Therefore, a mechanism would need
to be employed to centrally manage ProActive, a facility that both the Linux and Windows operating
systems provide in unique ways.

The final design decision, perhaps an obvious one, was to facilitate the best performance across all
nodes and both platforms by standardising the Java environment and recompiling ProActive for that
environment. Sun Microsystems’ Java 5 was selected as the Java distribution of choice because of
the new features it provides and because the Sun JVM is the most reliable and optimised. The Java
Virtual Machine has the ability to optimally map Java threads across multiple physical processors, a
desired feature for today’s hyper-threading and dual core processors especially considering the highly
threaded nature of ProActive’s Active Objects—the Sun JVM could be relied upon for this feature.
ProActive is obtainable with all its application source code and the necessary tools to compile it
from source code and package it into Java binaries. It was completely rebuilt using the Sun Java 5
Development Kit version 1.5.0_06 and this version was used for both the virtualised testbed and the
laboratory workstations.

The ProActive P2P infrastructure is started as a daemon service by a script provided with ProAcitve.
Firstly, the P2P infrastructure is run as a daemon service so that by using a simple telnet client one
can connect to the P2P service on port 2410 of the Grid node and issue commands to start, restart

or stop the service or to flush the log buffer to the log file. The daemon service is particularly useful
for remotely controlling the P2P grid nodes. Secondly, the provided script, a shell or batch script for
Linux or Windows respectively, hides the complexity of the command line options given to a ProAc-
tive application when starting it. These scripts include a number of environment variables and include

32

paths. To extend the functionality of the daemon a Perl script was developed to interface the daemon
to provide the same set of commands, but from the command line of the local host, and to provide
further functionality such as hostname and IP address checking and execution priority selection for
the Grid processes. Perl was selected as the language for the script because of its excellent and simple
sockets interface, its availability for both Linux and Windows, but simply because it is the right tool
for the job.

The desired configuration for the ProActive Grid would be one that incorporated all the design
decisions discussed above—a centrally controlled, decentralised peer-to-peer Grid infrastruc-
ture, deployed in a standardised Java environment, composed of dynamically available cross-
platform workstations. This would comprise a realistic setup for a Grid system deployed in an
academic environment.

3.2 Deployment on the Linux Platform

3.2.1 Configuration

The configuration of ProActive on the Linux platform began on the VMware virtualisation server
with nine Dapper Drake Ubuntu Linux Server installations. Ubuntu Linux Server was chosen for its
minimal installation and simple configuration allowing for more time to be spent experimenting with
ProActive. The various Linux distributions are similar enough to test on one and deploy on another,
particularly in the case of ProActive that only has Java as a dependency. Configuration and experience
is easily transferable from one distribution to another.

Each virtual machine was configured to have 128MB of memory, given its own IP address on the
LAN and appeared to be an autonomous machine by anything accessing its system or services. The
advantage of using virtual machines, especially when creating similar machines, is that one can be
created and literally duplicated n times. Ubuntu Linux Server was installed, unnecessary services
disabled and Sun Microsystems’ Java 5 Development Kit version 1.5.0_06 installed. An unprivileged
user, griduser, was created and ProActive copied into its home directory. The system was configured
to rsync (synchronise from a remote source) and start ProActive’s P2P infrastructure each time the
virtual machine started. A list of the hostnames of the machines in the virtual testbed was created and
given to each virtual Grid node for them to find one another.

Once completely set up, the Grid computer constructed from virtual machines, functioned superbly
and without incident for the duration of this research. It was continuously used in the development
and testing of applications and because the Grid actually ran on one physical computer it was slow
enough to analyse and debug issues of timing and asynchronous communication.

The Fedora Core 4 Linux image, on the laboratory workstations, was configured in much the same
was as the Ubuntu Linux testbed, but with a few additions. Sun Microsystem’s Java 5 Development
Kit version 1.5.0_07 was used, an unprivileged user, griduser, was created and the P2P infrastructure

33

controlled via the Perl script mentioned above, controlGrid-unix.pl. The purpose of creating the
griduser user was to provide a secure context for ProActive to execute within, therefore ProActive
could not be used in any way to compromise the system it was on.

The only major difference between the Fedora and Ubuntu configurations was the method by which
the P2P Grid infrastructure was started and stopped. On the Fedora system, ProActive was integrated
with the Gnome Display Manager (GDM) that facilitates user logins. GDM includes a number of
customisable scripts that are executed on initialisation and pre-session, post-session and post-login.
These scripts were customised in the following ways. On initialisation, that is whenever the GDM
becomes visible and hence while no user is logged in, ProActive is synchronised from the central
location, for any configuration updates, and started. On post-login, that is whenever a user has suc-
cessfully logged in, ProActive is stopped.

The Fedora Linux image was configured to the desired specifications. Each node executed in a secure
context and joined or left the P2P network appropriately as users made use of the workstations.

3.2.2 Problems Encountered

One major problem was encountered, and through some in-depth investigation, solved. The problem
was aggravated by the fact that ProActive was new territory and in retrospect it was a rather trivial
problem with an obvious solution. This problem was discovered and solved on the Ubuntu Linux
testbed and therefore was understood and avoided in the Fedora Linux deployment of ProActive.

When first started, ProActive kept binding the IP address of the loopback network device and hence
would respond to other Grid nodes and inform them that the IP address on which they could be reached
was 127.0.0.1. This, of course, would result in no communication between the nodes because each
one would try to talk back to the P2P network over its local loopback device and hence the network
traffic would remain local to the node.

This problem was discovered to be caused by a default setting in Linux where the hostname of the
machine is explicitly bound to the IP address of the loopback device in the local Domain Name
Service (DNS) configuration located in the /etc/hosts file. This default is set for hosts that do not
have a network interface and an external IP address, but do have client-server services on the local
machine which communicate via sockets. If these services attempt to communicate by resolving the
hostname to an IP address they are directed back over the loopback device and hence over the internal
network, as they should be. In the event that there is an external IP address, network communications
via that address from the local host are still directed back over the internal network, therefore the
default setting is redundant on network hosts.

The solution to the Grid nodes binding incorrect IP addresses and not communicating was simply to
remove the default setting for resolving the hostname to the internal address. The hostname would
then be resolved to the external IP address of the networked host via normal DNS procedures. The
interesting observation here is the method in which ProActive discovers who it is on the Network.

34

Clearly it queries Java for the hostname of the machine it is on and then asks Java to resolve the
hostname to an IP address. ProActive should have a check in place to disallow being bound to the
local address range, 127.0.0.0/8, because it can and should only be started once on each node and
would never need to communicate via the internal network.

3.3 Deployment on the Windows Platform

3.3.1 Configuration

The Windows XP installation on each of the workstations belonged to a domain configured using
Microsoft’s Active Directory. All user accounts were registered on the domain and their respective
home directories were centrally stored on a Microsoft Distributed File System (DFS) for access from
any workstation. Therefore, it was simple to create a domain user, griduser, with a centralised home
directory to securely encapsulate ProActive. Sun Microsystems’ Java 5 Development Kit version
1.5.0_06 was installed to run ProActive and ActivePerl was installed to run the Perl interface to the
P2P daemon.

A Windows service, GridService, was developed in Microsoft Visual C# to control the starting and
stopping of the P2P infrastructure, the necessity of which will be discussed in the following sec-
tion. GridService executed ProActive, via the Perl script, in the context of a local system user named
griduserService, further encapsulating ProActive into a secure, completely read-only execution en-
vironment. When the workstation booted, GridService would start the P2P infrastructure and run it
with low priority, but even when users logged in—it was not possible to configure the Windows XP
environment to only execute ProActive when users were logged out.

Eventually ProActive was made to function on the Windows platform, but not to the full extent as was
intended. This was no fault of ProActive’s, which functioned without fault, it was simply due to the
inflexibility of the Microsoft Windows platform, which through this experiment was discovered not
to be a true multi-user environment.

3.3.2 Problems Encountered

Two major problems were encountered with the Microsoft Windows environment that significantly
delayed the Grid functioning on this platform. Firstly, a network interface and IP address binding
problem similar to that of the Linux platform and secondly, a serious problem of process attachment
to a user’s desktop.

The simpler problem of the two was again ProActive binding the incorrect IP address of the machine
it was on. In the same way as before, ProActive queried the JVM for the hostname of the local
machine and then the IP address corresponding to that hostname, while behind the scenes the JVM
was querying Windows for the same information. When Windows is asked for the IP address of its

35

hostname, it returns the IP address of its first bound network interface. This situation is acceptable if
the machine only has one network interface, but if it has more, one cannot guarantee which IP address
corresponding to which interface will be returned. The binding order of the network interfaces in
Microsoft Windows is arbitrary, but once set, persistent.

