
An Investigation into Network Emulation
and the Development of a Custom

Network

Submitted in partial fulfilment
of the requirements of the degree of

Bachelor of Science (Honours)

of Rhodes University

Glenn Wilkinson

Grahamstown, South Africa
November 2007

Abstract

Network emulators allow for testing of network protocols and applications in a controlled
environment which may otherwise be difficult or even impossible to do. Emulators ma-
nipulate traffic between hosts in a physical network, in a bridged, transparent manner,
modelling real world network conditions and configurations. Such a system is very ap-
pealing in the field of academia where network dependent systems are developed on a
regular basis. In this paper we firstly examine the fundamentals and varying aspects
within network emulation. We compare and contrast emulation to other feasible options
for testing network applications (simulation, testbeds, hybrids). Lastly, we describe how
we built a custom emulator from existing tools and technologies and provide performance
results.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Research Goals . 2

1.4 Document Structure and Outline . 2

2 Terminology and Related Work 4

2.1 Real World Networks . 4

2.1.1 Network Terminology . 4

2.1.2 How Network Conditions Affect Packets 5

2.2 Network Emulation . 6

2.2.1 Emulation Techniques for Network Conditions 10

2.3 Network Simulation . 12

2.4 Network Simulation/Emulation Hybrid . 13

2.5 Hardware Emulation . 13

2.6 Testbeds . 14

2.7 Comparisons of Techniques . 14

2.7.1 Emulation vs Simulation . 14

2.7.2 Emulation vs Hybrid . 15

2.7.3 Hardware Emulation vs Software Emulation 15

2.7.4 Testbeds vs Emulation . 15

2.7.5 Conclusion of techniques . 15

1

CONTENTS 2

2.8 Limitations of Emulation . 16

2.9 Deployment Options . 17

2.10 Summary . 17

3 Design and Implementation of Custom Built Emulator 18

3.1 Design . 18

3.2 Implementation . 19

3.2.1 Phase 1 - Virtual Machines and PC 19

3.2.1.1 Operating System . 19

3.2.1.2 Use of Existing Tools and Structures 19

3.2.1.3 Back End Scripts . 25

3.2.1.4 Data Store . 25

3.2.1.5 User Interface . 27

3.2.1.6 User Account . 29

3.2.1.7 Firewall Settings . 29

3.2.1.8 Network Interfaces . 29

3.2.1.9 Creating, Deleting and Setting Nodes 32

3.2.1.10 Setting Emulator State . 34

3.2.2 Phase 2 - Embedded Machine . 36

3.2.2.1 Soekris net4801 . 36

3.2.2.2 Building a Mini FreeBSD System and Kernel for the Soekris
37

3.2.3 Security Considerations . 38

3.2.3.1 Code . 38

3.2.3.2 System . 39

3.2.4 Summary . 39

CONTENTS 3

4 Testing and Results 40

4.1 Kernel Frequency Variations . 41

4.2 Results - Single Links . 41

4.2.1 Throughput Over Time . 43

4.2.2 Round Trip Time . 43

4.2.3 Variable Round Trip Time (Jitter) 45

4.2.4 Packet Retransmits from Packet Loss Rate (PLR) 49

4.2.5 Multipath effects . 49

4.2.6 Queuing Policies . 50

4.3 Results - Multiple Links . 53

4.4 Summary . 53

5 Conclusion 56

5.1 Summary . 56

5.2 Problem Statement Revisited . 58

5.3 Future Work and Possible Extensions . 58

Bibliography 60

A Construction of the Emulator 64

A.1 Building the Embedded Machine . 64

A.1.1 Creating Directory Structures . 64

A.1.2 Rebuilding the Boot Loader . 66

A.1.3 Building Dynamic Executables . 66

A.1.4 Copying the Binaries Over . 66

A.1.5 Configuring Boot Files . 66

A.1.6 Kernel Compilation . 68

A.1.7 Populating /etc . 68

A.1.8 Building the Binary Image . 70

A.1.9 Writing the Image to the Soekris Flash Card 71

CONTENTS 4

A.2 Scripts used in Building Minimal FreeBSD System 71

A.3 NIAB Kernel Listing . 72

B Emulator Code 75

B.1 PHP . 75

B.2 Perl (CGI) . 77

C Scripts for Testing the Emulator 79

C.1 Throughput . 79

C.2 RTT . 81

C.3 General . 83

List of Figures

2.1 Host C intercepts traffic between hosts A and B and manipulates it 7

2.2 Depiction of emulators working between different layers [19]. 8

2.3 Real vs NIST Net-synthesized delay distributions [34] 11

3.1 The dummynet subsystem [41] . 20

3.2 Random Early Detection Depiction [47] . 22

3.3 Initial User Interface . 27

3.4 NIAB Structure . 29

3.5 NIAB Main Screen . 30

3.6 Changing the login password to NIAB . 30

3.7 Viewing firewall rules . 31

3.8 Adding a firewall rule . 31

3.9 Setting interfaces through which traffic will pass 32

3.10 Creating a typical ADSL node . 33

3.11 Deleting a NIAB node . 34

3.12 Selected active nodes . 35

3.13 Setting the emulator status . 35

3.14 The Soekris net4801 embedded machine [11] 36

4.1 Process of testing NIAB system . 41

4.2 Kernel set to 100Hz . 42

4.3 Kernel set to 10000Hz . 42

5

LIST OF FIGURES 6

4.4 Variation of bandwidth from 5000KBit/s to 1000Kbit/s 43

4.5 Variation of bandwidth from 512Kbit/s to 384Kbit/s 44

4.6 No initial delay followed by a 20ms delay 45

4.7 25ms delay, followed by 10ms delay, followed by no delay 46

4.8 NIAB Jitter as per Table 4.1 . 47

4.9 NIAB Jitter as per Table 4.2 . 48

4.10 Traffic has the option of traversing different routes between node A and B 49

4.11 Throughput between two points with three possible paths between them . 51

4.12 RTT between two points with three possible paths between them 52

4.13 Upstream Throughput: A –> ADSL –> Dialup –> B 54

4.14 Delay: A –> ADSL –> Dialup –> B . 55

List of Tables

2.1 The Seven OSI Model Layers [44] . 5

3.1 (G)RED Queue Management Options . 23

4.1 NIAB Jitter with three pipes . 47

4.2 NIAB Jitter with two pipes . 48

4.3 Multipath effects with NIAB . 50

4.4 Typical Connection Properties . 53

7

Acknowledgements

I would like to extend a big thank you to my supervisors, Barry Irwin and Ingrid Siebörger.
Your help and support this year has been invaluable. Ingird, your proof reading skills in
the later stage of this project were amazing and are very much appreciated. I would also
like to acknowledge the lecturers and members of staff of the Computer Science Depart-
ment for helping me to grow and learn over the past few years.

I would like to acknowledge and thank Mr. Tony Long of the finance department who
assisted in the sourcing of funds for my undergraduate degree, and a very big thank you
to Dr. Hamilton who made it possible for me to finish my undergraduate degree. In addi-
tion, thank you to the finance department who allowed me to study towards my Honours
degree with the aid of a bursary.

Finally, I acknowledge the financial and technical support of Telkom SA, Business Connex-
ion, Comverse SA, Verso Technologies, Stortech, Tellabs, Amatole telecommunications,
Mars Technologies, Bright Ideas Projects 39 and THRIP through the Telkom Centre of
Excellence at Rhodes University.

Chapter 1

Introduction

1.1 Background

Modern networks are comprised of many network nodes connected via many network
links. At each of these nodes there is the possibility of packets being dropped, delayed or
corrupted. The Internet runs as a “best effort” network [9]; websurfing, email and other
such activities tolerate large variations in such conditions but the activation of real time
applications such as VoIP and streaming media require stable and predictable conditions.
Packets not arriving, or being modified in structure or sequence are generally not as a
result of a fault on the network path. Rather, this is a result of switching infrastructure
coming under heavy load and having to drop packets or the nature of the TCP protocol
and its congestion control [36] mechanisms. TCP is a protocol that can exhibit complex
behavior, especially when considered in the context of the current Internet, where the
traffic conditions themselves can be quite complicated and subtle [37].

The Internet’s infrastructure consists of a series of routers connected by many links. As
each packet arrives at a router it is examined in order to determine the next hop (which will
either be another router or the destination computer) to which they should forward the
packet such that it ultimately reaches its destination. Routers have physical limitations
on the number and rate of packets they can forward. Sometimes they receive more packets
than can immediately be forwarded in which case the packets are momentarily queued
in a buffer which increases the delay of packets traversing the network. Sometimes the
packets are dropped altogether if the load is insurmountable. This group of conditions
are by specification and occur intentionally.

On the other hand, packets may be delayed, dropped or malformed due to a failure
between the two end points. This may be at the software level such as a misconfigured

1

1.2. PROBLEM STATEMENT 2

router. On the hardware, or ’wire’ level, packet collisions and interference from external
sources may result in packets being dropped or inadvertently manipulated.

1.2 Problem Statement

The problem which we are addressing in this project is to produce a system that tests
network dependent applications’ performance with real world network phenomena. It is of
no use to conclude that an application or service is worthy of deployment over a large scale
network such as the Internet after having only tested it on a high speed local network.
Therefore, using a network emulator to recreate such traffic impairments as mentioned in
section 1.1 allows manufacturers, service providers, developers and, most importantly in
our context, academic institutions to test the robustness of their product.

1.3 Research Goals

Our goal in this project was to build a cheap, open source based emulator from existing
and readily available tools to run on the FreeBSD operating system, utilizing common
hardware. It was a requirement for the emulator to be light weight with a small overhead
and to be able to mimic network behaviour such as limited bandwidth, delay (constant
and variable), random dropping of packets, multipath effects and enforce varying queue
management policies. Furthermore, we required a usable graphical interface to the end
user allowing him or her to create network nodes, save them and link them together.

This goal was achieved by building a web interface to a webserver running on a FreeBSD
operating system which was deployed in several contexts; virtual machines, standard
computers, and an image suitable for deployment on embedded machines such as the
Soekris net4801 [11] machine.

1.4 Document Structure and Outline

This dissertation begins, in chapter 2, by briefly discussing modern network principles.
Next, characteristics which manifest in the deployment of networking infrastructure as
a result of real world limitations (such as packet delay, packet loss, jitter, bandwidth
limitations) are investigated. We examine how network conditions affect network traffic
and then look at techniques which can be used to recreate the conditions in a controlled

1.4. DOCUMENT STRUCTURE AND OUTLINE 3

manner. There are three broad categories or methods to test network protocols and
applications. Each category shares the common goal of examining how the application
or protocol handles the effects of network conditions such as delay, jitter, bandwidth
limitations, packet loss and.

The first of the categories is network emulation which is the core direction of this paper.
The second technique examined is network simulation. Next, the differences between
hardware and software network emulators, as well as descriptions of hardware testbeds
[20] and hybrid models of the above technologies are examined. The final section of
chapter 2 involves a discussion on embedded machines.

In chapter 3 we introduce and present the network emulator, which we have called “Net-
work in A Box” (NIAB). This is a custom built network emulator created and tested from
existing tools and technologies. We discuss design principles and implementation details
and delve into the choices and deployments of operating system, hardware architecture,
programming languages and data storage. NIAB was built primarily using PHP and
Perl, and deployed on a FreeBSD system in a bridged environment. The emulator exists
in three forms; a Virtual Machine image, a standard computer form and an image suitable
for deployment on embedded machines.

In chapter 4 we discuss the emulator test results in manipulating traffic. Statistics and
graphs demonstrating the capability of the system are presented in this chapter. Key test
areas included bandwidth manipulations, delays (constant and variable) on traffic flow,
packet loss and multipath effects. Both single, and multiple link options are examined.

The final chapter revisits the problem statement, as well as discusses possible future
extensions. The appendices contain the source code, scripts for building the embedded
image, and the custom NIAB FreeBSD kernel.

Chapter 2

Terminology and Related Work

In this chapter we discuss relevant background information which is pertinent in designing
a network emulator. We briefly examine some network terminology, and then discuss,
compare and contrast the technologies of network emulation, network simulation and
testbeds. From this discussion it is possible to understand the requirements of building a
custom network emulator.

2.1 Real World Networks

The reader needs a basic understanding of the seven layer Open System Interconnection
(OSI) model [44], as well as an understanding of network fundamentals because network
emulators are inserted into this OSI model. As a recap to the reader, the OSI model is
discussed together with an examination of network conditions that affect and alter packets
as they traverse a network.

2.1.1 Network Terminology

According to [45], the OSI [44] reference model describes how information from a software
application in one computer moves through a network medium to a software application
in another computer. The OSI reference model is a conceptual model composed of seven
layers, each specifying particular network functions. The model was developed by the
International Organization for Standardization (ISO) in 1984, and it is now considered the
primary architectural model for intercomputer communications. The OSI model divides
the tasks involved with moving information between networked computers into seven
smaller, more manageable task groups. A task or group of tasks is then assigned to each

4

2.1. REAL WORLD NETWORKS 5

of the seven OSI layers. Each layer is reasonably self-contained so that the tasks assigned
to each layer can be implemented independently. This enables the solutions offered by
one layer to be updated without adversely affecting the other layers. The seven layers are
depicted in Table 2.1.

7 Application Layer
6 Presentation Layer
5 Session Layer
4 Transport Layer
3 Network Layer
2 Data link Layer
1 Physical

Table 2.1: The Seven OSI Model Layers [44]

2.1.2 How Network Conditions Affect Packets

This section discusses some of the most common network conditions that affect traffic
as it flows across a network. These common conditions have been deemed as the most
significant conditions to be replicated in a network emulation system.

Within the bounds of TCP/IP there is no guarantee that every packet sent will be received
in a timely manner, in sequence state, or even at all. However, a stream of data sent on
a TCP connection is delivered reliably and in order at the destination [27]. That is to
say that TCP is a reliable service but individual packets may become corrupted, delayed
or lost which may require retransmission. We examine some of the conditions which may
affect traffic flow, which are ultimately what an emulator replicates. However, it should be
noted that an emulator is a model of reality, and with all models there are varying degrees
of granularity. The complexity of the individual model is dependent on the application.

Bandwidth is a finite commodity. Hosts and routers limit the amount of traffic passing
through them either as a function of saturation or by only allowing a certain bit rate.

Packets may be delayed en route to their destination. The two main sources of delay [9] on
the Internet are the actual transmit time to go from the source to the destination and at a
router whose input rate is greater than the output rate. This rate difference causes packets
to wait in memory while the router processes previous packets. The typical distribution
of packet delays through the Internet demonstrates a “heavy tail” which is a skewing
toward the right when compared to normal distribution [34]. Delays may be intentionally
implemented by throttling throughput. This is a common event with most ISPs and
educational institutions. Delays can also be caused by packet loss and retransmission

2.2. NETWORK EMULATION 6

The delay experienced by multiple packets in a traffic flow may vary. This variation in
delay is known as jitter [13, 25]. It is the measure of the variability over time of the
latency across a network. Real time communications (for example VoIP) usually have
quality problems due to this effect. In general, it is a problem in slow-speed links or with
congestion.

