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Abstract 
The current mLAN™ PC driver for Microsoft® Windows® was developed according to the Windows® 

Driver Model (WDM). With the introduction of the Windows® Driver Foundation (WDF) a new 

simplified model and framework for driver development was provided. This new model provides a 

significant improvement in the ease of development of WDM compliant kernel mode drivers as 

well as a simplification of driver design.  In implementing the Yamaha mLAN™ Bus driver using the 

new framework we expect to show a simplification in the design of the driver and a reduction in 

the complexity and amount of code required to achieve the same functionality. With the 

introduction of Windows® Vista™, a new kernel mode audio streaming method will be introduced 

and we examine this as an alternative to the currently used ASIO streaming. 
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1 Introduction 

Yamaha have provided a suite of tools and drivers to enable the use of their mLAN (music Local Area 

Network) technology in conjunction with Windows based PC’s. These applications provide the 

functionality to use the Microsoft Windows based PC as both an Enabler for connection 

management and as a virtual mLAN node or device. To facilitate this functionality, an mLAN Bus 

virtual device driver that facilitates communication with the IEEE 1394 bus is required.  

The Yamaha mLAN Bus Driver that is currently in use, is a Microsoft Windows Driver Model (WDM) 

based implementation that also makes use of a proprietary C++ based framework called DriverStudio 

(Miles, 2005). This report discusses the use of a new driver development model, the Microsoft 

Windows Driver Foundation (WDF), to implement a new version of the mLAN Bus driver specifically 

for intended use on the upcoming version of Microsoft Windows - Windows Vista. It examines the 

differences between the old and new implementations and then analyses any benefits gained in 

using the new model.  

A second objective is to analyse the current mLAN implementation (referred to in this document as 

the mLAN System) and discuss the roles of each player therein. This is so an understanding of the 

original design intention could be gained, especially in respect to the use of the current mLAN Bus 

driver. We can then take this a step further and propose a new design that may provide a simpler, 

more flexible system to use and maintain. 

Lastly we examine a new specification for kernel streaming to be provided in Microsoft Windows 

Vista. This may provide an alternative to the current methods of audio streaming used in the mLAN 

system, namely WDM Audio and MIDI Streaming, and ASIO Audio streaming. 

To begin our discussion we will briefly examine the technologies involved. We will look at the 

underlying IEEE 1394 serial bus technology and how it is suited to digital audio transport. IEC 61883 

is the basis behind mLAN, and we examine how it facilitates audio transport across the IEEE 1394 

bus. Yamaha’s mLAN system is then discussed with specific emphasis on the use of the underlying 

technology.  

Following this we look at the models available for driver development – WDM and WDF – and 

discuss the differences and similarities between the two. This will leave us in the position to examine 

the current mLAN™ Bus driver and how it functions in the current mLAN™ System. We will consider 

why a bus driver is required and how it provides the required functionality. 

We then are able to consider implementing the current mLAN Bus driver using the new WDF model. 

Here we discuss the design decisions made in the logical and physical layout of a new driver. We 

then examine in some detail, the implementation of each section of the driver.  
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To close the discussion we examine the results of implementing the mLAN Bus driver using the WDF 

model and how these observations can be used in future design consideration. In suggestions for 

further work in this area, we consider integrating the new real-time streaming technology present in 

Windows Vista into the new driver as an alternative PC based audio streaming option. We evaluate 

our ideas for re-designing a new mLAN PC System, and propose reasons for further work in this area. 

We can also at this stage consider possible changes to the entire mLAN System architecture in order 

to simplify the use and future maintenance thereof. 

We conclude by summarizing the important aspects of the report and discuss the value of the 

information gained from the research and implementation performed. 
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2 mLAN™, IEEE 1394, and IEC 61883 Technologies 

To understand the role of the mLAN Bus Driver within the system, it is necessary to take a brief look 

at the technologies used by the mLAN system. This will be approached by examining the underlying 

technology specifications and then examining how the mLAN system uses these to implement an 

mLAN network. 

2.1 IEEE 1394 Technology (Firewire™) 

In 1986 engineers at Apple Computer designed a new, high speed serial bus capable of running over 

simple cabling for use within the Macintosh system. Realising the promise of using the technology, 

which they called Firewire, for high speed peripheral connectivity, they presented the design to the 

industry for standardisation. This was standardised by the IEEE in 1995 and called the IEEE 1394 

specification. This was updated in 2000 to the IEEE 1394 specification which clarified ambiguities in 

the original specification and since then an altered specification – IEEE 1394b – has been introduced 

which provides for higher speeds, greater distances and even choice in physical media (1394 Trade 

Association, 2006). We will confine this discussion to the IEEE 1394a standard. 

Firewire is a high speed serial bus which provides both asynchronous and isochronous transmission 

using time-based multiplexing. It can run at speeds of 100Mbps, 200Mbps, and 400Mbps (in the case 

of 1394a), and 800Mbps and 1600Mbps (in the case of 1394b). (IEEE, 2002)  

Physical connectivity is achieved via extremely well shielded twisted pair cabling that allows the high 

speed data transfer without noise interference. These have 4 or 6 pin connectors. 2 pairs of twisted 

pair carry data in either direction and on the 6 pin there are 2 power cables that provide up to 40V at 

up to 1.5A. Differential data transmission is used on the twisted pair meaning that the cables carry 

the opposite voltage and any external noise affects both signals equally. The difference between the 

two is then used to determine the logical state. This is similar to the method used in balanced 

analogue audio cabling to maintain a noise free line signal. 

Although there are two data pairs, the bus is half-duplex as only one is used for data transmission. 

The other is used to synchronise the clock rate on devices by changing its logical state when the 

other doesn’t. This is a technique called NRZ (Non-Return-Zero) with Data-Strobe (DS) encoding. 

A tree topology is used with a root node being the root of the tree. A maximum of 63 nodes can be 

present on a single bus with a maximum of 16 hops between nodes. 1024 busses can be connected 

via bridges. The ability to use mLAN on multiple busses is not yet realised and so will not be 

discussed. The bus is entirely self-managed and a node is selected as the bus manager to perform 

power management and bus optimization. The root node is responsible for line arbitration between 

all the nodes. 
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Addressing on the bus is in line with the Control and Status Register (CSR) architecture defined in the 

IEEE 13213 standard. This means that the entire serial bus is seen as a block of memory and each 

node on the bus has a section of memory that is allocated to it. In IEEE 1394, a fixed 64 bit 

addressing method is used. Each address comprises a 10 bit Bus ID, a 6 bit Node ID, and a 48 bit 

Offset value. This provides an address space of 256 terabytes for each node. Part of this address 

space is used for registers that provide CSR information to conform to the CSR architecture, the rest 

is used to implement the functionality of the device. Any communication with the node is done via 

asynchronous reads and writes to well known offsets within its address space. 

Asynchronous communication is always a 2 way transaction. A read with a response, or a write with 

a response(Foss, 2006). Asynchronous packets are sent when possible and are addressed to a 

specific target node. On the other hand, isochronous transmission is not addressable and is only a 

write action. Isochronous packets are sent at regular intervals called cycles, which makes 

isochronous transmission deterministic. Nodes are configured using asynchronous packets to listen 

to an isochronous channel which removes the need to address each packet, and permits a channel to 

be listened to by multiple nodes. Asynchronous packets have a lower priority than the isochronous 

packets and will be delayed until the isochronous cycle has completed. 

To permit isochronous transmission, 2 aspects need to be catered for: 1) there needs to be a cycle-

master node that initiates every isochronous transmission cycle at a rate of 8 kHz, and 2) a resource-

manager node that allocates channels and bandwidth for isochronous transmission. This is required 

to ensure that all of the data can be transmitted within the time allowed for a cycle. These roles are 

contended for along with the bus manager role after a bus reset occurs. Bus resets occur as a 

request by a node, or with the addition or removal of a node. 

