An Investigation into the
ACM Programming Competition
(The SA contest of the ICPC)

Subtitle:
A Taxonomy and Evaluation of Algorithms and

Solutions of Selected Problems

Submitted in partial fulfilment of the requirementisthe degree of Bachelor
of Science (Honours) in Computer Science
Rhodes University

Supervisor: A.J. Ebden

Researcher: Douglas Hobson

Abstract

The principal aims of this project are to develoglassification of the algorithms found in the

South African ACM ICPC and to gauge their diffigufor humans to understand. The classification

was developed and it was found that a very largmbaun of problems require some form of

mathematics to solve them. It was discovered tmatype of algorithm needed to solve a problem

does not determine the difficulty of the problenmisTwas unexpected and led to the development

of a method of grading problem difficulty that iaded on the time taken to generate a working

solution to a problem. Three of the most diffigobblems were solved in order to test the grading

November 2007

Acknowledgements

| acknowledge the financial and technical suppbthis project of Telkom SA, Business
Connexion, Comverse SA, Verso Technologies, Stortéellabs, Amatole, Mars Technologies,
Bright Ideas Projects 39 and THRIP through the dllCentre of Excellence at Rhodes

University.

Special thanks to my supervisor, John Ebden, ®ohblp throughout the year, his encouragements,
his corrections and his patience.

| would like to acknowledge Nick Pilkington for prding some very insightful tips which led to

the solutions to some of the harder problems.

Thank you to Ryan Rainer for his many exhortatiand encouragements to produce work that is
excellent and pleasing to the Lord. Without youc@mragement and support | doubt that | would

have made it through the year.

“God delights in concealing things;
scientists delight in discovering things.”
- Proverbs 25:2 (MSG)

Contents

1. Introduction
2. Literature Review

2.1 Introduction
2.2 Other People’s Classifications
2.2.1 Howard Cheng’s Classification
2.2.2 Hal Burch’s Classification
2.2.3 Top Coder's Classification
2.2.4 Comparison of Classifications
2.3 Algorithm Resources
2.4 Conclusion
3. My Classification
3.1 Introduction
3.2 Classification of Algorithms and Knowledge
3.3 Classification in Detalil
3.4 Design of Classification
3.5 Conclusion
4. Evaluation of Algorithms and Problems
4.1 Introduction
4.2 Method of Evaluation
4.4 Conclusion
5. Solutions to Selected Problems
5.1 Introduction
5.2 Solutions
5.2.1 Problem 2006 — 2
5.2.2 Problem 2006 - 4
5.2.3 Problem 2006 — 5
5.3 Conclusion

6. Conclusion
7. Future Work
8. References
Appendix A
Appendix B

page 4
page 5
page 5
page 5
page 5
page 7
page 8
page 9
page 10
page 10
page 11
page 11
page 11
page 12
page 16
page 17
page 18
page 18
page 18
page 21
page 22
page 22
page 23
page 23
page 26
page 32
page 36
page 37
page 39
page 40

1. Introduction

This project is an analysis of the South Africagioeal ACM ICPC (International Collegiate
Programming Contest) from 2001 to 2006 inclusive.

Every year our university takes part in the ACMdteonming Competition. The competition is
becoming more and more popular with over 1700 usities and more than 6000 teams from all
over the world participating in last year's evgAICM International Website, 2007] Rhodes’ teams
do quite well on a regional level, and they dorittbeir own. There has been no work done at our
university to formalise anything from the ACM contiien. There is no training provided and no
material available to help teams perform well. Enigra need for proper treatment of the ACM
Programming Competition at Rhodes University. Trgect will provide a start in that direction

by providing a much needed investigation into tl&\VAcompetition.

The findings of this project promise to be of griealp to future contestants and organisers

Something which must be noted is that this prdgobt about the computational complexity of the
algorithms in the ACM ICPC, Big-O notation or anyitp of that sort. It is about the complexity of
the algorithms for humans, not computers. Big-CGatioh is used to describe how difficult it is for a
computer to solve the problem, it has very litdedb with how difficult it is for humans to
understand and solve the problem. There are tinhes whis contributes significantly to the
difficulty of a problem, for instance when the pragnmer has to find a way of adapting an
algorithm that is usually very time inefficient¢ause it to execute within the two minute time timi
of the ACM ICPC, so you will find O(n) and the likeentioned from time to time, but that is not

what this project is about.

2. Literature Review

2.1. Introduction

| have found several good sources in the areagofighm classification. Most of the work is
informal in nature, but very similar to the worlatH am doing and so is particularly useful. Irsthi
chapter will have a look at several classificatitret | have found, some specifically dealing with
the ACM, another derived by Hal Burch from the US8&mputer Olympiad [Burch, 1999] and the
classification given by the Top Coder website [Tger, 2007].

The other thing that will be looked at in this cteps the different types of algorithms already
defined and sources that list and explain these.sbich source is the Stony Brook Algorithm
Repository maintained by Steven Skiena and anahbe Dictionary of Algorithms and Data
Structures maintained by NIST, the National Ing#itof Standards and Technology [Black, 2007].

These two broad categories of sources overlagia [ithe classifications often include well defined
algorithms and explanations of how those algoritwvogk similar to that found in the algorithm

resources.

2.2 Other People’s Classifications

2.2.1 Howard Cheng’s Classification

This classification is derived from the ACM Progmamg Competition. It is very good was
particularly useful. It was developed by Howard @& om the University of Lethbridge [Cheng,
2006]. Cheng has been heavily involved with the ABMgramming Competition as a contestant,

a judge, a problem designer, a system administraitat a local organizer. Cheng'’s classification
does not give a clear description of any of the@llgms, but instead has provided a multitude of
examples of each problem type. Fortunately sewéitle names that Cheng has given to categories
in his classification are commonly used and ard defined elsewhere.

Classification from Howard Cheng:

Arithmetic

Backtracking

Big Number

Combinatorics

Data Structure

Dynamic Programming

Geometry
Graph
Greedy

Miscellaneous

Number Theory

Parsing

Permutations
Probability

Recursion

Search

Simulation

Sorting

Straightforward

String

Figure 2.1 Cheng’s Classification

The categories that are in bold are the categtre&d have adopted for use in my own
classification. Some of them use a different namf@lbinto an overarching category. An example
of this is Cheng’s Arithmetic which | have callecaMematics. Those that are not bolded did not
appear in my problem set or were considered uridaifar inclusion. In particular, Cheng’s
Recursion is unsuitable as recursion is a fundaashgatt of programming and recursive solutions
could be found for a very large number of the peaid in my problem set. Including a category
called Recursion would cause the results to gigprdportional prominence to it as so many

problems could be solved that way.