Packets may also be lost whilst traversing networks. The reasons for packet loss are
numerous and include equipment failure, overflowed buffers, and over capacity routers.
Failure with a transmission link or router causes bursts of packets to be dropped. Queuing
algorithms [21] drop packets on purpose to avoid router buffers from reaching capacity.
If a router is over capacity it will drop bursts of incoming packets.

Other more general impairments include out of order packets, packet fragmentation and
packet duplication. Traffic engineering techniques such as Multiprotocol Label Switch-
ing (MPLS) alter packet paths to avoid congestion which can result in different packets
arriving at different times at the final destination. The Internet Protocol allows IP frag-
mentation so that datagrams can be fragmented into pieces small enough to pass over a
link with a smaller MTU than the original datagram size. [27] describes the procedure for
IP fragmentation, transmission and reassembly of datagrams. [16] describes a simplified
reassembly algorithm which can easily be implemented in hosts. Packet duplication may
occur for many reasons, including faulty routers or hosts as well as packets thought to be
lost eventually reaching their destination.

2.2 Network Emulation

In most situations the aim of experiments on network protocols is to determine their be-
haviour in a complex network consisting of many nodes, routers and links with different
queuing policies, queue sizes, bandwidth and propagation delays [41]. According to [34]
an emulator is a specialised router which emulates the behaviour of an entire network
in a single hop, as is depicted in Figure 2.1. It can also be said that the purpose of a
network emulator is to mimic the behaviour of a specific network scenario in order to
analyze its impact on the software communicating over the network [26]. To accomplish
this, emulators provide interfaces through which hosts communicate. A general setup is
to have a transparently bridged device between two hosts which manipulates the traffic
as it passes through. The transparency implies that the hosts on either end are unaware
of the presence of a system in between them, and require no additional reconfiguration.
Furthermore, these interfaces connect at layers within the network model protocol stack,

2.2. NETWORK EMULATION 7

Figure 2.1: Host C intercepts traffic between hosts A and B and manipulates it

providing varying levels of manipulation. Connections at different layers are made de-
pending on the emulator. This configuration is portrayed in Figure 2.2.

The typical approach taken by existing network emulators [12, 26, 35] is to intercept
communication at the kernel level between two protocol layers, and approximate the
presence of a real network with finite queue sizes, bandwidth limitations, communication
delays and lossy links [41]. For example, the original Dummynet [41] catches calls from
TCP to IP in the FreeBSD stack and can introduce fixed delays and packet loss. This is
known as the emulation abstraction layer [26] and an emulator offers different services on
different layers. The three most common emulation abstraction layers used by emulators
are [26]:

1. Transport Layer Emulation - emulator reproduces communication channel charac-
teristics such as the performance of the TCP channel. At this abstraction layer
performance may be analysed to measure the impacts of channel characteristics on
applications.

2. Network Layer Emulation - emulator reproduces the end-to-end characteristics if
connecting network hosts. Examples in this layer include packet delays, congestion
and losses.

2.2. NETWORK EMULATION 8

3. Link Layer Emulation - The emulator reproduces the behaviour of single network
links such as bandwidth and frame delay.

It should be noted that the above are the common insertion points for an emulator, but
there are multiple possible options as shown in Figure 2.2. It is common to say that
the emulator operates on the lower of the two layers that the packets are transitioning
between when they are captured [26].

Figure 2.2: Depiction of emulators working between different layers [19].

Realistic emulation on higher abstraction layers is somewhat more difficult to achieve than
on the lower layers because of the increase in the number of variables to consider. For
example network layer emulation has to deal with the effects of network layer issues such
as dynamic routing and queuing to achieve a realistic outcome whilst emulation of links
may use actual implementations of network layer protocols to achieve the desired effects.
Emulation on the link layer is the lowest possible emulation abstraction that is feasible
using purely software methods, and not specialized hardware [26].

Furthermore, according to [41], in order to simulate the presence of a network between
two peers two elements are required to be inserted in the flow of data; routers with
bounded queue size and a given queuing policy, and communication links or pipes with
given bandwidth and delay.

Several functions of emulators noted by [15, 26] are as follows:

• Abstraction - Varying the simulation granularity allows an emulator to accommo-
date high level and low level testing of protocols, ranging from the detail of an
individual protocol to the aggregation of many data flows.

2.2. NETWORK EMULATION 9

• Emulation Parameters - Network emulation has to mimic the behaviour of an actual
network link as closely as possible. All parameters affecting performance have to be
considered. (Parameters, as discussed, include bandwidth limitation, propagation
delay, jitter and dropped packets).

• Transparency - The connection of the software being tested and the emulated net-
work, through the respective interface, must be completely transparent to the soft-
ware. This facilitates the traffic to be evaluated in its original, unmodified form.

• Minimal Side Effects - There will be some inevitable delay when transferring a
datastream through an emulator, caused by overhead. Since this overhead is not
part of the original specified scenario it must be minimized.

• Scenario Generation - This relates to an emulators ability to save predefined tem-
plates of network design. Automatic recreation of complex traffic patterns, topolo-
gies and events can help generate such scenarios. For example, a template emulating
the effect of a data flow going through a Telkom DSL connection, followed by an
ATM link, followed by a satellite link, followed by a T1 trunk and finally another
DSL link.

• Visualization - Analyzing output as performance numbers does not make for easy
evaluation of the effects of the emulator. Network animating tools [3] and graph
software give valuable output to users.

• Extensibility - Several authors note that a modular design to emulators is an im-
portant function as it allows it not only to be extended, but also to be dynamically
loaded.

In its most simplistic form a network emulator emulates a single link between the two
hosts, focusing on some network properties at a single point. Centralized emulators can
work with dynamic scenarios but constitute a bottleneck to the emulated system and
therefore limit the scenario in size and bandwidth. It is possible to setup several emulators
on a number of hosts to overcome this problem but few emulators of this sort support a
central dynamic model [26, 19]. Most emulators work with centralized real time simulation
components which limits the scenario size and maximum traffic, or focus on the emulation
of some network properties at a single point. A more desirable approach as put forward by
[26] is to emulate more realistic links, showing how several emulated links can be combined
to reproduce a comprehensive network model. This distributed option as discussed by [19]
deploys traffic manipulation capabilities on every node. Distributed emulations can be

2.2. NETWORK EMULATION 10

made dynamic by having a central coordinator update the manipulations to be applied
to the traffic. Furthermore this option allows for the emulator to be more scalable, and
allows for higher bandwidth between nodes. This is because with a centralized model all
packets flow through a central packet manipulator. With a high volume of traffic it may
have trouble keeping up with the real time manipulation.

Combining simulators and emulators also allow for a greater number of links to be created
in the simulated environment. We will discuss this idea in further detail in the coming
sections, along with a brief look at testbeds and hardware emulators.

2.2.1 Emulation Techniques for Network Conditions

There are numerous approaches and models to manipulate traffic as it passes through an
emulator system. We will now examine some of the more common methods to emulate
packet delay, packet loss, bandwidth limiting, and jitter. The routines used to generate
the impairments in the emulator don’t need to be realistic models of the actual internal
mechanisms of networks and routers, but should rather be computationally simple whilst
still being able to imitate a wide range of network behaviours. It is important that the
computations required for manipulating traffic are able to keep up with the packet receive
rates.

Packet delay may either be fixed or random with the the shape of the random distrib-
ution curve being settable. From real world results [34] a heavy-tail (a skewing towards
the right) distribution is observed for packet delays on a graph of packets versus time.
[34] explains that this curve makes sense because there are far more ways for things to go
wrong for a packet (worse than average) than there are for things to go right (better than
average). Simulations can not be run fast enough to generate individual packet delays in
real time resulting in most emulators adopting a simpler approximation approach. A table
of values is generated before hand and a random lookup is made at run time from such a
model. It is useful to be able to set the mean, standard deviation and linear correlation
when using this model; setting a large standard deviation and a small linear correlation,
packet reordering can be maximized. Finally it can be noted that, in terms of emulation,
the delay times are dependent on the granularity of the system clock. This heavy-tail
skew is depicted by [34] in Figure 2.3.

2.2. NETWORK EMULATION 11

Figure 2.3: Real vs NIST Net-synthesized delay distributions [34]

Packet loss may be modelled either statistically as in [26] or by a simple random dropping
approach used by [28]. The statistical approach may be followed by using the Random
Early Detection (RED) method [21] or the Derivative Random Drop (DRD) method
[22]. An alternative to RED is GRED (Gentle Random Early Detection) which decreases
the packet drop rate in a slower manner. DRD drops packets with a probability that
increases in a linear fashion with the instantaneous queue length. The queue length is
measured in the number of packets. For example, in [34] when the queue length reaches
the configured minimum queue length, DRD starts dropping 10% of packets and the
loss percentage continually increases until the actual queue length reaches the configured
maximum queue length. At the configured maximum queue length, DRD loses 95% of
packets [33]. RED is a more complex approach which can result in coordination of packet
drops and retransmissions across multiple flows after certain types of instantaneous traffic
bursts. The less complex approach to packet loss is to simply generate a random number
between 0 and 1 for each packet and compare it to the predefined drop probability. If this
number is greater than the drop probability it is dropped, otherwise it is sent on. The
statistical approach will model a more realistic scenario but is somewhat more difficult to
implement.

Bandwidth limitations may be computed on an instantaneous basis. When a packet
arrives, the theoretical amount of time the packet would take to transmit at the set

2.3. NETWORK SIMULATION 12

bandwidth limitation is calculated and the packet is held in the queue for the duration.
Because bandwidth limit-related delays are cumulative, it is advisable to impose limits on
queue lengths. Each packet should be delayed by the packet size divided by the bit rate.

Jitter, as mentioned earlier, is defined as a random delay specified with an average and
standard deviation. Each link may be given a jitter probability, average and maximum
deviation. Then the time a packet is delayed for may be calculated with a random number
R as follows [28]:

Djitter = AV G + R ∗ AV G ∗ STD

Packet modifications in a random or probabilistic manner is another feature of many
network emulators. Fields in the packet header such as checksum source and destination
IP addresses and/or port numbers and TTL values are likely candidates for manipulation.
Such modifications are useful for testing responses to unexpected situations.

2.3 Network Simulation

Network simulators are typically discrete event-based systems [29]; they facilitate testing
to a great extent, but they have a major limitation in that they rely mainly on models
of both the physical infrastructure and the networking protocols. The problem being
that models are only representations of reality and are never entirely accurate. They
may ignore unaccounted-for but important factors. This is especially true in complex
situations in which obtaining an accurate model is not possible. Network simulators are
also unable to replicate the view of real-time for end users.

Key events are stored in a sorted list, sorted by the time at which the event takes place.
This list is traversed and each event is sequentially executed. An event’s execution may
result in additional events being created. For example when a packet is dequeued from a
router, it will either be enqueued into another router or dropped [19].

One important component that has been consistently simplified or ignored in network
models and simulations is the processing cost or processing delay on a network node.
Traditionally, this delay has been considered negligible as only simple packet forwarding
functions needed to be implemented [40].

2.4. NETWORK SIMULATION/EMULATION HYBRID 13

2.4 Network Simulation/Emulation Hybrid

Since the simulation of complete networks has been addressed in detail already in [15],
it makes sense to reuse existing simulators for emulation purposes. According to [26],
simulators can work with complex network models, and their simulator core can compute
the effects that specified network properties have on network traffic traversing the model
which makes up the main part of an emulation facility.

Two problems are identified with linking a discrete simulator to an emulator. Network
simulators work with discrete event schedulers, with the events being processed in a non-
real time manner. The scheduler needs to be modified to work in real time to combat
this first problem. The second problem is that there needs to be an interface between
the emulator and the simulator. There are numerous examples of such hybrid systems
available [20, 30].

As another author notes [34], emulation is a combination of two common techniques, sim-
ulation and emulation. We can define simulation as a synthetic environment for running
representations of code, whilst emulation relates to live testing in a real environment for
running real code. Emulation can be seen as a semi synthetic environment for running real
code in the sense that it is a real network implementation (such as [28][34][46]) with an
additional ability to create synthetic delays and faults [34]. It can therefore be said that
emulation offers advantages of both discrete simulation and live testing. That is to say a
controlled, reproducible environment offered by simulation versus a real environment in
which the representation is obvious [34].

2.5 Hardware Emulation

Hardware network emulators are physical routers which manipulate traffic as it passes
through them. The advantage of using hardware to manipulate traffic is a higher level of
precision and repeatability. In software based systems there is a dependence on the clock
cycle of the CPU [41] which is countered by using specialized hardware. Furthermore, a
dedicated hardware device does not have the operating system overhead which would be
experienced with software based solutions. Such accurate hardware solutions are essen-
tially only required to meet the needs of organizations that are designing, building, testing,
deploying and using high-speed fiber optic data networks. There are several options avail-
able for hardware emulation such as products designed by Anue [1] and Packetstorm [9]
which are capable of processing traffic up to 10Gbit/s.

2.6. TESTBEDS 14

2.6 Testbeds

Several nodes running individual network emulators can be used to emulate multiple
network links. The combination of a central network model and the use of link layer
emulation tools make up a complete network emulation facility working on link layer
abstraction. Having multiple nodes allows for the load to be distributed, enabling higher
complexity network situations to be modelled. For example, the The University of Utah
Network Emulation Facility [32] consists of over 200 nodes with over two miles of cabling.
Their goal is to create a unique type of experimental environment: a universally-available
"Internet in a room" which will provide a new, much anticipated balance between control
and realism.

2.7 Comparisons of Techniques

This section outlines the advantages and disadvantages of the different techniques dis-
cussed in sections 2.2 to 2.6 and concludes that for our purposes in this project the hybrid
emulator/simulator is the best choice.

2.7.1 Emulation vs Simulation

One of the key differences between these two approaches is that simulation creates an arti-
ficial representation of time [19]. The simulator can skip ahead until an event is due. Some
events might take a long time to be evaluated, but this does not matter to the simulator,
since the representation of time is artificial and does not have to be synchronized with an
outside clock. This is a useful characteristic over emulation when the situation may in-
volve network conditions which take a relatively long period of time. However, as already
mentioned, simulators have a major drawback of not being an accurate representation
of reality. It is difficult to decompose certain situations into a modelled representation
suitable for the simulator. In the academic situation in which we wish to modify traffic,
the simulator option is not of use as it would be significantly difficult to represent our
situations to a form which could be inserted into the simulator. The emulator option is
superior in this situation as no modification of the software under test or additional work
is required.