Microsoft Windows now has standard support for IEEE 1394 busses and provides a class driver to 

allow communication in a standardised manner to any vendor-specific 1394 device driver.  

2.2 IEC 61883 Technology 

With the underlying transport mechanism provided by IEEE 1394, the need for a standardised 

manner of transporting the audio in an isochronous packet was identified. This was provided by the 

IEC 61883 series of standards which describe standards for the transmission of audio, video, and 

multimedia over IEEE 1394. 

The first of the series, IEC 61883-1, describes the general packet format, data flow and connection 

management (Foss, 2006). This general packet format is called a CIP packet or Common Isochronous 

Packet, and is used as the payload of an isochronous packet. It comprises a header containing a 

description of the packet data and timing information, and a data section with a CRC value. As this 

packet format is used for a variety of multimedia transport, Yamaha recommended an approach 
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which was accepted as the IEC 61883-6 specification – the Audio and Music Data Transmission 

Protocol. 

This described the manner in which multiple audio and MIDI samples could be transported in a single 

CIP packet. This is necessary because the sample rates required for digital music are much higher 

than the 8 kHz rate of isochronous packet transmission. For example: a 48 kHz sample rate would 

require 6 samples in each CIP packet. Each of these samples is represented by a data block in the CIP 

data section and can have multiple simultaneous audio and MIDI samples within the block. 

To differentiate between separate audio samples that occur at the same instance, the samples 

within the data block are arranged in a specific order. This is termed sequencing and allows a node 

to listen on a particular isochronous channel and a particular sequence or position in the data block 

for the audio samples directed to it. (Vienna Institute of Technology, 2001) 

 

Figure 2-1 Sequencing in a Common Isochronous Packet 

Figure 2-1 shows the sequencing of samples from different sources that occur at the same instance 

being grouped into data blocks in. Notice that the MIDI data is multiplexed onto a single sequence 

which has sufficient space for 8 MIDI channels. 
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2.3 Yamaha mLAN™ Technology 

In a modern audio studio the connectivity between the myriad of different devices entails both a 

large number of leads, and a complex layout. Yamaha’s mLAN technology, standing for Music Local 

Area Network, aims to simplify the connectivity and provide a standardised digital format for audio 

and MIDI data transfer. It provides two key qualities of transfer that are imperative for pro-audio 

use: low latency and deterministic transmission. (Foss, 2006) 

These are important because of the large volume of data that pro-audio implementations need to 

transport; Pro-audio sampling of audio is now being performed at 96 kHz with a 24bit depth. This 

equates to the transmission of 288 kB/s for each stream. With an average studio there are many 

separate tracks of audio that need to be transported to and from devices resulting in a need for high 

bandwidth connectivity. IEEE1394 has provided these two qualities and has a simple connectivity 

and bus management model (Foss, 2006). 

Because of the serial bus nature of IEEE1394, a manner of controlling how the audio data is 

transmitted and how the ‘connections’ are made between devices was required. This was provided 

by the IEC61883 specifications. (Vienna Institute of Technology, 2001) 

mLAN abstracts the idea of plugs and connections a bit further. Each mLAN device on the network 

presents a number of input and output plugs. On the device side these can be connected to physical 

connectors or, as in an effects unit, be processed ready for immediate output on an alternative 

mLAN plug. Plugs can be of differing formats – i.e. MIDI or Audio, and are connected output to input, 

allowing data to be streamed over the connection.  

In implementing mLAN plugs, Yamaha initially chose a distributed connection control architecture 

called mLAN Version 1. This was replaced by a more flexible arrangement of using a central Enabler 

to govern connection management in the subsequent mLAN Version 2. In the PC based mLAN 

System, we find an Enabler application that performs this role using the mLAN Bus driver to 

communicate with the devices. To allow communication with many different devices, the Enabler 

requires a Hardware Abstraction Layer (HAL) interface, in the form of a DLL plug-in, that provides a 

common set of functionality for each different device.(Foss, 2006) 

Because of the need to provide a software HAL for each device, the Open Generic Transporter 

specification was introduced. This outlines a common Transport Control Interface that each device 

must implement in its address space(Foss, 2006). This allows communication with each device in the 

same manner and removes the need for the manufacturer to create a software HAL. 

The Enabler uses asynchronous packets to manage the devices and the connectivity between them. 

Transmission of data over these connections is done via isochronous streaming using the CIP format 

specified in the IEC 61883 specification. (Vienna Institute of Technology, 2001) 
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2.4 Chapter Summary 

In this chapter the technology used to implement the Yamaha mLAN system was examined. It was 

noted that FireWire provides the required low latency, high bandwidth, deterministic transmission of 

data required for digital audio transport. It also provides a self-managed, flexible, and robust single 

cable solution for connectivity.  

The IEC 61883 specifications for transporting audio over FireWire was also discussed. This explained 

the process of packaging audio data into a common format for transport within an isochronous 

packet. Sequencing of audio samples within a Common Isochronous Packet was described including 

the inclusion of MIDI data by multiplexing multiple MIDI channels into a sequence. 

Finally, the Yamaha mLAN system was described. The use of an Enabler application to govern 

connection management was explained. The use of software HAL plug-ins as well as the Open 

Generic Transporter architecture was explained. 
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3 Windows® Driver Development Models 

To write a device driver for any operating system is a challenge and requires careful planning and a 

vast knowledge of the intricacies of the intended platform. Microsoft Windows is no exception. In 

this chapter we examine two driver development models provided by Microsoft. First there is the 

Windows Driver Model introduced to provide a common model and implementation across 

Windows 98 and Windows NT 4. Only released recently, the Windows Driver Foundation is based on 

the WDM but extends it and makes driver development a much less complicated task. 

3.1 Windows® Driver Model 

The Windows Driver Model (WDM) was defined to provide a common driver development model 

and paradigm for Windows 98, Windows 2000 and later Windows XP(Oney, 1999). It aimed to 

reduce the complexity of implementing a Plug ’n Play compatible device driver, and provide a 

specification for interacting with the operating system in a safe and predictable way. This is 

necessary as device drivers are loaded as part of the core OS system. Any bugs or irresponsible 

programming, especially with drivers that run in kernel-mode, can lead to overall system instability 

and a poor user experience(Cant, 1999). 

 

Figure 3-1 Microsoft Windows Driver System 

A further feature implemented by the WDM is that of a driver stack. This allows layering and 

abstraction of those layers. For instance a USB device would make use of the USB class driver which 

implements functionality particular to the USB Bus. This driver would in turn make use of the 
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underlying Hardware Abstraction Layer (HAL) that provides a common interface for all proprietary 

USB Bus implementations. This HAL would also in turn make use of a proprietary Bus Driver specific 

to the hardware. This allows the insertion of filter drivers to alter the functionality without affecting 

the underlying drivers.(Oney, 1999) 

All WDM development is done in ANSI C and built in build environments provided in a Driver 

Development Kit provided by Microsoft(Microsoft Corporation (6), 2005). Each WDM driver must 

present a specified interface to the system and is required to implement it in its entirety. This results 

in the developer having to reproduce a large quantity of boiler-plate code that is often not directly 

related to the functionality of the device driver they are implementing. 

A major concern of WDM driver writing is to provide consistent and predictable interaction with the 

OS. The Power management code, the PnP event managers, synchronisation and memory 

management are all left to the developer to control (Cant, 1999). Whilst this is very flexible, it is also 

very complicated.  

Several proprietary solutions that provided a framework of utilities to assist the developer in 

implementing WDM were developed. These attempt to simplify the complexity of the system 

interaction. The current mLAN drivers were developed in such a framework called DriverWorks, a 

product created by Compuware(Miles, 2005).  

