
DEVELOPING A TRANSFORMATION PIPELINE
VISUALISER USING XNA AND WINDOWS FORMS

Submitted in fulfilment

of the requirements of the degree of

BACHELOR OF SCIENCE (HONOURS)

of Rhodes University

By Alastair Nottingham. Supervised by Prof. Peter Wentworth.

Grahamstown, South Africa

November 2008

Abstract

The transformation pipeline is an essential component of any 3D graphics system, responsible
for the positioning and orienting of 3D models and vertices within a scene, and presenting that
scene, through the view of a camera, to the screen. The transformation pipeline depends on ma-
trix algebra in order perform its calculations, a topic poorly understood by a number of students
with weak mathematical backgrounds. This document details the creation of a Transforma-
tion Pipeline Visualiser application, intended to provide open-ended graphical exploration of
the XNA transformation pipeline, developed as an interactive teaching tool for use within an
undergraduate game development course.

Contents

1 Introduction 4

1.1 Background . 4

1.2 Problem Statement . 5

1.3 The Transformation Pipeline Visualiser . 5

1.4 Document Overview . 7

2 Analysis 8

2.1 Overview . 8

2.2 Teaching Considerations . 8

2.2.1 Computer-Assisted Instruction . 9

2.2.2 Learning Theory . 10

2.3 Graphics . 12

2.3.1 The Transformation Pipeline: An Overview 12

2.3.2 Matrix Operations . 13

2.3.3 3D Transform Geometry . 14

2.3.4 World, View and Projection Matrices 21

2.3.5 Color and Lighting . 23

2.4 Skyboxes . 27

2.5 Summary . 27

2

CONTENTS 3

3 Integrating XNA and Windows Forms 29

3.1 Overview . 29

3.2 Architecture Selection . 29

3.3 Application Requirements . 30

3.3.1 Performance . 30

3.3.2 Simplicity . 31

3.3.3 Content Sharing . 31

3.4 Acceptable Methods . 32

3.4.1 The Thorough Method: Building a Custom Game Object 32

3.4.2 The Simple Method: Presenting XNA Graphics to an Existing Control . 33

3.5 Performance Results . 35

3.6 Selection . 36

3.7 Summary . 37

4 Design and Implementation 38

4.1 Overview . 38

4.2 Data Structures . 38

4.2.1 TransformObject . 39

4.2.2 Transformation Nodes . 40

4.2.3 Transformation List . 43

4.2.4 ModelRegistry . 44

4.3 Global GUI Controls . 45

4.3.1 Filtered TextBox . 46

CONTENTS 4

4.3.2 Matrix Control . 46

4.4 Transformation Visualisation . 47

4.4.1 Overview . 47

4.4.2 Functionality . 47

4.4.3 Associated GUI Controls . 57

4.5 Matrix Operation Visualisation . 59

4.5.1 Overview . 59

4.5.2 Features . 60

4.5.3 Associated GUI Controls . 61

4.6 View And Projection Manipulation . 64

4.6.1 Overview . 64

4.6.2 Features . 64

4.6.3 Associated GUI Controls . 65

4.7 Controlling Lighting . 66

4.7.1 Overview . 66

4.7.2 Features . 67

4.7.3 Associated GUI Controls . 68

4.8 Synthesis . 69

4.8.1 Overview . 69

4.8.2 Features . 69

4.8.3 Associated Controls . 71

4.9 Summary . 72

CONTENTS 5

5 A Sample Lesson 74

5.1 Overview . 74

5.2 Practical . 74

5.3 Solving the Practical . 76

5.3.1 Section 1: Space Solution . 76

5.3.2 Section 2: DNA Solution . 77

5.4 Summary . 77

6 Conclusion 79

6.1 Overview . 79

6.2 Available Functionality . 79

6.3 Future Work . 81

6.3.1 Improvements . 81

6.3.2 Extensions . 82

6.4 Summary . 84

List of Figures

1.1 The Main Form . 5

1.2 Stepping into a calculation . 6

2.1 Matrix Addition . 13

2.2 Matrix Subtraction . 14

2.3 Matrix Multiplication . 15

2.4 Translation Matrix . 15

2.5 Scale Matrix . 16

2.6 Rotation Matrices . 17

2.7 Gimbal Lock . 18

2.8 Orbits . 19

2.9 Objects encircling the y axis . 20

2.10 View Transformation . 23

2.11 A Viewing Frustum[12] . 24

2.12 Orthogonal and Perspective Projection . 24

2.13 Emissive Light [6] . 25

2.14 Ambient Light [3] . 26

1

LIST OF FIGURES 2

2.15 Diffuse Light [5] . 26

2.16 Specular Light [8] . 26

2.17 Skyboxes . 28

4.1 Class Diagram providing an overview of the relations between objects 39

4.2 Scalar multiplication using a scaling matrix 41

4.3 A MatrixControl component . 47

4.4 The Transform Manager . 48

4.5 Object Controls . 48

4.6 The Element Context Menu . 51

4.7 The Element Builder . 52

4.8 The Waypoint Context Menu . 53

4.9 Rename Element Form . 54

4.10 Transform Node Views . 56

4.11 Transform List . 57

4.12 The Matrix Calculation Viewer Form . 60

4.13 Matrix Addition and Subtraction Layout . 61

4.14 Matrix Multiplication Layout . 62

4.15 Matrix Operation Viewer . 62

4.16 DrawnMatrix Control . 63

4.17 MatrixBlock and MatrixBlockList . 64

4.18 Camera Controls . 64

4.19 Field of View and Camera Information . 65

LIST OF FIGURES 3

4.20 The Effects of Custom Object Lighting . 67

4.21 Directional Lighting Controls . 68

4.22 Directional Lighting Effects . 68

4.23 ColourSelector Control . 68

4.24 Edit Skybox Form . 70

4.25 A Small Skybox . 71

5.1 Example Practical: Solution Images . 78

Chapter 1

Introduction

1.1 Background

Development of 3D interactive content, once reserved for experienced, specialised developers,
is fast becoming an accessible and rewarding hobby for many individuals, due in part to the
rapid advancement in technology, and the introduction of game development frameworks such
as Microsoft XNA Game Studio. Due to the growing interest in interactive 3D development,
particularly regarding 3D games, the Computer Science department of Rhodes University in-
tends to introduce an elective Game Programming course as part of the 3rd year Computer
Science curriculum. This course will instruct students in the basics of game development, and
will serve as an introduction to basic 3D graphics programming.

As the course is intended as an introduction, it will focus primarily on aspects fundamental
to all 3D development, rather than specific, complex effects. One such fundamental topic is
that of the transformation pipeline, which is responsible for scaling, positioning and orienting
objects relative to one another in a scene, positioning the camera, and projecting the camera’s
view to the screen, which it achieves utilising matrix algebra. Unfortunately, many third year
students are unfamiliar or uncomfortable with matrix algebra, and thus find the transformation
pipeline both confusing and complicated. Hence, it is desirable to develop a means to help
such students properly visualise how the transformation pipeline works, as this will improve
their comprehension of both transformations and matrix algebra in general, both fundamental
to computer graphics.

4

1.2. PROBLEM STATEMENT 5

(a) A simple scene (b) Building a car from primitives

Figure 1.1: The Main Form

1.2 Problem Statement

The processes involved in developing interactive 3D content for the XNA framework, and
graphical API’s in general, are heavily dependent on matrix algebra and the transformation
pipeline, which are responsible for positioning objects within a scene and projecting them to
the screen. Despite being relatively simple in concept, the mathematics involved presents a
barrier to learning[18] for many students. As these concepts are fundamental to a proper under-
standing of 3D development, particularly within the XNA framework, we desire an application
to provide real time visualisation of the transformation pipeline in order to provide a mechanism
for concept exploration and to help solidify understanding of basic techniques.

1.3 The Transformation Pipeline Visualiser

In order to address these concerns, a Transformation Pipeline Visualiser application has been
developed, which leverages XNA and Windows Forms, to help students grasp these concepts.
In this section, we supply a simple overview to provide context for the topics discussed in the
following chapters.

The Transformation Pipeline Visualiser is an application which allows for graphical exploration
of the transformation pipeline used to position and orientate objects in an XNA game. The
application consists of a main form, housing transformation, lighting, camera and environment
controls, which the user can use to build complex, animated scenes.

1.3. THE TRANSFORMATION PIPELINE VISUALISER 6

(a) The Overall Calculation (b) Individual Operations

Figure 1.2: Stepping into a calculation

The Transformation Pipeline Visualiser facilitates stepping into the calculation of an objects
World matrix, allowing the user to view each step in the calculation of each matrix, and the
calculation of the list overall.

The application supports both static and dynamic transformations, as well as a variety of matrix
operations, and parenthesis, to allow the user to explore the creation of 3D scenes, compris-
ing dynamic object models which demonstrate interdependent behaviors. The application also
allows the user to manipulate both object and scene lighting, as well as the scene view and pro-
jection parameters. To improve the visual diversity and quality of scenes, the application allows
the user to specify custom environments through use of a Skybox creation component. Envi-
ronments, objects and entire scenes may be saved for later use, or for use on another machine.

Essentially, the Transformation Visualiser Application is an attempt to provide a simple means
for students to familiarise themselves with the transformation pipeline within a 3D game. The
application is designed as a flexible, exploratory medium, but may be used as a platform for
more structured practical tasks. The application presents an open view of the state of each
component, and provides the user with real time feedback regarding how changes affect the
objects in a scene.

In this document, we discuss the development of this application.

1.4. DOCUMENT OVERVIEW 7

1.4 Document Overview

The document is divided into sections. In the following chapter we consider theory relevant to
the development of the application. This includes both theories of learning, used to develop the
teaching concept for the system, and graphics theory, which introduces the concepts the appli-
cation will be used to explore. Chapter 3 discusses the methods considered for displaying XNA
content within a Forms environment, providing justification for the chosen method. Chapter 4
details the features of the system in detail, elaborating on the implementation of the functional-
ity where relevant. Chapter 5 provides a sample practical which illustrates how the application
may be used to teach graphics concepts. Chapter 6 concludes by summarising the application
and its features, and then considers a number of possible improvements and extensions, which
may be pursued in order to improve the application.

Chapter 2

Analysis

2.1 Overview

In this chapter we consider relevant theory, in the realms of both teaching and graphics, as a
foundation for project development. Teaching theory considers the paradigms of both Operant
Conditioning and Discover and Resolve Tutoring (DART) in order to provide a theoretical ba-
sis for the teaching methodology being utilised by the Transformation Pipeline Visualiser. In
particular, this section aims to highlight the benefits of a DART inspired implementation which
advocates personal discovery over conditioned understanding.

Graphics considers relevant graphical theory, in order to provide a thorough overview of what
the application intends to achieve. Since the applications scope is limited to the transformation
pipeline and scene lighting, discussion will be focussed around these topics.

2.2 Teaching Considerations

The following section considers aspects fundamental to the project, with the intention of pro-
viding a theoretical foundation for design decisions regarding both the medium and method of
knowledge dissemination. Discussion first considers the field of Computer-Assisted Instruction,
elaborating on both early history, and recent research relevant to this project. This is followed by
an overview of relevant psychological theory (namely Behaviorism and Discover And Resolve
Tutoring) in order to qualify the viability of the intended teaching methodology.

8

2.2. TEACHING CONSIDERATIONS 9

2.2.1 Computer-Assisted Instruction

Background

Computer-Assisted Instruction, or alternatively Computer-Based Training, is a field focussed
on utilising current computing technologies to improve student understanding of particular
ideas and paradigms whilst reducing inherent strain on educators, particularly in large teach-
ing classes. The field of Computer-Assisted Instruction was arguably established in the late
1920’s and early 1930’s by Sydney Pressey, an educational psychology professor who devel-
oped and deployed a machine to mechanically provide practice multiple choice questions to
students in his introductory psychology course [25]. The field has developed for nearly a cen-
tury, embracing such technologies as the Internet, computer animation, graphical systems and
embedded systems in order to improve the effectiveness of digital education[14, 36, 2, 25].
Currently, research persists on the educational potential of interactive computer systems, with
eLearning, web based educational tools, and educational collaboration software receiving con-
siderable attention[35].

Implications

This section discusses similar Computer-Assisted Instruction based projects, as well as their
implications for this project. Many similar projects have been attempted, and have generally
met with success[2, 33, 14, 23], with a few exceptions [31]. In this regard, failures tended to
occur when the topic matter was less structured than those found in computer science courses,
for instance in Psychology[31], where graphical interaction with computerised models is less
applicable. Furthermore, failures tended to coincide with studies which focused on using the
technology as a primary educator, rather than as a supplement for formal lectures [31, 14, 36, 2].
As our application is envisioned as a supplement to formal lectures, and illustrates a process
which lends itself fundamentally to visual representation, chances of success are significantly
increased.

With regard to applications which attempt to instruct computer science concepts, and which are
reliant primarily on visual interactive components, we find that despite success, the graphical
technology utilised was generally of a very simplistic nature. Notably, in A. Naiman’s interac-
tive modules for teaching computer graphics [26], the visual component consisted primarily of
2D line drawings, resulting in an abstract visualisation removed somewhat from an actual im-
plementation. This simplification is largely a result of the limitations of technology at that time,

2.2. TEACHING CONSIDERATIONS 10

and the complexity inherent in developing a visually advanced graphical tutoring application
from scratch. With the arrival of XNA and its respective libraries, graphical development has
been greatly simplified [24], thus allowing rich 3D environments and their respective behaviors
to be developed in relatively short time frames. As our intention is to teach games programming
in the XNA environment, this provides the added benefit of removing all layers of abstraction,
as results will be identical in any XNA game. As such, lessons may be far more engaging and
informative than was previously possible.

2.2.2 Learning Theory

In this section, we shall consider theory regarding the human learning process. In this regard,
we shall illustrate why, with respect to this project, a DART approach promises a more engaging
and flexible learning environment than is possible using a behaviorist approach.

Behaviorism

Computer-Assisted Instruction has its roots in behaviorist theories, and has often been linked
to B.F. Skinner’s Operant Conditioning [29], an alternative to Pavlov’s Classical Conditioning

concerning reflex response association[27]. While classical conditioning involves establishing
a causal link between a neutral stimulus and a conditioned response, treating the learner as a
passive observer within the environment, Operant Conditioning sees the learner as an active
participant. In essence, it contends that the probability that the learner will engage in a behavior
is increased by an operant reinforcer, or positive consequence, but decreased by a punisher, or
negative consequence[27].

Thus, behavior can be conditioned by providing the right stimulus-response patterns[27, 30].
This can be achieved through Behavioral Shaping, which attempts to reward successive ap-
proximations of a desired behavior, thus improving behavior performance in stages [22, 27, 30].
As positive reinforcement continues, generalisation over similar stimuli should occur, produc-
ing secondary reinforcers which, unlike innately pleasurable primary reinforcers, are learned
through association with other primary and secondary reinforcers [27, 22, 30].

While behaviorist theories provide the foundation for modern Computer-Assisted Instruction,
we wish to elaborate on another more recent, qualitative approach which places greater empha-
sis on exploration than explanation.

2.2. TEACHING CONSIDERATIONS 11

DART: Discover And Resolve Tutoring

DART is a relatively new theoretical approach to improving success in student tutoring in scien-
tific subjects [18]. As DART is intended specifically for one-to-one tutoring sessions between
teacher and student, it is not readily applicable to computer based learning, but instead pro-
vides significant insight that may improve the user experience. Essentially, DART stipulates
that student learning may be blocked by perceptual error or misunderstanding, which needs to
be identified in order to remove the block, thus allowing them to grasp the concept properly. In
order to maximise success, the student is encouraged to demonstrate their knowledge of an area,
without lecture or demonstration from the tutor, so that their understanding of relevant concepts
can be ascertained. Should a student get stuck, the tutor should provide simple insights to aid
the student in completing the task, or alternatively, set a simpler version of the task to be at-
tempted first. By taking advantage of watching the students attempt to solve the problem, the
tutor can identify where the source of the block is, and help the student correct the problem[18].

