
An Investigation into the use of
Intelligent Systems for

Currency Trading Analysis

Submitted in partial fulfilment
of the requirements of the degree of

Bachelor of Science (Honours)

of Rhodes University

Jonathan James Millin

Grahamstown, South Africa
November 2008

Abstract

Investors use a number of technical trading tools to help them in their decision-making.
This thesis aims to enhance this decision making process through the application of Ge-
netic Algorithms (GAs) and Artificial Neural Networks (ANNs) to optimise and amal-
gamate trading signals generated by technical trading tools for maximum profit in the
currency futures market. These signals are generated by different technical trading tools,
and are optimised for maximum profit through the use of Genetic Algorithms. Once
optimised, the signals are fed into a variety of fully connected feedforward ANNs, which
combine these signals, outputting a single signal of whether to buy, hold or sell in the
current market state. The different solutions produced are compared and contrasted, to
determine the best ANN architecture for this type of signal amalgamation problem, and
the optimal population size and mutation function for the GA.

The result is an autonomous trading system with intelligence. This system, as created in
this thesis has proven to be profitable based on data presented to it which spans a period
of five years. The profit margins are statistically significant when compared to to un-
optimised trading rules as suggested by literature. Further, the margins are statistically
significantly more profitable than other no-risk investment strategies.

Acknowledgements

I would like to thank Michael Winn for his extensive help in understanding the Economics
and Econometrics behind this system; and the friends who took the time to proofread
this thesis.

My supervisor, Dr. Hannah Thinyane, for her input, guidance and most importantly her
patience with me throughout the year.

I would also like to thank the Computer Science department of Rhodes University for
the resources that made this research possible; this includes the departmental sponsors:
Telkom SA, Comverse SA, OpenVoice, Stortech, Tellabs, Amatole, Mars Technologies,
Bright Ideas Projects 39 and THRIP through the Telkom Centre of Excellence at Rhodes
University.

Last but not least I would like to thank my parents: Roger and Wendy Howson for their
sponsorship of my academic career and continued support in all aspects of my life.

Table of Contents

Table of Contents i

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Problem Statement . 1

1.2 Background . 1

1.3 Specific Objectives . 2

1.4 Scope of Research . 3

1.5 Contributions . 3

1.6 Thesis Structure . 4

2 Introduction to Concepts and Related Work 5

2.1 Evolutionary Computing . 5

2.1.1 History of Evolutionary Computing 6

2.1.2 Notation for Evolutionary Computing 7

2.1.3 Different Methods of Evolutionary Computing 8

i

TABLE OF CONTENTS ii

2.1.3.1 Evolution Strategies . 8

2.1.3.2 Genetic Programming . 10

2.1.3.3 Genetic Algorithms . 11

2.1.4 Summary and Applications . 16

2.2 Technical Analysis . 16

2.2.1 Different Methods of Technical Analysis 17

2.2.1.1 Filter Rules . 18

2.2.1.2 Trending . 18

2.2.1.3 Relative Strength Index (RSI) 18

2.2.1.4 Moving Average Convergence / Divergence (MACD) . . . 18

2.2.1.5 Momentum (MOM) . 19

2.2.2 Summary and Application . 20

2.3 Artificial Neural Networks . 20

2.3.1 History of Artificial Neural Networks 21

2.3.2 Network Architectures . 23

2.3.3 Learning Processes . 25

2.3.3.1 Supervised Learning . 25

2.3.3.2 Unsupervised Learning . 26

2.3.3.3 Reinforcement Learning 27

2.3.3.4 Genetically Trained ANNs 28

2.3.4 Summary and Applications . 29

2.4 Artificial Intelligence in Technical Analysis 30

2.4.1 Summary . 31

2.5 Summary . 31

TABLE OF CONTENTS iii

3 Design and Implementation 33

3.1 Technical Trading Tools . 35

3.1.1 Filter Rules . 35

3.1.2 Trending . 36

3.1.3 RSI . 36

3.1.4 MACD . 37

3.1.5 MOM . 38

3.1.6 Summary . 38

3.2 Artificial Neural Networks . 38

3.2.1 Type of Artificial Neural Network 39

3.2.2 Architecture of the Artificial Neural Network 39

3.2.3 Summary . 39

3.3 Simulation Environment . 40

3.3.1 Formatting Signals . 40

3.3.2 Calculating Profit . 41

3.3.3 Summary . 42

3.4 Genetic Algorithms . 42

3.4.1 Summary . 44

3.5 Methodology . 45

3.5.1 Test Data . 45

3.5.2 Test Procedure . 46

3.5.3 Shifting between Currencies . 47

3.5.4 Summary . 47

3.6 Summary . 47

TABLE OF CONTENTS iv

4 Optimal Systems Architecture 49

4.1 Trading Rule Optimisation . 49

4.1.1 Filter Rules . 49

4.1.2 Trending . 50

4.1.3 RSI . 51

4.1.4 Summary . 53

4.2 Artificial Neural Network Optimisation 53

4.2.1 Summary . 56

4.3 Genetic Algorithm Optimisation . 56

4.3.1 Varying Population Size . 56

4.3.2 Changing the Mutation Function 58

4.3.3 Optimised Parameters vs Current System 58

4.3.4 Summary . 61

4.4 Summary . 61

5 Results 63

5.1 System Performance . 63

5.1.1 Summary . 67

5.2 Comparison with Existing Trading Strategies 68

5.2.1 Summary . 69

5.3 Summary . 69

6 Conclusion 70

6.1 Problem Statement Revisited . 71

6.2 Future Work . 72

References 73

List of Figures

2.1 The effects of the change in step size on the Gaussian distribution. 9

2.2 An example of a program represented by a tree structure. 11

2.3 An example of the RSI rule. Used with permission [47] 19

2.4 An example of the MACD rule. Used with permission [47] 19

2.5 An example of the MOM rule. Used with permission [47] 20

3.1 Overall Design of the System . 34

3.2 Overall Design of the Genetic Optimiser 34

4.1 Filter Rule Profit at window lengths one through 99 days, for each of ten
currencies . 50

4.2 Trending Rule Profit at window lengths one through 99 days, and one
through 50 days, resulting in the mean profitability over the ten currencies 51

4.3 Relative Strength Profit at window lengths one through 99 days, for each
of ten currencies . 52

4.4 Histogram comparing the profit per period for the training data set of the
four different ANN architectures . 54

4.5 Histogram comparing the profit per period for the test data set of the four
different ANN architectures . 55

4.6 Graph showing the profits generated when altering the population size of
the GA . 57

v

LIST OF FIGURES vi

4.7 Graph showing the Standard Deviation of the profits generated when al-
tering the population size of the GA . 57

4.8 Graph showing the profits generated when altering the mutation function
of the GA . 59

4.9 Graph showing the standard deviation of the profits generated when alter-
ing the mutation function of the GA . 59

5.1 A Scattergram showing the relationship between risk and returns for all
currencies over all periods . 66

5.2 A Scattergram showing the relationship between the average risk and re-
turns for all currencies . 66

5.3 A Scattergram showing the relationship between the number of transactions
and returns for all currencies over all periods 67

List of Tables

3.1 Interest rates, transaction costs and standard deviations of each of the 10
currencies . 46

4.1 Overall Results for Neural Networks with varying architectures 54

4.2 Results comparing the most profitable and stable parameters for the GA . 60

5.1 Results of most profitable system, returned as means of result per currency 64

5.2 Results of most profitable system, returned as the mean values of result
per period . 65

5.3 Comparison between profits generated by the Intelligent System and those
generated by un-optimised trading rules with parameters recommended in
literature . 68

vii

Chapter 1

Introduction

1.1 Problem Statement

Although academics argue as to its effectiveness, technical analysis is used as a successful
trading strategy by many foreign exchange traders [6]. While there are many technical
tools available, few systems exist which intelligently link analysis from a number of tools,
providing a single specific outcome. Even fewer are profitable, and all come under severe
critisism [49]. The aim of this research is to build a system which will generate significantly
profitable buy, hold and sell signals for the foreign exchange market through the use of
technical analysis, while taking into account all previous criticisms. Artificial Intelligence
(AI) provides the optimisation and interpretation techniques to improve and combine the
signals generated by technical trading rules.

1.2 Background

“The goal of artificial intelligence (AI) is the development of paradigms or
algorithms that require machines to perform cognitive tasks, at which humans
are currently better” [21].

The AI techniques investigated in this thesis are those of Evolutionary Computation
(EC) and Artificial Neural Networks (ANNs). EC has been successfully employed as
an optimisation tool in many different fields [3], including the field of technical analysis

1

1.3. SPECIFIC OBJECTIVES 2

[48]. ANNs are proven universal approximators [11], thus if a function or mechanical
thought process exists, it can be approximated by an ANN. These two AI techniques will
be applied to optimise and amalgamate signals generated by technical trading tools, to
provide technical analysis of the foreign exchange market.

Technical analysis is a collection of algorithms and mechanical rules which attempt to
aid investors in forecast future market movements, using only historic data. Academia
however, has found mixed results from technical analysis, arguing that such attempts find
no sufficient basis for profitability [14].

A great deal of research into the efficacy of technical trading rules has been recently un-
dertaken, of which many studies find evidence of profitability [49]. These results discount
the academic belief that asset price behaviour is determined solely by market fundamen-
tals, supporting the arguments of practicing investors that asset price information can be
analysed and exploited to obtain profit [46].

Several previous attempts have been made to aggregate the information generated by
technical trading tools in order to produce more powerful prediction tools. These systems
have however, been scrutinised for either data snooping, or overlooking the transaction
costs involved in trading [49].

This thesis aims to build such a system, taking criticisms of previous systems into account.
The system will analyse data using technical analysis, to produce a set of buy, hold and
sell signals for each tool used. The signals will then be combined and optimised with AI
techniques. It is the aim of the system to produce profit to a statistically significant level
when compared to a no-risk investment strategy.

1.3 Specific Objectives

In order to develop the proposed system, a number specific goals need to be achieved.
The first requirement is that technical trading tools need to be optimisable. If they
are optimisable, then it will be possible to tailor the parameters of these tools to best
suit the given data set. The second requirement is exploring the effectiveness of Genetic
Algorithms (GAs) as optimisers in the context of technical analysis. To further improve
the GA, optimal parameters need to be found. Once the GA is able to optimise the trading
rules effectively, it is necessary to intelligently combine the generated signals in the most

1.4. SCOPE OF RESEARCH 3

profitable manner. To find the most profitable signal combiners, different architectures
for the ANN need to be explored and exploited.

Once a profitable intelligent trading tool has been developed, it needs to be compared to
the un-optimised trading rules to identify whether the addition of intelligence provides a
statistically significant increase in the profitability of the system.

For the system to be deemed a success, it needs to generate profits greater than a no-risk
investment strategy, and greater than the un-optimised trading rules - to a statistically
significant level.

1.4 Scope of Research

As this thesis is primarily concerned with the intelligence aspect of an autonomous trading
system, different technical trading tools will not be compared and contrasted; rather a
few are selected and implemented, based on recommendations from literature. Therefore,
the resultant system is not intended to be an autonomous trader, but rather to test the
feasibility of such a system. The resulting system applies AI to technical analysis, and
assess the significance of its profitability.

Consequently, the system will only analyse asset price information. No other information
about the currencies or economies of the respective countries is analysed.

Further, it is out of the scope of this thesis to investigate different types of ANNs, different
methods of training them, and alternative optimisation techniques.

1.5 Contributions

This thesis finds that it is possible to create a profitable autonomous trading system.
This is accomplished by creating a technical analysis tool that generates signals which are
profitable to statistically significant levels.

In creating this intelligent trading tool, different architectures of fully connected feedfor-
ward neural networks are examined, providing insight into the problems of overtraining
ANNs.

This project also investigates relevant parameters for GAs, to identify the most efficient
method of mutating the chromosomes as well as the optimal population size.

1.6. THESIS STRUCTURE 4

1.6 Thesis Structure

The remainder of this thesis is organised as follows: Chapter 2 introduces important
concepts and work relating to this study. Chapter 3 documents the design and implemen-
tation of the developed system. Chapter 4 analyses this implementation, providing insight
into the optimal architecture of the system. Chapter 5 presents the results which were
discovered from the optimised system, with particular investigation into its performance.
Finally, the thesis is concluded in Chapter 6.

Chapter 2

Introduction to Concepts and Related
Work

The first section of this chapter investigates the history of Evolutionary Computation
(EC), different methods of EC, and how they apply to this work. This is extended in the
next section which describes Technical Analysis (the use of technical trading tools). After
which, the same investigation and comparisons are made for Artificial Neural Networks.
Previous systems of technical analysis are discussed, and particular mention is made
of their criticisms. Finally the review of literature and related work is concluded by
summarising the findings of this chapter.

2.1 Evolutionary Computing

The Darwinian theory of evolution explains the adaptation of species to their environment
by means of natural selection. This system favours those species which are best adapted
to their environmental conditions [12]. Darwin also recognized small, apparently random
variations in the characteristics of parents and their offspring, termed mutations. If these
mutated characteristics cause the offspring to be better suited to the current environment,
they prevail through the selection process; if the resulting offspring are less suited to
the environment, they perish [12]. In the evolutionary framework, the individuals in the
population who survive are said to be fitter than those who perish, as they are better suited
to their current environment. Thus the fitness of an individual is measured indirectly by
its growth rate in comparison to others (its propensity to survive and reproduce) [3].

5

2.1. EVOLUTIONARY COMPUTING 6

By applying natural selection and genetic variation, it becomes possible to evolve a pop-
ulation of candidate solutions to almost any problem; so long as that problem is able to
represent the fitness of that individual. Together, evolution strategies, evolutionary pro-
gramming (which later evolved into genetic programming) and genetic algorithms form
the backbone of the field of evolutionary computation [40]. These will be further discussed
in Section 2.1.3, and summarised with regards to application in Section 2.1.4.

2.1.1 History of Evolutionary Computing

Throughout the 1950’s and 1960’s, several computer scientists independently studied evo-
lutionary systems with the intention of optimising engineering problems. There were also
a number of evolutionary biologists who used computers to simulate evolution through
controlled experiments during the same time period [40].

In the 1960’s and 1970’s Ingo Rechenberg [53, 54] introduced Evolution Strategies as a
method of optimising real-valued parameters for airfoils. This was done by adding a nor-
mally distributed random value to each vector component of the real-valued parameters,
and selecting the fittest of the parent and child [53, 54].

Fogel, Owens and Walsh [16] developed a method of automatic-programming they called
Evolutionary Programming in 1966 by representing possible solutions as finite-state ma-
chines which evolved by randomly mutating state-transition diagrams and selecting the
fittest ones.

