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Abstract

Parallel and concurrent programming is a very broad and weskarched field. There are
numerous models and frameworks for parallel programmiog,ever these frameworks vary
in their scope and ease of use. This research investigadesdkibility of developing a CSP
to Python translator using a concurrent framework for Pythiche objective of this translation
framework, developed under the name of Hydra, is to produo®lahat helps programmers
implement concurrent software easily using CSP algorithrhss objective was achieved using
the ANTLR compiler generator tool, Python Remote Objects BpCSP. The resulting Hydra
framework is able to take an algorithm defined in CSP, pardecanvert it to Python and then
execute the program using multiple instances of the Pythtarpreter. Testing revealed that
the Hydra framework does indeed function correctly, alloysimultaneous process execution,
while introducing negligible overhead. Therefore, it caa doncluded that converting CSP
to Python using a concurrent framework such as Hydra is bos#isiple and beneficial to the
advancement of concurrent software.
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Chapter 1
Introduction

Parallel computing is by no means a new topic in the field of poter science. Parallel ar-
chitectures started making an appearance from as earlyeanith1960s and continue to be
the primary design for high performance computing systeiftss is particularly evident in
modern supercomputers, such as IBM’'s Roadrunner and Blaoe/Gavhich make use of thou-
sands of processors to achieve their astonishing compoé&hgpower. However, these systems
are only available to a select few scientists and resea@rat it wasn’t until a few years ago
that multi-processor computers started becoming readdifable to consumers.

The recent availability of dual and quad core CPUs targetdéleaconsumer and enthusiast
market has caused an interesting situation in the softwalce #Multi-core computers have the
power and potential to greatly outperform their singleecoounterparts, but this potential can
only be realised if the software is able to make use of mdtpiocessors. Both consumers
and researchers stand to gain from the performance incraeffseded by multi-core CPUs and
parallel software. Consumers benefit from faster, morearsige computers that are able to
handle computationally intensive tasks, such as decodidgpéaying high resolution video.
Researchers benefit from being able to construct small hegfoppnance computing systems
for their data processing needs by combining a number ofivelg cheap multi-core CPU
systems.

While some progress has been made towards developing betieurrent software, there needs
to be a shift in software development practices to harnespadkver of parallel computers on a
greater scale. With such a shift in development practicesesothe need for tools that enable
and assist developers in their task of creating concuradtware. The Hydra project aims to

provide such a tool to Python developers.
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1.1 Problem Statement and Research Goals

This research project investigates the feasibility of tweag a framewaork for Python that ex-
poses parallel processing features based on Communi&ongential Processes (CSP). There-
fore, a concurrent framework for Python, named Hydra, véltleveloped to assess the feasibil-
ity of converting directly from CSP to Python, without reqng that the application program-
mer manually convert their algorithm as is the case for egSESP implementations such as
JCSP.

This framework should be able to generate Python code capébkikecuting in a parallel man-
ner over an arbitrary number processors in a single comptgrthermore, this framework
should make it easy specify the process and communicatabtecture of the program, with
readability and ease of programming being the focus. Thaildeif how the concurrency is
implemented should be mostly hidden from the program d@ez|avhile maintaining a clear
mapping between the programmer’s specified architectutdlangenerated concurrent code.
Most importantly, this framework must improve upon the 8rig concurrent framework by
automating the algorithm conversion process.

The secondary aims of this project include making the sydkexible and extensible, thereby
allowing for additional features to be added and the abtlitygenerate code for alternative
architectures, such as Grid computing systems. The peafocenof the Hydra system should
also be maximised without affecting the primary goals.

1.2 Thesis Organisation

The relevant chapters of this thesis are organised as Heddselow:

Chapter 2 introduces and discusses some of the relevant work in tlaes afemulti-processor
computers, parallel processing, Communicating Sequdhieesses and Python.

Chapter 3 will describe the approach and methodology adopted for theldpment of the
Hydra system.

Chapter 4 will provide an introduction to language parsing and présarnn-depth description
of the prototype and final parsers for the Hydra system.

Chapter 5 describes the code generation process and presents tlememghtions of both the
prototype and final code generator modules.

Chapter 6 then describes the testing and performance analysis natigydalong with test
examples, and goes on to present and discuss the results.
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Chapter 7 summarises this thesis and provides conclusions drawntfiermesearch, develop-
ment and testing of the Hydra project. Future work and extesgo the Hydra project are then
discussed, bringing the thesis to an end.



Chapter 2

Background and Related Work

2.1 Introduction

This chapter highlights and discusses some of the work iartk& of parallel computing, which
is fairly broad, with a vast amount of literature availables such, this literature review will
not attempt to cover all of the concepts and work, but wilu®mstead on work relevant to the
creation of a concurrent framework for Python based on CSP.

The first section defines some of the relevant terminologydaaderstanding and clarify how
the terms are used in this review. The second section intesdsome of the concepts related to
parallel programming and multi-processor systems, theentitrends and motivation for pur-
suing development in this field. The third section descriB8#®, its strengths and weaknesses
and how it can be used in the development of concurrent pnegr&ome existing CSP imple-
mentations are also introduced briefly. The fourth sectroduces the Python programming
language, discusses the motivations for choosing Pythdimeasost language and some of the
issues regarding its use. The sixth section discusses Sahmeaxisting concurrent frameworks
such as PyCSP. A basic summary of the work is then providdukifinal section.

2.2 Key Terminology and Concepts

A number of terms and concepts relating to parallel compudire defined below. These defi-
nitions serve to aid in the understanding of the forthcomuogk for those who are unfamiliar
with common terms used. They also serve to clarify how the@audefines and uses these terms
if other definitions exist.

11
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Central Processing Unit (CPU).The Central Processing Unit is the primary instruction exe-
cution engine of a computer system. It is usually made up afglesintegrated circuit, which
contains the arithmetic logic unit (ALU), control unit andnious caches, registers and memory
controllers. It operates on a fetch, decode and execute éycinstructions stored in memory
[29].

Concurrency. Concurrency is defined as any set of tasks or processes thakecuting and
have the potential to execute simultaneously, but are roggsarily doing so [13].

Multi-core CPU. A multi-core CPU is a CPU that is made up of multiple, sepapateessor
cores placed on the same CPU die. These processor coresially able to communicate with
each other over either the system bus, crossbar switchémpgdsmemory, such as the on-die
cache memory [20].

Multiple Instruction set Multiple Data set (MIMD). A MIMD computer consists of a number
of independent CPUs asynchronously executing their owruaigsons streams on their own data
streams [13].

Parallelism. Parallelism is defined as any set of tasks or processes thatarally executing
simultaneously [13].

Process.A process is an instance of a task that is actively executiogever this term can be
used interchangeably with task [13].

Process AlgebraProcess Algebra is an algebraic approach to the study oficant processes
[45]. Algebraical languages are used for the definition ocpsses and statements about them
[45]. These statements can then be verified through the ude @ppropriate process calculi
[45].

Processor. The processor is the piece of hardware on which processestexd3]. A more
detailed definition can be seen above in the definition of a CPU

Task. A task consists of a single operation or multiple operatibias are to be executed [13].

2.3 Multi-Processor Systems and Parallel Programming

Many people have access to parallel computers, but only 8 peraentage of programmers
develop software that runs on parallel capable computersreTare very few people with the
knowledge, tools and experience to leverage the procegswgr provided by these parallel
processors [22, 42]. The current trend towards developialgiHtore and multi-CPU systems
instead of increased clock speed is likely to make thismistn even more important in the
future [20, 42].
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In the past, semiconductor firms such as Intel and AMD were &blincrease performance
by increasing clock speeds for single-core CPUs. This wasrasult of being able to shrink
the manufacturing process for the transistors and CPUs.974,1Robert H. Dennard, and
his colleagues at IBM, observed that as the size of transistecreased, so did the voltage
and current requirements [20]. This scaling law means thaéha transistors decrease in size,
more of them can be packed closer together on the chip, whalataining the same power
density. This leads to the trend of doubling the CPU traosisbunts and speed every 18
months, which is widely known as Moore’s Law [20, 42]. Howewhese scaling laws do
not provide a perfectly linear decrease in power requirdsy@md as such, process shrinks are
becoming less effective at yielding increased speed [20].

This has led CPU manufacturers to the new strategy of platiage than one CPU core on
a processor chip instead of constantly increasing clockdp@2]. This is evident from the
abundance of dual-core CPUs, the introduction of quad-€&ds and Intel and AMD’s plans
for eight-core CPUs in late 2009, while firms such as Sun Migstems already have 16 core
processors [11, 20]. The only issue now is whether or noethesv processors can be used to
their full potential by current software development tegues.

The most significant obstacle to developing concurrenwsot and making effective use of
multi-core CPUs is that the designing, writing and debugghconcurrent code is fairly dif-
ficult [43]. Truly parallel programs are rarely written, gée the existence of trivially parallel
tasks and the publishing of numerous parallel algorithmsitiMore CPUs fit in theMIMD
(Multiple Instruction set Multiple Data setjategory of parallel computers and are thus suited
to the message-passing model of parallel computing [122)0 Jmplementations such as CSP
andMPI (Message Passing Interfac&)llow the message-passing model [22]. It is therefore
necessary to provide programmers with the tools and knayeleblased on the above models,
so that they can use the multi-processor systems availadbdg effectively [43].

2.4 Communicating Sequential Processes

Communicating Sequential Processes was first introduc&@48 by Hoare. In his paper [23],
Hoare identified a number of operations and constructs agrilmary methods for structuring
computer programs. He identifi@tbutandoutputoperations as being important but noted that
these were not well understood. He also noted thatepetitive alternativeand sequential
constructs were well understood, whereas there was lessragnt on other constructs such as
subroutinesmonitors proceduresprocessesndclasseg23].

Processor development at the time was such that multipgsocegstems and increased paral-
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lelism was required to improve computation-speed. Howd¥eare noted that this parallelism
was being hidden from the programmer as a deterministiciesg@l machine, effectively try-
ing to make a multiprocessor machine appear as a mono-garaesachine. He saw that a more
effective way of making use of these multiple processorsjld/be to introduce this parallelism
at the programming level by definirpmmunicatiorandsynchronizatiormethods [23]. As a
result, Hoare developed the CSP programming notation.

2.4.1 The CSP Programming Notation

The programming language or notation specified by Hoaregsdan a number of fundamen-
tal proposals. The first of these is the use of #tiernativecommand in conjunction with
guarded commandss a sequential control structure and a means to controtiatarminism.
The guarded command will execute its command list sequbmialy when itsguardsucceeds
and the alternative command will select only one ready geardmand at a time and termi-
nate when all of its guards fail. Associated with the guarded alternative commands is the
repetitivecommand, which loops until all its guards terminate. Seggtide parallelcommand
specifies a means to start parallel execution of a numberaziegses or commands, by start-
ing them simultaneously, and synchronizing on terminatibeach of the parallel processes.
Parallel processes may not communicate directly, exceptigih the use omessage passing
[23].

assign ::
X : integer;
X = 5

Figure 2.1: A CSP Process with simple declaration and assgh

To support the message passing concegut and output commands are specified. These
commands enable communication between processes. Edlyemtichannelis created and
used for communication when a source process names a destipeocess for output and the
destination process names the source process for inputmQaioation only occurs once both
the source and destination are ready and results in the balog copied from the source to the
destination process. If either of the two processes is @atyrér communication, the command
will wait until such a time as both are ready. This effectyweltroduces theendezvouss the
primary method of synchronization [23].

Input commands may be used as guards and result in the conongnbleing executed when
the other process is ready to execute its output commandultfpie input guards are ready,
an arbitrary choice is made and only the selected commarn@xégtute with no effect on the
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-- Process src runs in parallel with process dest
[ src 2 dest! 5; -- output the value 5 to dest
|
dest ::
X : integer;
src ? Xx; -- read input from src into X
]

Figure 2.2: The Parallel, Input and Output commands withroemts.

other input guards. The final proposal includes the scrgesiimput messages by way wiput
pattern matchingo ensure that the input message follows the correct pgd28in

[ buf ::
buffer : [0 .. 9] integer,;
in, out : integer;
in := 0; out := 0;
*[
in < out+10; producer ? buffer[in%10] -> in = in + 1
[] out < in; consumer ! bufferfout%10] -> out := out + 1
]
|

producer ::
X : integer; x = 1;
*[ x <= 100; -> buf ! x; x == x + 1]
|
consumer ::
item : integer;
*[ true -> buf ? item ]

]

Figure 2.3: The Repetitive and Guarded commands with theotifee Input command as a
Guard.

While Hoare indicated that programs expressed in this iootahould be implementable, he
also made it clear that the notation was not suitable for asee@ogramming language. This
was in light of the fact that there were serious issues thaibleen overlooked. These included
the fairly static nature of CSP programs, which could onlyeha fixed number of concurrent
processes, and the lack of recursion. The issue of perfaenlaad also been overlooked. But
the most serious issue was the lack of a proof method to viiéfgorrectness of programs [23].
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2.4.2 The CSP Meta-Language

After the publication of the initial CSP paper in 1978, Hoaomtinued to refine CSP and in
1985, he released a book on the CSP notation [24]. The CSHbs; the book has evolved
substantially from the notation described in his earligpgga CSP has moved from being a
programming notation to being @ocess algebrdhat allows for the formal description and
verification of interactions in a concurrent system. The matation consists of two primi-
tives, namely therocessand theevent and a number of algebraic operators. Concurrent and
sequential systems can then be defined through a combirmdtioese operators and primitives.

An important addition to CSP is the introduction tohces which allows for the description

of each possible behaviour in a system as a sequence of acfithe combination of the for-

mal description of the system and the traces allows for tladyais and verification of a sys-

tem’s possible behaviours. In the book, Hoare describebadstfor expressing and verifying
a number of important concepts, namely, processes, camyrnon-determinism, sequential
processes and communication [24].

Use of these description and verification techniques makpsssible for one to check for
the absence of undesirable conditions sucheesdlock live-lock andstarvation There are a
number of tools that have been developed to aid in the veiditaf systems based on CSP
and its proof methods. CSP has also seen use in the verifigaitiarge systems such as the
Certification Authority for the Multos smart card schemeyaleped by Praxis Critical Systems
[18].

2.4.3 CSP Implementations

There are a number of programming language implementatiassd on or around CSP. The
most notable of these implementation®©iscam which was developed closely around CSP by
David May in collaboration with Tony Hoare. Occam is a minlistalanguage developed at
INMOS for use in their transputer devices [26]. There are alsiumber of implementations
for modern programming languages, suchl@sPand CTJ for Java,CCSPfor C, CSP.NET

for Microsoft .NET 2.GandPyCSPfor Python [2, 8, 39]. Each of these implementations has its
own strengths and their weaknesses, which are often in#aklmg the target language.