With regard to the project at hand, while not generally applicable, DART provides several rel-
evant insights. Firstly, the paradigm favors exploration over instruction, which in turn allows
the student to solve the problem, rather than simply supplying the student with a solution to
be learned. Secondly, DART recognises that misunderstandings occur as a result of conceptual
discrepancies beyond the scope of the problems presented, and so focusing solely on the prob-
lem area without consideration for the root cause serves to only increase confusion. Thirdly,
DART values simplicity and incremental approaches to teaching, whereby the student develops
their understanding from less complicated and more constrained examples, and applies them in
more complicated instances, reducing confusion and anxiety[18].

Teaching Methodology

Classical behaviorism advocates a constant question-answer-feedback loop, intended to allow
students to assess and adjust their own knowledge based on the results of prior actions[27].
Whilst effective, it relies on a structured progression, which assumes student understanding at
each step, and generally focuses on issues within the locus of the problem at hand without con-
sideration for related areas which may affect accurate perception. In contrast, DART operates in
far less structured circumstances, and utilises student exploration of the problem to a far greater
degree[18]. Whilst DART’s application is limited in the context of Computer-Assisted Instruc-
tion, due primarily to the severe limitations of machine intelligence, elements of exploration can
be implemented within the application to provide user flexibility in addressing their problems.

2.3. GRAPHICS 12

In this regard, the application has been designed such that all material is accessible without
prerequisite, and relevant additional information is available where necessary. This will en-
tail deviating from the question-answer paradigm, since this assumes prior knowledge of the
student’s intention, which is necessarily absent in an open-ended system.

Since both paradigms advocate an incremental approach to learning[18, 27], we shall facilitate
exploration of concepts in isolation and in cooperation, and allow the student to control the
complexity to as great a degree as possible.

2.3 Graphics

This section aims to provide an overview of the mathematics utilised in the fundamental con-
cepts demonstrated. The purpose of this section is to both elaborate on the relevant mathe-
matical and graphical theory, and to provide an overview of the procedures the application is
intended to demonstrate once deployed.

2.3.1 The Transformation Pipeline: An Overview

The Transformation Pipeline refers to the sequence of coordinate transformations applied to the
vertices of a mesh in order to present them, in their correct positions, in a viewport[9, 32]. The
transformation pipeline consists of four distinct stages[9], of which we are interested in demon-
strating the first three, namely the World, View and Projection transformations. The World
transformation converts model coordinates (where the model coordinates origin is typically the
center of the model) to world coordinates (where the model coordinates origin is the center of
the scene). Primarily, this allows for relative model positioning.

The View transformation converts object coordinates from world space into camera space [9],
where objects are positioned relative to the camera. Projection transformations move coordi-
nates from camera space into clip space, where meshes are clipped to a viewing volume, or
frustum, and allows for perspective distortion[9]. We shall not be considering the transforma-
tion from clip space into pixel coordinates, as it is not typically relevant. In the following sec-
tions, we discuss the first three components of the transformation pipeline, and simple lighting
techniques.

2.3. GRAPHICS 13

Let A = [ai j] and B = [bi j] be m×n matrices. Then the sum A+B is an m×n matrix C = [ci j]
where

ci, j = ai, j +bi, j

Specifically,
a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

+

b1,1 b1,2 b1,3 b1,4
b2,1 b2,2 b2,3 b2,4
b3,1 b3,2 b3,3 b3,4
b4,1 b4,2 b4,3 b4,4

=

a1,1 +b1,1 a1,2 +b1,2 a1,3 +b1,3 a1,4 +b1,4
a2,1 +b2,1 a2,2 +b2,2 a2,3 +b2,3 a2,4 +b2,4
a3,1 +b3,1 a3,2 +b3,2 a3,3 +b3,3 a3,4 +b3,4
a4,1 +b4,1 a4,2 +b4,2 a4,3 +b4,3 a4,4 +b4,4

Figure 2.1: Matrix Addition

2.3.2 Matrix Operations

The transformation pipeline uses transformation matrices to scale, rotate, translate and project
to the screen. Fundamental to this is the matrix multiplication operation, which allows such
transformations to take place. In this section we shall discuss matrix multiplication, as well as
matrix addition and subtraction, as it applies to the transformation pipeline. As matrix addition
and subtraction are both very similar and conceptually simple, they shall be discussed first.

Matrix Addition

The sum of two matrices is equivalent to the sum of corresponding elements between both
matrices2.1. While not typically used within the transformation pipeline, if appropriately utilised
it can allow for sophisticated transformation effects.

Matrix Subtraction

Matrix subtraction is similar to matrix addition, in that the difference between two matrices is
essentially the difference between corresponding elements between the two matrices2.2. Like
matrix addition, matrix subtraction is rarely used in the transformation pipeline, but can be
exploited to achieve sophisticated effects if properly understood.

2.3. GRAPHICS 14

Let A = [ai j] and B = [bi j] be m× n matrices. Then the difference A−B is an m× n matrix
C = [ci j] where

ci, j = ai, j−bi, j

Specifically,
a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

−

b1,1 b1,2 b1,3 b1,4
b2,1 b2,2 b2,3 b2,4
b3,1 b3,2 b3,3 b3,4
b4,1 b4,2 b4,3 b4,4

=

a1,1−b1,1 a1,2−b1,2 a1,3−b1,3 a1,4−b1,4
a2,1−b2,1 a2,2−b2,2 a2,3−b2,3 a2,4−b2,4
a3,1−b3,1 a3,2−b3,2 a3,3−b3,3 a3,4−b3,4
a4,1−b4,1 a4,2−b4,2 a4,3−b4,3 a4,4−b4,4

Figure 2.2: Matrix Subtraction

Matrix Multiplication

Matrix multiplication is more complicated than either addition or subtraction, and is used fre-
quently within transformation geometry. Matrix multiplication is non-commutative, and as
such, correct ordering of matrices is essential. Matrix multiplication forms the foundation of
almost all 3D transformations, and as such should be well understood2.3.

2.3.3 3D Transform Geometry

3D transformation geometry utilises matrix mathematics (a branch of linear algebra) in order
to translate, scale, skew and rotate 3D objects within a three dimensional world[13, 37]. As a
result, understanding how this process works is essential to understanding 3D development. As
this project focuses on XNA development, and the XNA framework uses row major matrices
which are multiplied from left to right[13], we shall be consider transformation order to be
from left to right. To convert to right to left notation, or column major notation, as in OpenGL,
one only needs to take the transpose of the transformation, and multiply the matrices in reverse
order. This is merely a difference in notation, with row major matrices transforming Cartesian
coordinates in the form of row vectors, and column major matrices transforming Cartesian
coordinates in column vector format[38].

2.3. GRAPHICS 15

Let A = [ai j] be an m× n matrix, and let B = [bk j] be an n× s matrix. The matrix product AB
is the m× s matrix C = [ci j], where ci, j is the dot product of the ithrow vector of A and the jth

column vector of B.

Let v = [v1,v2, . . . ,vn] and w = [w1,w2, . . . ,wn] be n vectors. Then v ·w = v1w1 + v2w2 + . . .+
vnwn = ∑

n
j=1 v jw j, where v ·w is the dot product of the vectors v and w.

Specifically,
a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

b1,1 b1,2 b1,3 b1,4
b2,1 b2,2 b2,3 b2,4
b3,1 b3,2 b3,3 b3,4
b4,1 b4,2 b4,3 b4,4

=

∑

4
k=1 a1,kbk,1 ∑

4
k=1 a1,kbk,2 ∑

4
k=1 a1,kbk,3 ∑

4
k=1 a1,kbk,4

∑
4
k=1 a2,kbk,1 ∑

4
k=1 a2,kbk,2 ∑

4
k=1 a2,kbk,3 ∑

4
k=1 a2,kbk,4

∑
4
k=1 a3,kbk,1 ∑

4
k=1 a3,kbk,2 ∑

4
k=1 a3,kbk,3 ∑

4
k=1 a3,kbk,4

∑
4
k=1 a4,kbk,1 ∑

4
k=1 a4,kbk,2 ∑

4
k=1 a4,kbk,3 ∑

4
k=1 a4,kbk,4

Figure 2.3: Matrix Multiplication

We shall be considering translation, rotation and scale matrices within our project, as skewing
matrices are rarely used in game development[37]. A brief description of these matrices follows.

Translation Matrices

Translation matrices (Figure 2.4) position 3D objects by adjusting object placement by the x, y,
and z values supplied, relative to the object’s location. Translation matrices are commonly used
for movement in 3D environments[13, 37].

1 0 0 0
0 1 0 0
0 0 1 0

∆x ∆y ∆z 1

 where ∆a is the relative change in position on axis a.

Figure 2.4: Translation Matrix

Scale Matrices

Scale matrices (Figure 2.5) adjust the size of a 3D object by percentage x, y and z values sup-
plied. Scale matrices are used primarily to correctly size objects for a scene, or adjust object

2.3. GRAPHICS 16

size as a result of some event [13, 37].
Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1

 where Sa is the scale applied to coordinates along axis a.

Figure 2.5: Scale Matrix

Rotation Matrices

Rotation matrices (Figure 2.6) adjust the x,y and z rotations of objects within a 3D scene.
For simplicity, we shall only consider the Euler angles with regard to teaching, using separate
matrices for each axis. To produce a single rotation matrix for all three planes, we simply
use the multiplicative product of these three matrices. Rotation matrices are used to adjust the
directional orientation of objects within a 3D scene[13, 37].

2.3. GRAPHICS 17

Rotationx =

1 0 0 0
0 cos(α) sin(α) 0
0 −sin(α) cos(α) 0
0 0 0 1

Rotationy =

cos(α) 0 −sin(α) 0

0 1 0 0
sin(α) 0 cos(α) 0

0 0 0 1

Rotationz =

cos(α) sin(α) 0 0
−sin(α) cos(α) 0 0

0 0 1 0
0 0 0 1

where α is the object angle adjustment in radians.
To produce a single rotation matrix, denote cos(x) = xc and sin(x) = xs for some angle x . Then

Rotationx,y,z =

1 0 0 0
0 αc αs 0
0 −αs αc 0
0 0 0 1

×

θc 0 −θs 0
0 1 0 0
θs 0 θc 0
0 0 0 1

×

φc φs 0 0
−φs φc 0 0

0 0 1 0
0 0 0 1

=

θcφc θcφs −θs 0

αsθsφc−αcφs αsθsφs +αcφc αsθc 0
αcθsφc +αsφs αcθsφs−αsφc αcθc 0

0 0 0 1

where α,θand φ are the object angle adjustment in radians for the x, yand z planes respectively.

Figure 2.6: Rotation Matrices

2.3. GRAPHICS 18

Shows how gimbal lock arises when the y axis is rotated by 90 degrees, causing the x and z axes
to lock.

Figure 2.7: Gimbal Lock

Quaternions

While the Euler angles are sufficient for demonstration purposes, we use a more sophisticated
rotation matrix for controlling the camera of the application. This is desirable as Euler angles
are susceptible to Gimbal Lock, which occurs when the rotation on one axis overrides that of
another axis thus locking them together and removing a degree of freedom[39]. The reason for
this stems from the independent axis rotation used in Euler angles. For instance, assuming the
Euler angles are applied in the order x→ y→ z , and the y axis is rotated by 90 degrees, the z

axis will be rotated over the x axis, causing Gimbal Lock (see figure 2.7). This occurs because,
unlike the z axis rotation, the x axis rotation has already been processed, and so is not affected
by the y axis rotation.

Quaternions do not suffer from Gimbal Lock [39], and thus are used in camera positioning.
Quaternions will not be demonstrated within the application, however, and as such will not be
used for rotating scene elements within the transformation visualiser. This is to ensure consis-
tency between the application and basic XNA programming techniques. As Quaternions do not
feature significantly in the project, they will not be discussed further.

Orbits

Orbits are transformations which translate first, then rotate, in order to orbit an object around
the starting point prior to the transformation [13]. Orbits are illustrated in figure 2.8. While
orbits are rarely used, they are occasionally useful.

2.3. GRAPHICS 19

Figure 2.8: Orbits

Transform Application Sequence

Typically, linear translation matrices should be applied using the I.S.R.O.T. sequence [13],
which assumes that all transformations start with the object at the origin, and are applied in
the order: Scale, Rotations, Orbit, Translation. The sequence of application of transform ma-
trices is important, due to matrix multiplication being non-commutative[13, 37]. The sequence
composition and ordering is justified below:

1. While the Identity matrix is usually not necessary, it indicates that when no Scale, Rota-
tion or Translation matrices are applied, the transform should just be the Identity matrix.
At this point, the object is at the origin, untransformed.

2. Scaling is calculated first, in order to ensure that the object is correctly sized for the
scene. If the object is translated before it is scaled, the translation distance will be scaled
as well[13] which, in most situations, will be undesirable.

3. The re-sized object is then revolved until it is facing in the correct direction. As rotations
occur about the origin[37, 13], rotations applied after translations result in orbits.

2.3. GRAPHICS 20

Figure 2.9: Objects encircling the y axis

4. If an orbit is necessary, this is applied next. Once applied, the object orbits a set distance
from the origin, scaled and orientated correctly.

5. Finally, the object is translated to the correct position in the scene. If an orbit is being
used, the object is translated such that the center of its orbit corresponds to the translation
position. By applying translations last, we ensure that the translation is not scaled or
rotated in any way.

The I.S.R.O.T sequence is used for the calculation of an object’s World matrix, which is dis-
cussed later in the chapter.

Combining Transforms From Multiple Objects

In more complex instances, it is often useful to apply or use a transformation from another
object in order to achieve complex effects. For instance, two objects multiplied by the same
translation matrix will move in the same way. This may be utilised in order to achieve a moving
platform effect, among other possibilities, whereby any object which touches the platform is
transformed by the current position of the platform, thus creating the illusion of the platform
carrying the object. Alternatively, one may apply the same variable rotation transformation to
two separate objects at opposite sides of the axis of rotation, in order to make them encircle
the axis (see figure 2.9). As can be seen, sharing transformations between objects allows for
interesting effects that may be useful in particular situations.

2.3. GRAPHICS 21

Advanced Techniques

Finally, we consider the use of parenthesis, scalars, addition and subtraction in achieving some
complex effects. These allow a finer degree of control over the transformation process, and
can be exploited if understood. As an illustration, Listing 1 shows how addition, scalar mul-
tiplication and parenthesis can be utilised to translate an object to the center point between n

objects. While such techniques are unnecessary in a typical case, such methods are occasionally
useful, and understanding how to construct more complex transformations to solve a problem
efficiently is an important aspect of games development[13].

2.3.4 World, View and Projection Matrices

The world, view and projection matrices are utilised within the first three stages of the XNA
transformation pipeline [13], and are used to ensure that 3D objects are projected correctly on a
2D screen. World matrices converts model and vertex coordinates into world coordinates, view
matrices set the camera’s direction (thus defining what can be seen), and Projection matrices,
or Perspective matrices, define the frustum, or cone shaped view of the camera[13].

