
'

&

$

%

HYDRA : A PYTHON EXTENSION FOR
PARALLELISM

Submitted in partial fulfilment

of the requirements of the degree of

BACHELOR OFSCIENCE (HONOURS)

of Rhodes University

Waide Barrington Tristram

Grahamstown, South Africa

November 2008

Abstract

Parallel and concurrent programming is a very broad and wellresearched field. There are

numerous models and frameworks for parallel programming, however these frameworks vary

in their scope and ease of use. This research investigates the feasibility of developing a CSP

to Python translator using a concurrent framework for Python. The objective of this translation

framework, developed under the name of Hydra, is to produce atool that helps programmers

implement concurrent software easily using CSP algorithms. This objective was achieved using

the ANTLR compiler generator tool, Python Remote Objects and PyCSP. The resulting Hydra

framework is able to take an algorithm defined in CSP, parse and convert it to Python and then

execute the program using multiple instances of the Python interpreter. Testing revealed that

the Hydra framework does indeed function correctly, allowing simultaneous process execution,

while introducing negligible overhead. Therefore, it can be concluded that converting CSP

to Python using a concurrent framework such as Hydra is both possible and beneficial to the

advancement of concurrent software.

ACM Computing Classification System Classification

Thesis classification under the ACM Computing Classification System (1998 version, valid

through 2009) [16]:

D.1.3[Concurrent Programming]: Parallel programming

D.3.2[Language Classifications]: Concurrent, distributed, andparallel languages

D.3.3[Language Constructs and Features]: Concurrent programming structures

D.3.4[Processors]: Code generation, Compilers

General-Terms: Languages, Performance

Acknowledgements

The completion of this thesis is the result of many months of hard work and it would be an

injustice to imply that I was not helped along the way. I wouldtherefore like to thank all those

who contributed to this project’s completion, whether it bein the form of technical assistance,

guidance or by providing support throughout the year. Thereare a number of people that I

would to give special thanks to.

Firstly, I would like to acknowledge the financial and technical support of Telkom SA, Business

Connexion, Comverse SA, Verso Technologies, Stortech, Tellabs, Amatole, Mars Technologies,

Bright Ideas Projects 39 and THRIP through the Telkom Centreof Excellence in the Department

of Computer Science at Rhodes University.

Secondly, I would also like to acknowledge the assistance ofthe Rhodes University Postgradu-

ate Funding division for the Rhodes University Postgraduate Scholarship extended to me, and

the National Research Foundation for the NRF Prestigious Honours Scholarship awarded to me.

It must be noted that this research was initiated and performed under my own volition and was

not influenced by the above parties.

Thirdly, I would like to thank my parents, Tony Tristram and Deborah Moore, for their con-

tinued support and encouragement throughout my academic career. This would not have been

possible without their love and guidance. I would also like to thank my step-father, Alan Moore,

for accepting me into his family openly and providing his support throughout the year.

I would also like to thank my colleagues in the Department of Computer Science at Rhodes

University. Without them, this year would not have been as fun and enjoyable as it was and

their encouragement and friendship was much appreciated. In particular, I would like to thank

Blake Friedman the input and ideas he offered during our discussions on Hydra.

Finally, I would like to thank my supervisor, Dr. Karen Bradshaw. Without her continued

input, support and guidance, this thesis would not have beenpossible. Her understanding and

supportive nature has helped me overcome many obstacles over the course of the year.

Contents

1 Introduction 8

1.1 Problem Statement and Research Goals 9

1.2 Thesis Organisation .. . 9

2 Background and Related Work 11

2.1 Introduction .11

2.2 Key Terminology and Concepts 11

2.3 Multi-Processor Systems and Parallel Programming 12

2.4 Communicating Sequential Processes 13

2.4.1 The CSP Programming Notation .14

2.4.2 The CSP Meta-Language . 16

2.4.3 CSP Implementations . 16

2.5 The Python Programming Language 16

2.5.1 Features and Benefits . 17

2.5.2 Limitations . 17

2.6 Existing Concurrent Frameworks 18

2.6.1 Translation to an Intermediate CSP Implementation 19

2.6.2 Use of a Python-based CSP Implementation 20

2.7 Summary . 22

1

CONTENTS 2

3 Methodology 23

3.1 Introduction .23

3.2 Approach . 23

3.3 Summary . 24

4 Parsing CSP 25

4.1 Introduction .25

4.2 Basic Parser Construction 25

4.3 Types of Parsers .26

4.4 Prototype Parser Implementation 27

4.4.1 Prototype Design . 28

4.4.2 Hand-crafted CSP Scanner .29

4.4.3 Recursive-Descent CSP Parser .. . 30

4.5 Parser Generators .. 33

4.5.1 ANTLR . 34

4.5.2 CocoPy . 36

4.5.3 Parsing and PyParsing . 36

4.5.4 PLY . 37

4.5.5 Wisent . 37

4.5.6 Yapps, Yappy and Yeanpypa . 38

4.5.7 Parser generator selection .. . 39

4.6 ANTLR Grammar for CSP . 39

4.6.1 The Lexer . 39

4.6.2 The Parser . 41

4.7 Summary . 45

5 Code Generation 46

5.1 Introduction .46

5.2 JCSP Prototype Code Generator 47

CONTENTS 3

5.2.1 Background and Framework . 47

5.2.2 JCSP Code Generation . 48

5.3 Concurrent Frameworks .. 50

5.3.1 Python Remote Objects . 50

5.3.2 PyCSP . 51

5.3.3 River and Trickle . 51

5.4 Python Code Generation .. 52

5.4.1 ANTLR Tree Walker . 52

5.4.2 StringTemplate . 52

5.4.3 Implementation . 53

5.4.4 Process Distribution and Execution 55

5.5 Summary . 57

6 Results 58

6.1 Introduction .58

6.2 Testing . 58

6.2.1 Generated Code Analysis .58

6.2.2 Basic Quantitative Analysis .. . 60

6.3 Summary . 61

7 Conclusions 64

7.1 Summary . 64

7.2 Revisiting the Objectives 64

7.3 Future Work . 65

Bibliography 66

A Grammar listings 70

A.1 ANTLR Parser Grammar for CSP .70

A.2 ANTLR Tree Walker Grammar for CSP .. 76

A.3 Extracts from the StringTemplate Group File 83

CONTENTS 4

B Project Poster 86

C CD Contents 88

List of Figures

2.1 A CSP Process with simple declaration and assignment. 14

2.2 The Parallel, Input and Output commands with comments. 15

2.3 The Repetitive and Guarded commands with the use of the Input command as

a Guard. 15

2.4 T-diagram showing the translation of CSP to Java byte code using JCSP [39]. . 19

2.5 T-diagram showing the translation of CSP to Java byte code using CTJ [39]. . . 20

2.6 T-diagram showing the translation of CSP to executable machine code using

CCSP [39]. 20

4.1 Structure and Phases of a Compiler [44]. 26

4.2 Prototype system design. 29

4.3 Specifying and executing CSP within a Python program. 30

4.4 getChar method of the prototype scanner. 30

4.5 Extracts from thegetSym method of the prototype scanner. 31

4.6 Modified EBNF grammar for the Hydra prototype. 32

4.7 Production methods for the Hydra prototype parser. 33

4.8 Screenshot of the ANTLRWorks graphical development environment. 35

4.9 Example AST generated for a simple CSP program. 43

5.1 ANTLR tree walker rules for CSP. 53

5.2 StringTemplate rules for Python code generation. 53

5.3 PYRO channel name registration. 56

5.4 Asynchronous process execution. 56

5

LIST OF FIGURES 6

6.1 Simple producer-consumer CSP example. 59

6.2 Python code for producer-consumer example. 62

6.3 Processor activity during Hydra process execution. 63

6.4 Python interpreter CPU usage during Hydra process execution. 63

List of Tables

4.1 Comparisons between Python based compiler generators.. 40

4.2 Summary of token changes to the CSP lexer. 41

6.1 Testing platform configuration. 59

6.2 Line-count comparison .. . 61

6.3 Communication overhead. .. . 61

7

Chapter 1

Introduction

Parallel computing is by no means a new topic in the field of computer science. Parallel ar-

chitectures started making an appearance from as early as the mid-1960s and continue to be

the primary design for high performance computing systems.This is particularly evident in

modern supercomputers, such as IBM’s Roadrunner and Blue Gene/L, which make use of thou-

sands of processors to achieve their astonishing computational power. However, these systems

are only available to a select few scientists and researchers and it wasn’t until a few years ago

that multi-processor computers started becoming readily available to consumers.

The recent availability of dual and quad core CPUs targeted at the consumer and enthusiast

market has caused an interesting situation in the software field. Multi-core computers have the

power and potential to greatly outperform their single-core counterparts, but this potential can

only be realised if the software is able to make use of multiple processors. Both consumers

and researchers stand to gain from the performance increases afforded by multi-core CPUs and

parallel software. Consumers benefit from faster, more responsive computers that are able to

handle computationally intensive tasks, such as decoding and playing high resolution video.

Researchers benefit from being able to construct small high performance computing systems

for their data processing needs by combining a number of relatively cheap multi-core CPU

systems.

While some progress has been made towards developing betterconcurrent software, there needs

to be a shift in software development practices to harness the power of parallel computers on a

greater scale. With such a shift in development practices comes the need for tools that enable

and assist developers in their task of creating concurrent software. The Hydra project aims to

provide such a tool to Python developers.

8

1.1. PROBLEM STATEMENT AND RESEARCH GOALS 9

1.1 Problem Statement and Research Goals

This research project investigates the feasibility of developing a framework for Python that ex-

poses parallel processing features based on CommunicatingSequential Processes (CSP). There-

fore, a concurrent framework for Python, named Hydra, will be developed to assess the feasibil-

ity of converting directly from CSP to Python, without requiring that the application program-

mer manually convert their algorithm as is the case for existing CSP implementations such as

JCSP.

This framework should be able to generate Python code capable of executing in a parallel man-

ner over an arbitrary number processors in a single computer. Furthermore, this framework

should make it easy specify the process and communication architecture of the program, with

readability and ease of programming being the focus. The details of how the concurrency is

implemented should be mostly hidden from the program developer, while maintaining a clear

mapping between the programmer’s specified architecture and the generated concurrent code.

Most importantly, this framework must improve upon the existing concurrent framework by

automating the algorithm conversion process.

The secondary aims of this project include making the systemflexible and extensible, thereby

allowing for additional features to be added and the abilityto generate code for alternative

architectures, such as Grid computing systems. The performance of the Hydra system should

also be maximised without affecting the primary goals.

1.2 Thesis Organisation

The relevant chapters of this thesis are organised as described below:

Chapter 2 introduces and discusses some of the relevant work in the areas of multi-processor

computers, parallel processing, Communicating Sequential Processes and Python.

Chapter 3 will describe the approach and methodology adopted for the development of the

Hydra system.

Chapter 4 will provide an introduction to language parsing and present an in-depth description

of the prototype and final parsers for the Hydra system.

Chapter 5 describes the code generation process and presents the implementations of both the

prototype and final code generator modules.

Chapter 6 then describes the testing and performance analysis methodology along with test

examples, and goes on to present and discuss the results.

1.2. THESIS ORGANISATION 10

Chapter 7 summarises this thesis and provides conclusions drawn fromthe research, develop-

ment and testing of the Hydra project. Future work and extensions to the Hydra project are then

discussed, bringing the thesis to an end.

Chapter 2

Background and Related Work

2.1 Introduction

This chapter highlights and discusses some of the work in thearea of parallel computing, which

is fairly broad, with a vast amount of literature available.As such, this literature review will

not attempt to cover all of the concepts and work, but will focus instead on work relevant to the

creation of a concurrent framework for Python based on CSP.

The first section defines some of the relevant terminology to aid understanding and clarify how

the terms are used in this review. The second section introduces some of the concepts related to

parallel programming and multi-processor systems, the current trends and motivation for pur-

suing development in this field. The third section describesCSP, its strengths and weaknesses

and how it can be used in the development of concurrent programs. Some existing CSP imple-

mentations are also introduced briefly. The fourth section introduces the Python programming

language, discusses the motivations for choosing Python asthe host language and some of the

issues regarding its use. The sixth section discusses some of the existing concurrent frameworks

such as PyCSP. A basic summary of the work is then provided in the final section.

2.2 Key Terminology and Concepts

A number of terms and concepts relating to parallel computing are defined below. These defi-

nitions serve to aid in the understanding of the forthcomingwork for those who are unfamiliar

with common terms used. They also serve to clarify how the author defines and uses these terms

if other definitions exist.

11

2.3. MULTI-PROCESSOR SYSTEMS AND PARALLEL PROGRAMMING 12

Central Processing Unit (CPU).The Central Processing Unit is the primary instruction exe-

cution engine of a computer system. It is usually made up of a single integrated circuit, which

contains the arithmetic logic unit (ALU), control unit and various caches, registers and memory

controllers. It operates on a fetch, decode and execute cycle for instructions stored in memory

[29].

Concurrency. Concurrency is defined as any set of tasks or processes that are executing and

have the potential to execute simultaneously, but are not necessarily doing so [13].

Multi-core CPU. A multi-core CPU is a CPU that is made up of multiple, separateprocessor

cores placed on the same CPU die. These processor cores are usually able to communicate with

each other over either the system bus, crossbar switches or shared memory, such as the on-die

cache memory [20].

Multiple Instruction set Multiple Data set (MIMD). A MIMD computer consists of a number

of independent CPUs asynchronously executing their own instructions streams on their own data

streams [13].

Parallelism. Parallelism is defined as any set of tasks or processes that are actually executing

simultaneously [13].

Process.A process is an instance of a task that is actively executing,however this term can be

used interchangeably with task [13].

Process Algebra.Process Algebra is an algebraic approach to the study of concurrent processes

[45]. Algebraical languages are used for the definition of processes and statements about them

[45]. These statements can then be verified through the use ofthe appropriate process calculi

[45].

Processor.The processor is the piece of hardware on which processes execute [13]. A more

detailed definition can be seen above in the definition of a CPU.

Task. A task consists of a single operation or multiple operationsthat are to be executed [13].

2.3 Multi-Processor Systems and Parallel Programming

Many people have access to parallel computers, but only a small percentage of programmers

develop software that runs on parallel capable computers. There are very few people with the

knowledge, tools and experience to leverage the processingpower provided by these parallel

processors [22, 42]. The current trend towards developing multi-core and multi-CPU systems

instead of increased clock speed is likely to make this distinction even more important in the

future [20, 42].

2.4. COMMUNICATING SEQUENTIAL PROCESSES 13

In the past, semiconductor firms such as Intel and AMD were able to increase performance

by increasing clock speeds for single-core CPUs. This was asa result of being able to shrink

the manufacturing process for the transistors and CPUs. In 1974, Robert H. Dennard, and

his colleagues at IBM, observed that as the size of transistors decreased, so did the voltage

and current requirements [20]. This scaling law means that as the transistors decrease in size,

more of them can be packed closer together on the chip, while maintaining the same power

density. This leads to the trend of doubling the CPU transistor counts and speed every 18

months, which is widely known as Moore’s Law [20, 42]. However, these scaling laws do

not provide a perfectly linear decrease in power requirements, and as such, process shrinks are

becoming less effective at yielding increased speed [20].

This has led CPU manufacturers to the new strategy of placingmore than one CPU core on

a processor chip instead of constantly increasing clock speeds [42]. This is evident from the

abundance of dual-core CPUs, the introduction of quad-coreCPUs and Intel and AMD’s plans

for eight-core CPUs in late 2009, while firms such as Sun Microsystems already have 16 core

processors [11, 20]. The only issue now is whether or not these new processors can be used to

their full potential by current software development techniques.

The most significant obstacle to developing concurrent software and making effective use of

multi-core CPUs is that the designing, writing and debugging of concurrent code is fairly dif-

ficult [43]. Truly parallel programs are rarely written, despite the existence of trivially parallel

tasks and the publishing of numerous parallel algorithms. Multi-core CPUs fit in theMIMD

(Multiple Instruction set Multiple Data set)category of parallel computers and are thus suited

to the message-passing model of parallel computing [19, 20,22]. Implementations such as CSP

andMPI (Message Passing Interface)follow the message-passing model [22]. It is therefore

necessary to provide programmers with the tools and knowledge, based on the above models,

so that they can use the multi-processor systems available today effectively [43].

2.4 Communicating Sequential Processes

Communicating Sequential Processes was first introduced in1978 by Hoare. In his paper [23],

Hoare identified a number of operations and constructs as theprimary methods for structuring

computer programs. He identifiedinputandoutputoperations as being important but noted that

these were not well understood. He also noted that therepetitive, alternativeandsequential

constructs were well understood, whereas there was less agreement on other constructs such as

subroutines, monitors, procedures, processesandclasses[23].

Processor development at the time was such that multiprocessor systems and increased paral-

2.4. COMMUNICATING SEQUENTIAL PROCESSES 14

lelism was required to improve computation-speed. However, Hoare noted that this parallelism

was being hidden from the programmer as a deterministic, sequential machine, effectively try-

ing to make a multiprocessor machine appear as a mono-processor machine. He saw that a more

effective way of making use of these multiple processors, would be to introduce this parallelism

at the programming level by definingcommunicationandsynchronizationmethods [23]. As a

result, Hoare developed the CSP programming notation.

2.4.1 The CSP Programming Notation

The programming language or notation specified by Hoare is based on a number of fundamen-

tal proposals. The first of these is the use of thealternativecommand in conjunction with

guarded commandsas a sequential control structure and a means to control non-determinism.

