
A Comparative Evaluation and

Investigation of MS SQL Server 2000 and

Oracle 9i with respect to Integrity and

SQL 2003 Standards

Thesis submitted in partial fulfilment of the requirements of the

Bachelor of Science (Honours) in Computer Science Degree at Rhodes University

By

Paul Tarwireyi

Supervisor: John Ebden

07 November 2005

Abstract

i

Abstract

Database Management and transaction processing systems occupy a crucial position in our

information technology-based world. It is imperative that these systems function correctly and

reflect real world actions on the data that they store, manage and manipulate.

The constantly evolving nature of RDBMSs has lead to database wars among the various vendors in

the market. This is evidenced by each vendor in the market making claims of the superiority of his

product, hence making the task of choosing a RDBMS not an easy one for a DBA. Thus, the DBMS

selection process requires consideration, knowledge and skills.

One of the major drives behind the development of RDBMSs is to ensure data consistency, yet this

is one of those things that do not seem like an obvious topic for Database Administrators to address

directly. Furthermore this has been totally ignored by database benchmarks.

Oracle and SQL Server are well established DBMSs, which are amongst the world’s “Big three”

DBMSs and are very strong rivals. This project gives an overview of a comparative evaluation of

Oracle 9i and Microsoft SQL Server 2000 with respect to Integrity and conformity to the SQL 2003

standards. The results of testing and evaluating the current Database Management Systems help to

highlight the problems found in each, hence allowing for improvements if necessary.

 Experiments were carried out to test for integrity and also an investigation of their conformity to

the SQL 2003 standards is made. On the integrity issue, it is found that both products come with the

necessary tools and functionalities to implement and maintain data integrity, thus they were found

to be equal. However on the standards conformance part, although both DBMSs are not SQL 2003

conformant, Oracle 9i support more standard features than SQL Server 2000, hence it is leading.

Acknowledgements

ii

Acknowledgements

It is a pleasure to thank all the people who made this thesis possible. First and foremost, I would

like to express my sincere gratitude to my supervisor John Ebden. With his inspiration, and great

efforts to explain things, he helped me see the light in my project. Throughout my project, he

provided encouragement and continued support. Without his supervision and guidance, the year

would have been unbearable.

I would like to extend my gratitude to the managerial and technical staff of the Rhodes University

Computer Science Department for all their support, specifically Carol Watkins, Jody Balarin, Jock

Forrester and Chris Morley.

I must also acknowledge the financial support I received this year through the Andrew Mellon

Foundation and Rhodes University.

To my friends, proof-readers and classmates, I also extend hearty thanks, without you guys the year

would have been unbearable.