Genetic Algorithms (GAs) were invented by John Holland in the 1960’s [40]. They were
further developed at the University of Michigan in the 1960’s and 1970’s by Holland, his
students and his colleagues [23]. Holland was primarily interested in the study of adapta-
tion and evolution as it occurs in nature, and the ways in which these features might be
imported into computer systems rather than the solving of specific problems [40]. Holland
presented the GA as an abstraction of biological evolution, and introduced the notion of
a population-based algorithm as well as the genetic operators of crossover and inversion
[23]. Before Holland’s introduction of a population-based algorithm, evolutionary compu-
tation had only ever used a population of two individuals: one parent and one offspring,
where the offspring was a mutated version of the parent [40]. It is now common to see
large populations of individuals in all forms of evolutionary computing [40].

D. B. Fogel extended the works of his father in the realm of Evolutionary Programming in
the 1980’s [40]. In 1985, Cramer was the first to use the principles of GAs in conjunction

2.1. EVOLUTIONARY COMPUTING 7

with the principles of Evolutionary Programming to breed solutions as simple sequential
programs [10]. Fujiki and Dickinson, [18] among others, worked on similar problems in
the same time period [40].

In the early 1990’s, John Koza [31] spurred a resurgence in automatic-programming by
his works on evolving recursive Lisp programs using GAs and Evolutionary Programming
[31], via what he termed, Genetic Programming [40].

2.1.2 Notation for Evolutionary Computing

Notation for different methods of Evolutionary Computing (EC) can be fully character-
ized by the term (A)-B where A represents the selection and recombination methods,
and B represents the method of EC: ES for Evolutionary Strategies, GP for Genetic Pro-
gramming, and GA for Genetic Algorithms. As ES was the first method to be used, the
following notations will use ES to describe them, but the same notation applies to the
other EC methods.

The first mechanisms for EC were very basic, with a population size of two: the parent,
and an offspring which is a mutated and/or recombined version of the parent. The fittest
of the two became the parent of the next generation, and the weakest was disregarded.
This mechanism is fully characterized by the term (1+1)-ES [3].

(µ+ 1)-ES was the first method of EC having a population greater than two individuals,
in which µ parent individuals recombine to form one offspring. The offspring is then
mutated, and replaces the least fit parent individual if it is fitter.

(µ + λ)-ES selects the best µ individuals from the union of the parents and offspring
to form the parent population for the next generation. The parent population is then
recombined to produce λ offspring which are then mutated. (µ, λ)-ES is very similar,
and differs only in the selection procedure, where the best µ individuals are selected only
from the offspring population. Note λ > µ is necessary. Thus the selection process is
represented in one of two ways: selection takes place from the offspring population only
(comma notation), or selection takes place from the offspring and parent populations
together (plus notation) [3].

2.1. EVOLUTIONARY COMPUTING 8

2.1.3 Different Methods of Evolutionary Computing

As was previously introduced, there are three main branches of EC: Evolution Strategies,
Genetic Programming (which replaced Evolutionary Programming) and Genetic Algo-
rithms. This section describes the different methods in detail.

2.1.3.1 Evolution Strategies

Evolution Strategies (ES) were created in the 1960’s and 1970’s by Ingo Rechenberg and
co-workers Bienert and Schwefel [3]. ES was originally used to optimise shapes for minimal
drag bodies in a wind tunnel at the Technical University of Berlin in Germany [3]. The
resulting ES was a very basic (1+1)-ES [3].

This was followed by (µ + 1)-ES, which was inspired by Holland’s multimembered GAs.
(µ + 1)-ES was never widely used, but provided the foundation for the more common
(µ+ λ)-ES and (µ, λ)-ES methods [3].

Currently (µ, λ)-ES characterises the latest in ES research as it tends to converge faster
in a population greater than ten, and the optimal standard deviation can be calculated
numerically [3].

In ES, the parameters are represented as real-valued vectors. The evolutionary changes
between populations are due to mutation alone. Each element is mutated by adding a
random number taken from a Gaussian distribution with mean 0. The specialisation of
ES is that the step size of the mutation is self-adapting. z values are drawn from a normal
distribution N(ξ, σ), where the mean ξ is set to 0, and the variance σ (which is also termed
the mutation step size) is varied dynamically by the 1

5
success rule. This rule resets σ

after every k iterations according to Equation 2.1.


σ = σ/c if ps >

1
5

σ = σ ∗ c if ps <
1
5

σ = σ if ps = 1
5

(2.1)

In 2.1, ps is the percentage of successful mutations; for example those which have improved
the fitness, where 0.8 < c < 1. The effects of the step size on the Gaussian distribution
can be seen in Figure 2.1.

2.1. EVOLUTIONARY COMPUTING 9

Figure 2.1: The effects of the change in step size on the Gaussian distribution.

It should be noted that σ is appended to the end of the chromosome, and thus co-evolves
with the solution. σ is first mutated into σ′ before it is used to mutate x into x′ where
x′ = N(0, σ′). x′ is deemed good if f(x′) returns a better result than f(x), and σ′ is
deemed good if the x′ it created is deemed good. Thus σ needs to be mutated before x
can be mutated. σ′ can be calculated-as in Equation 2.2, where τ is the learning rate,
and σ′ is bound below by some ε0. There are alternative ways of mutating σ - all of
which involve some method of multiplying σ by the exponential of some scaled normal
distribution. However many normal distributions and learning rates can be used - the
exploration of which is out of the scope of this work.

σ′ = σ ∗ e(τ∗N(0,1)) (2.2)

EC uses a uniform random parent selection. This means that each parent chromosome has
an equal chance of creating an offspring. Parents are recombined by either choosing one
of the parent values, or by averaging the two values. This is determined by a randomly
generated number.

Survival occurs in an elitist manner. The child population is reduced in size by keeping
only the fittest individuals.

In general, Evolution Strategies represent their parameters as real values which are con-
strained by arbitrary inequalities. Individuals are created by recombining parents dis-

2.1. EVOLUTIONARY COMPUTING 10

cretely to form offspring, and mutating these offspring by adding normally distributed
random values to the parameters [3].

2.1.3.2 Genetic Programming

Evolutionary Programming was first developed by L. J. Fogel in 1966, which remained
dormant until his son D. B. Fogel extended it in the 1980’s [3]. Genetic algorithms and
Evolutionary Programming were used in conjunction by Cramer in 1985 [10], and others
during a similar time period [3]. Koza further developed these techniques and developed
Genetic Programming [40].

Koza claims that the solving of problems can be reformulated as: the search for highly fit
individual computer programs in the space of all possible computer programs; and that
Genetic Programming (GP) provides the means to do so [31].

In GP, Neo-Darwinian principles are applied to the breeding of large populations of com-
puter programs to find the fittest solution to a given problem [31]. The fitness is measured
by running the generated program over a number of test cases and applying some objec-
tive function to the results of the generated program; the higher the output, the fitter the
solution [31].

The programs which are evolved are traditionally represented as tree structures. These
tree structures are connected directed acyclic graphs where each vertex (node) has an
indegree of 1 or 0. A node is either a function or a terminal. A function node has an
outdegree of 1 or more and has a path to a terminal node. Terminal nodes have an
outdegree of zero. Function nodes are representative of operator functions, and terminal
nodes are representative of operands. As each subtree can be viewed as a tree, these tree
structures are highly recursive, and thus they are easily evaluated in a recursive manner
[31]. This can be seen in Equation 2.3 and Figure 2.2.

A+ 3

B ∗ 6
∗ A2 → (∗(/(+A 3)(∗B 6))(∗AA)) (2.3)

GP uses genetic operators of reproduction, recombination and mutation to breed solutions.

Reproduction involves selecting a program from the population of programs propor-
tionate to its fitness. This fitness is usually measured by running each program over a
number of fitness cases to get a more representative fitness of the solution [31].

2.1. EVOLUTIONARY COMPUTING 11

Figure 2.2: An example of a program represented by a tree structure.

The recombination of these computer programs is achieved by swapping randomly se-
lected subtrees between parent programs. This often results in a large variance in the
length of the programs [31].

Mutation is achieved either by changing a randomly selected terminal to a different
terminal, or by changing a randomly selected function to a different function. The set of
possible terminals and functions is created before the GP executes [31].

In general, the Genetic Programming paradigm breeds computer programs to solve prob-
lems through the recombination and mutation of trees of functions and terminals. This
makes them well suited to machine learning [31].

2.1.3.3 Genetic Algorithms

Genetic Algorithms (GA) were developed by Holland, his colleagues and his students in
the 1960’s and 1970’s at the University of Michigan [40]. Holland’s intentions were to
explain the adaptive process of natural systems, and to develop artificial systems which
use these adaptive processes to solve engineering problems [3].

These systems are generally used to optimise objective functions. The underlying pa-
rameters for these functions are encoded as bitstrings. Following biological terminology,
these bitstrings are called chromosomes [19]. A population is made up of a number of
individuals, where each individual is a chromosome.

Genetic operators of reproduction, crossover and mutation are applied to successive parent
populations, to create new child populations. This results in two parents being selected
and recombined to form two children. These children are then mutated to provide genetic

2.1. EVOLUTIONARY COMPUTING 12

variation. This process is repeated until a suitable fitness is reached, or a maximum
number of epochs is reached [40].

The suggested manipulation of these individual chromosomes at the string level exploits
similarities among high-performing chromosomes. This performance is termed the fitness
of a chromosome, and the better it performs, the fitter it is. [19].

The aforementioned chromosomes are usually bitstrings of binary 1’s and 0’s which rep-
resent real valued parameters. They can however, be represented in a number of different
ways. One such method is to comprise chromosomes as real-valued vectors. The formu-
lation of a bitstring from a number of parameters is called encoding [40].

As binary encoding is the most popular method of encoding, this method will be ex-
plained. When encoding a parameter into an n-bit chromosome, one is able to represent
2n − 1 different alternative values for that parameter; this is termed resolution. If all
possible values for the parameter are between an upper bound (UB) and lower bound
(LB), then there are 2n− 1 steps between LB and UB [40]. Hence each step has a value,
calculated by Equation 2.4.

UB − LB
(2n − 1)

(2.4)

Thus to calculate the actual value of an n-bit bitstring, first find the decimal representation
of the bitstring (x), then take that amount steps away from the lower bound [40]. Hence
the value of that parameter is represented by Equation 2.5.

LB + x
UB − LB
(2n − 1)

(2.5)

Reproduction is the process by which the two parent chromosomes are selected from the
population, according to their objective function values, and copied. Biologists call this
objective function the fitness function. The chromosome is decoded into its parameter
values, and evaluated by the fitness function, yielding a fitness value. By copying strings
according to their fitness values, a string with a higher value has a higher probability of
contributing one or more offspring to the next generation. This process mimics natural
selection, whereby a creature’s fitness function refers to its ability to survive and reproduce
in its current environment [19].

There are many methods of selecting the fittest individuals from the population:

2.1. EVOLUTIONARY COMPUTING 13

• Stochastic Universal Sampling is Holland’s original method of selection. In this
situation, the probability that an individual will be selected from the population is
fitness-proportionate. This means that the individual will be selected with the
probability of its fitness relative to the average fitness of the population. One
explanation of this is: the algorithms lay out a line in which each parent corresponds
to a section of the line, where its length is proportional to its scaled fitness value.
The algorithm moves along the line in steps of equal size. At each step, the algorithm
allocates a parent from the section it lands on. The step size is a random number
generated by a normal distribution, and is less than a maximum step size. [40].

• Roulette Wheel Sampling is a computer-friendly implementation of the Stochastic
Universal method. Each individual is allocated a percentage fitness of the total
population’s fitness. A random number between 0 and 1 is then generated, and all
the elements of the population are iterated through, adding their respective fitnesses
together until the random number is reached. The individual whose fitness is the
last to be added is then selected. This is representative of the expected selection
probabilities [40].

• Sigma Scaling includes the population mean and standard deviation, as well as the
fitness of the individual and the population when selecting individuals. This ensures
that the population does not converge too quickly [40].

• Elitism retains the same number of best individuals at each generation, to ensure
that best solutions are not randomly lost [40].

• Boltzmann Selection is similar to Sigma Scaling, but it varies the selection pressure.
This allows for a high selection variance at the beginning of the breeding session,
and lowers it as generations progress. This reduces premature convergence [40].

• Rank Selection ranks individuals based on their fitness, and then selects them based
on their rank, instead of their actual fitness. This prevents the GA from converging
too quickly [40].

• Tournament Selection pits two randomly selected individuals from the population
against each other. The fittest of the two will be selected as a parent for the next
generation, but both will be returned to the population to be selected again [40].

Crossover is the process by which two newly reproduced (parent) chromosomes are
combined to form offspring in the next generation. This is achieved by randomly swapping

2.1. EVOLUTIONARY COMPUTING 14

corresponding elements from both parent chromosomes to form two child chromosomes
[19].

• Single point crossover is when all elements before a randomly selected point on the
parent chromosome are combined with all the elements after the crossover point
from the other parent, and vice versa. This method has its shortcomings, as not all
possible combinations can be produced this way [40].

• Two point crossover is when the chromosomes cross over at two points along the
bitstring, and effectively swap a chunk of information, which closely mimics mitosis
(the recombination of chromosomes in sex cells). This allows for considerably more
combinations than single point crossover, but still does not allow for every possible
combination to occur [40].

• Some practitioners are advocates for parametrised uniform crossover or scattered
crossover, where a probability is calculated for each bit to swap over. However,
having too many crossover points can be disruptive when trying to find an optimal
solution [40].

• It is also possible to create crossover hotspots where crossover is far more likely
to occur at certain hotspots than at any other point, which is useful to retain
dependencies [40].

Mutation is necessary because, even though reproduction and crossover effectively search
and recombine extant notions, they occasionally lose potentially useful genetic material.
In artificial systems, mutation prevents such irrecoverable losses from occurring. This is
achieved by randomly changing a value in the child chromosome [19].

If a real-valued vector is used as the encoding mechanism, then a normally distributed
value is added to a randomly selected element in the vector. The constraints of the normal
distribution responsible for generating these mutation values may be dynamic, and thus
may fluctuate depending on parameters such as the variance of the population, or the
number of generations elapsed.

There are many different methods of mutation:

• Uniform Mutation is a two-step process. First, the algorithm selects a fraction of
the vector entries of an individual for mutation, where each entry has a probability

2.1. EVOLUTIONARY COMPUTING 15

of being mutated. Mutation rates are set to control how much mutation occurs. If
a randomly generated number is within the mutation rate, then that chromosome
will be mutated. In the second step, the algorithm adds a random number from a
normal distribution about 0 to each selected entry.