2.5 The Python Programming Language

Python is a powerful, very high level programming languadeis a multi-paradigm pro-
gramming language supporting the functional, object d¢aixal and procedural programming
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paradigms. Python has a strong, dynamic typing system hafbatures'duck typing" It also

has a robust automatic memory management system. It is vellysuited to use both as a
scripting language, much likerl, and as a general purpose programming language. Python
places a great deal of emphasis on programmer productindysapports this via its expan-
sive standard library and its minimalist syntax, which endes code readability. The major
implementations of Python a@Python Jython IronPythonandPyPy[28, 37].

2.5.1 Features and Benefits

There are numerous benefits and features that make Pythaw attractive language for both
beginner programmers and advanced scientific programmiihg. most notable of these are
mentioned below. It has very high-level built-in data typssech as the dictionary, list and tuple.
The syntax is very clear with a focus on readability and itpsarfs the natural expression of
procedural code. Python has strong introspection cafiabilind provides easy to use object
orientation features. Other benefits include fast, exoapbiased error handling, extensive stan-
dard libraries and third-party modules that provide supfmsrmost programming tasks. There
is also plenty of support and readily available documeaomatiFree access to the source code
makes it possible to modify Python if required [4, 31, 37].

Python’s extensibility provides even greater power ovgeexisting functionality via its support
for full modularity and hierarchical packages. Modules arténsions can be written in Python
or alternatively, they can easily be written in C, C++, Jdaea Jython) or .NET languages (for
IronPython). Python can also be embedded within applinates a scripting interface. This
makes it very useful for linking together previously untethmodules. Python can therefore
be used for quickly prototyping of algorithms, with any merhance critical modules being
rewritten in C and added as extensions. All of the above fadtave aided in the acceptance of
Python in the computational science community [4, 25, 3], 37

2.5.2 Limitations

As an interpreted language, Python’s performance is nobad gs compiled languages such
as C++, but the performance is more than sufficient for mosliegtions. If improved perfor-
mance is required, thEesycoand PyPy projects, which provide optimiséaist-in-Time (JIT)
compilers for Python, can produce typical speedups of atdux{35, 40]. However, Python’s
greatest limitation is its global interpreter lock. "A ghdbnterpreter lock (GIL) is used inter-
nally to ensure that only one thread runs in the Python VM ane.t [38]. So, while Python
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supports multi-threading, these threads are time-sliosttad of executing in a truly parallel
fashion.

In one of the earlier versions of Python, an attempt was mademove the GIL and replace
it with fine-grained locking. This was achieved through G&gin’s"free threading“patches.
However, there were serious performance issues assogvitethe new locking mechanism,
even with efficient system level locks. This resulted in avimg) of the performance or worse,
which was not acceptable, especially for applications thétnot make use of threads. The
patches were later abandoned and no further significanhpttewere made to address the
issue [38].

There are two ways in which the GIL can be circumvented toeaehmultiple CPU usage. The
first of the suggested methods is to make use of C extensidresely a C extension is used to
perform the required task. The extension can then releasélih and maintain the executing
thread within the C code. The second of the suggested meihtalslivide the tasks between
multiple Python processes as opposed to threads withingéesitython process. This entails
spawning multiple Python interpreter processes and maintpefficient communication and

synchronization between the processes [38].

Several projects already cater for the use of multiple preger processedPythonis an en-
hanced interactive Python shell that provides the undeglgionnection architecture between
interpreters for parallel computing [36]. TiRaver framework for distributed computing is an-
other relevant project that provides the fundamental abstms for flexible communication
management between multiple Python VMs (Virtual Machiraeg) execution of code on these
VMs [6, 7]. Trickleis implemented on top of the River framework and providesrgps imple-
mentation of the MIMD model of parallel computing. Esselhjarickle provides methods for
injecting code and data into remote VMs, accessing remgectsband asynchronous method
invocation. It also provides simple mechanisms for dynasuoleeduling and balancing of work
between the VMs [6].

2.6 Existing Concurrent Frameworks

While there are many projects that add CSP features to egiptogramming languages, there
are very few attempts to convert directly from CSP to exddetaode [39]. JCSP and CTJ
provide CSP features to Java [5, 21]. CCSP and C++CSP prewidiar CSP features for C and
C++, respectively [2, 12]. PyCSP is of great interest to pinggect as it introduces CSP features
to Python [8]. From the list of modern language CSP implegorts mentioned above, it
would appear that no further work is required to expose CSdgrammers. However, these
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implementations require the programmer to convert thei? €8de into the appropriate form
for the implementation they desire to use. For small progtahis task is relatively easy. But
once the programs start to get bigger and more complex, tueps becomes more difficult and
is prone to error, particularly with regards to the corremining and use of channels [39]. The
time taken to develop and verify the CSP algorithm for a caxglystem can often be rivaled
by the time taken to convert and debug the program writterof@ of the above mentioned
CSP implementations [39]. Clearly this is not ideal and amsefar translating the original

CSP directly to executable code is more desirable.

2.6.1 Translation to an Intermediate CSP Implementation

The most notable work in the area of translating CSP to eabbriicode is a set of tools de-
veloped for converting CSjPto CTJ, JCSP and CCSP [39]. While this may not be a direct
translation to executable code, this method of using anregdiary CSP implementation to
produce programs based on a CSP algorithm is quite effeztigkminating the probability of
errors and speeding up development [39]. The translatioogss is best visualised through the
use ofT-diagrams The conversion from CSP to JCSP can be seen in Fig. 2.4, thersion

to CTJ is shown in Fig. 2.5 and the conversion to CCSP can beisé¢ag. 2.6.

g

CsP

Pro
Input —— Output

Input M Output Input wp Output
csp2jcsp JCsp javac byte | byte
CSP » JCSP Java Java code | code
M-code byte JVM
code

Figure 2.4: T-diagram showing the translation of CSP to fg¥a code using JCSP [39].

The developers of the above mentioned conversion toolsectiognplement the translators
in C++. Their reasoning for this is the amount of string pssieg required and the need
for powerful, dynamic lists. These requirements are satidhy theStringandVectorclasses
available in theStandard Template Library (STE39]. However, as discussed earlier, Python’s
powerful standard libraries, good string handling capids and its built-in list data type make
it very suitable for the task of translating CSP.
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Figure 2.5: T-diagram showing the translation of CSP to bg¥a code using CTJ [39].
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csp | csp SP2ZEEP y cosp C%E'F' ¢ —CCC o M-code[M-code
e i

Figure 2.6: T-diagram showing the translation of CSP to etaddle machine code using CCSP
[39].

2.6.2 Use of a Python-based CSP Implementation

PyCSP is another relevant module to investigate as it pesviti/thon with a number of CSP
constructs such as channels, channel poisoning, basidguskip guards, input guards, pro-
cesses, and the alternative, parallel and sequentialroots{8]. However, as with the previ-

ously mentioned CSP implementations, PyCSP leaves thegmmoger with the task of translat-

ing the CSP algorithm to Python code. While the PyCSP libimgromising in its own right,

it is not without its downsides. A translation tool, simifar the one mentioned above, that
takes CSP and converts it to PyCSP based Python code, oe Ratilkon code, would be more
productive and less error-prone [8, 39]. This would freeghmgrammer from having to deal

with complex channel naming situations and having to célyd@ndle the undesirable aspect
of channel poisoning.

A further step from translating to an intermediary CSP immatation, such as PyCSP, would
be to translate directly to the parallel code. This could beedusing the underlying imple-

mentation of a CSP library like PyCSP as a guide, which in tises the JCSP implementation
as its guide [8]. The biggest drawback of PyCSP is that iteectiimplementation makes use
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of Python'’s threading library, which limits the parallelemution of code because of the GIL
[8, 38]. The suggested solution to this problem is to makeofisetwork channels for commu-
nication between multiple local or remote operating syspeocesses [8, 38].

PyCSP’s implementation of synchronization is achievedugh the use of Python&ecorator
construct [8]. Decorators are used to provide wrappersnarooethods that require synchro-
nization, with the wrapper function handling the acquisitand release dbcksusing thewith
keyword [8]. The PyCSHProcessconstruct is implemented by simply instantiating an object
of the Process class, which extends from Pythonf$iread class [8]. The constructor for
the Process class takes the function to be executed by the Process amidttbeéarguments
for the function [8]. This method of implementing Procesaesild need to be modified to use
network channels to allow for truly parallel execution. Thstantiated Process object does not
begin execution until it is used in either tRarallel or Sequentiatonstructs [8].

The Parallel and Sequential constructs have a very simpgleimentation in PyCSP. The Par-
allel construct is implemented by a class that takes a liBro€esses to be run in parallel, and
callsstart() for each Process to begin execution and then callpth®  method for each
Process to synchronise and terminate the parallel exed@joThe Sequential construct is im-
plemented as a class that takes a list of Processes to be seqguence and calls tman()
method for each Process, thus executing them in the spesé@eence without synchronization

[8].

Communication viatChannelsis handled by simply passing the read and write methods of a
Channel object directly as arguments in a Process’s cartstr{8]. Python allows for this kind

of functionality which is very useful because it helps avasihg the incorrect end of a Channel
[8]. PyCSP Channels allow for any object to be sent across thecluding Processes [8].
This is a useful feature that allows for easy distributiomvofk and instructions, as well as the
removal of type limitations present in other CSP implemeoite [2, 5, 8, 21, 39].

Finally, the PyCSFAlternativeconstruct is implemented as a class that takes a li@uzrds
in its constructor. The next active Guard is then selecteal ICSP-like fashion by using the
priSelect() method, which returns each active Guard in turn [8]. Pythaility to return
a reference to an object allows PyCSP to improve upon JCSRtbyning a reference to the
active Guard as opposed to an index, which then has to besmuhty determine the correct
code segment to execute [5, 8]. Guards can be simple obttextend from th&uard base-
class, Channel inputs or the spec@ip Guard8]. The lack of an expliciRepetitiveconstruct
hints at an implementation that simply uses a natural Pytih@mover an Alternative construct.
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2.7 Summary

Research into the area of parallel computing has shown Hratlel computers are no longer
confined to the scientific research community. It has beemtbet certain factors relating to the
design and manufacturing of modern CPUs have led to a new trencreasing the number of
processor cores on the CPU instead of simply increasingsp®ed to improve performance.
This has resulted in affordable and readily available pelrabmputers for the desktop.

It has also been seen that while parallel computers are begancreasingly abundant, the
software and development tools are lacking when it comestodssing the performance of
parallel computers. The author has noted that there nedmsdashift in software development
practices towards parallel programming models, as welhas@ease in the number of tools
designed to aid in the development of parallel software.

Based on this insight, an appropriate parallel programmnogdel and programming language
were investigated for the development of such a tool. It lkeenbseen that the CSP model,
coupled with the Python programming language, providesa dmase for the creation of a

message passing based concurrent software developmerawak. It is also evident that

modules such as PyCSP can be improved upon and used as aguide ¢reation of such a

framework.



Chapter 3

Methodology

3.1 Introduction

As stated in Chapter 1, the aim of the project is to investiglae feasibility and development
of a concurrent framework for Python based on CSP’s megsagging model. However, due
to the scope of such a development project and the time aiajle initial objectives of this
project have been restrained such that the goal is the aneafia demonstration prototype
framework as opposed to a complete framework suitable fotigpdlistribution. This scope
refinement has some implications on the approach and mdtgydoesed for the project.

3.2 Approach

Development of the Hydra framework is performed in two pkaséhe first phase involves
the development of a hand-coded recursive-descent pansardut-down version of the CSP
grammar. The resulting abstract syntax tree (AST) gengtatehe parser is used to generate
and run JCSP Java code. The objective of this phase is to gaiiidrity with the issues
involved in parsing CSP and generating executable codeceShre aim is centered around
experimentation and prototyping, semantic checks arauded and error reporting is minimal
if present. Once the code generation is complete, the JC8® aatput is visually inspected
and then executed to determine if the translation was ssftde€Once the JCSP prototype is
deemed to produce acceptable output code, the project eelvémphase two.

The second phase centers around developing a flexible agwideable parser and code genera-
tor that can be used, firstly, as a proof of concept, and ségasd base for further development
of the Hydra project. The parsing aspect of this phase imgdelecting an appropriate compiler

23
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generator, refining the CSP grammar for easier parsing amdithplementing the grammar for
the chosen compiler generator. Even though this phase hesategfocus on usability and
functionality, it is still a demonstration-only prototypé\s such, semantic checks and error
reporting, while better than the JCSP prototype, are mihamd incomplete.

The code generation aspect requires identifying suitabtaries and frameworks on which
to build the parallel constructs and then designing the ssarg code segments to represent
the CSP constructs, using the selected underlying litmafance the concurrent framework is
complete, the actual code generation takes place. Thisvesonultiple passes over the AST
to generate the concurrent code using the above-menti@musegments. Again, the output
code is visually inspected and executed to assess its twessc Performance analysis and
further testing is only carried out once the code generatable to produce consistently correct
concurrent code.

3.3 Summary

The objectives of this project focus on investigating thesfbility of developing a concurrent
framework for Python. Therefore an approach based on yqtad and experimentation has
been chosen to explore the topic with greater freedom. Tdssésulted in a number of com-
promises in the development of the framework, such as thiegro of certain features and
reduced error checking. A two-phased approach has beeneadiopolving the development
of a hand-coded JCSP prototype and then a more function@tppe based on a custom-built
concurrent framework.



Chapter 4

Parsing CSP

4.1 Introduction

To generate the desired concurrent code, it is first necessgrarse and interpret the CSP
source code supplied by the application programmer. Theldpment of a parser for the CSP
grammar is thus required. The construction of the Hydragramss achieved in two phases.
The first phase involved hand-crafting a prototype scanndrparser for a limited version of
the CSP grammar. The purpose of this first phase was asselsingbility of parsing and
converting CSP, as well as to gain familiarity with the setitgnof the CSP language. The
second phase involved the construction of a complete, aiaatile and powerful parser for the
1978 version of the CSP notation [23] using the ANTLR comqjenerator [33].

As noted in Chapter 2, the grammar for CSP described in 193Bi$2not suitable as a pro-
gramming language by itself. For this reason, a number ofpromises and changes have
been made to the grammar to allow for greater integratioh Bytthon. CSP is essentially used
to define the architecture and communication channels optheesses used by the program.
These grammar modifications are described in Section 4 aiith the actual construction of
the ANTLR-based parser.

4.2 Basic Parser Construction

A number of techniques exist for parsing code from a sounsguage and translating it to a
target language. The typical translation process invadvesmber of stages, which are usually
divided into afront-endparser, and dack-endcompiler or interpreter, as seen in Fig. 4.1. The
parser consists of kxical analysey which takes thesource codestring as input and outputs

25



4.3. TYPES OF PARSERS 26

the identified tokens or symbols. The second stage in theparshesyntax analysemwhich
takes the tokens from the lexical analyser and evaluates digainst the grammar of the source
language to identify the statements and expressions [44].

