
An Investigation into the Provision of Video

Capabilities in iLanga

Submitted in partial fulfilment

of the requirements of the degree

Bachelor of Science (Honours)

in Computer Science

at Rhodes University

Fred Otten

Supervisors:

Prof Alfredo Terzoli

Prof Peter Clayton

Abstract

iLanga is a complete, cost effective, computer based voice private branch exchange (PBX). It is

capable of connecting different endpoints using differentprotocols and delivering high quality

voice with value-added services. It is not, however, capable of video transport. The channel

based architecture of Asterisk, the core of iLanga, should,in principle, allow the transport of

video with relative ease. This paper introduces the relevant protocols used in real time multi-

media, provides background on Asterisk, iLanga and their relationship and explores the channel

architecture, shedding light on the channel API and the source code of the Session Initiation Pro-

tocol (SIP) channel. It also shows how video capabilities are made available in iLanga, detailing

the configuration of SIP video within Asterisk. It also takesa look at possible H.323 implemen-

tations and discusses their lack of video support. The iLanga user interface and the extensions

made for call parking and call transfer are also discussed. Through this paper we highlight the

provisions made for video calls in iLanga with associated services such as call transfer, call

parking and music on hold.

Acknowledgements

I would firstly like to thanks my supervisors, Prof Alfredo Terzoli and Prof Peter Clayton for their

constant support and patience through out the whole year. Thanks for proof reading my work,

providing me with advice and steering me in the right direction from the beginning to the end.

I would like to thank Jason Penton and Bradley Clayton for their advice and patience. Thanks

for taking the time to help me with installation problems. Thanks to Dr Hannah Slay for proof

reading my paper and assisting me in correcting my writeup. Iwould like to thank my friend

and classmate Justin Zondagh for his assistance and ideas through out the year, especially while

we were learning Asterisk, and delving into the code. LastlyI would like to thank the whole

Honours class for their support and encouragement in the labs through out the year. Without all

the help from these people, this project would not nearly have been what it is.

I must also acknowledge the financial and technical support of this project from Telkom

SA, Business Connexion, Comverse SA and Verso Technologiesthrough the Telkom Centre of

Excellence at Rhodes University.

Contents

1 Introduction 8

1.1 Motivation .9

1.2 The Problem . 10

1.3 Approach . 10

1.4 My Project aims .10

1.5 Writeup Structure .. . 11

2 Relevant Standards 12

2.1 Protocol stack .. 12

2.2 Signalling Protocols 13

2.2.1 SIP . 13

2.2.2 H.323 . 17

2.3 Media Protocols .. 21

2.3.1 RTP . 21

2.4 Summary . 23

3 Asterisk and iLanga 24

3.1 Asterisk . 24

3.1.1 Architecture of Asterisk .. . 25

3.1.2 Configuring Asterisk .26

3.1.3 Facilities Provided .. 26

3.1.4 Extending Asterisk .27

3.2 iLanga . 28

3.2.1 Architecture . 28

3.2.2 User interface . 30

3.2.3 iLanga, Asterisk and Video .. . 31

1

CONTENTS 2

3.3 Summary . 31

4 Channels in Asterisk and their Implementation 33

4.1 Channel Concept .33

4.2 A call in Asterisk .. 34

4.3 The dial application 34

4.3.1 What is the dial application 34

4.3.2 Calling the dial application 35

4.3.3 Extensions and the dial application 36

4.3.4 How the dial application operates 36

4.3.5 Importance of understanding the dial application 37

4.4 The channel structure 39

4.5 The channel API . 40

4.6 Frames in Asterisk .. 46

4.7 How to design a channel in Asterisk 47

4.7.1 Modules in Asterisk . 48

4.7.2 Adding commands to the CLI . 48

4.7.3 Outputting to the logs .49

4.7.4 The example channel . 49

4.8 Summary . 50

5 The SIP and H.323 Channels 51

5.1 The SIP Channel . 51

5.1.1 The SIP channel driver .51

5.1.2 Channel registration .. 52

5.1.3 Devicestate . 52

5.1.4 The SIP Private Structure .. . 52

5.1.5 Media Handling . 53

5.1.6 Signalling . 54

5.2 SIP Video . 55

5.2.1 Testing Environment .55

5.2.2 Configuration . 56

5.2.3 Results . 57

5.3 H323 Channel Implementations 58

5.3.1 The OH323 channel . 58

CONTENTS 3

5.3.2 The H323 channel . 59

5.3.3 The OOH323 channel . 59

5.3.4 Channel Woomera . 59

5.4 No H323 Video . 60

5.5 Inheritance of features 61

5.6 Summary . 62

6 iLanga User Interface and Extensions 63

6.1 Architecture .. 63

6.1.1 Asterisk Manager Interface 64

6.1.2 Python script . 64

6.1.3 Extensibility . 65

6.2 Extensions .65

6.2.1 Call Transfer . 65

6.2.2 Call Parking . 67

6.3 Summary . 71

7 Conclusion 72

7.1 Document Summary . 72

7.2 Video in iLanga .73

7.3 Inheritance of features 73

7.4 Summary of Findings .. 73

7.5 My project achievements 74

7.6 Further Extensions .. . 74

7.6.1 Video mail and Video on Hold .75

7.6.2 Legacy video channel .75

7.6.3 Video MeetMe application .. 75

7.6.4 H323 video within a H323 channel 75

7.6.5 H264 codec for cell phone technology 75

7.6.6 Streaming . 76

7.7 Final words . 76

References 77

A More Channel API Functions 80

CONTENTS 4

B Example Channel 84

B.1 chan_eg.c . 84

C iLanga User Interface Extensions 86

C.1 directory.fla .. 86

C.1.1 Action script extracts .. . 86

C.1.2 Graphics and movie clips .. 87

C.2 nav.fla . 88

C.2.1 Action script extracts .. . 88

C.2.2 Graphics and movie clips .. 91

C.3 ilangaproxy.py .. . 92

List of Figures

2.1 Protocol Stack [29] .. . 12

2.2 SIP Message Structure [29] 14

2.3 SIP Architecture [5] 15

2.4 Establishing a SIP Connection 16

2.5 H.323 network [12] .. 18

2.6 Protocol relationships in H.323 [12] 19

2.7 The phases of an H.323 call [12] 20

2.8 RTP packet [12] .22

3.1 Asterisk Architecture [33] 25

3.2 iLanga system architecture 29

3.3 iLanga implementation [21] 30

3.4 iLanga graphical frontend [8] 31

4.1 Use of channels between disparate protocols 34

4.2 Dial Application Flow Chart 37

4.3 Parts of the dial application 38

4.4 ast_channel structure 39

4.5 ast_channel_pvt structure 40

4.6 Asterisk frames .. 46

4.7 ast_frame structure 46

5.1 Test setup for SIP video .. . 55

5.2 Setup of windows messenger 5.0 57

5.3 SIP video in operation .. . 58

5.4 gnomemeeting speaking with netmeeting 60

5

LIST OF FIGURES 6

6.1 Architecture of the web interface 63

6.2 Initiating a call transfer 66

6.3 Confirmation of call transfer 68

6.4 The call transfer tab in the updated iLanga interface 68

6.5 Parking a call in the updated iLanga interface 69

6.6 Indication of having parked a call 70

6.7 The call parking tab in the updated iLanga interface 71

C.1 Call Parking dialog box 87

C.2 Call Parking tab in the directory 87

C.3 Call Transfer dialog box 88

C.4 Call Transfer tab in the directory 88

C.5 Status button when a call is parked 92

List of Tables

2.1 SIP Messages [22, 25, 28, 29] 15

2.2 Descriptions of fields in Figure 2.8 22

3.1 Configuration files in Asterisk 26

4.1 Example arguments for the dial application 35

4.3 Frame Types in Asterisk .. . 47

7

Chapter 1

Introduction

Internet telephony is a great technology which makes long distance calls possible at the price

of a dedicated line or local call (or whatever the fee is for connecting to the internet for the call

duration). The integration of data and voice services has been a significant focus in the telecom-

munications industry. These new networks are called next generation networks and generally

operate over IP. Research into sending IP over all sorts of technologies such as ATM, frame re-

lay, and fibre has been significant in the past decade. It is projected that sending voice over IP

will save businesses millions, and it is evident that it is changing the way most telecommunica-

tions companies world-wide are operating and marketing their services.

There is a significant interest in Voice over IP (VoIP) and next generation networks in both

research and industry. Video over IP receives less attention, however is an emerging field. In

the past we have seen the use of video telephony for conferences, and recently we have seen the

advent of streaming services over broadband internet, third generation (3G) cell phone networks,

and intranet local area network (LAN) environments. Video telephony over IP has also been

emerging, using the same protocols as VoIP.

Biologists have noted that human beings are more prone to visual cognition, and rely most

predominantly on their sight other and above their over sense. Video telephony offers a visual al-

ternative to the current auditory telephony for businessesand home users. Most of the protocols

that have been developed for real-time multimedia focus on the use of IP for generic real time

transmission, which makes video a possibility using the current frameworks. The only question

is whether the larger packets are able to be transferred end to end in an acceptable time. This

requires an acceptable amount of bandwidth and a low latency. Henning Schulzrinne, one of the

8

CHAPTER 1. INTRODUCTION 9

fathers, and significant contributors to the development ofreal-time transmission over IP net-

works says that it “offers the opportunity to design a globalmultimedia communication system

that may eventually replace the existing telephony infrastructure, without being encumbered by

the legacy of a century-old technology” [28]. This makes it an exciting field to investigate. The

high speed LAN environment provides sufficient bandwidth for video telephony, which makes

this investigation viable, as this is the environment in which our PBX runs.

This investigation assumes that the iLanga PBX is in place and aims to find out whether

the voice functionality provided can be easily extended to video. The remainder of this chapter

defines the research problem, outlining the motivation and approach taken. It also gives a layout

of the thesis being presented.

1.1 Motivation

Next generation networks are having a profound impact on thetelecommunications industry.

These next generation networks need to be capable of high quality voice and video transmission

with relevant value-added services. VoIP and Video over IP are vital components of next genera-

tion networks. There is a commercial and a practical drive from the industry, which makes these

topics very applicable for research.

Next generation PBXs are emerging with facilities for voiceand video analogous with the

concept of next generation networks. These PBXs are bundledwith services such as conferenc-

ing, call forwarding and call parking for users of voice and video.

iLanga is a full featured PBX developed at Rhodes University. It currently only provides high

quality voice over multiple protocols with services such asvoicemail, call forwarding and call

parking. In order for iLanga to be a true next generation PBX,it needs to also provide facilities

for video. The visual nature of cognition, described earlier, is also a major motivation for this

work. Video features along with call parking, call transferand the audio features provided by

iLanga would thus be a useful extension for is users.

CHAPTER 1. INTRODUCTION 10

1.2 The Problem

The channel-based architecture of Asterisk, which is the main component of iLanga, offers the

potential for this extension. Channel modules may use the services provided in Asterisk. These

include conferencing, call transfer and call parking. If a new channel module is created and

registered with Asterisk, it also inherits the services available in Asterisk. This has been shown

to be effective for voice channels, however the extent of this inheritance for video and even the

support for video in Asterisk remains unanswered.

The basic problem addressed in this thesis in the investigation of the possibility of including

video into the iLanga framework, and determining if the existing features available for voice can

be extended and applied to video.

1.3 Approach

The approach taken in this project was largely an incremental one. The initial stages involved

reading literature on the various protocols and installingand configuring Asterisk. After that,

we began looking into the source code of Asterisk, for which no documentation was available,

and developed an understanding of the channel implementation, and the structures involved.

It was initially thought that a channel would need to be implemented in Asterisk to provide

the possibility of video conferencing, but further investigation revealed that video support was

already present in Asterisk for some channels. We produced results for the channels that do

support video, and investigated the channels such as H.323 that don’t support video. We lastly

checked the availability of the features present for voice channels within video channels. For

this, it was necessary to implement a facility in the iLanga user interface for call parking and call

transfer.

1.4 My Project aims

My project aims include:

• Produce a document which explains channels, and the channelAPI available.

• Implement an example channel in Asterisk from the knowledgegained.

• Check for the availability of video through testing in Asterisk.

CHAPTER 1. INTRODUCTION 11

• Explain how video is provided in Asterisk.

• Investigate the inheritance of the features available for voice channels to video channels

and report the results.

• Extend the iLanga user interface to provide support for transferring and parking calls.

1.5 Writeup Structure

This thesis begins in Chapter 2: Relevant Standards, by taking a look at the relevant standards

applicable to the areas of VoIP and Video over IP. It then moves on and in Chapter 3: Asterisk

and iLanga, takes a look at Asterisk and iLanga, discussing the individual systems, their archi-

tectures and the relationships between them. Chapter 3 alsoexpands on the problem statement

and the relevance of channels. This sets the scene for Chapter 4: Channels in Asterisk and their

Implementations, which takes a closer look at channels and the channel API detailing the exam-

ple channel we have created. Chapter 5: The SIP and H.323 video channels, then expands on the

SIP channel driver provided with Asterisk and presents SIP video, detailing its configuration and

showing results. It explains the lack of H.323 video in the four H.323 channels presented, and

explains why. It finally concludes with a summary of the features that the video channels inherit

from voice channels. Chapter 6: iLanga User Interface and Extensions, explains the architecture

of the iLanga User Interface that has been developed, and details the extensions made to add call

transfer and call parking to this interface. This thesis concludes in Chapter 7: Conclusion, which

summarises this thesis and provides details on future work which could be done in this area.

Appendixes are also attached containing extracts from the source code, and a few explanations.

Chapter 2

Relevant Standards

This chapter provides an analysis of the different signalling and media protocols applicable to

this project. We will begin by taking a look at their positions within in a protocol stack, and then

provide more detail on the signalling and media protocols that are applicable to this project. We

will expand on the SIP and H.323 signalling protocols and theRTP media protocol.

2.1 Protocol stack

Figure 2.1: Protocol Stack [29]

12

CHAPTER 2. RELEVANT STANDARDS 13

There are many different protocols which may be used for VoIPor Video over IP. Figure 2.1

illustrates the relationships between the various protocols and where they fit into the Open Sys-

tem Interconnection (OSI) protocol stack. The focus of thisresearch is only from the transport

layer up, running over IP. Figure 2.1 illustrates this focusby enclosing the region of interest in a

rectangle. The protocols of interest can be broken down intotwo categories: Signalling Proto-

cols and Media Protocols. SIP and H.323 are examples of signalling protocols, and RTP is the

protocol used to encapsulate the media frames for these protocols. It is important to have a good

understanding of these protocols when taking a look at theirchannel drivers and understanding

its operation. We will take a brief look at the SIP, H.323 and RTP protocols.

2.2 Signalling Protocols

This section describes two of the standards established forsignalling in real time multimedia

sessions. We take a brief look at the SIP and H.323 protocols,providing a bit of history, some

important details about their architectures and dealing with how a basic session is set up using

these protocols.

2.2.1 SIP

SIP [23], as its name suggests, is a client-server protocol designed to establish, modify and ter-

minate sessions. It was designed by the Multiparty Multimedia Session Control (MMUSIC)

working group, who have designed a family of protocols for the setup and teardown of realtime

multimedia session over the internet. [12]. After many revisions, it was finally approved by the

IETF as a proposed standard in 1999 [7]. It has since been updated to take into account pressing

needs such as security [1], locating SIP servers [24] and compression [4].

The remainder of this section describes 6 key features of SIP: protocol description, message

structure, architecture, operation, the attraction and the applicable concepts to the project.