• Dynamic Gaussian Mutation is different to uniform mutation in that there is no
mutation rate. Every individual is mutated after crossover. The impact of the
mutation however, is dynamic. The algorithm mutates each element of each parent
by adding a random number taken from a Gaussian distribution with mean 0. The
standard deviation of this distribution is determined by the parameters Scale and
Shrink. Scale is inversely proportional to the standard deviation of the parent
vector. This ensures that when a population becomes very similar, the mutation
rate increases. Shrink reduces the mutation rate for every completed generation,
producing a more mature solution with increased stability.

• Adaptive Feasible Mutation adds a randomly generated number to each element in
the child population. The direction (positive or negative) of the random number is
adaptive with respect to the last successful or unsuccessful generation. The feasible
region is bounded by the relative constraints and inequality constraints.

In general, Genetic Algorithms represent their parameters as strings of binary values
which are constrained by the encoding mechanism. Individuals are created by recombining
parents using crossover functions to form offspring. The children are subsequently mutated
by either randomly inverting bits in the binary string, or adding randomly generated values
to elements in the real-valued vector [3].

GAs as a means of parameter optimisation De Jong, [13], finds that genetic algo-
rithms out-performed local search algorithms, especially on multimodal, noisy functions.
Subsequently, genetic algorithms have been used successfully in a wide variety of op-
timisation tasks, including numerical and combinatorial optimisation problems, as well
as circuit layout and job-shop scheduling [40]. GAs have also been successfully used in
optimisation of technical trading tools by Allen and Karjalainen [1], Neely, Weller and
Dittmar [43] and Shazly and Shazly [59], to name a few.

2.2. TECHNICAL ANALYSIS 16

2.1.4 Summary and Applications

As seen in Section 2.1.3.2, Genetic Programming breeds a program as a solution to a
well defined problem. The primary concern in this thesis, with regards to evolutionary
computation, is that of parameter optimisation of technical trading tools. Thus genetic
programming is not an optimal method for implementation, and so will no longer be
discussed.

According to Bäck [3], the encoding mechanism used in genetic algorithms seems to extend
their range of possible applications beyond the capabilities of evolution strategies. Bäck
[3] also states that Genetic Algorithms have been researched in far greater depth than
evolution strategies, and that genetic algorithms are a better representation of natural
evolution.

Because of this, and the previous applications of GAs in technical trading, GAs are deemed
an appropriate method of parameter optimisation and will be used as the primary method
of function optimisation in this work.

As the selection, crossover and mutation operators are all problem-specific, they will all
have to be examined when determining the best implementation of GAs.

2.2 Technical Analysis

Technical trading tools are an example of multi-parametered functions which can be opti-
mised by Genetic Algorithms. These, together with Fundamental Analysis, are amongst
the two broad categories of tools used to guide practicing investors on when to buy, hold
or sell their assets. While Fundamental Analysis uses information about markets (such as
price-earnings ratios and interest rates) to gain an understanding of a market, Technical
Analysis disregards all of this information, only reviewing trading data: such as price
levels and volumes [45].

One can use signals generated by fundamental analysis however, technical analysis has
orders-of-magnitude more data available. This makes technical analysis a much more
suitable test-bed, as the GAs and ANN will have more data on which to train.

In essence, Technical Analysis attempts to forecast the movements in future markets,
using historic data as a basis. According to Brock, Lakonishok and Lebaron [6]:

2.2. TECHNICAL ANALYSIS 17

“Technical analysis is considered by many to be the original form of investment
analysis, dating back to the 1800s. It came into widespread use before the
period of extensive and fully disclosed financial information, which in turn
enabled the practice of fundamental analysis to develop. In the United States,
the use of trading rules to detect patterns in stock prices is probably as old as
the stock market itself.”

Technical analysis is still widely employed in the market by practicing investors, who
believe that profits exist in the short-run, and that these are exploitable by technical
strategies [46].

In spite of this, academics have treated Technical Analysis with scepticism. According
to Park and Irwin [49], this scepticism can be linked to the Efficient Market Hypothesis
[14], which postulates that attempting to make profits by exploiting currently available
information is futile, as any possible opportunity would already have been exploited due
to the efficiency of the market. Early studies of technical analysis in the stock market
from Fama and Blume (1966) [15], Van Horne and Parker (1967, 1968) [64, 65] and Jensen
and Bennington (1970) [28], amongst others, support this statement, with the conclusion
that prices fluctuate randomly and hence cannot be predicted.

More recent literature however, opposes these conclusions. In a review of the profitability
of technical analysis, Park and Irwin [49] find that, of 95 modern studies: 56 find positive
results, 20 obtained negative results, and 19 indicated mixed results.

The technical trading system used to find these positive results consists of a set of trading
rules. These rules generate long-term and/or short-term trading signals, according to
various parameter values. Popular technical trading tools include trending strategies,
filters and oscillators. Practitioners generally use them in a practice known as charting;
plotting them with the actual price levels, to determine market trends. However, the
information is equally, if not more valuable if employed as raw signals [49].

2.2.1 Different Methods of Technical Analysis

There are many different tools which fall under the umbrella of technical analysis, but this
is not the primary concern of this study, and hence only five rules have been investigated
in this thesis. They were chosen because of their proven usefulness in papers such as Park
and Irwin [49] and Sweeney [61]. The reasoning behind, and explanation of, each tool is
discussed below.

2.2. TECHNICAL ANALYSIS 18

2.2.1.1 Filter Rules

Filter rules encourage a trader to buy when an asset value rises a certain percentage above
a previous local high, and sell if the price declines a certain percentage below a local low
[15].

These were first introduced by Alexander in 1961, who reported returns significantly
higher than a simple buy and hold strategy. Although this was refuted by Fama and
Blume [15], it has been subsequently found to deliver significant profitability by both
Sweeny [61] and Levich and Thomas [32].

2.2.1.2 Trending

Trending generates trading signals at the intersection of a short- and a long-run moving
average. A buy is indicated when a the short-run moving average intersects the long-run
moving average from below, indicating that the asset value is trending upwards. The
converse is true for sell signals [62].

Trending has also seen mixed success when tested empirically, but Levich and Thomas
[32], Pukthuanthong-Le, [?] and Okunev and White [46] find that trending is profitable
to a significant level.

2.2.1.3 Relative Strength Index (RSI)

The Relative Strength Index (RSI) indicates the Relative Strength of an asset as a value
between 0 and 100. If the RSI value is low, it indicates that an asset has been over-sold,
and thus it is a good time to buy the asset. If the RSI value is high, it indicates that an
asset has been over-bought, and thus it is a good time to sell the asset [33]. Levy [33]
finds success in using RSI to predict opportune points to buy and sell in the stock market.
This can be seen in Figure 2.3.

2.2.1.4 Moving Average Convergence / Divergence (MACD)

The Moving Average Convergence / Divergence (MACD) shows the difference between a
fast and slow exponential moving average (EMA) of an asset’s closing price information.
Two moving averages are compared with one another, to produce the MACD. The MACD

2.2. TECHNICAL ANALYSIS 19

Figure 2.3: An example of the RSI rule. Used with permission [47]

Figure 2.4: An example of the MACD rule. Used with permission [47]

is then compared to a signal line, which is an EMA of the MACD. Once the two are
compared, the result is treated in a similar fashion to that of trending. A buy is signaled
when the MACD line intersects the signal line from below, and a sell is signaled when
the MACD line intersects the signal line from above [50]. This can be seen in Figure 2.4.
Little empirical research has been done on the efficacy of this rule, but it is has been
suggested as a worthwhile technical trading rule [49].

2.2.1.5 Momentum (MOM)

Momentum (MOM) shows the momentum of the movements of an asset price. This is
calculated by looking at the change in asset price from the current day against that of a
few days prior. If the MOM returns a negative value, this means that the asset price is

2.3. ARTIFICIAL NEURAL NETWORKS 20

Figure 2.5: An example of the MOM rule. Used with permission [47]

downward trending, which is signaled as a sell; whereas if the MOM is positive, the asset
price has an upwards trend and is signaled as a buy [50]. This can be seen in Figure 2.5.
Momentum was found to be a profitable indicator by Jegadeesh, and Titman [27].

2.2.2 Summary and Application

Although technical trading is deemed dubious by some, the above rules have been shown
to have some success. These rules are also mechanical in nature, and hence can be
programmed using a modern computer programming language.

2.3 Artificial Neural Networks

Nauck, Klawonn, Kruse and Klawonn [42] define Artificial Neural Networks (ANNs) as
Universal Approximators, as they are able to approximate any given continuous mapping
from inputs to outputs. This is accomplished by using connectionist models which make
use of some of the known and/or expected organizing principles of the human brain [42].

These nonlinear mapping systems are comprised of a number of independent and very
simple processors which mimic a biological neuron, and are thus called neurons. These
neurons are networked together, and communicate via weighted connections called synap-
tic weights [42]. Although far simpler than the inner workings of a human brain, they
can simulate complex behaviours when massive systems of these simple units are linked

2.3. ARTIFICIAL NEURAL NETWORKS 21

in appropriate ways [55]. The approximating function of ANNs is achieved by training
the ANN. These ANNs can learn in one of two major learning paradigms: learning with
a teacher, and learning without a teacher [21]. These will be further discussed in Section
2.3.3.

The end result is an information driven adaptive processing system which can learn from
experience and/or generalise from previous examples. This has massive application in
automation problems including adaptive control, optimisation, medical diagnosis, and
decision-making; as well as information- and signal-processing, including speech processing
and pattern recognition [21, 42]. These ANNs out-perform traditional rule-based artificial
intelligence approaches, but are trivial when compared with even the simplest biological
system [26].

The remainder of this section will provide a brief history of ANNs, followed by an exami-
nation of the different architectures for ANNs and how to train them. Finally, a summary
of the following information will be presented with mention of the application of ANNs
in relation to this work.

2.3.1 History of Artificial Neural Networks

Neural Networks as they are known today, began in 1943 with the pioneering works of Mc-
Culloch and Pitts [21]. In their paper A logical calculus of the ideas immanent in nervous
activity, McCulloch and Pitts unite the fields of neurophysiology and mathematical logic
by describing a logical calculus of neural networks. They assumed that a neuron followed
an “all-or-none” law. With this, McCulloch and Pitts showed that by properly connecting
a sufficient number of these simple units which could operate synchronously, it would (in
principle) compute any computable function [36]. With this result, it is generally agreed
that the disciplines of neural networks and artificial intelligence were born [21].

In 1949, Hebb published a book The Organization of Behavior, in which he explicitly
stated for the first time a physiological learning rule for synaptic modification [22]. Fol-
lowing this in 1958, Rosenblatt introduced a novel method of supervised learning in his
works on the perceptron; the culmination of which was the so-called perceptron convergence
theorem [56].

In 1960, Widrow and Hoff introduced the Least Mean-Square (LMS) algorithm, and used
it to formulate the Adaline (adaptive linear element), which differs from the perceptron

2.3. ARTIFICIAL NEURAL NETWORKS 22

in its training procedure. Madaline (Multiple-Adaline) was one of the earliest trainable
multilayered neural networks, the structure of which was proposed by Widrow and his
students in 1962 [21].

In 1961, Minsky wrote a paper on AI entitled: Steps Towards Artificial Intelligence [38]
which contains a large section on what is now termed Neural Networks. Minsky later wrote
a book: Computation: Finite and Infinite Machines, which put the works of McCulloch
and Pitts in the context of automata theory and theory of computation [21].

It seemed, during the classical period of the perceptron (the 1960s), that perceptrons
could compute anything. This was until 1969, when Minsky and Papert published a
book which demonstrated the fundamental limitations of single-layer perceptrons, using
mathematics [39]. They then stated that there was no reason to assume similar problems
could be overcome in the multilayer versions [38]. This, coupled with the technological
constraints, diminished interest in neural networks until the 1980s [21].

One important emergence from the 1970s was that of self-organizing maps using com-
petitive learning [21]. In 1976 Willshaw and von der Malsburg published the first paper
on self-organizing maps, with motivation drawn from topologically ordered maps in the
brain [66].

The controversial paper by Hopfield in 1982, along with the two-volume book by Rumel-
hart and McClelland, in 1986, were the two most influential publications - and were
responsible for the resurgence of interest in neural networks in the 1980s [21]. In his
paper, Hopfield made explicit the principle of storing information in dynamically sta-
ble networks. He also showed insight into the spin-glass model, by examining recurrent
networks with symmetric connections, which guaranteed their convergence to a stable
condition [24]. The two-volume book by Rumelhart and McClelland made mention of the
back-propagation algorithm [58], developed by Rumelhart, Hinton and Williams in that
same year [57]. The book has been a major influence in the use of the back-propagation
algorithm, which is currently the most popular learning algorithm for training multi-layer
perceptrons [21].

Ackley, Hinton and Sjenowski developed the first successful realisation of a multi-layer
neural network in 1985, known as the Boltzmann machine. This was based on the idea of
simulated annealing, developed by Kirkpatrick, Gelatt and Vechi in 1983 [21].

1988 saw the development of a new principle for self-organisation in a perceptual network
by Linsker, in which he formulated the maximum mutual information (Infomax) principle

2.3. ARTIFICIAL NEURAL NETWORKS 23

[34]; as well as a new procedure for the design of layered feedforward networks, in which
radial basis functions (RBF) were used c[7]. 1988 also saw the seminal proof by Cybenko
[11] that multilayered perceptrons are universal approximators. This meant that any
underlying process or function could be approximated by a multilayered perceptron to
an arbitrary accuracy. In the early 1990s Vapnik and collegues invented support vector
machines : a computationally powerful class of supervised learning networks for pattern
recognition, regression and density estimation problems [21].

2.3.2 Network Architectures

Although the structure of a neural network is closely linked to the learning algorithm
used to train the network [21], there are still many different architectures which are
worth discussing. This section will go into brief detail on a number of popular network
architectures, leaving the learning algorithms to the following section.

The Perceptron is the most simplest of neural network. It is used for the classification
of linearly separable patterns. It consists of a single neuron with an adjustable synaptic
weight and bias. The perceptron convergence theorem introduced by Rosenblatt [56]
proves that if the weights and bias of a perceptron are systematically altered, they can
classify a linearly separate pattern into two classes.

Single Layer Perceptrons extend the perceptron by introducing a layer of perceptrons,
which is able to separate patterns into a number of classes. These are based on the input
pattens and the number of perceptrons in the layer. The pattern must still be linearly
separable for the perceptrons to work [21].

Multilayer Perceptrons, also called multilayer feedforward networks, generalise
the single layer perceptron discussed above. They are comprised of a set of sensory units
which constitute the input layer, one or more hidden layers, and an output layer. Inputs
patterns are fed into the input layer, and propagate through the network on a layer-by-
layer basis. They have been successfully applied to a number of problems by training them
in a supervised manner with the back-propagation algorithm, which will be discussed in
Chapter 2.3.3.1 [21].