Source Code
Lexical Analyser (Scanner)

Syntax Analyser (Parser)

Front End

Constraint Analyser
Intermediate énd&-ﬂeneratnr

Code Optimiser

Back End

Code Gatoior
Object Code

Figure 4.1: Structure and Phases of a Compiler [44].

The output from the syntax analyser is often passed throgghstraint analysemwhich checks
that the syntactic components adhere to the scope and tigseapplicable to the current con-
text. The results from the constraint analysis are thengabisgo the back-end where they are
converted into intermediate code by tiermediate code generatoiThis code is often sent
through acode optimisebefore being converted tabject coddy thecode generatof44].

4.3 Types of Parsers

As stated above, there are a number of parsing techniquels,oéavhich is suited to certain
types of grammars. Th®p-downparsing technique makes useldf (Left to right, Leftmost
derivation)parsing, withrecursive-descent parsebgeing a fairly common form oEL parser
[33]. The top-down technique involves starting from a spegoal production and working its
way down, identifying appropriate lower level productiassit descends, until it has identified
all the productions associated with the input tokens [44ciRsive-decent parsers can usually
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be constructed by hand, but are typically limited to a subsebntext free grammars, specifi-
cally those that areL(1) compliant. There is a special form bE(K) parsing, known akL(1)
parsing, which uses only one look-ahead token and has thedibehcertain optimisations, but
has the downside of being more restrictive than oth€k) parsing techniques [44].

LL(K) parsers are slightly more flexible than hand-coded recend@scent.L(1) parsers. The
k-value represents the number of look-ahead tokens, alfpitmparser to access tokens further
down the input stream to make decisions regarding how tomaapecoduction rule [33, 44]. The
greater the look-ahead, the more flexible the parser is,alhowing more complex grammars
to be parsed [33]. However, constructibf(k) parsers with a look-ahead greater than 1 is
usually harder and not easily achieved by hand [33]. As sadmol known as a compiler
generator or compiler compiler is used to produce theseepafd4]. Compiler generators
usually accept the target grammar, which is specified usiraparopriate syntax, and generate
the scanner and parser components of the compiler [44]. henaimportant form ofLL(k)
parser is the&.L(*) parser. Tha.L(*) parser has an arbitrary look-ahead and often makes use of
backtracking to help it in the identification of productiares [33] This arbitrary look-ahead
allows the parser to evaluate a number of alternativeséudbwn the input stream, making it
an extremely powerful parsing technique capable of hag@imeven greater range of grammars
[33]. Some examples of currently available compiler toamg these techniques at®co/R
ANTLR, YappandParsec

The bottom-upclass of parsing techniques attempt to work from the tokgnand identify
the appropriate top-level productions. These parsers sually known ad_.R (Left to right,
Rightmost derivationparsers. They can be constructed using a recursive-asaesmg tech-
nique, with a set of mutually-recursive functions. Two farof this parser are teLR (Simple
LR) parser, which has no look-ahead and is thus limited to singgeemmars, and theALR
(Look-ahead LR)which allows for look-ahead and can thus parse more congquatext free
grammars [1]. The most notable tools for generatiRyparsers aréex/yacc, Parsing, Wisent,
PLY andBison

4.4 Prototype Parser Implementation

Previous attempts have been made to generate parsers foFi&Hly, a parser for a dialect of
CSP, known a€SR, for CSP machine-readable, was written udhilgx andBison However,

it was necessary for some productions to be rewritten to verambiguity [41]. Flex and Bison
grammars for CSfy are listed in [41]. Bison is ahR parser and as such, it would appear that
it is possible to parse CSP, or at least a specific dialect &f @Sing arLR parser. However,
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CSRy follows the later version of CSP described in [24], which ierenof a process algebra
than a programming notation. A parser f06P-CAS| which is the process algebra of CSP
integrated with the algebraic specification langu@gesL, was developed using Parsec, which
is a monadic recursive-descent parser writteHaskell As with CSRy, certain productions in
the grammar for CSP-CASL had to be rewritten slightly to reeleft recursion. This shows
that it is possible to use the recursive-descent parsirmoteae [17].

With the above findings in mind, it was decided that a recersigscent compiler would be
developed, based on the notation described in [23]. The &ithi®exercise was to gain fa-
miliarity with the CSP notation and its semantics, as wekwesuate any potential pitfalls and
considerations that may need to be taken into account whareding to the target concurrent
code.

4.4.1 Prototype Design

The design of the prototype system makes use of Python'sibjentated features to en-
sure ease of modification and maintenance. The prototypesHgtblementation consists of a
scanner moduleHydra.scanner ), a parser moduleHydra.csp ), an abstract syntax tree
module Hydra.ast ) and a code generator moduldydra.codegenerator ). The csp
execution method itdydra.csp is defined in such a way that it allows for easy switching
between different parsers, scanners and code generate@parser module takes the CSP code
as input and passes it to the scanner. The parser moduledtantiates the appropriate parser
class, passing it the desired scanner and code generasmt®lpnstructor arguments. The
parser class begins by calling the goal method and followecarsive-descent parsing tech-
nique, requesting tokens from the scanner and generatigdpstract syntax tree (AST) as it
parses the input. Once parsing is complete, the AST is s&talising Python’pickle  mod-
ule. The pickled AST is then sent to the code generator moudiilieh produces the appropriate
output code based on the AST. Figure 4.2 provides an ovewfi¢ghne prototype system design.

Before describing the scanner and parser implementattamagcessary to describe the manner
in which CSP is used within a Python program. The mechanisosarhis fairly simple, but
effective and straightforward. First the Hydra csp modulestrbe imported. Then, the CSP
algorithm is defined within a triple-quoted string. Thisirsris then passed to thespexec
method of the Hydra csp module, along with any helper fumstiand external variables. A
simple example can be seen in Fig. 4.3 below.
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Figure 4.2: Prototype system design.

4.4.2 Hand-crafted CSP Scanner

The scanner or lexical analyser is responsible for readiergrput stream one character at a
time and identifying the tokens specified by the grammar.[4Bhe prototype scanner was
implemented in pure Python and is fairly simple in its desidime Scanner class consists of
a list of accepted symbols or tokensgetChar method and @etSym method. The tokens
represent the lexical elements of the grammar, such asifidesit constants and the various
punctuation marks used for structure. TgeChar method simply advances the position in
the input string by one character and sets the current diesir@cthe character from this new
position. ThegetSym method is the bulk of the scanner and is responsible for ifyamy
the different symbols based on the characters in the inpedrst, which are retrieved using the
getChar method.

ThegetChar method, seen in Fig. 4.4, simply checks if the end of the iljastbeen reached
and sets the current character to an end-of-file token ifithtte case, otherwise it sets the
current character to the next character in the input an@ments the index.

ThegetSym method is somewhat more involved as it has to make decis@sedon the input
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from Hydra.csp import cspexec

code = ""[
prod ::
data : integer;
data = 4;

cspexec(code)

Figure 4.3: Specifying and executing CSP within a Pythorgpam.

def getChar(self):
if (self.index >= self.codelen):
self.ch = EOF
else:
self.ch = self.input[self.index]
self.index += 1

Figure 4.4:.getChar method of the prototype scanner.

characters as to what symbol has just been read. This islysighieved by making use of a
largeswitch  statement, but Python does not havenatch statement like other languages
such as C++ and Java. However, Pythafi'sandelif statements are capable of achieving
the same result.

ThegetSym method starts by removing whitespace and comments. It tiemats to identify
constants and identifiers. If the character does not cavrespo either of these symbols, it
makes use of a large if-elif decision structure to identifg appropriate symbol. Once the
symbol has been found, it is returned as a tuple consistitigeasymbol type and the string that
matched the symbol. Some relevant extracts of this meth@dtzmwn in Fig. 4.5. If at any
stage the scanner encounters incorrect input, it returqmeeia no symbol result, indicating
that it was unable to identify the input tokens.

4.4.3 Recursive-Descent CSP Parser

A recursive-descent parser works by starting at some godlation and trying to match lower
productions and symbols according to the grammar of thecedanguage [44]. In a recursive-
descent parser, productions are represented by methods) @ither match input symbols or
call further production methods, thus delegating the matcbf production rules to the ap-
propriate methods until all input symbols have been mat¢8&d44]. This technique is only
suitable forLL(1) grammars that are free of left recursive rules [33]. Theareftor use in this



4.4. PROTOTYPE PARSER IMPLEMENTATION 31

def getSym(self):
while (self.ch > EOF and self.ch <= " ).
self.getChar()
symLex = []
symKind = noSym
if self.ch.isdigit():
symLex.append(self.ch)
self.getChar()
while self.ch.isdigit():
symLex.append(self.ch)
self.getChar()
symKind = numSym
elif self.ch.isalpha():

else:
symLex.append(self.ch)
if self.ch == EOF:
symLex = list(EOF’)
symKind = EOFSym

elif self.ch == ;"
symKind = semicolSym
self.getChar()

self.sym = (symKind, ”".join(symLex))

Figure 4.5: Extracts from thgetSym method of the prototype scanner.

prototype, the CSP grammar was extensively refactored atndbgvn to make it easily parsable
by a recursive-descent parser. It must be noted that thisrgea is not meant for use as a work-
ing component of Hydra and is purely for the purposes of itigating the code generation
stage of compilation. The modified EBNF grammar for CSP iswshio Fig.4.6.

As per the above grammar, the prototype parser implemeatsiiowing methodsprogram

parallel ,process ,command_list ,command expression
input_command , output_command , assignment , repetitive , alternative :
guarded , guard andguardlist . To aid the parsing process, a number of helper meth-

ods have been created. Téyamkind method extracts and returns the type of symbol from the
symbol tuple returned by the scanner. Hyenlex method returns the string matched by the
scanner for the returned symbol. TtreportError method prints the supplied error mes-
sage. Thaabort method prints the supplied error message and halts pareshgsaised in
cases where the parser cannot recover from bad input. Antyfitiee accept method takes
the symbol to be matched and an error message for when theosigniot found. It then at-
tempts to match the symbol and update the current symboltivigtimext symbol in the input
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program = process | parallel .

parallel = [ process {||" process} T .

process = IDENT ..’ command_list .

command_list = {command ’;’} .

command = IDENT (assignment | input | output) .
| alternative | repetitive .

expression = IDENT | NUMBER .

input = 2" IDENT .

output = ' expression .
assignment = =’ expression .
repetitive =’ *’ alternative .

alternative = '[" guarded { '[]' guarded } T .
guarded = guard ’-> command_list .

guard = guardlist | input .

guardlist = bool { ’;’ bool} [ ’; input ] .

Figure 4.6: Modified EBNF grammar for the Hydra prototype.

stream. If, however, the symbol is not found, it calls @irt method with the supplied error
message.

Theprogram method represents the goal production and is called whepatser is started.
The parsing process starts with an empty AST which is repteddoybasetree in the next
example. As the parser goes about identifying productidnmsses the relevant portions of
the tree to the production methods it calls. These prodactiethods then build up the tree by
adding the appropriate tree nodes to the AST in the corresitipos and filling in the appro-
priate details for these nodes such as identifier names. Ampbe of some of the production
methods and AST construction can be seen in Fig. 4.7.

The process of building this parser by hand provided someitapt insights. These insights
include the importance of identifying channels and proeessd ensuring that information is
available in the top-level nodes of the AST as opposed togdding them to the tree at the
level they were discovered. It was also noted that parsiaduth CSP grammar by hand would
not be feasible as even with the simplified grammar, the cocibn of the AST was tedious
and extensions to the grammar would require significant ggésto many of the production
methods. For this reason, a more solid approach to parsetrachion was needed, which
ultimately meant making use of a compiler generator, spatiji ANTLR using the Python
target language runtime.
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def program(self):

# program = process | parallel .

if self.symkind() == self.syms.IBrackSym:
self.parallel(self.basetree)

else:
self.process(self.basetree)

s = pickle.dumps(self.basetree)

self.codegen.programEndFound(s)

def parallel(self, progtree):
# parallel = [ process {|| process} T .
partree = Hydra.ast.Parallel()
progtree.node.append(partree)
self.scan.getSym()
self.process(partree)
while self.symkind() == self.syms.parallSym:
self.scan.getSym()
self.process(partree)
self.accept(self.syms.rBrackSym, '] expected’)

Figure 4.7: Production methods for the Hydra prototypegrars

4.5 Parser Generators

While handcrafted scanners and parsers are certainlyevaaid straightforward for many lan-
guage translation tasks, the complexities of certain grararman make the construction of
such hand-coded parsers problematic [44]. Even with cepédnning and a modular design,
these parsers can become hard to understand and mainfaeécjadly when semantic check-
ing and code generation are incorporated [44]. For thisorgascanner and parser generators
are typically used instead of manual parser constructidres& parser generators take a set of
productions for the intended grammar and automaticallyege the corresponding scanner
and parser modules [44]. A number of parser generators aisthggrameworks for Python
were investigated. The strengths and weaknesses of easr ganerator were assessed and the
parser generator most suited to the task of translating C&Pselected for use in Hydra. The
main criteria used in the selection process were ease ob#iy to parse CSP, availability of
documentation, development activity and support for aljes of translator construction, from
scanner to code generator.
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45.1 ANTLR

ANTLR (ANother Tool for Language Recognition) is a parsengtor that automates the con-
struction of lexers and parsers [33]. Given a formal desiomof the source language, ANTLR
(version 3.1.1) is able to generate the appropriate lexeépanser modules [33]. ANTLR also
supports the addition of code segments to the parser, alipior language translation and code
generation [33]. Itis also very flexible and automates manmymon parser construction tasks
[33]. ANTLR generates language recognisers that use afiaspawerfulLL(*) parsing tech-
nique, which is an extension id_(k) that uses arbitrary lookahead to make decisions [33].
This parsing strategy makes ANTLR suitable for all parsing &tanslation problems, from the
simplest to the most complicated language translatiorstfg}. For grammars that do pose a
problem, ANTLR’s backtracking functionality allows thergar to work out the correct course
of action during runtime, and partial memoization of resuteans that this can be achieved
with linear time complexity [33].

ANTLR generates human-readable code that is easily incatgw into other software projects
[33]. ANTLR v3 features improved error reporting and reagvever its predecessors for the
generated parsers [33]. Dynamically scoped attributesvalliles to communicate, thus facil-
itating semantic checking. The code generation featurdsN\NJfLR are also quite advanced,
with formal abstract syntax tree construction rules allgyvASTs to be constructed easily in-
stead of developing actions to manually construct the ASibthAer feature in ANTLR’s favour
Is its tight integration with StringTemplate, which is a tglate engine for generating structured
text such as source code [33]. This makes the code genegily eetargetable as only the
template needs to be changed to generate code for a newltargeage.