Each machine had four network interfaces, the Ethernet interface was bound second and a firewire
interface was bound first. The result was that ProActive communicated its IP address, over the Eth-
ernet network, as the firewire interface’s address rather that the Ethernet address. On one particular
day this had a rather interesting consequence. Of the ninety workstations, approximately half were in
Linux and half in Windows. The correctly configured Linux based ProActive nodes discovered and
started to communicate with the Windows based ProActive nodes, which replied with their firewire
interface IP addresses, an address range that was not part of the Ethernet LAN. The Linux nodes, not
recognising these IP addresses, began broadcasting ARP queries to identify which machines these
address belonged to. After a few hours the number of ARP packets on the network nearly saturated
the 100Mbit network and developed into a fully fledged broadcast storm. Needless to say, ProActive
was disabled on the Windows platform until a solution could be found.

After some careful research, the process of changing the binding order of the network interfaces
was discovered in the Microsoft online help. The binding order can be changed manually under the
advanced settings in the Network Interfaces section of the Windows Control Panel. Unfortunately,
there is no way this change can be scripted and each of the ninety workstations had to be altered
manually. Subsequently, an IP address range check was added to the Perl script, due to this problem
happening on both the Linux and Windows platforms.

The idea of starting and stopping the Grid software on each node as users logged out and logged in
respectively, proved to be a significant challenge. Three methods for doing this were attempted and
each one failed because of the same limitation of Microsoft Windows. As it turns out, all processes,
regardless of their ownership, are attached to the desktop on which they are started and when the
arbitrary user who owns that desktop logs out those processes are terminated. Therefore the P2P
infrastructure could be successfully stopped when a user logged in, but immediately after it was
started, when the user logged out, it was terminated by the user’s desktop closing. This is completely
different to the Unix process model where a process owned by one user has no rights over a process
owned by another user, unless of course the controlling user is the superuser.

Three strategies were attempted to circumvent this limitation. Firstly an Event Handler Dynamically

Linked Library (DLL) was developed in Microsoft Visual C++ for integration with the Winlogon

subsystem. The DLL implemented an interface that defined several functions which were called on
system startup and shutdown; user login and logout; desktop lock and unlock; and screensaver start
and stop. The DLL device functioned properly and was able to correctly start the Grid software on
system startup or stop in on system shutdown or user login, but as soon as it started the Grid Software
before the user logged out, its processes were terminated by the desktop closing. Secondly, a similar
configuration was attempted at the domain level using group policy and thirdly a Windows service
was developed using Microsoft Visual C#, but in each case the outcome was the same—the logout

36

procedure killed the Grid processes.

Of course a solution to the problem does exist, because a number of applications and even Java ap-
plications have the ability to run as a Windows Services, but the implementation became increasingly
convoluted and complex as each new possibility was explored. One hypothesis was that the initial-
isation chain, namely the Perl script executing the batch script executing ProActive, was the culprit
and that somehow all those processes were not being held onto. But with further investigation it was
discovered that this problem had been encountered many times before. Finally a possible solution was
found—Java Service Wrapper [41] a free, open-source tool for creating Windows Services from Java
applications. It recognises and claims to have overcome the problem of process termination when
desktops close and would be likely solution to wrapping a Java application as a Windows Service.

At this stage a number of the research aims had been achieved. The Grid computer

had been deployed on both the Linux platform and Microsoft Windows platform, but with

complications on the Windows platform, and was a centrally controlled, decentralised

peer-to-peer Grid infrastructure, deployed in a standardised Java environment, composed

of dynamically available cross-platform workstations. It utilised a public network’s free

CPU cycles and was persistent and available. All that remained was to develop software

for the Grid, benchmark it and to determine the Grid’s user-friendliness as a problem

solving tool.

37

Chapter 4

Benchmarking ProActive against the Linda
Coordination Language

4.1 Introduction

The first application developed for this research was designed to benchmark ProActive 3.0.1 [17],
against a Java1 implementation of the Linda2 coordination language, namely TSpaces from IBM [12].
A Grid Parallel Motif Searching Application, GridPMS, was designed to be as similar as possible
to the Linda-based Parallel Motif Searching Application developed by Tim Akhurst for his master’s
thesis [42] and presented in his paper Using Java and Linda for Parallel Processing in Bioinformatics

for Simplicity, Power and Portability [11]. The aim of this experiment was to explore the feasibility
of using a high-level, abstracted framework such as ProActive by investigating its advantages of rapid
development and simple deployment and the associated disadvantages of additional management and
computational overheads.

4.1.1 Bioinformatics

According to [11], Bioinformatics is a relatively new discipline arising from the application of in-
formatics techniques to biological problems, and more specifically research concerning genes and
proteins. While [11] delivers a more detailed description of Bioinformatics, all that is required for
the understanding of this experiment is the following. The study of genetics has its roots in DNA,
a double helix shaped arrangement of four deoxyribonucleotides or bases, namely A, T, C and G—
abbreviations of their initial letters [11]. A single human DNA strand is completely defined by a
sequence of the bases A, T, C and G, which digitally stored consumes approximately 4GB of disk
storage—the equivalent of a DVD’s storage capacity. Therefore, analysis of such a vast quantity of
information requires computational tools able to process, manipulate, store and search large volumes

1Java is a registered trademark of Sun Microsystems Inc.
2Linda is a registered trademark of Scientific Computing Associates.

38

of data in a reasonable amount of time—a problem well suited to distributed, and more specifically,
Grid computing.

4.2 The Grid Parallel Motif Searching Application

The Grid Parallel Motif Searching Application (GridPMS), and in fact also the PMS application
developed in [11], is essentially a massive, distributed, powerful regular expression matching utility
able to search gigabytes of data over a large search space in just a few minutes. GridPMS was designed
to be as similar as possible to the original PMS, bar the architectural differences between ProActive
and Linda. The data set, used by both applications, comprised one quarter of the human genome, a
1GB text file containing DNA information as discussed in section 4.1.1. The Grid and Linda nodes
used Java and Java’s regular expression matching tools using a similar set of regular expressions,
approximately 600, on slightly overlapping chunks of the data-set residing in each node’s memory.

The biggest difference was the method by which the data-set was divided and distributed. In the case
of the original PMS application the complete data-set was shared to each node via a network filesys-
tem (NFS) mount and each node received instructions regarding which portion of the data-set to read
into memory and process. GridPMS was constructed in a client-server fashion, where a Controller,
that had access to the data-set, spawned Drones and passed to them the complete regular expression
list and their portion of the data-set. The difference between these two approaches is that the NFS
approach provides concurrent data access, while Controller-Drone pattern provides sequential data
access. The sequential approach out performed the concurrent approach as more nodes were used,
evident in the performance metrics acquired in figures 4.1 and 4.7.

Figure 4.1: Use case diagram for the GridPMS application.

39

Figure 4.1 illustrates the overall functionality of the GridPMS application. A single Controller fa-
cilitates the execution of the entire application by connecting to the ProActive P2P Grid, acquiring
nodes for processing, creating the Drones, distributing the processing, receiving the results and dis-
connecting from the Grid. The Drones simply receive the data for processing, process it and return
the relevant results.

Figure 4.2: Class diagram for the GridPMS application.

Figure 4.3: Sequence diagram for attaching to and disconnecting from the P2P ProActive Grid.

40

GridPMS’ object model, figure 4.2, and sequence diagrams, figures 4.3 and 4.4 are relatively straight
forward in their description of the system. The StringMutableWrapper class extends the String class
with the necessary features, as outlined in section 2.3.1, to enable string objects to be transmitted
asynchronously—the GridPMS’ Drones return their results as one of these objects. The first sequence
diagram captures the process of connecting to the Grid, acquiring nodes, controlling the application
and disconnecting from the Grid. It can be seen that the full duration of execution is timed, including
the creation of the Drones, division of the data-set, distribution of the initial parameters, processing be
the Drones and retrieval of the results (start-up and shutdown times are negligible). It is important to
include all these aspects to record the realistic performance of the application execution no the Grid.
The second sequence diagram illustrates the problem domain component of the application, which
has already been discussed in detail.

Figure 4.4: Sequence diagram describing the problem domain component of the GridPMS applica-
tion.

Two observations can be made from this model Firstly, the Drones are operating in a completely
diskless fashion and hence this model would function well on a cluster of diskless nodes. Secondly,
from GridPMS’ sequence diagram in figure 4.4 it can be seen that two Controller objects exist. The
first Controller, a passive object, bootstraps a second Controller, an Active Object, and they share
statically declared variables. The Controller need not be active and in the framework discussed in
the following chapter the bootstrapping process was eliminated and a passive controller used. The
only reason an active controller would be used is if it needed to be distributed to a Grid node, but this
would only be necessary if it was doing significant processing, but all the processing should be done
by the Drones, therefore a passive Controller is sufficient.

41

4.3 Experimental Performance Results

4.3.1 Experimental Environment

The computers used as Grid nodes were an homogeneous collection of Intel 3.0GHz Hyper-threading
Pentium 4’s with 1GB memory interconnected by a 100Mbps switched Ethernet local area network,
each running Java 1.5.0 on Fedora Core 4 Linux and Microsoft Windows XP described in section 3.1.
This differed slightly from the Intel 2.4GHz Pentium 4’s with 512MB memory running Java 1.4.2 on
Red Hat Linux 3.1.10 interconnected by the same network, used in [11]. Although this is a significant
difference, compounded by using multiple machines, the difference is ironed out by normalising the
measured experimental times, making both sets of performance results comparable.