World Matrix

The World matrix is calculated by applying the transformation geometry discussed in the previ-
ous section to a mesh or vertices, typically centered at the origin, in order to translate their local,
or model coordinates into world coordinates[13, 9]. A separate World matrix is calculated for
each object within the scene, necessary in order to allow individual placement of objects. As
previously discussed, transformations applied to the World matrix should typically follow the
I.S.R.O.T sequence, although this is not always the case, and depends on the requirements of
the current scene.

View Matrix

The View matrix is used for converting from world coordinates into camera coordinates, where
the camera is positioned at the origin, looking in the positive z direction[10, 13]. This essen-
tially involves translating all the objects in the scene, such that their relative position to the
camera is maintained once the camera has been positioned, which is the function of the View
transformation matrix. An overview of this process is shown in 2.10[10].

22

Listing 1 Using parenthesis, scalar multiplication and addition to find the translation to the
center point between n objects
Let A and B be translation matrices. The difference between A and B as a matrix, x, is easily
found;
A+ x = B⇒ x = B−A
OR

1 0 0 0
0 1 0 0
0 0 1 0
a1 a2 a3 1

+

0 0 0 0
0 0 0 0
0 0 0 0
x1 x2 x3 0

=

1 0 0 0
0 1 0 0
0 0 1 0
b1 b2 b3 1

⇒

0 0 0 0
0 0 0 0
0 0 0 0
x1 x2 x3 0

=

0 0 0 0
0 0 0 0
0 0 0 0

b1−a1 b2−a2 b3−a3 0

Thus,

x
2

=
B−A

2
=

1
2
×

0 0 0 0
0 0 0 0
0 0 0 0
x1 x2 x3 0

=

0 0 0 0
0 0 0 0
0 0 0 0

b1−a1
2

b2−a2
2

b3−a3
2 0

Hence, the transformation to the position between the points specified in A and B is:
A+ x

2 = A+ B−A
2 = A+B

2
OR

1 0 0 0
0 1 0 0
0 0 1 0
a1 a2 a3 1

+

0 0 0 0
0 0 0 0
0 0 0 0

b1−a1
2

b2−a2
2

b3−a3
2 0

=

1 0 0 0
0 1 0 0
0 0 1 0

a1+b1
2

a2+b2
2

a3+b3
2 1

=
1
2

1 0 0 0
0 1 0 0
0 0 1 0
a1 a2 a3 1

+

1 0 0 0
0 1 0 0
0 0 1 0
b1 b2 b3 1

Similarly, the transformation to the center point of n objects is given by:

1
n

1 0 0 0
0 1 0 0
0 0 1 0

x1,1 x1,2 x1,3 1

+

1 0 0 0
0 1 0 0
0 0 1 0

x2,1 x2,2 x2,3 1

+ . . .+

1 0 0 0
0 1 0 0
0 0 1 0

xn,1 xn,2 xn,3 1

=

1 0 0 0
0 1 0 0
0 0 1 0

∑
(
x j,1
)n

j=1
n

∑
(
x j,2
)n

j=1
n

∑
(
x j,3
)n

j=1
n 1

2.3. GRAPHICS 23

View Matrix V = T ·Rx ·Ry ·Rz
where T is the translation to the origin, and Rα is the rotation about axis α .

Figure 2.10: View Transformation

Projection Matrix

The purpose of the projection matrix is to translate camera space into clip space and apply
perspective distortion. Essentially, this is done using a frustum[13, 7], the shape of which
affects how objects are projected from camera space to the screen (see figure 2.11). All objects
outside the viewing frustum are clipped, as they are not seen by the camera and as such do not
need to be rendered. We shall consider clip space and perspective distortion separately.

Clip space is a coordinate space which indicates which objects in the scene are visible by the
camera, and hence need to be rendered. The frustum defines the boundaries of clip space,
outside of which objects are not rendered. Perspective distortion refers to the distortion applied
to the scene, and is typically separated into two types of projection. The simplest type is that
of Orthogonal projection, in which the distance from the camera does not affect the size of an
object on screen. In contrast, Perspective projection, reduces the size of objects as they move
further away from the camera. This is achieved by scaling the x and y coordinates by a factor
of the z axis, as the z axis represents the distance from the camera once the View transform has
been applied (see figure 2.12).

2.3.5 Color and Lighting

Lighting methods in computer graphics allow for the appearance of an object to be manipu-
lated, and is responsible for colour, surface reflectivity, gloss and shadows, among other effects.

2.3. GRAPHICS 24

Figure 2.11: A Viewing Frustum[12]

Figure 2.12: Orthogonal and Perspective Projection

Illumination may be local, where each object in the scene is illuminated outside of the context
of the scene, or global, which allows for other objects in the scene to reflect off or otherwise
affect the colour properties of the object being illuminated. We shall not be considering global
illumination models in this visualiser, since we are only concerned with basic techniques. Fur-
thermore, we shall limit our discussion to directional lighting, and ignore point lights and spot
lights, as these are not available within XNA’s BasicEffect shader.

This section considers directional lighting, useful in positioning light sources for all objects, and
some basic local lighting methods, including emissive, ambient, diffuse and specular lighting,
which can be used affect the the appearance of an object in several ways.

Directional Lights

Directional lights are lights which equally illuminate all objects within a scene, and is essentially
light flowing in a particular direction. Unlike point and spot lights, directional lights have no
specific source, and so the light intensity and direction is constant throughout the scene. Using
directional lighting, surface illumination can be calculated using the object surface normals and
the light direction vector, which are used to determine the degree of illumination on that surface.

2.3. GRAPHICS 25

(a) (b)

(a) Sphere with grey emissive light only
(b) Sphere with green emissive light only

Figure 2.13: Emissive Light [6]

Standard Scene Lighting

In order to improve the visual quality of the lit 3D models in a scene, the directional lights can
be used to provide key, fill and back lighting[21]. The key light is the brightest of the three,
and is used as the main illumination source for the scene. Key lights are typically positioned
to correspond to the position of the main scene light source, such as the sun. The fill light is
typically dimmer, and angled at 90 degrees to the key light, in order to soften shadows and
improve definition in otherwise unilluminated regions. The back light is positioned behind
the illuminated objects, in order to improve illumination around the edges. Of the three light
sources, only the key light should be used to cast shadows.

Emissive Light

Emissive lighting has only one property, its colour, which it applies evenly to all vertices without
shading. As such, using emissive lighting only will cause an object to look two-dimensional.
Emissive lighting is typically used in combination with other lighting techniques to achieve
more sophisticated effects[6].

Ambient Light

Ambient light refers to the background light within an environment, and is not affected by light
intensity or direction[13]. Each material can have its own ambient light colour, which is used
in conjunction with the global ambient light colour to calculate the ambient colour to apply to
the surface[3].

2.3. GRAPHICS 26

(a) (b)

(a) Sphere with red ambient light only
(b) Sphere with red ambient light and grey emissive light

Figure 2.14: Ambient Light [3]

(a) (b)

(a) Sphere with red diffuse light only
(b) Sphere with red diffuse, red ambient and grey emissive light components

Figure 2.15: Diffuse Light [5]

Diffuse Light

Diffuse light specifies how a light source will illuminate a surface in its path. Diffuse light
intensity is inversely proportional to the angle between the light direction vector and the surface
normal[13, 5]. This ensures that the most illuminated surfaces are those directly facing the light
source.

Specular Light

Specular lighting defines the shininess or gloss of a surface, and is dependent on both the
viewer’s and light’s angle to the surface[13, 8]. Specular lighting utilises two properties, namely

(a) (b)

(a) Sphere with white specular light only
(b) Fully lit sphere

Figure 2.16: Specular Light [8]

2.4. SKYBOXES 27

the light colour, and the specular power, in order to light an object. The specular power refers
to the focus of the specular light, with lower values providing a softer, more blurred effect pro-
viding a matte finish, while high values create more focused, intense light resembling a gloss
finish[20, 13].

2.4 Skyboxes

Skyboxes provide an efficient means for creating a convincing environment for a scene. Sky-
boxes use six separate images, each viewing the horizon in a different direction, which if prop-
erly created, can be used to generate a seamless image of the horizon by surrounding a scene
in a cube configuration[13]. As skyboxes are typically comprised of static prerendered images,
they greatly reduce the processing necessary for creating a convincing environment within a 3D
scene. Skyboxes will be included as a presentation component, but will not form part of the
core functionality of the system. Thus, we shall not cover them in depth.

2.5 Summary

In this chapter, we have considered theory relevant to the project, with regard to both teaching
methodology and the principles to be taught. The teaching considerations section provided a
theoretical foundation for the project medium by elaborating on Computer-Assisted Instruction,
and introduced both a classical behaviorist approach to teaching through Operant Conditioning
and more recent approach through Discover And Resolve Tutoring (DART). The section con-
cluded that while DART cannot truly be fully realised in software at this point, due to limitations
in artificial intelligence, it was both possible and desirable to adapt the primary DART concepts
of exploration and discovery into a feasible software based approach.

Regarding the graphics section, theory relevant to the concepts being taught was presented,
both as an overview of terminology and outline of necessary functionality within the system.
This section provided an summary of both the transformation pipeline and matrix algebra, and
presented relevant graphical theory pertaining to transforming objects, presenting objects to
screen, and lighting objects. This theory will be applied to the project, in order to provide a
means for exploration of these concepts.

28

(a) A well configured skybox

(b) A Badly Configured Skybox Showing A Seam

See figure 4.25 for a more descriptive skybox image.

Figure 2.17: Skyboxes

Chapter 3

Integrating XNA and Windows Forms

3.1 Overview

This section considers two methods for displaying XNA 2.0 output within a C# 2.0 Windows
Forms application, with particular focus on ease of integration and performance with regard to
the transformation pipeline visualiser. We first provide some detail as to why such controls are
necessary, elaborating on necessary functionality and performance, followed by an overview of
both methods, with implementation specifics included where necessary. The section concludes
with a discussion of results, which are used to justify the selection of the simpler of the two
methods for use in this project.

3.2 Architecture Selection

Considering that the transformation pipeline visualiser application is intended to aid in teaching
XNA programming, by developing the visualiser in XNA, consistency can be ensured between
results of both the visualisation application and the framework the application intends to intro-
duce. While developing the transformation visualiser entirely within the XNA framework was
possible, there were numerous reasons which indicated that a marriage of XNA and .NET based
controls would provide for a superior application foundation. An enumeration of these reasons
follows.

Firstly, the Transformation Visualiser depends heavily on user input, which in turn requires that
a number of input components be available. In this regard, .NET already contains a wide variety

29

3.3. APPLICATION REQUIREMENTS 30

of useful input controls that could easily be leveraged to provide for a number of input scenar-
ios, whereas XNA, being focused on game development, would have necessitated development
of a number of these controls from scratch. As such, a simple method which allows for the dis-
play of XNA content while provisioning input through .NET components is ideal, as it would
play to the strengths of both frameworks. Furthermore, as the application would depend on a
rich multi-windowed GUI environment comprising of controls which would not be inherently
3D, it seems unnecessary to process these controls in graphical hardware. Finally, given that
the Transformation Visualiser would be designed specifically for a Windows environment and
would not be deployed on XBox360 hardware, it would not be necessary for the application to
be written entirely in XNA. Given this reasoning, a simple method for displaying XNA content
in a Windows Forms application would greatly simplify project development.

3.3 Application Requirements

The methods considered for use in this application need to be compared in order to justify
selection of an approach. As such, it is necessary to provide an overview of the primary con-
cerns regarding presentation of XNA content within the application. These concerns include
performance, ease of implementation and content sharing.

3.3.1 Performance

Performance refers primarily to graphical performance and speed, particularly in instances
where multiple XNA based controls are present concurrently. It is important that the graph-
ical presentation of XNA content be fluid, in order to cultivate a positive user experience. If
the presentation quality or fluidity of the XNA content is significantly reduced, this may induce
user frustration, and reduce the desire for the user to explore within the environment. Since
the success of application is entirely dependent on the user’s desire to utilise it as an explo-
ration mechanism, it follows that maintaining acceptably high frame rates and graphic quality
is essential.

Continuing along this thread, and considering that multiple components presenting entirely
different content may be displayed concurrently within a form or multiple forms, it follows that
the method need also be scalable. Scalability is a valid concern in this context, since each XNA
game is essentially within an infinite loop[40]. While these loops are sophisticated enough
to only iterate at specific intervals, typically ten milliseconds[40], scalability still remains a
concern when many such loops are active simultaneously.

3.3. APPLICATION REQUIREMENTS 31

3.3.2 Simplicity

Simplicity refers to the minimisation of complexity inherent in displaying XNA content to a
screen. While viable solutions need not be trivial, excessive complexity has implications re-
garding code maintenance and extension. With this in mind, it is desirable to minimise future
architecture maintenance and extension problems, particularly in cases where such maintenance
and extension is done by someone unversed in the applied presentation solution. Thus, concep-
tual simplicity is an important factor with regard to method selection.

3.3.3 Content Sharing

Content sharing refers to the ability for multiple XNA controls to share content between one
another. Within a typical XNA game, content such as models or textures are converted at design
time to XNB format, to allow for easy management by XNA. This content can then be loaded
at run time by the game’s content manager. The transformation pipeline visualiser, on the other
hand, relies on run time compilation, by a custom ContentBuilder, of model files into XNB
format, an operation which typically takes a number of seconds to complete. Once compiled,
the XNB file can be loaded quickly by the content manager.

When utilising a single game thread to draw all the panels in the application, this presents no
problem, as any model, once loaded, is available in all XNA components simultaneously. In
instances where multiple game loops are used, it becomes necessary to reload a model when
attempting to display it in a different game thread. This introduces two problems, concerning
performance and resources respectively. With regard to performance, it is important that the
first phase of the the content processing operation, namely the compilation of resources to XNB
format, be avoided, since this operation is expensive and slow. This ensures that loading content
within different game threads requires only that the XNB file be loaded into the Content Man-
ager, a relatively fast operation. Thus, we can minimise loading times within the application,
improving the user experience.

Regarding resources however, multiple game loops require each game to manage its own re-
sources, and to manage the presentation of that resource to the graphics card. Thus, a model
may be processed and sent to the graphics card several times by different panels, where as a so-
lution with shared content management would only need to do this once. As graphics resources
may be limited, this could adversely affect performance when large models and textures are
used.

3.4. ACCEPTABLE METHODS 32

3.4 Acceptable Methods

This section considers two solutions to presenting XNA content to a Windows Forms control.
We shall discuss each method individually, showing that both methods prove to be theoretically
viable solutions within the context of the application requirements enumerated above.

3.4.1 The Thorough Method: Building a Custom Game Object

In this section, consideration is given to the more sophisticated method for displaying XNA
content within a Windows Forms GUI. The method was developed and made available by Mi-
crosoft’s XNA Creator’s Club website[11], and is considered to be the most stable and flexible
of the methods considered. We shall refer to this method as the thorough method for simplic-
ity. The method entails creating a custom graphical control, which utilises components from
the XNA framework to present output to the form. Primarily, this method involves creating an
object similar to the typical Game object, which is capable of sharing a graphics device with
other such controls, and can be used within a Windows Forms environment. As this method is
made available freely by Microsoft, the source code shall not be presented, but can be found at
the XNA Creator’s Club Website[11].

While this method provides for a greater degree of flexibility with regard to functionality, as
well as improved performance with regard to more complicated content, due primarily to a
customisable game loop and reduced drawing overhead, it is comparatively more difficult to
implement. In particular, as the method requires a reimplementation of the Game class, modi-
fied to operate on Windows Forms applications, many features available in the standard Game
class need to be incorporated manually. Despite this, the thorough method is a viable solution,
as its implementation is still relatively simple. Furthermore, once the custom control has been
implemented, it may be inherited from as a foundation for any additional controls necessary,
further reducing complexity.