DriverWorks provides a C++ implementation of libraries that facilitate the use of OOP in WDM and 

NT Kernel driver development. It provides libraries of common, reusable code and its own 

proprietary object model that functions on top of the WDM object model.  

3.2 Windows® Driver Foundation 

WDM achieved much in its time but was still a very complex model for developers to implement. 

Specifically, providing PnP capabilities entailed the use of a complex state-machine to allow differing 

actions according to the PnP and Power state. This complexity made writing safe and reliable drivers 

all the more difficult and caused developers to spend a large proportion of their time implementing 

boiler-plate code and not concentrating on the actual functionality of their device.(Microsoft 

Corporation (3), 2005) 

The Windows Driver Foundation model is an evolution of the WDM model specifically aimed at 

reducing the complexity of device driver development(Microsoft Corporation (3), 2005). It does not 

replace the WDM model as such, and uses many similar principles and constructs, but it does 

provide a framework for implementation. It also re-examines the development life-cycle and has 

provision for device driver specific debugging and analysis(Microsoft Corporation (5), 2005). 
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Figure 3-2 Microsoft Windows Driver Foundation Development Model 

The diagram shown in Figure 3-2 shows the new development model. Note the inclusion of Driver 

Signing and Versioning in the life-cycle. This is specifically included because of the integral 

relationship of device drivers with the OS, and the need for quality control and testing to prevent 

unreliable drivers adversely affecting the system (Microsoft Corporation (4), 2006).  

In many ways, the WDF is similar to the WDM in that it provides a design model, and 

implementation specification. The major difference is the fact that the emphasis in design is now on 

the functionality of the hardware device rather than on the inner workings of the OS(Microsoft 

Corporation (4), 2006). This is achieved by providing a framework that the driver can use to 

implement functionality and that also provides default functionality for that which the driver doesn’t 

implement directly. 

Consider the example of Power Event handling. In the WDM model, these were all required to be 

implemented by the driver – all 160 of the states had to be catered for. In the WDF model, only 

those of concern to the device are implemented (Microsoft Corporation (3), 2005). 

3.2.1 KMDF & UMDF 

The model provides two framework implementations specific to both Kernel-mode and User-mode. 

The ultimate goal is to move many device drivers that previously were required to run in kernel-

mode into the user-mode space. (Microsoft Corporation (2), 2005) 

The frameworks are in essence a very simple device driver implementation that can be customised 

to particular needs. This is done by presenting an object model with well known constructors, 

methods and properties that can be accessed by the developer. A diagram showing the relationships 

within the object model is shown in Figure 3-3. 
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Figure 3-3 Object Relationships among the KMDF Objects (Microsoft Corporation (2), 2005) 

The object model is used internally and by the framework I/O manager, but the driver is presented 

to the system in the same manner as any other driver. Every aspect of driver functioning is catered 

for within the model.  Table 3-1 lists the objects and a few details regarding their use. 

Table 3-1 KMDF Object Types (Microsoft Corporation (2), 2005) 

Object Type Description 

Child list WDFCHILDLIST Represents a list of the child devices for a device. 

Collection  WDFCOLLECTION Describes a list of similar objects, such as resources or 
the devices for which a filter driver filters requests. 

Device WDFDEVICE Represents an instance of a device. A driver typically 
has one WDFDEVICE object for each device that it 
controls.  

DMA common 
buffer 

WDFCOMMONBUFFER Represents a buffer that can be accessed by both the 
device and the driver to perform DMA. 

DMA enabler WDFDMAENABLER Enables a driver to use DMA. A driver that handles 
device I/O operations has one WDFDMAENABLER 
object for each DMA channel within the device.  

DMA transaction WDFDMATRANSACTION Represents a single DMA transaction.  

Deferred procedure 
call (DPC) 

WDFDPC Represents a deferred procedure call. 

Driver WDFDRIVER Represents the driver itself and maintains information 
about the driver, such as its entry points. Every driver 
has one WDFDRIVER object. 

File WDFFILEOBJECT Represents a file object through which external drivers 
or applications can access the device. 

Generic object WDFOBJECT Represents a generic object for use as the driver 
requires. 

I/O queue WDFQUEUE Represents an I/O queue. A driver can have any 
number of WDFIOQUEUE objects.  

I/O request WDFREQUEST Represents a request for device I/O.  

I/O target  WDFIOTARGET Represents a device stack to which the driver is 
forwarding an I/O request.  

Interrupt  WDFINTERRUPT Represents a device’s interrupt object. Any driver that 
handles device interrupts has one WDFINTERRUPT 
object for each IRQ or message-signalled interrupt 
(MSI) that the device can trigger. 

Look-aside list WDFLOOKASIDE Represents a dynamically sized list of identical buffers 
that are allocated from the paged or nonpaged pool.  

WDFCOLLECTION

WDFKEY

WDFLOOKASIDE

WDFMEMORY

WDFOBJECT

WDFREQUEST (driver-created)

WDFSPINLOCK

WDFSTRING

WDFWAITLOCK

WDFUSBDEVICE

WDFUSBINTERFACE

WDFCHILDLIST

WDFFILEOBJECT

WDFINTERRUPT

WDFIOTARGET

WDFREQUEST (delivered 

from queue)

WDFDRIVER

WDFDEVICE

WDFDMAENABLER

WDFCOMMONBUFFER

WDFTRANSACTION

WDFQUEUE

WDFDPC

WDFTIMER

WDFWORKITEM

WDFWMIINSTANCE

WDFWMIPROVIDER

Predefined

WDFUSBPIPE

WDFIORESREQLIST

WDFIORESLIST

Either can be parent

Default, but driver can 

change to any object

WDFCMRESLIST
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Object Type Description 

Memory WDFMEMORY Represents memory that the driver uses, typically an 
input or output buffer that is associated with an I/O 
request.  

Registry key WDFKEY Represents a registry key. 

Resource list WDFCMRESLIST Represents the list of resources that have actually 
been assigned to the device. 

Resource range list WDFIORESLIST Represents a possible configuration for a device.  

Resource 
requirements list 

WDFIORESREQLIST Represents a set of I/O resource lists, which comprises 
all possible configurations for the device. Each 
element of the list is a WDFIORESLIST object. 

String WDFSTRING Represents a counted Unicode string. 

Synchronization: 
spin lock 

WDFSPINLOCK Represents a spin lock, which synchronizes access to 
data DISPATCH_LEVEL. 

Synchronization: 
wait lock 

WDFWAITLOCK Represents a wait lock, which synchronizes access to 
data at PASSIVE_LEVEL. 

Timer WDFTIMER Represents a timer that fires either once or 
periodically and causes a call-back routine to run. 

USB device WDFUSBDEVICE Represents a USB device. 

USB interface WDFUSBINTERFACE Represents an interface on a USB device. 

USB pipe WDFUSBPIPE Represents a pipe in a USB interface. 

Windows 
Management 
Instrumentation 
(WMI) instance 

WDFWMIINSTANCE Represents an individual WMI data block that is 
associated with a particular provider. 

WMI provider WDFWMIPROVIDER Represents the schema for WMI data blocks that the 
driver provides. 

Work item WDFWORKITEM Represents a work item, which runs in a system thread 
at PASSIVE_LEVEL. 

 

The user processes interact with the driver via Win32 system calls. These calls are described in the 

research poster included in Appendix i. The Win32 calls forward the request on to the KMDF which 

routes the request to the appropriate driver, or manages the request itself. Once the request is 

forwarded to the driver by placing it in an appropriate queue, the driver can deal with the request 

and complete it, or forward the request to a driver lower down in the stack. 

3.2.2 The Development Environment 

To develop KMDF based drivers the DDK build environments are used. Build settings and 

environment variables are used to build a WDF driver. Any text editor can be used for the source 

coding but this is still limited to the ANSI C language. 