Radial-Basis Function Networks make use of radial-basis functions (RBF) to sepa-
rate data instead of the hyper-planes used by perceptrons. Thus they are very good at
approximating data where clusters of points are found. Their structure consists of an

2.3. ARTIFICIAL NEURAL NETWORKS 24

input layer, a hidden layer with a non-linear RBF activation function, and a linear output
layer. They also differ from multilayer perceptrons in that they may only have one hidden
layer. The non-linear RBF applies a transformation from the input space to the hidden
space. In most applications the hidden space is of high dimensionality. RBF networks are
also universal approximators. They may be trained by backpropagation, but are also able
to train themselves in an unsupervised manner through the use of self-organising maps
[21].

Support Vector Machines are linear machines which approximate the implementation
of the method of structural risk minimisation. Their unique attribute is that they provide
a good generalisation performance on pattern classification problems even though it does
not incorporate problem-domain knowledge. The algorithm extracts a small portion of
data from the input space which provides support vectors. The hyper-plane which classifies
those sets maximises the distance between the support vectors, producing an optimal
hyper-plane. The optimal hyper-plane is generally found in a feature space of higher
dimensionality than the original data set which can be found using kernel mapping.
Support vector machines may be polynomial learning machines, RBF networks, or two-
layer perceptrons in special cases [21].

Committee machines use the engineering principle of divide and conquer, in which the
knowledge acquired by many experts is fused together to arrive at an overall decision. The
final decision is supposedly superior to that attainable by any one of them acting alone.
This combination of experts is said to constitute a committee machine. The structure
of a committee machine is divided into two categories: static structures, and dynamic
structures [21].

In static structured committee machines, the input is not involved in the combina-
tion. The ensemble averaging method linearly combines the outputs of different predictors
to produce an overall output. The boosting method converts weak learning algorithms
into ones that achieve arbitrarily high accuracy [21].

Dynamically structured committee machines differ in that the input signal is di-
rectly involved in actuating the mechanism which combines the outputs of individual
experts into an overall output. The mixture of experts structure combines the expert’s
responses in a nonlinear fashion through the use of a single gating network. The hierar-
chical mixture of experts structure combines the expert’s responses in a non-linear fashion
through the use of multiple gating networks arranged in a hierarchical fashion [21].

Recurrent Networks are distinguished from feedforward networks in that they have at

2.3. ARTIFICIAL NEURAL NETWORKS 25

least one feedback loop. The presence of these feedback loops have a profound effect on
the learning capability and performance of the network. The feedback loops make use
of unit-delay elements which allow a number of previous decisions to have an effect on
the current decision-making process, or allow time to be built into the operation of the
neural network. This feedback can be local (at the level of a single neuron) or global
(encompassing the whole network) [21].

2.3.3 Learning Processes

As ANNs are universal approximators, they need some function or decision/classification
process to approximate. In order for the ANN to learn this process, they need to be
trained by some learning algorithm on some data set [21].

The data is usually divided into three sets: the training set, the validation set and the
test set. The ANN is generally trained using data from the training set, while using data
from the validation set to prevent overtraining [21]. Overtraining occurs when the ANN
approximates the training data so closely that it is no longer effective in approximating
the rest of the data. The validation set, although not used in training, is tested during
training. When the accuracy of the results in the validation set begins to drop, and
accuracy in the training set improves, it is seen as a good time to stop training in order
to keep the ANN more generalised [21]. The ANN can then be tested on the unseen test
set to see how well it performs on unseen data.

As was previously stated, ANNs can learn through one of two paradigms: learning with
a teacher, and learning without a teacher. Learning with a teacher is also referred to as
Supervised learning. Learning without a teacher is further subdivided into Unsupervised
learning and Reinforcement learning [21]. Mitchell proposes Genetically Trained ANNs,
where GAs can be used to train and build ANNs [40]. Each weight and bias of the ANN
is essentially a parameter in a function which could be optimised [40]. The remainder of
this Section will discuss these learning paradigms in further detail.

2.3.3.1 Supervised Learning

Supervised learning requires a teacher or supervisor which classifies the training examples
into classes. The information on the class membership of each training instance is utalised
to detect pattern misclassifications. These pattern misclassifications act as a form of

2.3. ARTIFICIAL NEURAL NETWORKS 26

feedback to themselves, whereby during the learning process correct classifications are
rewarded, and misclassifications are punished. This process is known as credit and blame
assignment [21].

The most well-known and widely used form of supervised learning in neural networks is
backpropagation [42]. The backpropagation network is a multilayer feedforward neural
network with a differentiable transfer function in the artificial neuron [17]. Inputs are
fed into the backpropagation network, and outputs are generated. These outputs are
compared to known targets, and the synaptic weights are altered in order to minimise the
errors between the generated outputs and the known targets [55]. The training instance
set for the network needs to be presented many times for the synaptic weights to settle
into a state for the correct classification of input patterns; but once it does, the neural
network approximates the classification system [17].

2.3.3.2 Unsupervised Learning

In unsupervised learning, there is no external teacher or critic overseeing the learning
process. Rather, provision is made for a task independent measure of the quality of
representation that the network is required to learn. The free parameters of the network
are optimised with respect to that measure [4]. The most popular methods of unsupervised
learning are: competitive learning, self-organising maps and adaptive resonance theory
(ART) [17, 21].

A competitive learning rule may be used to perform unsupervised learning. This
is when a competitive layer is added to the end of the network. The neurons in the
competitive layer compete with one another (in accordance with a learning rule) for the
“opportunity” to respond to features contained in the input data. Basically the network
operates in accordance with a “winner-takes-all” strategy, as the neuron with the greatest
total input is declared after a predetermined number of epochs, and “wins” the competi-
tion. At this point all other neurons in the competitive layer turn off, and the “winning”
neuron is turned on [21].

In a self-organizing map, neurons are placed at the nodes of a one- or two-dimensional1

lattice. The neurons become selectively tuned to various input patterns, or classes of input
patterns through a competitive learning process. The locations of the “winning neurons”
become ordered with respect to one another in such a way that a meaningful coordinate

1Higher dimensional maps are possible, but are not as common.

2.3. ARTIFICIAL NEURAL NETWORKS 27

system for different input features is generated over the lattice [30]. Thus, a self-organising
map is characterised by the formation of a topographic map of the input patterns in which
the spatial locations of the neurons in the lattice are indicative of intrinsic statistical
features contained in the input patterns - hence the name “self-organising map”. Self-
organising maps are generally used in pattern recognition problems [21].

Adaptive Resonance Theory (ART) networks are designed to learn new patterns, and
retain knowledge of previously learned patterns simultaneously through the use of pattern
resonance. ART networks have two layers, an input layer and an output layer. The use
of resonance between the pattern in the input layer and a pattern in the output layer, is
able to establish a good hetroassociative pattern match [17]. The first (input) layer of an
ART network receives and holds the input pattern. The second (output) layer responds
to the input pattern with a pattern classification or association, termed the recognition
phase. The classification is verified by sending a return pattern to the first layer from the
second layer, termed the comparison phase. If the return pattern is similar to the input
pattern, then there is a match. If the return pattern is substantially different from the
input pattern, then the two layers resonate by communicating back and forth, seeking a
match. If a novel input pattern fails to match the stored patterns within a set tolerance
level, termed the vigilance parameter, a new stored pattern is formed [17]. ART networks
are the most useful for pattern clustering, signal classification and recognition problems
[8].

2.3.3.3 Reinforcement Learning

Reinforcement learning is a behavioural learning problem whereby the learning system
interacts with its environment, so that the system seeks to achieve a specific goal despite
the presence of uncertainties [2, 60]. As this interaction is performed without a teacher,
reinforcement learning is particularly attractive for dynamic situations where it is costly
or impossible to gather a satisfactory set of input-output examples [21].

There are two main approaches to reinforcement learning: the classical approach, and the
modern approach [21].

The classical approach is rooted in psychology, going back to the early work of psychol-
ogists like Thorndike and Pavlov [21]. Learning takes place through a process of reward
and punishment, with the goal of achieving a highly skilled behaviour [21]. This repre-
sents a class of algorithms for learning automata. The automaton takes one set of actions

2.3. ARTIFICIAL NEURAL NETWORKS 28

according to a corresponding probability. The environment responds to it by showing
“success” (+1) or “failure” (-1) as a form of feedback termed the global reinforcement sig-
nal. The automaton learns by altering the probabilities corresponding to the action taken
as a response to the reinforcement signal [17].

The modern approach builds on a mathematical technique known as dynamic pro-
gramming, to decide a course of action through considering possible future stages without
actually experiencing them. Thus the emphasis in the modern approach is on planning
[21]. Dynamic programming is a technique where decisions are made in stages, with the
outcome of each decision being predictable to some extent before the next decision is
made. Decisions cannot be made in isolation, rather the desire for a low cost in the
present situation must be balanced with the undesirability of high costs in the future.
Thus dynamic programming addresses the question: How can a system learn to improve
long-term performance when this may require sacrificing short-term performance? The
modern approach is termed Neurodynamic programming as dynamic programming pro-
vides a theoretical foundation, and the learning capacity is provided by neural networks
[21]. Bertsekas and Tsitsiklis [5] define neurodynamic programming as follows:

“Neurodynamic programming enables a system to learn how to make good
decisions by observing its own behaviour, and to improve its actions by using
a built-in mechanism through reinforcement.”

A neurodynamic system is able to make good decisions by observing its own behaviour,
and improve its actions through reinforcement mechanisms. This is useful for intelligent
agents in changing environments, for example as opponents in board games [21].

2.3.3.4 Genetically Trained ANNs

As mentioned above, an ANN can be trained by a GA. The fitness function would create
an ANN with the given parameters being weights and biases. The fitness function would
then simulate the task on test data, and compare the activations with the known results.
The GA can then optimise the error between simulated data and known results [40].

In a study done by Montana and Davis [41], genetic algorithms were successfully used
to train feedforward neural networks. Montana and Davis encoded 126 synaptic weights
into a single chromosome, and bred solutions using the sum of the square errors (col-
lected over all training cycles) as the fitness function. For this study, genetic algorithms

2.3. ARTIFICIAL NEURAL NETWORKS 29

significantly out-performed the supervised backpropagation method. Montana and Davis
conclude that genetic algorithms may not out-perform backpropagation in all cases, but
are exceptionally useful in unsupervised learning tasks where test cases are not available
to the learning system [41].

Genetically evolved architectures for ANNs. Mitchell [40] also claims that genetic
algorithms are successfully used in evolving network architectures (the number of neurons
and layers) in neural networks. This is evident in the two most widely used methods of
evolving network architectures.

Direct encoding is a method of evolving network architectures, conceived by Miller, Todd
and Hedge [37], whereby the connection topology of the network is represented in an N x
N connectivity matrix, where each entry represents a connection from the “from unit” to
the “to unit”. Column numbers for the connectivity matrix represent the “from unit”, and
row numbers represent the “to unit”. All values are zero unless there is a connection from
the neurons: column number to row number. The matrix is then converted to a bitstring,
which is the chromosome. Each network is then given the same initial inputs, and trained
for the same number of epochs using backpropagation. The fitness of the chromosome
is the sum of the errors squared on the training set at the last epoch. They concluded
that the genetic algorithm easily found networks which readily learned to approximate
the functions [37]. The functions they were approximating however, were too simple to
be a rigorous test of this method [40].

Grammatical encoding is a method illustrated by Kitano [29], who points out that direct
encoding methods lead to performance issues and inefficiency in larger sized networks.
Kitano’s solution was to encode the network architecture as grammars2, and evolve the
grammars using genetic algorithms. Kitano used a grammar called a “graph-generation
grammar” to successfully generate and evolve network architectures in a more efficient
manner than direct encoding [29].

2.3.4 Summary and Applications

In the context of Technical Analysis, perceptrons and single-layer perceptrons would not
be a sensible option to take as there are many other more advanced methods available.
Multilayered perceptrons could be used to combine signals effectively as an approximation

2A grammar is a set of rules that can be applied to produce a set of structures.

2.4. ARTIFICIAL INTELLIGENCE IN TECHNICAL ANALYSIS 30

to some non-linear function. RBF networks are primarily concerned in pattern recogni-
tion, interpolation and classification systems, and thus do not feature too well in the
current problem domain.

Committee machines would be perfect solutions to the problem at hand, as the signals
generated by different technical trading tools could be seen as expert knowledge. Thus
they could easily combine this knowledge to reach a decision superseding that of the
individuals.

Recurrent networks allow time to be built into the decision-making process, and thus
would provide interesting information as the problem domain revolves around time series
data.

As the intended implementation for ANNs will be in a situation where it is not feasible
or in the best interest of the system to generate targets, supervised learning techniques
are not considered. This excludes support vector machines as a viable structure, as they
require support vectors drawn from the training examples.

This means the system will have to learn without a teacher, leaving unsupervised learning,
reinforcement learning and genetic training as the only viable options.

As unsupervised learning lends itself to clustering, it is optimal for pattern recognition
and classification problems [21]. Due to the complex nature of reinforcement learning,
genetic training is chosen as the best method of training ANNs for the purposes of this
study.

2.4 Artificial Intelligence in Technical Analysis

As discussed above, technical tools provide valuable information about the market. How-
ever, few attempts have been made to amalgamate the information generated by a number
of tools to create a more powerful technical tool.

The most well-known system which aggregates technical trading rules is CRISMA. It was
developed in 1988 by Pruitt and White [52]. CRISMA combines signals from cumulative
volume, relative strength indices and moving averages to predict buy and sell points in
equities. This system finds statistically significant profits, even after accounting for risk
and transaction costs. Pruitt, Tse and White [51] supported this with more evidence of
profitability during the period between 1986 and 1990.

2.5. SUMMARY 31

CRISMA came under scrutiny by Goodacre and Kohn-Speyer [20], who finds that all
profits generated by CRISMA on FTSE 350 stocks in the period 1987–1996 were lost,
after market movements and elevated risk were accounted for. Marshall, Cahan and
Cahan also refute CRISMA with their conclusion that “the profit attributed to CRISMA
by the original Pruitt and White studies is unique to the sample of stocks they study”
[35]. Although CRISMA appears to generate mixed results, it still raises the significant
concept of combining rules to find profitable trading systems.

CRISMA used a simple conditional strategy to generate signals in which a condition needs
to be met for each rule before a signal is generated. This is limiting in that strong signals
from two rules would be ignored if the third signal did not prove strong enough.

Chenoweth and Obradovic [9] overcame this issue by using a multi-component rule out
of two neural networks which fed into a decision rule. This too provided signals which
achieved an annual rate of return in excess of a buy and hold strategy. They did not
however, take transaction costs into account [9].

2.4.1 Summary

It has been shown that previous systems have been successful in finding profit through
technical analysis, but these are not without their criticisms. In general, the criticisms
of these systems have due to overlooking transaction costs and interest rates, and data
snooping by writing only on profitable data samples.