4.3.2 Results

The performance increase achieved by adding nodes to the PMS is represented in figure 4.5, which is
a plot of the speedup achieved versus the number of nodes employed. The speedup with n nodes is
measured as the ratio of the time taken by n nodes to the time taken by only 1 node, hence s(n) = t(1)

t(n)
.

The execution time for each test run was measured for the entire duration of each run, including the
time taken to distribute the data-set over the network and receive the results. The execution time when
5 nodes were used was of the order of 2.5 hours, but in each test case approximately 5 minutes was
spent distributing the data-set over the network, an effect that became more apparent as more nodes
were added and the execution time shortened.

Due to the complexity of the application and the large data-set, it was discovered that no less than
5 nodes could be used before the Controller exhausted its memory—a point in favour of distribution
over the Grid. This occurred while the Controller was distributing the data-set to the Drones. It had to
read a portion of the data-set into memory, save it as an object and send it to the Drone as part of the
parameters it received to be processed. It was found that the JVM’s internal handling of the data was
extremely clumsy and almost three times the size of the data chunk was consumed in memory and
furthermore, manual garbage collection was not able to reduce the quantity of memory used. When
distributing the 1GB data-set to 5 Drones 1.1GB of memory was used, while using 50 Drones 444MB
was used and 90 Drones consumed 304MB on the Controller. The ideal situation would have been to
stream the data directly from the Controller to the Drones rather than first wrapping it in a object, but
this can not be done with ProActive, which requires serialisable objects for communication, because
Java’s stream objects are not serialisable. A second option would have been to compress the data-set
because the DNA data is essentially 2-bit data (representing the four bases ACTG) and it is quite
wasteful transferring it as 8-bit or 16-bit text.

Before the results could be normalised, the execution time for only one node needed to be calculated.
This was achieved by fitting the data using a non-linear least-squares regression fit to equation 4.1.
The trend in figure 4.5 appeared to be an exponential increase tending to a constant value, or simply a

42

constant minus an exponential, which is exactly what equation 4.1 represents. To verify the accuracy
of the fit, the statistical R-squared value, a measure of goodness of fit, was calculated to be 99.87%,
indicating a near perfect fit to the data. This allowed s′(n), the normalised speedup, to be calculated
and hence compared to the results achieved in [11].

s′(n) = −αβn−γ +
1

s(1)
α5β−γ + 1 (4.1)

Equation 4.1 symbols: n = number of nodes; s = speedup from n nodes; s′ = normalised speedup
from n nodes; α, β and γ are parameters solved for by the non-linear least-squares regression fit.
A byproduct of the fitting to equation 4.1 is the interpretation of the constant 1

s(1)
α5β−γ + 1, which

quantifies the maximum theoretical speedup achievable with infinite nodes. The maximum speedup
measured was 50.5 times when using 90 nodes and the theoretical maximum was calculated to be
69.3 times.

The plot of normalised speedup, when analysed alone, can be deceiving and should be accompanied
by a plot of normalised execution time verses number of nodes—figure 4.6. Figure 4.5 suggests
that better performance is achieved by adding more computational units to the problem, while figure
4.6 clearly shows that at a point very little benefit is derived by adding more nodes. The optimal
number of nodes for an application is very much a qualitative measure and depends entirely upon the
application, its parameters and its computation to communication ratio. It can be judged from the
figures 4.5 to 4.6 that using more than 15 or 20 nodes would be wasteful in the case of GridPMS with
a 1GB data-set and 600 regular expressions.

Figure 4.5: Speedup achieved by GridPMS and the Linda-based PMS

43

Figure 4.6: Normalised execution time achieved by GridPMS

Figure 4.7: Normalised execution time achieved by GridPMS

The efficiency of a distributed application executing in parallel, calculated as e = s′(n)/n, quantifies
how well the application utilises the distributed resources it has at its disposal. This performance
measure shows the most significant difference between the Grid and Linda based implementations of

44

the PMS application. GridPMS is between 10% and 30% more efficient than that the Linda imple-
mentation in their use of between 5 and 45 computational nodes, evident in figure 4.7. The difference
in efficiency would rather be attributed to the difference in the data distribution approach, as discussed
previously, than the differences between ProActive and the Linda coordination language.

The limiting factor in the case of these PMS applications is the finite time taken to distribute the 1GB
data-set to each processing node. The higher the computation to communication ratio, the more linear
the speedup, the more linear the reduction in execution time and the longer the efficiency remains
100%, hence the more parallelisable the application.

4.4 Application Development for the ProActive Grid

One major hurdle encountered during this research and perhaps a drawback to the use of ProAc-
tive was its documentation and the availability of information and support regarding it. The ProAc-
tive Manual [20] was used as far as possible while deploying the Grid and developing software that
utilised it, but unfortunately the standard of the documentation was very low and no supplementary
online resources existed. For example, the grammar in parts was so poor that it made certain sections
incomprehensible and certain sections referenced by the text, often source code listings, were absent.
On many occasions it became necessary to resort to searching through and reading the actual Java
source code to understand its functionality and requirements. At times this was frustrating, but it is
the only significant criticism given of ProActive.

Bar the one criticism, developing applications using the ProActive API was a pleasure. ProActive’s
Active Object pattern, programming model and API made for a simple approach to solution visual-
isation and application development. The complete ProActive library is neatly packaged into Java
Archives (JARs) and therefore easily linked into an application using its API. ProActive provides in-
structions [20] for using its API within the Eclipse Integrated Development Environment, an excellent
environment for developing Java applications.

The experiment described in this chapter was designed to gain an understanding of

developing applications that utilise the ProActive Grid, solve a real world problem that

requires enormous resources such as a Grid and lastly to benchmark the performance

of ProActive against an existing model for distributing processing. Both the Grid and

the application scaled up to 90 computers without a degradation in performance and

the results achieved were comparable to those achieved when utilising the Linda Coor-

dination Language for a similar application. The application required little extension to

operate over the Grid and considering the complex services provided by ProActive for

monitoring, administering and maintaining Grid applications, results were pleasing.

45

Chapter 5

A Framework for Distributed Computing on
the ProActive Grid

5.1 Introduction

The experience of developing and testing the GridPMS application provided valuable insight into
the particularly useful Controller-Drone model of subdividing a computational problem and it was
discovered that many parallelisable applications could be structured this way. With this in mind, a
framework was developed that would greatly simplify the development process for applications that
would utilise this model and completely abstract the Grid from the application.

This framework allows the developer to concentrate on the solution rather that the intricacies and
internals of the Grid and its API. It handles connecting to the Grid, acquiring nodes, creating Drones,
distributing the processing, receiving the results and disconnecting from the Grid. It does this while
correctly and optimally threading these functions and facilitating asynchronous communications—
tasks which require a good understanding of the Grid infrastructure and are tedious and difficult to
implement.

The Controller-Drone framework provides a reusable generic middle tier for interfacing the Grid and
separates the back-end, system interaction component of the application from the front-end, problem
domain component of the application, providing benefits greater than just simplifying development.
The framework’s internals can be altered, optimised and extended without affecting the applications
dependant on it, therefore improving the performance or capabilities of the framework does the same
for all the applications that interface it. It would also be possible to leave existing applications un-
changed when new versions versions of ProActive are released, while only having to adapt the frame-
work to the new versions.

The design, internal workings, capabilities and possible extensions to the framework are discussed
in this chapter. To complete the discussion, a working demonstration of the framework is presented
that illustrates the simplicity of using this framework and the Controller-Drone distributed processing
model.

46

5.2 Details of the Controller-Drone Distributed Processing Model

The application design model of the framework is similar to that of the GridPMS application dis-
cussed in the previous chapter, where the only difference lies in the fact that the framework needs to
communicate with an application that supplies jobs for processing and receives results of that process-
ing. Figure 5.1 illustrates the responsibilities of the framework; figure 5.2 the object model and the
integration of the application; and figure 5.3 the control process of the framework. The same process
for interfacing the ProActive Grid, as illustrated by the sequence diagram in figure 4.3, was used for
the framework.

Figure 5.1: Use case diagram illustrating the broad responsibility of the framework.

47

Figure 5.2: The framework’s class diagram demonstrates the relationships between objects that com-
prise the framework and the attached application.

Figure 5.3: Sequence diagram illustrating the distribution of processing by the framework.