SIP is a text based protocol, similar in both syntax and semantics to the HTTP (Hypertext

transfer protocol) and SMTP (Simple mail transfer protocol) protocols [22]. It makes minimal

assumptions about the underlying transport protocol, but usually runs on top of UDP. Both re-

quests and responses are textual [28]. This makes it easy to use text processing languages such

as Perl, and textual interfaces such as CGI for developing services [22]. New tags such as lan-

guage could be easily added to the header and be identified intuitively by programmers [28].

CHAPTER 2. RELEVANT STANDARDS 14

This makes SIP easily expandable.

The SIP protocol is a clean request-response model which makes simple programming pos-

sible. Jonathan Rossenberg [22] chooses SIP as the preferred platform for programming Internet

telephony services.

Figure 2.2: SIP Message Structure [29]

Figure 2.2 illustrates the structure of a SIP Message for both requests and responses. The

message body contains data of the type specified in the Content-Type field. Another protocol,

Session Description Protocol (SDP), is used to send information about the session. In figure 2.2

the message body contains SDP information. The value for theContent-Type field would be

application/sdp in this case. This is a common value for this field, as SDP information is

often sent with a SIP packet.

CHAPTER 2. RELEVANT STANDARDS 15

Message Function

INVITE Request to establish a session

BYE Terminate a session between two end points

OPTIONS Deal with information related to capabilities of an end point

STATUS Informs another server about progress of signalling actions requested

ACK Used for reliable message exchange

PRACK Provisional acknowledgement

REGISTER Convey information to server about end point

CANCEL Terminate search for an end point

INFO Mid call information

SUBSCRIBE Subscribe to an event

NOTIFY Notify subscribers about an event

REFER Request the recipient to issue a SIP request

Table 2.1: SIP Messages [22, 25, 28, 29]

Table 2.1 summarises the SIP requests that may be sent. Responses are issued to these re-

quests in a similar manner to that of an HTTP request using codes 1xx-6xx.

Figure 2.3: SIP Architecture [5]

CHAPTER 2. RELEVANT STANDARDS 16

Figure 2.3 shows a graphical representation of the SIP architecture, as shown in this figure, a

SIP network contains two main architectural elements, the user agent (UA) (basically the phone

you have on your desk or the soft-phone running on your PC) andthe network server (examples

would be Asterisk or SER). UA end stations may be further divided into two types, the User

Agent Client (UAC) (client who is being sent the request) andthe User Agent Server (UAS)

(server who is sending the request). There are also three different types of network servers: redi-

rect, proxy and registrar servers. It must be emphasised, however, that a basic call does not need

servers, but more powerful features rely on them. We could just have two endpoints, a UAC and

a UAS. [6]. Redirect servers process an INVITE message by sending back the SIP-URL where

the callee is reachable. Proxy servers perform applicationlayer routing of the SIP requests and

responses. They can either be stateless (deals on a message to message basis forgetting about

the call until another message arrives) or stateful (holds info about the call for entire duration),

forking (ring several phones at once till someone takes the call) or non-forking. Registrar servers

are used to record the SIP address (called a SIP URL) and the associated IP address. Note that a

SIP network server implements a combination of different types of servers [6]. It must be noted

that SIP requests can traverse many proxy servers each of which receives a request and forwards

it towards a next hop server, which may be another proxy server or the final user agent server

(which responds to the requests) [28]. Further expansion ofthese concepts and architecture is

beyond the scope of this project. For more information referto [7, 29, 28, 25, 6, 5].

The SIP address used to identify clients is an email like identifier of the form “user@domain”

(or “phonenumber@gateway” for external phones) eg.fred@sip.phone.ac.za . This is

great because we can put it on a web page and create a linksip:fred@sip.phone.ac.za ,

similar to themailto: URL used today [3, 25].

Figure 2.4: Establishing a SIP Connection

So let us look at an example of setting up a session for voice orvideo over IP. Each of the

end points have a SIP address. Figure 2.4 illustrates the process of setting up a session and the

messages which are sent. The SIP addresses are translated from domain to an IP address using

CHAPTER 2. RELEVANT STANDARDS 17

DNS Service records, Canonical Name (CNAME) and finally address records. The media stream

will most likely be transported by RTP point-to-point, as inthis example, however any session

may be set up using SIP.

SIP has attracted a lot of attention because of its simplicity and ability to support rapid intro-

duction of new services. All this means that inexpensive terminals based on SIP protocol may

be developed [12]. HTTP header fields similarity leads to easy integration with web services

[28], and it also provides rich support for personal mobility services [28], making it applicable

in this day and age. It must be emphasised that it is not just limited to internet telephony (though

it is its main application) and can be used to initiate and manage any type of session including

video, interactive games and text chat [34]. SIP is a very attractive support tool for IP telephony

because it can operate as stateless or stateful. Once a call is in progress the servers do not have

to maintain information about the call state [3].

It is important to understand the various types of SIP messages, their uses and in what situ-

ations they are applicable. It is also important to understand how sessions are established, and

where the media information is stored. This information is important when analysing how the

SIP channel operates within Asterisk. The architecture of aSIP network is also important to gain

perspective on where, how and why the components of iLanga fittogether to accommodate SIP

users and provide them with services.

2.2.2 H.323

H.323 is the International Telecommunications Union (ITU)specified standard for real time ses-

sions. H.323 is essentially an umbrella for a number of standards and protocols for setting up,

controlling and performing realtime multimedia sessions.The remainder of this section will look

at 6 aspects of the H.323 protocol: Its history, the architecture of a H.323 network, the proto-

cols it specifies, the call process, the services provided and the applicable concepts to this project.

In 1996 the ITU decided on H.323 v1, referred to as a standard for real time videoconferenc-

ing over non-guaranteed Quality of Service (QoS) LAN. Interworking with the Public Switched

Telephone Network (PSTN) was the focus from the very beginning. This H.323 standard as-

sumed that a gateway handled signalling conversion, call control, and media transcoding in one

box. This poses serious scalability problems [12]. It has since been developed and adapted and

is currently sitting at version 4 [15]. It is a very complicated protocol, essentially an umbrella for

CHAPTER 2. RELEVANT STANDARDS 18

many sub protocols referring to real time communication over packet switched networks [30].

H.323 embraces the more traditional circuit switched approach to signalling. It started out as

a protocol for multimedia communication on a LAN segment without QoS guarantees but has

evolved to try and fit the more complex needs of Internet telephony.

The architecture of an H.323 consists of the following 3 possible components, with perhaps

more than one present on a single node: The terminal end (TE),the gateway (GW) and the gate-

keeper (GK). The TE is the endpoint from which you are placingor receiving the call, the GK

provides address translation and controls access (admission control, bandwidth control, and zone

management) to the network. It also provides other services(such as call control signalling, call

authorization, bandwidth management and call management), but is an optional component. The

Multipoint Control Unit (MCU) provides conferencing facilities and handles the mixing of audio

or video for these conferences.

A typical H.323 network is composed of a number of zones connected by a Wide Area Net-

work (WAN) each zone consists of a GK, a number of TEs, a numberof GWs and a number

of MCUs interconnected by a LAN. Each zone must contain exactly one GK which acts as an

administrator of the zone [12], this may be seen in Figure 2.5. It must be emphasised that a

Figure 2.5: H.323 network [12]

gatekeeper is not explicitly necessary to make a call, a terminal end may set up a call directly,

but a gatekeeper is necessary for added functionality and scalability [12].

H.323 is the umbrella for many protocols. The 4 major protocols we are concerned with are:

RAS, Q.931 (both specified in H.225.0 [6]), H.245 and RTP. Letus take a look at what these four

protocols are used for.

1. RAS (Registration Admission and Status) is a transactionorientated protocol between end-

CHAPTER 2. RELEVANT STANDARDS 19

points and the GK. It is used to discover, register and unregister with the GK. It can also

be used for requesting call allocation, bandwidth allocation, and clearing a call. The GK

uses it for inquiring the status of end points.

2. Q.931 is a signalling protocol for call setup and teardownbetween two H.323 TEs. It is a

variant of one defined for the Public Services Telephone Network (PSTN). H.323 adopted

it so interworking with PSTN/ISDN would be simplified.

3. H.245 is used for connection control, negotiating media processing capabilities such as

audio or video codecs. It is also used to exchange terminal capabilities and opening and

closing logical channels. RTP used as transport protocol [12].

4. RTP is used for the transport of media. This is detailed in section 2.3.1.

Figure 2.6 illustrates the protocol relationships in H.323.

Figure 2.6: Protocol relationships in H.323 [12]

Let us take a look at the basic call process. Lui, et al. [12] illustrates the call well with this

diagram seen below in Figure 2.7.

This is when we have a GK involved in the call, when this isn’t the case phase 1 and 7 are

omitted [12]. Between five and seven phases is quite a lot of phases for setting up and closing a

session, especially considering that connections are mostly TCP based [30]. H.323 thus adapted,

and fast connect was developed which reduces the phases by combining the Q.931 and H.245

phases [12]. In H.323 v3, TCP and UDP may be used [6] for establishing connections.

CHAPTER 2. RELEVANT STANDARDS 20

Figure 2.7: The phases of an H.323 call [12]

H.323 has adapted a lot as a protocol, which is part of the reason it is quite complex. It

uses several protocol components, which have no clean separation. The major bonus is that full

backwards compatibility has been maintained [12].

Services such as call transfer, call diversion, call forwarding, call hold, call park and pickup,

message waiting indication and call waiting may use the H.450 protocol included under the

umbrella of the H.323 specification. The H.450 protocol was implemented in version 2 to add

services, and now (at version 4) it provides a lot more than the 3 services it did in version 2.

Non H.450 based services are also a possibility. They are implemented in the GK, which makes

the development of proprietary services a possibility. Most services require interactions between

several of the protocols. For example, call forward requires components of H.450, H.225 and

H.245 to be implemented [12]. We can use a gateway to provide the connection path between

the packet switched network (Internet telephony) and the switched circuit network (the PSTN)

[6]. All these services mean that H.323 is a viable option forsetting up sessions for audio and

video telephony.

It is important to understand what the functions of each of the protocols under the H.323

umbrella are and how they fit together to facilitate communication. It is also important to get an

idea of what services are already available under the standard so they can be put to use. In our

CHAPTER 2. RELEVANT STANDARDS 21

analysis of the H.323 channels in Asterisk we need to have an idea of the standard so that we can

take a critical look at what is being provided by each channeland determine which is the best

channel and where it needs to be extended.

2.3 Media Protocols

This section describes the RTP protocol which is often used for the transport of real time multi-

media in both the SIP and H.323 standards.

2.3.1 RTP

RTP is a protocol designed for the transport of Real Time Multimedia when there are tight con-

straints on the QoS [14]. This makes it ideal for the transport of video and voice over the internet,

where QoS is often quite poor. Its default behaviour is to operate on port 5004, but it may use a

port which has been registered for the particular application that is making use of the protocol. In

the remainder of this section we will take a look at 3 aspects of RTP: the protocols components,

multicast distribution and the applicable concepts to thisproject.

The RTP protocol essentially consists of two parts, RTP itself, which is a real-time end to end

protocol, and RTCP which is a protocol used to monitor the QoSand convey information about

the participants in an ongoing session (loose session control [28]). RTCP facilitates modifica-

tions which can be made according to the feedback provided, thus improving total performance

[14]. This is particularly useful in the conference environment.

The services offered by RTP include payload type identification, sequence numbering, times-

tamping and delivery monitoring, which means it is useful for providing transport of data with

an inherent notion of time. It will typically run on top of UDP. RTP does not grantee QoS, only

improves the possibility of QoS. Reservation of resources is necessary for guaranteed QoS. QoS

may be established through the use of another third party protocol such as RSVP [14] for reser-

vation in tandem with RTP for transport and RTCP for monitoring.

RTP also supports data transfer to multiple destinations using multicast distribution, which

also makes it a good choice for telephony, as conference facilities are undoubtedly an important

service. RTP has been developed with flexibility and scalability in mind [14]. It facilitates QoS

CHAPTER 2. RELEVANT STANDARDS 22

by using timestamping. Packets received after the time required can thus be identified an dis-

carded. The use of sequence numbers allow receiver to reconstruct the packet in the right order.

RTP may also provide encryption, but keys need to be exchanged using some other protocol such

as SDP. Other functionality include mixers (take media fromseveral users and combine it into

one media stream and send that out) and translators (take a single stream and send it out in a

different format). [28].

When a host wishes to send a media packet, it takes the media, formats it for packetisation,

adds any media specific headers, then prepends the RTP headerand places it in a lower layer,

such as UDP to be sent [28]. Below in Figure 2.8, is the format of the RTP packet. Table 2.2

provides a textual description of the fields represented in Figure 2.8.

Figure 2.8: RTP packet [12]

Field Description

V Protocol Version

X signals presence of a header extension

P if set the payload is padded to ensure proper alignment for encryption

M marker (specific to application typically set to denote boundaries in the data stream [3])

Table 2.2: Descriptions of fields in Figure 2.8

The SSRC identifier is randomly generated and uniquely identifies the source (hence the

name synchronisation source identifier) within a multicastgroup. In the case that two have cho-

sen the same SSRC, they both choose a new one. The CSRC lists all the contributing sources’

CHAPTER 2. RELEVANT STANDARDS 23

SSRCs, the number is indicated by the CSRC count in the header, so for an audio conference it

will list all the speakers [28]. The payload type identifies the media encoding using an identifier

from IANA [10]. The sequence numbers increment. For more information see RFC1889 [26]

and RFC1890 [27].

Each RTCP packet contains a number of elements usually a sender report (SR), which de-

scribes the data sent so far, as well as correlating RTP timestamp, a receiver report (IR), which

has one block per source, describing loss and jitter, and source destination (SDES), which pro-

vides a simple form of session control and can contain contact information, and allow other forms

of communication[28].

The requirements for a protocol which transmits in real time(particularly one which is going

to be used for internet telephony) are: sequencing, intra-media synchronisation, inter-media syn-

chronisation, payload identification, and frame indication [28]. We can see that this is thoroughly

satisfied by RTP. It must be emphasised that though it was primarily designed to satisfy the needs

of multi participant multimedia conferences, it is not limited to this application. The storage of

continuous data, interactive distributed simulation, andcontrol and measurement applications

may find RTP applicable. RTP works really well, and with premium service, it provides almost

no delay and jitter for its packets, which makes it ideal for real-time voice and video [28]. Both

SIP and H.323 make use of the RTP to exchange data [30].

RTP is used for media transmission for both the H.323 and SIP channels within iLanga. We

need to know how the media is being packaged and transported in order to investigate how the

channels are handling the media which is being passed through them.

2.4 Summary

This chapter has introduced session based and media based protocols used in real time multime-

dia. In particular it has described SIP and H.323, two session based protocols, and RTP, a media

based protocol. This chapter has described each protocol, and shown their applicability to this

project.

Chapter 3

Asterisk and iLanga

Asterisk and iLanga are the main topics of discussion withinthis project. This chapter expands on

both of these frameworks giving a brief discussion on what they are and what they do, detailing

their architectures and zooming in on specifics relevant to this project. We also explain how

Asterisk fits into iLanga, and why channels are an important focus point of this research.

3.1 Asterisk

Asterisk is a powerful and adaptable suite of integrated telecommunications software which may

be implemented to suit a variety of needs. The name comes fromthe Asterisk symbol *, which in

many prominent operating systems, such as unix, dos, windows and linux, represents a wildcard.