However, in some situations, simulators may be a useful, cost effective option such as
when the problem domain is limited and well defined.

2.7. COMPARISONS OF TECHNIQUES 15

2.7.2 Emulation vs Hybrid

The key problem to notice with a purely emulated system is the difficulty in replicating
multiple links. As noted in section 2.2 the approach with emulation is to make single,
atomic, manipulations to packets as they pass through the system. Emulating a single
link with this method is feasible as a single operation of delay, jitter, random loss etc is
applied to the data stream as data flows. However, culminating effects of multiple links
is difficult. Some systems attempt to achieve this by sumating effects of each condition
over each link. For example, summing the delay effect of several links and applying the
total delay value.

The hybrid option is a more desirable approach to emulating multiple links as put forward
by [26] and [34].

2.7.3 Hardware Emulation vs Software Emulation

This category comes down to a price/performance trade off. Hardware emulators [1, 9] can
provide for largely more complex scenarios with finer granularity and increased precision
and the ability to pass traffic at much higher rates (up to 10Gb/s). This is achieved
through specialized design and low overheads as compared to regular PCs. Modern end
users computers have the processing capacity to handle complex network scenarios. It
can be noted that for most intents and purposes a software solution is acceptable. The
hardware option is only desirable in situations involving large amounts of traffic flowing
at high speed, where absolute accuracy of results is essential.

2.7.4 Testbeds vs Emulation

A testbed is of course a largely expensive approach. Deploying many machines with com-
plex network configurations involves cost in the form of currency as well as administration.
Such a solution is viable over emulation in situations where a very complex, very large
network needs to be emulated (such as the Utah testbed which is attempting to emulate
the entire Internet).

2.7.5 Conclusion of techniques

The most viable, modern, small to medium scale option is the hybrid model incorporating
emulation with aspects of simulation. This can be run on a single machine and relatively

2.8. LIMITATIONS OF EMULATION 16

accurately mimic impairments over multiple links. Simulators have the obvious drawback
of being based purely on a model therefore lacking aspects of realism. Testbeds are
expensive and impractical for all but large scale scenarios. Hardware emulation has its
niche but for the most part is overly expensive.

However, that being said, a combination of techniques during the development of an
application or protocol is desirable, as noted by [19]. Each method has advantages and
disadvantages, and is appropriate at a different time in the development cycle. In the
early stages of development only general ideas exist on how the protocol or application
would behave in different situations. Using these ideas, a model of the behaviour can be
created enabling simulation to test the model, in order to evaluate the performance of the
new idea. If the performance is promising, an actual implementation may be developed
which would detail how the protocol would respond in any given situation. Emulation
and network testbeds can be used to test implementations to see if they perform as well
as the model suggested.

For the purposes of this investigation, within the academic domain, a hybrid model of
emulation and simulation has been concluded to be the most viable and desirable solution.
Under the constraints of cost and administration, as well as the low anticipated traffic
volume and no need for absolutely precise manipulations this option is acceptable.

2.8 Limitations of Emulation

As with all models of reality, network emulation can only approximate the behaviour of
a real system with given features. Most approximations derive from the granularity and
precision of the system clock of the device they are running on. The granularity limits
the resolution in all timing related measurements but in practise this may only pose a
problem in emulating many network links or fast networks with short pipes resulting in
an overall packet delay comparable with the granularity.

A second limitation or problem is that of a task being run late or even being missed
depending on system load. However for small scale projects all the emulator products
examined claim to handle load on obsolete machines (NISTNet [34] claims to be able to
process 100Mb/s on a 300Mhz machine).

2.9. DEPLOYMENT OPTIONS 17

2.9 Deployment Options

A Virtual Machine Manager [6] allows the deployment of an operating system on a Virtual
Machine. One version of the network emulator was created inside a FreeBSD Virtual
Machine. This Virtual Machine image may be deployed on any operating system running
VMWare.

An embedded machine is a computer with a small form factor, with lower specifications
and power consumption than a PC. It has limited I/O in the form of serial and/or network
port interfaces, as opposed to video, keyboard and mouse I/O. Embedded machines are
designed to be deployed and left unattended, or have a specific task with a well defined
simple interface. In our context we have chosen one of the deployment options of our
network emulator to be on an embedded machine allowing it to perform the well defined
task of manipulating network traffic.

Lastly, the emulator has a standard computer deployment option.

2.10 Summary

In this chapter we defined several networking terms and phenomena. Network emulation
was then examined in depth and compared to other techniques in this area (network
simulation, testbeds). We concluded that network emulation was a superior choice over
the alternatives in our domain; small quantities of traffic in an academic environment.
Furthermore three options were mentioned for the deployment of the emulator; a Virtual
Machine, an embedded machine or a standard computer. Based on the findings from the
literature review the design and construction of a custom network emulator is described
in Chapter 3.

Chapter 3

Design and Implementation of Custom
Built Emulator

This chapter discusses the details of how the emulator was built. It was constructed in
two phases. In the initial phase it was developed and tested on a virtual machine and then
on a computer. In the second stage an image was produced suitable for deployment on a
Soekris [11] embedded machine. Traffic flows into the emulator and is “picked up” by ipfw
firewall rules, which pass the select traffic onto a set of dummynet pipes, which in turn
create the desired manipulation effects. The dummynet pipes within the emulator have
been created prior to this and contain properties to manipulate the traffic in the desired
manner. Traffic leaves the dummynet pipes, through the ipfw rules and back through the
opposite interface. The properties of the pipes are set through the web interface of the
emulator. We have implemented the ability for the emulator to throttle bandwidth, to
delay traffic in a constant or variable manner (jitter) and to drop random packets on a
link. It is also possible to create a multipath effect.

3.1 Design

No formal design approach was used to construct NIAB. However, the principles and
ideals of the Agile [31] software development framework may be construed to be the
driving force behind the project. Small incremental deliverables with testing at each
stage of development highlights this approach. NIAB was designed to be lightweight and
have small overhead. The project focus has been on deploying a simple network emulator
with a minimalist front end and a small backend footprint. Part of the design specification
was for the system to be non obtrusive and transparent to users.

18

3.2. IMPLEMENTATION 19

3.2 Implementation

The emulator was deployed on a machine which has three network interfaces. One network
interface is used for the control of the system via ssh or a web based user interface. Traffic
passes through the other two interfaces transparently in a bridged manner whilst network
conditions are applied to the traffic flow.

3.2.1 Phase 1 - Virtual Machines and PC

The emulator was initially constructed and deployed using a FreeBSD installation running
inside VMWare’s “VMWare Server” [6]. From here it was moved onto a standard x86
computer for further development and testing.

3.2.1.1 Operating System

The FreeBSD operating system was chosen as the platform on which to deploy our network
emulator. It was seen as an appropriate option as it can be stripped down to a small,
lightweight size which is suitable to a system which has only to pass traffic between
interfaces and apply simple manipulations to them. Furthermore, the FreeBSD ipfw
firewall system along with dummynet and bridge components provide a solid infrastructure
for the emulator. Custom FreeBSD kernels were built for this system and are included
in Appendix A.3. Several sysctl [24] variables were set to allow processes such as IP
forwarding between interfaces.

A minimal install of FreeBSD was deployed. No source code, manual pages or windowing
system were used. Additional packages installed include the Apache webserver, PHP, Perl
and several CPAN and PHP packages for manipulating XML data structures.

3.2.1.2 Use of Existing Tools and Structures

IP firewall, or “ipfw”, is FreeBSD’s IP packet filter and traffic accounting facility [24]. It
processes access rules for the FreeBSD firewall. Each of these rules relates to specific kinds
of packets and describes what to do with them. When ipfw receives a packet it checks
each of the rules in a predetermined order until it finds one which matches the packet
in question. After a match is found an action is performed. By default once a match is
found processing of the rule list terminates, as it is normally an accept or reject. We will
see, however, that it is useful in certain situations to continue processing through the rule

3.2. IMPLEMENTATION 20

Figure 3.1: The dummynet subsystem [41]

list. In addition, the ipfw rules can match on select interfaces and on select directions.
This was utilized in the NIAB system to match traffic only on the two selected traffic
interfaces, and not the control interface. It also allows the emulation of non uniform
bidirectional links with varying up/down stream characteristics. These two properties are
demonstrated in Listing 1 where we create a typical ADSL connection.

Within the FreeBSD kernel, setting “options IPFIREWALL” adds the ipfw firewall func-
tionality. “options IPFIREWALL_VERBOSE” adds the logging of packets to the syslog
facility. “options IPFIREWALL_VERBOSE_LIMIT=100” specifies that a packet that
is logged should only be logged up to 100 times. “options IPFIREWALL_DEFAULT_
TO_ACCEPT” specifies that the default status of ipfw, when enabled with sysctl, is to
allow all packets. By default, without this kernel option, when ipfw is started it blocks
all traffic. Subsequent firewall rules will, of course, change this behavior, however this
distinction is important in the interim between booting the NIAB system and running the
rule file. Within the NIAB system we chose to assign all ipfw rules to the ruleset number
13 to differentiate them from standard rules, which are assigned to set 0 (ipfw had 32 sets
available for rules).

Ipfw utilizes the dummynet tool. Luigi Rizzo’s dummynet [41] works on the kernel
level. It is a flexible tool originally designed for testing networking protocols, and since
then (mis)used for bandwidth management. According to the creator of dummynet, it
simulates/enforces queue and bandwidth limitations, delays, packet losses, and can be
used for multipath effects. It also implements a variant of Weighted Fair Queuing called
WF2Q+ as well as RED and GRED active queue management. Dummynet works by
intercepting packets in their way through the protocol stack as displayed in Figure 3.1.
They are then passed through one or more pipes, which create the effects of bandwidth
limitations, delays and packet losses [41].

Dummynet is able to implement variable delay times (jitter) when manipulating traffic
in one of three ways, either by editing and recompiling dummynet.c source code; by dy-

3.2. IMPLEMENTATION 21

Listing 1 Typical ADSL Connection

#ipfw add s e t 13 pipe 1 ip from lnc0 to lnc1 out
#ipfw add s e t 13 pipe 2 ip from lnc1 to lnc0 in
#ipfw pipe 1 c on f i g bw 384Kbit/ s de lay 2ms p l r 0 .01
#ipfw pipe 2 c on f i g bw 512Kbit/ s de lay 1ms p l r 0 .01

namically editing the pipes from an external program; or by using probabilistic matching
of ipfw rules to dummynet pipes. Within the NIAB system we chose to use probabilistic
matching of pipes as it is the least complicated method whilst giving the required out-
come. Multipath effects can be emulated using a similar approach, by creating different
pipes with the same ipfw rule number, and giving each a probability of matching.

It should be noted that dummynet can be loaded as a kernel module and not compiled
into the kernel, but since the dummynet system is of such integral importance to the
NIAB system it has been included in the kernel.

Therefore, we can use ipfw in conjunction with the creation of the backend of our emulator.
Network traffic of the order we wish to manipulate can be identified with ipfw’s firewall
ruleset (by interface, packet type, IP address etc). The ipfw ruleset therefore acts as the
insertion point from the network interface to the emulator. From here traffic may be
passed through dummynet pipes which add the effects of delay, bandwidth limitations
and packet loss. As an example, a typical ADSL connection is presented in Listing 1.

In the demonstrated typical ADSL link in Listing 1 we create two pipes, one for each
direction of traffic. From here we add an upstream bandwidth delay of 384Kbit/s and a
downstream one of 512Kbit/s. Furthermore, there is a packet loss of 1% created in each
direction.

When considering queue management and queuing policies with respect to multiple
flows, the simplest form of congestion control is the “drop tail” [14]. As discussed in section
2.2.1 “drop tail” is a simple queue management algorithm; traffic is not differentiated
and therefore treated equally. When the queue is filled to its maximum capacity, the
newly arriving packets are dropped until the queue is freed to accept incoming traffic.
Drop Tail distributes buffer space unfairly among traffic flows which can lead to “global
synchronization” ([14], [38]) as all TCP connections hold back at the same time, and then
step forward at the same time. Networks become under-utilized and flooded by this turn
based behaviour of stepping forward and back. The more sophisticated options which
counter global synchronization are RED and GRED. They are used in many modern
routers and network devices which in effect implements congestion management, and are
not designed to operate with any specific protocol in mind but perform with protocols

3.2. IMPLEMENTATION 22

which perceive packet loss as congestion. TCP is one such protocol. RED monitors the
average queue size and drops packets based on statistical probabilities. If the buffer is
almost empty, all incoming packets are accepted. As the queue grows, the probability for
dropping an incoming packet grows. When the buffer is full, the probability has reached
1 and all incoming packets are dropped. RED is considered more fair than Drop Tail.
The more a host transmits, the more likely it is that its packets are dropped. The RED
algorithm is depicted in flowchart and code in Figure 3.2 and Algorithm 1.

Figure 3.2: Random Early Detection Depiction [47]

Algorithm 1 Random Early Detection Pseudo Code [21]

f o r each packet a r r i v a l
c a l c u l a t e the average queue s i z e avg
i f minth <= avg < maxth
c a l c u l a t e p r obab i l i t y pa
with p r obab i l i t y pa :
mark the a r r i v i n g packet

e l s e i f maxth <= avg
mark the a r r i v i n g packet

3.2. IMPLEMENTATION 23

Listing 2 Calculation of average queue size

avgi = (1− wq)× avgi−1 + wq × q

The process starts when the average queue size is greater than the minimum queue length
threshold. RED was specifically designed to use the average queue size, instead of the
current queue size, as a measure of incipient congestion, because the latter proves to be
rather intolerant of packet bursts [38]. The NIAB system calculates the average queue
size (in which wq is recommended to be set to 0.002[17]) and q is the individual queue
size as per the formula in Listing 2.

The NIAB system is able to use both RED and GRED active queue management policies
within the ipfw and dummynet subsystem, and has a default queue size of 50 slots. The
user is not given the ability to change the size of the queue as it is not seen as necessary.
RED/GRED queuing is handled via the insertion of a traffic shaping delay node, in much
the same way that bandwidth, delay, and packet loss is handled. Within the NIAB system
there are four variables associated with setting the (G)RED policy as listed in Table 3.1.

Options Flags Values
Weight to calculate average queue size w_q (0..1]

Minimum Queue Length Threshold min_th Integer
Maximum Queue Length Threshold max_th Integer

Maximum Dropping Probability max_p (0..1]

Table 3.1: (G)RED Queue Management Options

Finally let us consider the bridge functionality of ipfw. A bridging firewall is a firewall
that does not perform routing but allows transparent passing of layer two (see Table
2.1) traffic. In theory, the bridging firewall could be replaced at any time with a simple
Ethernet hub without affecting network operation on either end. As previously mentioned,
the interfaces involved in the emulation do not have IP addresses. This is extremely useful
and powerful as it can be inserted onto any Ethernet connection at any point on the
network without any further configuration of the network. Within FreeBSD the bridge
driver is a kernel module and will be automatically loaded by ifconfig [24] when creating
a bridge interface. It is possible to compile the bridge in to the kernel by adding “device
if_bridge” to the kernel configuration file. Listing 3 lists the required options appended
to the NIAB system’s /etc/rc.conf file to enable the bridge, and ensure it starts up with
the system.