As already mentioned, the purpose of this framework is to relieve the developer from concerning him-
self with the particulars of the Grid. As can be seen from figure 5.2, the framework object model, all
the developer needs do to execute an application on the Grid is create two classes and complete three
functions within them. The first class inherits from the Controller class and requires the generate-

DroneParameters and the receiveDroneResults functions and the second class inherits from the Drone

48

class which is required to have the doProcessing function. The first function, generateDroneParame-

ters, is called by the parent Controller when it has a free Drone. The Vector supplied by the function
call is delivered to the doProcessing function of the idle Drone, which then performs the relevant pro-
cessing and returns the result to the parent Controller which calls the receiveDroneResults function.
The developer only needs to write code to generate parameters for jobs, process those parameters and
process the results received, the framework handles the rest.

Controller abstract protected Vector<Serializable> generateDroneParameters()

abstract protected void receiveDroneResults(Serializable result)

Drone abstract public Serializable doProcessing(Vector<Serializable> params)

Three points are worth noting. Firstly, objects passed between the Controller and the Drones need
to satisfy the constraints of Active Objects and asynchronous communications as outlined in section
2.3.1. Secondly, as in the case of GridPMS, the nodes on which the Drones reside can be diskless
nodes. Finally, no bootstrapping of an active Controller is necessary, hence the framework’s Con-
troller is passive unlike GridPMS’ Controller.

The Controller was designed with a number of optimising attributes. Drones are created only once,
but can be reused any number of times, therefore an arbitrary number of Drones can process a greater
number of jobs. The number of Drones to be used is set when the application starts and jobs are
queued in the Controller until a Drone becomes available. The control algorithm for the Controller,
algorithm 1, was designed to prioritise starting the Drones processing available jobs before sending
available results back to the application. A source code listing can be found in appendix A.

Algorithm 1 Algorithm implemented by the Controller.
while (! all jobs received || results outstanding)
while (there is a job ready && there is an available node)
* collect and send the job to an idle Drone
* start the Drone processing
endwhile
while (there is a results object awaiting)
* forward the results object to the application
endwhile
endwhile

5.3 Possible Extensions

Presently the framework only supports functionality to distribute computation as discussed above, but
without any changes to its application facing interface a number of extensions could be made that
would benefit all applications that utilise it. The suggested extensions are:

49

• Security

ProActive’s security mechanism was briefly mentioned in section 2.2.5 where the public key
infrastructure can be used to encrypt network communication and provide authentication, in-
tegrity and confidentiality within the application.

• Improved Transfer of Large Amounts of Data

When large sets of data need to be sent between objects it becomes clumsy to handle these
within the Controller’s memory before sending it over the network to a Drone. A preferred
solution would be to have a collection of data streams between the Controller and the Drones,
perhaps using the PFTP file transfer mechanism ProActive provides discussed in section 2.2.6.
The streams would only be necessary for the initialisation parameters sent to the Drones be-
cause asynchronous communication is unimportant at this stage, which could be threaded if
necessary—but it is imperative that the results return asynchronously.

• Fault Tolerance

Fault tolerance was discussed at length in section 2.2.4 and would provide a significant benefit
to the functionality of the framework. New Drones could be created to replace failed Drones
and the application could continue uninterrupted.

• Intelligent Active Object Migration

Building onto the idea of fault tolerance would be that of Intelligent Active Object Migration.

Fault tolerance handles the cases where nodes uncleanly drop off the Grid and stop responding,
but it adds additional overhead to the application. A mechanism that would work alongside
fault tolerance and reduce its associated overhead would be that of Intelligent Active Object
Migration, a mechanism that would migrate Drones from nodes that are about to leave the Grid
to more reliable nodes. This would work well where public workstations that are used as nodes
leave the Grid when users log into the workstations. The Drones, while still processing, could
be migrated back to the controller, which could request a new node from the Grid and redeploy
the active Drone, again without interrupting application execution.

• Inter-Drone Communication

Currently the Drones have no means of communicating directly with one another, but it would
be possible to make all the Drones aware of one another and able to communicate with one
another. Unfortunately, this could not simply be done by passing object references from the
Controller to the Drones as this would pass the entire object. The Drones would need to use
ProActive’s API to obtain references to the other Drones.

50

5.4 Demonstration Application

5.4.1 Introduction

A final discussion of the framework assumes the form of an appropriate demonstration. The demon-
stration is of a mathematical function that is computationally intensive to plot, requires very little
communication and can be processed in a relatively short period of time, namely the Mandelbrot
Set—a fractal. The Mandelbrot Set [43] is generated by using the simple equation, zn+1 = z2

n + z0,
where z is a complex number. Each point in the complex plane is applied to the equation and the
set is defined as the points for which the equation converges. When the magnitude of zn exceeds a
critical limit it is mathematically guaranteed to diverge and the number of iterations needed to reach
that limit is mapped to a colour on the fractal plot—points that converge are traditionally coloured
black.

5.4.2 The Grid Mandelbrot Set Rendering Application

The Mandelbrot Set falls within the area defined by±2 on the real axis and the±1.1 on the imaginary
axis. Zooming in to smaller and smaller regions of the Mandelbrot Set reveals greater and greater
complexity with a repetitive behaviour, see figure 5.8. The GridMandelbrotSet application allows the
user to make an arbitrary selection of the set, which it then re-renders at full size, while maintaining
the aspect ratio.

The GridMandelbrotSet application is built using the Controller-Drone framework and hence its de-
sign becomes incredibly simple, as illustrated by its use case diagram in figure 5.4 and its sequence
diagram in figure 5.5. It operates by dividing the plottable area into a number of strips, or jobs, that
are parameterised and handed to the Controller, which in turn passes them to the Drones. The Drone
computes the number of iterations required to determine the convergence or divergence of each pixel
on the selected area of the complex plane, converts the iteration count of each pixel to a colour and
draws the image. The final results objects, containing the iteration counts and images, are sent back
to the Controller which hands them to the user interface for rendering to the screen.

Figure 5.4: Use case diagram for the GridMandelbrotSet application.

51

Figure 5.5: Sequence diagram for the illustrating the process followed by the GridMandelbrotSet
application.

Figure 5.6: Class diagram for the GridMandelbrotSet application.

The object model, figure 5.6, demonstrates the use of the application framework. The GridMandel-
brotSet application has both Controller and Drone classes which inherit from their respective parent
classes, therefore the Grid is completely hidden from the context of the application. A source code
listing can be found in appendix B.

52

5.4.3 Results

These images consumed only a few seconds to
render on the Grid. Figure 5.7 illustrates the
asynchronous nature of the returned results. The
strips are distributed from the top down, but re-
turn as they are completed. The black areas are
the most computationally expensive to calculate,
therefore the more black contained within a strip
the longer that strip takes to compute. Zooming
into the Mandelbrot, demonstrated by figure 5.8,
illustrates the complexity and self-reflective frac-
tal nature of the Mandelbrot.

Figure 5.7: A demonstration of the asynchronous
nature of the communication where the results ar-
rive out of order.

Figure 5.8: Zooming in and re-rendering a section of the Mandelbrot Set.

5.5 Motivating the Controller-Drone Framework

A significant amount of careful design and development went into the creation of this framework
to produce a functional layer that applications developed for the ProActive Grid could be built on.

53

Grid related interactions such as joining the application to the Grid, requesting nodes of the Grid,
correctly disposing of the used nodes and disconnecting from the Grid are functions that need to
be performed in a very specific manner. As mentioned in section 4.4, it was a challenging process
to engineer the aspect of the GridPMS application that interfaced the Grid because of ProActive’s
poor documentation—and that was before the problem domain component of the application could
even be implemented. Furthermore, communication with the Drones, including related threading
and waiting, is handled solely by the Controller-Drone framework, which saves the developer from
difficulties related to thread safety and busy-waiting. Nodes that are requested by an application are
then dedicated to that application and in the event the application does not correctly dispose of its
nodes they will be unavailable to future applications. In summary, it took a number of weeks were to
develop the system interaction component of the GridPMS application and a detailed understanding
of the ProActive Grid—this framework completely eliminates system interaction for all applications
that utilise it.

A major research aim was achieved through the development of the Controller-Drone

application framework—this was the aim of developing a user-friendly Grid that any-

one could use to create solutions for resource hungry computational problems. The

framework provides an extensible application programming interface that best utilised

the Grid’s capabilities and hides its complexity allowing a developer to concentrate on

the application rather than the specifics of the Grid. A fractal generating demonstration

application clearly illustrated the usefulness of the framework and the rapid development

of Grid-based applications using the framework. The concepts and extensions discussed

in this chapter have the potential to provide a springboard to a powerful, yet generic API

for distributed computation.

54

Chapter 6

Conclusion

6.1 Assessment of Research and Aims

In the first chapter a research proposal and a number of research aims were put forward as the desired
outcomes of this project. It can be reported with confidence that proposed objectives have been
achieved and the same goes for the aims, but within the constraints of the technological limitations
discovered. The topic of Grid computing has been thoroughly researched and defined in section
1.2.1; an existing framework for Grid computing was investigated and deployed as a working Grid;
and an application, well suited for distributed computation, was ported to the Grid and used as a
performance benchmark. This was then further extended by developing a framework for simplifying
application development, therefore making the Grid accessible to the user unfamiliar with the specific
Grid implementation. The framework, and the Grid for a matter of fact, were both demonstrated using
data intensive and processing intensive applications, both of which delivered satisfactory results.