The guarded command will execute its command list sequentially only when itsguardsucceeds

and the alternative command will select only one ready guardcommand at a time and termi-

nate when all of its guards fail. Associated with the guardedand alternative commands is the

repetitivecommand, which loops until all its guards terminate. Secondly, theparallelcommand

specifies a means to start parallel execution of a number of processes or commands, by start-

ing them simultaneously, and synchronizing on terminationof each of the parallel processes.

Parallel processes may not communicate directly, except through the use ofmessage passing

[23].

assign ::
x : integer;
x := 5;

Figure 2.1: A CSP Process with simple declaration and assignment.

To support the message passing concept,input and output commands are specified. These

commands enable communication between processes. Essentially, a channelis created and

used for communication when a source process names a destination process for output and the

destination process names the source process for input. Communication only occurs once both

the source and destination are ready and results in the valuebeing copied from the source to the

destination process. If either of the two processes is not ready for communication, the command

will wait until such a time as both are ready. This effectively introduces therendezvousas the

primary method of synchronization [23].

Input commands may be used as guards and result in the commandonly being executed when

the other process is ready to execute its output command. If multiple input guards are ready,

an arbitrary choice is made and only the selected command will execute with no effect on the

2.4. COMMUNICATING SEQUENTIAL PROCESSES 15

-- Process src runs in parallel with process dest
[src :: dest ! 5; -- output the value 5 to dest
||

dest ::
x : integer;
src ? x; -- read input from src into x

]

Figure 2.2: The Parallel, Input and Output commands with comments.

other input guards. The final proposal includes the screening of input messages by way ofinput

pattern matchingto ensure that the input message follows the correct pattern[23].

[buf ::
buffer : [0 .. 9] integer;
in, out : integer;
in := 0; out := 0;

* [
in < out+10; producer ? buffer[in%10] -> in := in + 1

[] out < in; consumer ! buffer[out%10] -> out := out + 1
]

||
producer ::

x : integer; x := 1;

* [x <= 100; -> buf ! x; x := x + 1]
||

consumer ::
item : integer;

* [true -> buf ? item]
]

Figure 2.3: The Repetitive and Guarded commands with the useof the Input command as a
Guard.

While Hoare indicated that programs expressed in this notation should be implementable, he

also made it clear that the notation was not suitable for use as a programming language. This

was in light of the fact that there were serious issues that had been overlooked. These included

the fairly static nature of CSP programs, which could only have a fixed number of concurrent

processes, and the lack of recursion. The issue of performance had also been overlooked. But

the most serious issue was the lack of a proof method to verifythe correctness of programs [23].

2.5. THE PYTHON PROGRAMMING LANGUAGE 16

2.4.2 The CSP Meta-Language

After the publication of the initial CSP paper in 1978, Hoarecontinued to refine CSP and in

1985, he released a book on the CSP notation [24]. The CSP described in the book has evolved

substantially from the notation described in his earlier paper. CSP has moved from being a

programming notation to being aprocess algebrathat allows for the formal description and

verification of interactions in a concurrent system. The newnotation consists of two primi-

tives, namely theprocessand theevent, and a number of algebraic operators. Concurrent and

sequential systems can then be defined through a combinationof these operators and primitives.

An important addition to CSP is the introduction oftraces, which allows for the description

of each possible behaviour in a system as a sequence of actions. The combination of the for-

mal description of the system and the traces allows for the analysis and verification of a sys-

tem’s possible behaviours. In the book, Hoare describes methods for expressing and verifying

a number of important concepts, namely, processes, concurrency, non-determinism, sequential

processes and communication [24].

Use of these description and verification techniques makes it possible for one to check for

the absence of undesirable conditions such asdeadlock, live-lock andstarvation. There are a

number of tools that have been developed to aid in the verification of systems based on CSP

and its proof methods. CSP has also seen use in the verification of large systems such as the

Certification Authority for the Multos smart card scheme, developed by Praxis Critical Systems

[18].

2.4.3 CSP Implementations

There are a number of programming language implementationsbased on or around CSP. The

most notable of these implementations isOccam, which was developed closely around CSP by

David May in collaboration with Tony Hoare. Occam is a minimalist language developed at

INMOS for use in their transputer devices [26]. There are also a number of implementations

for modern programming languages, such asJCSPandCTJ for Java,CCSPfor C, CSP.NET

for Microsoft .NET 2.0andPyCSPfor Python [2, 8, 39]. Each of these implementations has its

own strengths and their weaknesses, which are often influenced by the target language.

2.5 The Python Programming Language

Python is a powerful, very high level programming language.It is a multi-paradigm pro-

gramming language supporting the functional, object orientated and procedural programming

2.5. THE PYTHON PROGRAMMING LANGUAGE 17

paradigms. Python has a strong, dynamic typing system, which features"duck typing". It also

has a robust automatic memory management system. It is very well suited to use both as a

scripting language, much likePerl, and as a general purpose programming language. Python

places a great deal of emphasis on programmer productivity and supports this via its expan-

sive standard library and its minimalist syntax, which enhances code readability. The major

implementations of Python areCPython, Jython, IronPythonandPyPy[28, 37].

2.5.1 Features and Benefits

There are numerous benefits and features that make Python a very attractive language for both

beginner programmers and advanced scientific programming.The most notable of these are

mentioned below. It has very high-level built-in data types, such as the dictionary, list and tuple.

The syntax is very clear with a focus on readability and it supports the natural expression of

procedural code. Python has strong introspection capabilities and provides easy to use object

orientation features. Other benefits include fast, exception-based error handling, extensive stan-

dard libraries and third-party modules that provide support for most programming tasks. There

is also plenty of support and readily available documentation. Free access to the source code

makes it possible to modify Python if required [4, 31, 37].

Python’s extensibility provides even greater power over its existing functionality via its support

for full modularity and hierarchical packages. Modules andextensions can be written in Python

or alternatively, they can easily be written in C, C++, Java (for Jython) or .NET languages (for

IronPython). Python can also be embedded within applications as a scripting interface. This

makes it very useful for linking together previously unrelated modules. Python can therefore

be used for quickly prototyping of algorithms, with any performance critical modules being

rewritten in C and added as extensions. All of the above factors have aided in the acceptance of

Python in the computational science community [4, 25, 31, 37].

2.5.2 Limitations

As an interpreted language, Python’s performance is not as good as compiled languages such

as C++, but the performance is more than sufficient for most applications. If improved perfor-

mance is required, thePsycoand PyPy projects, which provide optimisedJust-in-Time (JIT)

compilers for Python, can produce typical speedups of around 4x [35, 40]. However, Python’s

greatest limitation is its global interpreter lock. "A global interpreter lock (GIL) is used inter-

nally to ensure that only one thread runs in the Python VM at a time." [38]. So, while Python

2.6. EXISTING CONCURRENT FRAMEWORKS 18

supports multi-threading, these threads are time-sliced instead of executing in a truly parallel

fashion.

In one of the earlier versions of Python, an attempt was made to remove the GIL and replace

it with fine-grained locking. This was achieved through GregStein’s"free threading"patches.

However, there were serious performance issues associatedwith the new locking mechanism,

even with efficient system level locks. This resulted in a halving of the performance or worse,

which was not acceptable, especially for applications thatdid not make use of threads. The

patches were later abandoned and no further significant attempts were made to address the

issue [38].

There are two ways in which the GIL can be circumvented to achieve multiple CPU usage. The

first of the suggested methods is to make use of C extensions, whereby a C extension is used to

perform the required task. The extension can then release the GIL and maintain the executing

thread within the C code. The second of the suggested methodsis to divide the tasks between

multiple Python processes as opposed to threads within a single Python process. This entails

spawning multiple Python interpreter processes and maintaining efficient communication and

synchronization between the processes [38].

Several projects already cater for the use of multiple interpreter processes.IPython is an en-

hanced interactive Python shell that provides the underlying connection architecture between

interpreters for parallel computing [36]. TheRiver framework for distributed computing is an-

other relevant project that provides the fundamental abstractions for flexible communication

management between multiple Python VMs (Virtual Machines)and execution of code on these

VMs [6, 7]. Trickle is implemented on top of the River framework and provides a simple imple-

mentation of the MIMD model of parallel computing. Essentially, Trickle provides methods for

injecting code and data into remote VMs, accessing remote objects and asynchronous method

invocation. It also provides simple mechanisms for dynamicscheduling and balancing of work

between the VMs [6].

2.6 Existing Concurrent Frameworks

While there are many projects that add CSP features to existing programming languages, there

are very few attempts to convert directly from CSP to executable code [39]. JCSP and CTJ

provide CSP features to Java [5, 21]. CCSP and C++CSP providesimilar CSP features for C and

C++, respectively [2, 12]. PyCSP is of great interest to thisproject as it introduces CSP features

to Python [8]. From the list of modern language CSP implementations mentioned above, it

would appear that no further work is required to expose CSP toprogrammers. However, these

2.6. EXISTING CONCURRENT FRAMEWORKS 19

implementations require the programmer to convert their CSP code into the appropriate form

for the implementation they desire to use. For small programs, this task is relatively easy. But

once the programs start to get bigger and more complex, the process becomes more difficult and

is prone to error, particularly with regards to the correct naming and use of channels [39]. The

time taken to develop and verify the CSP algorithm for a complex system can often be rivaled

by the time taken to convert and debug the program written forone of the above mentioned

CSP implementations [39]. Clearly this is not ideal and a means for translating the original

CSP directly to executable code is more desirable.

2.6.1 Translation to an Intermediate CSP Implementation

The most notable work in the area of translating CSP to executable code is a set of tools de-

veloped for converting CSPM to CTJ, JCSP and CCSP [39]. While this may not be a direct

translation to executable code, this method of using an intermediary CSP implementation to

produce programs based on a CSP algorithm is quite effectiveat eliminating the probability of

errors and speeding up development [39]. The translation process is best visualised through the

use ofT-diagrams. The conversion from CSP to JCSP can be seen in Fig. 2.4, the conversion

to CTJ is shown in Fig. 2.5 and the conversion to CCSP can be seen in Fig. 2.6.

Figure 2.4: T-diagram showing the translation of CSP to Javabyte code using JCSP [39].

The developers of the above mentioned conversion tools chose to implement the translators

in C++. Their reasoning for this is the amount of string processing required and the need

for powerful, dynamic lists. These requirements are satisfied by theStringandVectorclasses

available in theStandard Template Library (STL)[39]. However, as discussed earlier, Python’s

powerful standard libraries, good string handling capabilities and its built-in list data type make

it very suitable for the task of translating CSP.

2.6. EXISTING CONCURRENT FRAMEWORKS 20

Figure 2.5: T-diagram showing the translation of CSP to Javabyte code using CTJ [39].

Figure 2.6: T-diagram showing the translation of CSP to executable machine code using CCSP
[39].

2.6.2 Use of a Python-based CSP Implementation

PyCSP is another relevant module to investigate as it provides Python with a number of CSP

constructs such as channels, channel poisoning, basic guards, skip guards, input guards, pro-

cesses, and the alternative, parallel and sequential constructs [8]. However, as with the previ-

ously mentioned CSP implementations, PyCSP leaves the programmer with the task of translat-

ing the CSP algorithm to Python code. While the PyCSP libraryis promising in its own right,

it is not without its downsides. A translation tool, similarto the one mentioned above, that

takes CSP and converts it to PyCSP based Python code, or native Python code, would be more

productive and less error-prone [8, 39]. This would free theprogrammer from having to deal

with complex channel naming situations and having to correctly handle the undesirable aspect

of channel poisoning.

A further step from translating to an intermediary CSP implementation, such as PyCSP, would

be to translate directly to the parallel code. This could be done using the underlying imple-

mentation of a CSP library like PyCSP as a guide, which in turnuses the JCSP implementation

as its guide [8]. The biggest drawback of PyCSP is that its current implementation makes use

2.6. EXISTING CONCURRENT FRAMEWORKS 21

of Python’s threading library, which limits the parallel execution of code because of the GIL

[8, 38]. The suggested solution to this problem is to make useof network channels for commu-

nication between multiple local or remote operating systemprocesses [8, 38].

PyCSP’s implementation of synchronization is achieved through the use of Python’sdecorator

construct [8]. Decorators are used to provide wrappers around methods that require synchro-

nization, with the wrapper function handling the acquisition and release oflocksusing thewith

keyword [8]. The PyCSPProcessconstruct is implemented by simply instantiating an object

of the Process class, which extends from Python’sThread class [8]. The constructor for

theProcess class takes the function to be executed by the Process and thelist of arguments

for the function [8]. This method of implementing Processeswould need to be modified to use

network channels to allow for truly parallel execution. Theinstantiated Process object does not

begin execution until it is used in either theParallel or Sequentialconstructs [8].

The Parallel and Sequential constructs have a very simple implementation in PyCSP. The Par-

allel construct is implemented by a class that takes a list ofProcesses to be run in parallel, and

callsstart() for each Process to begin execution and then calls thejoin() method for each

Process to synchronise and terminate the parallel execution [8]. The Sequential construct is im-

plemented as a class that takes a list of Processes to be run insequence and calls therun()

method for each Process, thus executing them in the specifiedsequence without synchronization

[8].

Communication viaChannelsis handled by simply passing the read and write methods of a

Channel object directly as arguments in a Process’s constructor [8]. Python allows for this kind

of functionality which is very useful because it helps avoidusing the incorrect end of a Channel

[8]. PyCSP Channels allow for any object to be sent across them, including Processes [8].

This is a useful feature that allows for easy distribution ofwork and instructions, as well as the

removal of type limitations present in other CSP implementations [2, 5, 8, 21, 39].

Finally, the PyCSPAlternativeconstruct is implemented as a class that takes a list ofGuards

in its constructor. The next active Guard is then selected ina JCSP-like fashion by using the

priSelect() method, which returns each active Guard in turn [8]. Python’s ability to return

a reference to an object allows PyCSP to improve upon JCSP by returning a reference to the

active Guard as opposed to an index, which then has to be analysed to determine the correct

code segment to execute [5, 8]. Guards can be simple objects that extend from theGuard base-

class, Channel inputs or the specialSkip Guard[8]. The lack of an explicitRepetitiveconstruct

hints at an implementation that simply uses a natural Pythonloop over an Alternative construct.

2.7. SUMMARY 22

2.7 Summary

Research into the area of parallel computing has shown that parallel computers are no longer

confined to the scientific research community. It has been seen that certain factors relating to the

design and manufacturing of modern CPUs have led to a new trend of increasing the number of

processor cores on the CPU instead of simply increasing clockspeed to improve performance.

This has resulted in affordable and readily available parallel computers for the desktop.

It has also been seen that while parallel computers are becoming increasingly abundant, the

software and development tools are lacking when it comes to harnessing the performance of

parallel computers. The author has noted that there needs tobe a shift in software development

practices towards parallel programming models, as well as an increase in the number of tools

designed to aid in the development of parallel software.

Based on this insight, an appropriate parallel programmingmodel and programming language

were investigated for the development of such a tool. It has been seen that the CSP model,

coupled with the Python programming language, provides a good base for the creation of a

message passing based concurrent software development framework. It is also evident that

modules such as PyCSP can be improved upon and used as a guide for the creation of such a

framework.

Chapter 3

Methodology

3.1 Introduction

As stated in Chapter 1, the aim of the project is to investigate the feasibility and development

of a concurrent framework for Python based on CSP’s message-passing model. However, due

to the scope of such a development project and the time available, the initial objectives of this

project have been restrained such that the goal is the creation of a demonstration prototype

framework as opposed to a complete framework suitable for public distribution. This scope

refinement has some implications on the approach and methodology used for the project.

3.2 Approach

Development of the Hydra framework is performed in two phases. The first phase involves

the development of a hand-coded recursive-descent parser for a cut-down version of the CSP

grammar. The resulting abstract syntax tree (AST) generated by the parser is used to generate

and run JCSP Java code. The objective of this phase is to gain familiarity with the issues

involved in parsing CSP and generating executable code. Since the aim is centered around

experimentation and prototyping, semantic checks are excluded and error reporting is minimal

if present. Once the code generation is complete, the JCSP code output is visually inspected

and then executed to determine if the translation was successful. Once the JCSP prototype is

deemed to produce acceptable output code, the project advances to phase two.

The second phase centers around developing a flexible and extend-able parser and code genera-

tor that can be used, firstly, as a proof of concept, and secondly as a base for further development

of the Hydra project. The parsing aspect of this phase involves selecting an appropriate compiler

23

3.3. SUMMARY 24

generator, refining the CSP grammar for easier parsing and then implementing the grammar for

the chosen compiler generator. Even though this phase has a greater focus on usability and

functionality, it is still a demonstration-only prototype. As such, semantic checks and error

reporting, while better than the JCSP prototype, are minimal and incomplete.

The code generation aspect requires identifying suitable libraries and frameworks on which

to build the parallel constructs and then designing the necessary code segments to represent

the CSP constructs, using the selected underlying libraries. Once the concurrent framework is

complete, the actual code generation takes place. This involves multiple passes over the AST

to generate the concurrent code using the above-mentioned code segments. Again, the output

code is visually inspected and executed to assess its correctness. Performance analysis and

further testing is only carried out once the code generator is able to produce consistently correct

concurrent code.

3.3 Summary

The objectives of this project focus on investigating the feasibility of developing a concurrent

framework for Python. Therefore an approach based on prototyping and experimentation has

been chosen to explore the topic with greater freedom. This has resulted in a number of com-

promises in the development of the framework, such as the exclusion of certain features and

reduced error checking. A two-phased approach has been adopted involving the development

of a hand-coded JCSP prototype and then a more functional prototype based on a custom-built

concurrent framework.