2.2.2 Hal Burch’s Classification

The classification developed by Hal Burch from USA{Burch, 1999] looks to be the most useful
of all the classifications that | have come acrdtdsas a fairly good list of algorithms as well as
good descriptions of how each works. It also presidxamples of problems that fall into each
category. Another good thing about this classifarats that the problem set that it was derived
from is similar to the sort of problems given i®tACM Programming Competition.

Hal Burch’s classification:

Ad Hoc Problems

Approximate Search

BigNums

Complete Search

Computational Geometry

Dynamic Programming

Eulerian Path*
Flood Fill

Greedy

Heuristic Search

Knapsack

Minimum Spanning Tree*
Network Flow*

Recursive Search Techniques
Shortest Path*

Two-Dimensional Convex Hull

Figure 2.2 Burch’s Classification

Again, the bolded categories are ones that | hasladed in my classification. The four categories
that have been italicised and had a *’ added abssts of Graph Theory and fall into my Graph
Theory category.

2.2.3 Top Coder’s Classification

Most classifications were developed by one pergansmall group working together. An exception
to this is the Top Coder classification. Top Codea commercial site so it is likely that their
classification is a little more reliable, but itdsrived from problems found on the Top Coder site.
This means that while it is useful for defining@lighm types, it does not cover the same set of

guestions as the ACM Programming Competition.

Classification from Top Coder:

Advanced Math

Brute Force

Dynamic Programming

Encryption/Compressio

=

Geometry

Graph Theory

Greedy
Math

Recursion

Search
Simple Math

Simple Search/Iteration

Simulation

Sorting

String Manipulation

String Parsing

Figure 2.3 Top Coder’s Classification

The main reason for the inclusion of the Top Cadiassification is that it includes several
mathematical categories, namely Advanced Math, MathSimple Math which | have bolded in
the table. Seeing these different categories thdeal with mathematics was what prompted me to

divide my large Mathematics category into subcatiegoThis is discussed further in chapter 3.

2.2.4 Comparison of Classifications

Both Cheng and Burch'’s classifications include taltal category. Cheng’s has two:
“Straightforward” and “Miscellaneous”. Burch’s hasd hoc”. Both seem to think that there are
usually a few problems in each competition thahdbconform to any specific algorithm or pattern
and each problem that falls into these categoresisito be solved on its own. The impression that
| got from both Cheng and Burch is that these nwisl are fairly easy but occasionally appear

challenging until properly understood.

There are several categories in Cheng and Burtdssifications that describe the same thing or are
related in some way. The following table shows ¢hredationships with comments to clarify where

appropriate.

Cheng Burch
Big Number BigNums
Combinatorics Knapsack (specific class of Combinesd
Dynamic Programming Dynamic Programming
Geometry Computational Geometry

Shortest Path
Network Flow (all are sutsse
Eulerian Path of Graph Tiiy¢o

Minimum Spanning Tree

Graph (Graph Theory)

Greedy Greedy

Miscellaneous
. Ad Hoc Problems
Straightforward

Heurist Search (not identical, but related)

Search Note that Burch’s “Complete Search” is not
related to Cheng’s “Search” at all but would be

better known as Brute Force.

Figure 2.4 A comparison of Cheng and Burch’s claditations

The Top Coder classification was not included is thble, despite it also having several categories
that are related to categories in Cheng and Budh&sifications, because its problem set is quite

different from ACM problems.

2.3 Algorithm Resources

The Stony Brook Algorithm Repository maintained3tgven Skiena of Stony Brook University
[Skiena, 2001] looks as though it will be usefuk\&n Skiena is involved with the Stony Brook
ACM ICPC and the Stony Brook team has done welkumds guidance [Skiena, 2001]. His
repository contains several algorithms commonlyntbin the ACM ICMP with good descriptions
of each algorithm type as well as code implememratin several common programming

languages.

Another good resource is the Dictionary of Algomithand Data Structures maintained by NIST
[Black, 2007]. It is very extensive and has exaglidescriptions of nearly every algorithm | have
ever come across. It also often provides linkstbeiosites to provide further clarification or
examples of the algorithm being implemented.

Most of the classifications can also be regardealgsithm resources, if to a slightly lesser degre

than Skiena and Black’s.

2.4 Conclusion

There are several classifications available, thahgly are informal, they are very good. They
provide excellent reference material and give nmeething fairly reliable against which to compare
my classification. The Top Coder classification pT@oder, 2007], while unrelated to the ACM, is
still valuable for the purposes of understanding defining the algorithms involved. Cheng

[Cheng, 2006] and Burch’s [Burch, 1999] classificas are excellent resources and have been very
useful to me in the design of my own classificatiyrproviding names for algorithms that are

widely used and exposing me to the many formalfyned algorithms that are needed for such a
classification.

The two algorithm resources, the Stony Brook Altjon Repository [Skiena, 2001] and the
Dictionary of Algorithms and Data Structures [Bla2k07], provide suitable reinforcement of
anything that is not clear in the classificatiofisey are also very nice to have for their formal

treatment of algorithms that | can refer to in $osnetimes informal area.

10

3. My Classification

3.1 Introduction

This chapter will cover my classification. It isrdeed from all the ACM ICPC problems from the

South African regional competition over the lastygars, from 2001 to 2006 inclusive. This

chapter will include the classification itself agpwith more detailed descriptions of each category.

After that there will be a section on the designthef classification describing how | went about

actually making the classification.

3.2 Classification of Algorithms and Knowledge

This is my classification. It lists each of theeggdries in the classification along with how many

problems from the problem set fall into each catggome problems are in more than one

category.

Name of Category

Number of problems

Backtracking

2

Big Numbers

4

Complete Search

8

Dynamic Programming

Encryption

Game/Puzzle

Graph Theory

Greedy

Mathematical
» Advanced
> Bases
» General
» Geometry
» Physics

Parsing

Straightforward

Tree

Figure 3.1 My classification along with the nmber of problems in each category

11

20
18
16 -
14
12
10

8

EJ lIlllI | =

O g N gt oY e 4 40O «5 e®
c,‘(~\ QO \)‘(\‘0 es a ((\\ (\C \!Q\\ \?\)’L ,‘\(\eo G‘ee «\ «\'&“ o ‘5\‘(\ \N'a‘ A
63_(3 6\(5 Q\e oy "c

ox@®

Figure 3.2 Number of problems in each category

The graph clearly shows that the number of problexgairing knowledge of mathematics is very
large, fully half of the problems in the problent &l into this category. This indicates that
Mathematics is essential to anyone wishing to pigdte in the ACM ICPC.