In closing, two extensions are suggested to this research—a continuation of this research into areas
that were identified during the course of this investigation that were out of scope and a comparative
investigation of another popular framework for Grid computing.

6.1.1 Further Investigation of the ProActive Grid Framework

ProActive provides greater functionality than was utilised through this research and a number of
areas were identified where further research could be conducted. Of particular interest is developing
Web Services that provide and interface to the ProActive Grid. Active Objects, discussed in section
2.3.1, can be exported as a Web Service [20, 36] and deployed onto a Jakarta Tomcat web server
as described in section 2.2.7. This mechanism could make the Grid significantly more usable by
providing the ability to create client applications in any Web Service enabled programming language.

Secondly, the extensions suggested to the development framework, outlined in section 5.3, could be
completed. This would integrate security, fault tolerance, improved file transfer and improved com-
munication within the application, thereby using the Grid to create a robust application environment.

55

6.1.2 A Comparative Investigation of the Globus Toolkit

The Globus Toolkit, a highly developed infrastructure for Grid computing, mentioned in section
1.2.5.1, would form the basis of an excellent comparison to this research. A Globus-based Grid
could be deployed and a similar set of applications could be developed for testing and benchmarking
against those presented in this report. Furthermore, the Commodity Grid (CoG) Kits [22, 44], that
provide an interface for the Java, Python and Perl programming languages to the C/C++ based Globus
infrastructure, could be investigated.

The Grid is still largely a developing technology, with huge potential and a long way

still to go, but some research institutes and financial organisations are starting to im-

plement this technology. It is not the next generation Internet, nor an unlimited source

of resources, but will rather be an Internet enabled tool for maximising use of exist-

ing resources [6]. When the full power of the Grid is realised it will provide awesome

possibilities to the scientific community and commercial sector making as yet unrivaled

computational power and resource access available to the general scientist and citizen

for application as wide as imagination allows.

In summary, the achievement of this research was a clarification of Grid computing,

the deployment of a functional high-performance Grid capable of challenging other dis-

tributed infrastructures and the development of an application framework enabling rapid

implementation of problem solving applications requiring only a basic understanding of

the Grid.

56

Glossary

Grid A network-based computing infrastructure providing security, resource access, informa-
tion and other non-trivial services that enable the controlled and coordinated sharing of
resources among “virtual organisations” formed dynamically by individuals and institu-
tions with common interests.

Cluster A localised, homogeneous network of computers connected by a high-speed local area
network (LAN) designed to be used as an integrated computing or data processing re-
source.

ProActive A Grid Java library for parallel, distributed and concurrent computing, also featuring
mobility and security in a uniform framework.

GridPMS A massive, distributed, powerful regular expression matching utility able to search giga-
bytes of data over a large search space.

Virtual Organisation A dynamic organisation formed by multiple institutions sharing instruments
and computational resources with the purpose of collaborative problem solving.

Bioinformatics A scientific discipline where informatics techniques are applied to biological prob-
lems.

57

References

[1] The ACM Computing Classification System [1998 Version]. [Online]. Available: http:
//www.acm.org/class/1998/

[2] J. Schopf and B. Nitzberg, “Grids: Top Ten Questions,” Scientific Programming, special

issue on Grid Computing, vol. 10, no. 2, pp. 103–111, August 2002. [Online]. Available:
http://www.globus.org/alliance/publications/papers/topten.final.pdf

[3] P. Strong, “Enterprise Grid Computing,” Queue, vol. 3, no. 6, pp. 50–59, 2005. [Online].
Available: http://doi.acm.org/10.1145/1080862.1080877

[4] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, “The Data Grid: Towards
an Architecture for the Distributed Management and Analysis of Large Scientific Datasets,”
Journal of Network and Computer Applications, vol. 23, pp. 187–200, 2001. [Online].
Available: http://www.globus.org/alliance/publications/papers/JNCApaper.pdf

[5] I. Foster, Computational Grids, C. Kesselman, Ed. Morgan-Kaufman, 1999, Chapter
2 of "The Grid: Blueprint for a New Computing Infrastructure". [Online]. Available:
http://www.globus.org/alliance/publications/papers/chapter2.pdf

[6] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling scalable virtual
organizations,” International J. Supercomputer Applications, vol. 15, no. 3, 2001. [Online].
Available: http://www.globus.org/alliance/publications/papers/anatomy.pdf

[7] I. Foster, “What is the Grid? A Three Point Checklist,” GRIDToday, July 2002. [Online].
Available: http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf

[8] S. Rajsbaum, “ACM SIGACT News Distributed Computing Column 8,” SIGACT News, vol. 33,
no. 3, pp. 50–70, 2002. [Online]. Available: http://doi.acm.org/10.1145/582475.582485

[9] A. Snavely, G. Chun, H. Casanova, R. F. V. der Wijngaart, and M. A. Frumkin,
“Benchmarks for Grid Computing: A Review of Ongoing Efforts and Future Directions,”
SIGMETRICS Perform. Eval. Rev., vol. 30, no. 4, pp. 27–32, 2003. [Online]. Available:
http://doi.acm.org/10.1145/773056.773062

58

[10] W. E. Johnston, D. Gannon, B. Nitzberg, L. A. Tanner, B. Thigpen, and A. Woo, “Computing
and Data Grids for Science and Engineering.” in Supercomputing ’00: Proceedings of

the 2000 ACM/IEEE conference on Supercomputing (CDROM). Washington, DC, USA:
IEEE Computer Society, 2000, p. 52. [Online]. Available: http://www.supercomp.org/sc2000/
Proceedings/techpapr/papers/pap253.pdf

[11] G. Wells and T. Akhurst, “Using Java and Linda for Parallel Processing in Bioinformatics for
Simplicity, Power and Portability,” in Proc. IPS-USA-2005, Cambridge, MA, USA, June 2005.

[12] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford, “’TSpaces’ IBM Systems Journal,”
vol. 37, no. 3, pp. 454–474, 1998.

[13] D. Gelernter, “Generative communication in Linda,” ACM Trans. Programming Languages and

Systems, vol. 7, no. 1, pp. 80–112, January 1985.

[14] University of California. SETI@home. [Online]. Available: http://setiathome.berkeley.edu/

[15] V. Getov, G. von Laszewski, M. Philippsen, and I. Foster, “Multiparadigm Communications
in Java for Grid Computing.” Commun. ACM, vol. 44, no. 10, pp. 118–125, 2001. [Online].
Available: http://doi.acm.org/10.1145/383845.383872

[16] F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssière, “Interactive and descriptor-based
deployment of object-oriented grid applications,” in Proceedings of the 11th IEEE International

Symposium on High Performance Distributed Computing. Edinburgh, Scotland: IEEE Com-
puter Society, July 2002, pp. 93–102.

[17] Inria Sophia Antipolis. ProActive. [Online]. Available: http://www-sop.inria.fr/oasis/ProActive/

[18] “Chimera: A Virtual Data system for Representing, Querying, and Automating Data Deriva-
tion,” in 14th International Conference on Scientific and Statistical Database Management, Ed-

inburgh, July 2002.

[19] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” Intl

J. Supercomputer Applications, vol. 11, no. 2, pp. 115–128, 1997. [Online]. Available:
ftp://ftp.globus.org/pub/globus/papers/globus.pdf

[20] OASIS Research Team, ProActive: A Comprehensive Solution for Grid Computing, v3.1 ed.,
April 2006, the ProActive Manual. [Online]. Available: http://www-sop.inria.fr/oasis/proactive/
doc/api/org/objectweb/proactive/doc-files/index.html

[21] G. von Laszewski. Commodity Grid Kits. [Online]. Available: http://wiki.cogkit.org/

[22] G. Laszewski, I. Foster, J. Gawor, and P. Lane, “A java commodity grid kit,” 2001. [Online].
Available: citeseer.ist.psu.edu/laszewski00java.html

59

[23] D. Caromel, W. Klauser, and J. Vayssiere, “Towards Seamless Computing and Metacomputing
in Java,” in Concurrency Practice and Experience, G. C. Fox, Ed., vol. 10, no. 11–13.
Wiley & Sons, Ltd., September-November 1998, pp. 1043–1061. [Online]. Available:
http://www-sop.inria.fr/oasis/proactive/doc/javallCPE.ps

[24] US National Science Foundation. GriPhyN. [Online]. Available: http://www.griphyn.org/

[25] W. E. Johnston, D. Gannon, and B. Nitzberg, “Grids as Production Computing Environments:
The Engineering Aspects of NASA’s Information Power Grid,” in HPDC, 1999. [Online].
Available: citeseer.ist.psu.edu/johnston99grids.html

[26] US National Science Foundation. TeraGrid. [Online]. Available: http://www.teragrid.org/

[27] International Virtual Data Grid Laboratory. [Online]. Available: http://www.ivdgl.org/