Wildcards are used to match any filename. This is a powerful image analogous to the design

philosophy of Asterisk, “Asterisk is designed to interfaceany piece of telephony hardware or

software with any telephony application seamlessly and consistently” [33], and its goal is in fact

to support every possible telephony technology [20].

Asterisk is Open Source, which means that developers can adapt it to suit particular appli-

cations and add modules based on their needs. Current implementations run under the Linux

operating system, however various windows versions are available. AsteriskWin32 is an exam-

ple. It is the linux version compiled for windows using cygwin, with a graphical interface.

The remainder of this section details the architecture of Asterisk, explains its configuration,

expands on the facilities provided and details a few ways it can be extended.

24

CHAPTER 3. ASTERISK AND ILANGA 25

3.1.1 Architecture of Asterisk

Architecturally, Asterisk is fundamentally simple, but rather different from most telephony prod-

ucts [20]. It essentially acts as a middleware, connecting heterogeneous telephony technologies.

It is designed in such a manner so that it is transparent; two phones using completely different

voice codecs, and completely different protocols on different platforms speaking to each other

seamlessly and accurately as if they were identical. Figure3.1 illustrates the architecture of

Asterisk.

Figure 3.1: Asterisk Architecture [33]

When Asterisk is loaded, the Dynamic Module Loader loads each of the drivers which pro-

vide channel drivers file formats, codecs, applications, etc. and links them with the appropriate

APIs. The Switching Core then accepts calls from the interfaces and handles them according to

the dial plan which is located in a configuration file. The Application Launcher then provides

options such as voicemail, dialing outbound trunks, etc. There is also a Scheduler and I/O Man-

ager that may be used by the drivers and applications. The addition of codec translators means

that channels with different codecs can speak to each other seamlessly [33]. We can see the in-

teraction of these various different components provides lots of flexibility and makes it possible

to implement any particular type of telephony, which is the aim of Asterisk.

Seamless connection is made possible by using four different APIs in which modules are created.

They are:

CHAPTER 3. ASTERISK AND ILANGA 26

1. Channel API for channels such as SIP and H.323 channels

2. Application API for applications such as the Meetme application (for conferencing), and

the Dial application (for dialing other end points)

3. Asterisk File Format API for supporting different file formats such as MP3 and GSM for

playback and recording.

4. Asterisk Codec Translator API for providing seamless connection between different codecs

This project is focused on the Channel API (which is expandedin Section 4), however the others

are mentioned above for completeness and concept.

3.1.2 Configuring Asterisk

Configuration File Role

sip.conf SIP channel and end point configurations

extensions.conf Configure the dial plan

iax.conf IAX channel and end point configurations

h323.conf H323 channel and end point configurations

oh323.conf Open H323 channel and endpoint configurations

modules.conf Asterisk modules configuration

manager.conf Manager configuration

features.conf Set up call parking

meetme.conf Set up conference rooms for the MeetMe application

Table 3.1: Configuration files in Asterisk

Asterisk is rather easy to customise using the various configuration files located in/etc/asterisk .

Table 3.1 shows a summary of some of the configuration files which have been relevant to this

project. More specific details on configuring Asterisk may befound in [33, 19].

3.1.3 Facilities Provided

Asterisk has a great wealth of applications in industry as well as the home. Some of its uses

include: VoIP gateway, PBX, custom interactive voice response (IVR) server, softswitch, confer-

encing server, number translator, calling card application, predictive dialer, call queuing system

CHAPTER 3. ASTERISK AND ILANGA 27

with remote agents, and remote offices for an existing PBX [33]. It also supports features such as:

voicemail, call forwarding, conferencing, call parking and provides a call detail records (CDR)

database using MySQL as an add-on [20, 21, 33]. Asterisk includes H.323 gateway function-

ality (needs to be compiled in addition to other third party modules however) and may operate

as a SIP proxy [33]. These facilities make it a multi-facetedPBX suited for small businesses

and home users. The only problems Asterisk faces are scalability issues, the lack of an H.323

gatekeeper and the lack of IPv6 support. Because of the nature of translation and the size of

the Asterisk channel structure, Asterisk will battle to handle more than around 250 concurrent

calls, this raises scalability issues for larger businesses. This can be solved by using multiple

servers and creating tunnels between them using the Inter-Asterisk eXchange protocol (IAX),

and carefully configuring the dialplan. An H.323 gatekeepercan be provided by using another

application, such as Open H.323 gatekeeper, in tandem with Asterisk. By adding other compo-

nents, such as SIP Express Router (SER) and Open H.323 gatekeeper, in tandem with Asterisk

we can also provide extra features, such as call forking, andprovide further scalability. This is

part of the motivation for the iLanga system’s expansion of Asterisk. The lack of IPv6 support

is still a problem, however IPv6 is not mainstream yet, and this problem should be rectified in

future versions of Asterisk [34].

3.1.4 Extending Asterisk

Developers may extend Asterisk by adding channels, codecs,file formats and applications. This

is done by working with the C API. AGI scripts, which are analogous to CGI scripts [31], may

also be created to provide further facilities and services such as a weather reader or a cricket

score reader. These AGI scripts are called from the dialplan.

The dial plan also provides many facilities for harnessing the power provided by Asterisk. It

provides pattern matching algorithms for setting up the dialplan, as well as the use of variables,

logical operations and arithmetic operations. It uses the concept of an extension, the number

you dial in Asterisk, and it routes the channel that is initiated through a sequence of commands

specified for that extension such as dialing another channelor playing back a file.

Asterisk uses a channel based infrastructure. A channel is basically a unit which brings in

a call to the Asterisk PBX. Every call is placed or received ona distinct channel. Asterisk uses

channel drivers to support each type of hardware [35]. H.323, SIP, IAX, MGCP and ISDN are all

currently supported in Asterisk. In chapters 4 and 5, we willexpand on channels, and illustrate

CHAPTER 3. ASTERISK AND ILANGA 28

how we can create a channel using the channel API. We will alsoinvestigate their current support

for video, and showing how it is achieved and the pitfalls forchannels in which video is not

supported.

3.2 iLanga

iLanga is a complete, cost-effective, computer based PBX that has been built at Rhodes Univer-

sity. It is based on three open source components: Asterisk,OpenH323 Gatekeeper (OpenGK)

and SIP Express Router (SER). Asterisk as a stand alone component provides limited support

for large scale VoIP networks [21]. SER and OpenGK (also known as GNUGK) have thus been

added to complement Asterisk by providing further functionality essential for a high quality

voice PBX system, extending the VoIP support provided. iLanga provides further abstraction to

the concepts of a user and an end point. Different devices using separate channels for the same

individual may be grouped under a single user account, whichis used when dialing that individ-

ual. In this manner, the user will simply dial another individual and need not be exposed to the

non-intuitive idea of a specific device as an end point. This may be taken further by providing

priority to certain devices and calling different devices at different times of day.

In the remainder of this section we will take a look at the architecture of iLanga, expand

on the user interface and conclude with linking Asterisk, iLanga and video expanding on their

relationship and where the channel structure fits into the picture.

3.2.1 Architecture

Figure 3.2 illustrates how the components have been integrated to form the iLanga system.

Asterisk [2] is the core switching-software and handles transactions at a call signalling level. It

provides support for the integration of multiple protocolsby acting as a gateway for cross-

communication between different end points. It also deals with the media layer, providing

codec translation. This means that Asterisk is able to provide seamless communication

between different endpoints. More information about the role of Asterisk in iLanga may

be found in [21].

SER [11] is an open, high performance SIP proxy, location and redirect server. Asterisk has a

built-in SIP proxy, however it is limited in functionality and only acts as a minimal SIP

CHAPTER 3. ASTERISK AND ILANGA 29

Figure 3.2: iLanga system architecture

location server. It was thus decided to incorporate a more advanced SIP proxy into the

iLanga PBX. SER offers more secure registration than Asterisk. It provides secure digest

authentication as opposed to the plain text authenticationused in Asterisk. In iLanga SIP

users register and authenticate with SER before being able to communicate with Asterisk

via the Asterisk SIP proxy. Peer-to-peer communication between Asterisk and SER is

ensured by configuring the Asterisk dial plan to forward all SIP requests to SER. This

architecture means that SIP users can enjoy all the functional benefits of SER such as

instant messaging, presence and forking (ringing on multiple active clients all using the

same address) and still have access to the functionality andservices provided by Asterisk

such as conferencing, call forwarding and call parking. By using Asterisk as a gateway,

seamless and transparent cross-protocol communication becomes viable. To the SIP user,

iLanga appears as a single conglomerate. More information about SER and its integration

into iLanga may be found in [21].

OpenGK [17] is an open source, full featured H.323 gatekeeper. Asterisk does not provide

H.323 management or alias address functionality (these arefunctionalities provided by a

gatekeeper), it just behaves as an H.323 terminal or gateway[33]. A gatekeeper is an im-

portant component of an H.323 network [12]. Some of its responsibilities include: man-

agement, authentication and alias address management. These are essential for H.323

users, and therefore OpenGK was added to iLanga. In iLanga, H.323 users are managed

by OpenGK and communicate with Asterisk via the Asterisk H.323 gateway. Asterisk is

configured to act as an H.323 gateway to achieve peer-to-peercommunication between

OpenGK and Asterisk. This architecture means that H.323 users can enjoy all the benefits

of having a gatekeeper and still have access to the functionality and services provided by

Asterisk. These include conferencing, call forwarding andcall parking. Seamless commu-

CHAPTER 3. ASTERISK AND ILANGA 30

nications with other protocols is also provided through theH.323 gateway. More informa-

tion about OpenGK and its integration into iLanga may be found in [21].

Figure 3.3: iLanga implementation [21]

The final component required by a complete voice PBX is a breakout into the PSTN to provide

the ability to call outside of the network. This is provided by installing an Integrated services

digital network (ISDN) interface using a Zaptel card. The final implementation of iLanga is

illustrated in Figure 3.3. The combination of these three components, the ISDN interface and the

features provided by Asterisk result in a complete voice telecommunications package, iLanga.

iLanga provides call forking (from SER), voice mail, call forwarding, call transfer, call parking

and an IVR system (for example a menu system: “Press 1 for...”). It is also not difficult to design

custom services such as a weather reader or cricket score reader.

3.2.2 User interface

A Flash based, user-friendly interface has been developed for iLanga, as detailed in [8]. A

snapshot of the user interface may be seen below in Figure 3.4.

CHAPTER 3. ASTERISK AND ILANGA 31

Figure 3.4: iLanga graphical frontend [8]

Further extensions to this interface have been identified asbeing necessary. These are high-

lighted and their implementations explored in chapter 6.

3.2.3 iLanga, Asterisk and Video

iLanga is a powerful, cost effective voice PBX, however the current lack of support for video

is a problem. The channel based architecture of Asterisk is extensible and provides support for

video. This means that it is possible to bring video into iLanga using the channel structure of

Asterisk. It is for this reason that the Asterisk channel structure is the particular focus of this

investigation. The implementations and issues of channelsand video are explored in the next

chapter.

3.3 Summary

This chapter has described Asterisk and iLanga, which provide the framework that this project

is built on. It has highlighted the architectures and facilities provided by each of these telephony

products and demonstrated the extensibility inherent in their architectures. It has also established

the relationship between Asterisk and iLanga, and explained why channels in Asterisk are the

focus for video in iLanga. From this point onwards, this project will be focusing on Asterisk and

iLanga. Firstly, in chapters 4 and 5, we will be discussing channels in Asterisk, their implemen-

CHAPTER 3. ASTERISK AND ILANGA 32

tations and video support within these channels. We will then, in chapter 6, take a look at some

extensions we have made in the iLanga user interface.

Chapter 4

Channels in Asterisk and their

Implementation

This chapter delves into the heart of Asterisk, exposing channels in Asterisk, explaining how to

implement them, and exploring the availability of video within the SIP channel and the lack of

video within H.323 channels. It begins by introducing the channel concept, and then explores

calls in Asterisk, and takes a look at the dial application. It then moves on, elaborating on the

physical channel structures within the source code, and detailing the functions available in the

channel API. It then takes a look at how frames operate, and concludes by discussing how to

design a channel module, looking at the example channel we have created. This chapter reveals

the documentation created by the author from investigations into the source code and conceptual

experiments performed during this project. It reveals the author’s understanding of channels

gained from the source code.

4.1 Channel Concept

The channel based architecture is largely where the power ofAsterisk lies. Each end of the call

is abstracted into a channel and they are bridged by Asteriskto provide communication between

them. For each of the channels, the relevant channel drivershandle the appropriate signalling, and

pass codec translations to the Asterisk Core before transferring the media between the endpoints.

This results in seamless conversation between the two ends.This means that the handling of the

media largely depends on the implementation of the codecs within the Asterisk core.

33

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 34

Figure 4.1: Use of channels between disparate protocols

Figure 4.1 illustrates the channel concept in action. In this example we have two endpoints

using different voice codecs and different signalling protocols. Person A is utilising a SIP phone

with the audio encoded using the GSM codec, while person B is using an H.323 phone and

the G.711u codec for audio encoding. The channel based architecture of Asterisk creates the

possibility of seamless communication between these endpoints. Person A will be using the SIP

channel driver, while person B will be using the H.323 channel driver. These channel drivers are

created as modules and compiled as system object files. The channel drivers are registered when

Asterisk starts up, and used by Asterisk in the call.

4.2 A call in Asterisk

When the call is initialised, Asterisk creates two channel structures using the appropriate channel

drivers. It also determines which codecs are going to be usedand finds the least common denom-

inator between the two, using a translator function in Asterisk. Both of these channels are created

using an instance of a universal structure calledast_channel . These structures are bridged for

signalling and media using a functionast_bridge_call . This allows communication to then

take place between these two endpoints. A call is initialised using the dial application.

4.3 The dial application

This section takes a look at the Dial application in Asterisk, highlighting its usage for initiating

calls, and explaining how it operates in view of the importance of understanding how the channels

are utilised and used by this application.

4.3.1 What is the dial application

The code for the dial application is found inapp_dial.c . This code is compiled as a module, and

registers an application called Dial in itsload_module function. The dial application is called

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 35

Argument Description

SIP/2000 Dial a single SIP client registered as 2000
SIP/2000&IAX2/3000 Dial two clients, one registered as 2000 with

the SIP channel and the other registered as
3000 with the IAX2 channel

... | 6000 Specify a timeout for the dialing of a call
... | ... | tT Set options to allow caller and callee to trans-

fer the current call

Table 4.1: Example arguments for the dial application

by Asterisk to make a call with another channel, as mentionedearlier.

It requests one or more channels and places specified outgoing calls on them. As soon as

a channel answers, the Dial application will answer the originating channel (if it needs to be

answered) and will bridge a call with the channel which is answered first. All other calls placed

by the Dial application will be hung up. If a timeout is not specified, the Dial application will

wait indefinitely until either one of the called channels answers, the user hangs up, all channels

return busy or an error occurs.

4.3.2 Calling the dial application

The dial application is called by executing the applicationDial within Asterisk. The dial appli-

cation requires an argument to be passed to it with information about the channels that are going

to be dialed, how long the time out should be (if there is one),and other options such as enabling

call transfer during a call. The general format of the argument that may be passed is:

technology/number & technology2/number2 ... | timeout | op tions | URL

Table 4.1 shows some example arguments which may be passed tothe dial application.

Within the table, the ellipsis means that zero or more characters may be filled into that field.