Other categories that stand out are Graph TheagyiNBmbers and Complete Search. While
dwarfed by Mathematics, they are significant whempared to the rest of the categories. Another
category that deserves an honourable mention isynProgramming. While | have only
classified two of the problems as needing it, sevafrthem could be done using Dynamic

Programming techniques.

3.3 Classification in Detail

This section will briefly describe each of the catees in my classification. It will become apparen
that not all the categories refer to algorithmsteéad they are more of a description of what is
needed to solve a problem. In many cases an digor# needed, but sometimes it is knowledge
that is needed. For example, Mathematics canndéeberibed as an algorithm, but is necessary for
solving half of the problems in my problem set.

12

3.3.1 Backtracking

Backtracking algorithms are algorithms that makeesahoice which
may be incorrect and if so go back to that poirthencalculation and
make the opposite choice. The diagram along sidéasdecision tree

generated by backtracking algorithms.

Figure 3.3 Decision tree used
by backtracking algorithms

3.3.2 Big Numbers
Some problems require that numbers that are léingerall the standard data types be used. This is
a programming technique that allows programmegetaround the problem.

3.3.3 Complete Search

The complete search method of solving a problers aseple brute force to find the solution. It
tries all possible answers, checking each onetermine if it is correct. The solution is often i
simple and relies on the computers power and sfgeaxdive at a solution rather than the

programmer’s brain and time.

If the number of possible solutions to be checledeéss than something in the region of, 1fen it
is possible that a solution of this form will wollkthe computer can solve the problem within the
time constraints of the competition then the soluis good enough and the contestant can focus on

other problems that perhaps need more time andjtiiquut into them.

Often problems will not initially appear to be sable with this method but the number of possible
solutions can usually be brought down to a mandgeabnber by recognising various patterns. If

the order in which things are done is unimportant tepeating the same operation several times

produces the original input then it drasticallyscdown on the number of solutions to be tested.

3.3.4 Dynamic Programming

This is a technique which looks for problems thratraade up of sub problems or problems that
need to make the same calculations repeatedlglviés the sub problems or performs the
calculations and then sores the results and uses tit build up the main solution. | have found that
it usually has the very useful effect of movingralgems complexity or cost from time to space,
making programs that would normally execute veoy$} execute extremely fast. This is best
described through an example.

13

A common way of producing the Fibonacci sequende ise recursion:
Fib(n) = Fib(n-1) + Fib(n-2) with Fib(0) = 1 andifl) = 1.

This is acceptable for small values of n, but asxcreases, the time it takes to calculate Fib(n)
increases exponentially. A much faster soluticiw igse dynamic programming and store the result

from each of the sub problems. Here is some pseode that demonstrates this:

int[n] fib
fib[0] = 1, fib[1] = 1
fori=2ton-1

fib[n] = fib[n-1] + fib[n-2]
end for
return fib[n-1]

This will compute the value of thé'Fibonacci number in linear time but can startge uery large

amounts of space for the array when n is large.

3.3.5 Encryption

Any problem that involves some form of encryptiagrdecryption will fall into this category.

3.3.6 Game/Puzzle

This category is quite fun and interesting. | im&d this to indicate that basic (or sometimes in-
depth) knowledge of a given game or puzzle woulsldrg useful in solving the problem. It also
describes problems where the mechanics of somerd&ational game are described in the
problem statement and it is the task of the progmanto implement the game, a portion of the

game or a program that can play the game.

3.3.7 Graph Theory
This is a broad category that covers all partsraply theory except for trees.

14

3.3.8 Greedy
“Greedy algorithms arfast, generally linear to quadratic and require lidldra
memory. Unfortunately, they usually aren't corr&eit when they do work, they are

often easy to implement and fast enough to exéduiSACO, 2007]

Greedy algorithms look for what seems to be thé loeal solution in the hopes that it will lead to
the best global solution, and they do it very glyick fairly good description of a greedy algorithm
would be Backtracking, without the backtrackingtjmake a choice and keep going while hoping
it is the right choice. As the quote from USACO gests, they are wonderful when they work, but
they can be tricky to get right.

Only one problem from the 36 in the problem sek#oas though it can be solved this way, but |
suspect that there are others that | am not aldetert. | think this is because the flexible natoir
the greedy algorithm and the many ways in whidould be applied coupled with its tendency to

give the wrong answer if used incorrectly.

3.3.9 Mathematical

| have broken this category down into the subcategof: Advanced, Bases, General, Geometry
and Physics. These are all fairly self-explanatxgept for Physics which could be argued should
be in its own category. | have included it withimtflematics because at its core physics is just

maths with a bit of meaning attached to the numbers

Physics problems often have large equations in tfidmse equations are often differential
eguations or contain exponents. Sometimes thidewtl to the equations being unsolvable

analytically. Then numerical methods are calleddosolve the problem.

3.3.10 Parsing

Problems that require that data be read in fromrnpet file in a way that is not completely simple
will be in this category. This does not refer te t operation itself, but to the processing of the
input. For example, reading in the number “351®hiran input file is trivial, but reading in “three
thousand five hundred and twelve” and still endipgwith the integer value of 3512 is not.

3.3.11 Straightforward
| have also included a category like Cheng's calaaightforward to cater for problems that may
be too simple to assign to any algorithm classsa aomment to add onto the classification of a

15

problem to indicate that understanding of the gmetalgorithm, while potentially useful, is not

necessary to solve the problem.

3.3.12 Tree

This category refers specifically to those algarnighthat require the
construction and traversal of a tree data strucithes includes all
the possible methods of traversing a tree, i.eaditeand depth first
searches. While they are separate algorithms,areeglosely related.

Therefore | have put them into one category.

Figure 3.4 Tree Data Structure

3.4 Design of Classification

Here | will discuss how | went about doing my patjand why | did it the way | did.

To make my classification | had three resourcesltreied heavily upon. The first two are the
classifications by Cheng and Burch which have liBecussed in chapter 3, and the third is the set
of ACM problems that | have been working with. edsother resources, but only sparingly; these

three form the bulk of where my project came from.