Regarding scalability, while each control is itself a hybrid game object, these objects are not
caught in an infinite loop. Instead, the draw method for the control is hooked to the appli-
cation’s idle process, ensuring that draw operations only occur when the application is idle,
improving scalability. Finally, considering content sharing, the utilisation of separate game ob-
jects precludes the possibility of inherent content sharing between controls. However, model
objects can be compiled to a single directory, utilised by all the game objects in the application,
eliminating the need for recompilation of assets by different controls. Despite possible resource

3.4. ACCEPTABLE METHODS 33

exhaustion implications, the thorough method seems a viable solution within the context of this
application.

3.4.2 The Simple Method: Presenting XNA Graphics to an Existing Con-
trol

A Monolithic Approach

The method described is based on an approach put forward by Pedro Güida in [17], which has
become a popular alternative to the thorough method presented above[41]. This method is in-
herently monolithic, in that it requires all panels to be rendered within the same draw method
of the main game class. Furthermore, each panel requires an accessor method within the form
in order to retrieve the panel handle, which is necessary in order to present XNA content to the
panels surface[17, 41]. While this method works well for programs using only a few panels
displaying similar content, it becomes difficult to manage when many different panels need to
display a wide variety of XNA graphics. This is primarily due to the requirement of incor-
porating multiple games into a single game file. Further difficulty arises when attempting to
dynamically add or remove components, reducing this method’s attractiveness for sophisticated
applications.

In order to improve this method such that it becomes a viable solution for this project, it was
modified to allow for a more modular approach, utilising the DrawableGameComponent class.
As the implementation of this adjusted control is relatively trivial and is not readily available,
the following section describes its development.

Modularising the Simple Method

As previously indicated, the implementation of this method is relatively simple. For simplicity,
we shall refer to it as the simple method. Our intention is to produce a class that can be inherited
from, and implemented as if it were XNA game component.

The method renders to the control passed as input, which should typically be a panel object
of some form. The method uses the GraphicsDevice’s Present method[17] to render the game
components output to the panel once the call to the base class is complete.

3.4. ACCEPTABLE METHODS 34

p u b l i c c l a s s XNAContent : DrawableGameComponent
{

p r o t e c t e d readonly C o n t r o l p a n e l ;

/ / C o n s t r u c t o r
p u b l i c XNAContent (Game game , C o n t r o l p a n e l) : base (game)
{

t h i s . p a n e l = p a n e l ; / / s t o r e r e f e r e n c e t o p a n e l
game . Components . Add (t h i s) ; / / add t h e component t o t h e game

}

/ / on d i s p o s a l , remove component from game
~XNAContent ()
{

Game . Components . Remove (t h i s) ;
}

/ / Draw method . W i l l be c a l l e d when i n h e r i t o r c o m p l e t e s i t s draw method .
p u b l i c o v e r r i d e void Draw (GameTime gameTime)
{

/ / remove t h e component from t h e game loop i f t h e p a n e l has been d e s t r o y e d
i f (p a n e l . I s D i s p o s e d) Game . Components . Remove (t h i s) ;
/ / o t h e r w i s e p r e s e n t g r a p h i c a l o u t p u t t o a c o n t r o l
e l s e G r a p h i c s D e v i c e . P r e s e n t (p a n e l . Handle) ;
base . Draw (gameTime) ;

}
}

In order to use this control in a Forms environment, a few preparations are required. Firstly, the
application’s main form needs to be added to the main game class, passed the game object as a
parameter, and shown. The games window must also be hidden, and finally, the game must exit
when the main form exits[17].

p u b l i c Game1 ()
{

g r a p h i c s = new Graph icsDev iceManager (t h i s) ;
C o n t e n t . R o o t D i r e c t o r y = " C o n t e n t " ;

/ / h i d e t h e game window
((Form) Form . FromHandle (Window . Handle)) . Shown += form_Shown ;

/ / c r e a t e a t h e form and pass i t t h e game
MainForm form = new Form1 () ;
form . I n i t i a l i s e (t h i s) ; / / pas s t h e game t o t h e form

3.5. PERFORMANCE RESULTS 35

form . Hand l eDes t ro yed += fo rm_Hand leDes t royed ;
form . Show () ; / / show t h e main form

}

/ / h i d e t h e game window i f i t i s shown
p r i v a t e vo id form_Shown (o b j e c t sende r , EventArgs e)
{

((Form) s e n d e r) . Hide () ;
}

/ / i f t h e main form i s c l o s e d , e x i t t h e game
p r i v a t e vo id fo rm_Hand leDes t royed (o b j e c t sende r , EventArgs e)
{

t h i s . E x i t () ;
}

By overriding the XNAContent class, we produce a GUI object in a similar fashion to that of a
typical DrawableGameComponent object. To render to a specific panel, an object need simply
be created, referencing the appropriate control. It is worth noting that the aspect ratio of the
rendered content is dependent on the GraphicsDevice settings, and not on the dimensions of the
control. Thus presented output will be stretched in order to fit into the control being rendered
to. In order to correct this, one can simply adjust the viewport attributes from within the derived
class’s Draw method.

P r e s e n t a t i o n P a r a m e t e r s tmp = G r a p h i c s D e v i c e . P r e s e n t a t i o n P a r a m e t e r s . Clone () ;
tmp . B a c k B u f f e r H e i g h t = 200 ;
tmp . BackBuffe rWid th = 500 ;
G r a p h i c s D e v i c e . R e s e t (tmp) ;

As can be seen, this method is relatively trivial to implement, and can be used to make many
different panels with relatively little extra code. Furthermore, as all components share the same
base game, loaded content can easily be shared between controls. Finally, as all components are
drawn from within the same game loop, the method inherently provides round-robin scheduling,
reducing scheduling overhead and improving performance. Thus, the solution proves viable for
use within the transformation visualiser application.

3.5 Performance Results

In this section we discuss the performance results seen when implementing either method. In
order to compare both methodologies presented, six separate applications were created. The

3.6. SELECTION 36

Number Of Panels 1 Panel 4 Panels 12 Panels
Thorough Method, First Panel 60 fps 59 fps 58 fps

Thorough Method, Other Panels N/A 54 fps 54 fps
Modular Simple Method, All Panels 59 fps 59 fps 59 fps

Table 3.1: Average frame rates witnessed with varying numbers of panels over 3 trials

first three were implemented using the thorough method, and included a single panel, a four
panel application and a twelve panel application, displaying simple XNA content. The second
three were identical to the first, except that they were implemented using the modular simple
method. All six applications displayed the number of frames per second rendered after a thirty
second interval. Results indicated that performance differences between methods in the single
panel applications were roughly equivalent. Performance differences experienced with a larger
number of panels was seemingly negligible, and such differences are likely due to the simpler
method using the same game loop to render all panels, ensuring that all panels are rendered at
the same rate. The thorough method, on the other hand, utilises a separate loop for each game
panel, introducing competition for processing resources by each game thread.

3.6 Selection

While both methods prove viable options for presentation of XNA content within a Windows
Forms GUI, the transformation visualiser has been developed using the modular simple method.
This is due to several reasons. Firstly, within the testing applications, the modular simple
method performed marginally better, and provided a more consistent set of frame rate averages.
While this performance difference is not particularly significant, it is a performance difference
none-the-less.

Secondly, the modular simple method proved to be less complicated to implement than the thor-
ough method, retaining all functionality inherent in a typical game, while requiring significantly
less source code. It is thus conceptually simpler to manage and extend. Finally, content sharing
is built into the modular simple method as all controls share the same ContentManager. While
content sharing can be implemented in a number of ways within the thorough method, this re-
quires extra code, and thus more complexity. Given that the simple method performs better than
the thorough method with regard to our applications criteria, the simple method seems to be the
most appropriate choice.

3.7. SUMMARY 37

3.7 Summary

This chapter has focused on methods for displaying XNA content within a Windows Forms
environment. The chapter first considered the type of architecture to implement, arguing that
the integration of XNA into a Windows Form GUI provided for a better application foundation
than application developed entirely in XNA. Consideration was then given to the specific re-
quirements of the application in question, as all methods have their strengths and weaknesses.
Two methods , the thorough method and the modular simple method, were then presented,
described, and shown to meet the minimum application requirements discussed. Upon consid-
eration of results, despite negligible frame rate differences, the less sophisticated method was
selected as it met the application requirements to larger extent than the thorough method.

Chapter 4

Design and Implementation

4.1 Overview

This section provides a specification for the system, detailing the implemented features, and
their relation to the theory discussed in the previous chapter. For clarity, this chapter will be
divided into sections. In the first section, the core data structures are introduced, as they form the
foundation for the entire system. We then consider two global GUI controls, used throughout
the application and thus not applicable to any individual section. The next four sections deal
with specific elements of the transformation visualiser which facilitate exploration of the core
topics. These include the visualisation of low level matrix algebra and high level graphical
results, controlling the view and projection, and lighting controls. Finally, these elements are
brought together and considered collectively, with attention given to the interaction between
separate system components.

4.2 Data Structures

In this section, we shall provide an overview of the fundamental data structures used by the
transformation visualiser to manipulate, present and store scene objects. Each object contained
in the scene is stored as a TransformObject, which is responsible for storing name, model,
colour and transformation information.

Transformation information is stored in a linked list based structure comprised of a number of
ListNodes. These ListNodes contain a ITransformNode variant and an operation to be applied

38

4.2. DATA STRUCTURES 39

Figure 4.1: Class Diagram providing an overview of the relations between objects

to the next node in the list. There are five ITransformNode variants, each providing a differ-
ent type of transformation effect. ScalarTransformNodes and StaticTransformNodes remain
constant, and provide for scalar transformation and simple static transformation respectively.
DynamicTransformNodes and ConstantTransformNodes provide dynamic behavior, the former
providing a simple waypoint system, the latter providing a means of incrementing or decre-
menting a transform at a specific rate. CompositeTransformNodes facilitate the combining of
two transforms into a single transformation node. As Model objects are not serializable, a Mod-

elRegistry object is used to stored references to all the models loaded in memory, and provides
them on request. This allows for TransformObjects to share models, reducing loading times.

These components are elaborated upon below.

4.2.1 TransformObject

The TransformObject class contains all the information necessary to position, colour and render
an object within a scene. The position of the TransformObject is determined by the solution to
the TransformList, a linked list comprising a number of transformations through which the
object must go in order to be positioned correctly. The model to be drawn is saved as a string,
and references a model in the registry stored under that identity. When an object needs to be
rendered, the stored model name is passed to the ModelRegistry, which returns the requested
model. The TransformList and its components, as well as the ModelRegistry, are covered in
more detail in the following sections.

4.2. DATA STRUCTURES 40

The TransformObject contains the ColorSpecification class, which stores custom lighting in-
formation for the object. Specifically, it stores ambient, diffuse, emissive and specular colour
values, as well as a value for the specular power of the object. When custom lighting is en-
abled, these values are passed to the BasicEffect shader of each mesh within the object, thus
applying the custom lighting effects. When custom lighting is disabled, default colour values
are retrieved from the ModelRegistry.

Next we consider the objects which facilitate the object transformations within a scene.

4.2.2 Transformation Nodes

There are a variety of transformation nodes available, which collectively provide a means for
creating sophisticated, animated transformation sequences. All transform nodes implement
the ITransformNode interface, which specifies the necessary functionality each transform node
needs to implement in order to be used within the TransformList. The system supports both
static transforms, which remain constant over time, and dynamic transformations, which change
over time. It is important to distinguish between dynamic transforms, which refers to any trans-
form which changes over time, and the DynamicTransformNode class, which provides dynamic
behavior through the use of a waypoint system. Essentially, the DynamicTransformNode is one
of three available types of dynamic transformation node.

Transformation Node Interfaces

In order to allow for different node types within the TransformList, two interfaces are used –
namely the ITransformNode and IDynamicTransformNode interfaces. The ITransformNode in-
terface ensures that all transform nodes contain the minimum properties and methods necessary
for the nodes to be used within the TransformList. The properties required include the name and
owner of the object (used solely for identification purposes), the type of transformation the node
represents, and the node’s current transformation matrix. The ITransformNode interface also
requires implementation of a Clone method (intended to return an identical Transform Node),
which is used when transformations need to be copied by value to other TransformObjects.

The IDynamicTransformNode interface inherits from the ITransformNode interface, specifying
several additional properties and methods which must be implemented by all dynamic nodes.
These include methods to start and stop the dynamics of the node, both a property and method
which return a boolean value indication whether the node has been started or not, and a method

4.2. DATA STRUCTURES 41

Let M be some transformation matrix, and let α be some scalar value. Then:

αM = α(IM) = (αI)M

So in order to scale M by a value α , we need to multiply it by the matrix αI.

Figure 4.2: Scalar multiplication using a scaling matrix

for updating the node’s current game time, which facilitates animation effects when the node
has been started.

ScalarTransformNode

The ScalarTransformNode class implements the ITransformNode interface, and is used to pro-
vide scalar multiplication of matrices. The ScalarTransformNode transformation matrix is cal-
culated by multiplying the stored scalar value by the matrix identity, which is treated as a regular
transformation matrix. This transformation matrix is used to provide scalar multiplication func-
tionality within the list of transformations, and provides an extra measure of flexibility4.2.

StaticTransformNode

The StaticTransformNode class implements the ITransformNode interface, and is used to pro-
vide static (or constant) transformations, which do not change over time. The StaticTrans-

formNode class allows for relevant types of transformation (see section 2.3.3), facilitating the
creation of Translation, Scale and Rotation transformation nodes. The StaticTransformNode

class also allows for the creation of Identity nodes, which contain the matrix identity as the
transformation matrix.

DynamicTransformNode

The DynamicTransformNode class implements the IDynamicTransformNode interface, and pro-
vides support for dynamic transformations that operate using WayPoints. Each WayPoint is com-
prised of a both transformation matrix, which can include Transformation, Rotation and Scale

components and are multiplied together in I.S.R.O.T order (see section 2.3.3), and a duration
component, which specifies the time until the WayPoint position.

DynamicTransformNodes use the current GameTime to determine which two WayPoints the
current transform should be in between, and what percentage of the current waypoint transition

4.2. DATA STRUCTURES 42

has already been completed. The DynamicTransformNode uses the transformation matrices of
the two WayPoints, as well as the percentage representing the completeness of the current tran-
sition, in order to determine the expected transformation matrix for the specified game time.
This is done using the Lerp function of XNA’s Matrix class, which linearly interpolates the two
matrices using the specified percentage interpolation value. The WayPoints within the Dynam-

icTransformNode are applied circularly, so that the final WayPoint within the WayPoint list is
connected to the first WayPoint in the list. This ensures that the DynamicTransformNode can
move indefinitely.

ConstantTransformNode

The ConstantTransformNode class implements the IDynamicTransformNode interface, and pro-
vides support for dynamic transformations that operate by constantly incrementing at a specific
rate over time. For instance, a constant transform node can specify that an object should rotate
30 degrees every second, or move 15 units down the x axis every 6.5 seconds. This introduces
the problem of when to stop incrementing a transformation, which is tackled using boundaries.

Boundaries indicate at which point a constant transformation should invert, to prevent it grow-
ing, shrinking or translating in a particular direction infinitely. Regarding translation, should
the position of the object on a particular axis exceed the boundary value, the respective con-
stant translation component corresponding to that axis is reversed, so that the object is reflected
off the boundary wall. Similarly, should the scale value for a particular axis exceed the maxi-
mum scale value or drop below the minimum scale value, the scaling direction is inverted by
reversing the application rate components. Since rotations are inherently circular, no boundary
specifications are necessary.