The only compulsory section of the dial argument is the firsttechnology/number field shown

in the first row of Table 4.1. There is no limit to the number oftechnology/number fields spec-

ified in the argument. All of these will be dialed and the bridge will be established with the first

channel to answer. More information about the options and arguments that may be passed to the

dial application may be found by runningshow application dial in the Asterisk CLI.

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 36

4.3.3 Extensions and the dial application

Extensions are one of the core concepts in Asterisk. The extensions, defined inextensions.conf ,
are the numbers that Asterisk recognises as valid. When an extension is dialed, the extension in
the context which the user has been placed during their registration is executed in order of prior-
ity. The following is a possible extract fromextensions.conf

[default]

exten => 4000,1,Answer

exten => 4000,2,Playback(file)

exten => 4000,3,Hangup

This extract is a subset of the default context. If we are a user placed in the context default, and

dial 4000, the extract above is parsed in order of priority, so the call is answered (1), a file is

played back to the user (2), and then the call is hungup (3). Playback is an application registered

with Asterisk in the same manner as the Dial application. Below is another possible extract from

extensions.conf .

exten => _XXXX,1,Dial(SIP/${EXTEN})

This will execute the application Dial which is registered by the moduleapp_dial.so which is

a compiled version ofapp_dial.c . The dial application sets up a call using arguments defined

earlier. This example uses the pattern matching facilitiesavailable in Asterisk to match any four

digit number. The Dial application is called, if any four digit number is dialed, and the argument

SIP/{four digit number} is passed to it.

4.3.4 How the dial application operates

Figure 4.2 and 4.3 are flow charts illustrating the operationof the dial application. The numbers

within the circles may be used to track the operation of the parts of the dial application, illustrated

in Figure 4.2, and used to simplify the reading of the flowchart. The basic process consists of

four steps.

1. Parsing the dial arguments, setting the options and creating a list of possible channels

2. Waiting for an answer from one of the channels

3. Bridging the channels

4. Closing off the application, updating variables and killing channels

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 37

Figure 4.2: Dial Application Flow Chart

Figure 4.3 (a) shows the setting up of the channel list. We have previously discussed the argu-

ments that may be passed to the dial application, this process takes all the devices listed in the dial

argument, and puts them in the list. An interesting method isused to check whether it is available.

For each device, the device gets called to check whether everything is alright (ie. it is available),

and only if this is the case then it is added to the list. Once the list is established, a function,

wait_for_answer is executed. It uses the channel API functionast_waitfor_n , and returns

the channel which answers the call, so that it may be bridged with the channel making the call.

Figure 4.3 (b) illustrates the bridging of the calls.ast_bridge_call callsast_channel_bridge

which bridges signalling and media between the channels. This is detailed in section 4.5, which

deals with the channel API. Figure 4.3 (c) illustrates the ending of the dial application.

4.3.5 Importance of understanding the dial application

It is important to understand how channels are managed in Asterisk so that when we create or

alter a channel it may still be used by Asterisk as intended. The dial application is important as

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 38

Figure 4.3: Parts of the dial application

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 39

it is the usual method of establishing a call between two endpoints in Asterisk.

4.4 The channel structure

The channel structure of Asterisk is the structure in which the mechanisms for a particular chan-

nel type are established. The channel structures are setup by an ast_request which calls the

function specified as the request function during the registration of the channel. The channel

structure is essentially composed of two components, theast_channel struct and theast_channel_pvt

struct.

Figure 4.4: ast_channel structure

The ast_channel struct contains many variables, locks and descriptors usedfor monitor-

ing the channel’s operation and storing information about the channel. It is found in the file

channel.h . Figure 4.4 shows theast_channel structure. Within this structure, there is a vari-

ablepvt , which is a pointer to a variable of typeast_channel_pvt .

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 40

Figure 4.5: ast_channel_pvt structure

Figure 4.5 illustrates the private structure of the channel. It contains information about

the media and translators being used and the functions whichare called by the channel API

for signalling, and the reading and writing of media frames and dial tones. These functions

include the functions for calling, answering and hanging upa call made using the channel.

ast_channel_pvt also contains a pointer to a structure calledpvt . This is the specific chan-

nel’s private structure, i.e in the case of the SIP channel, the SIP private structure. This structure

usually contains locks, sockets and media information particular to an instance of a particular

channel type. These structures are called and altered by thechannel API using functions speci-

fied in ast_channel_pvt .

4.5 The channel API

The channel API consists of a number of functions designed tofacilitate communication be-

tween the channel drivers and the Asterisk core in aid of seamless connection between protocols,

discussed previously. The channel API consists essentially of a number of functions, and two

particular structures. These structures areast_channel andast_channel_pvt . Files of interest

includechannel.c , channel.h , channel_pvt.h , andres_features.c . The table that follows

contains a few of the functions from the channel API which areused when dealing with channels

and discussed in this text. Appendix A contains more functions from the channel API which are

useful. These tables have been produced during the investigation, and expand on the function’s

purpose, how they are used within Asterisk and what they return. Functions such asast_call ,

ast_read , ast_write use functions which are defined within the relevant channel driver as

they are specific to their channel type.ast_channel_register andast_channel_unregister

are used in the respective functionsload_module andunload_module contained in the channel

modules. They are used to register a channel driver module (also referred to as a channel driver

and a channel module) to support a protocol of type of hardware.

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 41

ast_call_bridge is called to bridge a call. It operates as an “infinite loop”, only breaking

out of the loop once the bridge is broken or the channels are hangup. Within this “infinite loop”,

there are calls toast_channel bridge which performs the transfer of media between the chan-

nels usingast_read andast_write statements which operate according to the settings made

for media compatibility.

Media compatibility is established using theast_channel_make_compatible function. This

function makes calls toast_set_read_format and ast_set_write_format to configure the

channels with appropriate formats and set variables in the channel structure and the private chan-

nel structure.

Function Description

ast_request Description: Requests a channel of a given type, running thecode

from the channel driver of that type

Example call: ast_request(type, format, number) where type is a

character array containing the type of channel (eg.

SIP), format is an integer referring to the format of

the data and number is of any type and contains the

number being called.

Returns: ast_channel* (Pointer to an asterisk channel), null if

unsuccessful

ast_channel_register_ex Description: Registers a particular channel with a function to poll

devicestate

Example call: ast_channel_register_ex(type, description, capabili-

ties, requester, devicestate) where type a character ar-

ray containing the type of channel, analogous with

type specified in other functions, description is a char-

acter array containing the description of channel being

registered, capabilities in an integer representing the

capabilities of the channel, requester is a pointer to a

function returning an ast_channel struct in the channel

driver which is run when an ast_request is passed and

devicestate which is a pointer to a function returning

an integer which returns the device state. This func-

tion has a parameter data for the number of the device

whose state the driver is interested. This is optional for

a channel driver.

Returns: int, -1 if there is an error, 0 if successful

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 42

Features Description

ast_channel_register Description: Registers a particular channel, used in the load

module to register channel with Asterisk, uses

ast_chan_register_ex. but with devicestate function set

to null

Example call: ast_channel_register(type, description, capabilities,

requester) where type a character array containing the

type of channel, analogous with type specified in other

functions, description is a character array containing

the description of channel being registered, capabili-

ties in an integer representing the capabilities of the

channel, and requester is a pointer to a function return-

ing an ast_channel struct in the channel driver which

is run when an ast_request is passed.

Returns: int, -1 if there is an error, 0 if successful

ast_channel_unregister Description: Unregisters a channel with the Asterisk system

Example call: ast_channel_unregister(type) where type isa character

array containing the type of channel to be unregistered,

eg. SIP

Returns: void

ast_hangup Description: Calls a hard hangup of the channel, stopping streams,

and destroying the channel, uses the hangup function

in the channel driver

Example call: ast_hangup(chan), where chan is of type pointer to

ast_channel struct and is the structure of the channel

we wish to hangup

Returns: int, 0 if successful otherwise the value returned by the

hangup function in the channel driver

ast_answer Description: Answers the call, calls a function in the channel driver

Example call: ast_answer(chan) where chan is the pointer tothe

ast_channel struct of the channel of interest

Returns: int, -1 if it is being hung up, the result returned from

answer in the channel driver if the state of the channel

is ringing, otherwise 0

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 43

Features Description

ast_call Description: Makes a call to a channel, using functions in the chan-

nel driver

Example call: ast_call(chan, addr, timeout) where chan is apointer to

the ast_channel struct of the channel we wish to call,

addr is a character array for the destination of the call

and timeout is an integer for the time waited for a con-

nection

Returns: int, -1 if a call function doesn’t exist or a hangup is

scheduled for the function, otherwise the results re-

turned by the function in the channel driver

ast_indicate Description: Indicates a condition on a channel such as busy, ring-

ing or congestion

Example call: ast_indicate(chan, condition) where chan isa pointer

to the ast_channel struct of the channel we wish to send

an indication to, and condition is an integer represent-

ing the condition which we wish to indicate

Returns: int, -1 if hangup is scheduled of invalid condition, 0 if

channel doesn’t support it, or the result returned from

the channel driver

ast_waitfor Description: Wait for input on a channel

Example call: ast_waitfor(chan, ms) where chan is a pointerto the

ast_channel struct of the channel we are waiting for

and ms an integer for the length of time we can wait

for

Returns: int, -1 if there is an error, 0 if nothing ever arrived, the

number of milliseconds remaining otherwise

ast_waitfor_n Description: Waits for input from a group of channels

Example call: ast_waitfor_n(chanlist, number, ms) where chanlist is

an array of pointers to the ast_channel struct of the

channel we are waiting for, number is an integer con-

taining the number of channels in the list and ms an

integer for the length of time we can wait for

Returns: ast_channel*, the channel with activity, otherwise null

ast_read Description: reads a frame from a channel using a function inthe

channel driver

Example call: ast_read(chan) where chan is a pointer to the

ast_channel struct of the channel we are reading from

Returns: ast_frame*, a frame, null on error

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 44

Features Description

ast_write Description: write a frame to a channel using function in thechannel

driver

Example call: ast_write(chan, frame) where chan is a pointer to the

ast_channel struct of the channel we are writing to

and frame is a pointer to ast_frame struct which is the

frame we are writing to the channel

Returns: int, -1 on error, 0 if the functions don’t exist, andthe

result from the function in the channel driver otherwise

ast_write_video Description: write a video frame to a channel using a function in the

channel driver

Example call: ast_write_video(chan, frame) where chan is apointer

to the ast_channel struct of the channel we are writing

to and frame is a pointer to ast_frame struct which is

the frame we are writing to the channel

Returns: int, -1 on error, 0 if the functions don’t exist, andthe

result from the function in the channel driver otherwise

ast_set_read_format Description: sets the format to be read by a channel

Example call: ast_set_read_format(chan, format) where chan is a

pointer to the ast_channel struct of the channel for

which we are setting the format, and format is an inte-

ger representing the format being read by the channel

Returns: int, -1 on error, 0 otherwise

ast_set_write_format Description: sets the format to be written by a channel

Example call: ast_set_write_format(chan, format) where chan is a

pointer to the ast_channel struct of the channel for

which we are setting the format, and format is an inte-

ger representing the format being written by the chan-

nel

Returns: int, -1 on error, 0 otherwise

ast_channel_make_compatibleDescription: Attempt to make two channels compatible with each

other

Example call: ast_channel_make_compatible(chan, peer) where

chan and peer are pointers to the ast_channel structs

of the channels we are making compatible in terms of

codecs

Returns: int, -1 if there is no path to translate, or an error in set-

ting the 2 channel’s read or write formats, 0 on success

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 45

Features Description

ast_channel_bridge Description: Create a bridge between two channels in terms of me-

dia

Example call: ast_channel_bridge(chan1, chan2, config, destframe,

destchan) where chan1 and chan2 are pointers to the

ast_channel structs which we are bridging, config is

a pointer to the ast_bridge_config struct containing the

configuration of the bridge, destframe and destchan are

double pointers to ast_frame and ast_channel structs

respectively. They are used to pass the destina-

tion channel and frames so that functions such as

ast_call_bridge may use this data.

Returns: int, -1 on an error to do with channels waiting to hang

up or existing bridges, 0 on success

ast_transfer Description: transfer a channel if it is a supported function within

that channel driver

Example call: ast_transfer(chan, dest) where chan is a pointer to the

ast_channel struct of the channel we are transferring

and dest is a character array representing the destina-

tion of the transfer

Returns: int, -1 if channel is being hung up or a transfer func-

tion doesn’t exist otherwise return the result from the

function in the channel driver

ast_channel_alloc Description: Create a channel structure

Example call: ast_channel_alloc(needalertpipe) where needalertpipe

is an integer representing a boolean value determining

whether we set up this part of the structure in out allo-

cation

Returns: ast_channel*, null if shutting down or error otherwise

return a new allocated channel

ast_channel_free Description: Destroy a channel structure

Example call: ast_channel_free(chan) where chan is a pointer to the

ast_channel struct of the channel we are destroying

Returns: void

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 46

Features Description

ast_bridge_call Description: Bridge a call allowing for parking and transfer using

asterisk core. This function calls ast_channel_bridge

Example call: ast_bridge_call(chan, peer, config) where chan and

peer are pointers to the ast_channel structs which

we are bridging and config is a pointer to the

ast_bridge_config struct containing the configuration

of the bridge

Returns: int, -1 on error, 0 on success.

It is necessary for each channel driver to establish their own private structure. The usage of
the channel API will be expanded in the sections on the example channel and SIP channel. We
will look at this after a brief look at how frames work within Asterisk between channel drivers.

4.6 Frames in Asterisk

Figure 4.6: Asterisk frames

In Asterisk everything is packaged as frames. These frames are passed between the channels

via the Asterisk core. Figure 4.6 illustrates how the media and signalling are processed using

frames by the channel drivers.ast_read , ast_write, ast_write_video , ast_senddigit and

ast_indicate all send or receive frames within the Asterisk channel driver. These are defined

in the private structure of the channel driver.

Figure 4.7: ast_frame structure

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 47

These frames are packaged in a structureast_frame . This is illustrated in Figure 4.7. It

has a double linked list based structure with pointers to thenext frame and the previous frame.

mallocd illustrates whether the data has been allocated using malloc so that it can be freed when

the frame is destroyed.src is a pointer to a character array, containing a description of the

source, and is included in the structure for debugging purposes. The data length is contained in

datalen , and the data is stored in the location pointed to by thedata pointer.

Frame Type Subclass Content Type Integer Value

AST_FRAME_DTMF A digit DTMF Digits 1

AST_FRAME_VOICE AST_FORMAT Voice data 2

AST_FRAME_VIDEO AST_FORMAT Video data 3

AST_FRAME_CONTROL AST_CONTROL Control frame 4

AST_FRAME_NULL - Empty frame 5

AST_FRAME_IAX - IAX Private frame 6

AST_FRAME_TEXT - Text messages 7

AST_FRAME_IMAGE - Images 8

AST_FRAME_HTML AST_HTML HTML 9

AST_FRAME_CNG level of CNG in -dBov Comfort noise 10

Table 4.3: Frame Types in Asterisk

Table 4.3 contains a list of possible values for theframetype and the possible subclasses.

Video frames may have H.261 or H.263 as subclasses, audio frames may have GSM and G.711u

as subclasses, and control frames may have congestion, ringing or busy as possible subclasses

for theframetype . An expanded list of possible subclasses and the values for the constants may

be found in the source fileframe.h . We will now take a look at how to design a channel in

Asterisk.