Table of Contents

3

TABLE OF CONTENTS

Chapter 1: Background .. 10

1.1 Introduction..10

1.2 Aim...10

1.3 Motivation..11

1.4 Project Overview..11

1.4.1 The evaluation of data integrity ..13

1.4.2 The evaluation of conformity to SQL 2003 standards..14

1.4.2.1 SQL Standards ...14

1.4.2.2 Levels of conformance...17

1.4.2.3 The SQL 2003 standards..17

1.5 Database Management system selection criteria ...21

1.6 Overview of Oracle..22

1.7 Overview of SQL Server..24

1.8 Summary of Chapter ..24

Chapter 2: Design Considerations ... 25

2.1 Considerations for integrity tests ...25

2.1.1 External factors ...25

2.1.2 Operating System..25

2.1.3 Software ..25

2.1.4 Sufficient tests...26

2.1.5 Accurate tests ..26

2.2 Considerations for SQL 2003 standards. ...26

2.3 Design of Integrity experiments...28

2.3.1 Choosing a dataset. ...28

2.3.2 Hypothesis and Experiments design ...28

2.3.3 Implementation of tests...29

2.3.4 Collection of results ..29

2.3.5 Analysis of results...29

2.3.6 Drawing conclusions...29

2.4 Summary of chapter ...29

Chapter 3: Integrity constraints experiments .. 30

Table of Contents

4

3.1 Entity integrity tests ...30

3.1.1 PRIMARY KEY tests ...30

3.1.2 UNIQUE KEY tests ..32

3.1.2.1 Analysis of error messages ..34

3.1.3 Identity property..34

3.1.4 Overall analysis of Entity integrity tests ...34

3.2 Referential Integrity Tests..34

3.2.1 Summary of error messages..36

3.2.2 Analysis of error messages ...37

3.2.3 Overall analysis of referential integrity tests ..37

3.3 Domain Integrity tests ..37

3.3.1 String or Character Tests (char, varchar and nchar) ...38

3.3.1.1 Summary of error messages...38

3.3.1.2 Analysis of results..38

3.3.2 Numeric data type tests ...39

3.3.2.1 Exact numeric data types ...39

3.3.2.2 Approximate numeric data types ...42

3.3.3 NOT NULL tests...44

3.3.4 Check constraints tests ..44

3.3.4.1 Summary of error messages...44

3.3.5 DEFAULTS Tests...46

3.3.6 Overall analysis of domain integrity constraints ..46

3.4 User - Defined Integrity ...46

3.5 Summary of Chapter ..47

Chapter 4: Transactions and concurrency control .. 48

4.1 Types of transactions ...48

4.2 Transactions tests ...48

4.3 ACID Properties...49

4.4 Atomicity Tests ..49

4.5 Interactions and isolation levels...52

4.6 Concurrency in a nutshell ..53

4.7 Summary Conclusion...54

Chapter 5: SQL Standards conformance ... 55

Table of Contents

5

5.1 SQL Standards investigation..55

5.2 Weighting of all the SQL 2003 results...62

5.3 Summary of Chapter ..64

Chapter 6: Conclusions and Possible Extensions... 65

6.1 Conclusions..65

6.2 Possible extensions ..65

6.2.1 Evaluating the latest versions: SQL Server 2005 and Oracle 10g65

6.2.2 Evaluating DBMSs with respect to Security ..65

Appendix A: Prerequisite for Investigation and Implementation........................ 66

1. Overview of PL/SQL ...66

2. Overview of T-SQL ...67

Appendix B: Integrity constraints ... 68

1.1 The motive behind the maintenance of data integrity..68

1.1.1 Protecting the data existence...69

1.1.2 Maintaining quality...69

1.1.3 Ensuring Confidentiality...69

1.2 Database Structure Integrity...69

1.3 Semantic Data Integrity constraints in SQL 2003 ...69

1.3.1 Entity Integrity constraints..71

1.3.1.1 Unique constraints..71

1.3.1.2 Primary constraints ..72

1.3.2 Domain Integrity...72

1.3.2.1 Check constraints ...72

1.3.3 Referential Integrity ..73

1.3.3.1 Referential Actions ..74

1.3.3.2 FOREIGN KEY constraints...75

1.3.3.3 Threats to Referential Integrity ..76

1.3.4 User-defined integrity ...76

1.3.4.1 Triggers ..76

1.3.4.2 Stored procedures...78

1.3.4.3 Assertions...78

1.4 Advantages of Integrity constraints ...78

Table of Contents

6

Appendix C: Error messages. .. 80

1 Summary of unique tests error messages..80

2 Summary of referential Integrity tests error messages ...80

3 Summary of decimal data type tests error messages ..81

4 Summary of small int tests error messages...82

5 Summary of float tests error messages ...82

6 Summary of real tests error messages...82

7 Summary of check constraints tests error messages ...83

Appendix D: SQL standards .. 84

1. Vendor lock in..84

2. SQL dialects...84

Appendix E: Tutorial and what is on the CD... 89

1. Performing the tests in SQL Server 2000 ..89

1. Performing the tests on Oracle 9i...91

Appendix F: References.. 93

List of Tables

7

List of Tables

Table 1.1 - The milestones of the SQL Standards...15

Table 1.2 - SQL2003 statement classes ..21

Table 3.1 - Primary key tests results ..32

Table 3.2 – Unique tests results...34

Table 3.3 – Referential integrity tests results ..36

Table 3.4 - SQL 2003 data types considered for tests ...37

Table 3.5 – String or character data type tests results. ..38

Table 3.6 – Decimal tests results ...40

Table 3.7 - Integer and small int tests results ..41

Table 3.8 - Float tests results...42

Table 3.9 – Real Tests results..43

Table 3.10 - Check constraints tests results...45

Table 4.1 - Interactions and isolation levels...53

Table 4.2 – Oracle and SQL Server isolation levels..53

Table B.1 – Oracle’s and SQL Server’s support of SQL2003 declarative integrity..................71

Table D.1 - Schema commands...85

Table D.2 - SQL-data commands ...86

Table D.3 - SQL-connection, session and transaction statements ...87

Table D.4 - SQL 2003 rules for naming Identifiers ..88

List of Figures

8

List of Figures

Figure 1.2 - Conformity to SQL 2003 standard ..13

Figure 1.3 - Using SQL for database access...15

Figure 1.4 - SQL 2003 dataset hierarchy ...19

Figure 1.3 - 30 years of Oracle innovation...23

Figure 2.1 - Mimer SQL-2003 Validator ...27

Figure 2.2 - Mimer SQL-2003 Validator results ...27

Figure 3.1 - Regions and territories relationship ..35

Figure 3.2 – Self referencing foreign keys..35

Figure 4.1 – Example transaction...51

Figure 5.1 - Schema commands summary...56

Figure 5.2 - SQL-data commands summary ...57

Figure 5.3 - SQL-connection, session and transaction statements summary58

Figure 5.4 - SQL 2003 data types..59

Figure 5.5 - SQL 2003 rules for naming Identifiers..60

Figure 5.6 - SQL 2003 built-in functions support summary..61

Figure 5.7 - SQL 99 Core feature support summary..62

Figure 5.8 - SQL 2003 weighted results ...63

Figure B.1- Domain Integrity: Datatypes, Not Null Constraints, and Check Constraints73