Chapter 4

Parsing CSP

4.1 Introduction

To generate the desired concurrent code, it is first necessary to parse and interpret the CSP

source code supplied by the application programmer. The development of a parser for the CSP

grammar is thus required. The construction of the Hydra parser was achieved in two phases.

The first phase involved hand-crafting a prototype scanner and parser for a limited version of

the CSP grammar. The purpose of this first phase was assessingthe viability of parsing and

converting CSP, as well as to gain familiarity with the semantics of the CSP language. The

second phase involved the construction of a complete, maintainable and powerful parser for the

1978 version of the CSP notation [23] using the ANTLR compiler generator [33].

As noted in Chapter 2, the grammar for CSP described in 1978 [23] is not suitable as a pro-

gramming language by itself. For this reason, a number of compromises and changes have

been made to the grammar to allow for greater integration with Python. CSP is essentially used

to define the architecture and communication channels of theprocesses used by the program.

These grammar modifications are described in Section 4.6 along with the actual construction of

the ANTLR-based parser.

4.2 Basic Parser Construction

A number of techniques exist for parsing code from a source language and translating it to a

target language. The typical translation process involvesa number of stages, which are usually

divided into afront-endparser, and aback-endcompiler or interpreter, as seen in Fig. 4.1. The

parser consists of alexical analyser, which takes thesource codestring as input and outputs

25

4.3. TYPES OF PARSERS 26

the identified tokens or symbols. The second stage in the parser is thesyntax analyser, which

takes the tokens from the lexical analyser and evaluates them against the grammar of the source

language to identify the statements and expressions [44].

Figure 4.1: Structure and Phases of a Compiler [44].

The output from the syntax analyser is often passed through aconstraint analyser, which checks

that the syntactic components adhere to the scope and type rules applicable to the current con-

text. The results from the constraint analysis are then passed into the back-end where they are

converted into intermediate code by theintermediate code generator. This code is often sent

through acode optimiserbefore being converted toobject codeby thecode generator[44].

4.3 Types of Parsers

As stated above, there are a number of parsing techniques, each of which is suited to certain

types of grammars. Thetop-downparsing technique makes use ofLL (Left to right, Leftmost

derivation)parsing, withrecursive-descent parsersbeing a fairly common form ofLL parser

[33]. The top-down technique involves starting from a specific goal production and working its

way down, identifying appropriate lower level productionsas it descends, until it has identified

all the productions associated with the input tokens [44]. Recursive-decent parsers can usually

4.4. PROTOTYPE PARSER IMPLEMENTATION 27

be constructed by hand, but are typically limited to a subsetof context free grammars, specifi-

cally those that areLL(1) compliant. There is a special form ofLL(k) parsing, known asLL(1)

parsing, which uses only one look-ahead token and has the benefit of certain optimisations, but

has the downside of being more restrictive than otherLL(k) parsing techniques [44].

LL(k) parsers are slightly more flexible than hand-coded recursive-descentLL(1) parsers. The

k-value represents the number of look-ahead tokens, allowing the parser to access tokens further

down the input stream to make decisions regarding how to match a production rule [33, 44]. The

greater the look-ahead, the more flexible the parser is, thusallowing more complex grammars

to be parsed [33]. However, constructingLL(k) parsers with a look-ahead greater than 1 is

usually harder and not easily achieved by hand [33]. As such,a tool known as a compiler

generator or compiler compiler is used to produce these parsers [44]. Compiler generators

usually accept the target grammar, which is specified using an appropriate syntax, and generate

the scanner and parser components of the compiler [44]. Another important form ofLL(k)

parser is theLL(*) parser. TheLL(*) parser has an arbitrary look-ahead and often makes use of

backtracking to help it in the identification of production rules [33]. This arbitrary look-ahead

allows the parser to evaluate a number of alternatives further down the input stream, making it

an extremely powerful parsing technique capable of handling an even greater range of grammars

[33]. Some examples of currently available compiler tools using these techniques areCoco/R,

ANTLR, YappsandParsec.

The bottom-upclass of parsing techniques attempt to work from the tokens up and identify

the appropriate top-level productions. These parsers are usually known asLR (Left to right,

Rightmost derivation)parsers. They can be constructed using a recursive-ascent parsing tech-

nique, with a set of mutually-recursive functions. Two forms of this parser are theSLR (Simple

LR) parser, which has no look-ahead and is thus limited to simpler grammars, and theLALR

(Look-ahead LR), which allows for look-ahead and can thus parse more complexcontext free

grammars [1]. The most notable tools for generatingLR parsers arelex/yacc, Parsing, Wisent,

PLY andBison.

4.4 Prototype Parser Implementation

Previous attempts have been made to generate parsers for CSP. Firstly, a parser for a dialect of

CSP, known asCSPM for CSP machine-readable, was written usingFlex andBison. However,

it was necessary for some productions to be rewritten to remove ambiguity [41]. Flex and Bison

grammars for CSPM are listed in [41]. Bison is anLR parser and as such, it would appear that

it is possible to parse CSP, or at least a specific dialect of CSP, using anLR parser. However,

4.4. PROTOTYPE PARSER IMPLEMENTATION 28

CSPM follows the later version of CSP described in [24], which is more of a process algebra

than a programming notation. A parser forCSP-CASL, which is the process algebra of CSP

integrated with the algebraic specification languageCASL, was developed using Parsec, which

is a monadic recursive-descent parser written inHaskell. As with CSPM , certain productions in

the grammar for CSP-CASL had to be rewritten slightly to remove left recursion. This shows

that it is possible to use the recursive-descent parsing technique [17].

With the above findings in mind, it was decided that a recursive-descent compiler would be

developed, based on the notation described in [23]. The aim of this exercise was to gain fa-

miliarity with the CSP notation and its semantics, as well asevaluate any potential pitfalls and

considerations that may need to be taken into account when converting to the target concurrent

code.

4.4.1 Prototype Design

The design of the prototype system makes use of Python’s object-orientated features to en-

sure ease of modification and maintenance. The prototype Hydra implementation consists of a

scanner module (Hydra.scanner), a parser module (Hydra.csp), an abstract syntax tree

module (Hydra.ast) and a code generator module (Hydra.codegenerator). The csp

execution method inHydra.csp is defined in such a way that it allows for easy switching

between different parsers, scanners and code generators. The parser module takes the CSP code

as input and passes it to the scanner. The parser module then instantiates the appropriate parser

class, passing it the desired scanner and code generator objects constructor arguments. The

parser class begins by calling the goal method and follows a recursive-descent parsing tech-

nique, requesting tokens from the scanner and generating anabstract syntax tree (AST) as it

parses the input. Once parsing is complete, the AST is serialised using Python’spickle mod-

ule. The pickled AST is then sent to the code generator module, which produces the appropriate

output code based on the AST. Figure 4.2 provides an overviewof the prototype system design.

Before describing the scanner and parser implementations,it is necessary to describe the manner

in which CSP is used within a Python program. The mechanism chosen is fairly simple, but

effective and straightforward. First the Hydra csp module must be imported. Then, the CSP

algorithm is defined within a triple-quoted string. This string is then passed to thecspexec

method of the Hydra csp module, along with any helper functions and external variables. A

simple example can be seen in Fig. 4.3 below.

4.4. PROTOTYPE PARSER IMPLEMENTATION 29

Figure 4.2: Prototype system design.

4.4.2 Hand-crafted CSP Scanner

The scanner or lexical analyser is responsible for reading the input stream one character at a

time and identifying the tokens specified by the grammar [44]. The prototype scanner was

implemented in pure Python and is fairly simple in its design. The Scanner class consists of

a list of accepted symbols or tokens, agetChar method and agetSym method. The tokens

represent the lexical elements of the grammar, such as identifiers, constants and the various

punctuation marks used for structure. ThegetChar method simply advances the position in

the input string by one character and sets the current character to the character from this new

position. ThegetSym method is the bulk of the scanner and is responsible for identifying

the different symbols based on the characters in the input stream, which are retrieved using the

getChar method.

ThegetChar method, seen in Fig. 4.4, simply checks if the end of the inputhas been reached

and sets the current character to an end-of-file token if thatis the case, otherwise it sets the

current character to the next character in the input and increments the index.

ThegetSym method is somewhat more involved as it has to make decisions based on the input

4.4. PROTOTYPE PARSER IMPLEMENTATION 30

from Hydra.csp import cspexec

code = """[
prod ::

data : integer;
data := 4;

]
"""
cspexec(code)

Figure 4.3: Specifying and executing CSP within a Python program.

def getChar(self):
if (self.index >= self.codelen):

self.ch = EOF
else:

self.ch = self.input[self.index]
self.index += 1

Figure 4.4:getChar method of the prototype scanner.

characters as to what symbol has just been read. This is usually achieved by making use of a

largeswitch statement, but Python does not have aswitch statement like other languages

such as C++ and Java. However, Python’sif andelif statements are capable of achieving

the same result.

ThegetSym method starts by removing whitespace and comments. It then attempts to identify

constants and identifiers. If the character does not correspond to either of these symbols, it

makes use of a large if-elif decision structure to identify the appropriate symbol. Once the

symbol has been found, it is returned as a tuple consisting ofthe symbol type and the string that

matched the symbol. Some relevant extracts of this method are shown in Fig. 4.5. If at any

stage the scanner encounters incorrect input, it returns a special no symbol result, indicating

that it was unable to identify the input tokens.

4.4.3 Recursive-Descent CSP Parser

A recursive-descent parser works by starting at some goal production and trying to match lower

productions and symbols according to the grammar of the source language [44]. In a recursive-

descent parser, productions are represented by methods, which either match input symbols or

call further production methods, thus delegating the matching of production rules to the ap-

propriate methods until all input symbols have been matched[33, 44]. This technique is only

suitable forLL(1) grammars that are free of left recursive rules [33]. Therefore, for use in this

4.4. PROTOTYPE PARSER IMPLEMENTATION 31

def getSym(self):
while (self.ch > EOF and self.ch <= ’ ’):

self.getChar()
symLex = []
symKind = noSym
if self.ch.isdigit():

symLex.append(self.ch)
self.getChar()
while self.ch.isdigit():

symLex.append(self.ch)
self.getChar()

symKind = numSym
elif self.ch.isalpha():

...
else:

symLex.append(self.ch)
if self.ch == EOF:

symLex = list(’EOF’)
symKind = EOFSym

elif self.ch == ’;’:
symKind = semicolSym
self.getChar()

...
self.sym = (symKind, ”.join(symLex))

Figure 4.5: Extracts from thegetSym method of the prototype scanner.

prototype, the CSP grammar was extensively refactored and cut down to make it easily parsable

by a recursive-descent parser. It must be noted that this grammar is not meant for use as a work-

ing component of Hydra and is purely for the purposes of investigating the code generation

stage of compilation. The modified EBNF grammar for CSP is shown in Fig.4.6.

As per the above grammar, the prototype parser implements the following methods:program ,

parallel , process , command_list , command, expression ,

input_command , output_command , assignment , repetitive , alternative ,

guarded , guard andguardlist . To aid the parsing process, a number of helper meth-

ods have been created. Thesymkind method extracts and returns the type of symbol from the

symbol tuple returned by the scanner. Thesymlex method returns the string matched by the

scanner for the returned symbol. ThereportError method prints the supplied error mes-

sage. Theabort method prints the supplied error message and halts parsing and is used in

cases where the parser cannot recover from bad input. And finally, the accept method takes

the symbol to be matched and an error message for when the symbol is not found. It then at-

tempts to match the symbol and update the current symbol withthe next symbol in the input

4.4. PROTOTYPE PARSER IMPLEMENTATION 32

program = process | parallel .
parallel = ’[’ process {’||’ process} ’]’ .
process = IDENT ’::’ command_list .
command_list = {command ’;’} .
command = IDENT (assignment | input | output) .

| alternative | repetitive .
expression = IDENT | NUMBER .
input = ’?’ IDENT .
output = ’!’ expression .
assignment = ’:=’ expression .
repetitive = ’ * ’ alternative .
alternative = ’[’ guarded { ’[]’ guarded } ’]’ .
guarded = guard ’->’ command_list .
guard = guardlist | input .
guardlist = bool { ’;’ bool} [’;’ input] .

Figure 4.6: Modified EBNF grammar for the Hydra prototype.

stream. If, however, the symbol is not found, it calls theabort method with the supplied error

message.

Theprogram method represents the goal production and is called when theparser is started.

The parsing process starts with an empty AST which is represented bybasetree in the next

example. As the parser goes about identifying productions,it passes the relevant portions of

the tree to the production methods it calls. These production methods then build up the tree by

adding the appropriate tree nodes to the AST in the correct positions and filling in the appro-

priate details for these nodes such as identifier names. An example of some of the production

methods and AST construction can be seen in Fig. 4.7.

The process of building this parser by hand provided some important insights. These insights

include the importance of identifying channels and processes and ensuring that information is

available in the top-level nodes of the AST as opposed to justadding them to the tree at the

level they were discovered. It was also noted that parsing the full CSP grammar by hand would

not be feasible as even with the simplified grammar, the construction of the AST was tedious

and extensions to the grammar would require significant changes to many of the production

methods. For this reason, a more solid approach to parser construction was needed, which

ultimately meant making use of a compiler generator, specifically ANTLR using the Python

target language runtime.

4.5. PARSER GENERATORS 33

def program(self):
program = process | parallel .
if self.symkind() == self.syms.lBrackSym:

self.parallel(self.basetree)
else:

self.process(self.basetree)
s = pickle.dumps(self.basetree)
self.codegen.programEndFound(s)

def parallel(self, progtree):
parallel = ’[’ process {’||’ process} ’]’ .
partree = Hydra.ast.Parallel()
progtree.node.append(partree)
self.scan.getSym()
self.process(partree)
while self.symkind() == self.syms.parallSym:

self.scan.getSym()
self.process(partree)

self.accept(self.syms.rBrackSym, ’] expected’)

Figure 4.7: Production methods for the Hydra prototype parser.

4.5 Parser Generators

While handcrafted scanners and parsers are certainly viable and straightforward for many lan-

guage translation tasks, the complexities of certain grammars can make the construction of

such hand-coded parsers problematic [44]. Even with careful planning and a modular design,

these parsers can become hard to understand and maintain, especially when semantic check-

ing and code generation are incorporated [44]. For this reason, scanner and parser generators

are typically used instead of manual parser construction. These parser generators take a set of

productions for the intended grammar and automatically generate the corresponding scanner

and parser modules [44]. A number of parser generators and parsing frameworks for Python

were investigated. The strengths and weaknesses of each parser generator were assessed and the

parser generator most suited to the task of translating CSP was selected for use in Hydra. The

main criteria used in the selection process were ease of use,ability to parse CSP, availability of

documentation, development activity and support for all stages of translator construction, from

scanner to code generator.

4.5. PARSER GENERATORS 34

4.5.1 ANTLR

ANTLR (ANother Tool for Language Recognition) is a parser generator that automates the con-

struction of lexers and parsers [33]. Given a formal description of the source language, ANTLR

(version 3.1.1) is able to generate the appropriate lexer and parser modules [33]. ANTLR also

supports the addition of code segments to the parser, allowing for language translation and code

generation [33]. It is also very flexible and automates many common parser construction tasks

[33]. ANTLR generates language recognisers that use a fast and powerfulLL(*) parsing tech-

nique, which is an extension toLL(k) that uses arbitrary lookahead to make decisions [33].

This parsing strategy makes ANTLR suitable for all parsing and translation problems, from the

simplest to the most complicated language translation tasks [33]. For grammars that do pose a

problem, ANTLR’s backtracking functionality allows the parser to work out the correct course

of action during runtime, and partial memoization of results means that this can be achieved

with linear time complexity [33].

ANTLR generates human-readable code that is easily incorporated into other software projects

[33]. ANTLR v3 features improved error reporting and recovery over its predecessors for the

generated parsers [33]. Dynamically scoped attributes allow rules to communicate, thus facil-

itating semantic checking. The code generation features ofANTLR are also quite advanced,

with formal abstract syntax tree construction rules allowing ASTs to be constructed easily in-

stead of developing actions to manually construct the AST. Another feature in ANTLR’s favour

is its tight integration with StringTemplate, which is a template engine for generating structured

text such as source code [33]. This makes the code generator easily retargetable as only the

template needs to be changed to generate code for a new targetlanguage.

ANTLRWorks is a grammar development IDE for ANTLR grammars that allows for the visual-

isation and debugging of parsers generated in any of ANTLR’ssupported target languages [33].

An example screenshot of ANTLRWorks can be seen in Fig. 4.8. ANTLR supports multiple

target languages such as Java, C#, Python, Ruby, Objective C, C and C++, with Python support

being of the greatest relevance to the Hydra project [33]. ANTLR is also actively supported

with mailing lists, an informative and frequently updated project website and active project de-

velopment. Overall, ANTLR is easier to understand and use than many of the other compiler

generators that are discussed hereafter. Finally, ANTLR has a wealth of documentation avail-

able, from a project wiki, to examples, mailing list archives and most importantly, the book for

ANTLR version 3 written by ANTLR’s creator, Terence Parr [33].

3
5

Figure 4.8: Screenshot of the ANTLRWorks graphical development environment.

4.5. PARSER GENERATORS 36

4.5.2 CocoPy

CocoPy is a Python implementation of the Coco/R compiler generator (Coco/R stands for com-

piler compiler generating recursive descent parsers) [27]. CocoPy takes an attributed grammar

of a source language, described in Cocol notation, and generates a scanner and a parser for this

language [27]. The scanner is constructed as a deterministic finite automaton and the parser

makes use of recursive descent and allows for symbol lookahead and semantic checks to be

added to the parser [27]. This means that CocoPy is able to accept theLL(k) class of grammars

as input and is thus suitable for parsing CSP with some slightmodifications to the grammar.