4.7 How to design a channel in Asterisk

In order to design a channel in Asterisk, we need to use the channel API and create a mod-

ule which registers the channel and provides the functions necessary for signalling and media

transfer. The main functions of these modules are to interpret various signalling, passing the

appropriate calls to the Asterisk core as control messages such as busy, ringing, hangup, and

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 48

congestion, and passing the media as frames to Asterisk by creating read and write functions.

The remainder of this section describes three aspects of channel creation: modules, com-

mands in the command line interface (CLI) and outputting to logs, and concludes with a look at

the example channel which we have created for proof-of-concept.

4.7.1 Modules in Asterisk

A module in Asterisk consists of a few essential components:the load_module function, the

unload_module function, theusecount function, thekey function and thedescription func-

tion. The load_module andunload_module functions are executed when Asterisk starts and

loads modules, and when Asterisk shutsdown and kills the modules respectively, and are also

used for registering the module with Asterisk and setting upCLI commands. Thedescription

function returns a character array containing the description of the channel, in this case “Exam-

ple Channel (EG)”. Thekey function returns the ASTERISK_GPL_KEY character array, while

theusecount function returns the amount of times the module has been used. This function uses

a lock. In a channel driver, we also need to be able to request information about channel. In

Asterisk we may run commands in the CLI for this purpose.

4.7.2 Adding commands to the CLI

The Asterisk CLI is a powerful management console provided with Asterisk. It is used to get

information about the status of the PBX and its modules. It may also be used to find out informa-

tion about the modules registered and get help on how to use them. In order to add commands to

the CLI, we need to run the functionast_cli_register . This is done in the following manner:

ast_cli_register(&cli_eg_info);

This is done in theload_module function. We perform anast_cli_unregister in the exact

same manner in theunload_module to unregister the CLI command.cli_eg_info is defined in

the following manner:

static struct ast_cli_entry cli_eg_info =

{ { "eg", "info", NULL }, eg_info, "Example Channel Informat ion",

eg_info_usage };

When we run the commandeg info in the CLI, the functioneg_info is executed. If we wanted

to create a command such asthis is a test then we would define the first part of the struct

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 49

above as{ “this”, “is”, “a”, “test”, NULL } . If we seek help by running the help com-

mand the string “Example Channel Information” is displayednext to “eg info”. If we runhelp

eg info , the character array,eg_info_usage gets displayed. It is defined as follows:

static char eg_info_usage[] =

"Usage: eg info\n"

" Displays Information about Example Channel\n";

Functions such aseg_info which we have linked to the commandeg info need to be able to

output information to the CLI.

4.7.3 Outputting to the logs

The ability to output notices and other information to the CLI is also important in a channel driver.

This information can be both informative and used for debugging when problems arise. Thus it

is crucial for both the developers and the users of the PBX that notices and other messages are

included. In order to have this functionality we need to include the header filelogger.h . Below

are two examples of sending messages to the CLI.

ast_log(LOG_NOTICE, "This is the example channel in Asteri sk\n");

ast_verbose("== Initiating a new call to the example channe l ==\n");

The first displays a notice in the CLI. This notice includes date, time, source file and line num-

ber in the source. This is useful for debugging, however LOG_NOTICE may be replaced by

LOG_DEBUG, which only display when in debugging mode. Asterisk can be run in verbose

mode. This may be set by running Asterisk with a -vvv option onstartup (for a verbosity of 3) or

by runningset verbose 3 command in the CLI. Messages such as the second example using

ast_verbose will only be displayed when the verbosity is greater than 0.

4.7.4 The example channel

In order to verify an understanding of the essentials for a channel, we decided to create an ex-

ample channel which just outputs to the CLI when it is requested and called. No media facilities

were implemented in this channel, however, the evidence below shows the example channel to

be operational.

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 50

Asterisk 1.0.9, Copyright (C) 1999-2004 Digium.

Written by Mark Spencer <markster@digium.com>

=== ======================

Connected to Asterisk 1.0.9 currently running on g02z0525- 1 (pid = 30823)

== Creating a new Example Channel :) ==

== Initiating a new call to the example channel ==

...
g02z0525-1 * CLI> show channels

Channel (Context Extension Pri) State Appl. Data

EG/5555-ec4c (default s 1) Up AppDial (Outgoing Line)

SIP/600-ca00 (local-from-sip 5555 1) Ring Dial EG/5555

2 active channel(s)

This channel was built after evaluation of the SIP channel and the channel API. Within the

load_module function, we register the channel using the type “EG” and thedescription “Ex-

ample Channel (EG)” which is put into a character arraytdesc . We set the request function

to eg_request . This function calls another functioneg_new which returns the channel type. It

begins by usingast_channel_alloc to allocate a channel structure. In this example channel,

we just define functions for call and hangup in the channel private structure. Since it is necessary

to have a private structure for the instance of the channel (ie. an eg private structure), we take

a character array containing the text “pvt” and set it to the structure so that channel will be op-

erational. When the functioneg_request is called, it outputs“== Creating a new Example

Channel :) ==” to the CLI if Asterisk is running with a verbosity greater than zero. The call

and hangup function pointers are linked toeg_call andeg_hangup respectively. This is a rather

basic channel. It is necessary to take a look at a fully functioned, operational channel within As-

terisk in order to grasp the deeper concept of the channel API. We have chosen the SIP channel

as our test case.

4.8 Summary

This chapter has described channels, and the channel API. Ithas shown how channels are ini-

tialised, how calls are made, and how the modules are structured. It has also demonstrated an

example channel created for proof-of-concept.

Chapter 5

The SIP and H.323 Channels

In the previous chapter, we have exposed the channel-structure of Asterisk. This chapter moves

on from these foundations and explores the SIP and H.323 channel implementations, discussing

their availability of video. It concludes with a discussionon the inheritance of features within

Asterisk. This chapter presents the authors work, investigations and experiments with the SIP

and H.323 channels.

5.1 The SIP Channel

Asterisk provides a SIP channel driver to support SIP end points. This channel includes a SIP

registrar proxy, however lacks the ability of a forking proxy. Endpoints may be registered with

Asterisk if they have a user account set up in the configuration file sip.conf . More details about

this configuration may be found in [33].

The remainder of this section will look at 6 aspects of the SIPchannel: The channel driver,

channel registration, thedevicestate function, the private structure (sip_pvt), media handling

and signalling.

5.1.1 The SIP channel driver

The SIP channel driver is written as a module for Asterisk in C, and may be found as the file

chan_sip.c . This is compiled as a system object,chan_sip.so , and loaded by Asterisk on

startup to provide support for SIP end points. Previously wehave taken a look at the channel

structure, the channel API, and an example channel. This reveals a lot about how channels

51

CHAPTER 5. THE SIP AND H.323 CHANNELS 52

are constructed and how they operate within the Asterisk core, however analysing an existing

channel driver is necessary to make the concepts more clear.

5.1.2 Channel registration

When the module is loaded, theload_module function is called. This function initiates a

call to register the channel with Asterisk. As we have seen inthe channel API, there are two

functions which may be used to register a channel with Asterisk, ast_register_channel and

ast_register_channel_ex . The SIP channel callsast_register_channel_ex , setting the re-

quest function tosip_request and thedevicestate function tosip_device_state . Within

the load_module function there are also a number of calls to a functionast_cli_register .

This function registers commands with the CLI so that information about the channel’s status

may be obtained when we are running the CLI. This makes commands such assip show users

a possibility. We also notice the use ofast_mutex_lock andast_mutex_unlock . This is used

so that threads may use data concurrently avoiding reader-writer problems.

5.1.3 Devicestate

sip_devicestate is the function passed as the function to determine the device state during

the registration of the channel. It returns an integer indicating the state of the device reg-

istered with the channel driver. The specific device is indicated in the parameter data. Val-

ues returned are either AST_DEVICE_INVALID (4), AST_DEVICE_UNAVAILABLE (5), or

AST_DEVICE_UNKNOWN (0). These constants may be found inchannel.h .

5.1.4 The SIP Private Structure

Within the private channel structure, there is a pointer to another private structure for the individ-

ual channel. This is an important part of a channel structure. If this is not declared, calls will not

be possible using the channel module that has been created. Many functions within the channel

API check to see whether this structure exists. Within the SIP channel there is such a structure,

sip_pvt . This structure contains variables for sockets, configuration options, locks and media

data. Two important variables arertp andvrtp . These are pointers to anast_rtp type which is

used for media transmission by this channel.

Whenast_request is called in the channel API, the functionsip_request is called. This

returns anast_channel type. It is within this function that we setup the channel forthe call.

CHAPTER 5. THE SIP AND H.323 CHANNELS 53

sip_alloc is called to setup the private structure andsip_new is called to set up the channel

that is returned. The functionsip_new gets passed parameters for the private structure, the state

which indicates the device state and title which indicates which registered device we are dealing

with. sip_new creates and returns a channel structure. It callsast_channel_alloc to create

the channel structure, and then assigns the values for the channel’s private structurepvt . These

include setting up the functions that get called for readingand writing media, as well as ones for

initiating a call.

tmp->pvt->pvt = i;

tmp->pvt->send_text = sip_sendtext;

tmp->pvt->call = sip_call;

tmp->pvt->hangup = sip_hangup;

tmp->pvt->answer = sip_answer;

tmp->pvt->read = sip_read;

tmp->pvt->write = sip_write;

tmp->pvt->write_video = sip_write;

tmp->pvt->indicate = sip_indicate;

tmp->pvt->transfer = sip_transfer;

tmp->pvt->fixup = sip_fixup;

tmp->pvt->send_digit = sip_senddigit;

The above extract of code is a rather important part of setting up the channel. The first line

is where the SIP private structure gets assigned and the restis where the function pointers get

assigned which are use by methods such asast_call , ast_read , andast_write for their pur-

poses within the channel.ast_read andast_write are used for media transfer, whileast_call

is used to initiate a call with the channel.

5.1.5 Media Handling

tmp->fds[0] = ast_rtp_fd(i->rtp);

tmp->fds[1] = ast_rtcp_fd(i->rtp);

if (i->vrtp) {

tmp->fds[2] = ast_rtp_fd(i->vrtp);

tmp->fds[3] = ast_rtcp_fd(i->vrtp);

The above segment of code is used to set up the media frame descriptors within the channel

structure. The SIP channel needs to use RTP for media transfer. Asterisk provides a module for

RTP. It is contained withinrtp.h andrtp.c . The functionsast_rtp_fd andast_rtcp_fd are

contained within the RTP module. The transmission and reception of media, as mentioned in

CHAPTER 5. THE SIP AND H.323 CHANNELS 54

the Section 4.5, is done usingast_read andast_write . Within this channel,sip_rtp_read

is called bysip_read which is the function assigned for reading, as has been seen previously.

sip_rtp_read receives two parameters. The first is for the channel we are interested and the

second is for the SIP private structure associated with thatchannel.sip_rtp_read checks the

frame type using the frame descriptor number (fdno) and returns the frame which is read either

from thertp or vrtp streams usingast_read_rtcp for the rtcp frames andast_read_rtp for

the rtp frames.sip_write accepts two parameters, one for the relevant channel and theother for

the frame we are writing. The frame type is assessed using theframetype variable in the frame

structure, and if it is video then it is written to thevrtp stream, and if it is voice then it is written

to thertp stream. This writing is done using theast_rtp_write function passing theast_rtp

stream and theast_frame which we are writing.

Within load_module , ast_rtp_proto_register is used to register RTP for the SIP channel.

The address ofsip_rtp (&sip_rtp) is passed as a parameter, and the definition is shown below.

This is necessary for the usage of RTP.

static struct ast_rtp_protocol sip_rtp = {

get_rtp_info: sip_get_rtp_peer,

get_vrtp_info: sip_get_vrtp_peer,

set_rtp_peer: sip_set_rtp_peer,

get_codec: sip_get_codec,

};

sip_get_rtp_peer returns thertp stream (of typeast_rtp) andsip_get_vrtp_peer returns

thevrtp stream.sip_set_rtp_peer utilisesast_rtp_get_peer and the socketsredirip and

vredirip for thertp andvrtp streams respectively. These sockets are located in the SIP private

channel structure. Further discussion of the RTP functionsmentioned is beyond the scope of this

project.

5.1.6 Signalling

In terms of the signalling, the channel driver contains a number of functions for transmitting the

packets discussed in Section 2.2.1. These are all prefixed with transmit such astransmit_response ,

transmit_invite , andtransmit_notify . A number of sockets are established in the SIP pri-

vate structure, and within the code for transmission. They are used throughout the code to send

signalling data. SDP information from the SIP packets is used to interpret media types as video

or audio and set up the various translations required for using the RTP functions discussed in the

CHAPTER 5. THE SIP AND H.323 CHANNELS 55

previous section. These translations are performed by the translators in the Asterisk core accord-

ing to translation paths determined usually by runningast_make_compatible , and stored in the

channel structure.

5.2 SIP Video

We have found that the SIP driver provided with Asterisk doesprovide support for video if

configured correctly. The SIP private structure,sip_pvt , contains two pointers,rtp andvrtp ,

for media streams. The channel driver uses the SDP information from the SIP packet to determine

whether the media is video or audio as discussed earlier. Based on this information, it then utilises

thevrtp stream for video based media or thertp stream for voice based media. In this section

we will outline how to configure the SIP channel to be capable of video, and demonstrate the

results.

5.2.1 Testing Environment

Figure 5.1: Test setup for SIP video

Figure 5.1 shows the setup of the environment used for testing SIP video. We are using two

Logitech webcams, each connected to a Pentium 4 3.0 GHz machine running Windows XP. For

a video client, we have chosen to use Windows Messenger 5.0. While there are many SIP soft-

phones available, there are very few soft-videophones available. Messenger seems to be the best

client available, and is available freely from the web. Newer versions of Messenger have dropped

the support for setting up SIP directly, so thus Messenger 5.0 is used. We setup Messenger to use

the Asterisk box as the SIP server. This machine is also a Pentium 4 3.0 GHz machine running

the current stable version of Asterisk, Asterisk 1.0.9, on Gentoo Linux.

CHAPTER 5. THE SIP AND H.323 CHANNELS 56

5.2.2 Configuration

To make video possible in Asterisk we need to edit the main SIPconfiguration file of Asterisk

(sip.conf). Below is an extract of what the configuration file should contain to enable video in

the SIP channels.

[general]

...

videosupport=yes

allow=h261

allow=h263

This configuration allows the usage of the codecs H.261 and H.263, and enables video support.

H.261 and H.263 are the prominent video codecs used for videotelephony in commercial video

phones and most video conferencing systems. Asterisk does support these codecs, so it is impor-

tant that our channels are setup with the ability to make use of these codecs.

The next step is to add a registration account for the endpoint to use when signing in. This

is also done in the sip.conf file. Below is another extract from this file to set up an account for

registration with the Asterisk SIP proxy.

[4000]

type=friend

context=default

username=4000

secret=1234

host=dynamic

callerid=”SIP Video Phone”

This is identical to the configuration used for setting up a SIP voice client in Asterisk. In this

example, we have created an account 4000 on our SIP proxy witha password of 1234 and a caller

id of “SIP Video Phone”. These settings just need to be inserted into the video phone along with

the IP address of our Asterisk box. Video calls will then be possible through Asterisk. More

information about setting up sip.conf may be found in [19].

In order for us to be able to dial the video phone from another video phone, we need to

insert an extension into the Asterisk dialplan. This is located in another configuration file called

extensions.conf. Below is an extract from this configuration file which makes dialing our video

phone from another phone a possibility.