2.5 Summary

This chapter has shown that technical trading tools are examples of multiparametic func-
tions which can be optimised with EC, using combinations of historic market data to
predict future price movement. Modern studies indicate that they are profitable on their
own, and hence their optimisation should only prove stronger.

It also provided an overview of GAs, showing that they are a commonly used form of pa-
rameter optimisation. In particular, they are used for functions over a multi-modal, noisy,
discontinuous solution space. They have been successfully used, since the 1960’s, to opti-
mise a number of engineering problems. GAs have also been applied to the optimisation
of technical trading tools, thus they are well-suited to the needs of this work.

2.5. SUMMARY 32

Since each of these trading tools uses different combinations of historic data, the tools
provide different and often conflicting signals, thus they need to be combined somehow
to produce a single signal.

Artificial Neural Networks, as proven universal approximaters, are able to do this. If there
exists a “thought” process which combines these different signals to produce a profit, it
can be approximated using ANNs. This choice avoids the criticisms of the CRISMA
system, which used a simple conditional strategy to generate signals, as ANNs use a more
non-linear approach.

The following chapter will apply the knowledge gained in this chapter to produce a prof-
itable system of technical analysis. This system will rely on GAs and ANNs to optimise
and amalgamate signals from: filter rules, trending, RSI, MACD and MOM.

Chapter 3

Design and Implementation

This section describes the overall design of each individual component of the system and
explains how they work together to produce positive results.

As can be seen in Figure 3.1, the data (asset price information) is fed into each Technical
Trading Tool along with the required parameters for that tool. Each tool then uses this
set of parameters and data to generate its own set of buy, hold and sell signals. The signals
generated by each tool are simultaneously fed into an ANN to be intelligently combined.
This ANN takes a number of parameters to create: one parameter for each weight and
bias as well as parameters for the architecture of the ANN. The ANN produces a single
set of buy, hold and sell signals from the set of signals sent to it from the trading rules.
This final set of signals is then simulated on the given data series, with the given signals
by a Simulation Environment (SE). The SE then returns the profit per annum for the
specified signals and risk thresholds over the given asset price information, transaction
costs and interest rates.

As mentioned in Section 2.1.3.1, GAs have been chosen as the means of optimisation.
The GA is used to optimise the parameters for each Technical Trading Tool, as well as
the ANN and risk thresholds to find maximum profit. This is illustrated in Figure 3.2.

The rest of this chapter goes into detail about how each component is designed and built,
what parameters are used, and the considerations behind them.

These components will be described in the order of the process shown in Figures 3.1
and 3.2. First the design and implementation of each of the technical trading tools is
discussed, as these tools generate the signals. This includes: filter rules, trending, RSI,

33

34

Figure 3.1: Overall Design of the System

Figure 3.2: Overall Design of the Genetic Optimiser

3.1. TECHNICAL TRADING TOOLS 35

MACD and MOM. This is followed by an investigation into the type and architecture
of the ANN, which is used to amalgamate the signals generated by the trading rules to
produce a single set of signals. The simulation environment is explained, as it assesses
the profit made by the single set of signals on the given data set. The final component to
be discussed is the genetic optimiser; detailing the parameters tested and the reasoning
behind them. Finally the methodology of the tests is explored, after which the chapter is
summarised.

3.1 Technical Trading Tools

As illustrated in Figure 3.1, the first component of the system to be evaluated are the
technical trading tools. Each tool requires a number of parameters as well as the asset
price information. These are used to mechanically perform technical analysis on the
data; returning a set of buy, hold and sell signals for each tool. This section details the
mechanical nature of each of the trading rules, the parameters they require, and how they
were created.

3.1.1 Filter Rules

As stated in Section 2.2.1.1, filter rules encourage a trader to buy when an asset value
rises a certain percentage above a previous local high, and sell if the value declines a
certain percentage below a local low.

This is programmed by searching through the data at intervals of the given window size
for maxima and minima in that interval. The maxima and minima found are then stored
in an indexed array of the same size as the data. The data at each point is then compared
to the indexed maxima and minima for each point.

A filter size is then chosen as the threshold by which a data value needs to exceed its
local boundary point. If the data value is higher than its local maxima by a factor of
filter size, it becomes a buy signal; and if it is lower than its local minima by a factor of
filter size, it becomes a sell signal. For example: if the filter size was 10%, the data point
would have to be 10% higher than a local maxima to be registered as a buy signal. The
recommended values for the filter size is 15 days [49].

3.1. TECHNICAL TRADING TOOLS 36

3.1.2 Trending

As previously discussed in Section 2.2.1.2, trending generates trading signals at the inter-
section of a short- and a long-run moving average. A buy is indicated when the short-run
moving average intersects the long-run moving average from below, indicating that the
asset value is trending upwards. The converse is true for sell signals.

These signals are generated by the distance between the two moving averages. The closer
they become, the stronger the signal. If the short-run is above the long-run, and they are
close together, then a sell signal is generated. If the short-run is below the long-run, then
a buy signal is generated. The recommended values for the window sizes of the long- and
short-run moving averages are five and 20 days respectively [49].

3.1.3 RSI

Section 2.2.1.3 noted that RSI indicates the Relative Strength of an asset as a value
between 0 and 100. If the RSI value is low, it indicates that an asset has been over-sold,
and thus it is a good time to buy the asset. If the RSI value is high, it indicates that an
asset has been over-bought, and thus it is a good time to sell the asset.

This is calculated by first finding the upward and downward changes.

Let Up be the set of all upward changes and Down be the set of all downward changes
described by Equations 3.1, 3.2 and 3.3.

change = closet − closet−1 (3.1)

Up = change (3.2)

Down = −change (3.3)

The ratio of the averages is termed the Relative Strength (RS), and is calculated as
shown in Equation 3.4, where EMA(n) is the Exponential Moving Average with an n-day
smoothing factor.

RS =
EMA(n) of Up

EMA(n) of Down
(3.4)

3.1. TECHNICAL TRADING TOOLS 37

This is then converted to a Relative Strength Index (RSI) between -1 and 1 to be inter-
preted as buy and sell signals, shown in Equation 3.5.

RSI = (2− (2 ∗ 1

1 +RS
))− 1 (3.5)

This can be done in a single step, as the RSI expresses the upward movements as a
proportion of the total upward and downward movements, as illustrated in Equation 3.6.

RSI = 2 ∗ EMA(n) of Up

(EMA(n) of Up) + (EMA(n) of Down)
− 1 (3.6)

This produces buy and sell signals based on the RSI of the asset value. The recommended
value for n is five days [49].

3.1.4 MACD

As mentioned in Section 2.2.1.4, the MACD shows the difference between a fast and slow
exponential moving average (EMA) of an asset’s closing price information. Two moving
averages are compared to eachother: an s-day short run moving average, and an l-day
long run moving average. The distance between the two is the MACD, calculated as
shown in Equation 3.7.

MACD = EMA(s) of price− EMA(l) of price (3.7)

This then needs to be compared to the signal line, calculated as indicated in Equation
3.8, which is an m-day moving average of the MACD line.

signal = EMA(m) of MACD (3.8)

Trending is then applied to the MACD and signal values. Thus a buy is signaled when
the MACD line intersects the signal line from below, and a sell is signaled when the
MACD line intersects the signal line from above. The recommended values for s, l, and
m, are 12, 26 and 9 respectively [49].

3.2. ARTIFICIAL NEURAL NETWORKS 38

3.1.5 MOM

Section 2.2.1.5 explained that MOM shows the momentum of an asset price. This is
calculated by looking at the change in asset price from the current day against n-days
ago. This is calculated as shown in Equation 3.9.

momentum = closet − closet−n (3.9)

If the momentum returns a negative value, this means that the asset price is downward
trending which is signaled as a sell, whereas if the momentum is positive, the asset price
has an upwards trend and is signaled as a buy. The recommended value for n is twelve
days [49].

3.1.6 Summary

In this section, the mechanical nature of the technical trading tools is highlighted by
describing the manner in which they are implemented in the system.

Each of these tools takes a number of parameters as inputs, and outputs a set of fuzzy
signals which act as buy, hold and sell indicators. A large, negative number represents a
strong sell signal, and a large positive number represents a strong buy signal.

3.2 Artificial Neural Networks

As a number of signals have been generated by the individual trading rules, they need
to be combined. This is necessary, as it is difficult to follow a number of different, and
possibly conflicting signals in a mechanical manner. This task is performed by the next
tool in the process: the ANN. The ANN takes a number of sets of signals as inputs, which
it intelligently combines to create an output of a single set of buy, hold and sell signals,
as is illustrated in Figure 3.1.

As mentioned in Section 2.3, there are many different types and architectures of ANN.
The remainder of this section will detail the choice of ANN type, the architectures tested
and the reasoning behind these decisions.

3.2. ARTIFICIAL NEURAL NETWORKS 39

3.2.1 Type of Artificial Neural Network

A fully connected feedforward Neural Network was selected to be used as the combining
function, due to its conceptual simplicity, and computational efficiency. This is because
all neural networks are universal approximators. One type of ANN will not have approx-
imation properties that make it better than another, they are only differentiated by their
training mechanisms. Since the ANN is trained genetically, this bears no consequence.

3.2.2 Architecture of the Artificial Neural Network

The architecture of this ANN however, does have an effect on the outputs of the system.
Unfortunately, it is not viable to genetically optimise the architecture of the ANN as
running a single test case takes a number of hours. Extrapolating from this, a standard
GA with a population size of 20 over 100 generations, would take a number of years to
optimise. Thus the number of layers will be tested first, and once the optimal number of
layers is found, the number of neurons in each layer will be optimised.

The reason that the numbers of layers and neurons in each layer need to be optimised,
is to prevent overtraining. This is a situation when the ANN becomes so specialised for
the training set that it loses accuracy in the test set. According to Reed and Marks [55],
one can generalise an ANN by pruning it. This is a process whereby neurons are removed
until an optimal general solution is found which performs equally well in the training and
test data sets. Thus, a number of different architectures will be investigated, and they
shall be tested in decreasing levels of intelligence.

As overtraining may occur, even in the most simple ANN, an even simpler ANN is con-
structed by removing the ability to add a bias at each neuron. This leaves the Simple
ANN as a linear scaling machine. The resulting signal generated by the Simple ANN is
a linear combination of the other signals.

3.2.3 Summary

ANNs are used to intelligently combine the signals generated by the technical trading
tools. The architecture of the ANN plays a role in its accuracy and generalisability, and
hence different architectures are tested to find the optimal architecture for this system.

3.3. SIMULATION ENVIRONMENT 40

The full set of ANN architectures tested include the Simple ANN, and ANNs with zero,
one and two hidden layers. The architecture which produces the greatest profit of the
above will then be pruned until an optimal number of neurons is found.

3.3 Simulation Environment

Now that a single set of signals has been generated, it is necessary to find how profitable
these signals are on the current data set. This is the task of the Simulation Environment
(SE). The SE is able to do this by taking in a number of parameters: a time-series of
currency data; a set of fuzzy buy, and sell signals for that time-series; the trading costs
for that currency; and the buy and sell risk thresholds. The SE returns the geometric
profit per annum for the data sent to it.

As shown in Section 2.2, existing Seas are often criticised for their lack of realism [15, 49].
This SE was designed to take factors such as trading costs, interest rates and realistic
profits calculations into account, to provide the most realistic environment possible.

3.3.1 Formatting Signals

The SE takes the fuzzy buy and sell values outputted by the ANN as its inputs. As the
signals are meant to represent buy, hold and sell signals, it becomes necessary to classify
the fuzzy signals into crisp buy, hold or sell signals. To convert the fuzzy signals into
crisp signals, there needs to be some form of decision-boundary or threshold value which
delineates a weak signal (one that should be ignored) from a strong signal (one that should
be adhered to).

This is the role of the risk thresholds. If a value is below the sell threshold, it is converted
to a crisp sell signal. If the value is above the buy threshold, it is converted to a crisp
buy signal, and if a value is between the two thresholds, it is converted to a hold signal.
Thus these two risk thresholds create a space for hold signals in the continuous signal
spectrum.

As the SE is used to find the profit for a given set of signals on a given set of data, it
is counter-intuitive to buy currency without selling it. This is because it then becomes
difficult to calculate the profit made in a year, as a sell at the end of the simulated period
is not signaled. It is impossible to sell something before it has been bought. For these

3.3. SIMULATION ENVIRONMENT 41

reasons, the signals need to be “cleaned”. This involves removing all sell signals before the
first buy signal, and removing all buy signals after the last sell signal.

As the profits are being calculated geometrically, duplicate buy signals are redundant,
as only the first buy signal will be adhered to. The same is true for sell signals. Thus
to make it easier to find and use the relevant buy and sell signals, all duplicate signals
are removed. A signal is considered a duplicate if there are consecutive signals of the
same type. If a duplicate signal is found, it is converted into a hold signal. This means
that between any two buy and sell signals, there are a number of hold signals (and only
hold signals). This ensures that there are matching pairs of signals, and allows for easy
calculation of profit for each transaction.

3.3.2 Calculating Profit

Profits for each transaction are then calculated by taking the geometric difference between
the data for each buy and sell pair. To calculate the profit, let ζγtbe the spot price of
currency ζ when signal γ is found at time for transaction t. At time t purchasing price is
thus ζγt−1 and the selling price is ζγt , giving a return R for currency ζ at time t of Rζ,t,
which is calculated as shown in Equation 3.10.

Rζ,t =
ζγt−1

ζγt

− 1 (3.10)

Many papers are criticised as they fail to take trading costs and interest rates into con-
sideration [49], thus this project sought to include trading costs and interest rates in the
calculation of profits. Trading costs are the differences between the price for which a
currency can be bought and sold at any point in time. The difference between the two
is called the spread, and is measured in pips - one ten thousandth of a unit of exchange.
These costs were determined using the OANDA electronic foreign exchange service [44],
and are taken as twice the minimum cost facing non-institutional buyers. Transaction
costs are factored in at each point by subtracting the transaction fee τ from selling prices
and adding it to buying prices, altering the calculation for returns Equation 3.11.

Rζ,t =
ζγt−1 + τ

ζγt − τ
− 1 (3.11)

ι = (1 + it)
d

365 (3.12)

3.4. GENETIC ALGORITHMS 42

Rζ,t =
ζγt−1 + τ

ι(ζγt − τ)
− 1 (3.13)

Rζ =
n∏
t=1

Rζ,t (3.14)

Rζ,D = (1 +Rζ)
D
365 (3.15)

Interest effects are taken into account using the overnight rate i for each currency at
the time for transaction t. Thus the interest effect, ι, is the compounded interest of the
fraction of the number of days d in a year that the investment is in that currency, with an
interest rate of it, as shown in Equation 3.12. Since the interest rate increases the value of
currency holding, returns for transaction t are calculated as shown in Equation 3.13. As
the returns are geometric in nature, and a series of returns per transaction is generated,
one can calculate total profit for the period by continuously compounding the returns
for each transaction. Equation 3.14 shows the calculation for the total return Rζ for n
transactions. This is then converted into annual profit by taking the power of the return
as the fraction of the total time D that the investment existed in years, as illustrated by
Equation 3.15. Thus the SE is able to calculate the total profit for the given data and
fuzzy signals, while incorporating trading costs and interest effects.