3.2. IMPLEMENTATION 24

Listing 3 /etc/rc.conf options for the NIAB bridge

c l oned_ in t e r f a c e s="br idge0 "
i f c on f i g_br i dg e0="addm bge0 addm fxp0 up"
i f con f i g_bge0="up"
i f c on f i g_ fxp0="up"

Listing 4 Kernel options required for basic emulator setup

opt ions IPFIREWALL
opt ions IPFIREWALL_VERBOSE
opt ions IPFIREWALL_VERBOSE_LIMIT=100
opt ions IPFIREWALL_DEFAULT_TO_ACCEPT
opt ions dummynet
dev i c e i f_br idge
opt ions IPSTEALTH
opt ions HZ=10000

However, as traffic passes through the NIAB system the Time To Live (TTL) IP header
will still be decremented making the bridge noticeable. This problem was corrected by
using stealth forwarding which does not decrement the TTL, making the NIAB sys-
tem completely invisible. Stealth forwarding is used by including in the kernel “options
IPSTEALTH”.

The FreeBSD kernel is by default set to 100Hz which means a granularity of 10ms, and the
NIAB system performs its task once per timer tick. For accurate simulation of high data
rates the kernel was updated to have a frequency of 10000Hz (as per the recommendation
of [41]) by altering the kernel configuration file, thus increasing the granularity. A rate that
is set too extreme may cause some interfaces using programmed I/O to take a considerable
time to output packets. So, reducing the granularity too much might actually cause ticks
to be missed thus reducing the accuracy of operations [7].

The additional kernel options required as per the discussion in this section are presented
in Listing 4. See Appendix A.3 for the full kernel listing. Furthermore, specific systcl
kernel values were set; “sysctl net.link.bridge.ipfw =1” to forward packets over the bridge,
“net.net.ip.fw.one_pass=1” to match packets to each firewall rule, thereby passing traffic
through every dummynet pipe as opposed to just the first one and “net.inet.ip.fw.enable=1”
to forward IP packets over the system.

To sum up what has been discussed in this section with respect to the backend of the emu-
lator; ipfw matches packets to its ruleset and passes them onto several existing dummynet
pipes. These dummynet pipes manipulate traffic (from select interfaces and directions)

3.2. IMPLEMENTATION 25

adding delay, packet loss, bandwidth limitations and active queue management. All this is
achieved through a transparent bridged arrangement, making NIAB invisible to systems
plugged into its inbound and outbound traffic manipulation interfaces.

3.2.1.3 Back End Scripts

Perl is a general-purpose programming language [4] originally developed for text manip-
ulation. It is now used for a wide range of tasks including system administration, web
development and network programming. We have developed numerous scripts to manage
our emulator with the Perl scripting language.

Furthermore a small module was developed to manage manipulating ipfw rules. The
alternatives to this are either to use Perl’s “backticks” functionality (‘ipfw <cmd>‘) to
directly access the ipfw program, which is not a safe option, or to use the existing ipfw
manipulation module which is cumbersome and verbose; beyond our simple requirements.
In general backticks should be avoided, as they impose needless security, portability, and
maintainability problems. It is possible to submit non expected input to a Perl program
via the Common Gateway Interface (CGI) gateway resulting in the running of arbitrary
shell commands.

The functionality of the scripts will be made apparent in section 3.2.1.5 where we examine
the user interface. For now it is suffice to say that scripts exist to setup the systems
network interfaces, to create and delete link nodes (with properties of throughput, delay,
packet drop etc), to set which nodes are currently active and several utility scripts. The
representation of the link nodes is discussed in section 3.2.1.4. The link from the front
end to these back end scripts is done using CGI and is discussed in section 3.2.1.5.

The specific scripts constituting the NIAB system can be viewed in Appendix A.2.

3.2.1.4 Data Store

Several considerations were required with respect to storing data. The settings of the
emulator, as well as custom nodes to be emulated would have to be stored and retrieved.
Three main possibilities were considered for data store; flat file, database or XML files.
Initially a SQL database was deployed and used to store settings as well as program state
and node information. This was found to be an excessive solution and an XML file was
decided on for such purpose. An example of a nodes.xml file is presented in Listing 5.

Each node in the file has bandwidth, delay, drop rate and queue management characteris-
tics which are parsed by Perl scripts (section 3.2.1.3) to be instantiated as ipfw dummynet

3.2. IMPLEMENTATION 26

Listing 5 Example of a nodes.xml portraying several emulated nodes

<?xml ve r s i on = "1.0"?>
<nodes>
<node name="S a t e l i t e " inUse="Y">

<bwUp>1024</bwUp>
<bwDown>2048</bwDown>
<delay >60</delay>
<drop >0.01</drop>
<qMgt type="GRED">

<w_q>1.1</w_q>
<min_th>2.2</min_th>
<max_th>3.3</max_th>
<max_p>4.4</max_p>

</qMgt>
</node>

<node name="ADSL" inUse="N">
<bwUp>384</bwUp>
<bwDown>512</bwDown>
<delay >1</delay>
<drop >0.012</drop>
<qMgt type="RED">

<w_q>1.1</w_q>
<min_th>2.2</min_th>
<max_th>3.3</max_th>
<max_p>4.4</max_p>

</qMgt>
</node>

</nodes>

3.2. IMPLEMENTATION 27

pipes. The “inUse” attribute denotes that the pipe exists, as opposed to being stored for
the potential of being selected and used. It was decided that all dummynet pipes are
stored in set 13 of the ipfw rule list. Each ipfw rule belongs to one of 32 different sets,
numbered 0 to 31. Set 31 is reserved for the default rule. By default, rules are put in
set 0, unless specified when creating a new rule. Sets can be individually and atomically
enabled or disabled, so this mechanism permits an easy way to store multiple configura-
tions of the firewall and quickly (and atomically) switch between them. Set 0 remains in
use for general firewall rules which may be required in the context in which the emulator
is deployed.

3.2.1.5 User Interface

With the backend Perl scripts to manipulate ipfw and dummynet, as well as manipulating
file structures for storing settings we move onto a user interface.

Several options were considered for the user interface section. The first option which was
deployed during testing was a simple bash script which was executed upon connecting
to the machine via ssh as shown in Figure 3.3. This, however, was seen as not intuitive
enough and a graphical interface was developed. Options in this realm were to either
create a custom message passing system with server and client sockets, or to create a web
interface after deploying a web server. It was decided that using a web server was the
best option, namely Apache 2.

Figure 3.3: Initial User Interface

Initially the graphical user interface (GUI) was developed with Flash and Google Web
Toolkits, but these came across as too cumbersome so a more simple GUI was created using

3.2. IMPLEMENTATION 28

HTML, CSS and PHP. A number of screenshots (Figures 3.5 to 3.13) help to facilitate
discussion regarding the role of the web interface. The system is accessed via a web
browser and all configuration and manipulation is done through this medium. The web
interface communicates to the underlying Perl scripts via the CGI technology through a
process of GET and POST HTTP requests [42]. The CGI.pm module is viewed as the
standard tool for creating CGI scripts in Perl as it provides a simple interface for most
common CGI tasks. However this module is very large. It is considered bloated [42] and
it was decided to handle HTML output and the processing of GET and POST requests
manually. The custom algorithm for processing these requests is presented in Algorithms
2 and 3. These algorithms parse HTTP headers and save the request parameters into a
hash table for easy access.

Algorithm 2 Perl CGI GET request parser

sub populateQueryFie lds {
%queryStr ing = () ;
my $tmpStr = $ENV{ "QUERY_STRING" } ;
@parts = s p l i t (/\&/ , $tmpStr) ;
f o r each $part (@parts) {

($name , $value) = s p l i t (/\=/ , $part) ;
$queryStr ing { "$name" } = $value ;

}
}

Algorithm 3 Perl CGI POST request parser

sub popu la tePos tF i e ld s {
%po s tF i e l d s = () ;
read (STDIN, $tmpStr , $ENV{ "CONTENT_LENGTH" }) ;
@parts = s p l i t (/\&/ , $tmpStr) ;
f o r each $part (@parts) {

($name , $value) = s p l i t (/\=/ , $part) ;
$value =~ (s/%23/\#/g) ;
$value =~ (s/%2F/\//g) ;
$po s tF i e l d s { "$name" } = $value ;

}
}

The NIAB system structure is presented in Figure 3.4. We can see that users interact
with the web page user interface which communicates with the underlying Perl scripts via
CGI. The Perl scripts manipulate the ipfw rulesets and dummynet pipes which in turn
manipulate traffic passing through the kernel subsystem.

3.2. IMPLEMENTATION 29

Figure 3.4: NIAB Structure

To connect to the NIAB web interface the user enters the IP address of the control
interface into the web browser (in this example 146.231.121.140) and enters the password
at the prompt. The main NIAB screen is displayed in Figure 3.5. From here the options
available can be seen in the left hand section of the page.

3.2.1.6 User Account

From the “User Account” section the user can change the current login password. The
NIAB system has only one user, who has control of the entire system. It is not seen as
necessary to have multiple users. The user is required to enter the old password, and then
the new one twice. This is displayed in Figure 3.6.

3.2.1.7 Firewall Settings

From the “Firewall” section the user can view, add and delete firewall rules which are
unrelated to the NIAB system (rules from set 0). This screen is displayed in Figure 3.7.
It can be noted that there are two rules in the ruleset, one which denies all udp traffic,
and the default 65535 rule which allows unmatched traffic to pass.

In Figure 3.8 we demonstrate the ability to add rules to the default rule set. Here we add
a rule to deny TCP traffic from the NIAB system to the default gateway in the current
context. This has no relevance to the system and is purely an example.

3.2.1.8 Network Interfaces

In order to create a bridge the user selects two interfaces within the system which the
bridge will make use of during operations. This is done via the “Interfaces” section dis-

3.2. IMPLEMENTATION 30

Figure 3.5: NIAB Main Screen

Figure 3.6: Changing the login password to NIAB

3.2. IMPLEMENTATION 31

Figure 3.7: Viewing firewall rules

Figure 3.8: Adding a firewall rule

3.2. IMPLEMENTATION 32

Figure 3.9: Setting interfaces through which traffic will pass

played in Figure 3.9. Here we select two interfaces (bge0 and fxp0) and set that traffic
passing through them is manipulated.

3.2.1.9 Creating, Deleting and Setting Nodes

As mentioned in section 3.2.1.4, individual link properties are represented as nodes in
the NIAB system. Each node has the properties of name, upstream and downstream
bandwidth, packet delay, packet drop rate, jitter, and queuing policy options. In Figure
3.10 we create a node with the name “ADSL” with an upstream bandwidth of 384Kbit/s; a
downstream bandwidth of 512Kbit/s; a delay of 4ms; a drop rate of 1% and jitter ranging
from 0ms to 10ms. This results in the nodes.xml file being appended with a new link.

Nodes may be deleted by selecting the “Delete Nodes” option which gives a page as per
Figure 3.11. In this example we select the “Satellite” and “Dial Up” nodes to be deleted.
This will result in their XML information being removed from the nodes.xml file.

To select which nodes we wish traffic to pass through we select the “Set Active Nodes”
option which brings up the node selection screen as displayed in Figure 3.12. All available

3.2. IMPLEMENTATION 33

Figure 3.10: Creating a typical ADSL node

3.2. IMPLEMENTATION 34

Figure 3.11: Deleting a NIAB node

nodes are listed, with a tick box next to each name. If a tick box is selected, traffic will
pass through the link. In this example we select the “Satellite”, “Dialup” and “GPRS”
connections for traffic to pass through. This will result in the NIAB system checking to
see if the emulator is currently “on”. If it is, it will create rules and pipes as discussed in
section 3.2.1.10.

3.2.1.10 Setting Emulator State

By default the network emulator is off. In the previous Figures (3.5 to 3.12) this state
can be seen in the top right hand corner with the word “off”. This state is saved in a text
settings file. To toggle the state of the emulator we select the “Emulator Status” section,
displayed in Figure 3.13. Turning the emulator on will result in the NIAB system parsing
the nodes.xml file and identifying which nodes are set to “inUse”. For each node it finds
with this property, it will create a firewall rule to match its traffic. It will then create
pipes to manipulate traffic with the nodes properties. Turning the emulator off results in
the relevant rules and pipes being destroyed.

The remaining sections of the system are for general system information and use. The
“System” section lists information about the NIAB host. “Interfaces” lists connection
information about each network interface card, such as MAC addresses (i.e. information

3.2. IMPLEMENTATION 35

Figure 3.12: Selected active nodes

Figure 3.13: Setting the emulator status

3.2. IMPLEMENTATION 36

Figure 3.14: The Soekris net4801 embedded machine [11]

from the “ifconfig” command). “Traffic Graphs” is a listing of sample graphs as presented
in the results section (Chapter 4) for the user’s general information.

In the diagnostics section “System Logs” displays the tail end of output from “/var/log/mes-
sages” which is where FreeBSD logs all system activity to. “Restart Services” will restart
the Apache webserver reload kernel modules. “Reboot” simply calls the reboot command
which reboots the FreeBSD machine, and “halt” simply turns the computer off. The
“Command Line Interface” has not yet been completed to a safe and stable environment.
It is foreseen that this option will give the user a simple interactive shell through which
to manipulate the FreeBSD host system.

3.2.2 Phase 2 - Embedded Machine

3.2.2.1 Soekris net4801

The Soekris net4801 [11] is a compact, low-power, low-cost, advanced communication
computer based on a 266 MHz class processor. It has three 10/100 Mbit Ethernet ports,
256 Mbyte SDRAM main memory and uses a CompactFlash module for program and data
storage. It can be expanded using a MiniPCI type III board and a low-power standard PCI
board. It has been optimized for use as a Firewall, VPN Router and Internet Gateway,
but has the flexibility to take on a whole range of different functions as a communication
appliance. The board is designed for long life and low power. It is depicted in Figure
3.14.

3.2. IMPLEMENTATION 37

This embedded machine was seen as an optimum machine for alternative deployment due
to its small size, low power consumption and unobtrusive form factor allowing maximum
portability. In the previous section we discussed the development and deployment of our
custom emulator on both a Virtual Machine, and a computer system and we now look
to deployment on this embedded machine. A full listing of commands and scripts used
to build the system are included in Appendix A.1. An overview of the emulator running
on the Soekris machine is discussed in section 3.2.2.2. This process and the scripts are
accredited to David Courtney whose detailed tutorial [18] enabled the building of the
stripped down FreeBSD system.