ANTLRWorks is a grammar development IDE for ANTLR grammdmattallows for the visual-
isation and debugging of parsers generated in any of ANTERX¥ported target languages [33].
An example screenshot of ANTLRWorks can be seen in Fig. 418TIAR supports multiple
target languages such as Java, C#, Python, Ruby, Object®ead C++, with Python support
being of the greatest relevance to the Hydra project [33].TAR is also actively supported
with mailing lists, an informative and frequently updatedjpct website and active project de-
velopment. Overall, ANTLR is easier to understand and uaa thany of the other compiler
generators that are discussed hereafter. Finally, ANTLSRahaealth of documentation avail-
able, from a project wiki, to examples, mailing list arcts\and most importantly, the book for
ANTLR version 3 written by ANTLR'’s creator, Terence Parr[33
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4.5.2 CocoPy

CocoPy is a Python implementation of the Coco/R compileegaior (Coco/R stands for com-
piler compiler generating recursive descent parsers) [2étoPy takes an attributed grammar
of a source language, described in Cocol notation, and gersea scanner and a parser for this
language [27]. The scanner is constructed as a deternifiisite automaton and the parser
makes use of recursive descent and allows for symbol lo@khhed semantic checks to be
added to the parser [27]. This means that CocoPy is able &patitelLL (k) class of grammars
as input and is thus suitable for parsing CSP with some shgidifications to the grammar.
The use of Cocol as the grammar specification language makesR@ relatively easy to use
as an EBNF grammar for CSP can be converted to Cocol withoahrhassle.

The greatest advantage of CocoPy is the availability of dwmntation. Coco/R is very well
documented with numerous textbooks and online resourdai @ocoPy itself has adequate
documentation and examples. CocoPy supports attributedrgars, which allow actions to be
incorporated into the parsing process for the purpose oasémchecking and code genera-
tion. However, the code generation aspect is more suiteénergting output for stack-based
architectures [44]. Another downside, as evidenced by ¢hease notes, is that the CocoPy
implementation of Coco/R is not complete and is not equivatie the latest Java and C# im-
plementations. The last update was released in late 208imgaloubt on the project’s devel-
opment activity and likelihood of further updates.

4.5.3 Parsing and PyParsing

The Parsing module is a pure-Python module that implemeh&(&) parser generator, with
Characteristic Finite State Machince (CFSM) and Genedliseft-to-right Rightmost deriva-
tion (GLR) parser drivers [15]. The Parsing module makesafisevery powerful and scalable
algorithm forLR(1) parser generation, instead of the somewhat limit&tR(1)or SLR(1)al-
gorithms seen in modiR parser generators [15]. The Parsing module also providassto
conflict resolution mechanisms and extensive error chgddib]. The source language gram-
mar is specified in Python, which is fairly straightforwabait not as straightforward as using
an EBNF style notation. Furthermore, the resulting ruledfarsing are not as clear and easy
to read as an attributed EBNF style notation. The powedrR(1) algorithm used by Parsing
is likely to be sufficient for implementing a CSP parser areldanflict resolution mechanisms
will help address any issues that arise.

However, the Parsing module has some significant drawb&aisily, there is very little docu-
mentation and the documentation that does exist is in the @rdocstrings within the Parsing
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module code and a single, fairly simple example parser.disis unclear how suitable the Pars-
ing module is for code generation. And finally, the last updatthe project was in August of
2007, meaning that any bugs or issues are unlikely to be ssiellequickly.

The PyParsing module is a parser framework written in Py#weh is suited to creating and
executing simple grammars [30]. This module provides atpiof classes that can be used
to construct the parser directly within a Python program ifaidy straightforward manner
[30]. The PyParsing module makes use of various Python restio allow the production
rules to be implemented directly in Python using an EBNIFE-lifotation [30]. This makes
PyParsing fairly easy to use, however, it is unclear how sgimahecks and code generation
are implemented as the production methods simply returstafiparsed tokens. It is also
unclear which parsing algorithm is used, and even thougmples show that PyParsing is
able to parse the Python language, it is not immediatelyrampahether it is able to parse and
translate CSP successfully. Documentation for PyParsiagdilable in a variety of forms, from
numerous detailed code examples to mailing lists, wiki a@eeatation and published articles.
Another positive remark for PyParsing is that it appearstafidated fairly frequently, with the
last update occurring during October 2008.

454 PLY

PLY is a straightforward implementation of the lex and yamal$ and is implemented entirely
in Python [3]. As with lex and yacc, PLY uses BR (LALR specifically) parsing technique and
is reasonably efficient and suited to large grammars [3]. Bljyports the majority of lex and
yacc's features, such as empty productions, precedeneg, riror recovery and mechanisms
for dealing with ambiguous grammars [3]. PLY also providggersive error checking and
grammar validation to aid in the development of the parsgr [®xer and Parser rules are
specified in separate files and are written as fairly stréogivard Python code. PLY'$R
parsing technique makes it a viable choice for implemerdi@&P parser, although the resulting
parser generated by PLY does not provide any additionalfesto aid in the code generation
phase. The available documentation is detailed with nuoseegample programs, which help
to clarify aspects of PLY’s usage. Updates to PLY, while iox@djy fairly frequent, are now few
and far between, with only one update in 2007 and another n20Q8.

455 Wisent

Wisent is a Python based parser generator that convertsaates of a context free grammar
into Python parser code, which is able to parse source cameding to the supplied grammar
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[46]. Wisent provides helpful error messages, both forrermthe input grammar and when the
parser encounters invalid input [46]. The parser will agpeto continue parsing and produce a
list of errors when parsing is complete, instead of stopfangach error [46]. The context free
grammar is supplied to Wisent in a separate grammar file, s an EBNF-like syntax [46].
Wisent currently generatdsR(1) parsers, with support fdtALR(1) parsers in development,
making it a viable choice for parsing CSP. Another usefuifesaof Wisent is that the generated
parser has no dependencies on Wisent itself and can eaditgdmporated into other projects
[46]. Once the parser has finished parsing the input, it netarparse tree [46]. This can be
used for code generation, but an abstract syntax tree waulddre appropriate. The parser
also lacks features to make code generation easier. Docatiwen) while available, is fairly
sparse and examples are rather basic. The last update fenWWias in March 2008 and it is
not apparent what the update schedule was before this date.

4.5.6 Yapps, Yappy and Yeanpypa

These three tools are not discussed in as much detail asatieps tools as it was immediately
apparent that they were not likely to be suitable candidated besides, similar implementa-
tions have already been discussed for some.

Yapps (Yet Another Python Parser System) is another easgedqgoarser generator, written
in Python [34]. Yapps is simple, easy to use, and producesahueadabldé.L(1) recursive
descent parsers. Grammars are specified in Python folleavengilar format to PyParsing, but
with the ability to add attributes to the grammar, much likec@l. Unfortunately, Yapps is not
particularly flexible and is more suited to simple parsimgk&asuch as parsing logs and config
files.

Yappy is another tool for generating lexical analysers BRgarsers for Python applications
[32]. Yappy is able to constru8LR LR(1) andLALR(1)parsing tables and handle ambiguity
provided the appropriate priority is given to the ambiguelesnents. Yappy is useful for teach-
ing LR parsing techniques, but does not provide much in the way @giapfunctionality for
use in a complex language translation project [32]. The tfakpdates since 2006 is another
reason why Yappy was not investigated further.

Yeanpypa is a parser framework written in Python and is vemlar to PyParsing. It is used
to contruct recursive-descent parsers in Python code imrtinecsame way as PyParsing allows
[10]. While fairly simple to use, the documentation is ligdtto a basic introduction and API
documentation and it is unlikely that Yeanpypa is able todh@CSP successfully.
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4.5.7 Parser generator selection

Based on the above comparisons, a summary of which can bensesdrie 4.1, ANTLR v3 (ver-
sion 3.1.1) was chosen over the other compiler generatisrpowerfulLL(*) parsing method,
which supports backtracking and memoization, makes it aalichoice for parsing CSP code.
It is able to generate the lexer, parser and tree walker ia Python, allowing for easy inte-
gration into the Hydra project. The tree rewrite mechanidiows for tailoring the abstract
syntax tree to meet the needs of the code generation prades&NTLRWorks grammar IDE
makes developing and debugging grammars far easier, withuitt-in rule visualiser, inter-
preter and debugger. Finally, ANTLR'’s support for tree vealgrammars and StringTemplate
makes code generation far simpler and allows for the pagsiogess to be kept separate from
the code generation process, thus increasing maintaiyabihe extensive documentation and
frequent update schedule were also important factors inl&Rg selection as they ensure that
any issues arising during development are likely to be yasitl quickly resolved.

4.6 ANTLR Grammar for CSP

In order for ANTLR to generate the parser and lexer, the granfor the source language must
be formally described in an ANTLR grammar file [33]. The ANTIL®&bI is then given this
grammar file as input, and as output, it produces the parsktesxer modules written in the
specified target language [33]. The grammar file is sepatiatedwo sections, the first for
lexer rules and the other for parser rules. The lexer rulesi§pthe symbol or symbols that
must be matched for each lexical token in the source langwelgiee the parser rules specify
the syntactical structure of the source language. Eachuptimoh rule, starting from the goal
production, describes the ordering of tokens and sub-ralpsred to match the given rule.

4.6.1 The Lexer

The lexer for CSP is relatively simple as the CSP grammarmmalist and mostly unadorned.
However, this simplicity leads to numerous ambiguities asduch, a few minor changes have
been made to the original CSP grammar to make parsing edbese changes, along with any
custom tokens required for additions to the language, asertied below. The full set of lexer
rules can be seen in Appendix A.1.

The lexer for Hydra was defined such that all whitespace anthuents are ignored. Single-line
comments are supported, starting with ‘= and ending in alinewThe first and most obvious
change to the original CSP grammar is the use of semi-colbtiseaend of all statements.



Compiler generatof Parsing Ease of use | Documentation  Code generation support | Development activity
strategy and flexibility
ANTLR LL(*) with Very good Very good Very good - custom AST | Actively developed
backtracking construction and
StringTemplate
CocoPy LL(1), LL(K) Very good Very good Good - attributed grammars Stalled
allow for code generation
actions
Parsing LR(1) Average Poor Poor Infrequent
PLY LALR Good Good Poor Infrequent
PyParsing Unknown Good Very good Poor - list of recognised Actively developed
tokens returned by parser
Wisent LR(1) Good Average Average - returns a parse tree Infrequent
Yapps LL(2) Average Average Poor Infrequent
Yappy LR(1), SLR, Average Average Poor Stalled
LALR
Yeanpypa Unknown Poor Poor Poor Unknown

Table 4.1: Comparisons between Python based compiler @engr

ov
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The original grammar only called for semi-colons to be usetsveen multiple statements on a
single line, otherwise a newline indicated the end of a staté. While it would be possible to
maintain the original notation, it would mean that whitespaould no longer be ignored, thus
making the parser more complex. This minor compromise warefore deemed acceptable for
the sake of reducing parser complexity.

Since there is no symbol for>’ and '[J' on common keyboards, '->’ and '[|' were used in
their place for theguardedstatement. The Hydra lexer supports four basic expresgjmast
namely identifiers, characters, integers and booleanstifies start with a lowercase letter of
the alphabet, and can be followed by any combination of uggserand lowercase letters, digits
and the underscore character. Characters can be any valitl A8aracter, denoted between
single-quotes. Integers are simply defined as a series it .dignd finally, Boolean expressions
are denoted by either 'True’ or 'False’ and are case-segsifi summary of these changes can
be seen in Table 4.2.

| Production | Original Lexer Tokeng Altered Lexer Tokens

Alternative Tand'T -
Parallel TandT I[and )
Guarded '—’and '[J ->"and [J’

All statements End in’;’ or newline Endin’;’

Table 4.2: Summary of token changes to the CSP lexer.

Another important change that warrants discussion is tim®val of expression operators such
as the arithmetic and Boolean operators. In their placealidy to use Python expressions
was added, allowing for much greater flexibility when it cab@expressions. The Python code
is enclosed in braces and can be any valid Python expres$msupport functionality from
Python’s vast module collection, the ability to add Pythowport statements to the beginning
of the program was added. These import statements are pitbgdinclude’ and are enclosed
in braces. The rationale behind this rather significant geazenters around Python’s ability
to evaluate expressions specified in string format duringime. This removes the burden
of parsing and evaluating expressions and essentiallytgetBython interpreter to do this on
behalf of the parser. This feature also allows for the usdl of ®ython’s data types, bypassing
the limited data type support natively provided by the parse

4.6.2 The Parser

The parser section of the ANTLR grammar consists of a numbpramuctions based on the
constructs described in the CSP programming notation. @/pessible, an attempt has been
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made to develop a parser capable of recognising all the mmtsipresent in the original gram-
mar. One important aspect to note regarding AST constructithat by default, ANTLR will
return a flat AST structure that simply represents the mattbleens. It is therefore necessary
to use ANTLR rewrite rules to specify the structure of the ASHhly the relevant aspects of
parsing CSP will be described here, however, the full seadsgr rules can be seen in Appendix
Al

The ANTLR grammar starts off with a number of options that mothe way that ANTLR
generates the parser code. While there are numerous optaiable, only the following
were actually required for Hydra. Firstly, Python was sfiedias the target language and the
resulting output from the parser is in the form of an AST udimg CommonTree label type
provided by ANTLR. Other options include enabling backikiag and memoization. After the
necessary options are defined, a list of tokens is suppliegls@tokens are not the same as those
used in the lexer and do not have any corresponding symbsiiased with them. Instead,
these tokens define custom labels that can be used by the ABitereules for constructing
the AST nodes. Thereafter, the language production rukesleiined, starting with the goal
production.

The goal production for the Hydra version of CSP is tiregram rule. This production
starts with an optionalmports section, which is followed by aommand list Additionally,
the program rule defines and initialises a variable list,clvhs used for scope checks, using
ANTLR’s dynamic scoping features. This rule produces an Afete with thePROGRAM
token as its root and thenportsandcommand lisas its branches. The remaining rules follow
a similar pattern when constructing AST nodes. However, glmations may arise during
AST construction when productions containing optionatedats are encountered. Fortunately,
ANTLR'’s syntactic predicates allow for these situation®#&ohandled explicitly, thus ensuring
consistent AST construction. An example of an AST for a vemypse CSP program can be
seenin Fig. 4.9.

Thecommand listhen allows zero or moréeclarations followed by one or moreommands
Thedeclaration production allows for the declaration of one or more vaeablentifiers

of a given type. It also makes sure that these variables atedatb the program’s variable
list with the appropriate scope, and makes sure that vasatdn only be declared once. The
command production separates the differesdmmandsnto two types. The first type is the
simple commandwhich includesassignmentinput and output while the second type is the
structured commandwhich includes thelternative repetitiveand parallel commands. The
alternativecommand allows for a number gliardedcommands, each with a list gbiardsand
acommand list This is similar to thef-elif construct in Python. Theepetitivecommand
starts with an asterisk and is followed by alternativecommand. Theepetitiveconstruct is
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Figure 4.9: Example AST generated for a simple CSP program.
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much like a while loop that continues to loop while any of theardsin thealternativeare still
active.