CompositeTransformNodes

The ConstantTransformNode class implements the IDynamicTransformNode interface, and pro-
vides a means to both combine adjacent transformation nodes, and apply parenthesis rules. Con-

stantTransformNodes contain two parent nodes, which reference the original two nodes used for
the creation of the node, and an operation to apply between them.

The current transformation is calculated on request by applying the contained operation between
the two parent nodes. This is essentially the same as multiplying the two parent nodes within

4.2. DATA STRUCTURES 43

parenthesis, thus providing a greater degree of flexibility within the application. When a Con-

stantTransformNode is updated, each parent is updated individually, provided that parent im-
plements IDynamicTransformNode. Since either of the parent nodes could be a ConstantTrans-

formNode, many transformation nodes can be contained within one ConstantTransformNode,

providing a simple mechanism for producing a single node which represents a complex trans-
formation procedure.

4.2.3 Transformation List

The TransformList class is used to manage the list of transformations applied to a Transfor-

mObject. The TransformList is a linked list structure, which utilises ListNodes to string trans-
formations together. These classes are discussed in the following sections. This is followed by
an overview of cloning, which explains how nodes can be cloned by reference or value and sent
to a different TransformList object.

ListNode

The ListNode class provides the linked list functionality required by the TransformList, and is
essentially comprised of an ITransformNode variant, a reference to the next ListNode in the list,
and a matrix operation to apply between them. The operations available are contained within
the MatrixOperator enumeration, which can be used to specify Add, Subtract and Multiply

operations. Since exactly one ListNode will be at the end of every list, a fourth operation type
– None – is also included. The matrix operation cannot be set as None, but the ListNode always
returns this value when it is the last node in a list.

ListNodes are responsible for both creating CompositeTransformNodes, and creating clones of
the list structure. These aspects will be discussed in a later section.

TransformList

The TransformList is responsible for the geometric transformation of objects within a scene.
The object is comprised of a single ListNode, which acts as the head of the linked list, and
provides a number of list management procedures used by a multitude of other objects within
the system. These operations include the addition of new nodes, removal of existing nodes, and
moving nodes to different positions within the list.

4.2. DATA STRUCTURES 44

The TransformList is responsible for calculating the World matrix for a particular object in a
scene (see section 2.3.4), which is computed by iterating through the linked list, applying each
transformation in the correct order, using the specified operator.

Cloning

Cloning refers to the creation of new ListNodes which either contain the same transforms as the
original, as is the case when copying by reference, and new transforms which are identical to
the original, used when copying by value. We shall refer to two nodes as being related if either
node is the clone of the other, or both nodes are clones of the same parent node, and referentially

related if the related nodes share the same ITransformNode.

Cloning by reference is useful when a number of ListNodes need to share a transformation node,
as is often the case when the movement of two or more objects are related, as any changes to
the transform of a ListNode will be visible in all referentially related ListNodes. Cloning by
reference is partially achieved by the internal SharedStatus class, which is shared between all
referentially related ListNodes, and contains the ITransformNode, identification information,
and the nodes input vector, used for storing form based input.

Cloning by value is useful when two objects require similar transformations, but their movement
is not specifically related, and is achieved by creating a new ITransformNode with identical
parameters, and adding this to a new ListNode. In this case, changes to any ListNodes cloned
by value will not result in changes to other related nodes.

Cloning functionality is primarily provided by the ListNode class, and does not specifically
involve the TransformList class.

4.2.4 ModelRegistry

The ModelRegistry class is used for storing and retrieving TransformObject models, and pro-
vides a mechanism for sharing models between TransformObject. When a model is loaded from
disk, and it is not contained within the ModelRegistry, it is compiled to XNB format so that it
can be used by the XNA framework, and loaded into the ModelRegistry as a RegisteredModel

object.

The RegisteredModel object contains the model, its bone transformations, and the default colours
for each effect in the model. The name of the model is also stored, as it is used to identify and

4.3. GLOBAL GUI CONTROLS 45

compare RegisteredModels, and is derived from the model file name. The default colours are
stored so that they can be recovered should the effect colours be changed. This occurs when
custom lighting is applied to the object, and since multiple objects may be using the same model
with different lighting options, the default colours are essential for returning the model back to
its original state after each object has been drawn.

The ModelRegistry stores all the models loaded into the application within a List of Registered-

Models, and ensures uniqueness of models by disallowing two models with the same name to
be contained within the list. Furthermore, models are only added to the registry if a model with
the same name is not already in the list. Should a matching name be found, the specified file
will not be loaded, and the associated TransformObject will assume that the model in the model
registry is the correct model. Despite introducing a relatively minor limitation, which prevents
two different models of the same name from being loaded into the same scene, this design was
adopted for a number of reasons:

1. The limitation can be avoided simply by providing unique names for all model files.

2. By default, content management in XNA also utilises file names as unique identifiers.

3. While manual specification of unique model names was possible, this introduced unnec-
essary complexity.

4. This method all but prevents the loading of duplicate content, improving resource utilisa-
tion.

During draw operations, models are retrieved from the ModelRegistry using the model name
stored in the respective TransformObject. Should custom lighting be disabled, default colour is
also retrieved and applied to the effects in the model.

4.3 Global GUI Controls

In this section, brief consideration is given to two important GUI controls which are utilised for
a variety of tasks. We first consider a custom TextBox control for collecting textual user input,
followed by a controls which presents matrices to a form. We shall not discuss the XNAContent

control in this section, as it provides no functionality and has already been discussed (see section
3.4.2).

4.3. GLOBAL GUI CONTROLS 46

4.3.1 Filtered TextBox

The FilteredTextBox is the primary input component within the Transformation Pipeline Vi-
sualiser application. It is derived from the TextBox class, extending the basic functionality to
provide for the selection of different input types, which represent the various types of input
expected by different controls. Input types include Standard, Numeric, Alphabetical, Alphanu-

meric, Decimal and NegativeDecimal. Each type specifies a different set of rules of key press
filtering, thus eliminating the possibility of invalid characters corrupting user input. Selecting
the Standard input type causes the FilteredTextBox to act like the typical TextBox provided by
the .NET framework. All other input types are custom extensions.

Numeric input specifies that the TextBox will only accept numeric characters, and will ignore all
others. Alphabetical input accepts only uppercase and lowercase alphabetical characters, while
Alphanumeric input accepts only uppercase and lowercase alphabetical characters and numeric
characters.

Decimal input expects numeric characters and the decimal point character. If a decimal is al-
ready contained in the Text field, then the input is treated as numeric and no further decimal
points will be allowed until such time as the existing decimal point is removed. Furthermore,
if the decimal point is the first character in the Text field, a ’0’ is inserted in front of it au-
tomatically. Finally, should the last character in the Text field be a decimal point when the
FilteredTextBox loses focus, it will automatically be removed.

NegativeDecimal input is similar to Decimal input, except that it supports negative values. If
the ’-’ character is detected, it will be added to the front of the Text field if the value was initially
positive, and remove it from the first index of the Text field if the value was originally negative.

The FilteredTextBox ensures that all input is well formed, providing very strong input valida-
tion. The modifications also improve ease of data entry, as values are automatically filled in
within certain contexts. Thus the FilteredTextBox provides a number of benefits, improving
both usability and stability.

4.3.2 Matrix Control

The MatrixControl is a custom Windows Forms control for displaying the Matrix value of the
ITransformNode contained within a ListNode. The MatrixControl shows the matrix values to
three decimal places for legibility, as well as the name of the node, its owner and its type. The
MatrixControl is drawn using the OnPaint method, and does not collaborate with XNA.

4.4. TRANSFORMATION VISUALISATION 47

Figure 4.3: A MatrixControl component

4.4 Transformation Visualisation

4.4.1 Overview

In this section we consider elements which enable the core functionality of the system, namely
manipulation of the transform lists of objects within a scene. This includes the creation and
management of TransformObjects, and their associated transformations, both detailing the nec-
essary functionality and providing an overview of its implementation.

While rendering objects to screen forms an important part of this process, it is integral to many
other system components and will thus be discussed in a later section (see section 4.8).

4.4.2 Functionality

Before we can discuss the implementation of specific elements within the system, it is impor-
tant to understand exactly what the implementation actually achieves, as the operation of these
elements was largely determined by the functionality to be incorporated. In this section we
detail exactly what functions the transformation visualisation component facilitates, including
an overview of the Forms used to capture input, and the functions available to manipulate the
orientation of objects within a scene.

Creating, Deleting and Accessing Objects in a Scene

In order to allow for the manipulation of TransformObjects, these objects first need to be created.
In order to create a TransformObject, two pieces of information need to be collected. First, we

48

Figure 4.4: The Transform Manager

(a) Add Object Form (b) Object List Controls (c) Object Editor

Figure 4.5: Object Controls

4.4. TRANSFORMATION VISUALISATION 49

require the name associated with the object. This is essentially an identifier for the object, and
it must be unique. Second, the model associated with the object must be selected, and loaded
into the ModelRegistry if necessary.

Creation of objects is achieved using the Add Object Form. This form ensures that both the
name and model assigned are valid before allowing the object to be created. The name text field
is a FilteredTextBox which allows only alphanumeric input, and the model can only be selected
using the load button. The model loading process comprises three stages. First, the ModelReg-

istry is checked to ascertain whether a model by the same name has already been registered. If
it is not registered, the loading process attempts to load a compiled version of the model, as it
may have been compiled by a previous session. If this fails, then the model is compiled using
the ContentBuilder. This three step process ensures minimal loading times without introducing
unnecessary operation complexity. This basic procedure is used in all model loading operations.

The selected model is displayed within a ModelViewer control, to help verify that the correct
model has been loaded. Once an object has been added to the scene, it becomes available for
selection within the Object List. From here, it may be deleted or saved, while further objects
may be created or loaded, using the available Object List controls.

Loading and Saving Objects

Objects can be saved and reloaded for use in other scenes. Since the TransformObject and all
of its constituent components are serializable, these objects are simply serialized into a binary
file, and saved to disk. Loading objects is slightly more complicated, as loaded objects may
reference models which are not contained within the ModelRegistry, thus requiring that those
models be recovered. The recovery operation is performed by the object in question upon
loading, and follows a similar three step procedure discussed in the previous section, except
that if a compiled version of the model cannot be found, the application prompts the user to
select the appropriate model to load. This allows for objects to be loaded with different models,
should the original models not be available. As object names are required to be unique, the
loading procedure also forces a rename of a loaded object if it shares the same name as another
object in the list.

While most information is retained by this procedure, all referential relationships to ITrans-

formNodes contained in other objects are lost. Loaded objects do not retain these relationships
for two primary reasons:

1. Retaining a relationship to an unloaded object is difficult, and makes little sense.

4.4. TRANSFORMATION VISUALISATION 50

2. Referential relationships between objects can be maintained by saving the entire workspace
(see section 4.8), eliminating the necessity for maintaining relations to objects that will
likely not be included in the scene.

Editing Objects

Once an object has been selected from the Object List, its name and model can be changed
from the Object Editor, which is located beneath the Object List. The Object Editor prevents
the renaming of objects to a non-unique value, while the model loading component acts in an
almost identical fashion to its Add Object Form counterpart.

The Object Editor also allows for models to be hidden, which prevents them from being drawn.
This functionality is achieved through a CheckBox component, and is intended to help simplify
complex scenes by allowing the user to remove objects from a scene temporarily, in order to
focus on other objects without obstruction. Similarly, the Object Editor allows the user to turn
model texture support on and off. This allows the user to see untextured objects, improving
understanding of how textures are applied to objects.

The Object Editor also provides control over custom lighting. While custom lighting is relevant
to the Transformation Visualiser components, it will be discussed at a later point (see section
4.6).

Adding and Editing Transformations

In order to transform objects within a scene, transformation matrices need to be applied to
those objects. Initially, all objects have only one Identity transformation applied to them, and
will maintain at least one node in their object’s TransformList at all times. This is necessary,
as manipulation of the TransformList is achieved through a context menu accessed by right-
clicking a node in the list, and thus without any nodes in the list, it would be impossible to
interact with the system. This method was used because the options available at any time are
sensitive to the node being operated on. For instance, static nodes cannot have their dynamics
started, and nodes at the top of the list cannot be moved further up. By positioning the mouse
cursor over any available options will display a ToolTip explaining what the particular option
does, while ToolTips for deactivated options explain why the option is not available. We shall
consider adding and editing transformation nodes in this section, and consider other operations
in the next section.

4.4. TRANSFORMATION VISUALISATION 51

Figure 4.6: The Element Context Menu

The process of adding new nodes is initiated by selecting the ’Add’ option in the Element Con-
text Menu. This opens the Element Builder Form, which facilitates the creation of StaticTrans-

formNodes, DynamicTransformNodes, ConstantTransformNodes and ScalarTransformNodes.
The Element Builder allows for the specification of both a name and owner for the transforma-
tion node, but will provide default values for these so as not to necessitate unessential input.
As long as the transform name has not been changed, changing the type of transformation will
result in the default name changing to reflect this type. The owner field allows for a simple
way to keep track of the origins of transforms. As it does not provide or affect transformation
functionality, it may be changed without consequence should the need arise. In the majority of
cases however, it should be left as is.

The form contains a number of tabs, each intended for creating a different type of ITrans-

formNode and adding it to the transformation list. The first tab facilitates the creation of Stat-

icTransformNodes, and allows for translation, scaling and rotation transformations, as well as
static nodes containing the matrix identity.

The Dynamic Tab allows for the creation, deletion, editing and ordering of WayPoint objects
of a DynamicTransformNode. Initially, the Waypoint List contains a single identity transform.
Adding, deleting and changing the order of WayPoints is facilitated by the Waypoint List Con-
trols, located directly below the list. These options can also be reached from the Waypoint
Context Menu, accessible by right clicking a waypoint in the Waypoint List. The Waypoint
Context Menu also allows for the copying and pasting of WayPoints within the Waypoint List,
which is intended to ease creation of similar WayPoints within a list.

52

(a) The Static Tab (b) Dynamic Tab

(c) Constant Tab (d) Scalar Tab

Figure 4.7: The Element Builder

4.4. TRANSFORMATION VISUALISATION 53

Figure 4.8: The Waypoint Context Menu

Once a Waypoint has been selected from the Waypoint List, its component transformations can
be edited, and updated once complete. If a single Waypoint utilises multiple transformation
components of differing types, then the resultant matrices of these transformations are multi-
plied together in I.S.R.O.T order.

The Constant Tab allows for ConstantTransformNodes to be created and, when relevant, allows
adjustment of the translation and scale boundaries. Boundary editing is only enabled if the
selected type of transformation correlates to the boundary. For instance, setting the translation
boundary is only allowed if the node is of a Translation type.

The Scalar Tab is used to create ScalarTransformNodes, and provides only a single input field,
the scalar value, to generate the appropriate node. All input within the Element Builder Form
is collected using FilteredTextBoxes, which are set as Alphanumeric for all textual input fields,
NegativeDecimal for all component vector input fields, and Decimal for all rate input fields.
This helps ensure valid input, and improves the stability of the system. By clicking apply
within a specific tab, the appropriate ITransformNode is created and added to the appropriate
Transformation List.

Editing of objects is almost identical, except no automatic name generation is used, and changes
to the Waypoint List and its WayPoints are visible within the rendered output. All changes can
still, however, be undone by clicking the cancel button within any tab. In the following section,
we shall be considering the transformation list as a whole, and the operations available for
transformation manipulation.