First | developed a very basic classification @& #higorithms found in the problem set. Then |
began to work through the USACO website [USACO,7208olving problems and finding out
about the algorithms in Burch’s classification. Wérdoing this | made changes and adjustments to
the initial classification to include the new knege coming from the USACO website.

Information from Cheng’s classification was alssiaslated.

After solving several problems from the USACO wébsibegan to work on problems from the
ACM problem set. | continued to change and updaectassification as more problems were
solved and the need for changes became apparemenl through a cycle of solving problems and

then making changes to the classification severas.
| chose to include various categories in the di@sdion that are not algorithms at all but rather
descriptions of what is needed to solve the problEmese categories would be Big Numbers,

Game/Puzzle, Mathematical and Straightforward. Atgms can also be described as knowledge

16

that is needed to solve a problem. For this reabgpothesise that my classification is a

classification of what knowledge is needed to stétheproblems rather than a list of algorithms.

This is clear when looking at a few sample problelfrsblem 2001 — 5 is a good example, if the
programmer does not know how to handle the levakofiracy required (Big Numbers category)

the problem is virtually unsolvable.

Another example is Problem 2003 — 4. The probleaisdeith data that has been encoded into
frequencies or tones. The problem statement deschibw to retrieve the data, it is rather
complicated mathematics. If the programmer doe®noannot understand how to extract the data
then this problem will become extremely hard.

So in many cases the category | assigned a prdblencategory to describe the knowledge needed,

and not just the algorithm needed, to solve thélpro.

Both of the problem statements for these examg@ade found in Appendix B.

3.5 Conclusion

Looking at the distribution of problems over theivas categories, it is clear that mathematics
plays a big part in the ACM ICPC. This could forne tbasis of future work; this is discussed
further in chapter 7. The other categories thaufea prominently are a good indication of the sort
of preparation that would be necessary for programsrthat wish to participate in the ACM ICPC.
That more than just algorithmic and programmingvdedge is needed to solve the problems in the

ACM ICPC is an important finding of this project.

17

4. Evaluation of the Algorithms and Problems

4.1 Introduction

This chapter will look at how | evaluated the algons and problems. | will discuss several very
interesting findings: that algorithm type does determine problem difficulty, that problem
difficulty is closely related to the time takenawive at a working solution and that problem

difficulty is not an average of its parts but rattiee weighted average of its parts.

4.2 Method of Evaluation

When | began this project | fully expected to fihet some algorithms were simply harder than
others and that problems involving them would beextbfficult. | have found that this is not the
case. There are some algorithms that are leskn@in than others, and some are a little more
complicated. However, once a previously unknowiotigm has been studied and understood then
it ceases to have and impact on problem difficiltyroblem can be made very easy or incredibly

hard and still use the same algorithm.

| have found that these are significant factoratned) to algorithms that make problems difficult:
* Is there a standard algorithm that can be used®s d new one need to be designed?
* How obscure is it as to which algorithm should bed?
* How well does the algorithm suit the problem? Dibeeed lots of customisation to make it
work?
* How many algorithms need to be used?

* If more than one, how are they related? Is one ursde another or are they sequential?
It is clear that none of these are affected by twisjoecific algorithm is being used, although
determining the algorithm type is mentioned. Itherefore not very useful to talk about the

difficulty of a specific algorithm, but rather ondf specific problems.

| have developed a method of grading problem diffyc It incorporates the discussion of the

previous few paragraphs but is based largely oa.tBecause the ACM competition has fairly tight

18

time constraints with a little under an hour aval#ato solve each problem, problem difficulty is
closely related to the time taken to arrive at akivig solution. The longer it takes to solve a

problem the greater the cost to the competitioa abole.

This leads to the following times being good intlica of a problem’s difficulty:
* How long did it take to read and understand thélera?
* How long to identify/develop the algorithm?

* How long to code the algorithm correctly?

If any one of these three times is large then kesahe problem difficult.

This forms the basis for my method of grading peabdifficulty. More complicated problem
statements will cause the time taken to underdfamgroblem to increase. If the required algorithm
is well hidden, needs lots of customisation or ¢®@mbination of algorithms then it will increaseth
time taken to identify/develop the algorithm(s)tHé algorithm is difficult to code or the input is

given in a difficult to process format then the iomptime will be increased.

This leads me to the three main sections that proldifficult can be broken down into.
The difficulty of

* understanding the problem statement (S)

» the algorithm identification/design (A)

» coding the chosen algorithm (C)

Each section is closely related to the time takesctomplish the task described in that section.
Sometimes these three sections overlap a littlpaftticular the sections dealing with algorithmic
and coding difficulty interfere with each other.eralgorithm can almost always does affect the

coding and the coding may cause the algorithm tmbeified, but they are still separate processes.

| have given each of these three parts a difficudting out of ten. Large numbers indicate greater
difficulty. These numbers are based on the timenak complete that part of the problem, with
subtle difficulties within that section causing thedue to be raised slightly. An example would be
the problem statement of the problem discussed3if3 5t would normally have received a very
low difficulty rating but it was increased to 4/idr the reasons described in 5.3.3.

19

Total problem difficulty is a combination of thegee ratings. However it is not just an average of

the three or even a simple weighted average.

It is rather a dynamically weighted average ofttiree. If part of the problem is very difficult the

that part’s contribution to the total difficulty shld be larger than that of the other parts.

At first a simple average was tried as a way of lming the difficulty ratings of the three differten
parts of each problem. This did not work very wdtien the three ratings were very different form

each other.

The problem discussed in section 5.4.2 (Problent 2090) illustrates this nicely. The problem
discussed there actually has a fairly easy solutiahis not hard to code, but only one team even
attempted to solve it. This is because the proldtatement is five pages long and is very difficult
to understand quickly. While the algorithmic andliog parts of the problem were easy,
understanding the problem statement was not. Ehsed the problem as a whole to become very

difficult, far more difficult than the average ¢fet three parts of the problem.