[28] Vrije Universiteit Amsterdam, University of Amsterdam, Delft University of Technology,
University of Leiden and University of Utrecht. The Distributed ASCI Supercomputer (DAS).
[Online]. Available: http://www.cs.vu.nl/~bal/das.html

[29] Particle Physics Data Grid. [Online]. Available: http://www.ppdg.net/

[30] Sandia National Laboratories. Distance Computing (DisCom) Grid. [Online]. Available:
http://www.cs.sandia.gov/discom/

[31] INRIA. Active Objects, Semantics, Internet and Security (OASIS) Project Neam). [Online].
Available: http://www.inria.fr/recherche/equipes/oasis.en.html

[32] The French National Institute for Research in Computer Science and Control (INRIA).
[Online]. Available: http://www.inria.fr/index.en.html

[33] Free Software Foundation, Inc. GNU Lesser General Public License. [Online]. Available:
http://www.gnu.org/licenses/lgpl.html

[34] Central Institute of Applied Mathematics, Forschungszentrum Juelich, Germany. Uniform
Interface to Computing Resources (UNICORE). [Online]. Available: http://unicore.sourceforge.
net/

[35] The NorduGrid Collaboration. NorduGrid. [Online]. Available: http://www.nordugrid.org/

[36] OASIS Research Team, ProActive Reference Booklet, v3.0 ed., November 2005. [Online].
Available: http://www-sop.inria.fr/oasis/proactive/doc/release-doc/html/ReferenceCard.html

[37] G. Atkinson and G. Wells, “Benchmarking the Java-Based ProActive Grid Achitecture
with a Java Implementation of the Linda Coordination Language,” 2006. [Online].
Available: http://research.ict.ru.ac.za/g03a0381/Research%20Library/Grid%20Computing/gc_
Atkinson_Wells.pdf

60

[38] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object Model for the Java System,” in
USENIX 1996: Proceedings of the 1996 USENIX Conference on Object-Oriented Technologies,
1996. [Online]. Available: http://pdos.csail.mit.edu/6.824/papers/rmi96.pdf

[39] G. Atkinson and G. Wells, “An Investigation of Grid Computing, A Literature Review,” 2006.
[Online]. Available: http://research.ict.ru.ac.za/g03a0381/ResearchLibrary/GridComputing/
LiteratureReview.pdf

[40] E. Gamma, R. Helm, R. Johnson, and J. Vissides, Design Patterns - Elements of Reusable

Object-Orientated Software. Professional Computing Series. AW, 1995.

[41] Tanuki Software. Java Service Wrapper). [Online]. Available: http://wrapper.tanukisoftware.
org/

[42] T. Akhurst, “The Role of Parallel Computing in Bioinformatics,” Master’s thesis, Rhodes Uni-
versity, 2004.

[43] Francis C. Moon, Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and

Engineers. John Wiley & Sons, Inc., A Wiley-Interscience publication.

[44] G. von Laszewski, I. T. Foster, and J. Gawor, “CoG Kits: A Bridge Between Commodity
Distributed Computing and High-Performance Grids,” in Java Grande, 2000, pp. 97–106.
[Online]. Available: citeseer.ist.psu.edu/vonlaszewski00cog.html

61

Appendix A

Framework

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.Serializable;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Vector;
import org.objectweb.proactive.ActiveObjectCreationException;
import org.objectweb.proactive.ProActive;
import org.objectweb.proactive.core.node.Node;
import org.objectweb.proactive.core.node.NodeException;
import org.objectweb.proactive.p2p.service.P2PService;
import org.objectweb.proactive.core.ProActiveException;
import org.objectweb.proactive.p2p.service.StartP2PService;
import org.objectweb.proactive.p2p.service.node.P2PNodeLookup;
import org.objectweb.proactive.core.config.ProActiveConfiguration;
/**

* @author Greg Atkinson, 2006
*/

public abstract class Controller implements Serializable {
static final long serialVersionUID=1;

// ** GLOBAL PARAMETERS MODIFYABLE BY THE CHILD ** //

protected boolean logToSTDOUT=true;
protected boolean doNoWork=false; // Just find and de-

stroy the nodes, no processing (for debugging)
protected long nodeLookupTimeout=30000; // Time in milliseconds to look for nodes
protected long startTime,duration;
protected StringBuffer log=new StringBuffer();
protected boolean allParametersSent=false;

// ** JOIN THE P2P NETWORK, GET NODE URLs & START THE DRONES ** //

private String appID,p2pNodeFile,droneClassName;
private int numNodesRequired=-1;

private String[] droneURLs;
private int numDrones=0,awaitedResults=0;
protected Drone[] drone;
private boolean droneActive[];
protected Object[] droneResults;

62

// Empty, no-arg constructor required by ProActive
public Controller() {}

public Controller(String _appID, int _numNodesRequired, String _p2pNodeFile) {
// Process the Grid application parameters
if (_appID==null) {die("Grid application name not set, please define ’String appID’");}
if (_numNodesRequired<0) {die("Number of nodes required not set, please de-

fine ’int numNodesRequired’");}
if (_p2pNodeFile==null) {die("Node list filename not set, please de-

fine ’String p2pNodeFile’");}
appID=_appID;
numNodesRequired=_numNodesRequired;
p2pNodeFile=_p2pNodeFile;

new Thread(new Runnable() {
public void run() {

// Compose the class names and tell us who we are
droneClassName=appID+"Drone";
System.out.println("ProActive Grid Application : "+appID+"\n");

// Load the default ProActive configuration
ProActiveConfiguration.load();

// ** Connect to the P2P network and acquire nodes from it. ** //
// Start P2P Service
StartP2PService startP2PService=new StartP2PService(p2pNodeFile);
try {startP2PService.start();}
catch (ProActiveException e) {

logError("ProActiveException starting P2P service");
e.printStackTrace();

}
P2PService p2pService=startP2PService.getP2PService();
// Acquire Nodes

P2PNodeLookup p2pNodeLookup;
if (numNodesRe-

quired>0) p2pNodeLookup=p2pService.getNodes(numNodesRequired,appID,appID);
else {p2pNodeLookup=p2pService.getMaximunNodes(appID,appID);}

// The nodes *must* be destroyed, therefore try not let any excep-
tion halt execution

try {
logMessage("Waiting no more than "+nodeLookupTime-

out+"ms for "+numNodesRequired+" nodes.");
Vector nodes=p2pNodeLookup.getNodes(nodeLookupTimeout);
long timeWaited=0;
while (!p2pNodeLookup.allArrived()) {

try {Thread.sleep(1000);} catch (Exception e) {}
timeWaited+=1000;
if (timeWaited>=nodeLookupTimeout) {

doNoWork=true;
logError("Insufficient nodes found.");
break;

}
}
// Get the node URLs

logMessage("Getting node URLs...");
droneURLs=new String[nodes.size()];

63

for (int i=0;i<droneURLs.length;i++)
droneURLs[i]=((Node)(nodes.get(i))).getNodeInformation().getURL();

// Start timing by getting the current time
startTime=System.currentTimeMillis();

// ** Fire up the application ** //
if (!doNoWork)

if (droneURLs.length>=numNodesRequired && droneURLs.length>=1) {
numDrones=droneURLs.length;
drone=new Drone[numDrones];
droneResults=new Object[numDrones];
// Create Drones
if (createDrones()) logMessage("All Drones created.");
else logError("Failed to initialise some Drones.");
// Hand out processing to Drones & receive the results

if (control()) logMessage("All results received.");
else logError("Some results missing.");

} else logError("Insufficient nodes, shutting down.");

// Calculate the duration of execution
duration=System.currentTimeMillis()-startTime;

} catch (Exception e) {
e.printStackTrace();

}

// ** Destroy and replace the used nodes. ** //
// Kill used nodes (this process automatically cre-

ates a new node in the old one’s place)
p2pNodeLookup.killAllNodes();
// Pause while we make sure the process completed.

logMessage("Waiting for the deletion of old and cre-
ation of new shared nodes...");

try {Thread.sleep(30000);} catch (Exception e) {}
logMessage("Bye.");

// Report the duration of execution
logMessage("Time of execution: "+millisecondsToString(duration));

// Produce the log file
try {

Date now=new Date(System.currentTimeMillis());
SimpleDateFormat formatter=new SimpleDateFormat("yyyyMMdd-

HH’h’mm");
String extension=formatter.format(now);
PrintWriter out=new PrintWriter(new BufferedWriter(

new FileWriter(appID+"."+numNodesRequired+"Drones."+extension)));
out.write(log.toString());
out.close();

} catch (IOException e) {
logError("IOException when attempting to write log file.");
e.printStackTrace();

}

System.exit(0);

}
}).start();

64

}

private boolean createDrones() {
boolean returnValue=true;
// Mark all the Drones as available

droneActive=new boolean[numDrones];
for (int i=0;i<numDrones;i++) droneActive[i]=false;
// Create, initialise & start drones processing

for (int i=0;i<numDrones;i++) {
// Create drone

try {
drone[i]=(Drone)ProActive.newActive(droneClassName,null,droneURLs[i]);
logMessage("Created drone on"+droneURLs[i]);