Manipulating the Transformation List

In order to properly position and orientate an object in a scene, and to visualise the effect of
certain operations such as changing the order of transformations, a number of manipulation
operations are supported, and are accessible through the Element Context Menu. The most
vital of these, namely the Move Up and Move Down operations, allow for the reordering of

4.4. TRANSFORMATION VISUALISATION 54

Figure 4.9: Rename Element Form

nodes within the Transformation List. This provides both a means for visualising the effects
of changing the order of transformations, and for developing and fine tuning more complex
transformations.

While we have already discussed adding and editing transformations in the previous section,
it is worth considering the delete and rename operations. Deleting a node removes it from
the list, but does not necessarily destroy its transformation. Thus, delete can be applied to
any node, while leaving all referentially related nodes intact. The rename operation opens
the Rename Element form, which provides a simplified mechanism for renaming transform
elements quickly.

Each node is capable of being in either an active or inactive state. Upon creation, all nodes are
initially in an active state, and operate as expected. Deactivating a node essentially ensures that
the node is ignored when calculating the solution to the transformation list. This provides a
simple mechanism for visualising the effect a node has on the calculation of the World matrix,
and for testing the effect of removing a node without actually having to remove it. As keeping
track of active and inactive nodes could easily become unmanageable without assistance, the
Transformation List colours all inactive transformation nodes SlateGrey to provide an easily
recognisable indication of which nodes are inactive.

Nodes which implement the IDynamicTransformNode interface can have their dynamics started
and stopped at any time. On creation, all nodes are active, as would be expected. Editing,
however, does not restart stopped nodes. This facility is intended primarily for DynamicTrans-

formNodes, allowing for their initial positions to be set without interference, but can be used by
ConstantTransformNodes to achieve a similar, if slightly less useful, effect.

Transformations can be sent to other transformation lists, or they can be sent to their own trans-
form list, either of which can be done by value or by reference. Sending transformations to a
different list by reference results in a referentially related transform node being appended to the
end of that list. When sent by value, the appended transform node will have the same value,

4.4. TRANSFORMATION VISUALISATION 55

but will not be linked to the original transform. As the specific differences between referential
and value sending have already been discussed (see section 2.3.3), we shall not discuss them
further. Sending nodes to the same list provides a method for squaring transformations, should
this be necessary.

Nodes can be viewed at three different levels of abstraction, namely Compressed, Expanded and
Matrix views. The Compressed view shows only the owner and name of the transform node,
and is the highest level of abstraction. For more detail, the Expanded view shows specific, type
sensitive information relating to the ITransformNode. In this view, most relevant information is
displayed, with the exception of DynamicTransformNodes, which display only the positions for
each Waypoint. This view provides a textual overview of the transformation, providing enough
detail to discern what the node does. The Matrix view shows the actual transformation of the
matrix, utilising the MatrixControl as a presentation mechanism. When the transformations are
dynamic, the MatrixControl display is updated frequently to help illustrate how the dynamics
affect the values in the matrix. This is particularly beneficial in collaboration with the rate
components of IDynamicTransformNode, which allow a transformation components to remain
unchanged, but be applied over a far longer length of time. This enables the user to reduce the
rate of change of the transformation, thus providing a better view of how matrices change over
time. The view of a node can be changed, either by using the Element Context Menu, or by
double clicking the node. When double clicking the node, views are cycled iteratively.

The Element Context Menu provides the only means for creating CompositeTransformNodes,

which is achieved by selecting ’Combine With Next’. This operation creates a new Compos-

iteTransformNode, using the the current and next nodes as parents, and replacing them in the
TransformList. Composite nodes may be combined with other composite nodes, or decom-
posed to replace them by their parent nodes. Combining nodes does not affect any nodes which
are referentially related to those nodes, as the ITransformNodes themselves persist. This en-
sures flexibility, and allows for CompositeTransformNodes to be used as a safe mechanism for
building complex transforms, and reducing the visual complexity of long transformation lists.

The final operation available in the Element Context Menu – ’Step Into’ – allows the user to
step into the calculation of the Transformation List solution. This functionality is discussed in
section 4.5, and so will not be considered further at this point.

All Transformation Nodes contain a MatrixOperation button, which allows the user to specify
which matrix operation to apply between the current element and the next element in the list.
Operations can be cycled by clicking the button, or specified by right-clicking the button to
access its context menu.

56

(a) Compressed View (b) Composite Expanded View (c) Matrix View

Other Expanded Views:

(d) Static Expanded View (e) Scalar Expanded

(f) Dynamic Expanded View (g) Constant Expanded View

Figure 4.10: Transform Node Views

4.4. TRANSFORMATION VISUALISATION 57

Figure 4.11: Transform List

Together, this functionality ensures that relatively sophisticated World matrices can be created
using the Transformation List, allowing the user significant depth of exploration.

4.4.3 Associated GUI Controls

The Transformation Visualisation component is achieved using a number of custom compo-
nents. In this section, we elaborate on these controls, detailing interesting functionality.

Model Viewer

The ModelViewerControl is used to display the model associated with an object outside of the
context of a scene, and is used in both the Add Object Form and the Object Manager. The Mod-

elViewerControl supports run time model switching, accepting both default and custom object
colours to ensure correct representation. Upon loading the model, the ModelViewerControl cal-
culates the center of the model, and rotates the y axis about this point, resulting in the model
slowly rotating. The ModelViewerControl inherits from XNAContent in order to present XNA
output to a control.

4.4. TRANSFORMATION VISUALISATION 58

TransformElementList

The TransformElementList is responsible for managing the Transformation List, and acts as a
container for TransformElement controls. The TransformElementList is responsible for both el-
ement positioning, and servicing certain element events resulting from Element Context Menu
operations, such as element reordering, creation and deletion. Any changes made to the Trans-

formElementList are instantly reflected in the TransformList of the relevant object, as well as
within the scene viewport.

TransformElements

The TransformElement class is responsible for the bulk of the applications Transformation List
manipulation capabilities, typically accessible through the Element Context Menu. The Ele-
ment Context menu is dynamically generated when the user right-clicks an element, and checks
the state of the contained ListNode and the TransformList of which is apart, to determine which
options should be disabled. This is facilitated using a number of delegates and events, which
allows elements to communicate with the TransformList, both to manipulate it, and to poll it for
information.

Object Controls

The Object Controls allow the user to rename objects, change their models, and set their vis-
ibility and texture options. These controls also include custom lighting options, but as these
controls are more relevant to the lighting facilities of the application, they shall be discussed
within that context (see section 4.7). As previously stated, the application does not allow two
objects with the same name to exist within the transform list. While the application prevents a
object with a duplicate name from being added to the object list using the Add Object form, this
may still occur as the result or either loading an object with the same name, or renaming the
object from the Object Controls. To prevent this from happening, the FilteredTextBox used for
renaming will retain focus until the name specified is unique. Attempts to do other operations
will result in a MessageBox informing the user that they must first resolve the name conflict
before they can continue. In order to resolve conflicts when an object is loaded, the Filtered-

TextBox is given focus directly after loading. Thus, if a name conflict exists, the user is forced
to rectify this before he can continue.

4.5. MATRIX OPERATION VISUALISATION 59

In order to hide objects, the Hide checkbox simply sets the Active property in the ListNode,

indicating that the object should not be drawn. When drawing objects, inactive objects are
filtered out. Disabling textures is done in a similar fashion, as the Texture checkbox value is
applied to the BasicEffect objects contained in the mesh during the draw operation.

While Model Loading is important, it has already been discussed in a previous section (see
section 4.4.2), and thus will not be discussed here.

Element Builder Form

The ElementBuilderForm facilitates the creation of elements within the TransformElementList,

and thus ITransformNodes within the TransformList. Elements are built within a specific tab,
and upon clicking Accept, relevant input is combined to produce a new ITransformNode, which
is either added to the list within a new ListNode, or used to replace a transform within an
existing ListNode. The ElementBuilderForm uses an ElementNameManager object to generate
appropriate default names. The ElementNameManager maintains an array of instance counts
for each ITransformNode type, and in the case of StaticTransformNodes, the count of each
transformation type. If the name field has not been manually changed, then the name field will
changed to reflect the selected node type, whenever the node type is changed, removing the
need for users to manually specify unique names, without introducing too much ambiguity.

4.5 Matrix Operation Visualisation

4.5.1 Overview

The transformation pipeline is heavily dependent on matrix algebra, which is responsible for
combining any number of separate transformation matrices into one. While in the large major-
ity of cases only matrix multiplication is used, the operations of matrix addition and subtraction
can occasionally be utilised to achieve transformation effects otherwise difficult or impossi-
ble to create. This section discusses the matrix visualisation component of the transformation
visualiser, which allows the user to step into the calculation of the world matrix for a scene
object.

4.5. MATRIX OPERATION VISUALISATION 60

Figure 4.12: The Matrix Calculation Viewer Form

4.5.2 Features

Matrix Operation Visualisation within the Transformation Pipeline Visualiser application is
comprised of two Forms, which present transformation pipeline calculation information at dif-
ferent levels of abstraction. The first of these forms, the Matrix Calculation Viewer Form, is
accessed from the Element Context Menu by selecting ’Step Into’, and shows both the current
transformation pipeline, but also the working calculation up to the node which initiated the op-
eration. The backward and forward buttons facilitate movement to any point in the calculation
to view the current working up to that point. All transformations within the list are represented
as matrices, using the MatrixControl as a presentation mechanism, and are updated in real-time
to show how the dynamics of a system affect both the individual matrices, and the calculation
as a whole. When nodes are inactive, they are not included in this calculation, and are skipped
when moving between steps in the calculation. Finally, changing the width of the form will au-
tomatically re-size the widths of each MatrixBlockList, allowing the user to expand the number
of visible transformations displayed on screen.

The second form allows for the user to step into an algebraic operation between two matri-
ces, which utilises simple animation to illustrate how the operation is applied to each node to
achieve a result. The OperationViewerForm is accessed using the ’Step Into Operation’ button,
and shows the calculation of the current step in the Matrix Calculation Viewer Form. Given

4.5. MATRIX OPERATION VISUALISATION 61

Figure 4.13: Matrix Addition and Subtraction Layout

the dramatic differences between Matrix Addition and Subtraction and Matrix Multiplication,
different Form layouts are utilised to better illustrate the sequence of calculations involved in
producing an answer matrix. The matrix values are rendered in real-time, in order to aid in
visualising dynamic transformations.

The OperationViewerForm includes an Information Panel, which provides three different textual
representations of the matrix operation calculation sequence. These include the Calculation,

where the current calculation is represented numerically, with the current working highlighted;
Working, which is similar to Calculation, except that working is accumulated; and Operation,

which uses string based representations of matrix values to show the calculation symbolically.
These views can be cycled by clicking their title. This is intended to help illustrate exactly what
operations occur, in sequence, when calculating the answer to a matrix operation.

Together, these forms provide a means for ’drilling down’ into the calculation of the transfor-
mation pipeline calculation sequence, and can be utilised to improve familiarity with transfor-
mation sequences and matrix operations.

4.5.3 Associated GUI Controls

There are several controls dedicated specifically to the visualisation of the calculation proce-
dure. These controls are discussed in the following section, drawing attention to interesting
functionality.

62

Figure 4.14: Matrix Multiplication Layout

(a) Calculation View

(b) Working View

(c) Operation View

Figure 4.15: Matrix Operation Viewer

4.5. MATRIX OPERATION VISUALISATION 63

Figure 4.16: DrawnMatrix Control

DrawnMatrix

The DrawnMatrix control is an XNA Game Component which extends XNAContent and presents
its output to an XNAPanel. Implementation within XNA was desirable, so as to allow for effi-
cient and smooth animation of the white tile used to represent the current position in the matrix.
Furthermore, as the DrawnMatrix polls the relevant matrices on each Draw iteration, the most
current values for dynamic transformations are inherently displayed. Tile positioning is handled
by the TileManager class, which uses the current GameTime and position interpolation to show
the transition from one cell to another. Only one transition can be underway at any given time,
and each transition takes 200ms to complete. This was done for simplicity. The movement of
the Tile is dependent of the state of the TileManager, which, in turn, is dependent on the type
of operation being applied. The DrawnMatrix control depends on a SpriteBatch to display both
text and graphics.

OperationViewer

The OperationViewer is responsible for positioning the DrawnMatrix controls and Information-
Panel, based upon the operation to be visualised, and coordinates the concurrent updating of all
contained components to the correct phase of the calculation.

MatrixBlock and MatrixBlockList

The MatrixBlock control is responsible for displaying the transformation matrix and operator of
its contained ListNode, and is used for representing ITransformNodes within the MatrixBlock-

List. The Matrix is presented to the control using a MatrixControl.

The MatrixBlockList is a more sophisticated control, which can be used to display various
stages of the transformation calculation, as well as display the solution to a transformation list
using the Answer class. The Answer class is essentially contains a MatrixBlock control which

4.6. VIEW AND PROJECTION MANIPULATION 64

(a) MatrixBlock (b) MatrixBlockList

Figure 4.17: MatrixBlock and MatrixBlockList

Figure 4.18: Camera Controls

contains a CompositeTransformNode comprised of all the ITransformNodes in the list, applied
in the correct order. This CompositeTransformNode is then updated by the game loop, ensuring
the values remain current.

4.6 View And Projection Manipulation

4.6.1 Overview

View and Projection manipulation is provisioned by the Camera Controls, found below the main
viewport. They provide an interface for specifying view and projection parameters, which are
used to create the appropriate View and Projection matrices within the Camera object, used
when rendering to the main viewport.

4.6.2 Features

View and Projection matrix generation is relatively simple, and as such, requires relatively little
functionality. View Controls include the ability to specify the camera target position, as well as

4.6. VIEW AND PROJECTION MANIPULATION 65

(a) 120 degree Field of View (b) 20 degree Field of View, displaying camera informa-
tion

Figure 4.19: Field of View and Camera Information

to enable and apply manual camera positioning. When manual camera positioning is disabled,
the camera can be rotated around the origin and zoomed in and out using a combination of
directional keys, +, - and the ctrl key after clicking on the viewport. x and y axis rotations are
applied using the left and right, and up and down directional keys respectively. z axis rotation is
accessed by holding down the ctrl key, and pressing the left and right directional keys. Zooming

is achieved using the + and - keys, while fast zooming can be accessed by holding down the
ctrl key when zooming.

Projection controls allow for the specification of the camera Field of View (see figure 4.19), as
well as the near and far draw planes of the projection frustum. The camera Field of View can
vary between 1 and 179 degrees, allowing for both wide and narrow angle lens specifications.
The camera object ensures that the Field of View falls within this range, and that the near plane
is always closer to the camera than the far plane. View and Projection changes can be applied
using their respective Apply buttons, or be reset to default values using the respective Default
buttons.

4.6.3 Associated GUI Controls

GamePanel

The GamePanel is a more sophisticated XNAPanel, which is capable of capturing keyboard
input, which can be used to control the camera. The GamePanel inherits from the TextBox con-
trol, but does not display the captured input. Instead, it sets relevant states in a Keyboard object,

4.7. CONTROLLING LIGHTING 66

which is passed to the camera on each game loop iteration. The GamePanel has its Multiline
property enabled, so as to allow vertical resizing. As XNA content is presented over the TextBox

graphics, and the TextBox control is designed to collect keyboard input, the GamePanel operates
well in both capturing input and presenting output.

Camera

The Camera class used in the Transformation Pipeline Visualisation application is responsible
for positioning the camera within a scene. The camera is directly interfaced by the Camer-

aControl, allowing the manipulation of all available variables through this Form control. The
Camera class also uses the Keyboard object generated by the GamePanel to rotate and and scale
the camera about the origin, thus providing camera position and zoom manipulation capabilities
through keyboard input.