The use of Cocol as the grammar specification language makes CocoPy relatively easy to use

as an EBNF grammar for CSP can be converted to Cocol without much hassle.

The greatest advantage of CocoPy is the availability of documentation. Coco/R is very well

documented with numerous textbooks and online resources, while CocoPy itself has adequate

documentation and examples. CocoPy supports attributed grammars, which allow actions to be

incorporated into the parsing process for the purpose of semantic checking and code genera-

tion. However, the code generation aspect is more suited to generating output for stack-based

architectures [44]. Another downside, as evidenced by the release notes, is that the CocoPy

implementation of Coco/R is not complete and is not equivalent to the latest Java and C# im-

plementations. The last update was released in late 2007, casting doubt on the project’s devel-

opment activity and likelihood of further updates.

4.5.3 Parsing and PyParsing

The Parsing module is a pure-Python module that implements aLR(1) parser generator, with

Characteristic Finite State Machince (CFSM) and Generalised Left-to-right Rightmost deriva-

tion (GLR) parser drivers [15]. The Parsing module makes useof a very powerful and scalable

algorithm forLR(1)parser generation, instead of the somewhat limitedLALR(1)or SLR(1)al-

gorithms seen in mostLR parser generators [15]. The Parsing module also provides robust

conflict resolution mechanisms and extensive error checking [15]. The source language gram-

mar is specified in Python, which is fairly straightforward,but not as straightforward as using

an EBNF style notation. Furthermore, the resulting rules for Parsing are not as clear and easy

to read as an attributed EBNF style notation. The powerfulLR(1) algorithm used by Parsing

is likely to be sufficient for implementing a CSP parser and the conflict resolution mechanisms

will help address any issues that arise.

However, the Parsing module has some significant drawbacks.Firstly, there is very little docu-

mentation and the documentation that does exist is in the form of docstrings within the Parsing

4.5. PARSER GENERATORS 37

module code and a single, fairly simple example parser. It isalso unclear how suitable the Pars-

ing module is for code generation. And finally, the last update to the project was in August of

2007, meaning that any bugs or issues are unlikely to be addressed quickly.

The PyParsing module is a parser framework written in Pythonand is suited to creating and

executing simple grammars [30]. This module provides a library of classes that can be used

to construct the parser directly within a Python program in afairly straightforward manner

[30]. The PyParsing module makes use of various Python features to allow the production

rules to be implemented directly in Python using an EBNF-like notation [30]. This makes

PyParsing fairly easy to use, however, it is unclear how semantic checks and code generation

are implemented as the production methods simply return a list of parsed tokens. It is also

unclear which parsing algorithm is used, and even though examples show that PyParsing is

able to parse the Python language, it is not immediately apparent whether it is able to parse and

translate CSP successfully. Documentation for PyParsing is available in a variety of forms, from

numerous detailed code examples to mailing lists, wiki documentation and published articles.

Another positive remark for PyParsing is that it appears to be updated fairly frequently, with the

last update occurring during October 2008.

4.5.4 PLY

PLY is a straightforward implementation of the lex and yacc tools and is implemented entirely

in Python [3]. As with lex and yacc, PLY uses anLR (LALRspecifically) parsing technique and

is reasonably efficient and suited to large grammars [3]. PLYsupports the majority of lex and

yacc’s features, such as empty productions, precedence rules, error recovery and mechanisms

for dealing with ambiguous grammars [3]. PLY also provides extensive error checking and

grammar validation to aid in the development of the parser [3]. Lexer and Parser rules are

specified in separate files and are written as fairly straightforward Python code. PLY’sLR

parsing technique makes it a viable choice for implementinga CSP parser, although the resulting

parser generated by PLY does not provide any additional features to aid in the code generation

phase. The available documentation is detailed with numerous example programs, which help

to clarify aspects of PLY’s usage. Updates to PLY, while originally fairly frequent, are now few

and far between, with only one update in 2007 and another in May 2008.

4.5.5 Wisent

Wisent is a Python based parser generator that converts a description of a context free grammar

into Python parser code, which is able to parse source code according to the supplied grammar

4.5. PARSER GENERATORS 38

[46]. Wisent provides helpful error messages, both for errors in the input grammar and when the

parser encounters invalid input [46]. The parser will attempt to continue parsing and produce a

list of errors when parsing is complete, instead of stoppingfor each error [46]. The context free

grammar is supplied to Wisent in a separate grammar file, which has an EBNF-like syntax [46].

Wisent currently generatesLR(1) parsers, with support forLALR(1)parsers in development,

making it a viable choice for parsing CSP. Another useful feature of Wisent is that the generated

parser has no dependencies on Wisent itself and can easily beincorporated into other projects

[46]. Once the parser has finished parsing the input, it returns a parse tree [46]. This can be

used for code generation, but an abstract syntax tree would be more appropriate. The parser

also lacks features to make code generation easier. Documentation, while available, is fairly

sparse and examples are rather basic. The last update for Wisent was in March 2008 and it is

not apparent what the update schedule was before this date.

4.5.6 Yapps, Yappy and Yeanpypa

These three tools are not discussed in as much detail as the previous tools as it was immediately

apparent that they were not likely to be suitable candidates, and besides, similar implementa-

tions have already been discussed for some.

Yapps (Yet Another Python Parser System) is another easy to use parser generator, written

in Python [34]. Yapps is simple, easy to use, and produces human-readableLL(1) recursive

descent parsers. Grammars are specified in Python followinga similar format to PyParsing, but

with the ability to add attributes to the grammar, much like Cocol. Unfortunately, Yapps is not

particularly flexible and is more suited to simple parsing tasks such as parsing logs and config

files.

Yappy is another tool for generating lexical analysers andLR parsers for Python applications

[32]. Yappy is able to constructSLR, LR(1)andLALR(1)parsing tables and handle ambiguity

provided the appropriate priority is given to the ambiguouselements. Yappy is useful for teach-

ing LR parsing techniques, but does not provide much in the way of special functionality for

use in a complex language translation project [32]. The lackof updates since 2006 is another

reason why Yappy was not investigated further.

Yeanpypa is a parser framework written in Python and is very similar to PyParsing. It is used

to contruct recursive-descent parsers in Python code in much the same way as PyParsing allows

[10]. While fairly simple to use, the documentation is limited to a basic introduction and API

documentation and it is unlikely that Yeanpypa is able to handle CSP successfully.

4.6. ANTLR GRAMMAR FOR CSP 39

4.5.7 Parser generator selection

Based on the above comparisons, a summary of which can be seenin Table 4.1, ANTLR v3 (ver-

sion 3.1.1) was chosen over the other compiler generators. Its powerfulLL(*) parsing method,

which supports backtracking and memoization, makes it an ideal choice for parsing CSP code.

It is able to generate the lexer, parser and tree walker in pure Python, allowing for easy inte-

gration into the Hydra project. The tree rewrite mechanism allows for tailoring the abstract

syntax tree to meet the needs of the code generation process.The ANTLRWorks grammar IDE

makes developing and debugging grammars far easier, with its built-in rule visualiser, inter-

preter and debugger. Finally, ANTLR’s support for tree walker grammars and StringTemplate

makes code generation far simpler and allows for the parsingprocess to be kept separate from

the code generation process, thus increasing maintainability. The extensive documentation and

frequent update schedule were also important factors in ANTLR’s selection as they ensure that

any issues arising during development are likely to be easily and quickly resolved.

4.6 ANTLR Grammar for CSP

In order for ANTLR to generate the parser and lexer, the grammar for the source language must

be formally described in an ANTLR grammar file [33]. The ANTLRtool is then given this

grammar file as input, and as output, it produces the parser and lexer modules written in the

specified target language [33]. The grammar file is separatedinto two sections, the first for

lexer rules and the other for parser rules. The lexer rules specify the symbol or symbols that

must be matched for each lexical token in the source language, while the parser rules specify

the syntactical structure of the source language. Each production rule, starting from the goal

production, describes the ordering of tokens and sub-rulesrequired to match the given rule.

4.6.1 The Lexer

The lexer for CSP is relatively simple as the CSP grammar is minimalist and mostly unadorned.

However, this simplicity leads to numerous ambiguities andas such, a few minor changes have

been made to the original CSP grammar to make parsing easier.These changes, along with any

custom tokens required for additions to the language, are described below. The full set of lexer

rules can be seen in Appendix A.1.

The lexer for Hydra was defined such that all whitespace and comments are ignored. Single-line

comments are supported, starting with ’–’ and ending in a newline. The first and most obvious

change to the original CSP grammar is the use of semi-colons at the end of all statements.

4
0

Compiler generator Parsing
strategy

Ease of use
and flexibility

Documentation Code generation support Development activity

ANTLR LL(*) with
backtracking

Very good Very good Very good - custom AST
construction and
StringTemplate

Actively developed

CocoPy LL(1), LL(k) Very good Very good Good - attributed grammars
allow for code generation

actions

Stalled

Parsing LR(1) Average Poor Poor Infrequent
PLY LALR Good Good Poor Infrequent

PyParsing Unknown Good Very good Poor - list of recognised
tokens returned by parser

Actively developed

Wisent LR(1) Good Average Average - returns a parse tree Infrequent
Yapps LL(1) Average Average Poor Infrequent
Yappy LR(1), SLR,

LALR
Average Average Poor Stalled

Yeanpypa Unknown Poor Poor Poor Unknown

Table 4.1: Comparisons between Python based compiler generators.

4.6. ANTLR GRAMMAR FOR CSP 41

The original grammar only called for semi-colons to be used between multiple statements on a

single line, otherwise a newline indicated the end of a statement. While it would be possible to

maintain the original notation, it would mean that whitespace could no longer be ignored, thus

making the parser more complex. This minor compromise was therefore deemed acceptable for

the sake of reducing parser complexity.

Since there is no symbol for ’→’ and ’�’ on common keyboards, ’->’ and ’[]’ were used in

their place for theguardedstatement. The Hydra lexer supports four basic expression types,

namely identifiers, characters, integers and booleans. Identifiers start with a lowercase letter of

the alphabet, and can be followed by any combination of uppercase and lowercase letters, digits

and the underscore character. Characters can be any valid ASCII character, denoted between

single-quotes. Integers are simply defined as a series of digits. And finally, Boolean expressions

are denoted by either ’True’ or ’False’ and are case-sensitive. A summary of these changes can

be seen in Table 4.2.

Production Original Lexer Tokens Altered Lexer Tokens

Alternative ’[’ and ’]’ -
Parallel ’[’ and ’]’ ’[[’ and ’]]’
Guarded ’→’ and ’�’ ’->’ and ’[]’

All statements End in ’;’ or newline End in ’;’

Table 4.2: Summary of token changes to the CSP lexer.

Another important change that warrants discussion is the removal of expression operators such

as the arithmetic and Boolean operators. In their place, theability to use Python expressions

was added, allowing for much greater flexibility when it comes to expressions. The Python code

is enclosed in braces and can be any valid Python expression.To support functionality from

Python’s vast module collection, the ability to add Python import statements to the beginning

of the program was added. These import statements are preceded by ’include’ and are enclosed

in braces. The rationale behind this rather significant change centers around Python’s ability

to evaluate expressions specified in string format during runtime. This removes the burden

of parsing and evaluating expressions and essentially getsthe Python interpreter to do this on

behalf of the parser. This feature also allows for the use of all of Python’s data types, bypassing

the limited data type support natively provided by the parser.

4.6.2 The Parser

The parser section of the ANTLR grammar consists of a number of productions based on the

constructs described in the CSP programming notation. Where possible, an attempt has been

4.6. ANTLR GRAMMAR FOR CSP 42

made to develop a parser capable of recognising all the constructs present in the original gram-

mar. One important aspect to note regarding AST construction is that by default, ANTLR will

return a flat AST structure that simply represents the matched tokens. It is therefore necessary

to use ANTLR rewrite rules to specify the structure of the AST. Only the relevant aspects of

parsing CSP will be described here, however, the full set of parser rules can be seen in Appendix

A.1.

The ANTLR grammar starts off with a number of options that modify the way that ANTLR

generates the parser code. While there are numerous optionsavailable, only the following

were actually required for Hydra. Firstly, Python was specified as the target language and the

resulting output from the parser is in the form of an AST usingthe CommonTree label type

provided by ANTLR. Other options include enabling backtracking and memoization. After the

necessary options are defined, a list of tokens is supplied. These tokens are not the same as those

used in the lexer and do not have any corresponding symbols associated with them. Instead,

these tokens define custom labels that can be used by the AST rewrite rules for constructing

the AST nodes. Thereafter, the language production rules are defined, starting with the goal

production.

The goal production for the Hydra version of CSP is theprogram rule. This production

starts with an optionalimportssection, which is followed by acommand list. Additionally,

the program rule defines and initialises a variable list, which is used for scope checks, using

ANTLR’s dynamic scoping features. This rule produces an ASTnode with thePROGRAM

token as its root and theimportsandcommand listas its branches. The remaining rules follow

a similar pattern when constructing AST nodes. However, complications may arise during

AST construction when productions containing optional elements are encountered. Fortunately,

ANTLR’s syntactic predicates allow for these situations tobe handled explicitly, thus ensuring

consistent AST construction. An example of an AST for a very simple CSP program can be

seen in Fig. 4.9.

Thecommand listthen allows zero or moredeclarations, followed by one or morecommands.

Thedeclaration production allows for the declaration of one or more variable identifiers

of a given type. It also makes sure that these variables are added to the program’s variable

list with the appropriate scope, and makes sure that variables can only be declared once. The

commandproduction separates the differentcommandsinto two types. The first type is the

simple command, which includesassignment, input andoutput, while the second type is the

structured command, which includes thealternative, repetitiveandparallel commands. The

alternativecommand allows for a number ofguardedcommands, each with a list ofguardsand

a command list. This is similar to theif-elif construct in Python. Therepetitivecommand

starts with an asterisk and is followed by analternativecommand. Therepetitiveconstruct is

4
3

Figure 4.9: Example AST generated for a simple CSP program.

4.6. ANTLR GRAMMAR FOR CSP 44

much like a while loop that continues to loop while any of theguardsin thealternativeare still

active.

Theparallel production, although very simple in its appearance, is of paramount importance

as it defines the concurrent architecture of the program. It takes a list of one or moreprocesses

to be executed in parallel. During execution, theseprocessesare spawned asynchronously and

may execute in parallel, thus achieving one of the project goals; execution of code over multiple

processors. Related to this is the equally importantprocessconstruct, which is represented by

the process production. This production defines aprocessas aprocess labelfollowed by

a command list. Theprocess labelallows for both namedprocesses, with the option oflabel

subscripts, and anonymousprocesses. A processis essentially a block of statements that can be

executed either in sequence or in parallel with other suchprocesses.

Another important set of CSP constructs is theinput andoutputcommands. These essentially

define thechannelsof communication betweenprocessesand provide a synchronisation mech-

anism in the form of a rendezvous. Theinput production takes aprocess name,specifying

thesource process,and atarget variable, which specifies where the result will be stored. The

output production takes aprocess name, specifying thedestination process, and anexpres-

sion, which specifies the value to be sent.Expressionsand target variablesare either simple

or structured, with the simple versions referring to a single value or target and the structured

versions allowing for multiple values or targets to be specified in a tuple-like fashion.

An expressioncan take a number of forms and is represented by theexpression production,

which allows for bothsimple expressionsandstructured expressions. A simple expressioncan

take the form of either an identifier, an integer, Boolean, character value, or a Python expression.

As described in Section 4.5, the parser allows forexpressionswritten in Python code. Unlike the

other kinds of expressions, it is not possible to determine the type of the value that is returned by

the Python expression during parsing. As such, theexpression production returns ’python’

as the type for these expressions, and the actual type for theother expressions. ANTLR’s

support of production attributes allows for the passing of type information between productions,

as well as other relevant information. This type information is used for semantic checks in many

of the productions that involve assigning values to identifiers. These semantic checks are made

possible by using ANTLR’s grammar actions functionality.

This concludes the discussion on Hydra’s parser construction. While much can still be said

about the finer details of the parser, such a discussion wouldlikely be of little value to the

overall objectives of the project. The full ANTLR grammar for the CSP parser can be seen in

Appendix A.1.

4.7. SUMMARY 45

4.7 Summary

It has been seen that language translation is a multifacetedtask consisting of two major phases,

namely the front-end construction dealing with language recognition, and the back-end con-

struction dealing with code generation. This chapter focused on the front-end construction,

which involved developing a parser for CSP. It was also showed the many different techniques

for parsing, each with its own strengths and weaknesses.

The development of Hydra’s parser was carried out in two phases. First, a basic prototype parser

was crafted by hand for a cut-down version of the CSP grammar.This phase was for experi-

mentation purposes and was not intended for incorporation into the final Hydra framework. The

second phase involved the construction of a parser for inclusion in the Hydra framework. In-

stead of hand-coding this parser, a compiler generator toolwas used as such an approach would

be more flexible and less prone to error. A number of compiler generator tools were assessed

to find the best tool for generating a parser for CSP and assisting in code generation. ANTLR

was found to be the best compiler generator due to its plethora of features, good documentation

and ease of use. The ANTLR based lexer and parser grammars forCSP were then described,

leading to the conclusion that it is certainly possible to use CSP as a source language, at least

as regards parsing.