Theparallel  production, although very simple in its appearance, is cdip@unt importance
as it defines the concurrent architecture of the progranak#d a list of one or mongrocesses

to be executed in parallel. During execution, thpeecessesire spawned asynchronously and
may execute in parallel, thus achieving one of the projeatg@&xecution of code over multiple
processors. Related to this is the equally imporpratessconstruct, which is represented by
the process production. This production definespaocessas aprocess labefollowed by
acommand list The process labebllows for both namegrocesseswith the option oflabel
subscriptsand anonymougrocessesA processs essentially a block of statements that can be
executed either in sequence or in parallel with other swobesses

Another important set of CSP constructs is tiygut andoutputcommands. These essentially
define thechannelsof communication betweegprocesseand provide a synchronisation mech-
anism in the form of a rendezvous. Thput production takes @rocess namespecifying
the source processnd atarget variable which specifies where the result will be stored. The
output production takes @rocess namespecifying thedestination processand anexpres-
sion which specifies the value to be seiliixpressionandtarget variablesare either simple
or structured, with the simple versions referring to a ngdlue or target and the structured
versions allowing for multiple values or targets to be sfiediin a tuple-like fashion.

An expressiortan take a number of forms and is represented bgxipeession  production,
which allows for bothsimple expressiorsndstructured expression®\ simple expressionan
take the form of either an identifier, an integer, Boolea@ayabter value, or a Python expression.
As described in Section 4.5, the parser allowssfquressionsvritten in Python code. Unlike the
other kinds of expressions, it is not possible to deterntiedaytpe of the value that is returned by
the Python expression during parsing. As suchgtkgression  production returns 'python’
as the type for these expressions, and the actual type foottiex expressions. ANTLR’s
support of production attributes allows for the passingpétinformation between productions,
as well as other relevant information. This type informai®used for semantic checks in many
of the productions that involve assigning values to idesrsfi These semantic checks are made
possible by using ANTLR’s grammar actions functionality.

This concludes the discussion on Hydra’'s parser constructivhile much can still be said
about the finer details of the parser, such a discussion wdadly be of little value to the
overall objectives of the project. The full ANTLR grammar tbe CSP parser can be seen in
Appendix A.1.
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4,7 Summary

It has been seen that language translation is a multifatas&aconsisting of two major phases,
namely the front-end construction dealing with languag®gaition, and the back-end con-
struction dealing with code generation. This chapter fedusn the front-end construction,
which involved developing a parser for CSP. It was also shiotive many different techniques
for parsing, each with its own strengths and weaknesses.

The development of Hydra’s parser was carried out in two ghasirst, a basic prototype parser
was crafted by hand for a cut-down version of the CSP gramifiais phase was for experi-
mentation purposes and was not intended for incorporatimrtie final Hydra framework. The
second phase involved the construction of a parser for simtuin the Hydra framework. In-
stead of hand-coding this parser, a compiler generatomtaslused as such an approach would
be more flexible and less prone to error. A number of compigregator tools were assessed
to find the best tool for generating a parser for CSP and assist code generation. ANTLR
was found to be the best compiler generator due to its platbicleatures, good documentation
and ease of use. The ANTLR based lexer and parser grammacSfmere then described,
leading to the conclusion that it is certainly possible te GSP as a source language, at least
as regards parsing.



Chapter 5

Code Generation

5.1 Introduction

This chapter introduces and discusses the main concepissaas pertaining to the code gener-
ation phase of the Hydra framework. As discussed in ChapteedCSP parser for Hydra takes

a CSP algorithm as input, parses this input and returns antA&Tepresents the semantics of
the CSP algorithm. The resulting AST is then used as the iigptite code generation module,

which has the task of translating the AST into the final exalolet code. As with the parser

described in Chapter 4, an initial, hand-crafted prototypthe code generator was developed
for translating CSP to JCSP. This JCSP prototype is only editle with the hand-crafted CSP

parser described in Section 4.4 and, like its parser copatetis purely for experimentation and

testing. After experimentation with the JCSP prototype haen completed, the actual Hydra
code generation module was then developed.

The final code generation module was developed using the AANdampiler generator tool,
and follows on from the ANTLR parser for CSP described in foact.6. This code generation
module is responsible for outputting Python code that isss#itally equivalent to the original
CSP algorithm, using an underlying concurrent frameworkrtplement the CSP constructs.
Therefore, before getting involved in the actual code gatieam process, an evaluation of a
number of existing concurrent frameworks was undertakenceCan appropriate concurrent
framework had been chosen, it was then possible to implethentode generation process
with the chosen framework used to implement parallelism.

46
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5.2 JCSP Prototype Code Generator

5.2.1 Background and Framework

The JCSP prototype has two primary tasks. The first task wegolranslating the AST into
suitable JCSP Java code. The second task then compilesenuwdexthe JCSP code at runtime,
thus making the translation process appear as a singlenaasmpposed to the multiple stages
that are actually involved in such a language translatisk.talhe AST construction occurs
during the parsing process and is described in Section,hé8ever it may be beneficial to
include a bit more detail of the AST structure here.

Each node type in the AST is represented by a Python classtingdrom a baseASTNode
class. TheASTNode class provides functionality for specifying static codgrsents, which
can be used as templates. There are AST nodes for most ofritdarfiental CSP constructs
and commands, with the node classes appropriately nalRredram , Process , Channel ,
Input , Output , Expr , Assign , Parallel , Alternative , Repetitive , Guarded

and Guard . The structure of these nodes is fairly generic, with eadttenconsisting of a
list of child nodes, and other relevant information suchdemtifier labels, type information
or expression strings. THerogram andProcess nodes are special in that they also store
a dictionary of all thechannelsthat are used in the program and the relevant process. The
Channel class is another special case in that it is not added to the aSq direct result of

a parser rule. Insteaghannelsare implied by the presence ofput and outputcommands,
therefore, wheimnput andoutputcommands are encounteredChannel node is instantiated
and added to the channel dictionary of fiegram node and the relevafrocess node.
Once the AST has been constructed, it can be traversed byysit@ating through the node
list of each tree node.

As stated in Section 4.4.1, once the AST has been constiutisderialised using Python’s
pickle module and is passed to tipeogramEndFound method of the code generator
module. The call to th@rogramEndFound method signals the end of the parsing phase
and indicates that the code generation process can begaprogramEndFound method

is very simple as it only has to unpickle the AST and call fimalise method, supply-
ing the AST object as an argument. Tigalise method then calls thgeneratecode
method to perform the actual code generation. Once codeaj@reis complete, it compiles
and runs the JCSPCMain class that was generated. Compilation and execution ofGI&J
program is achieved using Pythomws.system method, which executes a system command
supplied in string format. Using this method, fla@ac command is executed to compile the
PCMain.java file and then thgava command is executed to run the compile@Main
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class. A drawback of using JCSP Java programs for the taugetiocode is that it introduces
a dependency on non-Python libraries and programs. Sglifithhe JCSP prototype requires
that the correct versions of both the Java runtime envirartraed the JCSP libraries are in-
stalled and correctly configured. This problem can be ntéidavhen using Python libraries
exclusively as there are tools for generating setup sacggiable of automatically fetching and
installing module dependencies.

5.2.2 JCSP Code Generation

Thegeneratecode method is the core of the code generator module. As stateddyehe
generatecode method is responsible for translating and outputting trerdd concurrent
code. This is achieved by traversing and analysing the A&Tstcucting the appropriate code
segments to represent each of the AST nodes, and then witisg code segments to Java
files. To make the file output process simpler, code segmeatsmpended to the appropriate
dictionary element representing one of the output filesedil the code segments have been
generated and added to the dictionary, the code generatates through all the key-value
pairs in the dictionary. For each key-value pair, a file widme specified bieyis opened for
writing, and the contents afalueare then written to this file.

Actual code generation starts with generatingRiMain class.PCMain is commonly used as
the starting class for JCSP programs [5]. All tfennelsandprocesseare instantiated within
the PCMain class and the actual process execution order is definednwitiki class’smain
method. First, the beginning code segmentf@Main is static and is simply appended to the
output as is. Then, thehannelsneed to be defined and instantiated. This requires iterating
through the dictionary o€hannel nodes stored in the ro®rogram node and outputting the
appropriatechanneldefinitions.Channelsare named by appending the souptecesshame to

the destinatioprocessname.

The Program node’s child nodes are then searched unt#laaallel  node is found. The
Parallel  node then lists th€rocess nodes that need to be translated. Thesecess
nodes specify the names of thmcessethat need to be instantiated within JCSParallel

class. Duringprocessinstantiation, eactProcess node’s channel dictionary is analysed to
determine whiclthannelseed to be passed to theocess constructor. Th@rocessnstanti-
ation code is then output, along with the instruction to rum instantiatedParallel  object.
Finally, the remaining static code for tfR&CMain class is output.

Another pass is made over tiiarallel node’s child nodes and for eaélrocess node
found, a new Java class, named after the value oPtbeess node’s label attribute, is gener-
ated. TheProcess node’s channel dictionary is analysed and the appropctzeneldefini-



5.2. JCSP PROTOTYPE CODE GENERATOR 49

tions are output as class variables. Using this informagoriass constructor is generated that
accepts the appropriathannelsas parameters and initialises the class variables to thie vl
these parameters. Then method is then generated by iterating throughRhecess node’s
child nodes and generating the appropriate code forcmmymandghat are found. Since no
declaration construct was supplied in the prototype gramtha code for generating thian
method needs to analyse the processsimandsat the start of the method and generate the
appropriate variable declarations basedcommandshat involve assignment.

Input nodes generate code that simply usesrda method to read from the appropriate
channeland assign the result to the specified target variablgput nodes generate code that
uses thevrite  method to write the value of aexpressiorio the specified channel, where an
expressions represented by alBxpr node. Assign nodes generate Java assignment state-
ments that assign the result of Bxpr node to a target variable. Thidternative and
Repetitive nodes require a fairly complex translation process to gegaghe semantically
equivalent code, especially with JCSP’s convoluadtérnative class. Only thalternative
construct will be discussed as thepetitiveconstruct is simply represented in the output code
as analternativeplaced in a Javavhile loop with the appropriate loop control code added to
thealternative

When generating code for aiternative node, it is necessary to pre-process all the as-
sociatedGuarded nodes. This is as a result of JCSP’s method for specifguadsin an
alternative. Firstly, an array of the appropriateput guardsmust be generated. Secondly, an
array of the appropriatBoolean guardsnust be generated. The size of these two arrays needs
to be the same, therefore, the first iteration over the liGwhrded nodes is used to determine
the size of the array, with the second iteration performimgtask of actually generating the
array structure. FoBoolean guardsvith multiple guardelements, it is necessary to generate a
single Boolean expression, which is achieved by combigimyd elements using the Boolean
'and’ operation.

However, som&uarded nodes contain eitherBoolean guardr aninput guard but not both.
This poses a problem as the array subscripts for the reBdetean guardandinput guards
need to match. This problem is easily resolved by supplying’ * for a missingBoolean
guardor aSkip() guard for missingnput guards Java code is then generated to define and
instantiate a JCSRIternative object, which takes thmput guardarray as its constructor
argument. Aswitch statement is then generated that takes the result dlteenative
object'spriSelect  method, which is passed tlB®olean guardarray as an argument. Then,
case statements are generated corresponding to each arrayiptibsthe input guard array.
The statement blocks corresponding to eaake statement is generated by processing the
commanchodes for the correspondiriguarded node.
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The above description of the code generation phase proaigeseral overview of the transla-
tion process involved in converting CSP to executable codé JCSP prototype. The actual
method used to traverse the AST is rather mundane and isiyntik provide any value to this
discussion. However, a number of lessons were learned tnamtanual translation process.
The main lesson being the need for multiple traversals oadsf the AST to retrieve nec-
essary information from nodes further down the tree. Otbssdns included the techniques
necessary for implementirgjternativestatements anduardsand for definingchannelsand
processes

5.3 Concurrent Frameworks

The translation from one language or notation to anothey isdomeans a simple task. A code
generator needs to be developed that is able to interpresetinantics of the source language
and produce a semantically equivalent version in a targeguage [44]. The complexity of
the code generator is often dependent on the complexityediattyet language or architecture.
Simple stack based architectures, such as Assembler, @aéyuigirly straightforward to gen-
erate code for, especially if a recursive decent parsered [481]. However, other architectures,
such as parallel systems, often require a more sophisiiegjgroach to code generation [4, 8].
One approach involves developing all the necessary canstand underlying framewaork from
scratch. Needless to say, this can be very time consuming@nglicated. A more practical
approach is to find and use existing frameworks for the tagdtitecture, adding custom code
only for the functionality that is missing or incomplete [@]he back-end concurrent framework
for Hydra is built on top of a number of existing Python franoeiss. These frameworks pro-
vide the constructs and architectural elements necessanptement CSP programs in Python.
This section briefly introduces each framework and highighe role it plays in Hydra.

5.3.1 Python Remote Objects

Python Remote Objects (PYRO) is a simple yet powerful franr&wor working with dis-
tributed objects written in Python [14]. PYRO essentialgntles all the network communica-
tion between objects, allowing remote objects to appearc bnes [14]. Additionally, PYRO
provides remote method invocation functionality, whicloaks for methods from remote ob-
jects to be called locally [14]. PYRO can be used over a ndwaltowing processes to be
distributed between a number of separate computers, on ibeaised purely on the local ma-
chine to provide a convenient inter-process communicatechanism [14]. PYRO consists
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of a special nameserver component that provides funcitgriaf registering and retrieving re-
mote objects. Client code is then able to register namecattshjath the PYRO nameserver and
retrieve these objects using the specified name [14]. Tmete object framework provides all
the necessary functionality to implement CSP channelsh Eammunicatiorthannebetween
processesan be implemented as a rem@kannel object withread andwrite methods.
As such, PYRO plays a critical role in the implementationhaf toncurrent Hydra back-end.

5.3.2 PyCSP

While PyCSP has already been discussed in Section 2.6etrepdates to PyCSP framework
have yielded some important functionality. As of writinggetlatest version of PyCSP is ver-
sion 0.3.0, which was released in May 2008 [9]. Since ver8i8rD, PyCSP provides network
channel functionality using PYRO [9]. With the appropriatestom framework code, this new
functionality can be leveraged to overcome PyCSP’s greateskness, namely its reliance on
Python’s threading library. As described in Section 2.®2CSP has already implemented
Python versions of most of the CSP constructs, such agrdwesschanne] guard andalter-
nativecommands [9]. PyCSPRBarallel  class can still be useful for implementing parallel
sub-processes, even though it is limited by Python’s Glleréfore, PyCSP forms another crit-
ical component of the concurrent Hydra back-end as it restve need to develop these CSP
constructs from scratch.