CameraControl

The CameraControl is a custom Forms control which allows editing of View, Projection, Sky-
box, and Directional Lighting options. The Skybox and Directional Lighting elements are dis-
cussed in the following two sections.

4.7 Controlling Lighting

4.7.1 Overview

The Transformation Pipeline Visualiser Application provides a number of controls for customis-
ing both object and scene lighting. Object Lighting controls allow for the enabling and disabling
of custom lighting for the object, as well as access to a number of light colour properties. Scene
lighting is located in the Directional Lighting section of the CameraControl, and allows selec-
tion of both the ambient and specular properties, as well as direction, of three directional lights.
These lights are enabled from the Camera Control. Relevant theory is discussed in section 2.3.5.

4.7. CONTROLLING LIGHTING 67

(a) Custom Lighting En-
abled

(b) Custom Lighting
Disabled

Figure 4.20: The Effects of Custom Object Lighting

4.7.2 Features

Object Lighting

Object Lighting features allow the user to specify the Ambient, Emissive, Diffuse and Specu-

lar light colours for the selected object model, and adjust the applied Specular Power value.
Colours can be adjusted by clicking the appropriate Select button, when Custom Lighting is en-
abled. The currently selected colour is displayed as the background to the Select button, making
the currently loaded colour easy to discern. The Specular Power field allows the user to specify
a specular power value, accepting Decimal input. High Specular Power values make a material
appear smooth and reflective, while low values correspond to a dull, matte texture.

Direction Lighting

Lighting Direction features allow the user to manually configure the three independent direc-
tional lights made available by the XNA BasicEffect class. Individual directional lights can be
enabled and disabled from the Camera Control panel below the main viewport.. Light param-
eters are configured from the Directional Light Settings form, also accessed from the Camera
Controls panel. Parameters include Diffuse and Specular light colours, as well as the direction
vector, for each light.

4.7. CONTROLLING LIGHTING 68

(a) Directional Lighting Controls

(b) Directional Light Settings Form

Figure 4.21: Directional Lighting Controls

(a) Defaultl Lighting (b) Single Orange Directional Light
Enabled

Figure 4.22: Directional Lighting Effects

Figure 4.22 shows the same object, rendered with and without directional lighting enabled.

4.7.3 Associated GUI Controls

Colour Selector

The ColourSelector control is used for specifying light colours for objects and directional lights.
The control contains a Select Button which opens a ColorDialog, and sets the result to its back-

Figure 4.23: ColourSelector Control

4.8. SYNTHESIS 69

ground colour, thus acting as an indicator of the currently applied colour. This colour can then
be converted into a format usable by XNA, and stored within the relevant TransformObject.

Directional Light Settings Form

The DirectionalLightForm allows for the changing of directional light properties for three in-
dependent lights. The DirectionalLightForm allows properties of each light to be specified
independently of others, and thus has three separate Apply buttons, each responsible for up-
dating the properties of its respective directional light. The Directional Light Settings form is
shown in figure 4.21.

4.8 Synthesis

4.8.1 Overview

This section considers the display of the transformed objects to the screen, loading and saving
workspaces, as well as generation of a simple Skybox based environment for the scene.

4.8.2 Features

Skybox

The scene environment is created using a simple Skybox control, which uses six images to
create a seamless cubic enclosure. In order to provide greater flexibility with regard to the vi-
sualisation of a scene, the application supports custom Skybox creation, and allows for these
controls to be saved for later use in different scenes. These features are facilitated by the Edit

Skybox form, which utilises managed input components to collect necessary information, ensur-
ing that the Skybox is generated with well formed input. The form requires that a valid Skybox
name be specified before any textures can be loaded, and further ensures that all textures are
loaded before allowing Skybox generation. Once generated, texture panels can be rotated using
the appropriate R button, located next to the texture name.

Valid skyboxes may be saved by clicking the Save button, while existing skyboxes may be
loaded using the Load button. As Texture objects are not serializable, the texture file names are

4.8. SYNTHESIS 70

Figure 4.24: Edit Skybox Form

used to reload the original texture files. As this process can take a long time when textures have
not been previously compiled, progress is indicated textually within the Skybox Viewer control,
providing feedback to the user as to the expected completion time of the Skybox generation
operation. On clicking Apply, the custom Skybox is placed in a buffer, where it is later collected
by the Update procedure and used to replace the existing scene Skybox.

If necessary, the default Skybox can be loaded by clicking Default Skybox in the Camera Con-
trol. The Skybox diameter can also be manually adjusted using the Radius field. The radius of
the Skybox is the distance from the center of the scene to its closest edge, and is thus half the di-
ameter. By using a small radius, it is possible to see how the Skybox works. Figure 4.25 shows
a Skybox with a radius of five, demonstrating how this facility can be used to better understand
the illusion created by the Skybox.

Viewport Rendering

The Skybox and object models are rendered within the Draw method of the BaseGame class
as a scene, which is then presented to the main viewport in the MainForm class. The viewport
rendering procedure follows the standard procedure for rendering objects, collecting BasicEffect

parameter values by polling objects such as the camera and model registry.

Loading and Saving

In order to allow dependencies between objects to be saved, the Transformation Pipeline Visu-
aliser facilitates the saving and loading of Workspaces. A Workspace comprises all objects and

4.8. SYNTHESIS 71

Figure 4.25: A Small Skybox

their transformations, the current Camera, ModelRegistry and Skybox. As the ModelRegistry

and Skybox classes contain references to non-serializable objects, these objects are recovered
using Model and Skybox loading procedures respectively, discussed earlier in this chapter. Load-
ing these objects could take a significant amount of time, particularly in dense scenes, where
none of the objects have been compiled before. Thus, during the loading procedure, the cur-
rent operation being completed is displayed within the main viewport, to provide a modicum of
feedback to the user. It is worth noting that manual calls to the Draw operation are necessary in
order for the textual feedback to be presented to the viewport during the loading operation, as
interrupts by the game loop are not serviced during content compilation.

The ability to load and save workspaces is significant, as it allows for scenes to be created for
students to operate in. Furthermore, the ability for students to hand in scenes, either for advice
or marking, exists, and may be exploited if desired.

4.8.3 Associated Controls

Skybox

The Skybox class is responsible for storing and presenting an environment to the scene. The
Skybox uses four vertices to create a surface, which is used to render all six sides of the Skybox
cube. First, the appropriate texture is applied to the surface. The surface is then rotated so that
the image has the correct orientation based on the user supplied rotations on the Edit Skybox

4.9. SUMMARY 72

form. It is then translated and rotated appropriately so that it is in the correct position for the
current face of the Skybox. this procedure is repeated for each of the cube faces. The Skybox
does not present to a control, as it is typically only part of a scene, and is always the first object
drawn to avoid obstruction of scene objects.

SkyboxSave

The SkyboxSave class is used for saving and loading skyboxes. The SkyboxSave stores the
name of the Skybox, the location of its textures, and the rotations to be applied to those textures.
On loading, the SkyboxSave is used to retrieve the appropriate textures, and use them recreate
the saved Skybox.

SkyBoxViewer

The SkyBoxViewer inherits from XNAContent, and presents the currently contained Skybox to a
GamePanel. The GamePanel allows for the viewers camera to be positioned in real time using
keyboard input, thus allowing the user to evaluate the Skybox before applying it to the scene.
This is achieved in a similar fashion to that of camera input collection within the main game
loop.

4.9 Summary

In this section we have considered the functionality and structure of the Transformation Pipeline
Visualiser application. Primary focus was given to elaborating on functionality and features,
while supplementary implementation information was provided where considered necessary.
Consideration was first given the underlying data structures supporting the system, in order to
provide insight into the application architecture, and how the system manages transformations
and objects. This was followed by a short overview of two controls utilised within multiple
sections of the project. The core application functionality was then presented, separated into
sections which represent specific goals of the system. These included Transformation Visu-
alisation, Matrix Operation Visualisation, View and Projection Manipulation and Controlling
Lighting. Finally, aspects either unrelated or broadly related to other system components were
discussed in Synthesis.

4.9. SUMMARY 73

As such, the chapter represents an overview of the implementation of the application, and pro-
vides insight into its functionality and flexibility. As has been shown, the program provides
a relatively broad array of functionality, allowing for the creation of sophisticated and visu-
ally compelling scenes, containing a collection of widely varied objects which demonstrate
complex, dynamic and interdependent behaviors. The application also affords a great deal of
flexibility, both to the learner’s approach to the system, and to the educator’s. While the appli-
cation was primarily designed to facilitate exploratory freedom on the part of the learner, the
system can be utilised in a far more structured way. For instance, a practical may be set to
either create or modify a scene, in order to meet certain specifications. These may be simple
or exhaustive, interesting or repetitive, highly specific or vague. Thus, the application can be
used for highly structured, semi-structured and unstructured exploration, providing substantial
educator flexibility with regard to their application of the program.

Chapter 5

A Sample Lesson

5.1 Overview

In this section we provide a sample practical, intended to demonstrate how the application may
be used. The first section of the sample presents a structured problem to be solved incremen-
tally, while the second section presents a somewhat less structured problem, allowing for more
exploration on the part of the user. This practical is meant for illustration purposes only, and
only utilises a small subset of the applications features.

5.2 Practical

Practical Outcomes:

• Become familiar with skyboxes, and how they are used to create environments.

• Understand how translation, rotation and scale transformations may be used to position
objects in a 3D world.

• Create dependencies between objects.

• Learn how lighting can be used to improve a scene.

74

5.2. PRACTICAL 75

Introduction:

In this practical, you will incrementally create an animated 3D space scene, and a rotating
double helix, using the Transformation Visualiser Application. Models and Skybox textures
have been provided to help you achieve this.

Section 1: Space

For Submission:

The workspace file for your completed scene.

Part 1: The Milky Way

The first task is to create the environment in which the scene takes place. You may use the sup-
plied skybox textures to do this. Skyboxes may be created within the Transformation Pipeline
Visualiser application by clicking the ’Create Skybox’ button in the Skybox Options panel under
the main viewport.

Part 2: The Earth

(a) Your next task is to load the model of the earth provided, and position it correctly at the
center of the scene. The earth should be tilted by 23 degrees on its axis.

(b) Add a spaceship, using the model provided, to the space scene. Re-size the planet so it is
at least five times larger, and position the spaceship high above the equator, with the correct
orientation.

Part 3: The Rotation

(a) Add a constant transformation to the earth, to that it rotates on its tilted axis. Assume that 1
second in the program is equivalent to 1 hour in reality.

(b) Without creating any new transformations, rotate the spaceship so that it remains in geosyn-
chronous orbit with the planet, even if the planets rotation changes. The ’Send To’ option within
the transform element context menu may be useful.

5.3. SOLVING THE PRACTICAL 76

Part 4: The Sun

Complete the scene by adding sunlight. Use a directional light to achieve this. Assume that the
sun is located infinitely far down the x axis, and has no y or z component.

Section 2: DNA

For Submission:

The workspace file for your completed scene.

The Problem:

Use the Icosphere and Cylinder models to create a rotating double-helix like the one shown
above. When implementing this solution, take the following into consideration:

1. All the bars must rotate at the same speed.

2. The speed of rotation must be changeable from a single node.

3. The difference in rotation between successive bars must be variable, and changeable from
a single node.

5.3 Solving the Practical

5.3.1 Section 1: Space Solution

The solution to section 1 is relatively trivial, requiring primarily that the user follow the instruc-
tions, and correctly order the transformations of the two objects in the scene. In solving this

5.4. SUMMARY 77

problem, the user will be exposed to the basics of positioning and orientating objects within
a scene, introduced to how transformation sharing can be utilised, and encouraged to explore
lighting effects. Should the user become confused, the Matrix Operation Visualiser may be used
to see how the order of transformations affects the calculation of the World matrix.

5.3.2 Section 2: DNA Solution

While not a difficult problem, the solution to the DNA section requires a greater degree of
independent thinking and problem solving than that of the space section. This problem requires
the user to build a structure from several model components, and coordinate them such that
they act as a controllable object. The user is also required to apply transformation sharing
intelligently, as the solution requires interdependence of objects.

5.4 Summary

In this section, we have presented an example practical demonstrating how the application may
be used within a teaching environment. While these examples were quite simplistic, they illus-
trate two of a number of teaching approaches supported by the program.

78

(a) Space Solution

(b) DNA Solution

Figure 5.1: Example Practical: Solution Images

Chapter 6

Conclusion

6.1 Overview

In conclusion, we have successfully implemented a relatively full featured, graphical and in-
teractive exploration tool for visualising the XNA transformation pipeline. The application
leverages the XNA framework for the transformation visualisation component, while utilising
the .NET framework for user input collection, thus allowing for real-time interactive scene rep-
resentation, managed and interacted with by diverse and feature rich .NET GUI controls. By
combining the visual elements of a game, and the structured input of Windows Forms, the appli-
cation manages to afford the user a substantial degree of exploration initiative, while preventing
such initiative from placing the application in an unrecoverable state. Thus, the Transforma-
tion Pipeline Visualiser provides a semi-structured and stable environment, which is flexible
enough to facilitate a structured, semi-structured or unstructured learning environment, applied
per educator preference.

We begin this section with a simple, abstract overview of the available functionality within the
system. We then elaborate on interesting and desirable functionality currently not implemented
within the application, either due to time or scope constraints, or implementation complexity.

6.2 Available Functionality

For simplicity, the available functionality of the application will be enumerated as a bullet point
list. This is intended as an overview of primary functionality only, and thus should not be
considered exclusively complete.

79

6.2. AVAILABLE FUNCTIONALITY 80

• The user can create a wide variety of static and dynamic transformation types, which to-
gether provide substantial flexibility in defining sophisticated behaviors for objects within
a scene.

• The user can utilise matrix multiplication, addition and subtraction, as well as scalar
multiplication, within transformation calculations. This allows the user to explore more
sophisticated transformation sequences, while improving their understanding of matrix
algebra in general.

• The user can reorder elements, parenthesize calculations and share transformation com-
ponents between objects. With concrete, real time feedback, the user can experiment
with different configurations to better understand transformation sequencing and its im-
portance.

• A wide array of visualisation capabilities, and three levels of pipeline abstraction, provide
a complete view of the transformation process for the user – from the graphical results
it achieves, to the calculation of individual components of a single matrix in an objects
transformation list.

• Strong input management ensures reduced frustration and improved stability, as the user
is prevented from undertaking illegal operations and supplying malformed or incompati-
ble input.

• The user can customise environments and load custom models into the application at
run time, facilitating an essentially limitless number of visually compelling and diverse
scenes, while intelligent content management ensures minimal loading times.

• The user can customise the scene camera in order to visualise view and projection effects
on the rendering process.

• The user has control over both object lighting parameters, and three directional lights,
which allows for familiarisation with lighting and insight into how such lighting may be
exploited to dramatically improve a 3D scene.

• The user can save and load individual objects, environments, and entire scenes for later
use.

6.3. FUTURE WORK 81

6.3 Future Work

In this section we consider elements missing from the current implementation which would im-
prove the usefulness of the application. Two types of extension are considered, namely those
which fall within the scope of the current application features, either supplementing or improv-
ing existing elements, with specific focus on improved usability, and those which fall outside the
scope of the current application, adding entirely new features to facilitate broader exploration.