3.3 Chapter Summary 

This chapter presented the Windows Driver Model and the Windows Driver Foundations – 2 driver 

development models. The similarities and differences between these two models were briefly 

discussed. 

The WDM is intended to provide a common development basis for Windows drivers for Windows 98 

and beyond. It provides an object model and stipulates best practices when interacting with the 

operating system. The idea of a driver stack that separated the bus, device and hardware layers from 

each other was introduced. It was also noted that the developer was required to implement a 
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significant proportion of OS interaction code, especially to cater for Plug ’n Play and Power modes 

and the transitions between them. 

We then introduced the WDF and its associated frameworks: the User-Mode Driver Framework, and 

the Kernel-Mode Driver Framework. The reasons for Microsoft providing a new development model 

were discussed and we explained how the WDF was an evolution of the WDM. 
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4 Current Driver Specifications (WDM Version) 

To identify the requirements for the WDF based mLAN Bus driver, we need to examine the WDM 

version within the setting of the entire mLAN PC System. This chapter examines the processes that 

rely upon the Bus driver to provide communication with the FireWire bus. We then analyse the two 

categories of drivers that are present.  

4.1 mLAN™ System Design 

The mLAN system is made up of a collection of processes that interact with applications and the 

mLAN drivers. These are shown in Figure 4-1 below. 

 

Figure 4-1 The mLAN System Processes 

The mLANTFamily process is a resident process that maintains the Enabler object model and 

EnablerAPI for applications to interact with. The mLANSoftPH process is a software implementation 

of the PH1 mLAN IC and provides node functionality for the Windows PC. The mLANVDevice is a 

virtual mLAN device node on the IEEE1394 bus. 
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4.2 mLAN™ Drivers 

The mLAN processes all rely on several underlying drivers to function. Figure 4-2 shows the positions 

of these drivers within the Windows platform. These drivers fall into two categories: Mini-port 

drivers and mLAN Bus driver. 

 

Figure 4-2 mLAN Bus Driver Position in the Windows Driver Stack 

4.2.1 mLAN™ Mini-port Drivers  

These drivers are used by the audio sub-system and user mode audio applications and are shown in 

purple in Figure 4-2 above. They expose audio and MIDI ‘plugs’ that can be used by any audio related 

application. These are standardised designs that the audio sub-system requires to interact with the 

plugs in a common way and provide functions like setting up a stream, starting a stream, and 

stopping a stream. 

These drivers expose a specified format, but they achieve their functionality by making use of the 

mLAN Bus driver which allows them to interact with the bus. 

4.2.2 mLAN™ Bus Driver 

Shown in blue in Figure 4-2, this driver is responsible for communication with the 1394 and 61883 

class drivers, and through these, the actual hardware bus. It provides user-mode processes with the 

ability to interact with the class drivers that lie in kernel-mode space. It does this by presenting 

IOCTL’s related to the 1394 ad 61883 functions that processes can call, passing data structures in and 
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receiving structures back. These IOCTL’s are broadly discussed here and are listed in detail in 

Appendix ii. The processes communicate via Win32 calls which open a file handle attached to the 

driver, and then issue the IOCTL calls with pointers to memory structures. 

This driver provides several categories of IOCTL’s: 

4.2.2.1 IEEE1394 Calls 

To allow control of nodes, memory allocations and data transmission on the bus, the application 

needs access to the 1394 Bus driver. These calls mirror the 1394 class driver’s functions, allowing the 

process to communicate with it via the mLAN Bus Driver. 

4.2.2.2 IEC61883-1 Calls 

As with the 1394 class driver, these IOCTL’s provide an interface via which the process can 

communicate with the 61883 class driver.  

4.2.2.3 Mini-port Calls 

Mentioned previously, the mini-port related IOCTL’s provide the miniport drivers with the 

functionality to implement audio and MIDI streaming over the 1394 bus. 

4.2.2.4 mLAN™ Specific Calls 

These calls are specifically for the mLAN system and provide information about the driver such as 

versioning. 

4.3 Chapter Summary 

In this chapter we briefly examined the mLAN PC System design. The fact that several processes, as 

well as the mini-port drivers rely upon the Bus driver for communication with the hardware bus was 

highlighted. We identified the IOCTL requirements for the mLAN Bus driver to provide similar 

functionality as the WDM version. 
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5 Re-Design of the mLAN™ Bus Driver (WDF Version) 

After examining the WDM version, we can now consider how to implement the required 

functionality making use of the new WDF model. This entails designing a logical and physical layout, 

and aligning it with the requirements for the KMDF. 

5.1 Logical Design 

The WDM version of the mLAN Bus Driver provided an interface for user mode applications to access 

the 1394 Class Driver. It did this by exposing a range of  IOCTL’s similar to those provided by the class 

driver which allowed asynchronous packet sending and receiving,  and isochronous stream control 

on the 1394 bus. In addition to the IOCTL’s provided for the 1394 functionality, the IEC 61883-1 

standard was catered for as well, allowing FCP control.(Miles, 2005)  

To enable the PC to act as an mLAN device, it was found that the bus driver also provided IOCTL’s 

that are used by miniport drivers to stream data onto the mLAN bus, where the bus driver is treated 

as a child device object to the miniport drivers. Functionality for WDM Audio and MIDI streaming, as 

well as ASIO streaming is provided.  

This provides a single interface to the IEEE 1394 bus that is used by all parts of the mLAN System and 

allows central control over the function of the mLAN Bus. 

It was decided to maintain this logical structure in a new driver and present the same IOCTL’s to 

applications as the WDM version. This would allow the use of the new WDF version in the current 

solution without requiring changes to other layers within the mLAN System. The ability to make use 

of the driver separately from the current mLAN implementation to allow communication with the 

1394 and 61883 class drivers is also catered for.  This is achieved by providing two Win32 interfaces 

to the driver,  one using the old mLAN Bus Driver GUID and one using a newly created GUID. 

 A new design proposal for the entire mLAN implementation is discussed in Section 6.4. 

5.2 Physical Design and Build Environment 

Even with the new technologies introduced to assist one, writing Windows Drivers is still a 

complicated task. There are several limitations and rules regarding how your driver interacts with 

the system, what it is permitted to do, and how you are allowed to implement functionality. 

5.2.1 Coding Language 

Because driver development interacts with the very bowels of the Windows system code, the 

availability of libraries and extensions to the coding language is not assured. This requires the use of 

standardised coding techniques and language specifications. Microsoft strongly recommend that 
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ANSI C is used throughout driver development to ensure the safety of the coding 

techniques(Microsoft Corporation (5), 2005). Thus no C++ object constructs, or use of the standard 

libraries is acceptable. Although this seems to limit ease of design, both the WDM specification as 

well as the new KMDF provide assistance to the developer via object creators, initialisation methods, 

and their own object models (Microsoft Corporation (2), 2005). 

5.2.2 Build Environment 

The build environment provided by Microsoft for driver compilation is contained within the 

Windows Driver Development Kit (DDK). This provides an array of build environments for different 

system builds. For example there is a checked and free build environment for Windows XP. The 

checked environment includes a large amount of debugging information in the compiled code and is 

used in the development cycle on a checked build of the operating system. This allows intuitive 

debugging information to be extracted from both the system and the driver. (Microsoft Corporation 

(6), 2005) 

The DDK includes environments for Windows 2000, Windows XP, Windows Server 2003, and 

Windows Vista. If the operating system has a 64bit version, a 64bit checked and free environment is 

also provided. (Microsoft Corporation (6), 2005) 

5.2.3 IDE Options 

Because the build environment is an external implementation, any text editor can be used to code 

the source files for a driver. It was found that integrating the build process as a make-file project in 

the Visual Studio 2005 IDE provided an intuitive, highlighted coding interface and the ability to build 

directly using the configuration options within the DDK provided environment. It is also possible to 

use the debugging symbol files within VS2005 to allow code navigation and referencing. 