Chapter 5

Code Generation

5.1 Introduction

This chapter introduces and discusses the main concepts andissues pertaining to the code gener-

ation phase of the Hydra framework. As discussed in Chapter 4, the CSP parser for Hydra takes

a CSP algorithm as input, parses this input and returns an ASTthat represents the semantics of

the CSP algorithm. The resulting AST is then used as the inputfor the code generation module,

which has the task of translating the AST into the final executable code. As with the parser

described in Chapter 4, an initial, hand-crafted prototypeof the code generator was developed

for translating CSP to JCSP. This JCSP prototype is only compatible with the hand-crafted CSP

parser described in Section 4.4 and, like its parser counterpart, is purely for experimentation and

testing. After experimentation with the JCSP prototype hadbeen completed, the actual Hydra

code generation module was then developed.

The final code generation module was developed using the ANTLR compiler generator tool,

and follows on from the ANTLR parser for CSP described in Section 4.6. This code generation

module is responsible for outputting Python code that is semantically equivalent to the original

CSP algorithm, using an underlying concurrent framework toimplement the CSP constructs.

Therefore, before getting involved in the actual code generation process, an evaluation of a

number of existing concurrent frameworks was undertaken. Once an appropriate concurrent

framework had been chosen, it was then possible to implementthe code generation process

with the chosen framework used to implement parallelism.

46

5.2. JCSP PROTOTYPE CODE GENERATOR 47

5.2 JCSP Prototype Code Generator

5.2.1 Background and Framework

The JCSP prototype has two primary tasks. The first task involves translating the AST into

suitable JCSP Java code. The second task then compiles and executes the JCSP code at runtime,

thus making the translation process appear as a single action, as opposed to the multiple stages

that are actually involved in such a language translation task. The AST construction occurs

during the parsing process and is described in Section 4.4.3, however it may be beneficial to

include a bit more detail of the AST structure here.

Each node type in the AST is represented by a Python class inheriting from a baseASTNode

class. TheASTNode class provides functionality for specifying static code segments, which

can be used as templates. There are AST nodes for most of the fundamental CSP constructs

and commands, with the node classes appropriately named:Program , Process , Channel ,

Input , Output , Expr , Assign , Parallel , Alternative , Repetitive , Guarded

and Guard . The structure of these nodes is fairly generic, with each node consisting of a

list of child nodes, and other relevant information such as identifier labels, type information

or expression strings. TheProgram andProcess nodes are special in that they also store

a dictionary of all thechannelsthat are used in the program and the relevant process. The

Channel class is another special case in that it is not added to the ASTas a direct result of

a parser rule. Instead,channelsare implied by the presence ofinput andoutputcommands,

therefore, wheninput andoutputcommands are encountered, aChannel node is instantiated

and added to the channel dictionary of theProgram node and the relevantProcess node.

Once the AST has been constructed, it can be traversed by simply iterating through the node

list of each tree node.

As stated in Section 4.4.1, once the AST has been constructed, it is serialised using Python’s

pickle module and is passed to theprogramEndFound method of the code generator

module. The call to theprogramEndFound method signals the end of the parsing phase

and indicates that the code generation process can begin. The programEndFound method

is very simple as it only has to unpickle the AST and call thefinalise method, supply-

ing the AST object as an argument. Thefinalise method then calls thegeneratecode

method to perform the actual code generation. Once code generation is complete, it compiles

and runs the JCSPPCMain class that was generated. Compilation and execution of the JCSP

program is achieved using Python’sos.system method, which executes a system command

supplied in string format. Using this method, thejavac command is executed to compile the

PCMain.java file and then thejava command is executed to run the compiledPCMain

5.2. JCSP PROTOTYPE CODE GENERATOR 48

class. A drawback of using JCSP Java programs for the target output code is that it introduces

a dependency on non-Python libraries and programs. Specifically, the JCSP prototype requires

that the correct versions of both the Java runtime environment and the JCSP libraries are in-

stalled and correctly configured. This problem can be mitigated when using Python libraries

exclusively as there are tools for generating setup scriptscapable of automatically fetching and

installing module dependencies.

5.2.2 JCSP Code Generation

Thegeneratecode method is the core of the code generator module. As stated before, the

generatecode method is responsible for translating and outputting the desired concurrent

code. This is achieved by traversing and analysing the AST, constructing the appropriate code

segments to represent each of the AST nodes, and then writingthese code segments to Java

files. To make the file output process simpler, code segments are appended to the appropriate

dictionary element representing one of the output files. After all the code segments have been

generated and added to the dictionary, the code generator iterates through all the key-value

pairs in the dictionary. For each key-value pair, a file with name specified bykeyis opened for

writing, and the contents ofvalueare then written to this file.

Actual code generation starts with generating thePCMain class.PCMain is commonly used as

the starting class for JCSP programs [5]. All thechannelsandprocessesare instantiated within

the PCMain class and the actual process execution order is defined within the class’smain

method. First, the beginning code segment forPCMain is static and is simply appended to the

output as is. Then, thechannelsneed to be defined and instantiated. This requires iterating

through the dictionary ofChannel nodes stored in the rootProgram node and outputting the

appropriatechanneldefinitions.Channelsare named by appending the sourceprocessname to

the destinationprocessname.

The Program node’s child nodes are then searched until aParallel node is found. The

Parallel node then lists theProcess nodes that need to be translated. TheseProcess

nodes specify the names of theprocessesthat need to be instantiated within JCSP’sParallel

class. Duringprocessinstantiation, eachProcess node’s channel dictionary is analysed to

determine whichchannelsneed to be passed to theprocess’s constructor. Theprocessinstanti-

ation code is then output, along with the instruction to run the instantiatedParallel object.

Finally, the remaining static code for thePCMain class is output.

Another pass is made over theParallel node’s child nodes and for eachProcess node

found, a new Java class, named after the value of theProcess node’s label attribute, is gener-

ated. TheProcess node’s channel dictionary is analysed and the appropriatechanneldefini-

5.2. JCSP PROTOTYPE CODE GENERATOR 49

tions are output as class variables. Using this information, a class constructor is generated that

accepts the appropriatechannelsas parameters and initialises the class variables to the value of

these parameters. Therun method is then generated by iterating through theProcess node’s

child nodes and generating the appropriate code for anycommandsthat are found. Since no

declaration construct was supplied in the prototype grammar, the code for generating therun

method needs to analyse the process’scommandsat the start of the method and generate the

appropriate variable declarations based oncommandsthat involve assignment.

Input nodes generate code that simply uses theread method to read from the appropriate

channeland assign the result to the specified target variable.Output nodes generate code that

uses thewrite method to write the value of anexpressionto the specified channel, where an

expressionis represented by anExpr node. Assign nodes generate Java assignment state-

ments that assign the result of anExpr node to a target variable. TheAlternative and

Repetitive nodes require a fairly complex translation process to generate the semantically

equivalent code, especially with JCSP’s convolutedAlternative class. Only thealternative

construct will be discussed as therepetitiveconstruct is simply represented in the output code

as analternativeplaced in a Javawhile loop with the appropriate loop control code added to

thealternative.

When generating code for anAlternative node, it is necessary to pre-process all the as-

sociatedGuarded nodes. This is as a result of JCSP’s method for specifyingguardsin an

alternative.Firstly, an array of the appropriateinput guardsmust be generated. Secondly, an

array of the appropriateBoolean guardsmust be generated. The size of these two arrays needs

to be the same, therefore, the first iteration over the list ofGuarded nodes is used to determine

the size of the array, with the second iteration performing the task of actually generating the

array structure. ForBoolean guardswith multipleguardelements, it is necessary to generate a

single Boolean expression, which is achieved by combiningguardelements using the Boolean

’and’ operation.

However, someGuarded nodes contain either aBoolean guardor aninput guard, but not both.

This poses a problem as the array subscripts for the relatedBoolean guardsand input guards

need to match. This problem is easily resolved by supplying ’true ’ for a missingBoolean

guardor aSkip() guard for missinginput guards. Java code is then generated to define and

instantiate a JCSPAlternative object, which takes theinput guardarray as its constructor

argument. Aswitch statement is then generated that takes the result of theAlternative

object’spriSelect method, which is passed theBoolean guardarray as an argument. Then,

case statements are generated corresponding to each array subscript in the input guard array.

The statement blocks corresponding to eachcase statement is generated by processing the

commandnodes for the correspondingGuarded node.

5.3. CONCURRENT FRAMEWORKS 50

The above description of the code generation phase providesa general overview of the transla-

tion process involved in converting CSP to executable code for the JCSP prototype. The actual

method used to traverse the AST is rather mundane and is unlikely to provide any value to this

discussion. However, a number of lessons were learned from this manual translation process.

The main lesson being the need for multiple traversals over parts of the AST to retrieve nec-

essary information from nodes further down the tree. Other lessons included the techniques

necessary for implementingalternativestatements andguardsand for definingchannelsand

processes.

5.3 Concurrent Frameworks

The translation from one language or notation to another is by no means a simple task. A code

generator needs to be developed that is able to interpret thesemantics of the source language

and produce a semantically equivalent version in a target language [44]. The complexity of

the code generator is often dependent on the complexity of the target language or architecture.

Simple stack based architectures, such as Assembler, are usually fairly straightforward to gen-

erate code for, especially if a recursive decent parser is used [44]. However, other architectures,

such as parallel systems, often require a more sophisticated approach to code generation [4, 8].

One approach involves developing all the necessary constructs and underlying framework from

scratch. Needless to say, this can be very time consuming andcomplicated. A more practical

approach is to find and use existing frameworks for the targetarchitecture, adding custom code

only for the functionality that is missing or incomplete [6]. The back-end concurrent framework

for Hydra is built on top of a number of existing Python frameworks. These frameworks pro-

vide the constructs and architectural elements necessary to implement CSP programs in Python.

This section briefly introduces each framework and highlights the role it plays in Hydra.

5.3.1 Python Remote Objects

Python Remote Objects (PYRO) is a simple yet powerful framework for working with dis-

tributed objects written in Python [14]. PYRO essentially handles all the network communica-

tion between objects, allowing remote objects to appear as local ones [14]. Additionally, PYRO

provides remote method invocation functionality, which allows for methods from remote ob-

jects to be called locally [14]. PYRO can be used over a network, allowing processes to be

distributed between a number of separate computers, or it can be used purely on the local ma-

chine to provide a convenient inter-process communicationmechanism [14]. PYRO consists

5.3. CONCURRENT FRAMEWORKS 51

of a special nameserver component that provides functionality for registering and retrieving re-

mote objects. Client code is then able to register named objects with the PYRO nameserver and

retrieve these objects using the specified name [14]. This remote object framework provides all

the necessary functionality to implement CSP channels. Each communicationchannelbetween

processescan be implemented as a remoteChannel object withread andwrite methods.

As such, PYRO plays a critical role in the implementation of the concurrent Hydra back-end.

5.3.2 PyCSP

While PyCSP has already been discussed in Section 2.6.2, recent updates to PyCSP framework

have yielded some important functionality. As of writing, the latest version of PyCSP is ver-

sion 0.3.0, which was released in May 2008 [9]. Since version0.3.0, PyCSP provides network

channel functionality using PYRO [9]. With the appropriatecustom framework code, this new

functionality can be leveraged to overcome PyCSP’s greatest weakness, namely its reliance on

Python’s threading library. As described in Section 2.6.2,PyCSP has already implemented

Python versions of most of the CSP constructs, such as theprocess, channel, guard andalter-

nativecommands [9]. PyCSP’sParallel class can still be useful for implementing parallel

sub-processes, even though it is limited by Python’s GIL. Therefore, PyCSP forms another crit-

ical component of the concurrent Hydra back-end as it removes the need to develop these CSP

constructs from scratch.

5.3.3 River and Trickle

The initial investigation into suitable back-end frameworks yielded the River framework as a

possible candidate for process distribution and remote method invocation. River is a Python

framework for distributed and parallel programming [7]. Itis a useful framework for writing

parallel Python programs and prototyping parallel systems[7]. It has a number of features

that make it very useful for a project such as Hydra. These features include: dynamic River

VM discovery, process naming and creation, message passingand state management [7]. As

with PYRO, River supports communication between remote objects or processes and remote

method invocation [7]. River also has a number of extensionswith the ’trickle’ extension being

of relevance to the Hydra project. Trickle provides a numberof abstractions for the River

functionality, such as process and data distribution with workload balancing, easy VM discovery

and asynchronous process execution [6].

While River and Trickle appear to be the perfect platform on which to build the Hydra frame-

work, a number of issues were encountered during prototype development. River and Trickle

5.4. PYTHON CODE GENERATION 52

require that code be developed for execution within the River VM, which is essentially a mod-

ified Python interpreter, since it is not possible to simply import the necessary modules. While

this does not sound like much of a problem, it does have implications for the Hydra code gen-

erator and process distribution methods. Since processes would be distributed using the Trickle

functionality, it would be necessary to run the Hydra framework completely within a River VM

instead of simply importing the necessary functionality. This would then require users of Hydra

to also use the River interpreter when developing their applications otherwise the Hydra code

generator will not function correctly. These restrictionsand other added complications, such

as determining the path information for River and Trickle, were seen as definite drawbacks for

both the user and the development of Hydra. However, River and Trickle could still be useful if

the project were to be extended to multiple computers.

5.4 Python Code Generation

Now that an appropriate underlying framework has been found, it is possible to begin the pro-

cess of generating Python code. One of the many strengths mentioned for ANTLR in Section

4.5.1 is its ability to recognise AST grammars and generate structured output using StringTem-

plate. These features are critical to generating the concurrent Hydra-based code easily and

successfully.

5.4.1 ANTLR Tree Walker

ANTLR provides the ability to develop AST parsers that can beused to traverse the AST that

was generated by the ANTLR parser [33]. This removes the burden of having to write tree

traversal routines manually for the code generation process and significantly speeds up devel-

opment. Not only can these ANTLR tree grammars parse abstract syntax trees, they can also

incorporate all the usual ANTLR features such as grammar actions, syntactic predicates and

rewrite rules [33]. These rewrite rules can also take the form of StringTemplate style template

calls, thereby allowing the tree parser to generate code from predefined templates [33]. The

Hydra code generator was developed using this tree walker and templates approach.

5.4.2 StringTemplate

As mentioned previously, StringTemplate is a library that provides functionality for defining

static code templates with embedded structure information[33]. These template rules are stored

5.4. PYTHON CODE GENERATION 53

in a template group file that can be accessed by the ANTLR tree walker and used to generate

structured output code [33]. This approach has the benefit ofkeeping the tree walker imple-

mentation clean and concise as well as improving code generator maintainability. It also allows

for the code generator to be re-targeted without too many changes to tree walker itself [33].

The template rules take the form of a rule name with optional parameters and the corresponding

template code, with any of the supplied parameters embeddedtherein. A simple example of

two such rules and the corresponding tree walker rules can beseen in Figs. 5.1 and 5.2.

assignment : ^(ASSIGN ^(IDENT ID) expr=expression)
-> assignment(ident={$ID.text}, value={expr});
simple_expr : ^(EXPRESSION ^(PYTHON PYEXPR))
-> python_expr(expr={($PYEXPR.text)[1:-1]})

Figure 5.1: ANTLR tree walker rules for CSP.

Figure 5.1 shows two tree walker rules, the first being a rule that identifies assignment state-

ments in the AST and the second being a rule for one of the many alternatives of a simple

expression. The form of the templates used by these two rulesis depicted in Fig. 5.2.

assignment(ident, value) ::= "<ident> = <value>"
python_expr(expr) ::= "eval(’<expr>’)"

Figure 5.2: StringTemplate rules for Python code generation.

With careful planning and the correct structuring of these rules, it is possible to generate con-

current Hydra programs without having to add too many customcode generation routines.

5.4.3 Implementation

As with the ANTLR grammar parser, the ANTLR tree grammar starts with a section for the

options. The options for the Hydra tree walker include setting the target language to Python,

setting the output format to use templates and instructing the tree walker to use the tokens

defined in the CSP parser. The options section is then followed by a@memberssection that

defines a number of custom variables and methods that are usedduring the translation process.

The methods will be discussed as they become relevant. The tree grammar productions start

with theprogram rule. This represents the goal production for the tree walker and is called

when the tree walker is executed. The AST is parsed by starting with theprogram rule and

recursively matching AST node tokens and sub-rules. When the whole AST has been parsed, the

program rule compiles a list of all the mainprocessesandchannelsidentified in the AST and

returns these as tree walker result attributes. When theprogram rule has been fully matched,

5.4. PYTHON CODE GENERATION 54

it calls theprogram template rule, which then generates the appropriate program skeleton

using the supplied Python import statements,commandlist and list of program arguments. The

program arguments are constructed using a@membermethod calledbuildprocargs that

takes a list ofprocesses. It essentially constructs code to handle command-line arguments and

execute the relevantprocess. Of the remaining rules, only those that warrant discussionare

described here, however, the listings for the ANTLR tree walker and StringTemplate group file

can be found in Appendix A.2 an Appendix A.3 respectively.

Theparallel rule is important in that it has two distinct behaviours. If it is parsing the top-

levelparallel construct, it will generate the appropriate code for executing over multiple Python

interpreters. However, anyPARALLELnodes found further down the AST will generated using

PyCSP’sParallel method. The rationale behind this is that current desktop computers have

at most eight processor cores, therefore, implementing every process in a new Python inter-

preter instance is not likely to give the desired scaling andwill just increases the memory usage

of the Hydra program. Theprocess rule and the correspondingprocess_label rule are

fundamental productions in that they generates theprocess’smethod definition as a PyCSP

Process . Thankfully, Python permits nesting of methods, making this code generation pro-

cess much easier. Theprocess rule also takes a list ofchannelsthat are used in theprocess

and generates code to retrieve the relevantChannel objects from the PYRO nameserver using

the getNamedChannel method. Since CSP allows for the definition of anonymouspro-

cesses, a technique for handling and defining these methods was devised. The technique is

fairly simple and involves incrementing a counter and appending this count to the end of the

predefinedprocessname, such as’__anonproc_’ . It is worth noting that since anonymous

processeshave no user-defined name, it is not possible to useinputandoutputcommands within

these processes and any attempt to do so will lead to undefinedbehaviour.