3.3.3 Summary

The SE assesses the profitability of the inputted signals on the relevant data-set. First, the
signals are prepared by: converting fuzzy signals into crisp signals; removing premature
sell and overdue buy signals; and removing duplicate signals. Following this, profit per
transaction is calculated, taking transaction costs and interest rates into account. The
individual transactional profits are then combined to return the overall profit per annum
for the inputted signals.

3.4 Genetic Algorithms

Once the profit for a set of trade rule parameters can be calculated, it is necessary to
optimise these parameters to maximise profit. This is done by GAs, which apply the

3.4. GENETIC ALGORITHMS 43

Darwinian principles of evolution in order to optimise multi-parametric functions over
noisy and discontinuous data sets, as mentioned in Section 2.1.3.3.

To create a GA, a number of parameters are required: a method of encoding the chromo-
somes, the fitness function used to calculate the fitness values of the chromosomes, the
population size, initial population, maximum number of generations, selection method,
scaling method, elite count, crossover fraction, mutation method, crossover method and
stopping conditions. The remainder of this section details the parameters used and tested
for this project.

• The entire signal generation, amalgamation and simulation process forms the fitness
function for this GA, as is illustrated in Figure 3.2, and the fitness value is the profit
generated by the parameters used to create the system.

• The GA represents the function’s parameters as chromosomes. As mentioned in
Section 2.1.3.3, there are many different methods of encoding these chromosomes.
Encoding double values into binary strings increases the computational overhead,
as they have to be converted back into double values to be evaluated. As such, this
project will encode parameters as double vectors.

• The greater the population size, the more simulations need to be performed per
generation, and thus the longer the run-time. However, the greater the population
is, the more diversity will be present in the population, and the greater the chance
that an optimal value will be reached [19]. Thus population size is a trade-off
between speed and accuracy. This study investigates the optimal population size
for the speed/accuracy trade-off.

• The initial population was randomly generated within all defined bounds and linear
constraints. These constraints limit values to a continuous range which is different
for different variables. All window lengths are strictly positive and are limited above
by a maximum window length of 100 days.

• After some empirical research, a maximum number of generations of 150 was chosen,
as results seldom required more than 100 generations to converge to a solution. Thus
the maximum number of generations will not be a limiting factor in the generation
of solutions, but will prevent the improbable case in which convergence does not
occur.

• Stochastic uniform selection was used to select parents for the next generation, as
it is recommended as the fairest method of selection by Mitchell [40].

3.4. GENETIC ALGORITHMS 44

• Scaling is done by rank. The algorithm scales the raw scores based on the rank of
each individual instead of its score. This removes the effect of the spread of the raw
scores.

• Reproduction is done with: an elite count of two. This ensures that the best two of
the population survive to the next generation, and hence the best solution to date
is never lost. This is not worth investigating, as this value needs to be greater than,
or equal to one so that a best solution is never lost; but it is counter productive to
have it greater than two, as benefits from the principles of GAs are lost if solutions
are constantly copied.

• A crossover fraction of C is used, specifying the fraction of the next generation, other
than elite children, that are produced by crossover. This means that (C ∗ 100)% of
the following generation will be combinations of parents, and (100−C ∗ 100)% will
be direct copies of parents. Goldberg [19] recommends a crossover fraction of 0.8 be
used.

• In order to prevent local minima being found, it becomes necessary to mutate the
children. As mentioned in Section 2.1.3.3, there are many different methods of mu-
tation. This study will investigate dynamic Gaussian mutation, uniform mutation
and adaptive feasible mutation.

• In order to allow for all possible combinations, one and two point crossovers were
rejected along with crossover hotspots. This left scattered crossover as the only
viable crossover method - the implementation of which creates a random binary
vector. Genes where the vector is a 1 are selected the from the first parent, and the
genes where the vector is a 0, from the second parent. These are combined to form
one of the children, and the remaining genes are combined to form a second child.

• The algorithm has two stopping conditions. Optimisation is halted if the weighted
average change in the fitnesses over a given number of generations is less than a set
function tolerance of 1 ∗ 10−5; or if the maximum number of generations has been
reached.

3.4.1 Summary

GAs have a number of parameters which affect their operations. This project applies those
parameters which are recommended by literature, and investigates optimal population size

3.5. METHODOLOGY 45

and mutation strategy. The fitness function is the process of creating the trading rules,
building and setting the ANN, and simulating the resulting system - with profit per annum
being the fitness value. The full set of parameters investigated consist of the population
size and mutation strategy. By building a GA with the above parameters, the profit
generated by the system can be optimised.

3.5 Methodology

As this chapter has shown, the trading system created for this project is comprised of
individual trading tools which are intelligently combined to produce a single set of trading
signals. These tools are are slowly fine-tuned by changing their input parameters through
the mechanism of a GA. Each time any parameter in any individual tool is changed, the
whole system must be tested.

To allow comparisons to be made across the parameter sets, the system must be tested
in the same manner and with the same data. The remainder of this section describes the
data used in these tests, the procedure in which the tests were conducted and the way
in which the system shifts between long and short positions on the market as well as a
summary of the above.

3.5.1 Test Data

In order to fully test the aforementioned system and avoid criticism based on data snoop-
ing, a number of different currencies were chosen over an extended period of time.

This data was obtained via the OANDA electronic foreign exchange service [44] as direct
quotes relative to the USD at the daily interbank rate for each day in the five year period
from 1st July 2003 to 31st June 2008.

The currency set includes: four major currencies (majors), the Euro (EUR), Japanese
Yen (JPY), British Pound (GBP) and Swiss Franc (CHF); two minor currencies (mi-
nors), Canadian Dollar (CAD), and Australian Dollar (AUD); and four emerging market
currencies, including the Brazilian Real (BRL), Mexican Peso (MXN), Polish Zloty (PLN)
and the South African Rand (ZAR). These test currencies were chosen as the majors, mi-
nors and emerging markets as all exhibit different characteristics. As such, they all have

3.5. METHODOLOGY 46

Table 3.1: Interest rates, transaction costs and standard deviations of each of the 10
currencies

different transaction costs, interest rates, and some are more volatile than others as shown
in Table 3.1.

Transaction Costs were determined as twice the minimum cost faced by a small non-
institutional trader. That is half the minimum spread, measured in pips (one ten thou-
sandth of a unit of exchange) determined via OANDA [44]. Interest rates were taken as
the overnight interest rates, or closest proxy for the period July 2003 through June 2008
[63]. This was typically a three month bond. Transaction costs and interest rates for each
currency can be seen in Table 3.1.

3.5.2 Test Procedure

In order to compare changes in the architecture of the system, each test must be run in
the same manner, on all of the data. Each test run, was on all of the ten currencies, over
twelve different periods of data. These data-periods are of two years in length, and are
uniformly selected from the five available years of asset price information. Each currency-
period pairing is then repeated 30 times, and the mean of the repeats is taken in order
to account for the stochastic nature of GAs. The system is trained on the first 365 days
of the two-year period, by optimising the parameters of the technical trading tools, the
ANN, and the SE with the GA. These optimised parameters are then tested on the next
365 days in the data series. This ensures that the system is tested on unseen data. It
also ensures that the unseen data comes from the future relative to the test data to avoid

3.6. SUMMARY 47

retrospective data snooping.

3.5.3 Shifting between Currencies

Drawing from Levich and Thomas [32], when transactions are simulated, they switch
between long and short positions on the foreign currency. This means that when trading
between two currencies, the one currency is bought with the other currency. For example,
if the EUR/USD currency pair were being investigated, a buy signal would suggest buying
EUR with USD, and a sell signal would suggest selling EUR for USD (or buying USD with
EUR). All currencies are traded against USD, as all information gained from OANDA is
in terms of USD [44].

3.5.4 Summary

To allow fair comparisons to be made between systems with different settings, the test
procedure must be consistent, and test a wide variety of data. The procedure detailed
above tests the system over twelve two-year periods uniformly selected from five years
of asset price information for ten currencies. This is repeated 30 times, and the mean
values of the repeats are taken, to account for the stochastic nature of GAs. The system
is presented with 365 days of data training data, and tested on the following 365 days of
data. The system has been configured to shift between the long and short positions when
transactions occur.

3.6 Summary

As illustrated in Figures 3.1 and 3.2, each technical trading rule requires a number of
parameters as well as the asset price information as inputs. The resulting signals generated
by the technical trading rules are fed into the ANN to be amalgamated into a single set
of signals. This ANN takes a number of parameters to create; one for each weight and
bias, as well as parameters for the architecture of the ANN. The combined signals are
then passed to the SE, along with the buy and sell risk thresholds. The SE then returns
the profit per annum for the specified signals and risk thresholds over the given asset
price information, while accounting for transaction costs and interest rates. A GA is used
to optimise the entire system to gain maximum profit. The fitness function for the GA

3.6. SUMMARY 48

comprises of the entire process of creating the trading rules and ANN, as well as simulating
them. The output of the fitness function is profit per annum, in geometric terms, as the
fitness value. The parameters that the GA is to optimise include: the parameters for
each technical trading rule, the architecture of the ANN, all the weights and biases of the
ANN, and the risk thresholds.

The system is tested over twelve periods uniformly selected from five years of asset price
information for ten currencies and repeated 30 times to account for the stochastic nature
of Genetic Algorithms. The system is trained on 365 days of data, and tested on the
following 365 days. The inclusion of trading costs and interest rates mitigate criticisms
of previous papers, and the wide variety of data used prevents any data snooping.

Chapter 4

Optimal Systems Architecture

Having developed a system for the optimisation of trading rules using GAs and ANNs
in Chapter 3, this chapter will now focus on the analysis of the developed system to
determine feasibility and optimal parameters.

This chapter is broken into the following sections. Section 4.1 discusses the optimisation
of trading rules. Section 4.2 then investigates the optimal architectures of the developed
ANN. Section 4.3 looks at the use of GAs as optimisation tools and investigates the
optimal settings for the developed GA, after which the chapter is summarised.

4.1 Trading Rule Optimisation

In order to show that the trading rules used are optimisable, this section investigates the
whether the trading rules employed are optimisable or not, by investigating three of the
trading rules discussed in Section 3.1. These were studied by performing a simple grid
search to optimise the possible inputs, and analysing the results. This study was taken
over the same period of asset price information, for ten different currencies over the last
five years of asset price information.

4.1.1 Filter Rules

Filter rules are optimisable on two dimensions: their window size and the filter size. By
optimising the window size alone, it can be shown that this rule is optimisable. This

49

4.1. TRADING RULE OPTIMISATION 50

Figure 4.1: Filter Rule Profit at window lengths one through 99 days, for each of ten
currencies

study shows profits returned over the entire data set, for each currency, with window sizes
between one and 99 days. The results of this study are shown in Figure 4.1.

As shown in this figure, most of the currencies tested find their maximum profit with
window sizes under five days, with the most popular window sizes being two and three
days. The ZAR however, achieves maximum profit at 15 days, and the MXN never
achieves profit. The PHP varies from -100% profit to 200% profit after the window size
is increased by a mere two days.

These results show that, for filter rules, each currency has a maximum profit at different
window sizes, and also that individual series are unique. Filter rules are therefore opti-
misable, and due to the dramatic changes in profit which may result from minor changes
in filter window, filter rules are worth optimising.

4.1.2 Trending

Trending is a function of two inputs: the window length for the short-run moving average,
and the window length for the the long-run moving average. These parameters are altered

4.1. TRADING RULE OPTIMISATION 51

Figure 4.2: Trending Rule Profit at window lengths one through 99 days, and one through
50 days, resulting in the mean profitability over the ten currencies

via a grid search to show that trending is an optimisable trading rule. The short-run
window length varies between one and 50 days and the long-run window length varies
between one and 99 days. The results of this study are shown in Figure 4.2.

To show the results for all ten currencies on a single graph, the mean profitability was
calculated and plotted as a surface with contours lines below. It is notable that the
moving average pair of a one- and three-day window produced a profit of 89%, while
other window lengths produced negative profitability. This shows that it is possible to
find optimal values for the window lengths when using trending as a trading rule.

4.1.3 RSI

RSI is a function of one input: the window length. This parameter is altered to values
between one and 99 to show that RSI can be optimised. The results of this study are
shown in Figure 4.3.

This rule also performed well for shorter window lengths, but the results are a lot more
erratic. Average profitability was retained up to a window length of 50 days. Shorter

52

Figure 4.3: Relative Strength Profit at window lengths one through 99 days, for each of
ten currencies

4.2. ARTIFICIAL NEURAL NETWORK OPTIMISATION 53

window lengths of two to three days are found to be optimal, reaching an average prof-
itability of 48% and 47% respectively. The BRL finds its greatest profit at very long filter
windows (between 70 and 99 days) with its maximum at 97 days. The JPY finds similar
profits throughout the study, and the ZAR finds mean losses, but with a maximum profit
at a window length of 34 days.

It is again obvious that the individual series are unique, and are profitable over different
window lengths, thus RSI is an optimisable trading rule.

4.1.4 Summary

This section highlights that by altering the parameters of a trading rule, it is possible to
alter the profitability of the rule. It has been seen that different currencies are optimis-
able at unique points for different parameters, therefore trading rules are optimisable for
different data sets.

This result has important consequences. If optimal parameters can be found for a given
investment period, greater profit will be attained. As the data set was for five years
worth of data, and profit was found over the five year period, it is feasible that profitable
parameters can be found with some consistency.

4.2 Artificial Neural Network Optimisation

The ANN is responsible for combining the different signals from the different trading
rules, to form a single set of signals. These signals are tested by being simulated in the
SE. Thus, in order to optimise the whole system, it becomes necessary to optimise the
ANN. This means not only optimising the weights and biases to achieve maximum profit,
but also adjusting the architecture of the ANN.

As stated in Section 3.2, the different architectures to be tested are: the Simple ANN,
and ANNs with zero, one and two hidden layers. The results are presented below.

Table 4.1 shows the average profits generated per currency over the training and test
data sets for each of the ANN architectures. Figure 4.4 shows a histogram of the average
profits per period for the training sets, while Figure 4.5 shows the same, but for the test
set. In the training set, there is a general trend that the more layers there are (and thus,

54

Table 4.1: Overall Results for Neural Networks with varying architectures

Figure 4.4: Histogram comparing the profit per period for the training data set of the
four different ANN architectures

4.2. ARTIFICIAL NEURAL NETWORK OPTIMISATION 55

Figure 4.5: Histogram comparing the profit per period for the test data set of the four
different ANN architectures

more neurons), the greater the profit. While in the test set the inverse is true, indicating
the fewer layers, the greater the profit.