6.3.1 Improvements

Undo and Redo

Currently, the application does not support undo and redo operations, due primarily to the com-
plexity of the application state space, and scope limitations on the project. While undo and redo
functionality is highly desirable, the architecture of the application, which is heavily dependent
on the maintenance of implicit, unmanaged relationships, makes this a relatively difficult un-
dertaking. In the interests of producing a more feature rich application, focus was placed on the
significantly simpler task of ensuring valid input, slightly mitigating the problem. Despite this,
implementing Undo and Redo operations remains feasible, and could be achieved, for example,
by using an event logger which is capable of undoing each logged event.

Alternatively, a database could be utilised to store checkpoints containing the full application
state at a particular point in time. Each time the user undertakes an action, an event is generated
representing this action. The current program state is then determined by loading the last saved
checkpoint, and applying all the commands collected since the checkpoint was made. After
a certain number of operations, a new checkpoint is created, and the procedure begins again.
As this method does not require inverses for all operations, it would be considerably easier to
implement.

Graphical Feedback for Waypoint Positioning

DynamicTransformNode generation within the Element Builder form is likely the least acces-
sible operation within the Transformation Pipeline Visualiser application, as little graphical
feedback is given as to how the supplied node configuration will affect the object it is being
applied to. A possible resolution to this problem involves creating a new XNAContent based

6.3. FUTURE WORK 82

control, which shows the path the object will take drawn as lines using custom vertices, and an
object moving along that path, being translated, rotated and scaled appropriately. This would
be both highly desirable, and relatively trivial, to include.

Drag and Drop Support

Drag and Drop support was originally included within all the list based controls in the applica-
tion, to make position management more fluid and efficient. This support was later removed due
to slight inconsistencies in operation under certain conditions. This was done so as to ensure that
the primary mode of input was consistent and dependable, and never unpredictable. This was
due to the lack of undo and redo support, which necessitated the minimisation of irreversible
changes, particularly when these changes were the result of an operation which did not always
operate consistently. As a consistent method of manipulation has been fully implemented, the
addition of drag and drop support is highly desirable.

Extended Camera Options

Camera targeting is currently quite limited within the application, only allowing for manual
specification of static target coordinates. Similarly, camera positioning can only be done manu-
ally, somewhat limiting the way a scene can be viewed. In order to improve upon this, a number
of possible extensions could be incorporated. For instance, support for tying the camera position
or target to a moving object could be incorporated, allowing for the camera to follow an object,
or rotate to keep it in view. This may be extended further, by providing the camera with its own
transformation list, thus allowing the camera to be treated as a regular scene object. This same
principle may be extended to allow for camera target position transformation, greatly improving
the flexibility of scene visualisation.

6.3.2 Extensions

Object Grouping

An additional facility to combine a number of meshes, with transformations applied, into a sin-
gle object is a desirable feature which would improve both usability and scene scalability. Pri-
marily, this would allow for reuse of scene components comprised of multiple loaded meshes,

6.3. FUTURE WORK 83

currently unsupported by the application. This could be achieved by extending the Transfor-

mObject class to allow it to contain a sub-scene. This sub-scene is then managed as a single,
closed entity, but drawn as a collection of objects.

Model Animation Support

Support for animated models would significantly extend the teaching scope of the application.
Possible animation related features include:

• A model bone transformation visualisation component which provisions stepping through
the bone transformation tree.

• An animation event system, which initiates specific animations at defined points in a
transformation.

Point Light Source Support

Currently, the application only supports directional light sources, as these alone are provisioned
by the BasicEffect class. Extending the lighting features to include point light would allow
for more interesting scenes, as well as provide a more diverse understanding of lighting. For
instance, user creation of point light sources within a scene may be added, allowing for both
colour and light intensity to be specified.

Particle Visualiser

Particle effects are used often within games, and allow for convincing environmental effects
such as smoke, fire, rain and snow. A particle system would necessitate a method of allowing
the user to specify not only how long a particle should exist, but also how it should look and
behave throughout its life.

Global Lighting

The Transformation Pipeline Visualiser application provides only local lighting capabilities,
which lights each object individually and in isolation within a scene. Global lighting lights

6.4. SUMMARY 84

objects within the context of a scene, allowing for such effects as reflection and drop shad-
ows. Global lighting facilities would improve not only the visual quality of the application, but
increase its scope.

Extended Behaviors

Currently, an object’s behavior is determined by only the transformation nodes which form its
transformation list. While this is satisfactory for our current purposes, adding decisional be-
havior and event triggers to objects would provision exploration of more diverse and interesting
environments. For instance, the application may extended to allow for nodes to act differently
based on the state of other nodes, or to change course when a collision is detected.

6.4 Summary

In this chapter we have reviewed the primary functionality of the system, demonstrating the
flexibility of the application. We then presented a list of improvements and extensions that
would increase both the usability and scope of the application. Essentially, we have shown that
the application has met the goals specified, and demonstrates significant potential for extension.

Bibliography

[1] Albahari, J. “Threading in C# Part 3: Using Threads”, 2007. URL:
http://www.albahari.com/threading/part3.aspx, Last Accessed: September 21st 2008.

[2] Allenstein, B., Yost, A., Wagner, P., and Morrison, J. 2008. “A query simula-

tion system to illustrate database query execution.” In Proceedings of the 39th

SIGCSE Technical Symposium on Computer Science Education (Portland, OR, USA,
March 12 - 15, 2008). SIGCSE ’08. ACM, New York, NY, 493-497. DOI=
http://doi.acm.org/10.1145/1352135.1352301, Last Accessed: 25th of May, 2008

[3] Anonymous, Ambient Lighting (Direct3D 9). Microsoft Developer Network
(MSDN), Microsoft Corporation, 2008. URL: http://msdn.microsoft.com/en-
us/library/bb172256(VS.85).aspx, Last Accessed: 21st October 2008.

[4] Anonymous, Content Pipeline Architecture. Microsoft Developer Network (MSDN), Mi-
crosoft Corporation, 2008. URL: http://msdn.microsoft.com/en-us/library/bb447745.aspx,
Last Accessed: 22nd October 2008.

[5] Anonymous, Diffuse Lighting (Direct3D 9). Microsoft Developer Network
(MSDN), Microsoft Corporation, 2008. URL: http://msdn.microsoft.com/en-
us/library/bb219656(VS.85).aspx, Last Accessed: 21st October 2008.

[6] Anonymous, Emissive Lighting (Direct3D 9). Microsoft Developer Network
(MSDN), Microsoft Corporation, 2008. URL: http://msdn.microsoft.com/en-
us/library/bb173352(VS.85).aspx, Last Accessed: 21st October 2008.

[7] Anonymous, Projection Transform (Direct3D 9). Microsoft Developer Network
(MSDN), Microsoft Corporation, 2008. URL: http://msdn.microsoft.com/en-
us/library/bb147302(VS.85).aspx, Last Accessed 20th of October, 2008.

[8] Anonymous, Specular Lighting (Direct3D 9). Microsoft Developer Network
(MSDN), Microsoft Corporation, 2008. URL: http://msdn.microsoft.com/en-
us/library/bb147399(VS.85).aspx, Last Accessed: 21st October 2008.

85

BIBLIOGRAPHY 86

[9] Anonymous, The Direct3D Transformation Pipeline. Microsoft Developer Net-
work (MSDN), Microsoft Corporation, 2008. URL: http://msdn.microsoft.com/en-
us/library/bb206260(VS.85).aspx, Last Accessed 17th of October, 2008.

[10] Anonymous, View Transform (Direct3D 9). Microsoft Developer Network
(MSDN), Microsoft Corporation, 2008. URL: http://msdn.microsoft.com/en-
us/library/bb206342(VS.85).aspx, Last Accessed 20th of October, 2008.

[11] Anonymous, “WinForms Series 1: Graphics Device Sample”, XNA Creators Club Online,
Microsoft, 2008. URL: http://creators.xna.com/en-us/sample/winforms_series1 , Last Ac-
cessed 19th September 2008.

[12] Anonymous, XNA Game Studio 2.0: Viewports and Frustums. Microsoft Developer
Network (MSDN), Microsoft Corporation, 2008. URL: http://msdn.microsoft.com/en-
us/library/bb975157.aspx, Last Accessed 20th of October, 2008.

[13] Cawood, S., McGee, P., Microsoft XNA Game Studio Creator’s Guide. McGraw-Hill Com-
panies, United States of America, 2007.

[14] Coe, P. S., Williams, L. M., and Ibbett, R. N. 1996. “An interactive environ-

ment for the teaching of computer architecture.” In Proceedings of the 1st Con-

ference on integrating Technology into Computer Science Education (Barcelona,
Spain, June 02 - 06, 1996). ITiCSE ’96. ACM, New York, NY, 33-35. DOI=
http://doi.acm.org/10.1145/237466.237518, Last Accessed: 25th of May, 2008

[15] Conger, D., Physics Modeling for Game Programmers. Thompson Course Technology,
Boston, United States of America, 2004.

[16] Eberly, D., Game Physics. Morgan Kaufmann Publishers, San Fransisco, United States of
America, 2004.

[17] Güida, P., XNA & Beyond: The Path to VS 2008. The Code Project, 2007. URL =
http://www.codeproject.com/KB/game/XNA_And_Beyond.aspx, Last Accessed: 25th of
May, 2008

[18] Gurr, H.S., The AHA In Teaching & Tutoring. Department of Physical Sci-
ences, University of South Carolina at Aiken, Aiken, SC 29801, 2005. URL
= http://www.usca.edu/math/~mathdept/hsg/TeachingTutoring+Pix.html, Last Accessed:
22nd of May, 2008

BIBLIOGRAPHY 87

[19] Hanisch, F. and Straßer, W. 2006. “Making of an interactive teaching gem.”

In ACM SIGGRAPH 2006 Educators Program (Boston, Massachusetts, July
30 - August 03, 2006). SIGGRAPH ’06. ACM, New York, NY, 53. DOI=
http://doi.acm.org/10.1145/1179295.1179349, Last Accessed: 25th of May, 2008

[20] Hargreaves, S., Specularity, Shaun Hargreaves Blog, MSDN Blogs, 2007. URL:
http://blogs.msdn.com/shawnhar/archive/2007/04/12/specularity.aspx, Last Accessed:
21st October 2008.

[21] Hargreaves, S., The Standard Lighting Rig, Shaun Hargreaves Blog, MSDN Blogs,
2007. URL: http://blogs.msdn.com/shawnhar/archive/2007/04/09/the-standard-lighting-
rig.aspx, Last Accessed: 21st October 2008.

[22] Kearsley, G., Operant Conditioning (B.F. Skinner). The Theory Into Practice Database,
2008. URL: http://tip.psychology.org/skinner.html, Last Accessed: 25th of May, 2008

[23] Kremenska, A. 2007. “Measuring student attitudes to computer assisted language

learning.” In Proceedings of the 2007 international Conference on Computer Sys-

tems and Technologies (Bulgaria, June 14 - 15, 2007). B. Rachev, A. Smrikarov,
and D. Dimov, Eds. CompSysTech ’07, vol. 285. ACM, New York, NY, 1-6. DOI=
http://doi.acm.org/10.1145/1330598.1330677, Last Accessed: 25th of May, 2008

[24] Landry, N., Microsoft XNA: Ready for Prime Time? CoDe Magazine, 2007. URL:
http://www.code-magazine.com/article.aspx?quickid=0709041&page=1, Last Accessed:
25th of May, 2008

[25] McNeil, S., A brief history of instructional design. The Instructional Technology Pro-
gram, Department of Curriculum and Instruction, College of Education, University of
Houston, 2008. URL: http://www.coe.uh.edu/courses/cuin6373/idhistory/index.html, Last
Accessed: 25th of May, 2008

[26] Naiman, A. C. 1996. “Interactive teaching modules for computer graph-

ics.” SIGGRAPH Comput. Graph. 30, 3 (Aug. 1996), 33-35. DOI=
http://doi.acm.org/10.1145/232301.232330, Last Accessed: 25th of May, 2008

[27] Nicholas, L., Introduction to Psychology. UCT Press, Landsdowne, South Africa, 2003.

[28] Rodger, S. H. 1995. “An interactive lecture approach to teaching com-

puter science.” SIGCSE Bull. 27, 1 (Mar. 1995), 278-282. DOI=
http://doi.acm.org/10.1145/199691.199820, Last Accessed: 25th of May, 2008

BIBLIOGRAPHY 88

[29] Schneider, D.K., Computer-based training. EduTech Wiki, 2006. URL:
http://edutechwiki.unige.ch/en/Computer-based_training, Last Accessed: 25th of
May, 2008

[30] Schneider, D.K., Programmed Instruction. EduTech Wiki, 2007. URL:
http://edutechwiki.unige.ch/en/Programmed_instruction, Last Accessed: 25th of May,
2008

[31] Snyder, K. 2002. “The use of interactive learning modules for the teaching of un-

dergraduate curriculum.” J. Comput. Small Coll. 17, 3 (Feb. 2002), 203-208., URL:
http://portal.acm.org/citation.cfm?id=772669&coll=ACM&dl=ACM&CFID=12487090&CFTOKEN=10160051#,
Last Accessed: 25th of May, 2008

[32] Stahler, W., Clingman, D., Kahrizi, K., Beginning Math and Physics for Game Program-

mers. New Riders, 2004.

[33] Stern, L. and Sterling, L. 1996. “Teaching AI algorithms using animations reinforced by

interactive exercises.” In Proceedings of the 2nd Australasian Conference on Computer

Science Education (The Univ. of Melbourne, Australia). ACSE ’97, vol. 2. ACM, New
York, NY, 78-83. DOI= http://doi.acm.org/10.1145/299359.299372, Last Accessed: 25th
of May, 2008

[34] Subramanian, K. R. and Cassen, T. 2008. “A cross-domain visual learning engine for

interactive generation of instructional materials.” SIGCSE Bull. 40, 1 (Feb. 2008), 488-
492. DOI= http://doi.acm.org/10.1145/1352322.1352300, Last Accessed: 25th of May,
2008

[35] Syrjakow, M., Berdux, J., and Szczerbicka, H. 2000. “Interactive Web-based anima-

tions for teaching and learning.” In Proceedings of the 32nd Conference on Winter

Simulation (Orlando, Florida, December 10 - 13, 2000). Winter Simulation Confer-
ence. Society for Computer Simulation International, San Diego, CA, 1651-1659. URL:
http://portal.acm.org/citation.cfm?id=510620&coll=ACM&dl=ACM&CFID=12487090&CFTOKEN=10160051,
Last Accessed: 25th of May, 2008

[36] Tran, Q. 2006. Interactive computer algebra software for teach-

ing and helping students to study foundations of computer sci-

ence. J. Comput. Small Coll. 22, 1 (Oct. 2006), 131-143. URL:
http://portal.acm.org/citation.cfm?id=1181831&coll=ACM&dl=ACM&CFID=12487090&CFTOKEN=10160051,
Last Accessed: 25th of May, 2008

BIBLIOGRAPHY 89

[37] Tremblay, C., Mathematics for Game Developers. Thompson Course Technology, Boston,
United States of America, 2004.

[38] Van Verth, J.M., Bishop, L.M., Essential Mathematics for Games and Interactive Appli-

cations. Morgan Kaufmann, 2008.

[39] Void, S., Quaternion Powers. GameDev.Net, 2003. URL:
http://www.gamedev.net/reference/articles/article1095.asp, Last Accessed: October
27th, 2008.

[40] Witters, K., “XNA Game Loop Basics”, 27 July 2007. http://www.nuclex.org/articles/xna-
game-loop-basics

[41] ”XNA Framework GameEngine Development Part 15: Adding WinForm Support”,
blog, 29th February 2008. http://roecode.wordpress.com/2008/02/29/xna-framework-
gameengine-development-part-15-adding-winform-support-step-1-to-world-builder/