CHAPTER 5. THE SIP AND H.323 CHANNELS 57

Figure 5.2: Setup of windows messenger 5.0

[default]

exten => 4000,1,Dial(SIP/4000)

We have now registered the video phone as a number 4000. By dialing this number from another

phone we will be able to communicate with our video phone. To read more about the dialplan

see [19].

Figure 5.2 illustrates the setup of Windows Messenger as a video phone. First you open the

option dialog box, and navigate to the Account tab. Next, youtick the box for a SIP Commu-

nications Service, and enter the SIP URL as your Sign-in name. The SIP URL is of the form

username-in-asterisk@ip-address-of-server. Finally, you click on the Advanced button and se-

lect Configure settings. You then input the server IP addressand choose UDP as the protocol for

connection. This configuration results in a video phone using Windows Messenger.

5.2.3 Results

The results of a call between two Windows Messenger endpoints may be seen in Figure 5.3. As,

this figure shows, the video call was completed successfully.

CHAPTER 5. THE SIP AND H.323 CHANNELS 58

Figure 5.3: SIP video in operation

5.3 H323 Channel Implementations

A default installation of Asterisk does not include a channel driver compiled for H.323 support

in Asterisk. We have sourced four different channel driversfor H.323. For each of these drivers,

one has to collect the correct versions of their H.323 libraries, and then compile the channels

with the correct configuration. In this section we will take alook at the channels, their basic

architectures, advantages and disadvantages.

5.3.1 The OH323 channel

The OpenH323 (OH323) channel driver [16] was the first H.323 channel available for Asterisk.

It utilises the OpenH323 stack, which is a complete open source H.323 implementation used by

products such as gnomemeeting. Since its initial releases,it has undergone a lot of improvements

and developed into a really robust H.323 channel driver. It is now capable of a much higher load

and is still an active and developing project. OH323 is not included with Asterisk because of

licencing issues. We have installed versions 0.5.9, 0.5.10, 0.6.0, 0.6.6, and 0.7.2 of this channel

during this project, using the versions of OpenH323 recommended in the installation instructions

of each version. We have used all these drivers for audio based calls, speaking with other chan-

nels such as the SIP channel. iLanga currently uses version 0.5.10 of the OpenH323. Since this

channel driver has proven reliable, and is still developing, it is the choice channel implementation

CHAPTER 5. THE SIP AND H.323 CHANNELS 59

for this project.

5.3.2 The H323 channel

The H323 channel driver was written by Jeremy McNamara to provide better usage of the RTP

stack than the older versions of OH323. It claims to support ahigher load than the older OH323

channel drivers [19]. This H.323 channel is included with Asterisk. It has based its signalling

on the older versions of the OH323 channel driver, but has been altered to use the Asterisk RTP

media stack for translation rather than requesting raw audio for translation purposes. There is a

marked similarity to the SIP channel code in terms of RTP, however it lacks the implementation

of avrtp stream and does not use theast_rtp_bridge for bridging between two H323 channels

but rather a H.323 channel bridge similar to the one in older versions of the OH323 channel. The

signalling uses the OpenH323 stack, however the back end used to interface with OpenH323

limits the version that may be used with OpenH323 1.12.2 and Pwlib 1.5.2 which are rather out-

dated. This means that improvements in the OpenH323 stack interms of speed an functionality

may not be taken advantage of with this channel.

5.3.3 The OOH323 channel

Objective Systems have developed an H.323 channel driver, Objective Open H323 (OOH323)

[18], in C++. It is based on their own H.323 stack, which is limited in comparison to the mature

OpenH323 stack. It is rather new and unexplored, but looks like in time it will be very promising.

Currently the stack provides support for most of the common voice and video codecs, but the

channel driver only provides support for a limited amount. The channel driver currently only

supports ulaw, gsm, g729a, g723.1 and rfc2833. There are development plans to include support

for more audio codecs as well as video. It is currently included in the asterisk-addons package

for the development version (unstable) of Asterisk 1.2.0, which has just recently been released as

beta. The OOH323 channel is not considered suitable for iLanga, as it is currently only available

in Asterisk 1.2.0 which hasn’t been released as a stable version. We have installed and tested this

channel in Asterisk 1.2.0 beta using both version 0.7.2 and 0.7.3 of the OOH323 stack.

5.3.4 Channel Woomera

Channel Woomera [13] is a channel for the Woomera framework.Woomera is a basic text proto-

col designed by Craig Southern . Currently woomera only supports H.323 using the OpenH323

CHAPTER 5. THE SIP AND H.323 CHANNELS 60

stack but will soon support the OPAL VoIP abstraction layer which will allow it to speak to

many other protocols. It is not an ideal companion to Asterisk, however since it translates the

signalling to a common protocol which is part of the advantage of Asterisk. This could also lead

to a problem of generality, where new features are not supported by Woomera and hence are

not available to the end points. We can accomplish the same results, if not better, using generic

channels for the various protocols because we don’t have a go-between. The advantage however

is that as Woomera develops, new protocols will be supportedby it, and this will be inherited

into Asterisk through Woomera. We have installed and compiled the channel on Asterisk 1.2.0

beta.

5.4 No H323 Video

Netmeeting, which is provided in the default installation on Windows XP, is used as a client for

the H.323 endpoints. We can show that that the OpenH323 and Pwlib installed on the server

supports video. Gnomemeeting is an application, similar tonetmeeting, available in Linux for

H.323 video. By initiating a call between netmeeting and gnomemeeting, we can show that the

OpenH323 and Pwlib installed on that machine are configured correctly for video.

(a) gnomemeeting (b) netmeeting

Figure 5.4: gnomemeeting speaking with netmeeting

CHAPTER 5. THE SIP AND H.323 CHANNELS 61

Figure 5.4 illustrates a call between netmeeting and gnomemeeting running on the server.

We can see that video is operational. Because the sever does not have a webcam installed, it just

sends a gnomemeeting logo which moves around. We can see the gnomemeeting logo coming

though to netmeeting and the video coming through to gnomemeeting. This proves that the cur-

rent installation of OpenH323 and Pwlib supports video.

None of the H.323 channels we have discussed support video. We have attempted to initialise

video calls with all four of the channels mentioned in the previous section, but it did not work

with any of them. A closer look at the source code reveals thatthe interface between OpenH323

and the channel drivers for the OH323 channels and H323 channels does not contain routines to

video in terms of media and signalling.

static struct ast_rtp * oh323_get_vrtp_peer(struct ast_channel * chan)

{

return NULL;

}

This extract is taken from the H323 channel’s code, which uses the Asterisk RTP stack. This

clearly does not send any video. Attempts to model the code onthe SIP channel driver failed,

as the socket information could not be extracted using the interface to OpenH323. Adding vrtp

pointers thus proved futile, as the signalling could not be handled with the current implemen-

tation. Thus providing video would incorporate a thorough investigation into the OpenH323

libraries and creating an interface for the channel driver to use for signalling and media handling,

which is beyond the scope of this project, but is suggested asa future extension.

5.5 Inheritance of features

There are many facilities available to the channels in Asterisk. These include services such

as conferencing, call transfer, call parking, music on hold, and a large range of applications,

written using Asterisk Gateway Interface (AGI) Scripts andthe C API. This provides a lot of

flexibility, and allows easy service creation within Asterisk. We have found that the call parking,

call transfer and music on hold to all be operational with theSIP video channels. Call parking

freezes the last video frame received, and plays music on hold as it does on the voice end points.

Call transfer works really well. Conferencing, however does not work. The MeetMe application

CHAPTER 5. THE SIP AND H.323 CHANNELS 62

which is used for setting up conferences claims to support video, however in reality that support

is not yet available, because of the lack video mixers in the MeetMe application.

5.6 Summary

This chapter has described the channel implementations available for SIP and H.323 within As-

terisk. It began with a detailed look at the SIP channel driver, and then elaborated on the con-

figuration of SIP video. It also took a look at the various H.323 channels we have installed, and

highlighted the lack of H.323 video support, and where the problem lies with evidence of the

H.323 stack supporting video. It concluded with a summary ofthe inheritance of features in

which we saw that call parking and call transfer are successfully carried over to video.

Chapter 6

iLanga User Interface and Extensions

The iLanga user interface provides a web based system for thePBX. It contains a directory

listing, facilities for listening to voicemail and a database of calls made with their costs. It is

designed to be extensible. In this chapter we briefly discussthe architecture of the web interface,

and show and explain the extensions that we have made for providing call parking and call

transfer facilities within the interface.

6.1 Architecture

Figure 6.1: Architecture of the web interface

The basic architecture of the iLanga User interface is shownin Figure 6.1. The interface is

a Flash project designed using Macromedia Flash MX 2004 Professional. This interface uses

63

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 64

PHP and Perl scripts to get data from a MySQL database which contains information about the

users, their devices and the calls that have been made. This information is then displayed us-

ing a variety of movie clips (basic graphical components in Flash) and text in Flash. The Flash

interface communicates with a Python script using XML Sockets, a feature readily available in

Flash. This Python script then communicates with the Asterisk Manager Interface, passing only

necessary responses back to the User interface using XML.

The remainder of this section describes the manager interface, the Python script and the

extensibility this architecture provides.

6.1.1 Asterisk Manager Interface

The Asterisk Manager Interface (otherwise known as the Manager API) provides a method of

performing various actions remotely by sending plain text commands over a TCP connection.

This TCP port is opened when the Asterisk PBX starts up if it isenabled in the configuration file

manager.conf . The manager interface provides external applications with the ability to connect

to this port and communicate with Asterisk by writing and reading requests and responses re-

spectively. Various actions such as initialising a call, closing a channel and redirecting a call are

possible. The Asterisk Manager Interface also reports the state of devices using a response. Too

many connections to the manager interface can cause instability in the system. It is for this rea-

son that we create a middle layer between our Flash interfaceback end and the Asterisk manager

interface using a Python script.

6.1.2 Python script

The Python script is written using the twisted framework. The twisted framework, written in

Python, was created for writing networked applications. Itincludes implementations for many

common used network services, and is a perfect choice for managing the TCP connections that

are required for interfacing between our user interface andthe manager interface. This script

may be readily extended to support more features so that moreinformation may be fetched by

the user interface from multiple sources using new XML commands in the user interface back

end.

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 65

6.1.3 Extensibility

The extensibility provided by this architecture is rather useful. It means that we can easily extend

the user interface to provide new features for the users. By writing new action scripts, adding

new graphical and textual objects to the Flash project and adding to the Python scripts, we can

easily add features to the user interface. Features such as call transfer and call parking are not

possible on soft phones which do not support the sending of DTMF tones while in a call. We

can easily add these features to the user interface. The nextsection expands on the extensions

that we have made to the user interface. Further informationon the user interface and the twisted

framework may be found in [10].

6.2 Extensions

This section exposes the extensions we have made to the iLanga user interface to add call transfer

and call parking. It gives details on the manager interface commands used, and show screen shots

of the new interface with details on the operation of these new features.

6.2.1 Call Transfer

Asterisk provides facilities for call transfer. We can makethis facility available to the users by

addingtT to the arguments sent to the dial application when initiating a call. Call transfer is

usually done by pressing# on the phone and entering the extension to which you wish to transfer

the call. Unfortunately, many video phones, especially soft phones such as Window Messenger,

cannot send DTMF tones during a call and hence they are not able to use this facility.

The manager interface in Asterisk 1.0.9 has the ability to docall transfer using aRedirect

action. We thus decided that we will extend the iLanga user interface to provide facilities for call

transfer by sending the relevant manager interface commands.

The following command can be used to transfer a call in the manager interface:

Action: Redirect

Channel: SIP/200-8f54

Context: local-from-sip

Exten: 9600

Priority: 1

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 66

The channel field can be obtained using theCommandaction in the manager interface command

to run show channels . This request returns a response containing the results obtained when

runningshow channels in the CLI. The following manager interface command is used:

Action: Command

Command: show channels

From these results we choose the appropriate channel name, ie. our end of the call. The channel

names are quite intuitive, so this process can be easily replicated with a script.

In order to make call transfer a possibility in the user interface we have created a few Flash

movies that are used in the interface. We also have written Flash action scripts which send the

commands to the manager interface via the Python script. Forthis, XML Sockets are used in

the same manner as before. The next step was to add some code tothe Python script so that it

can pass back the channel names involved in the call to Flash.Extracts of the source code and

explanations are contained in Appendix C.

Figure 6.2: Initiating a call transfer

Figure 6.2 illustrates our updated user interface for call transfer. The status button located at

the bottom right corner of the interface is red when we are in acall. If the user takes this button

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 67

and drags it to a person in the directory, as indicated in Figure 6.2, they may transfer the call to

that person. The user may also click on the person’s name in the directory for the same effect.

Figure 6.3 then appears requesting confirmation of the call transfer requested. If you click on

Yes, then the user interface performs the call transfer using the XML sockets to communicate

with the Python script, as described earlier.

An information tab has been made available within the directory which explains how to

transfer a call. This is illustrated in Figure 6.4.

6.2.2 Call Parking

Asterisk also provides call parking facilities. We park a call by transferring it to the extension de-

fined as the parking extension. Call parking is configured in the configuration filefeatures.conf

in Asterisk 1.0.9. In this configuration file we specify the call parking extension and the positions

available. For example:

[general]

parkext => 400 ; What ext. to dial to park

parkpos => 401-420 ; What extensions to park calls on

context => local-from-sip ; Which context parked calls are i n

parkingtime => 600 ; Number of seconds a call can be parked for

When a call is parked, the user is read the number of the parking position, and the other end of

the call receives music on hold until the parked call is retrieved, the parking time has expired or

the parked user hangs up. To park a call using the manager interface, we transfer the call to the

parking extension. This is done in the same manner as specified in the previous section on call

transfer. We just setExten to 400 (or the relevant parking extension).

Call parking is an important facility in a PBX, so we have decided to add this facility to the

user interface. We have done this by creating movie clips forthe various graphical element and

writing action scripts to send XML to the Python script for the relevant manager interface com-

mands.

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 68

Figure 6.3: Confirmation of call transfer

Figure 6.4: The call transfer tab in the updated iLanga interface

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 69

Figure 6.5: Parking a call in the updated iLanga interface

When we are in a call, the colour of the status button in the bottom right corner of the inter-

face is red. We have already noted that dragging it to a personcan initiate a call transfer. Clicking

on it, however, brings up the option of parking the current call. This is illustrated in Figure 6.5. If

the user confirms the request, then the necessary calls are made to the manager interface via the

Python script, and the call is parked and the number read backfor retrieval. It has been decided

not to include the functionality of retrieving a parked callfor security reasons. If you know the

number then you can retrieve the parked call, as with the usual operation of call parking by dial-

ing the number given when the call was parked. Including the retrieval of parked calls into the

interface is a trivial extension. It would just involve sending anOriginate request to the man-

ager interface with the number that has been read out. The parked calls, and the number required

for retrieval, may be retrieved by running theshow parkedcalls command from the CLI. In

the manager interface, we can issue aCommandaction request, or send aParkedCalls action re-

quest. This will cause a response containing information about the calls that are currently parked.

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 70

Figure 6.6: Indication of having parked a call

When we have parked a call, we change the colour of the status button at the bottom right

corner of the interface to orange. This is illustrated in Figure 6.6. The Asterisk Manager interface

sends out an Event responseParkedCall containing information about a parked call. This infor-

mation is received and checked whether the user has parked call. Parked calls time out and may

be hung up. Therefore we check the parked calls at the beginning of each status check within the

interface, and update the status button accordingly.

An information tab has been made available within the directory which explains how to park

a call. This is illustrated in Figure 6.7.