Following that, a maximum was tried. Taking theatddifficulty of a problem to be the maximum
of the three ratings is almost satisfactory. lveslthe problems that taking a simple average
caused, but still was deficient in one way whicbhest described through an example. Two

problems, one clearly more difficult than the othveitl end up with the same difficulty rating:

Problem statement: 9/10 Problem statement: 9/10
Algorithm design: 2/10 Algorithm design: 9/10
Coding: 3/10 Coding: 9/10
Total difficulty: 9/10 Total difficulty: 9/10

To get around this problem | decided to use thegatself as the weighting factor. This caused the
contribution from the less important smaller rasing be diminished. This is done by multiplying
both the numerator and denominator by the squattgeafiumerator. At first | tried just the
numerator as the weight but the smaller ratindishstd too much of an effect on the difficulty.
These values are then used to calculate the tiéfiautty of the problem. An example of how this

is applied is on the next page.

20

Problem statement: 3/10 x3x3 = 27/90
Algorithm design: 4/10 x4 x4 = 64/160
Coding: 7/10 x7x7 =_343/490

Total difficulty: 434/740~> 5.9/10

4.3 Conclusion

The finding that the type of algorithm needed ttva@ problem does not determine problem
difficulty was surprising and interesting. It waetmotivation behind the development of the
method of grading problem difficulty. The otherargsting finding was that problem difficulty is

closely related to the time taken to complete tiublem.

21

5. Solutions to Selected Problems

5.1 Introduction

In this chapter | will discuss several problemsétail. For each problem | will explain exactly
what is needed to solve the problem, which partsak difficult and which are easy. | will
actually solve the problems in this discussion ailidinclude pieces of code that will help explain
some of the more difficult or interesting partseTdomplete problem statement and code for each
problem discussed here can be found in Appendix A.

The problems are discussed as for the ACM ICPCirBloéution must have a runtime of less than

two minutes and use less than 64mb of memory.

Please note this is not the only way to solve tipesblems, this is how | would solve them.

The problems that will be discussed are:
o 2006 - 2: Peasant (Green)
e 2006 — 4: Not quite ALE (Blue)
* 2006 —5: Delay (Orange)

| have selected some of the most difficult problethnese solved by the least number of teams in
the competition. This is based on this table from $outh African 2006 ACM ICPC website
[ACM, 2006] showing the number of correct solutidoseach problem in the 2006 competition. |

have bolded the columns that are related to these problems.

2006 — 1| 2006 — 2| 2006 — 3| 2006 —4 | 2006 — 5| 2006 — 6
Perfect | Peasant| Sudoku | Not quite Delay | Numbers
Squares ALE Game
of teams attempted problem 49 11 16 1 20 18
of correct solutions 32 0 13 1 4 11

Figure 5.1 The number of correct solutions to the @06 problems

Several problems from other years of the compaetitiee also quite challenging and would make

good examples.

22

5.2 Solutions

5.2.1 Problem 2006 — 2: Peasant
This problem was not solved by any of the teanth@2006 competition and was particularly

challenging.

Problem Statement:
“A well-known problem is to determine the maximuemmber of queens that can be
placed on a chess-board without any of them attgckny other. In this problem you

have to answer this question for a new type of €lpgsce, the peasant.

Unlike the other pieces, a peasant's valid movaagd from time to time. You will thus
be given the valid moves as part of the input. Baditl move consists of a paRR,(C),
indicating that the peasant may md¥eows forward andC columns right, provided

that this does not take the piece off the bodhe yalues of Rand C are further

constrained later on). Negative values indicate motion in the oppoditection. For
example, a knight in chess would be described eyw#tid moves (+/-1, +/-2) and (+/-2,
+/-1). Like a knight, a peasant moves directlyhe target square, even if there are other

pieces in between.

The input will consist of multiple cases. Each sastarts with a line containirlg, the
width and height of the board. The second line @iostM, the number of valid moves
that a peasant has. The nkklines describe the valid moves for this test ckseh line
consists of two space-separated integeemdC, which have the meanings described

above. The last test case is followed by a lingaiaimg only a O.

(The paragraph isimportant.)
The following constraints are in place: 1 N=<=12; 0 <=R<=1and N<C<N. For

each case, eacR,(C) pair is unique and not equal to (0, 0).
For each case, determine the maximum number ohpeathat can be placed on a

board without any peasant attacking (i.e. being &bimove directly to the square

occupied by) any other; write this number to thgpat” (italics mine)

23

This problem statement is not very hard to undedst@ihe only thing that needs clarifying is that a
single peasant move will be of the form (x, y) aad (xx, £y) as the example of the knight’s moves
could lead one to believe.

To solve this problem it appears as though oneseetést all possible arrangements of the
peasants on the board to cater for any really g&raombinations of moves in the test data. (It goes
without saying that if there is test data that beeak your algorithm, then that is the test dasd th
you will be given.) On a 12x12 board this means thare are 144 positions that need to be tested
for the first peasant and 143 that need to be atketd danger from the first peasant and then
probably tested for the second peasant and sohs gliickly escalates and causes the runtime of
the solution to grow larger than the two minuteetilmit.

The solution to this problem is found in the regions on the values of R and C. | have made
italicised comments in the problem statement tovdree reader’s attention to them. C can range
over the whole length of the board, but R is retd to either O or 1. This means that each peasant
can only affect its own row and the row immediat&fter its own. This completely changes the
problem and allows the board to be filled up setjaty row by row which drastically reduces the

computational complexity of the problem.

This problem is a Complete Search type problemisiad excellent example thereof. It is clear that
the whole board must be checked, and it is clesrtthis cannot be done within the two minute time
limit. Then additional information reduces the sitehe search to something that can be completed

within the time limit.

The computational complexity can be further redusechuse within a few rows the placement of
the peasants begins to repeat (I have only everisstart to repeat after one row, but there may b
input that could cause it to repeat after more joWwss then possible to simply replicate the
preceding rows over and over until the board ik Tthis step is not necessary, but could be done by

more zealous programmers.

The full solution is in Appendix A. Including codhere will not greatly aid in the understanding of

the problem.

Analysis of problem difficulty:

24

The problem statement is not difficult to understant is not wholly trivial. That it is possible to

be confused about the possible values of R andi€esat to receive a difficulty rating of four.

The algorithm design/detection part of the probilemwery hard. If one does not pay careful
attention to the bounds of R then one cannot dbligeproblem. Even when one is aware of the
bounds of R, there is lots of mental legwork theetahs to be done to realize how it affects the
problem.

The coding of this problem was fairly difficult. Ferming all the checks for peasants endangering
each other and placing the peasant was not trivi@lok quite a long time to determine how to
perform the search through the board while makihthe necessary checks. This contributed
slightly to the algorithmic difficulty as well aké algorithm was adapted to make the coding a littl

easier.