5.2.4 Debugging 

Because of the complicated and low-level nature of kernel-mode drivers, debugging is a significantly 

more complicated affair than the usual application level debugging scenario. Thankfully several tools 

are provided to allow detection of errors at an early stage in the development lifecycle. This includes 

both compile-time and run-time debugging tools. 

5.2.4.1 Compile-time Analysis 

The Windows DDK provides a tool called prefast which analyses drivers at compilation for common 

design, logical and coding errors not normally detected by the compiler error detection (Microsoft 

Corporation (5), 2005). This tool was very helpful in identifying memory control problems. 

5.2.4.2 Run-time Debugging 

This is achieved with the use of the Debugging Tools for Windows kit. For kernel-mode debugging, a 

dual-PC system is required as the debugging host system uses kernel calls in the process of 

debugging and thus would also halt execution in the event of a breakpoint (Microsoft Corporation 
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(6), 2005). This requires that a target system is attached to the debugger via a communication link, 

most often a null-modem cable, to allow the host system to control the debugging process. 

5.2.5 Code Layout 

The driver code was broken up into related sections as described by Figure 5-1 below. This provided 

a logical and intuitive physical design to the source code allowing easy navigation to specific areas of 

interest.  

 

Figure 5-1 mLAN Physical Driver Design 

Files that are used in the build process are included and provide instructions to the build 

environment at compilation. Two header files are used to separate the public and private definitions. 

This way, only the required IOCTL definitions, structures, and interface GUID’s for interaction with 

the driver are included in the user application. 

The WDF call-back routines (shown in Green) are used by the KMDF in response to actions and 

events within the driver and the system (Microsoft Corporation (2), 2005). For example, the 
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DriverIo.c file contains a call-back routine that is called when the framework queues an IRP in the 

default IO queue for the driver.  

The private internal handlers (shown in Blue) are in turn called from within the IO call-back routine in 

response to the IOCTL codes that it receives within the IRP. This distribution of functionality allows 

grouping into KMDF Interaction, and Functionality areas. 

5.2.5.1 KMDF Interaction (WDF Callbacks) 

These allow the framework to interact with the driver. They will be discussed according to the file 

they are in. Note: All code is reduced in volume by removing debugging information and unnecessary 

clutter. Only the important actions are shown. 

5.2.5.1.1 Driver.c 

This contains the main entry point for the driver. A DriverEntry() function is called by the framework 

when the driver is being loaded (Microsoft Corporation (5), 2005). This creates a WDFDriver object 

to represent the driver class that is being added to the system (Microsoft Corporation (5), 2005). 

Driver.c also provides another required call-back – the EvtDeviceAdd call-back, which is invoked 

when a device that uses this driver is added to the system. 

 
#pragma alloc_text(INIT, DriverEntry) 
 
// Driver Entry Routine called when loading the driver.  
// Specify Device Add event for PnP and create a Driver Object. 
// This entry point is called directly by the I/O system. 
 
NTSTATUS DriverEntry( 
 IN PDRIVER_OBJECT DriverObject,  
 IN PUNICODE_STRING RegistryPath 
 ) 
{ 
 NTSTATUS             status = STATUS_SUCCESS; 
 WDF_DRIVER_CONFIG    config; 
       
 // Initialise the config structure and set  
 // the DeviceAdd PnP Event Handler 
    WDF_DRIVER_CONFIG_INIT(&config, mLANBus_EventDeviceAdd); 
 
 // Create the Driver Object 
 status = WdfDriverCreate( 
  DriverObject,  
  RegistryPath,  
  WDF_NO_OBJECT_ATTRIBUTES,  
  &config,  
  WDF_NO_HANDLE 
); 
 
   return status; 
} 
 



Writing a Yamaha mLAN™ Bus Driver using the Microsoft® Windows® Driver Foundation 26 

5.2.5.1.2 Power.c 

The Power and Plug and Play callbacks are located in this file. The only one required by a WDF driver 

is the Add Device handler that is called when the Driver object is created. In the new mLAN Bus 

driver this is called mLANBus_EventDeviceAdd() and this name is passed to the WdfDriverCreate() 

function in the DriverEntry() routine. 

 
// PnP Device Add Event Handler 
 
NTSTATUS mLANBus_EventDeviceAdd( 
 IN WDFDRIVER  Driver, 
 IN PWDFDEVICE_INIT DeviceInit 
 ) 
{ 
   NTSTATUS                      status = STATUS_SUCCESS; 
   WDFDEVICE                     device; 
    WDF_OBJECT_ATTRIBUTES         attributes; 
   WDF_PNPPOWER_EVENT_CALLBACKS  pnpPowerCallbacks; 
   WDF_IO_QUEUE_CONFIG           ioQConfig; 
    
 
 
   // Initialise the Pnp/Power Callbacks structure. 
   WDF_PNPPOWER_EVENT_CALLBACKS_INIT(&pnpPowerCallbacks); 
 
   // Set Callbacks for any of the functions we are interested in. 
   // If no callback is set, Framework will take the default action 
 
   // PnP Callbacks 
   pnpPowerCallbacks.EvtDevicePrepareHardware =  
 mLANBus_EventDevicePrepareHardware; 
 
   // Power Callbacks 
   pnpPowerCallbacks.EvtDeviceD0Entry = mLANBus_EventDeviceD0Entry; 
   pnpPowerCallbacks.EvtDeviceD0Exit  = mLANBus_EventDeviceD0Exit; 
 
   // Register the PnP and Power callbacks. 
   WdfDeviceInitSetPnpPowerEventCallbacks(DeviceInit, &pnpPowerCallbacks); 
 
   // Specify the size and type of device context. 
   WDF_OBJECT_ATTRIBUTES_INIT_CONTEXT_TYPE(&attributes, DEVICE_EXTENSION); 
 
   // Create a Device object 
   status = WdfDeviceCreate(&DeviceInit, &attributes, &device);   
 
   // Tell the framework that this device will need an interface so that 
   // User-Mode applications can interact with it. 
   status = WdfDeviceCreateDeviceInterface(device, 
 (LPGUID)&GUID_DEV_INTERFACE_MLAN, NULL); 
 
   // Create a automanaged queue for receiving IOCTL requests. 
   // All other requests are automatically failed by the framework. 
   // By creating an automanaged queue we don't have to worry about 
   // PNP/Power synchronization. 
   WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE(&ioQConfig,  
 WdfIoQueueDispatchParallel); 
 
   //Specify the Routine to be called to Handle Requests in the queue. 
   ioQConfig.EvtIoDeviceControl = mLANBus_EventDeviceIoDeviceControl; 
 
   status = WdfIoQueueCreate( 
   device,  
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   &ioQConfig, 
   WDF_NO_OBJECT_ATTRIBUTES,  
   &deviceContext->IoctlQueue 
   ); 
 
   return status; 
 
}  
 

Any other Power or PnP events can have call-backs stipulated here (Microsoft Corporation (5), 2005). 

The important part is the creation of a managed IO queue that will receive any IOCTL requests 

directed at the driver. Any requests will be queued here and the 

mLANBus_EventDeviceIoDeviceControl() function will be called to handle the request. 

5.2.5.1.3 DriverIO.c 

This file contains the mLANBus_EventDeviceIoDeviceControl() function that will handle the requests 

forwarded to this driver. This function simply has a select case statement that examines the IOCTL 

code of the request, checks that the sizes of the input and output buffers are appropriate for the 

IOCTL, and forwards the information on to an internal handler. 

 
// Receives all IO Requests and calls the appropriate handler. 
// Called by the framework for every IO Request object in the managed queue 
created in EvtDeviceAdd(). 
 