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 71

Figure 6.7: The call parking tab in the updated iLanga interface

6.3 Summary

This chapter has demonstrated the extensibility inherent in the architecture of this web interface

by adding features for call transfer and call parking. We have briefly described the architecture

of this user interface and explained how it co-operates withthe Asterisk manager interface via

the Python script. We have also introduced the manager interface, and the twisted framework

used in the Python script.

Chapter 7

Conclusion

This chapter provides an overview of the document, detailing the achievements and summarising

the findings of our investigation into the provision of videocapabilities in iLanga. It also details

further extensions possible in this field, and concludes thewriteup with final words on the subject.

7.1 Document Summary

Chapter 2 introduced the session based and media based protocols used in real time multimedia.

In particular it described SIP and H.323, two session based protocols which we deal with in this

project. RTP, the media based protocol used by these protocols was also described. Chapter 3

described Asterisk and iLanga, the framework this project is built on. The architectures and fa-

cilities provided have been highlighted, and extensibility discussed. Asterisk, the core of iLanga,

uses a channel-based architecture. This was explored in depth in chapter 4, which takes a look

at channels, the channel API and how they are used. Chapter 4 also demonstrated an example

channel created for proof-of-concept. Chapter 5 continuesfrom the previous chapter. It took a

look at the SIP channel in detail and elaborated on the configuration of SIP video. It also looked

at the various H.323 channels we installed, and highlightedthe lack of H.323 video support,

and expanded on the problem. It finally concluded with a look at the inheritance of features.

This revealed that call parking and call transfer were successfully carried over to video channels.

Chapter 6 demonstrated the web interface and expanded on theextensions made.

72

CHAPTER 7. CONCLUSION 73

7.2 Video in iLanga

We have shown that video is available in iLanga through the media capabilities available in

Asterisk. It does, however, largely depend on the implementation of the particular channel.

Tests have revealed that SIP video is available, while the H.323 channel drivers do not currently

support video. This is because of their channel implementations in terms of handling media and

interfacing with an external H.323 stack.

7.3 Inheritance of features

Natively Asterisk provides facilities such as call parkingand call transfer to the voice channels.

By using the manager interface, and the iLanga user interface, we have performed call trans-

fer and call parking on our video endpoints. This establishes the inheritance of these features

are inherited to video channels. We have found that the MeetMe application, which provides

conferencing facilities to channels, does not support video because of it lack of video mixers.

7.4 Summary of Findings

This project has resulted in the following research findings:

• Channels can be constructed using the channel API.

• Video is possible in iLanga through Asterisk.

• The SIP and IAX2 channels support video.

• The H.323 channel does not support video due to implementations of RTP and the interface

with external stack.

• The features, such as call parking and call transfer, available for voice channels are in-

herited to video channels. When a call is parked on a video channel, music on hold gets

played, as with voice channels, while the screen displays the last video frame received.

• The MeetMe application, for conferencing in Asterisk, doesnot support video as claimed.

CHAPTER 7. CONCLUSION 74

7.5 My project achievements

My project achievements include:

• Documenting and creating a flow chart of the operation of the Dial application used for

initialising a call in Asterisk.

• Producing a document which explains the channel concept, and expands on the channel

API particularly the functions and structures available.

• Implementing an example channel in Asterisk from the knowledge gained. It does not

support media transfer, but outputs to the CLI when a call is initialised.

• Finding video to be available in the SIP channel if it is configured correctly.

• Documenting the configuration of both the SIP end points and the SIP channel for video

support.

• Documenting the basic operation of the SIP channel module.

• Finding H.323 video to not be available in the four channels we have found, compiled and

installed in Asterisk.

• Explaining why this is the case, presenting proof that the OpenH.323 stack provides video.

• Explaining how video is provided in Asterisk.

• Investigating the inheritance of the features available for voice channels to video channels

and reporting the results.

• Extending the iLanga user interface to provide support for transferring and parking calls.

7.6 Further Extensions

This research explains channels and explores the availability of video in iLanga. In this section

we explain some possible extensions which stem from this research.

CHAPTER 7. CONCLUSION 75

7.6.1 Video mail and Video on Hold

The iLanga PBX provides facilities for voice mail and music on hold. The video facilities would

be well complemented with video on hold and video mail. The iLanga user interface could also

be extended to include playback of the video recorded using video mail.

7.6.2 Legacy video channel

There are many legacy video devices around. From this research on the channel API and the

channel structure, a channel may be developed for one of these legacy video devices.

7.6.3 Video MeetMe application

The MeetMe application, as has been mentioned, does not support video. By investigating the

MeetMe application and the various MCUs available, a video MeetMe application could be

developed for video conferencing.

7.6.4 H323 video within a H323 channel

This research has shown that the H.323 channels available for Asterisk do not support video. We

have mentioned that this is because of the handling of media and the interfacing with the external

stack. This extension would involve investigating an external stack, and from this information

rectifying the lack of support for video. A new H.323 channelcould also be built that does not

use an external stack.

7.6.5 H264 codec for cell phone technology

The emergence of third generation cell phone technology, and accompanying devices which

support video raises a need to provide support for this technology. Most of these devices use

the H.264 codec specification for video. This is not available in Asterisk. This extension would

involve taking a look at the H.264 specification and the implementation of codecs and translators

within the Asterisk core and, from this information, developing codecs and translators using

appropriate Asterisk APIs.

CHAPTER 7. CONCLUSION 76

7.6.6 Streaming

Facilities such as video on demand may be developed for the iLanga PBX. This would mean that

a user may dial a number and watch the associated live television stream associated with this

number. This is analogous with the live streaming concept, except using a PBX.

7.7 Final words

iLanga is a full featured PBX developed at Rhodes Universitywhich provides support for high

quality voice over multiple protocols with accompanying services such as voicemail, call for-

warding and call parking. Asterisk, the core of iLanga, utilises a channel-based architecture. We

have provided a detailed overview of the channel API, and described how a new channel can be

created. We have also presented video using Asterisk, and demonstrated the inheritance of fea-

tures for a video channel, answering the question posed. Thefeatures tested include call transfer,

call parking and music on hold.

We have thus investigated the possibility of video in iLanga, and shown that some of the

features available for voice are extended to video.

References

[1] J. Arkko, V. Torvinen, G. Camarillo, A. Niemi and T. Haukka.Security Mechanism Agree-

ment for the Session Initiation Protocol (SIP). IETF Request for Comments 3329. January

2003.

[2] Asterisk.Asterisk Open Source PBX. website located at: http://www.asterisk.org. 2005.

[3] U. Black. Voice over IP. Advanced Communication Series. Prentice Hall. 2000.

[4] G. Camarillo.SIP: Compressing the Session Initiation Protocol (SIP). IETF Request for

Comments 3486. February 2003.

[5] Cisco Systems Inc.Guide to Cisco Systems’ VoIP Infrastructure Solution for SIP. retrieved

from: http://www.cisco.com/univercd/cc/td/ doc/product/voice/sipsols/biggulp/bgsip.pdf.

2000.

[6] I. Dalgic and H. Fang.Comparison of H.323 and SIP for IP Telephony signalling. Proc. of

Photonics East, Boston, Massachusetts. September 1999.

[7] M. Handley, H. Schulzrinne, E. Schooler and J. Rossenberg. SIP: Session Initiation Proto-

col. IETF Request for Comments 2543. March 1999.

[8] J. Hitchcock, J. Penton, A. Terzoli,The design of a graphical frontend for and Asterisk-

based software PBX, South African Telecommunications Networks and Appliances Con-

ference, September 2004, Spiers.

[9] J. Hitchcock.Decorating Asterisk: Experiments in Voice over IP Service Creation for a

Multi-Protocol Environment. Rhodes University. May 2005.

[10] IANA. RTP Parameters. Internet document located at:

http://www.iana.org/assignments/rtp-parameters.

77

REFERENCES 78

[11] IPTel.SIP Express Router. located at: http://www.iptel.org/ser. 2005.

[12] H. Liu and P. Mouchtaris.Voice over IP signalling: H.323 and beyond. IEEE Communica-

tions Magazine. 2000.

[13] A. Minessale.Channel Woomera. located at: http://www.pbxfreeware.org/chan_woomera.

2005.

[14] D. Minoli and E. Minoli.Delivering voice over IP networks. Wiley Computing Publishing.

1998.

[15] Nortel Networks.A Comparison of H.323 v4 and SIP. 3GPP S2, Tokyo, Japan. Technical

Document: S2-000500. January 2000.

[16] OpenH323.Open H.323 channel driver. located at:

http://www.inaccessnetworks.com/projects/Asterisk-oh323. 2005.

[17] OpenGK.Open H.323 gatekeeper. located at: http://www.gnugk.org. 2005.

[18] Objective Systems.OOH323 channel driver. located at: http://www.obj-sys.com. 2005.

[19] Various Parties.VoIP info. Internet forum located at: http://www.voip-info.org. 2005.

[20] J. Penton and A. Terzoli.Asterisk: A Converged TDM and Packet-based Communica-

tions System, South African Telecommunications Networks and Appliances Conference

(SATNAC), September 2003, Fancourt.

[21] J. Penton, A. Terzoli, iLanga:A Next Generation VoIP-based, TDM-enabled PBX, South

African Telecommunications Networks and Appliances Conference (SATNAC), September

2004, Spiers.

[22] J. Rossenberg, J. Lennox and H. Schulzrinne.Programming Internet Telephony Services.

IEEE Internet Computing, Vol. 3, No. 3, pg. 63-72. June 1999.

[23] J. Rossenberg, H.Schulzrinne, G. Camarillo, A. Johnston, J, Peterson, R. Sparks,

M.Handley and E. Schooler.SIP: Session Initiation Protocol. IETF Request for Comments

3261. June 2002.

[24] J. Rossenberg and H.Schulzrinne.Session Initiation Protocol (SIP): Locating SIP Servers:.

IETF Request for Comments 3263. June 2002.

REFERENCES 79

[25] H. Schulzrinne and J. Rossenberg.Internet Telephony: Architecture and Protocols - An

IETF perspective. Computer Networks Vol. 31, No. 3. 1999.

[26] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson. RTP: A Transport protocol for

real time applications. IETF Request for Comments 1889. January 1996.

[27] H. Schulzrinne.RTP Profile for audio and video conferences with minimal control. IETF

Request for Comments 1890. January 1996.

[28] H. Schulzrinne. SIP - Signalling for Internet Telephony and Conferencing.

Slides - Berkeley Multimedia, Interfaces and Graphics Seminar located at:

http://bmrc.berkeley.edu/courseware/ cs298/fall98/w14/slides.pdf. November 1998.

[29] H. Schulzrinne.The Session Initiation Protocol (SIP). Slides: hgs/Tutorial located at:

http://www.cs.columbia.ed/~hgs/teaching/ais/slides/sip_long.pdf. University of Columbia.

May 2001.

[30] H. Schulzrinne and J. Rossenberg.Comparison of H.323 and SIP for IP Telephony. Net-

work and Operating Systems Support for Digital Audio and Video (NOSSDAV), Cam-

bridge, England. 1998.

[31] B. Schwarz.Asterisk Open-Source PBX. Linux Journal Vol. 2004, Issue 118, pg. 6. Spe-

cialized Systems Consultants, Inc. Seattle, WA, USA February 2004.

[32] Team Solutions.Video Conferencing Standards and Terminology. Internet resource located

at: http://www.teamsolutions.co.uk/tsstds.html.

[33] M. Spencer, M. Allison, C. Rhodes, et al.Asterisk Handbook (Version 2). Digium. March

2003.

[34] D. Tarrant and T. Hunt.VoIP - Voice over IP overview. University of Southhampton. Doc-

ument located at: http://www.ecs.soton.ac.uk/~dt302/guides/VOIP-Overview.pdf. August

2004.

[35] Unknown Authors.Implementing a channel. Asterisk source documentation located in

/doc/channel.txt.

Appendix A

More Channel API Functions

Function Description

ast_request_and_dial Description: Request a channel using the function above, and dials

the channel

Example call: ast_request_and_dial(type, format, number, timeout,

reason, callerid) where type is a character array con-

taining the type of channel (eg. SIP), format is an in-

teger referring to the format of the data, number is of

any type and contains the number being called, time-

out an integer containing the value for timing out the

dial attempt, reason is an integer containing a value

representing the reason for failure if it occurs, and cal-

lerid is a character array containing the callerid of the

channel being setup

Returns: ast_channel*, null if unsuccessful

ast_soft_hangup Description: Hangsup the channel as above, however does notde-

stroy the channel structure just sets a variable _soft-

hangup to the cause variable (This can be used to

safely hangup a call managed by another thread)

Example call: ast_softhangup(chan, cause) where chan is a pointer

to an ast_channel struct of the channel which is be-

ing softly hangup, and cause is an integer used for the

value of the variable

Returns: int, always 0

80

APPENDIX A. MORE CHANNEL API FUNCTIONS 81

Function Description

ast_check_hangup Description: Determine whether hangup has been requested for a

channel

Example call: ast_check_hangup(chan)where chan is a pointer to the

ast_channel struct for which you are enquiring

Returns: int, 1 if hangup requested otherwise 0

ast_channel_setwhentohangupDescription Place a time limit on when to hangup a channel

Example call: ast_channel_setwhentohangup(chan, offset) where

chan is a pointer to the ast_channel struct of the chan-

nel you wish to place a time limit upon, and offset is a

time_t variable which is the time in seconds from the

current time that you are requesting a hangup of the

channel specified

Returns: void

ast_senddigit Description: Sends a digit to a channel using a function in the chan-

nel driver

Example call: ast_senddigit(chan, digit) where chan is a pointer to

the ast_channel struct of the channel to which we are

sending a digit and digit is a character containing the

digit being sent

Returns: int, 0 always

ast_channel_masquerade Description: Creates a clone of a specified channel, taking the guts

of the channel and moving it to another channel, then

destroying the old channel structure, leaving the guts

in the new channel

Example call: ast_channel_masquerade(original, clone) where orig-

inal and clone are pointers to the ast_channel structs

which we are dealing with for the masquerade de-

scribed above

Returns: int, -1 on error, 0 on success

APPENDIX A. MORE CHANNEL API FUNCTIONS 82

Function Description

ast_begin_shutdown Description: Initiate a system shutdown, stop channels from being

allocated

Example call: ast_begin_shutdown(hangup)where hangup isan inte-

ger representing a boolean value of whether or not to

soft hangup all channels in operation

Returns: void

ast_cancel_shutdown Description: cancels an existing shutdown, and resumes normal op-

eration

Example call: ast_cancel_shutdown()

Returns: void

ast_active_channels Description: gets the number of active channels

Example call: ast_active_channels()