3.2.2.2 Building a Mini FreeBSD System and Kernel for the Soekris

As mentioned in section 3.2.1.1 FreeBSD has been chosen as a deployment platform for
our emulator. A 266Mhz processor and 256MB RAM on the Soekris machine is more than
enough1 to run FreeBSD (version 6.2 in our case), the Apache web server and our emulator.
The custom operating system was created inside a jail. The FreeBSD jail mechanism [24]
is an implementation of operating system-level virtualization that allows us to partition a
FreeBSD-based computer system into several independent mini-systems called jails. A jail
is normally used to separate services which run in a potentially dangerous environment,
such as webservers, mail servers and DNS servers but in our context we shall use it to
build a stripped down version of FreeBSD with limited libraries and binaries, and no
documentation or other superfluous material. It is possible to strip down a FreeBSD
installation to under 20MB.

Once inside our NIAB jail the directory structure was manually created and then the boot
loader was rebuilt. Binary executables were then rebuilt followed by the compilation and
installation of the associated libraries. Two scripts were then used to copy the binary files
over to our emulator system. Certain files were noted as being necessary, and are listed
in Appendix A.2.

The boot files were then configured, followed by the creation of a custom NIAB kernel.
Most of the superfluous options from the GENERIC kernel were removed. The full kernel
listing is available in Appendix A.3, but it is worth noting here that FreeBSD has kernel
support for the Soekris Geode CPU (see Listing 6).

Libraries were then copied across to our new system followed by the population of the new
/etc from the host systems /etc. Most of the files were unchanged, those that required

1The FreeBSD Manual [24] notes that the operating system will run on a 486 CPU with 24MB of
RAM

3.2. IMPLEMENTATION 38

Listing 6 Kernel support for the Soekris Geode Processor

opt ions CPU_GEODE
opt ions CPU_SOEKRIS

change are noted in the Appendix A.2.

In addition, it must be noted that the Soekris machine runs its CompactFlash in read
only mode. This is because the card has a limited number of read erase cycles and it
would quickly be destroyed if mounted read/write. Certain configuration files need to
be edited on the fly. For example, using DHCP client (dhcpclient) needs to write lease
information to /etc/resolv.conf. In our emulator system several run time configuration
files are required to be edited too. The solution with such files is to symlink them to a
file in /tmp (in RAM). For example, symlinking /etc/resolv.conf to /tmp/resolv.conf .

Extra modules and packages were added to the new system as discussed in section 3.2.1.1,
namely as the Apache webserver, PHP5 (and associated modules), Perl (and associated
CPAN modules) and several utilities.

The final step was to build the image to be written to the CompactFlash card. Building
of the image is quite an involved process and is presented in detail in Appendix A.1. The
final binary image could then be written to the CompactFlash card with the dd command.
Such a card may then be inserted into the Soekris for booting. At the time of writing, we
were successful in creating our stripped down custom image but unfortunately we were
unable to successfully boot the Soekris machine.

3.2.3 Security Considerations

3.2.3.1 Code

One of Perl’s most useful features is the idea of tainting. If you enable taint mode, Perl
will mark every piece of data that comes from an insecure source, such as insecure input,
with a taint flag. If you want to use a piece of tainted data in a potentially dangerous
way, you must untaint the data by verifying it. This is especially useful when CGI is
being used, where input is passed from web forms where potentially malicious code could
be inserted. At the time of writing not all the code passes the taint test, but the theory
of tainting is included here for completeness.

3.2. IMPLEMENTATION 39

3.2.3.2 System

A basic login facility is present in the NIAB system. A user may only access and ma-
nipulate the system if they possess the correct credentials. This was implemented using
Apache’s .htaccess control.

3.2.4 Summary

This ends the chapter on the design, implementation and deployment of our custom
network emulator. We discussed the design principles involved in the creation and de-
ployment of our system as well as the programming methodologies. Next, the two stages
of implementation and deployment were examined; Virtual Machine/computer followed
by the Soekris net4801. At the end of “Phase 1” the code developed for the system was
discussed. It involved the combination of PHP, Perl and their connection via CGI.

The creation of the image for the Soekris was quite complicated and involved and the
reader is encouraged to examine the appendices. The next chapter (Chapter 4) discusses
the tests conducted on the network emulator, together with the corresponding results.

Chapter 4

Testing and Results

Once development of NIAB was complete significant testing was required to ensure traffic
was being manipulated in the desired manner. Several tools were used to create graphs
demonstrating various characteristics of traffic flow. The process was as follows; traffic
passing through the NIAB machine was captured and dumped to a hard disk with the
tcpdump [5] utility. Tcpdump allows the interception and saving of TCP/IP packets
being transmitted or received over a network interface. From this raw data, statistical
information was generated with the tcptrace [39] utility. Tcptrace can produce several
different types of output containing information on each connection seen, such as elapsed
time; bytes and segments sent and received; retransmissions; round trip times; window
advertisements; throughput; and more. This statistical information can be graphed using
tools such as xplot [43] (or JPlot [8] or GNUplot [10]) and ’R’ (The R Project for Statistical
Computing) [23]. Several scripts were developed in Perl to accomplish automatic and
accurate testing/timing and are presented in Appendix C.

The test procedure is outlined in Figure 4.1, and the pseudo code for an individual test
is presented in Algorithm 4. The script presented in algorithm 4 executes and creates
nodes within the emulator with configurations for bandwidth, delay, packet drop, jitter
and multipath, depending on which test is being run. Test scripts exist for testing specific
properties individually. It then collects raw tcpdump data as traffic flows through the em-
ulator system, which is then passed onto tcptrace which generates statistical information
from the dump file. This statistical information is passed through a custom NIAB script
which retrieves information relevant to the scenario we are working on. This is finally
passed onto the R graphing tool which produces the desired graphs.

40

4.1. KERNEL FREQUENCY VARIATIONS 41

Figure 4.1: Process of testing NIAB system

Algorithm 4 Pseudo code for script to test emulator

c r e a t e pipe
f o rk (tcpdump)
fo r each @c r i t e r i a

emulate c r i t e r i a
s l e e p de lay

terminate (tcpdump)
t cp t r a c e −T −zyx −A10 −o1 f i l e
s a na t i s e (f i l e)
R(f i l e) <− graph

4.1 Kernel Frequency Variations

As mentioned in section 3.2.1.2 the default FreeBSD kernel is set to 100Hz implying a
granularity of 10ms, and the emulator performs its task once per timer tick. NIAB’s
kernel was set to have a frequency of 10000Hz for an accurate simulation of high data
rates. The affect of this change is noted in Figures 4.2 and 4.3. It can be seen that in
Figure 4.3 with the 10000Hz the bandwidth throttling settles faster than in Figure 4.2
with 100Hz. This resulted in the NIAB system being more accurate for manipulating
traffic with high data rates.

4.2 Results - Single Links

Several areas were tested and examined for simple configurations emulating one link. One
pipe is used to emulate a single link in all cases except in section 4.2.3 where jitter is
discussed, and section 4.2.5 where multipath effects are discussed. The results of the
NIAB system for a single link are discussed in this section. The section covers each of the
network variables tested for, beginning with throughput, and then round trip time, jitter,
packet retransmission, multipath effects and lastly queuing policies.

4.2. RESULTS - SINGLE LINKS 42

Figure 4.2: Kernel set to 100Hz

Figure 4.3: Kernel set to 10000Hz

4.2. RESULTS - SINGLE LINKS 43

Figure 4.4: Variation of bandwidth from 5000KBit/s to 1000Kbit/s

4.2.1 Throughput Over Time

Throughput can be defined as the amount of traffic to pass through a system over a certain
period of time. In Figure 4.4 we demonstrate initially setting the emulator at 5000Kbit/s
and then dropping it to 1000Kbit/s. It can be noted that the drop off rate is rapid and
settles around 1000Kbit/s.

As a demonstration of finer granularity in Figure 4.5 we initially set the bandwidth of the
emulator to 512Kit/s (a typical DSL downstream speed) and then drop it to 384Kbit/s (a
typical DSL upstream). Although not as obvious as with Figure 4.4 it can still be noted
the rapid response time and settling of the curve.

4.2.2 Round Trip Time

Round Trip Time (RTT) between two points is defined as the total elapsed time for traffic
to travel to the end network point and back again. In regards to TCP communication

4.2. RESULTS - SINGLE LINKS 44

Figure 4.5: Variation of bandwidth from 512Kbit/s to 384Kbit/s

4.2. RESULTS - SINGLE LINKS 45

Figure 4.6: No initial delay followed by a 20ms delay

the RTT time is calculated from the 3-way handshake by measuring the time between
segment transmission and ACK receipt [2]. In Figure 4.6 traffic initially has no delay,
and then a delay of 20ms is incurred. From examining the graph in Figure 4.6 we can
see the steep rise in the delay, at time = 35s. The Y-axis represents RTT in milli-seconds
and the X-axis represents time. The line represent RTT samples calculated from non-
retransmitted segments. Since we are only concerned with a single pipe at this stage, the
RTT is the delay on the incoming connection. The outbound delay is negligible and can
be disregarded.

In Figure 4.7 we present traffic incurring a 25ms delay, followed by a 10ms delay and
finally no delay. Figure 4.7 demonstrates the emulator’s ability to delay packets in a
constant manner, as well as its ability to rapidly committ changes.

4.2.3 Variable Round Trip Time (Jitter)

Jitter is the measure of the variability over time of the latency across a network. It is
similar to section 4.2.2 concerning RTT delay with the exception that the delay is varied

4.2. RESULTS - SINGLE LINKS 46

Figure 4.7: 25ms delay, followed by 10ms delay, followed by no delay

4.2. RESULTS - SINGLE LINKS 47

Pipe Probability of match (%) Delay (ms)
1 10 25
2 40 20
3 50 15

Table 4.1: NIAB Jitter with three pipes

Figure 4.8: NIAB Jitter as per Table 4.1

at a relatively high and unpredictable frequency. This is a very common condition on
slow network connections. A simple method for creating jitter is to create many ipfw
rules, each with a certain probability of matching such that the sum of the probabilities
is 100%. A separate pipe is associated with each rule bearing individual delay times.
This is a simple, but effective way to create jitter. The other option is to dynamically
create jitter. This would mean varying a single pipe from an external program, which
would complicate matters [25]. Another possible option for creating jitter is to edit the
dummynet.c source code. Whilst this option was examined, it was seen as excessive.

In Figure 4.8 we present the results of having three pipes setup with the characteristics
displayed in Table 4.1. It can be seen that the delay fluctuates between the set values.

4.2. RESULTS - SINGLE LINKS 48

Pipe Probability of match (%) Delay (ms)
1 90 0
2 10 30

Table 4.2: NIAB Jitter with two pipes

Figure 4.9: NIAB Jitter as per Table 4.2

As a further example we demonstrate a setup in which the jitter is set as per Table 4.2 and
present results in Figure 4.9. In this situation it is possible to see that with a probability of
90% of traffic having no delay the majority of the points were around the 0ms delay, with
a much less dense population scattered around the 30ms mark. In fact, examining the raw
data of the experiment presented in Figure 4.9 we noted that a total of 38305 readings
were taken in which 4014 had a delay greater than 0ms, which is 10.48%. In Figure 4.9 it
can be noted that there is a spread of outliers between the 150ms and 300ms mark. These
outliers number only 270 in total, and constitute less than 1% of the total readings. Such
phenomena are not uncommon in situations such as this and may be accounted for by
one of many factors including operating system granularity (on the fault of the emulator)
or tcpdump/tcptrace’s measurements (on the fault of the measuring tools).

4.2. RESULTS - SINGLE LINKS 49

Listing 7 Packet loss set to 20%

$ ping 146 . 231 . 123 . 106 −c 50
PING 146 . 231 . 123 . 106 (146 . 2 31 . 1 23 . 1 06) 56(84) bytes o f data .
64 bytes from 146 . 2 3 1 . 1 2 3 . 1 0 6 : icmp_seq=1 t t l =127 time =0.439 ms 64

bytes
from 146 . 231 . 123 . 106
[. . . .]

−−− 146 . 231 . 123 . 106 ping s t a t i s t i c s −−− 50 packets transmitted , 38
rece ived , 24% packet l o s s , time 49003ms r t t
min/avg/max/mdev = 0 .247/0 . 373/0 . 709/0 .086 ms

4.2.4 Packet Retransmits from Packet Loss Rate (PLR)

It is possible to set the emulator to randomly drop packets. This is a probabilistic function
in which we specify the percentage of packet loss required. In Listing 7 the NIAB system
has been set to drop 20% of all packets, and as can be seen is dropping approximately
24% of the 50 packets that were transmitted.

4.2.5 Multipath effects

With the NIAB system it is possible to emulate traffic having the option of taking several
routes between two end points, such as presented in Figure 4.10.

Figure 4.10: Traffic has the option of traversing different routes between node A and B

This is still represented as a single link as only one of the possible pipes is traversed by
packets at any given point in time. This is accomplished by using several rules and pipes
and a probabilistic match. It is a similar technique to that discussed in section 4.2.3
concerning jitter, except that now the pipes have more characteristics than just delay and
can represent individual links (multiple links are to be discussed in section 4.3). Table 4.3
shows the results of a simple setup in which three possible routes exist between the two
end points. One route has a delay of 20ms, one route drops 5% of packets and the third

4.2. RESULTS - SINGLE LINKS 50

Route Property Percentage of Hits
1 20ms delay 33.47%
2 5% drop rate 31.45%
3 Not modified 35.08%

Table 4.3: Multipath effects with NIAB

Listing 8 Random Early Detection with ipfw and dummynet

#ipfw pipe 1 c on f i g bw 384Kbit/ s de lay 2ms p l r 0 .01 red 0 .5/4/18/0 .8

route has no conditions applied to it. In this particular situation each route holds equal
probability. The number of “hits” on each pipe are displayed in Table 4.3.

The outcome of this setup is demonstrated in Figures 4.11 and 4.12 where we note the
throughput and delay times between the two “end points” fluctuating a significant amount,
as traffic traverses each of the links mentioned in Table 4.3 approximately one third of the
time. The throughput is a useful measurement for the control case of route 3. Delay and
drop rate affect possible throughput by holding packets in the queue, and by requiring
retransmissions of dropped packets. It can be seen that the throughput peaks at the
control value of 1600000 bytes per second (12 megabit/s) and drops to just under 800000
bytes per second (6 megabit/s) from the effect of delays and drop rate.

At the time of writing the multipath ability had not been fully integrated into the web
based user interface. These results are a demonstration of the back end capabilities.

4.2.6 Queuing Policies

As discussed in section 3.2.1.1 there are different queuing options available in the NIAB
system. The default method is the Drop Tail, but the NIAB system supports the specifi-
cation of the RED and GRED links.