While a number of the CSP constructs, such as theprocess, guarded, input andoutputstate-

ments, allow for label subscripts, this functionality has not been implemented in the code gener-

ator. As such, the parser rules for identifying these subscripts have been disabled, even though

the parser is capable of recognising them. Any attempt to usesubscripts in a Hydra program

will lead to parser errors. The reason for not including subscripts is that they introduce a great

deal of complexity to the code generator. These constructs may be re-enabled at a later stage

when the Hydra project is more mature. Another important issue regarding user defined la-

bels and names is the issue of keywords. Python has a number ofkeywords that cannot be

used as method or variable names. Therefore, all user-defined identifiers are sanitised by the

@membersmethod, fixkeywords , that simply prefixes an underscore to any identifiers that

clash with know keywords.

Variable declarations are now supported by thedeclaration rule, unlike the JCSP prototype,

5.4. PYTHON CODE GENERATION 55

which had to pre-process assignment statements to generatedeclarations. Although Python

does not require variable declarations, it was decided thatsimply assigning the value ofNone

to these variables would probably reduce the chance of scopeerrors. Array declarations are

another reason for generating declaration code in that CSP permits the declaration of array

bounds, which can lead to out-of-bounds errors if the programmer attempts to reference an

uninitialised list variable. Therefore, arrays are declared as a Pythonlist with the appropriate

number of elements all set toNone. An @membermethod, namedarrayinit , is used to

generate the appropriate number list elements.

Python expressions and statements embedded in the CSP are handled by generating Python

eval andexec calls respectively with the given expressions and statements as input. Struc-

tured expressions and variables are also possible using Python’stuple type. Theinput_cmd

andoutput_cmd rules generate simpleread andwrite method calls on the appropriate

Channel objects. This is possible due to the fact that all thechannelconfiguration and initial-

isation is handled at the beginning of theprocess.

Therepetitive rule generates a Pythonwhile loop with the appropriate loop control vari-

able set toTrue initially. Within the loop, anif-else statement is included with theif

expression set toFalse . An alternativeconstruct is then inserted between theif and the

else statements and generates a list ofelif statements. If all thealternativestatements

evaluate to false, theelse statement is executed, setting the loop control variable toFalse ,

thereby stopping the loop. Thealternative , guarded , guardlist andguard rules

all serve to generate a list of elif statements that represent the Boolean expressions supplied by

programmer and execute the supplied command list if that expression evaluates to true.Input

guardsare implemented using PyCSP’sAlternative class and thepriSelect method

that uses order of appearance as an indicator of priority.

Once the AST has been traversed and the templates have generated the appropriate Python code,

the resulting StringTemplate object containing the generated code is returned to thecspexec

method where the code is distributed and executed.

5.4.4 Process Distribution and Execution

A relatively simple approach was taken to bootstrapping andexecuting the relevant processes

once code generation was complete. As mentioned in Section 5.4.3, theprogram method of

the tree walker object returns a list ofchannelsandprocessesthat need to be configured and

executed. One of the problems encountered with using PyCSP’s network channel functionality

is that allchannelsneed to be registered with the PYRO nameserver before theprocessesare

able to retrieve the remoteChannel objects. There is no easy way to add this registration

5.4. PYTHON CODE GENERATION 56

process to the generated program without encountering situations where oneprocessrequests a

channelthat has not yet been registered. This problem was addressedby registering all the nec-

essarychannelsbeforehand in thecspexec method of theHydra.csp module. The list of

channelsreceived from the tree walker allows thecspexec method to simply loop through all

thechannelsand register the appropriatechannelnames with the PYRO nameserver. Since this

happens beforeprocessexecution, there is no chance ofchannelsbeing unregistered or multiple

registrations occurring for the samechannelname, thus breaking inter-process communication.

Fig. 5.3 shows how thechannelregistration process was implemented.

chans = []
for i, chan in enumerate(outpt.channels):
cn = One2OneChannel()
chans.append(cn)
registerNamedChannel(chans[i], chan)

Figure 5.3: PYRO channel name registration.

Once thechannelsare registered, theprocessesare asynchronously executed using a simple

loop and Python threads. The implementation of theprocessspawning routine can be seen in

Fig. 5.4. Thecspexec method then waits for theprocessesto finish executing and allows the

user to view the results before ending the program.

class runproc(Thread):
def __init__ (self, procname):
Thread.__init__(self)
self.procname = procname
def run(self):
os.system(’python hydraexe.py ’ + self.procname)

proclist = []
for proc in outpt.procs:
newproc = runproc(proc)
proclist.append(newproc)
newproc.start()

for proc in proclist:
proc.join()

Figure 5.4: Asynchronous process execution.

5.5. SUMMARY 57

5.5 Summary

The two phases of the construction of the code generator resulted in two separate code genera-

tors being developed. The first phase involved hand-building a simple code generator for JCSP.

This was performed as an experiment to gain familiarity withCSP and code generation tech-

niques. The second phase involved the use of ANTLR to developa flexible, maintainable and

powerful code generator. However, before beginning the construction of the ANTLR code gen-

erator, a number of existing concurrent frameworks were investigated to reduce the amount of

custom coding required. The PyCSP and PYRO libraries were found to meet the requirements

of such a concurrent framework.

Using ANTLR’s tree grammar parser and StringTemplate support, a code generator was devel-

oped that is able to convert CSP algorithms to concurrent Python code and distribute this code

for execution over multiple processor cores. With the completion of the code generator comes

the completion of the development aspect of the project. Testing is therefore required to assess

whether the Hydra framework actually meets the objectives it set out to achieve.

Chapter 6

Results

6.1 Introduction

Two forms of testing were performed to determine Hydra’s degree of success in meeting the

project objectives. First, a qualitative analysis was performed on various aspects of the Hydra

framework. This involved constructing a simple CSP exampleand converting it using Hydra.

The resulting output code was then analysed to determine if it represents an accurate represen-

tation of the CSP algorithm. A subjective analysis of Hydra’s ease of use was also performed.

The code was then executed and the operating system’s process monitoring tools were used to

determine whether or not the program was executing over multiple process cores.

Second, a quantitative analysis of Hydra’s performance wasundertaken. While the aim of this

project is not to develop the fastest, most efficient framework possible, it is certainly worthwhile

to perform such an analysis as performance is likely to affect the usability of the framework.

The first quantitative test involves comparing the number oflines of code from the original

algorithm to the number of lines of code in the resulting output program. The second series of

tests involve obtaining timings for conversion overhead and channel communication overhead.

All testing was performed on the system configuration specified in Table 6.1.

6.2 Testing

6.2.1 Generated Code Analysis

An example Hydra CSP algorithm can be seen in Fig. 6.1. This isa simple program with two

processes. Theproducer process outputs the value ofx to theconsumer process 10000

58

6.2. TESTING 59

Category Type

CPU AMD Opteron 170 (2x2.0GHz)
Motherboard ASUS A8R32-MVP Deluxe
Memory 2x1GB G.Skill DDR400
Hard Disk Seagate 320GB 16MB Cache
Network Marvel Gigabit On-board Network Card
Operating System Microsoft Windows 2003 Server SP2

Table 6.1: Testing platform configuration.

times and theconsumer process simply inputs the value received fromproducer and stores

it in y . The resulting Python output code can be seen in Fig. 6.2.

from Hydra.csp import cspexec
prodcons = """
[[

-- ping process : sends the value of x to pong
producer ::

x : integer; x := 1;

* [
{x <= 10000} -> {print "prod: x = " + str((x * x* x) % 10)};

consumer ! x;
x := {x + 1};

];
||

-- consumer process : receives a value from producer and stor es it in y
consumer ::

y, count : integer; count := 0;

* [
{count < 10000} -> producer ? y;

count := {count + 1};
{print "cons: y = " + str((y * y* y) % 10)};

[] {count == 10000} -> {print "The count is: " + str(count)};
];

]];
"""
cspexec(prodcons)

Figure 6.1: Simple producer-consumer CSP example.

Looking at the output code, it is clear that Hydra has generated a semantically equivalent version

of the CSP algorithm. Bothprocessesare defined correctly, with correctchannelinitialisation

and variable declarations. The repetitive commands are both present in the form ofwhile

loops with the appropriate control variables andalternativecode. Theguardedcommands

can also be seen in the form of theelif statements, with expressions and statement blocks

correctly represented. The use of embedded Python statements is apparent in the inclusion of

eval andexec statements.Input andoutputcommands can be seen by the respectiveread

6.2. TESTING 60

andwrite method calls on thechannelobjects. This example, while simple, is able to show

most of the CSP constructs and their respective representation in Python using Hydra.

It apparent from the nature of the resulting Python code, that it is simpler and quicker to write a

CSP algorithm and have Hydra convert it to Python. The incorporation of Python expressions

and statements is also bound to make using Hydra easier as theprogrammer is free to use

Python’s powerful data-types and libraries within the CSP program.

The resulting Hydra program was then run and the Windows TaskManager was used to monitor

thepython.exe interpreter processes and overall CPU usage. The results ofthis test can be

seen in Fig. 6.3 and Fig 6.4. To demonstrate the parallel execution effectively, theguard

conditions for theproducer andconsumer processes were changed to True, thus creating

infinite loops. This provided enough time to effectively demonstrate multicore usage.

The processor usage information gathered from the Windows Task Manager clearly shows that

the Hydra program is executing on multiple CPU cores simultaneously. The ’CPU Usage His-

tory’ graph shows that both CPU cores have processor usage ofbetween 60 and 80 percent

during the period of process execution. Furthermore, the ’Processes’ list shows the Python

interpreters that were running during that period. The Python interpreter with 0 percent CPU

usage is the PYRO nameserver process, and the other three instances of Python are for the main

Hydra program, theproducer process and theconsumer process. Adding their respective

CPU usage values together equates to a CPU usage of 64 percentfor the Hydra program, where

50% usage indicates the maximum usage for single CPU core. This proves that the Hydra pro-

gram is executing in parallel and more CPU intensive algorithms are likely to further reinforce

this distinction.

6.2.2 Basic Quantitative Analysis

The first test being conducted is a simple comparison betweenthe number of lines of CSP

algorithm code and the number of lines of converted Python code. The aim of this test is to

demonstrate the work reduction benefits of using Hydra, since less lines of code have to be

written to get the same result. A number of CSP algorithms were written, incorporating a mix

of CSP constructs. These CSP programs were then converted toPython code and the relative

line counts were compared.

From these results in Table 6.2, it can be seen that there is anincrease of between 300 and

400 percent in the number of lines of code from CSP algorithm to the Python program. This

essentially means that the programmer has to write less codeto produce the desired program.

To test the channel communication overhead, a simple test was devised. The producer-consumer

6.3. SUMMARY 61

Example Lines of CSP Lines of Python

1 34 121
2 18 67
3 22 78

Table 6.2: Line-count comparison

example was modified to take a time measurement before therepetitiveand take another mea-

surement after therepetitive. This was performed 100 times and the average was taken. The

results can be seen in Table 6.3. Average compilation time was also computed. From the results

it is apparent that there is very little overhead associatedwith compilation and communication.

Run Communication (in seconds)Compilation (in seconds)

1 0.001719 0.047
2 0.001719 0.078
3 0.001719 0.065
4 0.001720 0.079
5 0.001560 0.072
6 0.001559 0.068
7 0.001710 0.081
8 0.001559 0.062
9 0.001570 0.049
10 0.001559 0.078

Average 0.001639 0.0679

Table 6.3: Communication overhead.

6.3 Summary

From these results, it is apparent that the Hydra framework has achieved its primary objective.

That is, it has demonstrated that it is possible to take a concurrent CSP algorithm and translate

it into concurrent Python code that is capable of parallel execution. This translation process is

automatic and does not require the user to implement their concurrent algorithm manually using

one of the many existing concurrent frameworks. This automatic algorithm conversion feature

is what makes Hydra easy to use. It was also found that Hydra did not add much in the way of

computing overhead.

62

import sys
from pycsp import *
from pycsp.plugNplay import *
from pycsp.net import *

def __program(_proc_):
@process
def producer():

__procname = ’producer’
print ’# producer’
__chan_consumer_out = getNamedChannel("producer->cons umer")
x = None
x = 1
__lctrl_1 = True
while(__lctrl_1):

if False:
pass

elif eval(’x <= 10000’):
exec ’print "prod: " + str(x)’ in globals(), locals()
__chan_consumer_out.write(x)
x = eval(’x + 1’)

else:
__lctrl_1 = False

@process
def consumer():

__procname = ’consumer’
print ’# consumer’
__chan_producer_in = getNamedChannel("producer->consu mer")
y = None
count = None
count = 0
__lctrl_2 = True
while(__lctrl_2):

if False:
pass

elif eval(’count < 10000’):
y = __chan_producer_in.read()
count = eval(’count + 1’)
exec ’print "cons: y = " + str(y)’ in globals(), locals()

elif eval(’count == 10000’):
exec ’print "The count is: " + str(count)’ in globals(), loca ls()
count = 10001

else:
__lctrl_2 = False

process spawning
if False:

pass
elif _proc_ == "producer":

Sequence(producer())
elif _proc_ == "consumer":

Sequence(consumer())
else:

print ’Invalid process specified.’
__program(sys.argv[1])

Figure 6.2: Python code for producer-consumer example.

63

Figure 6.3: Processor activity during Hydra process execution.

Figure 6.4: Python interpreter CPU usage during Hydra process execution.

Chapter 7

Conclusions

7.1 Summary

The goal of the Hydra project is the creation of a concurrent framework for Python. This

framework is given the task of converting CSP code into concurrent Python code. This process

involved the development of a parser for CSP. First, a prototype parser was coded by hand and

then a fully working ANTLR parser was created after identifying ANTLR as the best compiler

generator to use. It is also necessary to develop a code generator. A prototype code generator

was hand-crafted to analyse the AST from the parser and generate JCSP. Thereafter, ANTLR

was used to generate Python code from the AST supplied by the ANTLR parser. Finally, ba-

sic testing was performed to determine whether or not the Hydra framework was capable of

meetings its objectives.

7.2 Revisiting the Objectives

The primary objective of this project was investigating thefeasibility of converting a CSP algo-

rithm into concurrent Python code. As can be seen by the results in Chapter 6, this objective has

been achieved. It is therefore possible to take a CSP algorithm defined within a Python program

and convert it into a concurrent Python code and have the concurrent program execute over mul-

tiple CPU cores. The objective of developing a flexible parser and translator was also achieved

thanks to ANTLR’s powerful parsing and code generation functionality. Results showed that it

is possible to accurately convert CSP into Python using structured code templates. Results also

showed that the translation process only adds a negligible amount of overhead to the program.

64

7.3. FUTURE WORK 65

7.3 Future Work

The Hydra framework is still in its prototype phase. As such,there are a number of possible

extensions. A short list of these extensions is listed below:

• A number of changes had to be made to the CSP grammar during parser and code gen-

erator development. Many of these compromises were made to speed up development as

opposed to be actual requirements. Further studies could investigate how these changes

could be reverted and how such a task would affect the parsingand code generation pro-

cesses.

• Support for embedding Python in the CSP program was added, however, this support is

very simplistic. It would be beneficial to research better ways of allowing CSP programs

to use Python functionality.

• Semantic checking and error reporting for the parser and code generator are very weak.

Further work could involve implementing stronger semanticchecks and provide friendlier

error reporting.

• This research only looked at implementing parallelism for asingle computer system.

Further studies could investigate extending the target architecture to multiple computers

or Grid computing platforms.

Bibliography

[1] A HO, A. V., LAM , M. S., SETHI, R., AND ULLMAN , J. D. Compilers: Principles,

Techniques, and Tools, 2/E, 2nd edition ed. Addison-Wesley, 2006.

[2] A RROWSMITH, B., AND MCM ILLIN , B. How to program in ccsp, August 1994.

[3] BEAZLEY, D. Ply (python lex-yacc) [online]. May 2008. Available from: http://

www.dabeaz.com/ply/ , Accessed 31 October 2008.

[4] BEAZLEY, D., AND LOMDAHL , P. Feeding a large scale physics application to python.

In Proceedings of the 6 th International Python Conference(San Jose, California, October

1997). Available from:citeseer.ist.psu.edu/beazley97feeding.html .

[5] BELAPURKAR, A. Csp for java programmers [online]. June 2005. Avail-

able from: http://www-128.ibm.com/developerworks/java/library/

j-csp1.html , Accessed 31 May 2008.

[6] BENSON, G., AND FEDOSOV, A. Python-based distributed programming with trickle. In

PDPTA(2007), H. R. Arabnia, Ed., CSREA Press, pp. 30–36.

[7] BENSON, G., FEDOSOV, A., GUTIERREZ, J., HARDIE, B., NGO, T., REYES, J., AND

WU, Y. River - a python-based framework for rapid prototyping of reliable parallel run-

time systems [online]. May 2008. Available from:http://www.cs.usfca.edu/

river/index.html , Accessed 25 May 2008.

[8] BJØRNDALEN, J., VINTER, B., AND ANSHUS, O. PyCSP - Communicating Sequential

Processes for Python. IOS Press, 2007.