VOID mLANBus_EventDeviceIoDeviceControl( 
            IN WDFQUEUE Queue, 
            IN WDFREQUEST Request, 
            IN size_t  OutputBufferLength, 
            IN size_t  InputBufferLength, 
            IN ULONG  IoControlCode 
            ) 
{ 
   NTSTATUS ntStatus = STATUS_SUCCESS; 
   PDEVICE_EXTENSION   deviceExtension; 
   PVOID               ioBuffer = NULL; 
   WDFDEVICE           device;  
   size_t              bufLength; 
 
   device = WdfIoQueueGetDevice(Queue); 
   deviceExtension = GetDeviceContext(device); 
 
   // Since all the IOCTLs handled here are buffered,     
   // WdfRequestRetrieveOutputBuffer &  
   // WdfRequestRetrieveInputBuffer return the same buffer pointer.  
   // So make sure you read all the information you need from 
   // the buffer before you write to it. Also requiredLength of the 
   // buffer vary from ioctl to ioctl, so we will pretend that we need  
   // zero length buffer and do the length check later in the specific 
   // ioctl case. 
   ntStatus = WdfRequestRetrieveInputBuffer( 
   Request,  
   0,  
   &ioBuffer,  
   &bufLength 
   ); 
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   // Switch case for each IOCTL presented by the driver. 
   switch (IoControlCode)  
   { 
 
      case IOCTL_MLAN_ASYNC_READ: 
      { 
         PASYNC_READ pAsyncRead; 
 
         // Check for valid input buffer size 
         if (InputBufferLength < sizeof(ASYNC_READ))  
         { 
            ntStatus = STATUS_BUFFER_TOO_SMALL; 
         } 
         else  
         { 
            pAsyncRead = (PASYNC_READ)ioBuffer; 
 
            // Check for valid output buffer size 
            if ((OutputBufferLength < sizeof(ASYNC_READ)) ||  
   (OutputBufferLength-sizeof(ASYNC_READ) <  
   pAsyncRead->nNumberOfBytesToRead))  
            { 
               ntStatus = STATUS_BUFFER_TOO_SMALL; 
            } 
            else  
            { 
               ntStatus = IEEE1394_AsyncRead_Handler(  
                  device, 
                  Request, 
                  *pAsyncRead, 
                  pAsyncRead 
                  ); 
 
               // Return data 
               if (NT_SUCCESS(ntStatus))  
               { 
                  WdfRequestSetInformation(Request,  OutputBufferLength); 
               } 
            } 
         } 
 
      } 
      break;       
       
 // Case for each IOCTL 
 … 
   } 
 
   // only complete if the device is there 
   if (ntStatus != STATUS_PENDING) 
   { 
      WdfRequestComplete(Request, ntStatus); 
   } 
 
} 
 

5.2.5.2 Internal Handlers 

These implement the functionality for each IOCTL and are within the files in the Blue section in 

Figure 5-1. They are grouped according to IEEE1394, IEC61883, WDMMIDI, WDMAudio, and ASIO 

Streaming functionality. The data received from the IO handler is examined, altered if needed, and 

forwarded on to the appropriate class driver in the required format. 
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The  IOCTL_MLAN_ASYNC_READ handler is given below as an example: 

 
NTSTATUS IEEE1394_AsyncRead_Handler( 
 IN WDFDEVICE    Device, 
 IN WDFREQUEST       Request, 
 IN ASYNC_READ       AsyncRead, 
    IN PASYNC_READ      pAsyncRead 
    ) 
{ 
 NTSTATUS            ntStatus            = STATUS_SUCCESS; 
 PDEVICE_EXTENSION   deviceExtension     = GetDeviceContext(Device); 
 PIRB                pIrb                = NULL; 
 PMDL                pMdl                = NULL; 
 
 RtlZeroMemory (pIrb, sizeof (IRB)); 
 pIrb->FunctionNumber = REQUEST_ASYNC_READ; 
 pIrb->Flags = 0; 
 pIrb->u.AsyncRead.DestinationAddress =  
   AsyncRead.DestinationAddress; 
 pIrb->u.AsyncRead.nNumberOfBytesToRead =  
   AsyncRead.nNumberOfBytesToRead; 
 pIrb->u.AsyncRead.nBlockSize = AsyncRead.nBlockSize; 
 pIrb->u.AsyncRead.fulFlags = AsyncRead.fulFlags; 
 pIrb->u.AsyncRead.ulGeneration = AsyncRead.ulGeneration; 
 
    // creat a MDL buffer to hold info read from device 
 pMdl = IoAllocateMdl( 
  AsyncRead.Data, 
  AsyncRead.nNumberOfBytesToRead,  
  FALSE, FALSE, NULL); 
 pIrb->u.AsyncRead.Mdl = pMdl; 
 
   // submit the irb to class driver 
   ntStatus = IEEE1394_SubmitIrpSynch(deviceExtension, pIrb); 
 
   // rerieve returned data 
   pAsyncRead = (PASYNC_READ)&(pIrb->u.AsyncRead); 
 
   return(ntStatus); 
 
} 
 

To forward a request to the underlying class driver, a new I/O Request Block, referred to by pIRB in 

the above code, needs to be created. pIRB is assigned the appropriate function number defined in 

the class driver – in this case REQUEST_ASYNC_READ. Now the appropriate fields within the IRB are 

populated and the newly created request is forwarded by the IEEE1394_SubmitIrpSynch() function 

to the lower class driver. Once the call completes, the pointer information is updated and the 

request marked complete. The application that called the IOCTL can now access the data via the 

pointer returned. 

The layering within the code of the WDF Bus driver allows reuse of common code, and logical 

separation into related sections of code. 
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5.3 Chapter Summary 

In this chapter we discussed the logical and physical layout of the WDF mLAN Bus Driver. We began 

by describing the high-level logical design required to implement the required functionality. We then 

moved on to choices in coding language, build environments, and IDE where we described facilities 

provided by the DDK. Debugging and analysis were briefly mentioned and the special requirements 

for kernel-mode debugging were highlighted with reference to the Debugging Tools for Windows. 

The physical layout of code within the project was examined. The separation into areas of 

Interaction and Functionality was noted as well as the close alignment of the physical and logical 

design. We then discussed each area of functionality in some detail with specific reference to the 

framework methods and the interaction with framework objects.  
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6 Results and Possible Future Directions 

After the completion of the WDF Bus driver, we are able to examine the success or failure of our 

solution. We also discuss prospects for future work in this area or research. 

6.1 Improvements On WDM Version 

6.1.1 Design 

The internal design of the WDF based driver has a clean logical layout of code with easily traceable 

paths of execution. The separation into areas of interaction with the KMDF, and implementation of 

functionality allows easy troubleshooting and debugging. The absence of code catering for all PnP 

and Power related functionality results in a simplified design compared to the WDM 

implementation, with fewer areas of possible problems. 

The call-back based design of the KMDF provides an effective manner for the framework to manage 

the driver communication and interaction with the OS. The provision of default actions for those 

events not provided by the driver allows the focus of design to be on the functionality of the driver 

rather than OS interaction.  

6.1.2 Implementation 

The fact that only the functionality of the driver is coded results in a significant reduction in the 

amount of code. The original WDM implementation has 7460 lines of code, where the WDF 

implementation has only 4711 (Calculated without functionality not yet implemented by the WDF 

version i.e. ASIO, and WDMAudio related IOCTL’s). 

The KMDF object model is intuitive and easy to use with sufficient inherent functionality to not 

require any external libraries. The ability to refer to objects allows self-describing and streamlined 

code. 

The new version showed the ability to interact with the class drivers, and hence the bus, in the same 

manner and providing the same functionality as the WDM version. This indicates that the ability to 

implement the entire system in WDF is present. 