There are four criteria which affect the queue management policy; weighting of the queue,
minimum queue length threshold, maximum queue length threshold and the maximum
queue probability. This is demonstrated in Listing 8 which illustrates an ADSL outbound
connection with a queue weighting (w_q) of 0.5, maximum queue probability (max_p)
of 0.8, and minimum and maximum thresholds of 4 and 18 slots respectively.

Using active queue management such as RED or GRED emulates the effect real world
routers have on traffic flows, resulting in reduced congestion.

4.2. RESULTS - SINGLE LINKS 51

Figure 4.11: Throughput between two points with three possible paths between them

4.2. RESULTS - SINGLE LINKS 52

Figure 4.12: RTT between two points with three possible paths between them

4.3. RESULTS - MULTIPLE LINKS 53

Name Upstream BW(KBit/s) Downstream BW(KBit/s) RTT Delay (ms) Loss(%)
ADSL 384 512 5 1
Dialup 56 56 20 3
Satellite 1024 2048 200 0

Table 4.4: Typical Connection Properties

4.3 Results - Multiple Links

We present a scenario in which we chain several queues with multiple properties together
to create the effect of traffic traversing a number of different network nodes. A set of
typical connections and their associated properties are presented in Table 4.4.

In Figures 4.13 and 4.14 we demonstrate inserting an ADSL, satellite and dialup con-
nection between the two “end points” of the network. Figure 4.13 represents upstream
throughput. The downstream results were of the same nature because the links are
throttled at the dialup connection’s 56Kbit/s throughput in both directions. Figure 4.14
demonstrates the RTT delay through the links. It is noted that the the delay points are
centered around 220ms, with less than 1% of outliers having a delay greater than 300ms.
It can therefore be noted that traffic incurrs the lowest common factors of the bandwidth
settings and the summation of the delays.

4.4 Summary

From the statistical information and graphs presented we conclude that the emulator
sufficiently represents real world network phenomena to a satisfactory degree as is required
for general testing purposes of network dependent applications. These phenomena include
bandwidth limitations, standard packet delay (RTT) and jitter (variable delay), random
packet drop, multipath effects and various active queue management schemes.

4.4. SUMMARY 54

Figure 4.13: Upstream Throughput: A –> ADSL –> Dialup –> B

4.4. SUMMARY 55

Figure 4.14: Delay: A –> ADSL –> Dialup –> B

Chapter 5

Conclusion

At the outset of this paper we decided to create a network emulator which could be
deployed in several scenarios. Through a process of combining existing tools, creating
front and backend scripts and deploying a custom stripped down version of FreeBSD we
have achieved the original goal of this paper. We have a Virtual Machine image of the
emulator and it has been tested on a standard computer. An image has been created
suitable for deployment on an embedded machine such as the Soekris machine. We were
however, not successful in deploying the image to the embedded machine in a stable,
bootable manner.

5.1 Summary

In chapter 1 we introduced the idea of building a network emulator to be deployed in an
academic environment and examined some background information relevant to this area.
In chapter 2 we discussed work related to the field of networking and emulation. General
networking terms and real world networks were discussed followed by an investigation
into how network conditions affect packets. We then presented a literature review which
initially discussed network emulation and how emulators fit into the OSI stack. Emu-
lators were discussed in some detail and techniques to emulate network conditions were
considered. These conditions included packet delay, bandwidth limitation, random packet
loss, jitter and multipath effects. From here the literature review directed its attention
towards simulation. Network simulators are typically discrete event-based systems which
create an artificial representation of time. The simulation is based on a mathematical
model and does not manipulate or use real network traffic. We can define simulation as
a synthetic environment for running representations of code, whilst emulation relates to

56

5.1. SUMMARY 57

live testing in a real environment for running real code. After this the hybrid model of
emulator/simulator was discussed which links a discrete simulator to an emulator allow-
ing real traffic to be passed to the simulator from the emulator, and then passed back to
the emulator after performing simulation calculations on the traffic. Hardware emulation
and testbeds were then discussed and a comparison of the techniques was presented. The
findings from this discussion were that the most viable, modern, small to medium scale
option for testing network applications is the hybrid model incorporating emulation with
aspects of simulation, although it was noted that a combination of techniques during the
development of an application or protocol is desirable as each method has advantages and
disadvantages, and is appropriate at a different time in the development cycle. Chapter 2
concluded that for the purposes of building an emulator in the academic domain, a hybrid
model of emulation and simulation was the most viable and desirable solution. Under the
constraints of cost and administration, as well as the low anticipated traffic volume and
no need for absolutely precise manipulations this option was concluded to be more than
acceptable.

In chapter 3 we examined the design and implementation of the custom emulator and we
presented the details of its construction. This chapter considered two phases of the emu-
lators’ construction; phase 1 described the initial development and testing of the emulator
on both a Virtual Machine and a standard computer and phase 2 discussed its possible
deployment on an embedded machine. The chapter discussed and justified the choice of
operating system (FreeBSD) for the emulator. This choice was made as FreeBSD can
be stripped down to a small, lightweight size which is suitable to a system which has
only to pass traffic between interfaces and apply simple manipulations to them. Further-
more, the FreeBSD ipfw firewall system along with dummynet and bridge components
provided a solid infrastructure for the emulator. The chapter went on to describe ipfw
and dummynet and their role in the emulator system. From here we moved onto a sec-
tion discussing the back end scripts (written in Perl) which were used to manipulate ipfw
rulesets and dummynet pipes. The use of storing node information in XML files was
discussed and presented. Phase 1 of the development of the emulator in Chapter 3 closed
by presenting the web based user interface with numerous screen-shots and a discussion
on the technology used to build them; primarily PHP and CGI. Phase 2 of the building
of the emulator was discussed next. Here we looked at the possibility of deploying the
emulator on a Soekris embedded machine. The Soekris net4801 is a compact, low-power
computer based on a 266 MHz class processor. It has three 10/100 Mbit Ethernet ports,
256 Mbyte SDRAM main memory and uses a CompactFlash module for program and data
storage. The construction of a custom, stripped down kernel was then presented. Chapter

5.2. PROBLEM STATEMENT REVISITED 58

3 concludes by noting that the emulator was successfully deployed in a virtual machine
and on a computer, and that the construction of an image suitable for deployment on
such embedded machines as the Soekris was successful, but at the time of writing we were
unsuccessful in loading the image onto the embedded machine in a stable manner.

Tests and their corresponding results were presented in chapter 4. First the testing proce-
dure was discussed which involved passing a large volume of traffic through the emulator
(with the emulator’s network conditions set) whilst running the tcpdump tool to capture
raw information about the traffic. Tcptrace was used to generate statistical information
from the tcpdump output such as bandwidth, delay times and packet drop information.
From here the tcptrace output was passed through several custom scripts extracting in-
formation relevant for our tests. This information was plotted using the R Statistical
Graphing tool. Throughput, round trip time, jitter and multipath and multiple link
graphs were discussed and presented. Furthermore, a discussion on active queue manage-
ment was presented. Chapter 4 concludes noting that the results observed correlate with
the various conditions set within the emulator system.

5.2 Problem Statement Revisited

The problem which we originally addressed was that of developing a network emulator
to manipulate traffic as it passes through the emulator, primarily as a means of testing
network dependent applications. By merging existing tools and technologies we have
developed the network emulator. It has the functionality to delay traffic in a constant and
variable manner (jitter), throttle the bandwidth, drop packets and to emulate multipath
effects. Furthermore, we aimed for this emulator to be as discrete, lightweight and portable
as possible. To this end NIAB has been deployed and tested in a bridged, transparent
manner allowing it to be seamlessly deployed on any Ethernet connection unbeknownst to
devices on either end of the wire (other than the intentional network effects it creates, of
course). The system works on a FreeBSD computer as well as a virtual machine, and has
the potential to be deployed on an embedded machine from the image we constructed.

5.3 Future Work and Possible Extensions

The approach taken to emulating multiple links may be viewed as slightly crude. Passing
traffic through multiple ipfw rules (and therefore through multiple dummynet pipes) by
manipulating the “one pass” sysctl kernel variable does work, but the results begin to

5.3. FUTURE WORK AND POSSIBLE EXTENSIONS 59

falter as more nodes are added. It is thought that this may be addressed by utilizing
netgraph, the kernel networking subsystem.

At the time of writing there have been several problems deploying the stripped down
image we created to the Soekris machine and this is a problem which may be addressed
in future work.

Adding the ability for the emulator to modify packets in a random manner may be an-
other further extension. Furthermore, adding low order functionality to the emulator
such as the ability to reorder packets, fragment packets, duplicate packets and randomly
modify packets (as occurs in real world networking when networking infrastructure incurs
interference from the surrounding environment) could be a useful.

Bibliography

[1] Anue-systems : Satellite communications. Online: http://www.anuesystems.com/

pdf/CaseStudy_Satellite.pdf, Accessed: 10/05/2007.

[2] Atis committee - atis telecom glossary. Online: http://www.atis.org/tg2k/, Ac-
cessed: 22/10/2007.

[3] Information sciences institute - nam: Network animator. Online: http://www.isi.
edu/nsnam/nam/, Accessed: 28/05/2007.

[4] Perl version 5.8.8 documentation. Online: http://perldoc.perl.org/, Accessed:
11/10/2007.

[5] Tcpdump(1) freebsd man page. Online: http://www.freebsd.org/cgi/man.cgi?

query=tcpdump, Accessed: 01/07/2007.

[6] Vmware. Online: http://www.vmware.com/, Accessed: 10/28/2007.

[7] Freebsd man pages - dummynet (4). Online: http://www.freebsd.org/cgi/man.

cgi?query=dummynet, Accessed: 22/10/2007, 1998.

[8] Avinash lakhiani - jplot, a java plotting tool. Online: http://irg.cs.ohiou.edu/

software/tcptrace/jPlot/, Accessed: 24/10/2007, 2002.

[9] Packetstorm - ip network emulation. Online: http://www.packetstorm.com/

whitepapers.php, Accessed: 11/05/2007, 2003.

[10] gnuplot, an interactive plotting program. Online: http://www.gnuplot.info/

documentation.html, Accessed: 24/10/2007, 2004.

[11] Soekris engineering - net4801 series boards and systems user manual. Online: http:
//www.soekris.com/Manuals/net4801_manual.pdf, Accessed: 14/10/2007, 2004.

[12] Allman, M., and Ostermann, S. One: The ohio network emulator.

60

BIBLIOGRAPHY 61

[13] Ashwin Gumaste, T. A. First Mile Access Networks and Enabling Technologies.
CISCO Press, 2004.

[14] B. Braden, D. C. e. a. Recommendations on queue management and congestion
avoidance in the internet. RFC 2309 (1998).

[15] Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J., Helmy, A.,

Huang, P., McCanne, S., Varadhan, K., Xu, Y., and Yu, H. Advances in
network simulation. Computer 33, 5 (2000), 59–67.

[16] Clark, D. D. Ip datagram reassembly algorithms. RFC 815 (1982).

[17] Cnodder, S. D., Elloumi, O., and Pauwels, K. Red behavior with different
packet sizes.

[18] Courtney, D. minibsd 6.x guide. Online: http://www.ultradesic.com/index.

php?section=125, Accessed: 29/10/2007, 2007.

[19] ENDRES, S. M. Simulation and emulation of the space networking environment.
Master’s thesis, Department of Electrical Engineering and Computer Science, CASE
WESTERN RESERVE UNIVERSITY, January 2005.

[20] Fall, K. Network emulation in the VINT/NS simulator. Proceedings of the fourth
IEEE Symposium on Computers and Communications (1999).

[21] Floyd, S., and Jacobson, V. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking 1, 4 (1993), 397–413.

[22] Gaynor, M. Proactive packet dropping methods for tcp gateways.
http://people.bu.edu/mgaynor/papers/final.ps (1996).

[23] Gentleman, R., and Ihaka, R. The r project. Online: http://www.r-project.
org/, Accessed: 14/10/2007.

[24] Greg Lehey, M. K. M. The Complete FreeBSD. O’Reilly & Associates, Inc, 2003.

[25] Grenville Armitage, L. S. Some thoughts on emulating jitter for user experience
trials. SIGCOMM ACM Workshops (2004).

[26] Herrscher, D., and Rothermel, K. A dynamic network scenario emulation
tool. 262–267.

[27] Institute, I. S. Internet protocol, darpa internet program, protocol specification.
RFC 791 (1981).

BIBLIOGRAPHY 62

[28] Kayssi, A., and El-Haj-Mahmoud, A. Emunet: A real-time ip network emulator.

[29] Kayssi, A., and El-Haj-Mahmoud, A. Emunet: a real-time network emulator.
ACM symposium on Applied computing (2004), 357–362.

[30] Ke, Q., Maltz, D., and Johnson, D. B. Emulation of multi-hop wireless ad hoc
networks.

[31] Leffingwell, D. Mastering the iteration: An agile white paper.

[32] Lepreau, J. The utah network emulation facility. School of Computing Research
Facility .

[33] Longin Jan Latecki, Kishore Kulkarni, J. M. Better audio performance when
video stream is monitored by tcp congestion control. IEEE Int. Conf. on Multimedia
& Expo, Baltimore (2003).

[34] Mark Carson, D. S. Nist net. a linux-based network emulation tool. ACM SIG-
COMM Computer Communications Review 33 (2003), 111–126.

[35] Ni, L., and Zheng, P. Empower: A network emulator for wireline and wireless
networks.

[36] Padhye, J., Firoiu, V., Towsley, D., and Krusoe, J. Modeling TCP through-
put: A simple model and its empirical validation. 303–314.

[37] Paxson, V., and Floyd, S. Why we don’t know how to simulate the internet.
1037–1044.

[38] Pentikousis, K. Active queue management. ACM Connector Columns (July 2001).

[39] Ramadas, M. Tcptrace manual. Online: http://www.tcptrace.org/manual/

index.html, Accessed: 24/10/2007, 2003.

[40] Ramaswamy Ramaswamy, Ning Weng, T. W. Considering processing cost in
network simulations. ACM SIGCOMM Workshops (2003).

[41] Rizzo, L. Dummynet: a simple approach to the evaluation of network protocols.
ACM Computer Communication Review 27, 1 (1997), 31–41.

[42] Scott Guelich, S. G., and Birzneiks, G. CGI Programming. O’Reilly, 2000.

[43] Shepherd, T. J. Tcp packet trace analysis. Master’s thesis, Massachusetts Institute
of Technology, 1991.

BIBLIOGRAPHY 63

[44] Tanenbaum, A. S. Computer Networks. Prentice Hall, 2002.

[45] Teare, D. Designing cisco networks. Cisco Press (1999).

[46] Terzis, A., Nikoloudakis, K., Wang, L., and Zhang, L. Irlsim: A general
purpose packet level network simulator.