[9] BJØRNDALEN, J. M. Pycsp [online]. May 2008. Available from:http://www.cs.

uit.no/~johnm/code/PyCSP/ .

[10] BRÜCKNER, M. yeanpypa - yet another python parser framework [online]. 2008.

Available from: http://www.slash-me.net/dev/snippets/yeanpypa/

documentation.html , Accessed 31 October 2008.

66

BIBLIOGRAPHY 67

[11] BROWN, N. C. C. Rain: A new concurrent process-orientated programming language. In

Communicating Process Architectures 2006(September 2006), P. Welch, J. Kerridge, and

F. Barnes, Eds., IOS Press, pp. 237–251.

[12] BROWN, N. C. C. C++CSP2: A Many-to-Many Threading Model for Multicore Ar-

chitectures. InCommunicating Process Architectures 2007(July 2007), A. A. McEwan,

W. Ifill, and P. H. Welch, Eds., IOS Press, pp. 183–205.

[13] CLAYTON , P., AND ZHAO, D. Distributed and parallel processing. Print, Department of

Computer Science, Rhodes University, April 2008.

[14] DE JONG, I. Pyro - python remote objects [online]. May 2008. Available from: http:

//pyro.sourceforge.net/ , Accessed 2 June 2008.

[15] EVANS, J. Parsing – python parser generator module [online]. August 2007. Available

from: http://www.canonware.com/Parsing/ , Accessed 31 October 2008.

[16] FOR COMPUTING MACHINERY, A. The acm computing classification system [1998

version] [online]. October 2008. Available from:http://www.acm.org/about/

class/ccs98-html , Accessed 25 September 2008.

[17] GIMBLETT, A. Parsing csp-casl with parsec. Presentation, November 2006.

[18] HALL , A., AND CHAPMAN , R. Correctness by construction: Developing a commercial

secure system.IEEE Software Jan/Feb(January/February 2002), 18–25.

[19] HASSELBRING, W. Programming languages and systems for prototyping concurrent ap-

plications.ACM Comput. Surv. 32, 1 (2000), 43–79.

[20] HAYES, B. Computing in a parallel universe.American Scientist 95(2007), 476–480.

[21] HILDERINK , G., BROENINK, J., VERVOERT, W., AND BAKKERS, A. Communicat-

ing java threads. InProceedings of the 20th World Occam and Transputer User Group

Technical Meeting(The Netherlands, 1997), IOS Press, pp. 48–76.

[22] HINSEN, K. Parallel scripting with python.Computing in Science & Engineering 9, 6

(November/December 2007), 82–89.

[23] HOARE, C. A. R. Communicating sequential processes.Commun. ACM 21, 8 (1978),

666–677.

[24] HOARE, C. A. R. Communicating Sequential Processes. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1985.

BIBLIOGRAPHY 68

[25] JACKSON, K. R. pyglobus: a python interface to the globus toolkit.Concurrency and

Computation: Practice and Experience 14(2002), 1075–1083.

[26] L IMITED , S.-T. M. Occam 2 Reference Manual, 2.1 ed. Prentice-Hall International Ltd,

United Kingdom, May 1995.

[27] LONGO, R. Cocopy 1.1.0rc [online]. November 2007. Available from: http://pypi.

python.org/pypi/CocoPy/ , Accessed 31 October 2008.

[28] MARTELLI , A. Python in a Nutshell. O’Reilly & Associates, Inc., 2003.

[29] MCDONALD, I. Cpu architecture and operation [online]. July 1997. Available from:

http://www.dcs.gla.ac.uk/~ian/project3/node13.html , Accessed 28

October 2008.

[30] MCGUIRE, P. Pyparsing wiki home [online]. October 2008. Available from: http:

//pyparsing.wikispaces.com/ , Accessed 31 October 2008.

[31] M ILLER, P. J. Parallel, distributed scripting with python.

[32] MOREIRA, N., AND REIS, R. Yappy - yet another lr(1) parser generator for python

[online]. October 2006. Available from:http://www.ncc.up.pt/FAdo/Yappy/

Yappy.html , Accessed 31 October 2008.

[33] PARR, T. J. The Definitive ANTLR Reference: Building Domain-Specific Languages. The

Pragmatic Programmers, Raleigh, North Carolina, 2007.

[34] PATEL , A. Parsing with yapps [online]. 2008. Available from:http://theory.

stanford.edu/~amitp/yapps/ , Accessed 31 October 2008.

[35] PEDRONI, S. Pypy - goals and architecture overview. Online, March

2007. Available from: http://codespeak.net/pypy/dist/pypy/doc/

architecture.html .

[36] PÉREZ, F. Ipython: An enhanced interactive python shell [online]. March 2008. Available

from: http://ipython.scipy.org/moin/ , Accessed 25 May 2008.

[37] PYTHON.ORG. About python [online]. May 2008. Available from:http://www.

python.org/about/ , Accessed 25 May 2008.

[38] PYTHON.ORG. Python library and extension faq [online]. January 2008. Available from:

http://www.python.org/doc/faq/library/ , Accessed 29 October 2008.

BIBLIOGRAPHY 69

[39] RAJU, V., RONG, L., AND STILES, G. Automatic Conversion of CSP to CTJ, JCSP, and

CCSP. IOS Press, 2003.

[40] RIGO, A. Psyco introduction [online]. January 2008. Available from: http://psyco.

sourceforge.net/introduction.html , Accessed 28 October 2008.

[41] SCATTERGOOD, B. The Semantics and Implementation of Machine-Readable CSP. PhD

thesis, University of Oxford, Trinity, 1998.

[42] SUTTER, H. A fundamental turn toward concurrency in software.Dr. Dobb’s 30(March

2005).

[43] SUTTER, H., AND LARUS, J. Software and the concurrency revolution.Queue 3, 7

(2005), 54–62.

[44] TERRY, P. Compiling with C# and Java. Addison-Wesley, 2005.

[45] VAN GLABBEEK , R. Process algebra. Online, October 2008.

[46] VOSS, J. Wisent: a python parser generator [online]. March 2008.Available from:

http://seehuhn.de/pages/wisent , Accessed 31 October 2008.

Appendix A

Grammar listings

This appendix presents the ANTLR grammars and StringTemplate code templates used to con-

struct the parser and code generator for Hydra. The listingsprovided below are not the full

listings as much of the grammar action code has been removed for readability.

A.1 ANTLR Parser Grammar for CSP

1 grammar csp;

2

3 options

4 {

5 language=Python;

6 output=AST;

7 ASTLabelType=CommonTree;

8 backtrack=true;

9 memoize=true;

10 }

11

12 / * --- ---------------

13 * PARSER RULES

14 * --- --------------- * /

15 // $<Productions

16

17 program returns [procs, chans]

18 scope

19 {

20 vars;

21 }

22 @init

23 {

24 imprts = False

25 }

26 : (pythonimport { imprts = True })? command_list

27 -> { imprts == True }? ^(PROGRAM pythonimport command_list)

70

A.1. ANTLR PARSER GRAMMAR FOR CSP 71

28 -> ^(PROGRAM EMPTY command_list)

29 ;

30

31 pythonimport

32 : PYIMPRT+

33 -> ^(PYTHON PYIMPRT)+

34 ;

35

36 parallel

37 : LPARA process (PAR process) * RPARA

38 -> ^(PARALLEL process+)

39 ;

40

41 process

42 : process_label command_list

43 -> ^(PROCESS process_label command_list)

44 ;

45

46 process_label returns [lbl]

47 @init

48 {

49 subsup = False

50 }

51 : ID

52 | {

53 self.anonproc += 1

54 $lbl = (’__anonproc_’ + str(self.anonproc), False, 0, None)

55 }

56 -> ^(PROC_LABEL EMPTY EMPTY)

57 ;

58

59 label_subscript returns [subs]

60 : int_const

61 -> ^(SUBSCRIPT int_const)

62 | range

63 -> ^(SUBSCRIPT range)

64 ;

65

66 declaration

67 : ids+=ID (COMMA ids+=ID) * COLON type SEMICOL

68 -> ^(VARDEF type ^(IDENT ID))+

69 ;

70

71 int_const

72 : simple_expr

73 -> simple_expr

74 ;

75

76 range returns [rn]

77 @init

78 {

79 idsup = False

80 }

81 : (ID COLON { idsup = True })? lower=int_const DBLCOM upper=i nt_const

82 -> { idsup == True }? ^(RANGE ^(VARDEF INTEGER ^(IDENT ID)) $l ower $upper)

83 -> { idsup == False }? ^(RANGE $lower $upper)

A.1. ANTLR PARSER GRAMMAR FOR CSP 72

84 -> ^(RANGE $lower $upper)

85 ;

86

87 type returns [tp]

88 : (LPAREN lower=INT DBLCOM upper=INT RPAREN) basictype

89 -> ^(ARRAY ^(RANGE $lower $upper) basictype)

90 | basictype

91 -> basictype

92 ;

93

94 basictype

95 : ’integer’ -> INTEGER

96 | ’boolean’ -> BOOLEAN

97 | ’char’ -> CHAR

98 ;

99

100 command_list

101 : declaration * command+

102 -> ^(COMMAND_LIST declaration * command+)

103 ;

104

105 command

106 : (

107 simple_cmd -> simple_cmd

108 | struct_cmd -> struct_cmd

109) SEMICOL

110 ;

111

112 simple_cmd

113 : assignment -> ^(COMMAND assignment)

114 | input_cmd -> ^(COMMAND input_cmd)

115 | output_cmd -> ^(COMMAND output_cmd)

116 | nullcmd -> ^(COMMAND nullcmd)

117 | PYEXPR -> ^(COMMAND ^(PYTHON PYEXPR))

118 ;

119

120 struct_cmd

121 : alternative -> ^(COMMAND alternative)

122 | repetitive -> ^(COMMAND repetitive)

123 | parallel -> ^(COMMAND parallel)

124 ;

125

126 nullcmd

127 : ’SKIP’ -> SKIP

128 ;

129

130 assignment

131 : target_var EQUAL expression

132 -> ^(ASSIGN target_var expression)

133 ;

134

135 process_name returns [pn]

136 : ID

137 -> ^(PROC_LABEL ID EMPTY)

138 ;

139

A.1. ANTLR PARSER GRAMMAR FOR CSP 73

140 subscripts

141 : subs+=simple_expr (COMMA subs+=simple_expr) *
142 -> ^(SUBSCRIPT simple_expr+)

143 ;

144

145 target_var returns [tp, stp]

146 @init

147 {

148 arrsub = False

149 }

150 : ID

151 (LBRACK int_const RBRACK

152 {

153 arrsub = True

154 }

155)?

156 -> { arrsub == True }? ^(IDENT ID int_const)

157 -> ^(IDENT ID)

158 | struct_target

159 -> struct_target

160 ;

161

162 constructor returns [ident]

163 : ID

164 -> ^(IDENT ID)

165 |

166 -> EMPTY

167 ;

168

169 struct_target returns [tp, stp]

170 : constructor LPAREN var_list RPAREN

171 -> ^(STRUCT_T constructor var_list)

172 ;

173

174 var_list returns [tps]

175 : tv1=target_var (COMMA tv2=target_var) *
176 -> target_var+

177 |

178 -> EMPTY

179 ;

180

181 simple_expr returns [tp]

182 @init

183 {

184 arrsub = False

185 }

186 : ID (LBRACK int_const RBRACK)?

187

188 -> {$tp == ’integer’ and arrsub}? ^(EXPRESSION ^(VAR INTEGE R ID int_const))

189 -> {$tp == ’boolean’ and arrsub}? ^(EXPRESSION ^(VAR BOOLEA N ID int_const))

190 -> {$tp == ’char’ and arrsub}? ^(EXPRESSION ^(VAR CHAR ID int _const))

191 -> {$tp == ’integer’ and not arrsub}? ^(EXPRESSION ^(VAR INT EGER ID))

192 -> {$tp == ’boolean’ and not arrsub}? ^(EXPRESSION ^(VAR BOO LEAN ID))

193 -> {$tp == ’char’ and not arrsub}? ^(EXPRESSION ^(VAR CHAR ID))

194 -> {$tp == ’array-integer’ and not arrsub}? ^(EXPRESSION ^(VAR ^(ARRAY INTEGER) ID))

195 -> {$tp == ’array-boolean’ and not arrsub}? ^(EXPRESSION ^(VAR ^(ARRAY BOOLEAN) ID))

A.1. ANTLR PARSER GRAMMAR FOR CSP 74

196 -> {$tp == ’array-char’ and not arrsub}? ^(EXPRESSION ^(VAR ^(ARRAY CHAR) ID))

197 -> ^(EXPRESSION ^(VAR INVALID ID))

198 | INT

199 -> ^(EXPRESSION ^(VALUE INTEGER INT))

200 | BOOL

201 -> ^(EXPRESSION ^(VALUE BOOLEAN BOOL))

202 | CHR

203 -> ^(EXPRESSION ^(VALUE CHAR CHR))

204 | PYEXPR

205 -> ^(EXPRESSION ^(PYTHON PYEXPR))

206 ;

207

208 struct_expr returns [tp, stp]

209 : constructor LPAREN expr_list RPAREN

210 -> ^(STRUCT_E constructor expr_list)

211 ;

212

213 expr_list returns [tps]

214 : ex1=expression (COMMA ex2=expression) *
215 -> expression+

216 |

217 -> EMPTY

218 ;

219

220 expression returns [tp, stp]

221 : simple_expr

222 -> simple_expr

223 | struct_expr

224 -> struct_expr

225 ;

226

227 input_cmd

228 : process_name QUEST target_var

229 -> ^(INPUT process_name target_var)

230 ;

231

232 output_cmd

233 : process_name EXCLAM expression

234 -> ^(OUTPUT process_name expression)

235 ;

236

237 repetitive

238 : ASTER alternative

239 -> ^(REPETITIVE alternative)

240 ;

241

242 alternative

243 : LBRACK guarded (GBRACK guarded) * RBRACK

244 -> ^(ALTERNATIVE guarded+)

245 ;

246

247 guarded

248 @init

249 {

250 rngsup = False

251 }

A.1. ANTLR PARSER GRAMMAR FOR CSP 75

252 : (LPAREN range RPAREN { rngsup = True })? guard GARROW comman d_list

253 -> { rngsup == True }? ^(GUARDED range guard command_list)

254 -> ^(GUARDED EMPTY guard command_list)

255 ;

256

257 guard

258 : guardlist

259 -> ^(GUARD guardlist)

260 | input_cmd

261 -> ^(GUARD input_cmd)

262 | nullcmd

263 -> ^(GUARD nullcmd)

264 ;

265

266 guardlist

267 : frst=guard_elem

268 (SEMICOL follow=guard_elem) * (SEMICOL input_cmd)?

269 -> ^(GUARD_LIST guard_elem+ input_cmd?)

270 ;

271

272 guard_elem returns [tp]

273 : simple_expr

274 -> simple_expr

275 | declaration

276 -> declaration

277 ;

278

279 // $>

280

281 / * --- ---------------

282 * LEXER RULES

283 * --- --------------- * /

284

285 // $<Lexer Tokens

286

287 LBRACK : ’[’;

288 RBRACK : ’]’;

289 LPAREN : ’(’;

290 RPAREN : ’)’;

291 GBRACK : ’[]’;

292 GARROW : ’->’;

293 LPARA : ’[[’;

294 RPARA : ’]]’;

295 PAR : ’||’;

296 SEMICOL : ’;’;

297 PROCCOL : ’::’;

298 ASTER : ’ * ’;

299 EQUAL : ’:=’;

300 QUEST : ’?’;

301 EXCLAM : ’!’;

302 COMMA : ’,’;

303 COLON : ’:’;

304 DBLCOM : ’..’;

305 ID : (’a’..’z’) (’a’..’z’| ’A’..’Z’| ’0’..’9’| ’_’) * ;

306 CHR : ’\’’ (options {greedy = false;} : .) ’\’’;

307 INT : (’0’..’9’)+;

A.2. ANTLR TREE WALKER GRAMMAR FOR CSP 76

308 BOOL : ’True’ | ’False’;

309 PYEXPR : ’{’ (options {greedy=false;} : .) * ’}’;

310 PYIMPRT : ’_include’ ’{’(options {greedy=false;} : .) * ’}’;

311 WS : (’\t’ | ’ ’ | ’\u000C’)+ { $channel = HIDDEN; } ;

312 COMMENT : (’--’ (options {greedy = false;} : .) * CRLF) { $channel = HIDDEN; } ;

313 CRLF : (’\r’? ’\n’) { $channel = HIDDEN; } ;

314

315 // $>

A.2 ANTLR Tree Walker Grammar for CSP

1 tree grammar cspWalker;

2

3 options

4 {

5 language=Python;

6 tokenVocab=csp;

7 ASTLabelType=CommonTree;

8 output=template;

9 }

10

11 @members

12 {

13 keywords = [’and’,’del’,’from’,’not’,’while’,’as’,’el if’,’global’,’or’,’with’,’assert’,’else’,’if’,

14 ’pass’,’yield’,’break’,’except’,’import’,’print’,’c lass’,’exec’,’in’,’raise’,’continue’,

15 ’finally’,’is’,’return’,’def’,’for’,’lambda’,’try’]

16

17 def fixkeywords(self, inp):

18 if inp in self.keywords:

19 return "_"+inp

20 return inp

21

22 def arrayinit(self, a, b):

23 return ’[’ + ’’.join([’None, ’ for x in range(max(int(a),in t(b)) + 1)]) + ’]’

24

25 def buildprocargs(self, procnames):

26 results = ’’

27 nl = False

28 for p in procnames:

29 if nl:

30 results += ’\n’