} catch(NodeException e) {
logError("NodeException creating drone "+(i+1)+" on "+droneURLs[i]);
e.printStackTrace();
returnValue=false;

} catch(ActiveObjectCreationException e) {
logError("ActiveObjectException creating drone "+(i+1)+" on "+droneURLs[i]);

e.printStackTrace();
returnValue=false;

}
}
return returnValue;

}

private boolean control() {
boolean returnValue=true,startDrones;
Vector<Serializable> params;
// Do the controlling
while (!allParametersSent||awaitedResults>0) {

// Start the Drones if not all the parameters have been sent yet
startDrones=true;
while (startDrones&&!allParametersSent) {

// End the loop if no Drone is started
startDrones=false;
// Get parameters for a Drone

params=generateDroneParameters();
// Check we have parameters and that there is an available Drone

if (params!=null&&!params.isEmpty())
for (int i=0;i<numDrones;i++)

if (!droneActive[i]) {
// Start the available Drone processing & make record of it

droneActive[i]=true;
awaitedResults++;

logMessage("Drone "+(i+1)+" out of "+numDrones+" started.");
droneResults[i]=drone[i].doProcessing(params);
if (!ProActive.isAwaited(droneResults[i]))

logMessage("Results object is not an awaited future.");
// Attempt to start another Drone by continuing the loop
startDrones=true;
// No need to search through the rest of the Drones

break;
}

}

// Check if there are results waiting
for (int i=0;i<numDrones;i++)

if (!ProActive.isAwaited(droneResults[i])) {

65

if (droneActive[i]) {
// Pass the result object on

logMessage("Drone "+(i+1)+" out of "+numDrones+" returned results.");
receiveDroneResults((Serializable)droneResults[i]);
// Mark the Drone available

awaitedResults–;
droneActive[i]=false;

}
}

// Let’s not have any busy waits now...
try {Thread.sleep(500);} catch (Exception e) {}

}

return returnValue;
}

// ** ABSTRACT METHODS WHICH ARE APPLICATION SPECIFIC ** //

abstract protected Vector<Serializable> generateDroneParameters();
abstract protected void receiveDroneResults(Serializable result);

// ** MISCELLANEOUS FUNCTIONS ** //

public void logMessage(String msg) {
if (logToSTDOUT) System.out.println("MESSAGE: "+msg);
log.append(msg+"\n");

}

public void logError(String err) {
if (logToSTDOUT) System.out.println("ERROR: "+err);
log.append(err+"\n");

}

private void die(String err) {
System.err.println("ERROR: "+err);
System.exit(1);

}

public String millisecondsToString(long milliseconds) {
long milli,sec,min,hr;
milli=milliseconds%1000;
sec=milliseconds/1000;
min=sec/60;
sec%=60;
hr=min/60;
min%=60;
return ((hr<10)?"0"+hr:hr)+":"+

((min<10)?"0"+min:min)+":"+
((sec<10)?"0"+sec:sec)+"."+
((milli<100)?"0":"")+((milli<10)?"0"+milli:milli)+
" ["+milliseconds+"ms]";

}
}

import java.io.Serializable;

import java.util.Vector;
/**

* @author Greg Atkinson, 2006

66

*/
public abstract class Drone implements Serializable {

static final long serialVersionUID=1;

// ProActive compulsory empty no-args constructor
public Drone() {}

abstract public Serializable doProcessing(Vector<Serializable> params);
}

67

Appendix B

GridMandelbrotset

import java.io.Serializable;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.Vector;
/**

* @author Greg Atkinson, 2006
*/

public class MandelbrotSetController extends Controller implements Serializable {
static final long serialVersionUID=1;
// ProActive empty, no-arg constructor
public MandelbrotSetController() {}

public MandelbrotSetController(String appID, int numNodesRequired, String p2pNodeFile) {
super(appID, numNodesRequired, p2pNodeFile);

}

private MandelbrotSetUI ui;
private ConcurrentLinkedQueue<Vector<Serializable> > jobs=new Concur-

rentLinkedQueue<Vector<Serializable> >();
private ConcurrentLinkedQueue<MandelbrotSubset> results=new Concur-

rentLinkedQueue<MandelbrotSubset>();

public MandelbrotSetController(String appID, int numNodesRe-
quired, String p2pNodeFile, MandelbrotSetUI ui) {

this(appID, numNodesRequired, p2pNodeFile);
this.ui=ui;

}
protected void receiveDroneResults(Serializable mandelbrotSubset) {

results.add((MandelbrotSubset)mandelbrotSubset);
ui.panelMandelbrot.retrieveResults();

}

public void addJob(Object[] p) {
Vector<Serializable> params=new Vector<Serializable>(p.length);
for (int i=0;i<p.length;i++) params.add((Serializable)p[i]);
jobs.add(params);

}

protected Vector<Serializable> generateDroneParameters() {return jobs.poll();}
public MandelbrotSubset getResult() {return results.poll();}

}
import java.awt.Dimension;
import java.awt.Point;

68

import java.net.InetAddress;
import java.util.Vector;
import java.io.Serializable;

/**
* @author Greg Atkinson, 2006
*/

public class MandelbrotSetDrone extends Drone implements Serializable {
static final long serialVersionUID=1;
// ProActive empty, no-arg constructor
public MandelbrotSetDrone() {}
private MandelbrotSubset mandelbrotSubset;

public MandelbrotSubset doProcessing(Vector<Serializable> params) {

if (params.get(0) instanceof MandelbrotSubset) {
mandelbrotSubset=(MandelbrotSubset)params.get(0);
mandelbrotSubset.generateMandelbrotSubset();

} else {
mandelbrotSubset=new MandelbrotSub-

set((Dimension)params.get(0),(Integer)params.get(1),
(Dou-

ble)params.get(2),(Double)params.get(3),(Double)params.get(4),(Double)params.get(5),
(Point)params.get(6),(Integer)params.get(7));

mandelbrotSubset.generateMandelbrotSubset();
}
mandelbrotSubset.setHostname(getHostname());
return mandelbrotSubset;

}

public String getHostname() {
String hostname="unknown";
try {hostname=InetAddress.getLocalHost().getHostName();}
catch(Exception e) {}
return hostname;

}
}
import java.awt.*;
import java.awt.image.BufferedImage;
import javax.swing.*;
import java.io.Serializable;

/**
* @author Greg Atkinson, 2006
*/

public class MandelbrotSubset implements Serializable {
static final long serialVersionUID=1;

private String hostname="unknown";
private int index;
private ImageIcon imageIcon;
private Dimension resolution;
private Point position;
private double real,imaginary,dr,di;
private long[][] heightMap;
private boolean heightMapGenerated=false;
private final long maxN=10000;
private final int numColours=200;
private Integer colourType;

69

private final Color[] spectrum=new Color[numColours];

public MandelbrotSubset() {}

public MandelbrotSubset(Dimension resolution, Integer colourType,
Double real, Double imaginary, Double width, Double height,
Point position, Integer index) {

// Process Parameters
this.resolution=resolution; // Resolution of the image to create
this.real=real.doubleValue(); // Top left corners of a rectan-

gle in the complex plane
this.imaginary=imaginary.doubleValue();
dr=width.doubleValue()/resolution.width; // Calculate the differentials
di=height.doubleValue()/resolution.height;
this.position=position; // Where the image will be ren-

dered on the canvas
this.index=index.intValue();
this.colourType=colourType;
// Generate the colour spectrum
for (int i=0;i<numColours;i++)

spectrum[i]=new Color(Color.HSBtoRGB((float)(numColours-1-
i)/(float)numColours,1,1));

// Create height map
heightMap=new long[resolution.width][resolution.height];

}

public void generateMandelbrotSubset() {
if (!heightMapGenerated) generateHeightMap();
generateImage();

}

private void generateHeightMap() {
double x0=real,y0=imaginary,x=0,xx=0,y=0,maxDistance=4.0;
long n=0;
int i,j;
// Generate the height map
for (i=0;i<resolution.height;i++) {

x0=real;
for (j=0;j<resolution.width;j++) {

x=xx=y=n=0;
while ((n<maxN)&&((x*x)+(y*y)<maxDistance)) {

xx=x*x-y*y+x0;
y=2*x*y+y0;
x=xx;
n++;

}
heightMap[j][i]=n;
x0+=dr;

}
y0-=di;

}
heightMapGenerated=true;
System.out.println("Height map generated.");

}

private void generateImage() {
Image image=new BufferedIm-

age(resolution.width,resolution.height,colourType.intValue());
Graphics graphics=image.getGraphics();

70

// Map the heights to colors and draw them on the image
long height;
int i,j,col=0;
for (i=0;i<resolution.height;i++) {

for (j=0;j<resolution.width;j++) {
height=heightMap[j][i];
if (height==maxN) graphics.setColor(Color.black);
else {

col=(int)(height%numColours);
graphics.setColor(spectrum[col]);