[47] Wikipedia. Random early detection. Online: http://en.wikipedia.org/wiki/

Random_early_detection, Accessed: 11/03/2007.

Appendix A

Construction of the Emulator

A.1 Building the Embedded Machine

The majority of work here is attributed to David Courtney and his guide [18] to building
stripped down FreeBSD systems.

The building of an operating system inside a jail is discussed here, which takes place on an
existing FreeBSD installation. Firstly a new folder is created for the jail (mkdir /usr/jail)
after which ’sysinstall’ is executed allowing us to create a fresh installation. We used a
minimal installation with only ’lib’ and ’sys’ under ’src’. Relevant config files (such as
resolv.conf and the current systems kernel) are copied into the jail. We enter the jail as
per Listing 9.

Now that we have the jail we can begin the actual work of creating the stripped down
custom FreeBSD system. The following sections highlight how this was achieved.

A.1.1 Creating Directory Structures

A minimal directory structure as per Listing 10 was manually created (mkdir) within the
chrooted system. Permissions of the proc directory were set to 555, and the permissions
of the root directory to 700. Also, a symlink was created from /var/tmp to /tmp.

Listing 9 Entering the jail

#mount −t dev f s dev f s / usr / j a i l /dev
#chroot / usr / j a i l / bin / csh
NIAB#

64

A.1. BUILDING THE EMBEDDED MACHINE 65

Listing 10 NIAB Directory Structure

/ usr / niab
−bin
−boot

. d e f a u l t s
−dev
−e t c

. d e f a u l t s

. mtree
− l i b
− l i b e x e c
−mnt
−proc
−root
−sb in
−usr

. bin

. l i b
−aout

. l i b e x e c

. l o c a l

. sb in

. share
−misc

−var

A.1. BUILDING THE EMBEDDED MACHINE 66

Listing 11 Fixing Soekris Bug

cd / sys /boot
make c l ean
make
make i n s t a l l

A.1.2 Rebuilding the Boot Loader

There is a bug on the Soekris BIOS [11] which results in the terminal text being displayed
incorrectly. This is overcome by editing ’/sys/boot/i386/libi386/Makefile’ and removing
’CFLAGS+= -DTERM_EMU’. The boot loader was compiled and installed with the
options specified in Listing 11.

A.1.3 Building Dynamic Executables

We now rebuild binary executables for the emulator. From ’sysinstall’ we choose ’Config-
ure’ and then ’Distributions’ and from within the ’src’ options we select: contrib, libexec,
release, bin, sbin, ubin and usbin. We now compile and install the libraries as per Listing
121.

A.1.4 Copying the Binaries Over

Two scripts were used to copy the binary files into the emulator system. Certain files from
/boot, /libexec, /bin, /sbin, /usr/sbin, /usr/libexec and /usr/share which were deemed
to be required for the stripped down system. The scripts can be viewed in appendix A.2,
and the files chosen are as follows.

A.1.5 Configuring Boot Files

We remove the BSD boot menu and remove boot delay by editing ’/usr/niab/boot/loader.rc’.
Several lines are commented out, and the autoboot option is added (a backslash denotes
a comment in this context) as per Listing 13.

1Note: there is no need to run ’make install’ after compiling a library

A.1. BUILDING THE EMBEDDED MACHINE 67

Listing 12 Building Dynamic Executables

#F i r s t l ibasm
cd / usr / s r c / l i b / l ibsm
make c l ean
make

cd / usr / s r c / bin
make c l ean
make
make i n s t a l l

cd / usr / s r c / con t r i b / i p f i l t e r / t o o l s
make c l ean
make

cd / usr / s r c / sb in / i p f
make c l ean
make

mkdir −p / usr / share /doc/atm
cd / usr / s r c / sb in
make c l ean
make
make i n s t a l l

cd / usr / s r c / l i b /bind
make c l ean
make

cd / usr / s r c / l i b / l i b t e l n e t
make c l ean
make

cd / usr / s r c / l i b / l i b smu t i l
make c l ean
make

cd / usr / s r c / l i b / libsmdb
make c l ean
make

cd / usr / s r c / usr . bin
make c l ean
make
mkdir −p / usr / share / i n f o
make i n s t a l l

A.1. BUILDING THE EMBEDDED MACHINE 68

Listing 13 ’/usr/niab/boot/loader.rc’

\ Load in the boot menu
\ include /boot/beastie .4th
\ Start the boot menu
\ beastie -start
autoboot 0

Listing 14 Soekris Specific Kernel Options

opt ions CPU_GEODE
opt ions CPU_SOEKRIS

A.1.6 Kernel Compilation

In the previous sections we focused on the binaries and file structure for the emulator.
We now want to build a custom stripped down kernel (which includes the kernel options
discussed in section 3.2.1.1). A copy of the GENERIC kernel is made and edited. Most of
the superfluous options are removed. The full kernel config file is listed in appendix A.3,
but it is worthy to note here the custom options for the Soekris net4801. The Soekris
runs a Geode processor of which there is support in the FreeBSD system as per Listing
13.

Furthermore, support for USB devices is added to allow an external USB hard drive to
be connected for collecting tcpdump data for analysis. The new kernel is now compiled
and installed into the emulator system with the following commands.

A.1.7 Populating /etc

We now need to create all configuration files for the emulator system. For the most part,
these can be copied as is from the already populated /etc directory inside the FreeBSD

Listing 15 Compiling NIAB Kernel

#con f i g NIAB
#cd . . / compi le /NIAB
#make c l ean && make cleandepend && make depend && make
#gz ip −9 ke rne l
#mkdir −p / usr / niab /boot/ ke rne l
#cp ke rne l . gz / usr /niab /boot/ ke rne l

A.1. BUILDING THE EMBEDDED MACHINE 69

Listing 16 Editing ’/etc/fstab’ in the NIAB system

/dev/ad0a / u f s ro 1 1
proc /proc p r o c f s rw 0 0
md /var mfs rw,−s8m 2 0
md /tmp mfs rw,−s8m 2 0

Listing 17 NIAB’s ’/etc/ttys’ modified for serial support and no VGA

conso l e none unknown o f f s e cu re
ttyv0 "/ usr / l i b e x e c / get ty Pc" cons25 o f f s e cur e

#Vi r tua l t e rmina l s
ttyv1 "/ usr / l i b e x e c / get ty Pc" cons25 o f f s e cur e
[. .]
t tyv7 "/ usr / l i b e x e c / get ty Pc" cons25 o f f s e cur e
ttyv8 "/ usr /X11R6/bin /xdm −nodaemon" xterm o f f s e cur e
ttyd0 "/ usr / l i b e x e c / get ty std .9600" vt100 on secure

host system. ’/etc/fstab’ needs to be modified for the system. The CompactFlash memory
card is mounted as ’ro’, indicated read only. This is crucial as Flash memory supports
only a limited number of erase/write cycles before a particular sector can no longer be
written. Memory specifications generally allow 10,000 to 1,000,000 write cycles. Typically
the controller in a CompactFlash attempts to prevent premature wear out of a sector by
mapping the writes to various other sectors in the card - a process referred to as wear
levelling. We do not use any swap space, and rely only on the Soekris’ RAM. Adding
dumpdev="NO" to the rc.conf will remove warnings about the lack of a swap partition.
The custom fstab file for the Soekris is displayed in Listing 16 (note the CompactFlash
is mounted read only).

Custom ’host.conf’ and ’rc.conf’ files need to be created too. Very little needs to be
changed from these files as mentioned in the previous sections.

Since the Soekris has a serial console we will need to enable it. It is a headless system
(no DSUB output) and this is a useful way to connect to the system. ’etc/ttys’ is edited
to allow this as per Listing 17.

We now move onto the building of the final image.

A.1. BUILDING THE EMBEDDED MACHINE 70

Listing 18 Checking number of sectors on the CompactFlash Card

#bsd l abe l −Awn da0s1 auto | grep s e c t o r s / un i t
#s e c t o r s / un i t : 500704

Listing 19 Creating an empty image

#dd i f =/dev/ zero o f=/usr /niab−d i sk . bin bs=512 count=500704
#mdconfig −a −t vnode −u 0 −f / usr /niab−d i sk . bin
#bsd l abe l −Bw md0 auto
#bsd l abe l −e md0

A.1.8 Building the Binary Image

The final step in the process is to take the stripped down FreeBSD system and assemble
it into a single, binary file which can be written to the CompactFlash memory. An
automated script was used to go through the many steps involved, this can be viewed in
appendix A.2 but we will discuss the manual intricacies now.

One option would be to use the CompactFlash card like a hard disk. We could use
bsdlabel and newfs on on the card and output the tar archive directly on it. However, it
is faster and easier to do the task in a disk image and dd the image onto the flash card.
This also prolongs the life of the card by only writing each sector once.

vnconfig is used to create a virtual disk that we use bsdlablel on. We first need to work
out the number of sectors (512 byte units) on the FlashCard. This is achieved by plugging
the card into a memory reader/write on the FreeBSD machine and typing the commands
as per Listing 18.

The output tells us that the device has 500704 sectors. We now create a disk image of
this same size which is initially populated with zeros, and use this disk image file as a vn
device so we can bsdlabel it to create the partition and file system (See Listing 19).

’bsdlabel’ will load a text editor, from where we can add the information as per Listing
20 about the device. The line starting with ’a:’ is the root partition, which will span over
the whole slice.

The next step is to create a file system. The ’newfs’ command constructs a UFS1/UFS2
filesystem, as per Listing 21.

The virtual disk is now mounted on /mnt. To copy the NIAB FreeBSD files onto it we
type command “(cd /usr/niab ; tar cPf - .) | (cd /mnt ; tar xf -);”.We now have a 256MB
custom, stripped down FreeBSD system in a format which will allow us to write it to our

A.2. SCRIPTS USED IN BUILDING MINIMAL FREEBSD SYSTEM 71

Listing 20 ’bsdlabel’ options for the NIAB system

/dev/md0 :
8 p a r t i t i o n s :
s i z e o f f s e t f s t ype [f s i z e b s i z e bps/cpg]
a : 500704 0 4 .2BSD 0 0 0
c : 500704 0 unused 0 0

Listing 21 Creating a new file system

#newfs −b 8192 −f 1024 −U /dev/md0a
#mount /dev/da0s1 /mnt

CompactFlash media.

A.1.9 Writing the Image to the Soekris Flash Card

There are two options available for writing the image to the CompactFlash card. We can
netboot (with PXE) the Soekris with the CompactFlash card installed and copy the files
over the network, or we could simply write the image to the card with the dd command.

The simpler solution is to write the image to the CompactFlash from a card writer/reader
with the command “dd if=/usr/niab-disk.bin of=/dev/da0s1 bs=8k”.

We can now boot our Soekris system.

A.2 Scripts used in Building Minimal FreeBSD System

Several scripts were used in the building of the stripped down FreeBSD system. They
were written by David Courtney of Ultradesic and are aimed specifically at deploying
FreeBSD to embedded machines. The scripts are included on the CD.

A.3. NIAB KERNEL LISTING 72

A.3 NIAB Kernel Listing

1 # Custom NIAB Kernel
2 # $FreeBSD : s r c / sys / i386 / conf /NIAB, v 1 . 0 . 0
3

4 machine i386
5 cpu I586_CPU
6 i d ent NIAB
7

8 # Options S p e c i f i c to the Soek r i s NET48XX
9 opt ions CPU_GEODE

10 opt ions CPU_SOEKRIS
11

12 opt ions SCHED_4BSD
13 opt ions INET
14 opt ions INET6
15 opt ions FFS
16 opt ions SOFTUPDATES
17 opt ions UFS_ACL
18 opt ions UFS_DIRHASH
19 opt ions MD_ROOT
20 opt ions NFSCLIENT
21 opt ions NFSSERVER
22 opt ions NFS_ROOT
23 opt ions MSDOSFS
24 opt ions CD9660
25 opt ions PROCFS
26 opt ions PSEUDOFS
27 opt ions GEOM_GPT
28 opt ions COMPAT_43
29 opt ions COMPAT_FREEBSD4
30 opt ions SCSI_DELAY=15000
31 opt ions KTRACE
32 opt ions SYSVSHM
33 opt ions SYSVMSG
34 opt ions SYSVSEM
35 opt ions _KPOSIX_PRIORITY_SCHEDULING
36 opt ions KBD_INSTALL_CDEV
37 opt ions AHC_REG_PRETTY_PRINT

A.3. NIAB KERNEL LISTING 73

38 opt ions AHD_REG_PRETTY_PRINT
39 opt ions ADAPTIVE_GIANT
40 dev i c eap i c
41

42 # Bus support .
43 d ev i c e i s a
44 d ev i c e e i s a
45 dev i c ep c i
46

47 # ATA and ATAPI dev i c e s
48 dev i c ea ta
49 dev i c ea t ad i s k
50 opt ions ATA_STATIC_ID
51

52 devicenpx
53 devicepmtimer
54

55 # Se r i a l (COM) por t s
56 d ev i c e s i o
57

58 dev icemi ibus
59 d e v i c e s i s
60

61 # Wire l e s s NIC cards
62 devicewlan
63 devicean
64 dev iceawi
65 dev icewi
66 #devicewl
67

68 # Pseudo dev i c e s .
69 dev i c e l oop
70 devicemem
71 dev i c e i o
72 devicerandom
73 dev i c e e th e r
74 dev icepty
75 devicemd
76 d e v i c e g i f

A.3. NIAB KERNEL LISTING 74

77 d e v i c e f a i t h
78 dev i cebp f
79

80 # USB support
81 dev i c euhc i
82 dev i c eohc i
83 dev i c e eh c i
84 dev iceusb
85 deviceugen
86 deviceumass
87

88 #Greater g r anu l a r i t y
89 opt ionshz =10000
90

91 #SCSI b i t s f o r USB support
92 dev i c e s cbus
93 deviceda
94

95 #Fi r ewa l l
96 opt ions IPFIREWALL
97 opt ions IPFIREWALL_VERBOSE
98 opt ions IPFIREWALL_DEFAULT_TO_ACCEPT
99 opt ions IPFIREWALL_VERBOSE_LIMIT=1000

100

101 dev i c e i f_br idge
102 opt ions DUMMYNET
103 opt ions BRIDGE
104 opt ions IPSTEALTH

Appendix B

Emulator Code

Here we list useful code snippets of web front end code from various sections. Each snippet
begins with the filename it has been extracted from, as well as comments describing what
the snippet is used for. The full source is available on the CD.

B.1 PHP

Each page uses a PHP include direction to include common PHP code, such as the menu
and banner.