In Table 4.1, one can see that the “more intelligent” solutions have a bigger difference
between profit generated over the training sets, and test sets. Although this is true in
general, it should be noted that in some situations, the “more intelligent” solution clearly
outperformed the Simple ANN.

This can be accounted for by the phenomena of overtraining. As explained in Section
2.3.3, overtraining occurs when the ANN approximates the training data so closely that it
becomes highly specialised. This specialised solution however, is less effective in approxi-
mating the test data, as the two data sets are disconnected. Thus, in highly disconnected
data sets, a more generalised solution performs better.

According to Reed and Marks [55], the more neurons and hidden layers there are (until
a maximum of two hidden layers), the better an ANN is able to approximate complex
functions. Thus the more the complex the ANN, the more specialised it can become. Al-
though this is useful in finding specific solutions, it is counter-productive in this situation,
where general solutions produce more profit in the test sets.

4.3. GENETIC ALGORITHM OPTIMISATION 56

4.2.1 Summary

In this research, overtraining is evident in the architecture of the ANN. The more com-
plex the architecture, the better it can approximate any non-linear function and thus the
greater the possibility of overtraining. This is due to the stochastic nature of GAs. The
greater the possibility of overtraining (due to increased complexity), the greater probabil-
ity a solution will be overtrained, which causes an increase in the number of overtrained
solutions .

The Simple ANN out-performs the “more intelligent” solutions in general, but has a few
exceptions. It can be concluded that the network architecture itself can be likened to a
trading rule, and thus needs to be optimised for the individual currency and period by
the overarching system.

4.3 Genetic Algorithm Optimisation

As is evident from the literature in Section 2.1.3.3, GAs are effective optimisation tools,
especially for noisy multimodal functions [40]. They have also been successfully applied
to technical analysis in the past [1, 43, 48, 59]. Thus, GAs are seen as effective optimisers
in the context of technical analysis.

As noted in Section 3.4, this thesis investigates the optimal population size, and mutation
function for the genetic optimiser. The rest of this section examines each of the above,
and implements the optimal parameters. These optimal parameters are then compared
and contrasted.

4.3.1 Varying Population Size

The first parameter for the GA which is examined is the population size. A set of pop-
ulations between five and 500 were tested; the results are shown in Figures 4.6 and 4.7.
This study shows that there is a clear benefit to having a greater population size, as they
are able to find better maxima on the same data set and reduce the standard deviation of
the results. This however, is problematic for the same reason that the “more intelligent”
ANNs didn’t perform as well in Section 4.2: overtraining.

57

Figure 4.6: Graph showing the profits generated when altering the population size of the
GA

Figure 4.7: Graph showing the Standard Deviation of the profits generated when altering
the population size of the GA

4.3. GENETIC ALGORITHM OPTIMISATION 58

By finding the absolute global maximum, one is isolating very unique and specific points
in which the parameters perform well. This is obvious in the sudden upward spikes in both
the profits and standard deviations when a population size of 500 is used. Both spikes
are due to the GA finding very specific and profitable combinations that other population
sizes did not. This is due to the stochastic nature of GAs: the larger the population size,
the greater the chance that random generators and mutations will find better results, and
the more likely it is that unique maxima will be found.

The profits generated on the test set diminish as the population size is increased, while
they increase as the population size is decreased. This can be seen in Figure 4.6. This is
because more generalised/specialised solutions are being found. The specialised solutions
perform well on the training set, but due to the disconnected nature of the data, their
specialisation is limited to the training set. Standard deviation is highest with a smaller
population. This is due to the stochastic nature of GAs; with smaller population sizes,
GAs are less likely to find the same parameters twice - and so a greater variance is
observed. Thus, a smaller population size produces more profit, but a larger population
size produces greater stability, up until the point where highly specialised results are
found.

4.3.2 Changing the Mutation Function

The second parameter of GA investigated is the mutation function. Dynamic Gaussian
mutation, uniform mutation and adaptive feasible mutation are considered. The results
of these are presented in Figure 4.8.

The study shows that there is relatively little difference in results between the different
mutation options. Uniform mutation appears to have better profits and lower standard
deviations than the others, with Gaussian mutation coming second, and Adaptive Feasible
Mutation in last place. These results are inconclusive however, due to the stochastic
nature of GAs, and the small deviations in the results.

4.3.3 Optimised Parameters vs Current System

After investigating a change in population size and mutation function, it is necessary to
compare the best results of the above investigation with one another in order to ascertain
the optimal parameters for the GA.

59

Figure 4.8: Graph showing the profits generated when altering the mutation function of
the GA

Figure 4.9: Graph showing the standard deviation of the profits generated when altering
the mutation function of the GA

4.3. GENETIC ALGORITHM OPTIMISATION 60

Table 4.2: Results comparing the most profitable and stable parameters for the GA

A population size of five is chosen, as it achieved a greater profit than the other population
sizes on the unseen test data. As the standard deviation of the profits decreased when the
size of population was increased, and the inverse was true for the profits, a population size
of 20 is chosen as an intermediate parameter. As this population size has an acceptable
balance between profits and standard deviations.

The investigation into mutation functions suggested that the most profitable and stable
mutation function was uniform mutation. This is compared to the next most profitable
and stable mutation function: dynamic Gaussian mutation.

In order to compare the results of returns and standard deviations, the T-value was
used. This measure shows the statistical significance of both the returns and standard
deviations, when compared to the no-risk investment strategy of a US one-year Treasury
Bill.

Table 4.2 compares the systems produces using parameters suggested by the investigations
above. The table shows the average returns per currency, standard deviation of the
returns, and the T-value against a one-year US Treasury Bill for each system. Further, it
shows that the increase in profit generated by a population of size five is not proportional
to the increase in the standard deviations of resulting profits. This is evident in the lower
T-Values produced by the smaller population. This is because the population of size five,
although generating higher returns, does so with a higher risk; and the increase in profits
is not proportional to the increase in risk.

Even though uniform mutation proved more profitable and less risky than Gaussian muta-
tion in Section 4.3.2, when running the tests again to compare the two for both population
sizes, it performed worse, although not to a significant level. Thus no conclusions can be
drawn from the change in mutation function.

4.4. SUMMARY 61

4.3.4 Summary

In this section both changes in population size and mutation function were investigated
and compared. The smaller population sizes produced more profits, but with higher
risk; and the increase in profit was disproportional to the increase in risk, making profits
generated by smaller populations more profitable, but disproportionately more volatile.
A population of size 20 was found to be optimal, as it balances the increase in profits
with the increase in risk. The change in mutation function however, provided inconsistent
results which can be attributed to the stochastic nature of GAs. Hence, these results are
inconclusive.

4.4 Summary

This section investigated a number of important queries - the answers of which would
provide insight into the feasibility of an autonomous trader, as well as providing optimal
parameters for such a trader.

The first investigation proved the necessary result that the technical trading tools used
in the system are indeed optimisable. This was achieved by showing that currencies have
unique series of results when parameters are changed, and they have unique parameters
which return their maximum profit. Thus it is feasible to find profitable parameters for
different data sets.

As the trading rules are optimisable, the next investigation delved deeper into the optimi-
sation of the rest of the system, by altering the architecture of the ANN. This investigation
showed that overtraining is of great concern, and there exists a relationship in that the
“more intelligent” solutions were more likely to specialise and thus be overtrained, while
the simple solutions proved more general.

Since optimal parameters for the entire system had been found, the next investigation
looked into the optimal parameters for the optimising function. This investigation com-
pared different population sizes and mutation functions for the GA to achieve optimal
results. It was found that small population sizes provide more general solutions, but with
a higher degree of risk; whereas larger population sizes produce specialised and stable
solutions. Thus the optimal population size is approximately 20 individuals.

4.4. SUMMARY 62

The investigation into the mutation function produced mixed results of little statistical
significance, which was attributed to the stochastic nature of GAs. As such, the results
of the study into mutation functions were inconclusive.

Chapter 5

Results

This chapter presents the performance results of the system developed in Chapter 3 and
optimised in Chapter 4. The performance of the developed system is presented and
analysed in Section 5.1, with respect to the statistical significance of the system compared
to a no-risk investment strategy. Section 5.1 also analyses the effects that risk, and the
number of transactions per annum have on returns. The developed and optimised system
is then compared to the un-optimised trading strategies, using parameters suggested by
literature.

5.1 System Performance

As the trading rules are optimisable, and the optimal settings for the GA and ANN have
been found, it is necessary to investigate the results generated by this optimised system.
The rest of this section examines the profits generated for each currency and period, as
well as the statistical significance of these results. The trade-off between risk and return
is discussed, as well as the relationships between the number of transactions and returns.

Table 5.1 describes the returns generated by the system, showing the average returns per
currency, the standard deviations of those returns and the average number of transactions
performed per year, over all periods. The transaction costs for each currency, and the
statistical significance of the returns when compared to a no-risk investment strategy of
a one-year US Treasury Bill are also shown.

The study finds relatively consistent results across all currencies, with an average annual
return of 11.13%. The USD/BRL is found to be most profitable with an average of 19.6%

63

5.1. SYSTEM PERFORMANCE 64

Table 5.1: Results of most profitable system, returned as means of result per currency

profit per annum, and the USD/MXN is found to be the least profitable with an average
annual profit of 3.74%. The USD/BRL is found to be the most statistically significantly
profitable, with a T-value of 3.07 on comparison to a one-year US Treasury Bill. This is
due to the huge returns and relatively low risk achieved by the USD/BRL.

The standard deviation is found to average of 4.36%, with the majors having an average
standard deviation of 3.72%. This risk is lower than the minors’ average standard de-
viation of 4.27% and the emerging markets 5.03%, and can be attributed to the majors
having the largest volume traded. This causes non-market changes to have a smaller
effect on trades, making the majors less volatile. The same concept can be applied when
comparing the minors with the emerging markets.

The USD/MXN achieved the lowest profit of 3.74% but also at the lowest risk, with a
standard deviation of 2.95%. This lower risk is specifically due to an increased signal
tolerance produced by the genetic training function, which causes the USD/MXN to
respond only to heavily positive or negative signals. This results in fewer transactions
and greater stability in trading.

Table 5.2 describes the returns generated by the system, showing the average returns per
period and the standard deviations of those returns for all currencies. The transaction
costs for each currency, and the statistical significance of the returns when compared to
a no-risk investment strategy of a one-year US Treasury Bill are also shown.

The time period during which the test took place also heavily affected the profitability of
the system. Periods in 2007 and 2008 showed significantly more profit than those in the
three years prior. A maximum of 19.5% average annual return was achieved for the year

5.1. SYSTEM PERFORMANCE 65

Table 5.2: Results of most profitable system, returned as the mean values of result per
period

between April 2007 and March 2008, with the least average annual return being 2.45%
for the year between April 2005 and March 2006. Between these points there is a clear
trend, with each successive time period being more profitable than the last.

The average number of transactions changes dramatically across the periods: from an
average of 77.86 transactions per currency per year, in the period January through De-
cember 2007; to a mere 29.53 per currency per year, for the period April 2005 to March
2006 - coinciding with the lowest return of 2.45%. The reason for this reduced profitabil-
ity is unclear and should be investigated further; although by examining at the standard
deviations of the profits, it has been hypothesised that the foreign exchange markets have
been more predictable in recent periods (April 2006 till June 2008), than they have been
in the past (October 2004 till March 2006).

The profitability of the rules was seen to be significantly different (to a 1% level on
average) from a no-risk Treasury Bill investment strategy, with the latest three periods
being statistically significant to a 0.05% level.

The overall risk return scatter-graph 5.2 shows what seems to be an upward trend of risk
to returns. This is in alignment with financial theory, which states that the greater the
risk, the greater the returns [25].

In Figure 5.1, the majority of returns are between -5% and 30%, with risks between 0%
and 12%. The USD/MXN pair showed the greatest stability, with a clustering around 4%
return and 3% risk.

66

Figure 5.1: A Scattergram showing the relationship between risk and returns for all
currencies over all periods

Figure 5.2: A Scattergram showing the relationship between the average risk and returns
for all currencies

5.1. SYSTEM PERFORMANCE 67

Figure 5.3: A Scattergram showing the relationship between the number of transactions
and returns for all currencies over all periods

Figure 5.3 shows the number of transactions relative to returns for each currency and
period. There appears to be an upward trend in this figure, showing that investment
strategies which are more frequent traders, show higher returns.

5.1.1 Summary

By looking at these results, it is clear that some currencies and some periods are more
profitable than others. In general, the majors are the most profitable and least risky
currencies to trade in. The same is true for the data periods between October 2006 and
June 2008.

There appears to be a positive linear relationship between risk and return, which is in
alignment with financial theory [25], and a positive linear relationship between the number
of transactions and returns, indicating that strategies which more frequent traders show
higher returns.

In general the system is profitable to a statistically significant level of 5% when looking per
currency, and 1% when looking per period - with the latest three periods being statistically

5.2. COMPARISON WITH EXISTING TRADING STRATEGIES 68

Table 5.3: Comparison between profits generated by the Intelligent System and those
generated by un-optimised trading rules with parameters recommended in literature

significant to a 0.05% level.

5.2 Comparison with Existing Trading Strategies

In investigating the use of Intelligent Systems for Currency Trading Analysis, it is neces-
sary to see if the addition of intelligence, and the required computing power is justified
when compared against the same trading rules with un-optimised values recommended
by Park and Irwin [49].

Table 5.3 compares the intelligent system developed in Chapters 4 and 5 with un-optimised
trading rules showing the average profit generated for each currency over all periods.

Trending analysis is performed with short and long window sizes of five and 20 days
respectively; filter rules are applied with a window length of 15 days; RSI is used with a
window length of 5 days; MACD is employed with window lengths of twelve, 26 and nine
days; and MOM is tested with a window length of 12 days. These results are compared to
the most significantly profitable system using the Simple ANN architecture, a population
size of 20, and dynamic Gaussian mutation. The results of which are tabulated in Table
5.3.

It is clear from these results that the addition of intelligence dramatically improves results,
and that the optimised combination of the trading rules has far greater returns than
those of the individual components. The returns of the intelligent system are statistically

5.3. SUMMARY 69

significant to the 1% level when compared to the un-optomised trading rules, with a
T-Value of 2.01.

This proves that there is definitely merit in the added computational time and effort
required to optimise the trading system.

5.2.1 Summary

The system performs statistically significantly better to a 1% level than the individual
rules with parameters recommended in literature. This shows that there is merit in
introducing AI, as it significantly improves the profitability of the system.