}
graphics.fillRect(j,i,1,1);

}
}
imageIcon=new ImageIcon(image);
System.out.println("Image generated.");

}
public String toString() {return hostname;}
public void setHostname(String hostname) {this.hostname=hostname;}
public int getIndex() {return index;}
public Image getImage() {return imageIcon.getImage();}
public Point getPosition() {return position;}

}
import java.awt.*;
import java.awt.event.*;
import java.awt.image.BufferedImage;
import java.awt.image.BufferStrategy;
import javax.swing.*;
import java.util.Stack;

/**
* @author Greg Atkinson, 2006
*/

public class MandelbrotSetUI {

private final String appID="MandelbrotSet";
private final int numDrones=9;
private final String nodeListFile="p2pNodeFile.testbed";
private MandelbrotSetController controller;
protected Mandelbrot panelMandelbrot;

public static void main(String[] args) {new MandelbrotSetUI();}
public MandelbrotSetUI() {

// Create Controller && Drones
controller=new MandelbrotSetController(appID,numDrones,nodeListFile,this);
// Create the GUI

javax.swing.SwingUtilities.invokeLater(new Runnable() {
public void run() {

createGUI();
}

});
}

private void createGUI() {
// Construct the frame

JFrame frame=new JFrame("Grid Mandelbrot Set");
// Configure things to shutdown properly

frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

71

// Make a window close shut the Controller & Drones down properly
controller.allParametersSent=true;

}
});

// Construct the tabbed pane
JTabbedPane tabbedPane = new JTabbedPane();
panelMandelbrot=new Mandelbrot(numDrones);
panelMandelbrot.setSize(new Dimension(800,600));
frame.getContentPane().add(panelMandelbrot);

// Finalise the GUI
frame.pack();
frame.setVisible(true);

// Enable double buffering & render the Mandelbrot
panelMandelbrot.setIgnoreRepaint(true);
panelMandelbrot.createBufferStrategy(2);
panelMandelbrot.generateMandelbrot();
panelMandelbrot.renderCanvas();

// Construct the listeners
panelMandelbrot.addMouseListener(panelMandelbrot);
panelMandelbrot.addMouseMotionListener(panelMandelbrot);
frame.addComponentListener(panelMandelbrot);
tabbedPane.addFocusListener(panelMandelbrot);

}

public class Mandelbrot extends Canvas
implements MouseLis-

tener,MouseMotionListener,ComponentListener,FocusListener {
static final long serialVersionUID=1;

private Image[] image;
private Point[] position;
private Graphics graphics;
private BufferStrategy bufferStrategy;
private MandelbrotSubset[] mandelbrot;
private MandelbrotSubset mandelbrotSubset;
private int numDivi-

sions,clickX,clickY,dragX,dragY,selX,selY,selW,selH,awaitedResults=0;
private boolean busyRendering=false,busyDragging=false,resizeMandelbrot=false;
private double real=-2.0,imaginary=1.1,realW=2.5,imaginaryH=2.2;
private Object[] params;
private Stack<double[]> history=new Stack<double[]>();

public Mandelbrot(int _numDivisions) {
numDivisions=_numDivisions;
image=new Image[numDivisions];
position=new Point[numDivisions];
mandelbrot=new MandelbrotSubset[numDivisions];

}

public void renderCanvas() {
bufferStrategy=getBufferStrategy();
graphics=bufferStrategy.getDrawGraphics();
// Clear the screen

graphics.setColor(Color.white);
graphics.fillRect(0,0,getWidth(),getHeight());

72

// Draw the Mandelbrot
for (int i=0;i<numDivisions;i++)

if (image[i]!=null)
graphics.drawImage(image[i],position[i].x,position[i].y,this);

// Draw the selection box if necessary
if (busyDragging||busyRendering) {

graphics.setColor(Color.white);
graphics.drawRect(selX,selY,selW,selH);

}
// Flip to the screen

bufferStrategy.show();
}

public void retrieveResults() {
int index;
mandelbrotSubset=controller.getResult();
if (mandelbrotSubset instanceof MandelbrotSubset) {

awaitedResults–;
index=mandelbrotSubset.getIndex();
mandelbrot[index]=mandelbrotSubset;
image[index]=mandelbrotSubset.getImage();
position[index]=mandelbrotSubset.getPosition();
if (awaitedResults==0) busyRendering=false;
renderCanvas();
if (awaitedResults==0&&resizeMandelbrot) {

resizeMandelbrot();
resizeMandelbrot=false;

}
} else System.out.println("NULL Result.");

}

public void generateMandelbrot() {
// Maintian the aspect ratio and without reducing the image area

double newWidth,newHeight;
newWidth=getWidth()*imaginaryH/getHeight();
newHeight=getHeight()*realW/getWidth();
if (newWidth>realW) {

// Enlarge width
real-=(newWidth-realW)/2;
realW=newWidth;

} else if (newHeight>imaginaryH) {
// Enlarge height

imaginary+=(newHeight-imaginaryH)/2;
imaginaryH=newHeight;

}
// Remember zoom history

history.push(new double[]{real,imaginary,realW,imaginaryH});
// Distribute rendering of the Mandelbrot

awaitedResults=numDivisions;
for (int i=0;i<numDivisions;i++) {

params=new Object[8];
params[0]=new Dimen-

sion(getWidth(),(int)Math.ceil((double)getHeight()/(double)numDivisions));
params[1]=new Integer(BufferedImage.TYPE_INT_RGB);
params[2]=new Double(real);
params[3]=new Double(imaginary-

(double)i*imaginaryH/(double)numDivisions);
params[4]=new Double(realW);
params[5]=new Double(imaginaryH/(double)numDivisions);

73

params[6]=new Point(0,(int)Math.floor(i*getHeight()/numDivisions));
params[7]=new Integer(i);
controller.addJob(params);

}
}

public void mousePressed(MouseEvent e) {
if (!busyRendering && e.getButton()==MouseEvent.BUTTON1) {

// Obtain the mouse coordinates
clickX=e.getX();
clickY=e.getY();
busyDragging=true;

}
}

public void mouseDragged(MouseEvent e) {
if (busyDragging) {

dragX=e.getX();
dragY=e.getY();
// Calculate the selection box

if (clickX>=dragX) {selX=dragX; selW=clickX-dragX;}
else {selX=clickX; selW=dragX-clickX;}
if (clickY>=dragY) {selY=dragY; selH=clickY-dragY;}
else {selY=clickY; selH=dragY-clickY;}
// Update the display

renderCanvas();
}

}

public void mouseReleased(MouseEvent e) {
double _real1,_imaginary1,_real2,_imaginary2;
if (!busyRendering && e.getButton()==MouseEvent.BUTTON1) {

// Disallow mouse selections until rendering is complete
busyRendering=true;
busyDragging=false;
// Obtain the mouse coordinates

dragX=e.getX();
dragY=e.getY();
// Calculate the selection box

if (clickX>=dragX) {selX=dragX; selW=clickX-dragX;}
else {selX=clickX; selW=dragX-clickX;}
if (clickY>=dragY) {selY=dragY; selH=clickY-dragY;}
else {selY=clickY; selH=dragY-clickY;}
// Calculate the new complex coordinates

_real1=selX*realW/panelMandelbrot.getWidth()+real;
_imaginary1=-selY*imaginaryH/panelMandelbrot.getHeight()+imaginary;
_real2=(selX+selW)*realW/panelMandelbrot.getWidth()+real;
_imaginary2=-

(selY+selH)*imaginaryH/panelMandelbrot.getHeight()+imaginary;
real=_real1;
imaginary=_imaginary1;
realW=_real2-_real1;
imaginaryH=_imaginary1-_imaginary2;
// Update the display

generateMandelbrot();
}

}
public void mouseClicked(MouseEvent e) {

double[] previous;

74

if (!busyRendering && e.getButton()==MouseEvent.BUTTON3 && history.size()>1) {
// Revert to the previous view

history.pop();
previous=history.pop();
real=previous[0];
imaginary=previous[1];
realW=previous[2];
imaginaryH=previous[3];

// Update the display
generateMandelbrot();

}
}

public void componentResized(ComponentEvent e) {
if (awaitedResults==0) resizeMandelbrot();
else resizeMandelbrot=true;

}

public void resizeMandelbrot() {
image=new Image[numDivisions];
position=new Point[numDivisions];
generateMandelbrot();

}
public void componentShown(ComponentEvent e) {renderCanvas();}
public void focusGained(FocusEvent e) {renderCanvas();}

public void mouseMoved(MouseEvent e) {}
public void mouseEntered(MouseEvent e) {renderCanvas();}
public void mouseExited(MouseEvent e) {}
public void componentHidden(ComponentEvent e) {}
public void componentMoved(ComponentEvent e) {}
public void focusLost(FocusEvent e) {}

}
}

75

76