Difficulty rating for each section:

Problem statement (S): 4/10 x16 =64/160
Algorithm design (A): 10/10 x 100 =1000/1000
Coding (C): 8/10 x64 =512/640

Total difficulty: 1576/1656 9.5/10

25

5.2.2 Problem 2006 — 4: Not quite ALE
This problem is interesting in that it is actualiyt very hard. However, only one team solved it and
that team was the only team to attempt it. Thizeisause all the difficulty is in the problem

statement.

The problem statement is far too long (five padesjnclusion here so | will present a summarised
version to facilitate easy reading. To get an ioielaow daunting the unabbreviated problem

statement really is | refer you to the unabbredgeblem statement in the appendix.

Problem statement:

You must design a program that will decrypt enaegptadio messages. The purpose of the
messages is link establishment and as such thgycontain information necessary to set up a
communications channel between two radios. Allrdtdos have a call sign of between one and
three digits in length that is made up of the di§ito 9. These messages are presented to the

programmer as strings of encrypted hex values amst be decrypted to ASCII plaintext.

Each message takes the form of a series of womlgxAmple of a message in plaintext form is:
TO 1
DATA 3
TO 1
DATA 3
TIS 4
DATAS
REP 9
What this means is that radio “13” is being caligdradio “459”. The address of the receiver is

repeated before the sender identifies itself.

Each line in the above example is taken to be aorel vEach word is represented by one byte of
hexadecimal, each byte being divided into two paines upper four bits and the lower four bits. The
upper four bits carry the command part of each vemord the lower four carry the data associated

with that command.

“TO 1” is one word. The command part is “TO” ané thata part is “1”.

TO is the command which designates the destinatidine message.

26

TIS is an abbreviation of THIS IS and designatessiburce of the message.

DATA carries additional data for the preceding coameh A message to “1” would not need a
DATA command after the TO, but a message to “13uMo

REP is an abbreviation of REPEAT and this commakddg on the meaning of whatever command

precedes it. A message to ‘123’ would need a TDA&A and a REP.

Before the plaintext is encrypted it is convertedhéxadecimal with each word becoming one byte

as described above. The commands correspond folliheing hexadecimal codes:

TO =0x00
TIS =0x10
DATA = 0x20
REP =0x30

In the programming languages used for the ICPC rusntreceded by ‘Ox’ are taken to be
hexadecimal values. All the numbers here that sregoled by ‘Ox’ are hexadecimal.
The data part of each word is simply the hex valube data:

0 = 0x00

9 = 0x09

When these parts are logically ORed together usibigwise-OR then we get the full hexadecimal
word:

TO 1 =0x00OR 0x01 = 0x01

DATA 3 = 0x20 OR 0x03 = 0x23

And so on.

The hexadecimal values are encrypted by usingdbityeeversible XOR operation (bitwise), with
one of three keys. The keys are ten words long.fiftword of each message is XORed with the (n
mod 10Y" word of the key with n of the first word being edjto 0. Which word is being used to
encrypt each part of the message is called theephlagEh ranges from 0 to 9.

27

Key # | Key phase

0 1 2 3 4 5 6 7 8 9
1 Ox2a| Ox15| Ox2a| 0x22| 0x15| Ox11| Oxla| Ox2d | Ox25| Ox1le
2 0x17 | Ox2e| 0x15| Ox17| OxOf | Ox28| 0x2d | Ox1le | Ox3b| Ox2f
3 0x11| Ox2c | 0x13| OxOc | Ox23 | Ox28 | Ox3f | Ox16| Ox07 | 0x32

Figure 5.2 The three possible keys (one in eacbw) used for encrypting the messages

So if using key number 2, then the first word @& thessage would be XORed with 0x17 and the
second with Ox2e and so on. (bolded in the tabbeel

To help the receiving radio pick up the whole siditascans through several channels and could
miss the first few words), the first word may bpeated a number of times. The phase of the key
used to encrypt these preceding words is selectd#ubs the first word of the real message uses
phase 0 and all the preceding words use an altegnaitase of O or 1. Here is an example that
illustrates this where | have bolded the part #hatuld be noted.

Phase
TO 1 1|
TO 1 0 |=> preceding repetition of first word
TO 1 1 |
TO 1 0
DATA 3 1
TO 1 2
DATA 3 3
TIS 4 4
And so on.

You are presented with several lines of encrypedtiecimal numbers with each line terminated

by ‘Oxff’ and must produce output similar to thegimal plaintext described above.

28

For example:

0x10 0x2d 0x04 0x2b Oxff

should be decrypted to

TO 1
TO1
TIS 7
DATA 7

That concludes the problem statement.

To further help in the understanding of the probldmave made the table on the next page which
depicts the progression from plaintext to encryptestsage when using the second key to perform
the encryption. | have bolded the preceding repetibf the first word to make it clearer and

separated it and the other two parts to aid irutigerstanding of the problem.

Plaintext Hexadecimal Word from Encrypted
OR _ Phase
Message Encoding key Message
TO 1| 0x00 OR 0x01 0x01 0x2e Ox2f
TO 1| 0x00 OR 0x01 0x01 0 0x17 0x16
TO 1| 0x00 OR 0x01 0x01 0x2e Ox2f
TO 1| Ox00 OR 0x01 0x01 0 0x17 XO R 0x16
DATA 3 | 0x20 OR 0x03 0x23 1 Ox2e 0xod
TO 1| 0x00 OR 0x01 0x01 2 0x15 0x14
DATA 3 | 0x20 OR 0x03 0x23 3 0x17 0x34
TIS 4| 0x10 OR 0x04 0x14 4 OxOf Ox1b
DATA 5 | 0x20 OR 0x05 0x25 0x28 0xod
REP 9| 0x30 OR 0x09 0x39 6 Ox2d 0x14
> > > > > >

Figure 5.3 The process of encrypting a plaintexhessage

29

If all that can be understood then solving the alghwoblem is quite easy. What needs to be done is
the exact reverse of what has already been dothe tmessage. The only difficult part is
determining which key is being used for the endoypand whether the phase starts with O or 1

(because of the preceding repetition of the firstdy.

This is easily solved when it becomes apparentthigae are only six ways of encrypting the first
word, three keys with either of the first two phabeing used. Just test all of them and see which
give valid output. It is possible that the wrongph or key could yield valid output for only one

word so expand the test to include the second wbtlde message as well.