5.3.3 River and Trickle

The initial investigation into suitable back-end framelksyielded the River framework as a
possible candidate for process distribution and remotdadaeinvocation. River is a Python
framework for distributed and parallel programming [7].idta useful framework for writing
parallel Python programs and prototyping parallel systgfhs It has a number of features
that make it very useful for a project such as Hydra. Theseifea include: dynamic River
VM discovery, process naming and creation, message paasshgtate management [7]. As
with PYRO, River supports communication between remoteaibjor processes and remote
method invocation [7]. River also has a number of extensratisthe 'trickle’ extension being
of relevance to the Hydra project. Trickle provides a numdieabstractions for the River
functionality, such as process and data distribution withkioad balancing, easy VM discovery
and asynchronous process execution [6].

While River and Trickle appear to be the perfect platform dmolv to build the Hydra frame-
work, a number of issues were encountered during prototgpeldpment. River and Trickle
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require that code be developed for execution within the IRiXM, which is essentially a mod-
ified Python interpreter, since it is not possible to simpMport the necessary modules. While
this does not sound like much of a problem, it does have iraptias for the Hydra code gen-
erator and process distribution methods. Since processasl Wwe distributed using the Trickle
functionality, it would be necessary to run the Hydra framngicompletely within a River VM
instead of simply importing the necessary functionalitigisSiwould then require users of Hydra
to also use the River interpreter when developing theiriagiibns otherwise the Hydra code
generator will not function correctly. These restrictiaarsd other added complications, such
as determining the path information for River and Tricklereiseen as definite drawbacks for
both the user and the development of Hydra. However, RiveTaickle could still be useful if
the project were to be extended to multiple computers.

5.4 Python Code Generation

Now that an appropriate underlying framework has been foingl possible to begin the pro-
cess of generating Python code. One of the many strengthsamed for ANTLR in Section
4.5.1is its ability to recognise AST grammars and genetatetsired output using StringTem-
plate. These features are critical to generating the coacuHydra-based code easily and
successfully.

54.1 ANTLR Tree Walker

ANTLR provides the ability to develop AST parsers that carubed to traverse the AST that
was generated by the ANTLR parser [33]. This removes thedsunf having to write tree
traversal routines manually for the code generation paes significantly speeds up devel-
opment. Not only can these ANTLR tree grammars parse absyatax trees, they can also
incorporate all the usual ANTLR features such as grammaorat syntactic predicates and
rewrite rules [33]. These rewrite rules can also take thenfof StringTemplate style template
calls, thereby allowing the tree parser to generate codu fyeedefined templates [33]. The
Hydra code generator was developed using this tree walketegmplates approach.

5.4.2 StringTemplate

As mentioned previously, StringTemplate is a library thedvdes functionality for defining
static code templates with embedded structure inform&Bi8h These template rules are stored
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in a template group file that can be accessed by the ANTLR tedkewand used to generate
structured output code [33]. This approach has the benekegping the tree walker imple-
mentation clean and concise as well as improving code gememaintainability. It also allows
for the code generator to be re-targeted without too manpgémto tree walker itself [33].
The template rules take the form of a rule name with optioaehmeters and the corresponding
template code, with any of the supplied parameters embeithdedin. A simple example of
two such rules and the corresponding tree walker rules caed&®in Figs. 5.1 and 5.2.

assignment : "(ASSIGN ~(IDENT ID) expr=expression)
-> assignment(ident={$ID.text}, value={expr});
simple_expr : ~NEXPRESSION APYTHON PYEXPR))
-> python_expr(expr={($PYEXPR.text)[1:-1]})

Figure 5.1: ANTLR tree walker rules for CSP.

Figure 5.1 shows two tree walker rules, the first being a e tdentifies assignment state-
ments in the AST and the second being a rule for one of the miesnatives of a simple
expression. The form of the templates used by these two isiiepicted in Fig. 5.2.

assignment(ident, value) ::= "<ident> = <value>"
python_expr(expr) ::= "eval('<expr>’)"

Figure 5.2: StringTemplate rules for Python code genematio

With careful planning and the correct structuring of thades, it is possible to generate con-
current Hydra programs without having to add too many custode generation routines.

5.4.3 Implementation

As with the ANTLR grammar parser, the ANTLR tree grammartstanth a section for the
options. The options for the Hydra tree walker include sgtthe target language to Python,
setting the output format to use templates and instructiegttee walker to use the tokens
defined in the CSP parser. The options section is then fotlduyea @ memberssection that
defines a number of custom variables and methods that arelused the translation process.
The methods will be discussed as they become relevant. €aggtammar productions start
with the program rule. This represents the goal production for the tree wadkel is called
when the tree walker is executed. The AST is parsed by sgatith theprogram rule and
recursively matching AST node tokens and sub-rules. Whewtiole AST has been parsed, the
program rule compiles a list of all the maiprocesseandchannelddentified in the AST and
returns these as tree walker result attributes. Wheptbgram rule has been fully matched,
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it calls theprogram template rule, which then generates the appropriate progieleton
using the supplied Python import statementsnmandist and list of program arguments. The
program arguments are constructed usir@@embemethod calledbuildprocargs that
takes a list ofprocesseslit essentially constructs code to handle command-lineraegts and
execute the relevargrocess Of the remaining rules, only those that warrant discussien
described here, however, the listings for the ANTLR treekembnd StringTemplate group file
can be found in Appendix A.2 an Appendix A.3 respectively.

Theparallel rule is important in that it has two distinct behaviours.tlisiparsing the top-
level parallel construct, it will generate the appropriate code for exagutver multiple Python
interpreters. However, alBARALLELnodes found further down the AST will generated using
PyCSP’sParallel  method. The rationale behind this is that current desktoppzders have
at most eight processor cores, therefore, implementingygu®cess in a new Python inter-
preter instance is not likely to give the desired scalingwilidust increases the memory usage
of the Hydra program. Thprocess rule and the correspondimgocess_label rule are
fundamental productions in that they generatespioezess’smethod definition as a PyCSP
Process . Thankfully, Python permits nesting of methods, making tode generation pro-
cess much easier. Tipeocess rule also takes a list afhannelghat are used in thprocess
and generates code to retrieve the rele@mannel objects from the PYRO nameserver using
the getNamedChannel method. Since CSP allows for the definition of anonymptes
cessesa technique for handling and defining these methods wasekviThe technique is
fairly simple and involves incrementing a counter and aplpenthis count to the end of the
predefinedorocessname, such as_anonproc_’ . Itis worth noting that since anonymous
processebave no user-defined name, it is not possible tamset andoutputcommands within
these processes and any attempt to do so will lead to unddfeteaViour.

While a number of the CSP constructs, such aspieeess guarded input and outputstate-
ments, allow for label subscripts, this functionality has lbeen implemented in the code gener-
ator. As such, the parser rules for identifying these sutschave been disabled, even though
the parser is capable of recognising them. Any attempt tasubscripts in a Hydra program
will lead to parser errors. The reason for not including subpss is that they introduce a great
deal of complexity to the code generator. These construaisime re-enabled at a later stage
when the Hydra project is more mature. Another importantés®garding user defined la-
bels and names is the issue of keywords. Python has a numikeywbrds that cannot be
used as method or variable names. Therefore, all user-defieatifiers are sanitised by the
@memberanethod, fixkeywords , that simply prefixes an underscore to any identifiers that
clash with know keywords.

Variable declarations are now supported bydbelaration rule, unlike the JCSP prototype,
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which had to pre-process assignment statements to gertel@ations. Although Python
does not require variable declarations, it was decidedsihgtly assigning the value dfone

to these variables would probably reduce the chance of seopes. Array declarations are
another reason for generating declaration code in that GS8Rits the declaration of array
bounds, which can lead to out-of-bounds errors if the prnognar attempts to reference an
uninitialised list variable. Therefore, arrays are desllais a Pythohst ~ with the appropriate
number of elements all set tdone. An @membemethod, namedrrayinit , is used to
generate the appropriate number list elements.

Python expressions and statements embedded in the CSPrallechdy generating Python
eval andexec calls respectively with the given expressions and statésreinput. Struc-
tured expressions and variables are also possible usingi®Pgtuple type. Thanput_cmd
andoutput_cmd rules generate simplead andwrite method calls on the appropriate
Channel objects. This is possible due to the fact that allthennelconfiguration and initial-
isation is handled at the beginning of thecess

Therepetitive rule generates a Pythovhile loop with the appropriate loop control vari-
able set tofrue initially. Within the loop, anif-else statement is included with thié
expression set téalse . An alternativeconstruct is then inserted between the and the
else statements and generates a listetif statements. If all thalternative statements
evaluate to false, thelse statement is executed, setting the loop control variablEatse |,
thereby stopping the loop. Tlaternative , guarded , guardlist andguard rules

all serve to generate a list of elif statements that reptaberBoolean expressions supplied by
programmer and execute the supplied command list if thatesspon evaluates to truénput
guardsare implemented using PyCSPdternative class and theriSelect method
that uses order of appearance as an indicator of priority.

Once the AST has been traversed and the templates have geitbmappropriate Python code,
the resulting StringTemplate object containing the geeeraode is returned to thespexec
method where the code is distributed and executed.

5.4.4 Process Distribution and Execution

A relatively simple approach was taken to bootstrappingeetuting the relevant processes
once code generation was complete. As mentioned in Sec#o8, $heprogram method of
the tree walker object returns a list diannelsand processeshat need to be configured and
executed. One of the problems encountered with using Pysa&Rwork channel functionality

is that allchannelsneed to be registered with the PYRO nameserver beforprifeessesire
able to retrieve the remot€hannel objects. There is no easy way to add this registration
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process to the generated program without encounteringtgitis where onprocesgequests a
channelhat has not yet been registered. This problem was addrbgsedistering all the nec-
essarychannelsbeforehand in thespexec method of theHydra.csp module. The list of
channelgeceived from the tree walker allows tbhgpexec method to simply loop through all
thechannelsand register the appropriateannelnames with the PYRO nameserver. Since this
happens beforgrocessexecution, there is no chancedafanneldeing unregistered or multiple
registrations occurring for the sarobannelname, thus breaking inter-process communication.
Fig. 5.3 shows how thehannelregistration process was implemented.

chans = []

for i, chan in enumerate(outpt.channels):
cn = One20neChannel()
chans.append(cn)
registerNamedChannel(chans]i], chan)

Figure 5.3: PYRO channel name registration.

Once thechannelsare registered, thprocessesre asynchronously executed using a simple
loop and Python threads. The implementation ofpithecessspawning routine can be seen in
Fig. 5.4. Thecspexec method then waits for therocesseso finish executing and allows the
user to view the results before ending the program.

class runproc(Thread):

def __init__ (self, procname):
Thread.__init__ (self)

self.procname = procname

def run(self):

os.system(’python hydraexe.py ' + self.procname)

proclist = []

for proc in outpt.procs:
newproc = runproc(proc)
proclist.append(newproc)
newproc.start()

for proc in proclist:
proc.join()

Figure 5.4: Asynchronous process execution.
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5.5 Summary

The two phases of the construction of the code generatoitedsn two separate code genera-
tors being developed. The first phase involved hand-bugldisimple code generator for JCSP.
This was performed as an experiment to gain familiarity vV8®P and code generation tech-
nigues. The second phase involved the use of ANTLR to de\eltgxible, maintainable and
powerful code generator. However, before beginning thetroaotion of the ANTLR code gen-
erator, a number of existing concurrent frameworks werestigated to reduce the amount of
custom coding required. The PyCSP and PYRO libraries weneddo meet the requirements
of such a concurrent framework.

Using ANTLR’s tree grammar parser and StringTemplate sttppa@ode generator was devel-
oped that is able to convert CSP algorithms to concurrertdPytode and distribute this code
for execution over multiple processor cores. With the catiph of the code generator comes
the completion of the development aspect of the projectifigs therefore required to assess
whether the Hydra framework actually meets the objectivestiout to achieve.



Chapter 6

Results

6.1 Introduction

Two forms of testing were performed to determine Hydra'srdegf success in meeting the
project objectives. First, a qualitative analysis was @enked on various aspects of the Hydra
framework. This involved constructing a simple CSP exanaplé converting it using Hydra.
The resulting output code was then analysed to determimegpresents an accurate represen-
tation of the CSP algorithm. A subjective analysis of Hyg@ase of use was also performed.
The code was then executed and the operating system’s prow®storing tools were used to
determine whether or not the program was executing ovelpheifirocess cores.

Second, a quantitative analysis of Hydra’s performancewaertaken. While the aim of this
project is not to develop the fastest, most efficient frant&possible, it is certainly worthwhile
to perform such an analysis as performance is likely to atfee usability of the framework.
The first quantitative test involves comparing the numbelireds of code from the original
algorithm to the number of lines of code in the resulting otifrogram. The second series of
tests involve obtaining timings for conversion overhead eimannel communication overhead.

All testing was performed on the system configuration spesgtifi Table 6.1.

6.2 Testing

6.2.1 Generated Code Analysis

An example Hydra CSP algorithm can be seen in Fig. 6.1. Thassisnple program with two
processes. Thproducer process outputs the value wfto theconsumer process 10000

58
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| Category | Type |
CPU AMD Opteron 170 (2x2.0GHz)
Motherboard ASUS A8R32-MVP Deluxe
Memory 2x1GB G.Skill DDR400
Hard Disk Seagate 320GB 16MB Cache
Network Marvel Gigabit On-board Network Card
Operating System Microsoft Windows 2003 Server SP2

Table 6.1: Testing platform configuration.

times and theonsumer process simply inputs the value received froraducer and stores
itin y. The resulting Python output code can be seen in Fig. 6.2.

from Hydra.csp import cspexec
prodcons = "™
I
-- ping process : sends the value of x to pong
producer ::
X : integer; x = 1;

*[

{x <= 10000} -> {print "prod: x = " + str((x *X*X) % 10)};
consumer ! x;
x = {x + 1}
I;
|
- consumer process : receives a value from producer and stor esitiny
consumer ::

y, count : integer; count := O;
*[
{count < 10000} -> producer ? vy;
count := {count + 1};
{print "cons: y = " + str((y *y*y) % 10)};
[] {count == 10000} -> {print "The count is: " + str(count)};

cspexec(prodcons)
Figure 6.1: Simple producer-consumer CSP example.

Looking at the output code, itis clear that Hydra has geerdratsemantically equivalent version
of the CSP algorithm. Botprocessesre defined correctly, with correchannelinitialisation

and variable declarations. The repetitive commands are ja@sent in the form oivhile

loops with the appropriate control variables aalternativecode. Theguardedcommands
can also be seen in the form of tbéf statements, with expressions and statement blocks
correctly represented. The use of embedded Python statemeapparent in the inclusion of
eval andexec statementsinputandoutputcommands can be seen by the respectiasl
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andwrite  method calls on thehannelobjects. This example, while simple, is able to show
most of the CSP constructs and their respective repregamtatPython using Hydra.