31 results += ’elif _proc_ == "’ + p + ’":\n’

32 results += ’\tSequence(’ + p + ’())’

33 nl = True

34 return results

35

36 def definechan(self, chanlist):

37 results = ’’

38 for cn, cv in chanlist:

39 results += cv + ’ = getNamedChannel("’ + cn + ’")\n’

40 return results

41

42 def buildalts(self, inps):

43 results = ’’

A.2. ANTLR TREE WALKER GRAMMAR FOR CSP 77

44 for i in inps:

45 results += i + ’_alt = Alternative(’ + i + ’.read, __sg).selec t()\n’

46 return results

47

48 anonproc = 0

49 repidx = 0

50 }

51

52 program returns [channels, procs]

53 scope

54 {

55 chans;

56 }

57 @init

58 {

59 pnames = []

60 $program::chans = set()

61 }

62 @after

63 {

64 $channels = list($program::chans)

65 $procs = pnames

66 }

67 : ^(PROGRAM EMPTY cmdlst=command_list[True] { pnames = $co mmand_list.pnames })

68 -> program(commandlist={cmdlst}, procargs={self.build procargs(pnames)})

69 | ^(PROGRAM (pyi+=pythonimport)+ cmdlst=command_list[T rue] { pnames = $command_list.pnames

70 -> program(commandlist={cmdlst}, procargs={self.build procargs(pnames)}, incl={$pyi})

71 ;

72

73 pythonimport

74 : ^(PYTHON PYIMPRT)

75 -> imports(imp={($PYIMPRT.text)[9:-1]})

76 ;

77

78 parallel [toplvl] returns [procnames]

79 @init

80 {

81 $procnames = []

82 tsprocs = []

83 }

84 : ^(PARALLEL (procs+=process

85 {

86 if $toplvl:

87 $procnames.append($process.procname)

88 else:

89 tsprocs.append($process.procname)

90 }

91)+)

92 -> { $toplvl }? parallel(proc={$procs}, procnames={tspro cs}, lvl={False})

93 -> parallel(proc={$procs}, procnames={tsprocs}, lvl={T rue})

94 ;

95

96 process returns [procname]

97 scope

98 {

99 chans;

A.2. ANTLR TREE WALKER GRAMMAR FOR CSP 78

100 prcname;

101 }

102 @init

103 {

104 $process::chans = set()

105 $process::prcname = ’’

106 }

107 : ^(PROCESS lbl=process_label { $process::prcname = $proc ess_label.procname } cmdlst=command_list

108 {

109 $procname = $process_label.procname

110 }

111 -> process(label={lbl}, commandlist={cmdlst}, chans={s elf.definechan(list($process::chans

112 ;

113

114 process_label returns [procname]

115 : ^(PROC_LABEL ID label_subscript)

116 {

117 $procname = self.fixkeywords($ID.text)

118 }

119 -> process_label(ident={self.fixkeywords($ID.text)})

120 | ^(PROC_LABEL ID EMPTY)

121 {

122 $procname = self.fixkeywords($ID.text)

123 }

124 -> process_label(ident={self.fixkeywords($ID.text)})

125 | ^(PROC_LABEL EMPTY EMPTY)

126 {

127 self.anonproc += 1

128 $procname = u’__anonproc_’ + str(self.anonproc)

129 }

130 -> process_label(ident={u’__anonproc_’ + str(self.anon proc)})

131 ;

132

133 label_subscript : ^(SUBSCRIPT int_const)

134 | ^(SUBSCRIPT range)

135 ;

136

137 declaration : ^(VARDEF tp=type ^(IDENT ID))

138 -> declaration(ident={self.fixkeywords($ID.text)}, ty pdef={tp})

139 ;

140

141 int_const : se=simple_expr

142 -> int_const(exp={se})

143 ;

144

145 range : ^(RANGE ^(VARDEF INTEGER ^(IDENT ID)) int_const int _const)

146 | ^(RANGE int_const int_const)

147 ;

148

149 type : ^(ARRAY ^(RANGE a=INT b=INT) basictype)

150 -> type_def(def={self.arrayinit(a.text,b.text)})

151 | basictype

152 -> type_def(def={’None’})

153 ;

154

155 basictype : INTEGER

A.2. ANTLR TREE WALKER GRAMMAR FOR CSP 79

156 | BOOLEAN

157 | CHAR

158 ;

159

160 command_list [toplvl] returns [pnames]

161 @init

162 {

163 $pnames = []

164 }

165 : ^(COMMAND_LIST (declarations+=declaration) * (commands+=command[$toplvl] { $pnames.extend($command

166 -> command_list(vardefs={$declarations}, commands={$c ommands})

167 ;

168

169 command [toplvl] returns [procnames]

170 @init

171 {

172 $procnames = []

173 }

174 : (

175 ^(COMMAND cmdln=assignment)

176 | ^(COMMAND cmdln=input_cmd)

177 | ^(COMMAND cmdln=output_cmd)

178 | ^(COMMAND cmdln=nullcmd)

179 | ^(COMMAND cmdln=alternative)

180 | ^(COMMAND cmdln=repetitive)

181 | ^(COMMAND cmdln=parallel[$toplvl] { $procnames = $paral lel.procnames })

182 | ^(COMMAND cmdln=py_command)

183) -> command(cmd={cmdln})

184 ;

185

186 py_command : ^(PYTHON PYEXPR)

187 -> py_exec(code={($PYEXPR.text)[1:-1]})

188 ;

189

190 nullcmd : SKIP

191 -> nullcommand()

192 ;

193

194 assignment : ^(ASSIGN tgt=target_var expr=expression)

195 -> assignment(target={tgt}, value={expr})

196 ;

197

198 process_name returns [procname]

199 : ^(PROC_LABEL ID subs=subscripts)

200 {

201 $procname = self.fixkeywords($ID.text)

202 }

203 -> proc_name(ident={self.fixkeywords($ID.text)}, sub= {subs})

204 | ^(PROC_LABEL ID EMPTY)

205 {

206 $procname = self.fixkeywords($ID.text)

207 }

208 -> proc_name(ident={self.fixkeywords($ID.text)}, sub= {[0]})

209 ;

210

211 subscripts : ^(SUBSCRIPT (se+=simple_expr)+)

A.2. ANTLR TREE WALKER GRAMMAR FOR CSP 80

212 -> subscript(exp={se})

213 ;

214

215 target_var : ^(IDENT ID)

216 -> target_var(ident={self.fixkeywords($ID.text)})

217 | ^(IDENT ID ic=int_const)

218 -> target_var(ident={self.fixkeywords($ID.text)}, sub ={ic})

219 | st=struct_target

220 -> target_var(ident={st})

221 ;

222

223 constructor : ^(IDENT ID)

224 | EMPTY

225 ;

226

227 struct_target : ^(STRUCT_T constructor vl=var_list)

228 -> struct_targ(targlist={vl})

229 ;

230

231 var_list : (tv+=target_var)+

232 -> targ_list(targs={$tv})

233 | EMPTY

234 -> targ_list(targs={’___ignored___’})

235 ;

236

237 expression : (

238 ex=simple_expr

239 | ex=struct_expr

240) -> expression(expr={ex})

241 ;

242

243 simple_expr : ^(EXPRESSION ^(VAR INTEGER ID))

244 -> simple_expr(val={self.fixkeywords($ID.text)})

245 | ^(EXPRESSION ^(VAR BOOLEAN ID))

246 -> simple_expr(val={self.fixkeywords($ID.text)})

247 | ^(EXPRESSION ^(VAR CHAR ID))

248 -> simple_expr(val={self.fixkeywords($ID.text)})

249 | ^(EXPRESSION ^(VAR INVALID ID))

250 -> simple_expr(val={self.fixkeywords($ID.text)})

251 | ^(EXPRESSION ^(VAR ^(ARRAY INTEGER) ID))

252 -> simple_expr(val={self.fixkeywords($ID.text)})

253 | ^(EXPRESSION ^(VAR ^(ARRAY BOOLEAN) ID))

254 -> simple_expr(val={self.fixkeywords($ID.text)})

255 | ^(EXPRESSION ^(VAR ^(ARRAY CHAR) ID))

256 -> simple_expr(val={self.fixkeywords($ID.text)})

257 | ^(EXPRESSION ^(VAR INTEGER ID ic=int_const))

258 -> simple_expr(val={self.fixkeywords($ID.text)}, sub= {ic})

259 | ^(EXPRESSION ^(VAR BOOLEAN ID ic=int_const))

260 -> simple_expr(val={self.fixkeywords($ID.text)}, sub= {ic})

261 | ^(EXPRESSION ^(VAR CHAR ID ic=int_const))

262 -> simple_expr(val={self.fixkeywords($ID.text)}, sub= {ic})

263 | ^(EXPRESSION ^(VALUE INTEGER INT))

264 -> simple_expr(val={$INT})

265 | ^(EXPRESSION ^(VALUE BOOLEAN BOOL))

266 -> simple_expr(val={$BOOL})

267 | ^(EXPRESSION ^(VALUE CHAR CHR))

A.2. ANTLR TREE WALKER GRAMMAR FOR CSP 81

268 -> simple_expr(val={$CHR})

269 | ^(EXPRESSION ^(PYTHON PYEXPR))

270 -> python_expr(expr={($PYEXPR.text)[1:-1]})

271 ;

272

273 struct_expr : ^(STRUCT_E constructor explst=expr_list)

274 -> struct_expr(exprlist={explst})

275 ;

276

277 expr_list : (exprs+=expression)+

278 -> expr_list(exprs={$exprs})

279 | EMPTY

280 -> expr_list(exprs={[]})

281 ;

282

283 input_cmd : ^(INPUT sn=process_name tv=target_var)

284 {

285 channm = $process_name.procname + ’->’ + $process::prcnam e

286 $process::chans.add((channm, ’__chan_’ + $process_name .procname + ’_in’))

287 $program::chans.add(channm)

288 }

289 -> input_cmd(cname={channm}, sname={sn}, targ={tv})

290 ;

291

292 output_cmd : ^(OUTPUT dn=process_name ex=expression)

293 {

294 channm = $process::prcname + ’->’ + $process_name.procnam e

295 $process::chans.add((channm, ’__chan_’ + $process_name .procname + ’_out’))

296 $program::chans.add(channm)

297 }

298 -> output_cmd(cname={channm}, dname={dn}, exp={ex})

299 ;

300

301 repetitive : ^(REPETITIVE alt=alternative)

302 {

303 self.repidx += 1

304 }

305 -> repetitive(altern={alt}, idx={self.repidx})

306 ;

307

308 alternative

309 @init

310 {

311 inpgrdlst = []

312 }

313 : ^(ALTERNATIVE

314 (grded+=guarded

315 {

316 if not $guarded.inpgrd is None:

317 inpgrdlst.append($guarded.inpgrd)

318 }

319)+)

320 -> alternative(inpguards={self.buildalts(inpgrdlst)} , guarded={$grded})

321 ;

322

323 guarded returns [inpgrd]

A.2. ANTLR TREE WALKER GRAMMAR FOR CSP 82

324 : ^(GUARDED range grd=guard cmdlst=command_list[False])

325 {

326 $inpgrd = $guard.inpgrd

327 }

328 -> guarded(guard={grd}, commandlist={cmdlst})

329 | ^(GUARDED EMPTY grd=guard cmdlst=command_list[False])

330 {

331 $inpgrd = $guard.inpgrd

332 inppres = (not $guard.targ is None)

333 }

334 -> {inppres}? guarded(guard={grd}, commandlist={cmdlst }, target={$guard.targ}, inpgrd

335 -> guarded(guard={grd}, commandlist={cmdlst})

336 ;

337

338 guard returns [inpgrd, targ]

339 @init

340 {

341 $inpgrd = None

342 $targ = None

343 }

344 : ^(GUARD grdlst=guardlist)

345 {

346 $inpgrd = $guardlist.inpgrd

347 $targ = $guardlist.targ

348 }

349 -> guard(guardlist={grdlst})

350 | ^(GUARD grdlst=skip_grd)

351 -> guard(guardlist={grdlst})

352 | ^(GUARD grdlst=input_grd)

353 {

354 $inpgrd = $input_grd.cn

355 $targ = $input_grd.targ

356 }

357 -> guard(guardlist={grdlst})

358 ;

359

360 guardlist returns [inpgrd, targ]

361 @init

362 {

363 $inpgrd = None

364 $targ = None

365 }

366 : ^(GUARD_LIST (grdelems+=guard_elem)+

367 (input_grd

368 {

369 $inpgrd = $input_grd.cn

370 $targ = $input_grd.targ

371 }

372)?)

373 -> guardlist(elems={$grdelems})

374 ;

375

376 guard_elem : ex=simple_expr

377 -> expression(expr={ex})

378 | declaration

379 -> simple_expr(val={True})

A.3. EXTRACTS FROM THE STRINGTEMPLATE GROUP FILE 83

380 ;

381

382 input_grd returns [cn, targ]

383 : ^(INPUT sn=process_name tv=target_var)

384 {

385 channm = $process_name.procname + ’->’ + $process::prcnam e

386 $process::chans.add((channm, ’__chan_’ + $process_name .procname + ’_in’))

387 $program::chans.add(channm)

388 $cn = ’__chan_’ + $process_name.procname + ’_in’

389 cnalt = $cn + ’_alt’

390 $targ = tv

391 }

392 -> inputguard(chan={cnalt})

393 ;

394

395 skip_grd : SKIP

396 -> skipguard()

397 ;alternative : ^(ALTERNATIVE (grded+=guarded)+)

398 -> alternative(guarded={$grded})

399 ;

A.3 Extracts from the StringTemplate Group File

1 group hydra;

2

3 program(incl, commandlist, procargs) ::=

4 <<

5 import sys

6 import time

7 from pycsp import *
8 from pycsp.plugNplay import *
9 from pycsp.net import *

10 <if(incl)>

11 <incl; separator="\n">

12 <endif>

13

14 def __program(_proc_):

15 <commandlist>

16

17 # process spawning

18 if False:

19 pass

20 <procargs>

21 else:

22 print ’Invalid process specified.’

23

24 __program(sys.argv[1])

25 >>

26 imports(imp) ::= "<imp>"

27 parallel(proc, procnames, lvl) ::=

28 <<

29 <proc; separator="\n">

30 <if (lvl)>

31 Parallel(<procnames; separator="(), ">())

A.3. EXTRACTS FROM THE STRINGTEMPLATE GROUP FILE 84

32 <endif>

33

34 >>

35

36 process(label, commandlist, chans) ::=

37 <<

38 <label>

39 <chans>

40 <commandlist>

41

42 >>

43

44 process_label(ident) ::=

45 <<

46

47 @process

48 def <ident>():

49 __procname = ’<ident>’

50 print ’# <ident>’

51

52 >>

53

54 command_list(vardefs, commands) ::=

55 <<

56 <vardefs; separator="\n">

57 <commands; separator="\n">

58 >>

59

60 repetitive(altern, idx) ::=

61 <<

62

63 __lctrl_<idx> = True

64 while(__lctrl_<idx>):

65 <altern>

66 else:

67 __lctrl_<idx> = False

68 >>

69

70 alternative(inpguards, guarded) ::=

71 <<

72 __sg = Skip()

73 <inpguards>

74 if False:

75 pass

76 <guarded>

77 >>

78

79 guarded(guard, commandlist, target, inpgrd) ::=

80 <<

81 elif <guard>:

82 <if(target)>

83 <target> = <inpgrd>_alt()

84 <endif>

85

86 <commandlist>

87

A.3. EXTRACTS FROM THE STRINGTEMPLATE GROUP FILE 85

88 >>

89

90 guard(guardlist) ::= "<guardlist>"

91 guardlist(elems) ::= "<elems; separator=\" and \">"

92 guard_elem(elem) ::= "<elem>"

93 skipguard() ::= "True"

94 inputguard(chan) ::= "not <chan> == __sg"

95 declaration(ident, typdef) ::= "<ident> = <typdef>"

96 type_def(def) ::= "<def>"

97 command(cmd) ::= "<cmd>"

98 assignment(target, value) ::= "<target> = <value>"

99 nullcommand() ::= "pass"

100 int_const(exp) ::= "<exp>"

101 expression(expr) ::= "<expr>"

102 simple_expr(val,sub) ::= "<val><if(sub)>[<sub>]<endif >"

103 struct_expr(exprlist) ::= "(<exprlist>,)"

104 target_var(ident, sub) ::= "<ident><sub>"

105 struct_targ(targlist) ::= "<targlist>"

106 python_expr(expr) ::= "eval(’<expr>’)"

107 expr_list(exprs) ::= "<exprs; separator=\",\">"

108 targ_list(targs) ::= "<targs; separator=\",\">"

109 proc_name(ident, sub)::= "<ident>"

110 subscript(exp) ::= "<exp>"

111 py_exec(code) ::= "exec ’<code>’ in globals(), locals()"

112

113 input_cmd(cname, sname, targ, grd) ::=

114 <<

115 <if(grd)>

116 __chan_<sname>_in.read

117 <else>

118 <targ> = __chan_<sname>_in.read()

119 <endif>

120 >>

121

122 output_cmd(dname, exp) ::=

123 <<

124 __chan_<dname>_out.write(<exp>)

125 >>

Appendix B

Project Poster

This appendix presents the project poster, which was submitted as one of the required project

deliverables.

86

87

Appendix C

CD Contents

The accompanying CD contains all the necessary resources toreproduce this research and assess

the findings.

Code:

This folder contains all the code that makes up the Hydra project.

Documents:

This folder contains all the documents produced during the course of the project.

Resources:

This folder contains all the offline versions of references that were accessed online.

88