1 <?php
2 include ("common . php") ;
3 ?>

Several pages process GET and POST methods. These are accessed in PHP via the
$_GET[<key>] and $_POST[<key>]

1 //Example o f pars ing GET reque s t from i n t e r f a c e s . php
2 <?php
3 include ("common . php") ;
4 $numIf = $_GET["num"] ;
5 $i fA = $_GET[" i f 0 "] ;
6 ?>

Several pages send POST or GET requests to the server.

1 //Example o f accep t ing input from the user from var ious
2 // input boxes and POSTing the r e s u l t to the s e r v e r from
3 //newNode . php
4 <?php

75

B.1. PHP 76

5 <form act i on="/ cg i−bin /newNode" method="POST">
6 // var ious input boxes
7 <input type="submit" name=" c r ea t e " value="Create ">
8 </form>
9 ?>

XML parsing was done via the “simplexml” module to retrieve and display node informa-
tion from nodes.xml

1 // Example o f pars ing nodes . xml from nodeSet . php
2 // Here we see the use o f the " simplexml " PHP
3 // module
4

5 <?php
6 $nodesF i l e = " . / c o n f i l e s /nodes . xml" ;
7 $xml = simplexml_load_f i le ($nodesF i l e) ;
8

9 //XML pars ing code
10 $doc = new DOMDocument() ;
11 $doc−>load ($nodesF i l e) ;
12

13 $nodes = $doc−>getElementsByTagName ("node") ;
14 $ i =0;
15 $nodeNames ;
16 $arr_connect ions = array () ;
17

18 foreach ($nodes as $node) {
19 $connName = $node−>getAtt r ibute (’name ’) ;
20 i f ($node−>getAtt r ibute (’ inUse ’) == "Y")
21 //Q Mgt in f o :
22 $node−>getElementsByTagName ("qMgt") ;
23 foreach ($qMgtBits as $qMgtBit) {
24 $qMgt = $qMgtBit−>getAtt r ibute (’ type ’) ;
25 $qMgt_w_q = $qMgtBit−>getElementsByTagName ("w_q")−>item (0)−>nodeValue ;
26 $qMgt_min_th = $qMgtBit−>getElementsByTagName ("min_th")−>item (0)−>

nodeValue ;
27 $qMgt_max_th = $qMgtBit−>getElementsByTagName ("max_th")−>item (0)−>

nodeValue ;
28 $qMgt_max_p = $qMgtBit−>getElementsByTagName ("max_p")−>item (0)−>nodeValue

;
29

30 $arr_qAtts = array () ;
31 i f ($qMgt == "RED" | | $qMgt=="GRED") {
32 array_push($arr_qAtts , $connName , $qMgt , $qMgt_w_q, $qMgt_min_th ,

$qMgt_max_th , $qMgt_max_p) ;

B.2. PERL (CGI) 77

33 array_push($arr_connect ions , $arr_qAtts) ;
34 }
35 }
36

37 $bwUp = $node−>getElementsByTagName ("bwUp")−>item (0)−>nodeValue ;
38 $bwDown = $node−>getElementsByTagName ("bwDown")−>item (0)−>nodeValue ;
39 $delay = $node−>getElementsByTagName (" de lay ")−>item (0)−>nodeValue ;
40 $drop = $node−>getElementsByTagName ("drop")−>item (0)−>nodeValue ;
41 $qMgt = $node−>getElementsByTagName ("qMgt")−>item (0)−>nodeValue ;
42 ?>

B.2 Perl (CGI)

Perl scripts requiring access to the nodes.xml file parse it via the “XML::Simple” and
“XML::SAX” CPAN modules.

1 #Example o f Per l p roce s s ing XML
2 #Taken from setAct iveNodes . xml
3 #!/ usr / b in / p e r l
4 use XML: : Simple ;
5 use XML: : SAX;
6

7 my $ f i l e = ’ nodes . xml ’ ;
8 my $x s l = XML: : Simple−>new () ;
9

10 my $doc = $xs l−>XMLin($ f i l e) ;
11 foreach my $key (keys (%{$doc−>{node }})) {
12 print $doc−>{node}−>{$key}−>{ ’name ’ } . $key ;
13 print $doc−>{node}−>{$key}−>{ ’bwUp ’ } . "\n" ;
14 print $doc−>{node}−>{$key}−>{ ’bwDown ’ } . "\n" ;
15 #etc
16 }

Identifying information concerning the network cards was done via the Ifconfig wrapper.

1 #!/ usr / l o c a l / b in / p e r l
2 #Example o f us ing i f c o n f i g wrapper to probe NIC informat ion
3 #Taken from g e t I n t e r f a c e s p e r l s c r i p t
4

5 use Net : : I f c o n f i g : : Wrapper ;
6

7 @i face s=g e t I f a c e s () ; #ge t network i n t e r f a c e s
8

B.2. PERL (CGI) 78

9 #Probe and re turn l o c a l i n t e r f a c e s
10 sub g e t I f a c e s () {
11 my @in t e r f a c e s ;
12 my $In fo = Net : : I f c o n f i g : : Wrapper : : I f c o n f i g (’ l i s t ’ , ’ ’ , ’ ’ , ’ ’)
13 or die $@;
14

15 foreach (sort (keys(%{$In fo }))) {
16 push(@inte r f ace s , $_) ;
17 }
18 return @in t e r f a c e s ;
19 }

Several Perl scripts required passing GET requests to PHP scripts. A request is built and
then passed to the web page. The full Perl code is listed on the CD.

Appendix C

Scripts for Testing the Emulator

This appendix contains all the test scripts written to produce the results reported on in
Chapter 4. The throughput and RTT scripts are used to vary these two factors over time,
producing output suitable for graphing. The general script is for more general cases and
only captures data and produces output suitable for graphing.

C.1 Throughput

1 #!/usr /bin / p e r l
2 #Glenn Wilkinson
3 #Scr i p t f o r t e s t i n g NIAB Bandwidth
4 #Creates p ipe s and va r i e s t h e i r bandwidth between i n t e r v a l s . Output

s u i t a b l e f o r R
5 #./test_bw . p l <fname> <delay> [<bw>]
6

7 i f ($#ARGV+1 < 2) {
8 pr in t "\nUsage : . / test_bw . p l <dumpFname> <delay> [<bw>]\n " ;
9 e x i t ;

10 }
11

12 my $delay=$ARGV[1] ;
13 my $fname=$ARGV[0] ;
14

15

16 #We s t a r t the i n i t i a l pipe , o the rw i se our graph may have a huge o u t l i e r
l e f t

17 #‘ ipfw −f f l u sh ‘ ;
18 $sex=‘ ipfw −q d e l e t e 100 ‘ ;

79

C.1. THROUGHPUT 80

19 ‘ ipfw −q 100 add pipe 1 ip from any to any ‘ ;
20 ‘ ipfw pipe 1 c on f i g bw $ARGV[2] Kbit/s ‘ ;
21

22 pr in t "Pipe c rea ted \n " ;
23

24

25 s l e e p 2 ; #Let i t s e t t l e
26

27 my $pid=fo rk () ;
28 i f (not de f ined $pid) {
29 pr in t "Resource f a i l " ;
30 }
31 e l s i f ($pid==0){
32 ‘ tcpdump −q − i b r idge0 −w $fname ‘ ;
33 pr in t "Saving dump to f i l e " . $fname . "\n " ;
34 }
35 e l s e { #parent
36

37 f o r ($ i = 2 ; $i<$#ARGV+1; $ i++){
38 ‘ ipfw pipe 1 c on f i g bw $ARGV[$ i] Kbit/s ‘ ;
39 pr in t " Limit ing BW to " . $ARGV[$ i] . "\n " ;
40 s l e e p $delay ;
41

42 }
43

44

45 ‘ k i l l a l l tcpdump ‘ ;
46 waitp id ($pid , 0) ;
47 }#end parent
48

49 ‘ ipfw −q d e l e t e 100 ‘ ;
50

51

52

53 #Next Step
54 #######################################
55 #TCPTRACE
56 ‘ t cp t r a c e −T −y −zxy −A10 −o1 testDump ‘ ; #Wil l dump to b2a . xpl
57

58 #Remove red b i t s
59 my $in = open (FILE , "b2a_tput . xpl ") or d i e ("Unable to open f i l e in t cp t ra c e

s e c t i o n ") ;
60 my $out = open (FILE2,">" . $fname . " . txt ") or d i e ("Unable to open output

f i l e in t cp t ra c e s e c t i o n ") ;

C.2. RTT 81

61 my $tmp ;
62 my $s t r ;
63

64 whi le ($ s t r = <FILE>){
65

66 chomp($ s t r) ;
67 i f ($ s t r eq " blue ") {
68 $tmp=<FILE>;$tmp=<FILE>; #Read next to l i n e s and d i s ca rd
69

70 }
71 e l s i f ($ s t r eq " red ") {
72 $tmp=<FILE>;
73 $tmp=~m/^dot\ s (\S∗) \ s (\S∗) / ;
74 pr in t FILE2 $1 . " ; " . $2 . "\n " ;
75 $tmp=<FILE>;
76 }
77 }
78

79 c l o s e FILE ;
80 c l o s e FILE2 ;
81 ‘rm testDump ‘ ;
82 ‘ d e l e t e a2b_tput . xpl ‘ ;
83 ‘ d e l e t e b2a_tput . xpl ‘ ;
84 pr in t "Your data i s in " . $fname . " . txt \n " ;

C.2 RTT

1 #!/ usr / b in / p e r l
2 #Glenn Wilkinson
3 #Scr i p t f o r t e s t i n g NIAB RTT
4 #Creates p ipe s and va r i e s t h e i r de lay between i n t e r v a l s . Output s u i t a b l e

f o r R
5 #./ test_bw . p l <fname> <delay> [<bw>]
6

7 i f ($#ARGV+1 < 2) {
8 print "\nUsage : ␣ . / test_RTT . p l ␣<dumpFname>␣<de l ay In t e rva l >␣[<delay

>]\n" ;
9 exit ;

10 }
11

12 my $delay=$ARGV[1] ;
13 my $fname=$ARGV[0] ;
14

15

C.2. RTT 82

16 #We s t a r t the i n i t i a l pipe , o the rw i s e our graph may have a huge o u t l i e r
l e f t

17 #‘ ip fw −f f l u s h ‘ ;
18 $sex=‘ ipfw −q delete 100 ‘ ;
19 ‘ ipfw −q 100 add pipe 1 ip from any to any ‘ ;
20 ‘ ipfw pipe 1 con f i g de lay $ARGV[2]ms ‘ ;
21

22 print "Pipe␣ c rea ted \n" ;
23

24

25 sleep 2 ; #Let i t s e t t l e
26

27 my $pid=fork () ;
28 i f (not defined $pid) {
29 print "Resource ␣ f a i l " ;
30 }
31 e l s i f ($pid==0){
32 ‘ tcpdump −q − i b r idge0 −w $fname ‘ ;
33 print "Saving␣dump␣ to ␣ f i l e ␣" . $fname . "\n" ;
34 }
35 else { #parent
36

37 for ($ i = 2 ; $i<$#ARGV+1; $ i++){
38 ‘ ipfw pipe 1 con f i g de lay $ARGV[$ i]ms ‘ ;
39 print " Se t t ing ␣ de lay ␣ o f ␣" . $ARGV[$ i] . "ms\n" ;
40 sleep $delay ;
41

42 }
43

44

45 ‘ k i l l a l l tcpdump ‘ ;
46 waitpid ($pid , 0) ;
47 }#end parent
48

49 ‘ ipfw −q delete 100 ‘ ;
50

51

52

53 #Next Step
54 #######################################
55 #TCPTRACE
56 ‘ t cp t r a c e −R −zxy −A10 −o1 testDump ‘ ; #Wil l dump to a2b . x p l
57

58 #Remove red b i t s

C.3. GENERAL 83

59 my $in = open(FILE , "a2b_rtt . xpl ") or die ("Unable␣ to ␣open␣ f i l e ␣ in ␣ t cp t r a c e ␣
s e c t i o n ") ;

60 my $out = open(FILE2 , ">" . $fname . " . txt ") or die ("Unable␣ to ␣open␣output␣
f i l e ␣ in ␣ t cp t ra c e ␣ s e c t i o n ") ;

61 my $tmp ;
62 my $ s t r ;
63

64 while ($ s t r = <FILE>){
65

66 chomp($ s t r) ;
67 i f ($ s t r eq " blue ") {
68 $tmp=<FILE>;$tmp=<FILE>; #Read next to l i n e s and d i s card
69

70 }
71 e l s i f ($ s t r eq " red ") {
72 $tmp=<FILE>;
73 $tmp=~m/^dot\s (\S∗) \s (\S∗) / ;
74 print FILE2 $1 . " ; " . $2 . "\n" ;
75 $tmp=<FILE>;
76 }
77 }
78

79 close FILE ;
80 close FILE2 ;
81 ‘rm testDump ‘ ;
82 ‘rm a2b_rtt . xpl ‘ ;
83 ‘rm b2a_rtt . xpl ‘ ;
84

85 print "\nYour␣data␣ i s ␣ in ␣" . $fname . " . txt \n" ;

C.3 General

1 #!/ usr / b in / p e r l
2 #Use t h i s s c r i p t to genera te output s u i t a b l e f o r p l o t t i n g wi th R. Removes

average
3 # p l o t s from t cp t r a c e . Use in the case o f manually manipu la t ing p ipe s .
4 #Sta r t a tcpdump se s s i on f i r s t , e . g :
5 #tcpdump −i b r i dge0 −w testDump && ./ genGraphs
6

7

8 #TCPTRACE
9 ‘ t cp t r a c e −G −y −zxy −A10 −o1 testDump ‘ ; #Wil l dump to x2x . x p l

10

11 #pr in t "\n\n" . $fname . "\n\n" ;

C.3. GENERAL 84

12

13 #Remove red b i t s
14 my $in = open(FILE , "b2a_tput . xpl ") or die ("Unable␣ to ␣open␣ f i l e ␣ in ␣ t cp t r a c e

␣ s e c t i o n ") ;
15 my $out = open(FILE2 , ">testDump . txt ") or die ("Unable␣ to ␣open␣output␣ f i l e ␣

in ␣ t cp t r a c e ␣ s e c t i o n ") ;
16 my $tmp ;
17 my $ s t r ;
18

19 while ($ s t r = <FILE>){
20

21 chomp($ s t r) ;
22 i f ($ s t r eq " blue ") {
23 $tmp=<FILE>;$tmp=<FILE>; #Read next to l i n e s and d i s card
24

25 }
26 e l s i f ($ s t r eq " red ") {
27 $tmp=<FILE>; #read " dot " l i n e
28 $tmp=~m/^dot\s (\S∗) \s (\S∗) / ; #and remove word dot , put

in ;
29 print FILE2 $1 . " ; " . $2 . "\n" ;
30 $tmp=<FILE>; #read and d i s card " l i n e "
31 }
32 }
33

34 close FILE ;
35 close FILE2 ;