5.3 Summary

After optimal values had been found for the GA and ANN, the most statistically sig-
nificant solution was investigated further. This chapter has shown that some currencies
and periods are more profitable than others and in general, the more stable currencies
and periods were the most profitable and significant. There are also a positive linear
relationships between risk and returns, as well as between the number of transactions per
year and returns.

In general, the system is profitable to a statistically significant level of 5% when looking
per currency, and 1% when looking per period - with the latest three periods being
statistically significant to a 0.05% level.

Once it was established that the system is significantly profitable, an investigation into
the value that AI contributes to this profitability was launched. It was found that the
system performs better than any of the individual rules with parameters recommended in
literature, to a statistically significant level of 1% .

Chapter 6

Conclusion

This thesis set out to build a system which intelligently combines signals generated by
a number of optimised technical trading tools, to produce a single set of buy, hold and
sell signals for the foreign exchange market. The intelligent combining of the signals was
done with ANNs, and the optimisation was performed by GAs. The system attempted to
overcome the criticisms of earlier tools, while still remaining significantly more profitable
than a no-risk investment strategy. In so doing, the system used real-world transaction
costs, as well as overnight interest rates (or closest proxy) to simulate a market in which
traders shift between long and short positions.

Filter rules, trending, RSI, MACD and MOM were all implemented mechanically, pro-
ducing fuzzy buy and sell signals. These signals were intelligently combined by an ANN,
before being assessed by a simulation environment. The entire system was then optimised
by a GA to ascertain the optimal parameters for the trading rules, as well as the weights
and biases for the ANN, and the risk thresholds in the simulation environment.

Following the optimisation, the system was tested over twelve two-year periods of uni-
formly selected data from five years of asset price information for ten currencies. This
was repeated 30 times, and the mean values of the repeats were taken into account for the
stochastic nature of GAs. The system was presented with training data from 365 days,
and tested on the following 365 days of data. This was done so as to address criticisms
of data snooping.

70

6.1. PROBLEM STATEMENT REVISITED 71

6.1 Problem Statement Revisited

This study set out to achieve significantly profitable buy, hold and sell signals for the
foreign exchange market through the use of technical analysis, while taking into account
all previous criticisms (see Section 1.1).

In order to actualise these objectives, a number of intermediary goals were achieved.
Technical trading tools were shown to be optimisable, making it possible to tailor the
parameters of these tools to produce maximum profit on the given data set. GAs were
shown to be effective optimisers in the context of technical analysis.

Optimal parameters for the GA were investigated, with results indicating that lowering
the population size produced more generalised solutions, but with increased standard
deviations. It was also shown that altering the mutation function of the GA has relatively
little effect on the results.

ANNs proved to be good signal amalgamators, with overtraining being their only downfall.
It was found that the more complex the ANN, the more specialised the resulting system;
generating increasing profits on the training sets. This specialisation however, caused
a decrease in profits in the test sets, as the resulting system was not finding general
optimums, but rather unique and highly profitable solutions limited to the training set.
Thus the least complex ANN turned out to be the most profitable, as it was unable to
specialise as highly, and was thus a more general solution.

The optimal parameters identified in the above investigations were then compared to the
un-optimised trading rules recommended in literature. The results of this comparison
show that the addition of intelligence provides a statistically significant increase in the
profitability of the system to a 1% level.

The general results for the optimal system were then investigated. It was found that the
system was statistically significantly more profitable than a no-risk investment strategy
- to a 5% level on average when looking per currency; and to a 1% level on average
when looking per period, with the latest three periods (January 2007 to June 2008) being
statistically significant to a 0.05% level.

Based on these results, it can be concluded that the project was a success, proving that
it is indeed possible to create a profitable autonomous trading system.

6.2. FUTURE WORK 72

6.2 Future Work

As the ANNs used in this thesis were found to be prone to overtraining, alternative types
of ANNs should be investigated along with appropriate training methods. Some of these
ANN types include Support Vector Machines, and dynamically structured Committee
Machines, using Reinforcement Learning and other methods of unsupervised learning.
Another option would be to use methods other than ANNs to amalgamate and classify
signals. Examples include methods used for building fuzzy Knowledge Based Systems,
and a non-linear combiner built and optimised using Genetic Programming techniques.

One other area that deserves attention is the identification of other suitable technical
trading tools that can be used. To this end, principle component analysis should be
performed on the Technical Trading Tools to see which tools are useful/useless. Following
this investigation, the rule base should be restructured, and expanded to include more
rules that have a similarly high impact on profits. This includes creating new rules through
the application of Genetic Programming techniques.

A further area that can be explored is potentially increasing the dimension of the data used
by the system. Currently, the data presented to the system provides a single dimension
of the current market. Therefore, means of extending the system to include other related
information should be explored. For example, the use of a lexical analyser within the
system could be investigated. The role of this analyser would be to pick up news headlines
from RSS feeds, corresponding to a database of countries paired with currencies, and words
with semantic understanding. This could serve as an indicator of possible future trends.
Other dimensions such as prime interest rates, GDP, and inflation could be presented to
the system as indicators. These indicators could be used to identify the future trends of
an economy, and thus signal a strengthening or weakening of that economy’s currency.

Further, the current system could be extended to trade on the best opportunity amongst
all currencies. This could be accomplished by pitting all investment possibilities against
one another. This allows the system to exploit the optimal transactions by trading be-
tween a number of currencies, instead of simply shifting between the long and short
positions on a single currency.

Finally, it would be beneficial if the system was able to autonomously obtain the latest
data from the Internet, and thus base its decisions on data it has collected itself. If this
proves profitable, the system could be allowed to make its own trading decisions, and
have access to one of the online trading APIs - thus completely automating the trading
process, and creating a passive money-making machine.

References

[1] F. Allen and R. Karjalainen. Using genetic algorithms to find technical trading rules.
Journal of Financial Economics, 51(2):245–271, 1999.

[2] A.G. Barto, R.S. Sutton, and C.W. Anderson. Neuronlike elements that can solve
difficult learning control problems. IEEE Transactions on Systems, Man, and Cy-
bernetics, 13(5):834–846, 1983.

[3] Thomas Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strate-
gies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, USA,
1996.

[4] S. Becker. Unsupervised learning procedures for neural networks. International
Journal of Neural Systems, 2(1):17–33, 1991.

[5] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
1996.

[6] W. Brock, J. Lakonishok, and B. LeBaron. Simple technical trading rules and the
stochastic properties of stock returns. Journal of Finance, 47(5):1731–1764, 1992.

[7] DS Broomhead and D. Lowe. Radial basis functions, multi-variable functional inter-
polation and adaptive networks. 1988.

[8] GA Carpenter and S. Grossberg. The art of adaptive pattern recognition by a self-
organizing neuralnetwork. Computer, 21(3):77–88, 1988.

[9] T. Chenoweth and Z. Obradović. A multi-component nonlinear prediction system
for the s&p 500 index. Neurocomputing, 10(3):275–290, 1996.

[10] N.L. Cramer. A representation for the adaptive generation of simple sequential pro-
grams. Proceedings of the 1st International Conference on Genetic Algorithms table
of contents, pages 183–187, 1985.

73

REFERENCES 74

[11] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals, and Systems (MCSS), 2(4):303–314, 1989.

[12] C. Darwin. The origin of species. 1859.

[13] K.A. De Jong. Analysis of the behavior of a class of genetic adaptive systems. 1975.

[14] E.F. Fama. Efficient capital markets: A review of theory and empirical work. Journal
of Finance, 25(2):383–417, 1970.

[15] E.F. Fama and M.E. Blume. Filter rules and stock-market trading. Journal of
Business, 39(S1):226, 1966.

[16] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial Intelligence Through Simulated
Evolution. John Wiley & Sons Inc, 1966.

[17] L.M. Fu. Neural Networks in Computer Intelligence. McGraw-Hill, Inc. New York,
NY, USA, 1994.

[18] C. Fujiki and J. Dickinson. Using genetic algorithms to generate lisp source code
to solve prisoner’s dilemma, genetic algorithms and their applications. Proceedings
of the Second Int. Conf. on Genetic Algorithms. Cambridge, MA: Lawrence Erlbaum
Associates, pages 236–240, 1987.

[19] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1989.

[20] A. Goodacre and T. Kohn-Speyer. Crisma revisited. Applied Financial Economics,
11(2):221–230, 2001.

[21] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR
Upper Saddle River, NJ, USA, 1994.

[22] DO Hebb. The Organization of Behavior. John Wiley & Sons Inc., 1949.

[23] J.H. Holland. Adaptation in natural and artificial systems. University of Michigan
Press Ann Arbor, 1975.

[24] JJ Hopfield. Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences of the United
States of America, 79(8):2554–2558, 1982.

[25] PGA Howells and K. Bain. The Economics of Money, Banking and Finance: A
European Text. Financial Times/Prentice Hall, 2005.

REFERENCES 75

[26] Lakhmi C. Jain and N.M. Martin. Fusion of Neural Networks, Fuzzy Sets, and
Genetic Algorithms: Industrial Applications. International Series on Computational
Intelligence. The CRC Press, 1999.

[27] N. Jegadeesh and S. Titman. Cross-sectional and time-series determinants of mo-
mentum returns. Review of Financial Studies, 15(1):143–157, 2002.

[28] M.C. Jensen and G. Bennington. Random walks and technical theories: Some addi-
tional evidence. Journal of Finance, 25(2):469–482, 1970.

[29] H. Kitano. Designing neural networks using genetic algorithms with graph generation
system. Complex Systems, 4(4):461–476, 1990.

[30] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78:1464, 1990.

[31] John R. Koza. Genetic Programming: On the programming of computers by means
of natural selection. Sventh Printing, 1992.

[32] R.M. Levich and L.R. Thomas. The merits of active currency risk management:
Evidence from international bond portfolios. FINANCIAL ANALYSTS JOURNAL,
49:63–63, 1993.

[33] R. Levy. Relative strength as a criterion for investment selection. Journal of Finance,
22(4):595–610, 1967.

[34] R. Linsker. Self-organization in a perceptual network. Computer, 21(3):105–117,
1988.

[35] B.R. Marshall, J.M. Cahan, and R.H. Cahan. Is the crisma technical trading system
profitable? Global Finance Journal, 17(2):271–281, 2006.

[36] W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biology, 5(4):115–133, 1943.

[37] GF Miller, PM Todd, and SU Hedge. Design neural networks using genetic algo-
rithms. Proceedings of the Third International Conference on Genetic Algorithms,
pages 379–384, 1989.

[38] M. Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30,
1961.

[39] M.L. Minsky and S. Papert. Perceptrons: an introduction to computational geometry.
MIT Press Cambridge, Mass, 1969.

REFERENCES 76

[40] M. Mitchell. An Introduction to Genetic Algorithms. Bradford Books, 1996.

[41] D.J. Montana and L. Davis. Training feedforward neural networks using genetic
algorithms. Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, 123, 1989.

[42] D. Nauck, F. Klawonn, R. Kruse, and F. Klawonn. Foundations of Neuro-Fuzzy
Systems. John Wiley & Sons, Inc. New York, NY, USA, 1997.

[43] C.J. Neely, P. Weller, R. Dittmar, and Centre for Economic Policy Research
(Great Britain). Is Technical Analysis in the Foreign Exchange Market Profitable?
A Genetic Programming Approach. Centre for Economic Policy Research, 1996.

[44] OANDA. Currency histories. Online: http://www.oanda.com/convert/fxhistory
Accessed: 06/08/2008, 2008.

[45] T. Oberlechner. Importance of technical and fundamental analysis in the european
foreign exchange market. International Journal of Finance & Economics, 6(1):81–93,
2001.

[46] J. Okunev and D. White. Do momentum-based strategies still work in foreign cur-
rency markets. Journal of Financial and Quantitative Analysis, 38(2):425–447, 2003.

[47] OnlineTradingConcepts.Com. Technical analysis. Online: http://www.

onlinetradingconcepts.com/TechnicalAnalysis Accessed: 16/09/2008, 2008.

[48] S. Papadamou and G. Stephanides. Improving technical trading systems by using a
new matlab-based genetic algorithm procedure. Mathematical and Computer Mod-
elling, 46(1-2):189–197, 2007.

[49] C.H.O. Park and S.H. Irwin. The profitability of technical analysis: A review. Urbana,
51:61801, 2004.

[50] M.J. Pring. Introduction to Technical Analysis. McGraw-Hill, 1998.

[51] S.W. PRUITT, KS MAURICE TE, and R.E. WHITE. The crisma trading system:
The next five years. Journal of Portfolio Management, (SPRING 1992), 1992.

[52] S.W. Pruitt and R.E. White. The crisma trading system: who says technical analysis
can’t beat the market. Journal of Portfolio Management, 14(3):55–58, 1988.

[53] I. Rechenberg. Cybernetic solution path of an experimental problem. royal aircraft
establishment. Library Translation, 1122, 1965.

REFERENCES 77

[54] I. Rechenberg. Evolutionsstrategie. Frommann-Holzboog, Stuttgart, 1973.

[55] Russell D. Reed and Robbert J. Marks. Neural Smithing: Supervised Learning in
Feedforward Artificial Neural Networks. Bradford Books, 1999.

[56] F. Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychol Rev, 65(6):386–408, 1958.

[57] D.E. Rumelhart, G.E. Hintont, and R.J. Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536, 1986.

[58] D.E. Rumelhart and J.L. McClelland. Parallel distributed processing: explorations
in the microstructure of cognition: foundations. Mit Press Computational Models Of
Cognition And Perception Series, 1:547, 1986.

[59] M.R.E. Shazly and H.E.E. Shazly. Forecasting currency prices using a genetically
evolved neural network architecture. International Review of Financial Analysis,
8(1):67–82, 1999.

[60] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

[61] R.J. Sweeney. Beating the foreign exchange market. Journal of Finance, 41(1):163–
182, 1986.

[62] M.P. Taylor and H. Allen. The use of technical analysis in the foreign exchange mar-
ket. INTERNATIONAL LIBRARY OF CRITICAL WRITINGS IN ECONOMICS,
143:379–389, 2002.

[63] Thomson-Reuters. Thomson datastream. Online: http://www.thomsonreuters.

com/products_services/financial/datastream Accessed: 20/09/2008.

[64] J.C. Van Horne and G.G.C. Parker. The random walk theory: an empirical test.
Financial Analysts Journal, 23:87–92, 1967.

[65] J.C. Van Horne and G.G.C. Parker. Technical trading rules: A comment. Financial
Analysts Journal, 24(4):128–32, 1968.

[66] DJ Willshaw and C. von der Malsburg. How patterned neural connections can be
set up by self-organization. Proceedings of the Royal Society of London. Series B,
Biological Sciences, 194(1117):431–445, 1976.