On the next page there is C++ code which deternthreekey used for the encryption and returns
the phase of the first word. If it fails to finckay and phase it returns that phase as 3, which is

clearly invalid.

i nt findKeyPhase()
{
/lfor all 3 keys
for (int i =0; i < 3; i++)
/land the first 2 phases of each key
for (int j =0; j < 2; j+4)
{
/I XOR the first word of the nmessage with a word fromthe key
int temp = nmessage[0] ~ lookup[i][j];
/ /| separate the command and data parts of the word
int templ = tenmp & OxfO;
int temp2 = tenp & OxOf;
//if the output is valid
if(tenpl == 0Ox00 && tenp2 < 0x0a)
{
/1then check the second word of the nmessage for valid output
/Iwhen using the sane key but the opposite phase
temp = message[1] ~ lookup[i][!j];
templ = tenmp & OxfO;
int temp3 = tenmp & OxOf;
if ((tenmpl == 0x00 && tenmp3 == tenp2) //check for repetition
[] ((templ == 0x10 || tenpl == 0x20) //check for start of rest
of message
&& tenp2 < 0x0a))
{
//set the phase and return the key
phase = j;
return i;
}
}
}
/lreturn sonething that is clearly wong if no key is found
return 3;
}

Figure 5.4 C++ code that determines the key and pba used to perform the encryption.

30

Then once the key and phase have been determihtthtaemains is to decrypt the message and

convert it to plaintext. This is quite simple.

The only difficulty with the decryption is deternniig when the preceding repeated words stop.
This can be checked for by looking for valid outpidten on phase 1 that is either DATA or TIS as
these are the only commands that ever follow TO.

The decrypted hexadecimal needs to be ANDed with &rd 0x0f to get the command and data
parts of each word respectively. The command pert heeds to be converted to its plaintext. This
is done by comparing it with a table of the hexaweat codes and then outputting the correct value.
The data part must just be printed as a singlend@anteger which requires no further processing.

Analysis of problem difficulty:

The algorithm (A) and coding parts (C) are veryedsey require no special tricks or techniques.
The code could be slightly difficult when designihg conditions for all the checks, but not overly
so. The problem statement (S) however, is very.Hardn this shorter version that | have presented
is quite hard to get through quickly. In competiticonditions the time needed to read and
understand this problem statement is very longvamy costly. All but one team never even got
around to the coding stage and | submit that thizecause of the length and complexity of the

problem statement.

Difficulty rating for each section:

Problem statement (S): 10/10 x 100 = 1000/1000
Algorithm design (A): 2/10 x4 =8/40

Coding (C): 3/10 x9 =27/90

Total difficulty: 1035/1136> 9.1/10

31

5.2.3 Problem 2006 — 5: Delay
Only four teams solved this problem in the 2006 petition. None of the Rhodes teams solved it.

Problem Statement:

“You are at a LAN party where nobody has brougkivach big enough for everybody
to plug into. Instead, you have built a complicatetivork by connecting multiple
switches together. What is worse, the network cabte of dubious quality, and

introduce delays into the network when packets rbasetransmitted.

You are trying to determine whether the networkopems will be serious enough to
affect gameplay. Given a description of the netwdgtermine the maximum delay

between any two devices on the network.

The network consists of N devices (computers otches), connected by N-1 cables.
There is exactly one route from any device to anytleer device The delay between
two devices is the sum of the delays of the cafalssume that switching does not

introduce any delay).” (bold mine)

One clarification: for the purposes of solving tireblem, whether a device is a switch or computer

is irrelevant, they are only interested in the gdlatween any two devices.

This problem statement is easy to understand. énstolbod exactly what was wanted after a single
reading. “Classic graph theory problem!” is wh#ttdught after reading this. A weighted network,
either find the minimum spanning tree and then astephe longest path through the tree or just

find the shortest path from each node to everyratbde.

Figure 5.5 The network after one reading of the
problem statement

32

However, we are also told that:

“2 <= N <= 100 000"
and that there amaultiple test cases
Here is when it becomes apparent that all the UStegbh Theory algorithms (Djikstra and others)
will not work because the size of the network i3 large to complete the calculation in less than
two minutes. All the standard algorithms will corpthe solution to this problem at best €(n
which is much too slow when N can be as large &0D0 and there can be several test cases.
Now is when you go back and read through the prolg@atement very slowly and think about each
sentence. The important thing that contestantstde®’ at first see is this line which | boldedha t
problem statement:

“There is exactly one route from any device to ather device.”

This means that the network has no cycles andead a minimum spanning tree, which makes

this problem solvable.

/

BN

cables——
N

nodes

Figure 5.6 The network without any cycles (acyclic)

This diagram, Figure 5.6, can be viewed as a tyeselecting any node as the root and letting the

rest of them hang off it as in Figure 5.7 (nextgag

33

Figure 5.7 The network as a tree

An easy way to find the longest delay is to se#@ineltree once for each node, with each node
getting its turn as root and finding the longestrtoh. This is O® and while it would be a little
faster than algorithms used for graphs with cydtds,not fast enough. Using a complicated depth
first traversal of the tree a solution can be fotlmat is O(n) and that will compute the solution

within the time constraints.

| have programmed this traversal as a recursivetiimmthat calculates two things:
* The longest delay between any two nodes in eaclreab(calledound in my code)
* The maximum delay between the root of the subanekany of the other nodes in the sub

tree. (calledip in my code)

It then passes these two values up to the prelewas$in the recursive traversal which in turn uses
them to repeat this process.

The original call on the function then returns tvaues: the longest delay from the root to any
other node and the longest delay between any atias in the tree. The solution to the problem is
then the larger of these two values.

In my program, the tree was stored as an arrap@dés, each with a linked list attached to it toesto
the locations in the array of that nodes childidns form of storage made the reading in of data
from the input file fairly simple while giving thest of the program easy access to the data.