It apparent from the nature of the resulting Python codd,iti@simpler and quicker to write a
CSP algorithm and have Hydra convert it to Python. The inm@ton of Python expressions
and statements is also bound to make using Hydra easier ggdgeammer is free to use
Python’s powerful data-types and libraries within the C&sgpam.

The resulting Hydra program was then run and the Windows Vaskager was used to monitor
thepython.exe interpreter processes and overall CPU usage. The resuhssdést can be
seen in Fig. 6.3 and Fig 6.4. To demonstrate the parallelutixeceffectively, theguard
conditions for theproducer andconsumer processes were changed to True, thus creating
infinite loops. This provided enough time to effectively daratrate multicore usage.

The processor usage information gathered from the Wind@sk Manager clearly shows that
the Hydra program is executing on multiple CPU cores simglbaisly. The 'CPU Usage His-
tory’ graph shows that both CPU cores have processor usagetwken 60 and 80 percent
during the period of process execution. Furthermore, thec&sses’ list shows the Python
interpreters that were running during that period. The &ytimterpreter with 0 percent CPU
usage is the PYRO nameserver process, and the other tht@eces of Python are for the main
Hydra program, th@roducer process and theonsumer process. Adding their respective
CPU usage values together equates to a CPU usage of 64 plerdiiet Hydra program, where

50% usage indicates the maximum usage for single CPU cois pfdves that the Hydra pro-

gram is executing in parallel and more CPU intensive alporg are likely to further reinforce

this distinction.

6.2.2 Basic Quantitative Analysis

The first test being conducted is a simple comparison betwleemumber of lines of CSP

algorithm code and the number of lines of converted Pythalecdlhe aim of this test is to

demonstrate the work reduction benefits of using Hydra,eslass lines of code have to be
written to get the same result. A number of CSP algorithmsweattten, incorporating a mix

of CSP constructs. These CSP programs were then converiaditon code and the relative
line counts were compared.

From these results in Table 6.2, it can be seen that there iiscamase of between 300 and
400 percent in the number of lines of code from CSP algorithrihé Python program. This
essentially means that the programmer has to write lesstoquteduce the desired program.

To test the channel communication overhead, a simple testiexdased. The producer-consumer
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| Example| Lines of CSP| Lines of Python|

1 34 121
2 18 67
3 22 78

Table 6.2: Line-count comparison

example was modified to take a time measurement beforeefigtitiveand take another mea-
surement after theepetitive This was performed 100 times and the average was taken. The
results can be seen in Table 6.3. Average compilation tingealg computed. From the results

it is apparent that there is very little overhead associaféucompilation and communication.

| Run | Communication (in seconds)Compilation (in seconds)

1 0.001719 0.047
2 0.001719 0.078
3 0.001719 0.065
4 0.001720 0.079
5 0.001560 0.072
6 0.001559 0.068
7 0.001710 0.081
8 0.001559 0.062
9 0.001570 0.049
10 0.001559 0.078
Average 0.001639 0.0679

Table 6.3: Communication overhead.

6.3 Summary

From these results, it is apparent that the Hydra framewaskathieved its primary objective.
That is, it has demonstrated that it is possible to take awoast CSP algorithm and translate
it into concurrent Python code that is capable of parallecexion. This translation process is
automatic and does not require the user to implement thegwoent algorithm manually using

one of the many existing concurrent frameworks. This autanagorithm conversion feature

is what makes Hydra easy to use. It was also found that Hydraatiadd much in the way of

computing overhead.
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import sys

from pycsp import *

from pycsp.plugNplay import *
from pycsp.net import *

def _ program(_proc ):
@process
def producer():
__procname = ’'producer’
print '# producer’
__chan_consumer_out = getNamedChannel("producer->cons umer")
X = None
x =1
__letrl_1 = True
while(__lctrl_1):
if False:
pass
elif eval(’x <= 10000):
exec ’'print "prod: " + str(x) in globals(), locals()
__chan_consumer_out.write(x)
= eval(x + 1’
else:
__lectrl_1 = False

@process

def consumer():
__procname = ’consumer’
print '# consumer’

__chan_producer_in = getNamedChannel("producer->consu mer")
y = None
count = None
count = 0
_letrl_2 = True
while(__lctrl_2):
if False:
pass
elif eval(’count < 10000’):
y = _ chan_producer_in.read()
count = eval(count + 1"
exec ’'print "cons: y = " + str(y)’ in globals(), locals()
elif eval(’count == 10000"):
exec ’print "The count is: " + str(count)’ in globals(), loca Is()
count = 10001
else:

__lctrl_2 = False

# process spawning

if False:
pass
elif _proc_ == "producer":
Sequence(producer())
elif _proc_ == "consumer":
Sequence(consumer())
else:

print ’Invalid process specified.’
__program(sys.argv[1])

Figure 6.2: Python code for producer-consumer example.
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Chapter 7

Conclusions

7.1 Summary

The goal of the Hydra project is the creation of a concurreamework for Python. This
framework is given the task of converting CSP code into careit Python code. This process
involved the development of a parser for CSP. First, a pyp®parser was coded by hand and
then a fully working ANTLR parser was created after identityANTLR as the best compiler
generator to use. It is also necessary to develop a codeageneh prototype code generator
was hand-crafted to analyse the AST from the parser and gendCSP. Thereafter, ANTLR
was used to generate Python code from the AST supplied by BELR parser. Finally, ba-
sic testing was performed to determine whether or not therddfirddmework was capable of
meetings its objectives.

7.2 Revisiting the Objectives

The primary objective of this project was investigating tisasibility of converting a CSP algo-
rithm into concurrent Python code. As can be seen by thetsasuChapter 6, this objective has
been achieved. Itis therefore possible to take a CSP algodefined within a Python program
and convert itinto a concurrent Python code and have theuwcosTtt program execute over mul-
tiple CPU cores. The objective of developing a flexible pass®l translator was also achieved
thanks to ANTLR’s powerful parsing and code generation fiemality. Results showed that it
is possible to accurately convert CSP into Python usingtirad code templates. Results also
showed that the translation process only adds a negligibtaiat of overhead to the program.
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7.3 Future Work

The Hydra framework is still in its prototype phase. As sutigere are a number of possible
extensions. A short list of these extensions is listed below

e A number of changes had to be made to the CSP grammar duriegrgard code gen-
erator development. Many of these compromises were mageetalsip development as
opposed to be actual requirements. Further studies coudtigate how these changes
could be reverted and how such a task would affect the paasidgode generation pro-
cesses.

e Support for embedding Python in the CSP program was addeVao, this support is
very simplistic. It would be beneficial to research betteysvaf allowing CSP programs
to use Python functionality.

e Semantic checking and error reporting for the parser ané gederator are very weak.
Further work could involve implementing stronger semachiecks and provide friendlier
error reporting.

e This research only looked at implementing parallelism fairegle computer system.
Further studies could investigate extending the targdti@mcture to multiple computers
or Grid computing platforms.
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Appendix A

Grammar listings

This appendix presents the ANTLR grammars and StringTeptade templates used to con-
struct the parser and code generator for Hydra. The listinggided below are not the full
listings as much of the grammar action code has been removeéddability.

A.1 ANTLR Parser Grammar for CSP

grammar csp;

options

{
language=Python;
output=AST;
ASTLabelType=CommonTree;
backtrack=true;
memoize=true;

}

oo
* PARSER RULES

S */

/I $<Productions

program returns [procs, chans]

scope

{
vars;

}

@init

{
imprts = False

}

. (pythonimport { imprts = True } )? command_list
-> { imprts == True }? NPROGRAM pythonimport command_list)
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-> NPROGRAM EMPTY command_list)

pythonimport
: PYIMPRT+
-> NPYTHON PYIMPRT)+

parallel
: LPARA process (PAR process) * RPARA
-> N(PARALLEL process+)

process
: process_label command_list
-> N(PROCESS process_label command_list)

process_label returns [Ibl]
@init
{

subsup = False

self.anonproc += 1
$lbl = (__anonproc_' + str(self.anonproc), False, 0, None

}
-> NPROC_LABEL EMPTY EMPTY)

label_subscript returns [subs]
: int_const
-> N(SUBSCRIPT int_const)
| range
-> ~(SUBSCRIPT range)

declaration
: ids+=ID (COMMA ids+=ID) * COLON type SEMICOL
-> N(VARDEF type ~(IDENT ID))+

int_const
. simple_expr
-> simple_expr

range returns [rn]

@init

{
idsup = False

}

: (ID COLON { idsup = True })? lower=int_const DBLCOM upper=i nt_const
-> { idsup == True }? N(RANGE ~(VARDEF INTEGER ~(IDENT ID)) $I

-> { idsup == False }? N(RANGE $lower $upper)

ower $upper)
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-> NRANGE $lower $upper)

type returns [tp]
: (LPAREN lower=INT DBLCOM upper=INT RPAREN) basictype
-> NARRAY ~(RANGE $lower $upper) basictype)

| basictype
-> basictype
basictype
: 'integer’ -> INTEGER
| 'boolean’ -> BOOLEAN
| 'char’ -> CHAR

command_list
: declaration * command+
-> N(COMMAND_LIST declaration * command+)

command
(
simple_cmd -> simple_cmd
| struct_cmd -> struct_cmd
) SEMICOL
simple_cmd
. assignment -> NCOMMAND assignment)
| input_cmd -> NCOMMAND input_cmd)
| output_cmd -> N(COMMAND output_cmd)
| nullemd -> NCOMMAND nullcmd)
| PYEXPR -> NCOMMAND ~(PYTHON PYEXPR))
struct_cmd
: alternative -> N(COMMAND alternative)
| repetitive -> N(COMMAND repetitive)
| parallel -> N(COMMAND parallel)
nullemd
: 'SKIP’ -> SKIP
assignment

: target_var EQUAL expression
-> N(ASSIGN target_var expression)

process_name returns [pn]
. 1D
-> NPROC_LABEL ID EMPTY)
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subscripts
: subs+=simple_expr (COMMA subs+=simple_expr) *
-> N(SUBSCRIPT simple_expr+)
target_var returns [tp, stp]
@init
{
arrsub = False
}
. ID
(LBRACK int_const RBRACK
{
arrsub = True
}
)?
-> { arrsub == True }? NIDENT ID int_const)
-> ~(IDENT ID)
| struct_target
-> struct_target
constructor returns [ident]
: 1D
-> N(IDENT ID)
I
-> EMPTY
struct_target returns [tp, stp]
: constructor LPAREN var_list RPAREN
-> NSTRUCT_T constructor var_list)
var_list returns [tps]
: tvl=target_var (COMMA tv2=target_var) *
-> target_var+
I
-> EMPTY
simple_expr returns [tp]
@init
{
arrsub = False
}
. ID (LBRACK int_const RBRACK)?
-> {$tp == 'integer’ and arrsub}? NEXPRESSION MVAR INTEGE R ID int_const))
-> {$tp == ’'boolean’ and arrsub}? NEXPRESSION ~(VAR BOOLEA N ID int_const))
-> {$tp == 'char’ and arrsub}? NEXPRESSION (VAR CHAR ID int _const))
-> {$tp == ’integer’ and not arrsub}? NEXPRESSION MVAR INT EGER ID))
-> {$tp == ’'boolean’ and not arrsub}? EXPRESSION ~(VAR BOO LEAN ID))
-> {$tp == ’'char’ and not arrsub}? NEXPRESSION NVAR CHAR ID )

-> {$tp == ’array-integer’ and not arrsub}? NEXPRESSION *(
-> {$tp == ’array-boolean’ and not arrsub}? NEXPRESSION *(

VAR AARRAY INTEGER) ID))
VAR A(ARRAY BOOLEAN) ID))
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-> {$tp == 'array-char’ and not arrsub}? NEXPRESSION ~VAR ARRAY CHAR) ID))
> NEXPRESSION A(VAR INVALID D))

| INT
-> NEXPRESSION NVALUE INTEGER INT))

| BOOL
-> NEXPRESSION ~VALUE BOOLEAN BOOL))

| CHR
-> NEXPRESSION NVALUE CHAR CHR))

| PYEXPR

-> NEXPRESSION A(PYTHON PYEXPR))

struct_expr returns [tp, stp]
: constructor LPAREN expr_list RPAREN
-> NSTRUCT_E constructor expr_list)

expr_list returns [tps]
. exl=expression (COMMA ex2=expression) *
-> expression+

-> EMPTY

expression returns [tp, stp]
. simple_expr
-> simple_expr
| struct_expr
-> struct_expr

input_cmd
. process_name QUEST target_var
-> NINPUT process_name target_var)
output_cmd
. process_name EXCLAM expression
-> NOUTPUT process_name expression)
repetitive
: ASTER alternative
-> NREPETITIVE alternative)
alternative
: LBRACK guarded ( GBRACK guarded ) * RBRACK
-> NALTERNATIVE guarded+)
guarded
@init
{

rngsup = False
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: (LPAREN range RPAREN { rngsup = True })? guard GARROW comman d_list
-> { rngsup == True }? N(GUARDED range guard command_list)
-> NGUARDED EMPTY guard command_list)

guard
: guardlist
-> N(GUARD guardlist)
| input_cmd
-> N(GUARD input_cmd)
| nullemd
-> NGUARD nullcmd)

guardlist
: frst=guard_elem
( SEMICOL follow=guard_elem) * ( SEMICOL input_cmd )?
-> NGUARD_LIST guard_elem+ input_cmd?)

guard_elem returns [tp]
. simple_expr

-> simple_expr
| declaration

-> declaration

I $>

oo

* LEXER RULES

K e mmmmmmmmmmmmmmmmmmeeee el */

/I $<Lexer Tokens

LBRACK : T
RBRACK : T;
LPAREN : '(;
RPAREN s
GBRACK : I’
GARROW : '->’;
LPARA [}

RPARA I}

PAR G

SEMICOL : '}

PROCCOL :

ASTER R

EQUAL Lo

QUEST e

EXCLAM : 'l

COMMA A

COLON B

DBLCOM : .