Returns: int, the number of active channels

ast_setstate Description: change the state of a current channel

Example call: ast_setstate(chan, state) where chan is a pointer to the

ast_channel struct of the channel we wish to change

the state and state is an integer representing the state

that we are setting the channel to

Returns: int, 0 always

ast_queue_frame Description: queue an outgoing frame

Example call: ast_queue_frame(chan, frame) where chan is apointer

to the ast_channel struct of the channel and frame is a

pointer to an ast_frame which we are going to queue

Returns: int, -1 on frame error, 0 otherwise

ast_queue_control Description: queue an outgoing control using ast_queue_frame

Example call: ast_queue_control(chan, control) where chan is a

pointer to the ast_channel struct of the channel and

control is an integer representing a control frame

Returns: int, -1 on frame error, 0 otherwise

APPENDIX A. MORE CHANNEL API FUNCTIONS 83

Function Description

ast_queue_hangup Description: queue an outgoing hangup

Example call: ast_queue_hangup(chan)where chan is a pointer to the

ast_channel struct of the channel

Returns: int, -1 on error, 0 otherwise

ast_change_name Description: Change the name of a channel

Example call: ast_change_name(chan, newname) where chan is a

pointer to the ast_channel struct of the channel we

wish to change the name of, and newname is a char-

acter array containing the new name

Returns: void

Appendix B

Example Channel

B.1 chan_eg.c
/ *
Fred Otten

Channel Creation Example

Based on Investigations into the SIP, H323 and IAX channel dr ivers

General Conventions and Basic Requirements

* /

#include <stdio.h>

#include <string.h>

#include <asterisk/lock.h>

#include <asterisk/channel_pvt.h>

#include <asterisk/cli.h>

#include <asterisk/module.h>

#include <asterisk/logger.h>

static char * desc = "Example Channel (EG)";

static char * type = "EG";

static char * tdesc = "Example Channel (EG)";

static char eg_info_usage[] =

"Usage: eg info\n"

" Displays Information about Example Channel\n";

static int usecnt = 0;

AST_MUTEX_DEFINE_STATIC(usecnt_lock);

static int eg_info(int fd, int argc, char * argv[])

{

ast_log(LOG_NOTICE, "This is the example channel in Asteri sk\n");

return 0;

}

static struct ast_cli_entry cli_eg_info =

{ { "eg", "info", NULL }, eg_info, "Example Channel Informat ion", eg_info_usage };

static int eg_hangup(struct ast_channel * ast)

{

return 0;

}

static int eg_call(struct ast_channel * ast, char * dest, int timeout)

{

ast_verbose("== Initiating a new call to the example channe l ==\n");

return 0;

84

APPENDIX B. EXAMPLE CHANNEL 85

}

static struct ast_channel * eg_new(char * title)

{

ast_verbose("== Creating a new Example Channel :) ==\n");

struct ast_channel * tmp;

tmp = ast_channel_alloc(0);

if (tmp)

{

char * p = "pvt";

snprintf(tmp->name, sizeof(tmp->name), "EG/%s-%04x", t itle, rand() & 0xffff);

tmp->type=type;

tmp->pvt->call=eg_call;

tmp->pvt->hangup=eg_hangup;

tmp->pvt->pvt=p;

ast_setstate(tmp, AST_STATE_UP);

ast_mutex_lock(&usecnt_lock);

usecnt++;

ast_mutex_unlock(&usecnt_lock);

}

else

ast_log(LOG_WARNING, "Unable to create channel");

return tmp;

}

static struct ast_channel * eg_request(char * type, int format, void * data)

{

struct ast_channel * tmpc = NULL;

char * dest = data;

tmpc = eg_new(dest);

return tmpc;

}

int load_module()

{

if (ast_channel_register(type, tdesc, 2, eg_request))

{

ast_log(LOG_ERROR, "Unable to register channel class %s\n ", type);

return -1;

}

ast_cli_register(&cli_eg_info);

return 0;

}

int unload_module()

{

ast_cli_unregister(&cli_eg_info);

ast_channel_unregister(type);

return 0;

}

int usecount()

{

int res;

ast_mutex_lock(&usecnt_lock);

res = usecnt;

ast_mutex_unlock(&usecnt_lock);

return res;

}

char * key()

{

return ASTERISK_GPL_KEY;

}

char * description()

{

return desc;

}

Appendix C

iLanga User Interface Extensions

C.1 directory.fla

C.1.1 Action script extracts

Call Parking

on(release) {

var chan = this._parent._parent._parent._parent._paren t._parent.mc_statusbar.mc_jason.otherchan;

if (chan != "")

{

myStr = "Action: Redirect, Channel: "+ chan +", Exten: 400,C ontext: from-manager, Priority: 1;\r\n";

this._parent._parent._parent._parent._parent._paren t.mc_statusbar.mc_jason.myXMLSocket.send(myStr);

}

this._parent.removeMovieClip();

}

Call Transfer

on(release) {

var chan = this._parent._parent._parent._parent._paren t._parent.mc_statusbar.mc_jason.ourchan;

if (chan != "")

{

myStr = "Action: Redirect, Channel: "+ chan +", Exten: " + _pa rent.callchannel + ",Context: from-manager,

Priority: 1;\r\n";

this._parent._parent._parent._parent._parent._paren t.mc_statusbar.mc_jason.myXMLSocket.send(myStr);

}

this._parent._parent.userSP.spContentHolder.disable self(false);

this._parent.removeMovieClip();

}

Setting up tabs

tabsd=["PBX Directory","My Directory","Call Transfer", "Call Parking"]

86

APPENDIX C. ILANGA USER INTERFACE EXTENSIONS 87

C.1.2 Graphics and movie clips

This section shows the movie clips that have been created in Flash for call transfer and call

parking.

Figure C.1: Call Parking dialog box

Figure C.2: Call Parking tab in the directory

APPENDIX C. ILANGA USER INTERFACE EXTENSIONS 88

Figure C.3: Call Transfer dialog box

Figure C.4: Call Transfer tab in the directory

C.2 nav.fla

C.2.1 Action script extracts

LED Button
This contains code for the dragging of the LED buttons and thegeneral state.

this.buttons = ["red", "green", "Flashing", "orange"];

this.states = ["up", "down", "ringing", "down"];

this.attachMovie("redled","red",10);

this.attachMovie("greenled","green",11);

this.attachMovie("Flashingled","Flashing",12);

APPENDIX C. ILANGA USER INTERFACE EXTENSIONS 89

this.attachMovie("orangeled","orange",13);

this.UP = 0;

this.DOWN = 1;

this.RINGING = 2;

this.PARKED = 3;

this.setstate = function(n) {

this.state = n;

if(this.state == this.DOWN) {

this.green._visible = true;

this.red._visible = false;

this.Flashing._visible = false;

this.orange._visible = false;

}

else

if(this.state == this.UP) {

this.green._visible = false;

this.red._visible = true;

this.Flashing._visible = false;

this.orange._visible = false;

}

else

if(this.state == this.RINGING) {

this.green._visible = false;

this.red._visible = false;

this.Flashing._visible = true;

this.orange._visible = false;

}

else

if(this.state == this.PARKED) {

this.green._visible = false;

this.red._visible = false;

this.Flashing._visible = false;

this.orange._visible = true;

}

}

if (this.state!=3) { this.setstate(this.DOWN); }

this.onPress = function() {

var m = this._parent._parent._parent;

m.attachMovie(this.buttons[this.state]+"led","mouse icon",100);

m.onMouseMove = function() { updateAfterEvent(); }

var xdiff = this._parent._xmouse-this._x;

var ydiff = this._parent._ymouse-this._y;

m.mouseicon.state = this.state;

m.mouseicon._x = m._xmouse-xdiff;

m.mouseicon._y = m._ymouse-ydiff;

m.mouseicon.origx = m.mouseicon._x;

m.mouseicon.origy = m.mouseicon._y;

m.mouseicon.orig = this._parent;

m.mouseicon.onMouseUp = function() {

stopDrag();

if ((Math.abs(this._x-700)<5) and (Math.abs(this._y-55 4)<5)) {

if (this.state==3) {

// Call currently parked

}

else {

// Park the call

this._parent.parkCall(this.state);

}

m.movemouseicon = true;

}

else {

m = this._parent;

var dt = eval(this._droptarget);

if(dt._parent._parent and (dt._parent._parent==m.nav. container.holder.directory.userSP.spContentHolder)) {

m.makeCall(dt._parent.number.text,dt._parent.fname. text+" "+dt._parent.lname.text,this.state);

this.removeMovieClip();

}

else {

m.movemouseicon = true;

}

}

APPENDIX C. ILANGA USER INTERFACE EXTENSIONS 90

}

startDrag(m.mouseicon,false);

}

stop();

Frame 1
Contains code for XML Sockets and the code called when we click on the directory

myPark = "Action: ParkedCalls\r\n\r\n";

MyXMLSocket.send(myPark);

//parkedcall

if (messageportions[0] eq "Event: Link"){

ourchan = messageportions[1].substring(10);

otherchan = messageportions[2].substring(10);

devData = new LoadVars()

devData.username = _global.username;

devData.password = _global.passwd;

devData.parent = this;

devData.onLoad = function(success)

{

if (success) {

var n;

var temp = 0;

for(n = 0; n < this.num; n++) {

if (ourchan.indexOf(this["channel"+n])!=-1)

{

temp = 1

}

}

if (temp==0)

{

tmp = ourchan;

ourchan = otherchan;

otherchan= tmp;

}

}

}

devData.sendAndLoad("http://pbx.ict.ru.ac.za/iLanga /userdevices.php",devData,"POST");

}

if (messageportions[0] eq "Event: Unlink"){

ourchan = "";

otherchan = "";

}

if (messageportions[0] eq "Event: ParkedCall"){

leds.setstate(3);

}

function makeCall(dnumber,dname,state) {

if (state==0){

//Call Transfer

this.nav.container.holder.directory.attachMovie("ca lltransfer","calltransfer0",1000);

this.nav.container.holder.directory.calltransfer0._ x = 180;

this.nav.container.holder.directory.calltransfer0._ y = 80;

if (_global.language == "en") {

this.nav.container.holder.directory.calltransfer0.t itle.text = "Call Transfer";

this.nav.container.holder.directory.calltransfer0.q text.text = "Are you sure that you would like\n

to transfer your current call to\n " + dname;

}

else {

this.nav.container.holder.directory.calltransfer0.t itle.text = "Call Transfer";

APPENDIX C. ILANGA USER INTERFACE EXTENSIONS 91

this.nav.container.holder.directory.calltransfer0.q text.text = "Are you sure that you would like\n

to transfer your current call to\n " + dname;

}

this.nav.container.holder.directory.calltransfer0.e xtension = dnumber;

this.nav.container.holder.directory.calltransfer0.s tatusbarroot = statusbarroot;

}

if (state==1){

var statusbarroot = this.nav.mc_statusbar.mc_jason;

trace(statusbarroot);

this.nav.container.holder.directory.userSP.spConten tHolder.disableself(true);

this.nav.container.holder.directory.attachMovie("ch oosedev","choosedev0",1000);

this.nav.container.holder.directory.choosedev0._x = 1 80;

this.nav.container.holder.directory.choosedev0._y = 8 0;

trace("testing");

if (_global.language == "en") {

this.nav.container.holder.directory.choosedev0.titl e.text = "Please select the device to use to call "

+ dname + ")";

trace("in here");

}

else {

this.nav.container.holder.directory.choosedev0.titl e.text = "Nceda ukhethe isixhobo osifunayo ("

+ dname + ")";

}

this.nav.container.holder.directory.choosedev0.exte nsion = dnumber;

this.nav.container.holder.directory.choosedev0.stat usbarroot = statusbarroot;

this.nav.container.holder.directory.choosedev0.phon esSP.contentPath="phoneclips";

}

}

function parkCall(state) {

if (state==0){

//Call Transfer

this.nav.container.holder.directory.attachMovie("ca llpark","callpark0",1000);

this.nav.container.holder.directory.callpark0._x = 18 0;

this.nav.container.holder.directory.callpark0._y = 80 ;

if (_global.language == "en") {

this.nav.container.holder.directory.callpark0.title .text = "Call Parking";

this.nav.container.holder.directory.callpark0.qtext .text = "Are you sure that you would like\n to park your

current call";

}

else {

this.nav.container.holder.directory.callpark0.title .text = "Call Parking";

this.nav.container.holder.directory.callpark0.qtext .text = "Are you sure that you would like\n to park your

current call";

}

}

if (state==3){

// Get parked call

}

}

C.2.2 Graphics and movie clips

This section shows the movie clip created in Flash. This is status button when a call is parked.

APPENDIX C. ILANGA USER INTERFACE EXTENSIONS 92

Figure C.5: Status button when a call is parked

C.3 ilangaproxy.py

The messageRecieved method processes any message received from the Manager interface.

It uses a variablesendmessage as a boolean value originally false. This is updated using the

methods defined such aschannelFilter , mailboxFilter , ExtStateFilter , isAdminUser ,

parkedCallFilter , linkFilter and unlinkFilter which each check the message to see

whether it matches their functionality, and if this is the case then they return true, and the

sendmessage variable then becomes true, which results in the message being sent to the Flash

user interface.parkedCallFilter , linkFilter andunlinkFilter are used for call parking

and call transfer, and have been created during this project. The manager interface passes aLink

and Unlink event packet when calls are created and destroyed respectively. The contain the

channel named necessary for call transfer and call parking so thus they are passed to the Flash

interface.parkedCall filter manages theParkedCall event packets for updating the status but-

ton in the interface.

Listed below are some extracts from the source file:

def parkedCallFilter(self,message):

chan = ""

parked = 0

for lin in message:

k = lin.keys()[0].strip()

if k == "Event":

if lin[k]=="ParkedCall":

print "We have a parked call"

parked = 1

if k == "From": #"Channel":

chan = lin[k][0:lin[k].find("-")];

if k == "Channel":

inchan = lin[k]

if chan == "":

if parked == 1:

fname="/tmp/park%s.dat" % self.username

parkfile=open(fname,’r’)

chan=parkfile.read().strip()

parkfile.close()

if chan != "":

self.factory.db.query("select * from userdevices where username=’%s’" % MySQLdb.escape_s tring(self.username))

for result in self.factory.db:

if chan.find(result["channel"]) >= 0:

self.factory.db.query("select * from userdevices where channel=’%s’" % MySQLdb.escape_st ring(chan))

for result in self.factory.db:

print result["username"]

APPENDIX C. ILANGA USER INTERFACE EXTENSIONS 93

if result["username"]==self.username:

fname="/tmp/park%s.dat" % self.username

parkfile=open(fname,’w’)

parkfile.write(inchan)

parkfile.close()

print "parked %s from %s username %s\n" % (inchan, chan, self .username)

return 1

return 0

def linkFilter(self,message):

chan = ""

temp = 0

for lin in message:

k = lin.keys()[0].strip()

if k == "Event":

if lin[k]=="Link":

temp = 1

if k == "Channel1":

chan1=lin[k];

if k == "Channel2":

chan2=lin[k];

if temp == 1:

self.factory.db.query("select * from userdevices where username=’%s’" % MySQLdb.escape_s tring(self.username))

for result in self.factory.db:

if chan1.find(result["channel"]) >= 0:

return 1

if chan2.find(result["channel"]) >= 0:

return 1

return 0

def unlinkFilter(self,message):

chan = ""

temp = 0

for lin in message:

k = lin.keys()[0].strip()

if k == "Event":

if lin[k]=="Unlink":

temp = 1

if k == "Channel1":

chan1=lin[k];

if k == "Channel2":

chan2=lin[k];

if temp == 1:

self.factory.db.query("select * from userdevices where username=’%s’" % MySQLdb.escape_s tring(self.username))

for result in self.factory.db:

if chan1.find(result["channel"]) >= 0:

return 1

if chan2.find(result["channel"]) >= 0:

return 1

return 0

def messageReceived(self,message):

sendmessage = 0

sendmessage = sendmessage or self.channelFilter(message) or self.mailboxFilter(message) or self.ExtStateFilter (message) or

self.isAdminUser() or self.parkedCallFilter(message) o r self.linkFilter(message) or self.unlinkFilter(messag e)

if sendmessage:

for z in message:

k = z.keys()[0].strip()

self.sendLine("%s: %s\r\n" % (k, z[k]))