6.2 Non-Functional Aspects 

The mini-port related IOCTL’s were not sufficiently completed to be included in this report. Thus the 

driver only provides IEEE1394 and IEC61883 functionality. This is sufficient for its use in an Enabler 

scenario which does not require any further functionality – perfect for the mLAN Bus Driver 

suggested in the re-designed mLAN System later.  
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It was decided that due to the complexity of the original mLAN Bus driver, the use of a proprietary 

C++ based framework for implementation which obscured the WDM code, and my inexperience in 

the WDM and WDF, the goal of completing the implementation of the entire array of functionality 

within the mLAN Bus driver was not achievable in the time allowed for this research.  

Also, the mini-port driver that would allow the option of WaveRT streaming under Windows Vista 

was not implemented. This required the completion of the other mini-port related functionality in 

the Bus driver first. 

6.3 Possible Extensions 

6.3.1 Completion of the Mini-port Related IOCTL’s 

This would entail examining the functionality provided for the ASIO and WDMStreaming mini-port 

drivers by the WDM implementation and reproducing this in the WDF implementation. Completion 

of these IOCTL’s would allow the use of the WDF implementation in the current mLAN System as 

both the enabler interface and an interface to the bus for the mini-port drivers. 

6.3.2 Porting the Mini-port Drivers to WDF 

To complete the conversion of the current mLAN System from WDM based drivers to WDF, the mini-

port drivers used to present connections to audio applications need to be analysed and re-

implemented using the WDF model. These would make use of the mini-port related IOCTL’s provided 

by the Bus driver. 

6.3.3 Implementing Vista™ Specific Audio Streaming 

One of the original goals of this project was to examine the use of the mLAN system on Windows 

Vista. The current implementation will function on Windows Vista, as it does on Windows XP, 

without modification. The conversion to the WDF model of driver design is recommended for use in 

Vista and later versions of Microsoft Windows as this will be become the standard model for driver 

development. 

The WaveCyclic port driver used in the WDM version, requires continual polling by a thread which 

increases the latency when using it. The WaveRT port driver does not require this and also makes 

use of a Real-Time scheduling policy available in Windows Vista.(Microsoft Corporation (1), 2006) 

Windows Vista does provide the opportunity to use a new priority mode for kernel audio streaming 

and this could provide an alternative to the current ASIO streaming implementation. Implementing 

this would entail the creation of a new WaveRT mini-port driver or the modification of the current 

WaveCyclic one to support the new WaveRT model. It would also entail the inclusion of related 

IOCTL’s in the mLAN Bus driver to provide communication with the bus. 
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6.4 Suggestions For Further Design Changes 

The current system entails the use of many individual user processes with many interactions 

between each. It would make sense, especially in the light of new developments in the mLAN 

specification – namely the Open Generic Transporter – to re-examine the current design and 

consider any simplifications that could be achieved. 

Two major roles that the PC can play in an mLAN environment have been identified. The first is that 

of an Enabler. This role is responsible for controlling the mLAN network and the connections within 

it. Within the Windows environment, a System Service process would be ideal for this role. The 

service could be automatically started upon booting the system, could maintain an object model of 

current connections, and provide an interface to allow any application to interact with it. The service 

would require access to the IEEE1394 bus, which could be provided by an mLAN Bus Driver 

presenting IEEE1394 IOCTL’s to the service. Here, only IOCTLS related to the IEEE 1394 bus and IEC 

61883-1 FCP functionality are required.  

The second is that of an mLAN node. This is required if the PC is to be used to stream audio/MIDI to 

or from another mLAN device. To achieve this, a virtual mLAN device would need to be implemented 

and expose audio/MIDI plugs to audio applications on the PC. This could be achieved without making 

use of a process, but by incorporating the functionality into a single mLAN Node driver that could 

interact with the mLAN Bus Driver. It would also require the use of mini-port drivers for interaction 

with the audio sub-system of the OS. 

The separation of these two roles allows the user more flexibility in design choices. It also keeps the 

implementation of each role separate, resulting in a cleaner design and implementation of each. The 

current system is very interwoven and a complicated model to use, let alone analyse or modify. This 

model also allows the ability to constantly have the facilities available. In the current system, the 

user has to enable the mLAN system when they require it, and then has a significant delay whilst the 

various processes and drivers are loaded. 

6.5 Chapter Summary 

The results of implementing the mLAN Bus driver using the KMDF were discussed in this chapter. It 

was shown that the use of the WDF model proved successful and the ability to implement all the 

mLAN drivers using the KMDF was available. 

We also listed the aspects of the original design that were not implemented and discussed the 

possible reasons for this. We then discussed possible areas of further work including completion of 

the mini-port related IOCTL’s in the Bus driver, porting the current WDM mini-port drivers to WDF 

versions, and the inclusion of a new mini-port for WaveRT streaming in Windows Vista. 
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7 Conclusion 

The current Yamaha mLAN System, although effective in its role, is a complicated design and often 

difficult to use. This can easily be seen if one consults any online community web site of Yamaha’s 

mLAN technology. Here we find that the criticism for the product is most often due to the PC tools 

and driver implementation. By demonstrating the ability to re-design the mLAN Bus Driver using the 

new Windows Driver Foundation (WDF) development model, we are able to not only simplify the 

current implementation, but also propose a new design for the entire system that may provide a 

simpler, more reliable solution.  

We began by examining the Windows Driver Model (WDM) implementation of the mLAN Bus driver 

to identify the requirements for a new implementation. This was complicated by the use of a 

proprietary driver development framework to implement the WDM version which obscured the 

WDM code.  

After analysing the role of the driver in the mLAN System, we designed a new implementation 

making use of the Kernel-Mode Driver Framework (KMDF). Here we placed special emphasis on 

maintaining a close parallel relationship between the logical and physical layout. The driver was 

divided into two main areas: KMDF Interaction and Functionality. 

KMDF Interaction contained all the call-back functions required to interact with the framework. This 

consisted of two functions for the creation of Driver and Device objects, as well as the call-back for a 

managed I/O queue. The I/O queue call-back was then responsible for calling the appropriate 

Internal Handler routine within the Functionality section for each IOCTL presented by the driver. 

The Functionality section was concerned with forwarding on any requests to the underlying class 

drivers for both the 1394 and 61883 related IOCTL’s. This entailed constructing a new request and 

passing it down the driver stack. Once completed, pointers were returned to the output buffer of the 

managed queue where the calling application could access the information. 

Use of the WDF development model and its associated framework proved to be very successful. The 

provision in the framework for managed queues, default functionality and simplified interaction 

enables the developer to concentrate on implementing the functionality required by the device 

driver instead of the interaction with the OS as with the previous WDM model. The framework will 

definitely result in more reliable, smaller, and less complicated device drivers for the Windows 

operating system. 

Implementation of the driver was successful and made use of the Microsoft Driver Development Kit 

(DDK) build environments. The Visual Studio 2005 IDE was used for editing and navigating code, 

whilst the WinDBG debugger was used for kernel-mode debugging on a separate test bed. The result 
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was clean, logical code that is easy to maintain and understand. The driver is installed with the use of 

a .inf file which specifies the class of device, and was shown to communicate with the hardware bus 

as expected. The driver has enough functionality to be able to support an Enabler application in the 

connection management role within the mLAN System. 

With the completion of the 1394 and 61883 areas of functionality, the mini-port related areas are 

still to be addressed. The completion of these IOCTL’s would allow the use of the WDF Bus driver for 

streaming audio onto the 1394 bus. 

Inclusion of the WaveRT streaming option for users of Windows Vista will provide another option for 

audio transport allowing even more flexibility from the mLAN System. More attention needs to be 

paid to how the operating system implements audio transport and how best to make use of the 

facilities provided though.  