ID »(a.'z) (a.z| ALz 09 ) *;
CHR . '\” (options {greedy = false;} : . ) '\

INT 1 (0.79)+
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BOOL : "True’ | 'False’;

PYEXPR : '{' (options {greedy=false;} : . ) * Y,

PYIMPRT : ’_include’ '{'(options {greedy=false;} : . ) * '}

WS (W] | 'woooC )+ { $channel = HIDDEN; } ;

COMMENT : (-~ (options {greedy = false;} : . ) * CRLF) { $channel = HIDDEN; } ;
CRLF : (\r? \n’) { $channel = HIDDEN; } ;

I $>

A.2 ANTLR Tree Walker Grammar for CSP

tree grammar cspWalker;

options

{
language=Python;
tokenVocab=csp;
ASTLabelType=CommonTree;
output=template;

}
@members
{
keywords = [‘and’,'del’,'from’,'not’,'while’,’as’, el if’,’global’,’or’,'with’,’assert’,'else’,"if’,
'pass’,'yield’,’break’,’except’,'import’,’print’,’c lass’,’exec’,’in’,’raise’,’continue’,

finally’,’is’,'return’,’'def’,'for’,’lambda’, 'try’]

def fixkeywords(self, inp):
if inp in self.keywords:
return "_"+inp
return inp

def arrayinit(self, a, b):
return [ + ".join(None, ’ for x in range(max(int(a),in th)) + 1))) + T

def buildprocargs(self, procnames):

results =’
nl = False
for p in procnames:
if nl:
results += \n’
results += ‘elif _proc_ == " + p + ™\n’
results += \tSequence(’ + p + ()
nl = True

return results

def definechan(self, chanlist):

results = "
for cn, cv in chanlist:
results += cv + ' = getNamedChannel(™ + cn + ")\n’

return results

def buildalts(self, inps):
results = ”
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for i in inps:
results += i + '_alt = Alternative(" + i + '.read, __ sg).selec tO\n’
return results
anonproc = 0
repidx = 0
}
program returns [channels, procs]

scope

{
chans;

}

@init

{
pnames = []
$program::chans = set()

}

@after

{
$channels = list($program::chans)
$procs = pnames

}

: N(PROGRAM EMPTY cmdist=command_list[True] { pnames = $co mmand_list.pnames })
-> program(commandlist={cmdist}, procargs={self.build procargs(pnames)})

| "(PROGRAM (pyi+=pythonimport)+ cmdist=command_list[T rue] { pnames = $command_list.pnames
-> program(commandlist={cmdist}, procargs={self.build procargs(pnames)}, incl={$pyi})

pythonimport
: N(PYTHON PYIMPRT)
-> imports(imp={($PYIMPRT.text)[9:-1]})

parallel [toplvl] returns [procnames]

@init
{
$procnames = ]
tsprocs = []
}
: M(PARALLEL (procs+=process
{
if $toplvl:
$procnames.append($process.prochame)
else:
tsprocs.append($process.procname)
}
)+)
-> { $toplvl }? parallel(proc={$procs}, procnames={tspro cs}, Ivi={False})
-> parallel(proc={$procs}, procnames={tsprocs}, IvI={T rue})
process returns [prochame]
scope
{
chans;
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prcname;
}
@init
{
$process::chans = set()
$process::prcname = "
}
: PROCESS Ibl=process_label { $process::prcname
{
$procname = $process_label.procname
}

-> process(label={Ibl}, commandlist={cmdlst}, chans={s

process_label returns [procname]

: N(PROC_LABEL ID label_subscript)

{
$procname = self.fixkeywords($ID.text)

}

-> process_label(ident={self.fixkeywords($ID.text)})

NPROC_LABEL ID EMPTY)

{
$procname = self.fixkeywords($ID.text)

}

-> process_label(ident={self.fixkeywords($ID.text)})

NPROC_LABEL EMPTY EMPTY)
{

self.anonproc += 1

$procname = u’__anonproc_' + str(self.anonproc)

}

-> process_label(ident={u’__anonproc_' + str(self.anon

label_subscript : N(SUBSCRIPT int_const)

| “(SUBSCRIPT range)

declaration : N(VARDEF tp=type ~(IDENT ID))

-> declaration(ident={self.fixkeywords($ID.text)}, ty

int_const : se=simple_expr

range

type

-> int_const(exp={se})

: ARANGE ~(VARDEF INTEGER ~(IDENT ID)) int_const int

| "(RANGE int_const int_const)

: MARRAY NRANGE a=INT b=INT) basictype)
-> type_def(def={self.arrayinit(a.text,b.text)})
| basictype
-> type_def(def={"None’})

basictype . INTEGER

ess_label.procname } cmdlst=command_list

elf.definechan(list($process::chans

proc)})

pdef={tp})

_const)
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| BOOLEAN
| CHAR

command_list [toplvl] returns [pnames]
@init
{
$pnames = ]

}
: "(COMMAND_LIST (declarations+=declaration)

-> command_list(vardefs={$declarations}, commands={$c

command [toplvl] returns [procnames]

@init

{

$procnames = []

}

(
(COMMAND cmdln=assignment)
(COMMAND cmdIn=input_cmd)
(COMMAND cmdin=output_cmd)
(COMMAND cmdIn=nullcmd)
(COMMAND cmdIn=alternative)
(COMMAND cmdIn=repetitive)
~(COMMAND cmdin=parallel[$toplv]] { $procnames
(COMMAND cmdin=py_command)

-> command(cmd={cmdIn})

_— — — — — —— —

py_command : NPYTHON PYEXPR)

-> py_exec(code={($PYEXPR.text)[1:-1]})
nullemd . SKIP

-> nullcommand()
assignment : "(ASSIGN tgt=target_var expr=expression)

-> assignment(target={tgt}, value={expr})

process_hame returns [prochame]
: N(PROC_LABEL ID subs=subscripts)
{

$procname = self.fixkeywords($ID.text)

}

-> proc_name(ident={self.fixkeywords($ID.text)}, sub=

| NPROC_LABEL ID EMPTY)
{

$procname = self.fixkeywords($ID.text)

}

-> proc_name(ident={self.fixkeywords($ID.text)}, sub=

subscripts : NSUBSCRIPT (se+=simple_expr)+)

$paral

* (commands+=command[$toplvl] { $pnames.extend(Scomm
ommands})

lel.procnames } )

{subs})

{onm



212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

A.2. ANTLR TREE WALKER GRAMMAR FOR CSP

80

target_var

constructor

struct_target

var_list

expression

simple_expr

-> subscript(exp={se})

: M(IDENT ID)
-> target_var(ident={self.fixkeywords($ID.text)})

| (IDENT ID ic=int_const)

-> target_var(ident={self.fixkeywords($ID.text)}, sub

| st=struct_target
-> target_var(ident={st})

. AIDENT ID)

| EMPTY

: MSTRUCT_T constructor vil=var_list)

-> struct_targ(targlist={vl})

. (tv+=target_var)+

-> targ_list(targs={$tv})
| EMPTY

-> targ_list(targs={___ignored___"})

ex=simple_expr
| ex=struct_expr
) -> expression(expr={ex})

: NEXPRESSION VAR INTEGER ID))

-> simple_expr(val={self.fixkeywords($ID.text)})
NEXPRESSION VAR BOOLEAN ID))

-> simple_expr(val={self.fixkeywords($ID.text)})
NEXPRESSION ~VAR CHAR ID))

-> simple_expr(val={self.fixkeywords($ID.text)})
NEXPRESSION VAR INVALID ID))

-> simple_expr(val={self.fixkeywords($ID.text)})
NEXPRESSION NVAR ~ARRAY INTEGER) ID))

-> simple_expr(val={self.fixkeywords($ID.text)})
NEXPRESSION NVAR “ARRAY BOOLEAN) ID))

-> simple_expr(val={self.fixkeywords($ID.text)})
NEXPRESSION NVAR “ARRAY CHAR) ID))

-> simple_expr(val={self.fixkeywords($ID.text)})
NEXPRESSION NVAR INTEGER ID ic=int_const))

-> simple_expr(val={self.fixkeywords($ID.text)}, sub=
NEXPRESSION NVAR BOOLEAN ID ic=int_const))

-> simple_expr(val={self.fixkeywords($ID.text)}, sub=
NEXPRESSION NVAR CHAR ID ic=int_const))

-> simple_expr(val={self.fixkeywords($ID.text)}, sub=
NEXPRESSION NVALUE INTEGER INT))

-> simple_expr(val={$INT})

-> simple_expr(val={$BOOL})

NEXPRESSION ~(VALUE BOOLEAN BOOL))

NEXPRESSION A(VALUE CHAR CHR))

={ic})

{ich

{ich

{ich
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struct_expr

expr_list

input_cmd

output_cmd

repetitive

alternative

-> simple_expr(val={$CHR})
| NEXPRESSION APYTHON PYEXPR))
-> python_expr(expr={($PYEXPR.text)[1:-1]})

: N(STRUCT_E constructor explst=expr_list)

-> struct_expr(exprlist={explst})

. (exprs+=expression)+

-> expr_list(exprs={$exprs})
| EMPTY
-> expr_list(exprs={[I})

: MINPUT sn=process_name tv=target_ var)

{
channm = $process_name.procname + '->' + $process::prcnam
$process::chans.add((channm, '__chan_’' + $process_name
$program::chans.add(channm)

}

-> input_cmd(cname={channm}, sname={sn}, targ={tv})

: MOUTPUT dn=process_name ex=expression)

{
channm = $process::;prcname + '->' + $process_name.procham
$process::.chans.add((channm, '__chan_’ + $process_name
$program::chans.add(channm)

}

-> output_cmd(cname={channm}, dname={dn}, exp={ex})

: (REPETITIVE alt=alternative)

{

self.repidx += 1

}

-> repetitive(altern={alt}, idx={self.repidx})

e
.procname + ’_in’))

e
.procname + ’'_out’))

@init
{
inpgrdist = []
}
. NALTERNATIVE
(grded+=guarded
{
if not $guarded.inpgrd is None:
inpgrdist.append($guarded.inpgrd)
}
)
-> alternative(inpguards={self.buildalts(inpgrdist)} , guarded={$grded})

323 guarded returns [inpgrd]
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324 : (GUARDED range grd=guard cmdlst=command_list[False])
325 {

326 $inpgrd = $guard.inpgrd

327 }

328 -> guarded(guard={grd}, commandlist={cmdist})
329 | "(GUARDED EMPTY grd=guard cmdlst=command_list[False])
330 {

331 $inpgrd = $guard.inpgrd

332 inppres = (not $guard.targ is None)
333 }

334 -> {inppres}? guarded(guard={grd}, commandlist={cmdIst }, target={$guard.targ}, inpgrd
335 -> guarded(guard={grd}, commandlist={cmdlst})
336 ;

337

338 guard returns [inpgrd, targ]

339 @init

340 {

341 $inpgrd = None

342 $targ = None

343 }

344 : (GUARD grdist=guardlist)

345 {

346 $inpgrd = $guardlist.inpgrd

347 $targ = $guardlist.targ

348 }

349 -> guard(guardlist={grdist})

350 | "(GUARD grdist=skip_grd)

351 -> guard(guardlist={grdist})

352 | "(GUARD grdlst=input_grd)

353 {

354 $inpgrd = S$input_grd.cn

355 $targ = Sinput_grd.targ

356 }

357 -> guard(guardlist={grdist})

358 ;

359

360 guardlist returns [inpgrd, targ]

361 @init

362 {

363 $inpgrd = None

364 $targ = None

365 }

366 : (GUARD_LIST (grdelems+=guard_elem)+
367 (input_grd

368 {

369 $inpgrd = S$input_grd.cn

370 $targ = $input_grd.targ

371 }

372 )?)

373 -> guardlist(elems={$grdelems})

374 ;

375

376 guard_elem : ex=simple_expr

377 -> expression(expr={ex})

378 | declaration

379 -> simple_expr(val={True})
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input_grd returns [cn, targ]

: MINPUT sn=process_name tv=target_var)

{

}

channm = $process_name.procname + ’->' + $process::prcnam
$process::chans.add((channm, '__chan_’' + $process_name
$program::chans.add(channm)

$cn = '__chan_’ + $process_name.procname + '_in’
cnalt = $cn + '_alt’
$targ = tv

-> inputguard(chan={cnalt})

skip_grd . SKIP

-> skipguard()
;alternative : N(ALTERNATIVE (grded+=guarded)+)
-> alternative(guarded={$grded})

e
.procname + ’_in’))

A.3 Extracts from the StringTemplate Group File

group hydra;

program(incl, commandlist, procargs) ::=

<<

import sys

import time

from pycsp import *
from pycsp.plugNplay import

from pycsp.net import *
<if(incl)>

<incl; separator="\n">
<endif>

def __program(_proc_):
<commandlist>

# process spawning

if False:

pass
<procargs>
else:

*

print ’Invalid process specified.’

__program(sys.argv[1])

>>

imports(imp) = "<imp>"
parallel(proc, procnames, Ivl) :
<<

"o

<if (vl)>

Parallel(<procnames; separator="(), ">())
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<endif>

>>

process(label, commandlist, chans) :=

<<
<label>

>>

<chans>
<commandlist>

process_label(ident) ::=

<<

@process

def <ident>():

>>

procname = '<ident>’
print '# <ident>’

command_list(vardefs, commands) ::=

<<

>>

repetitive(altern, idx) ::=

<<
__letrl_<idx> = True
while(__lctrl_<idx>):

<altern>

else:

__letrl_<idx> = False

>>
alternative(inpguards, guarded) ::=

<<

__sg = Skip()
<inpguards>

if False:

<guarded>
>>

guarded(guard, commandlist, target, inpgrd) ::=

pass

<<
elif <guard>:
<if(target)>
<target> = <inpgrd>_alt()
<endif>
<commandlist>
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>>
guard(guardlist) ::= "<guardlist>"

guardlist(elems) ::= "<elems; separator=\" and \">"
guard_elem(elem) := "<elem>"

skipguard() ::= "True"

inputguard(chan) ::= "not <chan> == __sg"
declaration(ident, typdef) ::= "<ident> = <typdef>"
type_def(def) ::= "<def>"

command(cmd) := "<cmd>"

assignment(target, value) ::= "<target> = <value>"
nullcommand() = "pass"

int_const(exp) = "<exp>"

expression(expr) = "<expr>"

simple_expr(val,sub) ::= "<val><if(sub)>[<sub>]<endif
struct_expr(exprlist) ::= "(<exprlist>,)"
target_var(ident, sub) ::= "<ident><sub>"
struct_targ(targlist) ::= "<targlist>"
python_expr(expr) ::= "eval(’<expr>")"
expr_list(exprs) = "<exprs; separator=\"\">"
targ_list(targs) ::= "<targs; separator=\",\">"
proc_name(ident, sub)::= "<ident>"

subscript(exp) ::= "<exp>"

py_exec(code) ::= “"exec '<code>’ in globals(), locals()"
input_cmd(cname, sname, targ, grd) :=

<<

<if(grd)>

__chan_<sname>_in.read

<else>

<targ> = __chan_<sname>_in.read()

<endif>

>>

output_cmd(dname, exp) ::=

<<

__chan_<dname>_out.write(<exp>)

>>



Appendix B

Project Poster

This appendix presents the project poster, which was stdxirgis one of the required project
deliverables.
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Appendix C

CD Contents

The accompanying CD contains all the necessary resouroegrmduce this research and assess
the findings.

Code:

This folder contains all the code that makes up the Hydraeptoj

Documents:

This folder contains all the documents produced during these of the project.

Resources:

This folder contains all the offline versions of referendest tvere accessed online.

88