The code that follows is the C++ code for the remer function. The strughfo is simply used to

allow two values to be returned from the functi®he nodes in the linked list that relates parent
nodes to their children are structs calbatle. Eachcable contains the location in the array of the

34

other node that it is connected to and the delagaated with thatable. The function is called
with the index of the root of the tree as its targe

info depthFirst(int target)
{
int tip =0, round = O;
/1l set curr equal to the first cable in the
/1 linked Iist belonging to the node specified by target
cable * curr = network[target]. head;
/1 while the linked |list has not been exhausted
while (curr !'= NULL)
{
/1l ask the current sub tree root for its info
info tenp = depthFirst(curr->dest);
/1l calculate the | ongest node to node del ay
round = max(tip + tenp.tip + curr->del ay, tenp.round);
/1l calculate the |ongest delay from
/1 root to any node in sub tree
tip = max(tip, tenp.tip + curr->del ay);
curr = curr->next;
}
info result;
result.tip = tip;
result.round = round;
return result;
}

Figure 5.8 The code for the traversal over the tree

This solution is O(n) and should compute the answ#rin the two minute time limit. The 64mb
space limit should not be a problem. Even withrttaximum of 100 000 instances of the function
running at once, it allows for each function caillgpone element from the array to use up ~640

bytes of memory, which it does not.

Analysis of problem difficulty:

When the difficulty of this problem is analysede fbroblem statement (S) is easy to understand
(except for the easy to miss part that leads toéteork being a tree), but the algorithm (A)
needed to solve the problem is quite complicatée. dlgorithm is not just a standard algorithm that
needed a little tuning to make it work; it is a wlhaew algorithm that is piggy backing on a depth
first traversal. The coding (C) for this is alsatqudifficult in that it needs to be efficient andlata

structure needs to be designed to suit the ingatatad the algorithm.

35

Difficulty rating for each section:

Problem statement: 4/10 x 16 = 64/160
Algorithm design: 9/10 x 81 = 729/810

Coding: 8/10 x 64 =512/640

Total difficulty: 1305/1616» 8.1/10

5.5 Conclusion

The method that | used to rate problem difficulbyp@ars to work well. The difficulty of the three

problems corresponds well with the number of cdrsetutions.

Something worth pointing out is that the probleatesthents are sometimes quite obscure. Often
they could be improved by the inclusion of diagramsharts to make them less obscure. There is
the distinct possibility that the obscurity is telffate and is being used as a way of increasing
problem difficulty. If this is the case then ittsbe decried. It would be better to design prolslem
so that their difficulty is located in the algomtic and coding parts of the solution rather thathe

obscurity of the problem statement so as to bedstrthe skills of the contestant.

36

6. Conclusion

This project has been an investigation into thetlsédrican regional ACM ICPC. The ACM ICPC
is a very popular and challenging competition trest participants from thousands of universities

all over the world.

Rhodes University has participated in the regi@vaint for since its inception and students have
performed admirably. However, there has been n&wone at Rhodes in the area of analysing the
ACM ICPC and there is no material available fomirag participants. This project has provided a

start in this direction.

Similar work has been done by Hal Burch of the US#nputing Olympiad and Howard Cheng, a
man who has been heavily involved with the ACM ICBGth produced classifications or lists of
algorithms appearing in their respective competgithat have been very useful to me in the

creation of my own classification of the ACM proivie.

My classification is a classification of the knodtge needed to solve the problems in the problem
set. The very large number of problems that neetesorm of mathematics to solve them indicates
that mathematics plays a big part in the ACM ICPKe other categories that featured prominently
are a good indication of the sort of preparatiat thould be necessary for programmers that wish
to participate in the ACM ICPC. That more thart pigorithmic and programming knowledge is
needed to solve the problems in the ACM ICPC isrgiortant finding of this project.

One of the main objectives of the project has heemalyse the algorithms used in the ACM ICPC
for their difficulty for humans to understand thehimerefore there has been little mention of Big-O

notation or of computational complexity in this jad.

While pursuing this objective of analysing difficpgfor humans | found that the type of algorithm
needed to solve a problem does not determine proditiculty. This was unexpected and
interesting. It motivated me to developed a metbiogkading problem difficulty that is based on
the time that it takes a programmer (as opposéaetountime of the solution) to solve a problem. |
determined that each problem can usually be brdkem into three separate stages, each with its
own associated difficulty rating. These stagesuaerstanding the problem statement, designing
or detecting the algorithm needed to solve thelproland coding the solution. When these three

stage-difficulties are combined they are combirned aeighted average where the weighting factor

37

is the square of the difficulty rating itself. Traows more difficult parts of problems to affélae

difficulty more than the easier parts.
| have solved several problems and have discubsed of them in this project. | have used them to

illustrate the sort of techniques needed to sotedlpms and to prove the usefulness of my method

of grading problem difficulty.

38

7. Future Work

(a) Develop material for training ACM participants.
(b) There are thousands of other problems availablanalysis.
(c) Investigate the mathematical categories in ndetail. This is in view of their frequent

recurrence and that the countries that do weltmattgonally in the ACM ICPC have a strong focus

on mathematics.

39

8. References

ACM ICPC International Factsheet, Published: unkmofccessed: 31-10-2007,
<http://icpc.baylor.edu/icpc/About/Factsheet.pdf >

ACM ICPC South Africa, Published: unknown, Access&sl10-2007,
<http://acm.cs.up.ac.za/2006/index.html>

Black, Paul E, ed., U.S. National Institute of Starls and Technologfictionary of Algorithms
and Data Structures, Published: 2007-02-12, Accessed: 2007-06-24 pghitww.nist.gov/dads>

Burch, Hal, Published: 1999, Accessed: 2007-06-24,
<http://ace.delos.com/usacotext2?a=L3LjaPPIHL3&$bpPr

< http://ace.delos.com/usacotext2?a=pRwk7Xv3avS&Sedy>

Login Required. Local copies at: <http://www.csaiza/research/g04h2708/USACO.html>

Cheng, HowardProblem Classification on Spanish Archive, Published: 2006-12-17, Accessed:
2007-06-24, <http://www.cs.uleth.ca/~cheng/conkésts. html>

Skiena, Steverstony Brook Algorithm Repository, Published: 2001-03-07, Accessed: 2007-06-24,

<http://www.cs.sunysb.edu/~algorith/>

Top Coder, Published: unknown, Accessed: 2007-06-24
<http://www.topcoder.com/tc?module=ProblemArchive>

40

Appendix A

This appendix includes the following (in this order
* Problem Statement of Problem 2006 — 2
» Solution to Problem 2006 — 2
* Problem Statement of Problem 2006 — 4
» Solution to Problem 2006 — 4
* Problem Statement of Problem 2006 — 5
» Solution to Problem 2006 — 5

Appendix B

This appendix contains the following problem statats:
* Problem 2001 -5
* Problem 2003 -4

42