A re-design of the system would allow Yamaha to address the concerns of its users and provide a 

reliable, streamlined PC solution that would add value to its product line. This is definitely achievable 

by making use of new technologies in driver design and catering for the differences in 

implementation between different platforms. 
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Appendices 

i. Research Poster – Path of an IOCTL 
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ii. mLAN WDF Bus Driver IOCTL Calls 

IEEE1394 
IOCTL_MLAN_ALLOCATE_ADDRESS_RANGE 
Input: A pointer to an ALLOCATE_ADDRESS_RANGE struct. 
Output: A pointer to an altered ALLOCATE_ADDRESS_RANGE struct. 
 
IOCTL_MLAN_ADDRESS_RANGE_NOTIFY 
Accepts: A pointer to an ADDRESS_RANGE_NOTIFY struct. 
Returns: A pointer to an altered ADDRESS_RANGE_NOTIFY strut. 
 
IOCTL_MLAN_SET_ADDRESS 
Accepts: A pointer to a SET_ADDRESS_DATA struct. 
 
IOCTL_MLAN_GET_ADDRESS 
Accepts: A pointer to a GET_ADDRESS_DATA struct. 
Returns: A pointer t an altered GET_ADDRESS_DATA struct. 
 
IOCTL_MLAN_FREE_ADDRESS_RANGE 
Accepts: A HANDLE to the address range. 
 
IOCTL_MLAN_ASYNC_LOCK 
Accepts: A pointer to an ASYNC_LOCK struct. 
Returns: A pointer to an altered ASYNC_LOCK struct. 
 
IOCTL_MLAN_ASYNC_READ 
Accepts: A pointer to an ASYNC_READ struct. 
Returns: A pointer to an altered ASYNC_READ struct. 
 
IOCTL_MLAN_ASYNC_WRITE 
Accepts: A pointer to an ASYNC_WRITE struct. 
 
IOCTL_MLAN_BUS_RESET_NOTIFY 
Accepts: A pointer to an MLAN_BUS_RESET_NOTIFY struct. 
Returns: A pointer to an altered MLAN_BUS_RESET_NOTIFY struct. 
 
IOCTL_MLAN_BUS_RESET 
Accepts: A ULONG value. 
 
IOCTL_MLAN_GET_LOCAL_HOST_INFO 
Accepts: A pointer to a GET_LOCAL_HOST_INFORMATION struct. 
Returns: A pointer to an altered GET_LOCAL_HOST_INFORMATION struct. 
 
IOCTL_MLAN_SEND_PHY_CONFIG_PACKET 
Accepts: A pointer to a PHY_CONFIGURATION_PACKET struct. 
 
IOCTL_MLAN_GET_LOCAL_NODE_ADDRESS 
Accepts: A pointer to a GET_LOCAL_NODE_ADDRESS struct. 
Returns: A pointer to an altered GET_LOCAL_NODE_ADDRESS struct. 
 
IOCTL_MLAN_GET_CHANNELS_AVAILABLE 
Returns: A pointer to a LARGE_INTEGER struct. 
 
IOCTL_MLAN_ALLOCATE_CHANNEL 
Accepts: A ULONG value. 
 



Writing a Yamaha mLAN™ Bus Driver using the Microsoft® Windows® Driver Foundation 42 

IOCTL_MLAN_RELEASE_CHANNEL 
Accepts: A ULONG value. 
 
IOCTL_MLAN_GET_BANDWIDTH_AVAILABLE 
Returns: A ULONG value. 
 
IOCTL_MLAN_ALLOCATE_BANDWIDTH 
Accepts: A ULONG value. 
 
IOCTL_MLAN_RELEASE_BANDWIDTH 
Accepts: A HANDLE to the bandwidth. 
 
IOCTL_MLAN_ALLOCATE_STREAM 
Accepts: A pointer to an MLAN_ISOCH_PARAM struct. 
Returns: A pointer to an altered MLAN_ISOCH_PARAM struct. 
 
IOCTL_MLAN_START_STREAM 
Accepts: A pointer to an MLAN_STREAM_COMMAND struct. 
Returns: A pointer to an altered MLAN_STREAM_COMMAND struct. 
 
IOCTL_MLAN_CONNECT_SEQUENCES_TO_DEVICES 
Accepts: A pointer to an MLAN_ISOCH_PARAM struct. 
Returns: A pointer to an altered MLAN_ISOCH_PARAM struct. 
 
IOCTL_MLAN_SET_SYT_SOURCE 
Accepts: A pointer to an MLAN_ISOCH_PARAM struct. 
Returns: A pointer to an altered MLAN_ISOCH_PARAM struct. 
 
IOCTL_MLAN_STOP_STREAM 
Accepts: A pointer to an MLAN_STREAM_COMMAND struct. 
Returns: A pointer to an altered MLAN_STREAM_COMMAND struct. 
 
IOCTL_MLAN_GET_STREAM_INFO 
Accepts: A pointer to an MLAN_ISOCH_PARAM struct. 
Returns: A pointer to an altered MLAN_ISOCH_PARAM struct. 
 
IOCTL_MLAN_FREE_STREAM 
Accepts: A pointer to an MLAN_STREAM_COMMAND struct. 
Returns: A pointer to an altered MLAN_STREAM_COMMAND struct. 
 
IEC61883 
IOCTL_MLAN_61883_CONNECT_PLUG 
IOCTL_MLAN_61883_CREATE_PLUG 
IOCTL_MLAN_61883_PLUG_NOTIFY 
IOCTL_MLAN_61883_DELETE_PLUG 
IOCTL_MLAN_61883_DISCONNECT_PLUG 
IOCTL_MLAN_61883_GET_FCP_REQUEST 
IOCTL_MLAN_61883_GET_FCP_RESPONSE 
IOCTL_MLAN_61883_GET_PLUG_HANDLE 
IOCTL_MLAN_61883_GET_PLUG_STATE 
IOCTL_MLAN_61883_SEND_FCP_REQUEST 
IOCTL_MLAN_61883_SEND_FCP_RESPONSE 
IOCTL_MLAN_61883_SET_FCP_NOTIFY 
IOCTL_MLAN_61883_SET_PLUG 
 
ASIO 
Not implemented yet. 
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WDMSTREAMING 
Not implemented yet. 
 
MLAN SPECIFIC 
IOCTL_MLAN_GET_DRIVER_VERSION 

iii. mLAN WDF Bus Driver Installation 

The mLAN WDF Bus Driver can be installed on Windows XP, Windows 2000, Windows 2003, and 

Windows Vista. To begin installation, go to the Control Panel and start the Add Hardware wizard.  

 

Click Next and select the Yes, I have already connected the hardware option. 

 

Click Next and then select Add a new hardware device from the very bottom of the list given to 

you. 
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Click Next and then select the Install the hardware that I manually select from a list option. 

 

Click Next and then select Show All Devices. 
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After a short pause, a list of hardware devices will be presented to you. Click on the Have Disk… 

button to direct the wizard to the place where you stored the mLAN Driver installation files. 

 

You will now get a list with mLAN WDF Bus Driver as an option. Select this and click Next. 

 

You will be asked to confirm the installation of an un-signed driver. 
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The driver files will be copied and the device installed. Once this is complete a final screen will 

be displayed informing of the installation success. The driver will automatically load when Windows 

boots. To uninstall, simply Uninstall from the Device Manager. 

iv. mLAN WDF Bus Driver Usage 

To interact with the mLAN WDF Bus Driver via it’s presented IOCTL’s you use several Win32 

functions to enumerate the specific device and then open a file handle attached to it. 

These instructions can be found in the Win32 Help Documentation provided by Microsoft under 

the heading DeviceIO. 

The procedure can be summarised as: 

1. Enumerate all the drivers that present the desired interface GUID. 

2. For each interface, retrieve the interface details which include it’s device path. 

3. Use the device path to open a file handle with the device. 

4. Using the file handle, issue the IOCTL’s to the device passing memory pointers for the 

input buffer and output buffer. 