Figure B.2 - Referential constraints ...74

Figure B.3 – Referential action example..74

Figure B.4 - Self-referencing foreign key...75

Figure B.5 – Oracle triggers stored in the database separate from their associated tables......77

Figure B.6 - SQL 2003 triggers syntax...77

Figure E.1 starting Enterprise Manager..90

Figure E.2 Console Root node...91

List of Figures

9

Figure E.3 – Oracle login dialog box..92

Figure E.4- SQL* Plus Worksheet ...92

Chapter 1: Background

10

Chapter 1: Background

1.1 Introduction

For a modern business endeavouring to drive competitiveness, data is the most valuable asset it has

at its disposal. Making better use of their data will help businesses realise this goal. However, data

is just bits and bytes on a file system and only a database management system (DBMS) can turn

these bits and bytes into business information. This means choosing the right DBMS becomes one

of the critical tasks that a business has to carry out. In most cases the choice of a DBMS have much

to do with office politics, that is, what the Database Administrators, managers, and their friends

already know or are familiar with, rather than objective facts. As more and more features are being

introduced fierce competition continues to be a prominent feature in the DBMS market. This has

been evidenced by database 'wars' which have been prevalent in the DBMS market for the past

decade. However, this brutal competition has given businesses, relational database management

systems (RDBMSs) that perform faster, efficiently, reliably and with a lower total cost of

ownership (TCO) than ever before. Oracle has been one of the more dominating companies in the

middle-to-large RDBMS market since the past decade. However Microsoft has also been on the

rise, stiffening the competition for Oracle. Both DBMSs are amongst the “Big three” DBMSs in the

world, ordered as IBM, Oracle and Microsoft respectively.

The Database Management Systems market is characterised by vendors making various claims

about the superiority of their products, hence making the task of choosing a DBMS not an easy one

for the DBAs, as they are often confronted with confusing masses of buzzwords and vendors’

technological claims. This has resulted in an outcry for comparisons between different DBMSs.

1.2 Aim

As business organisations, vendors will always attempt to market their products as effectively as

possible, even if this means misleading customers. There are several criteria which DBAs can use to

objectively evaluate DBMSs and make informed decisions. These factors include platform support,

price, ease of use, performance, security and many others. This project aims to make a comparative

investigation and evaluation of Oracle 9i and Microsoft SQL Server 2000 with respect to the

maintenance of data integrity and conformity to SQL 2003 standards. Proving which DBMS is the

best has always been like a religious debate, thus this project does not aim to prove which DBMS is

superior, but to establish which can be best implemented depending on the need. Nevertheless, each

Chapter 1: Background

11

of these DBMSs has its own advantages and disadvantages.

1.3 Motivation

Database wars have been a common feature in the DBMS market for more than a decade. This is

mainly because, there are so many DBMSs available with all of them making various claims about

the superiority of their products in their attempts to gain bigger market shares, thus making the

selection process a difficult one for DBAs. Oracle 9i and MS SQL Server 2000 are amongst the

leading DBMSs in the DBMS arena and there is a strong rivalry between them. It therefore

becomes imperative to know what features are provided by each DBMS and which scenarios it is

most suited for.

There is a wide checklist of features which can be used to evaluate these DBMSs. [Chigrik, A:

2000] made a comparison of these two DBMS with respect to features like performance, platform

support and cost. Thus, it is also important to make evaluations with respect to other features such

as Integrity and SQL 2003 standards.

[Türker, Gertz: 2000] mentioned that, the accuracy of the data managed by a DBMS is vital to any

application using the data for business, research and decision making purposes. This means that

DBMSs must be able to guard against erroneous data that do not reflect real world artefacts

consumed and operated on by applications. The maintenance of data integrity was the one of the

main motives behind the development of DBMSs, which means by failing to maintain integrity; this

motive would have been defeated.

The buzzword in the world of computing nowadays is inter-operability and total ownership of costs.

How far have these two leading DBMSs gone in developing non-vendor locking software? ANSI

introduced SQL standards since 1986 with the hope of providing easier migration to third-party

applications without the need to modify your SQL code, hence reducing vendor dependency.

However, SQL dialects still continue to proliferate in bids that are meant to lock customers to

specific vendors. Furthermore, knowing the current standards is crucial with the advent of open

source database projects like MySQL and Postgress which are developed by teams [Kline, K:

2004].

1.4 Project Overview

The project is in two main parts, which are, the evaluation of integrity and the evaluation of

conformity to the latest standards SQL: 2003. The two diagrams below are used to highlight these

two main parts of the project.

Chapter 1: Background

12

Figure 1.1 - Overview of Integrity experiments

Figure 1.1 shows that integrity tests were carried out using SQL scripts. Different queries were

executed and the results were collected, analysed and then summarised.

Figure 1.2 shows the SQL 2003 part. This part involved an investigation of the conformity of

Oracle and SQL Server to the SQL2003 standards. The results were also summarised.

EENNTTIITTYY
IINNTTEEGGRRIITTYY

DDOOMMAAIINN
IINNTTEEGGRRIITTYY

RREEFFEERREENNTTIIAALL
IINNTTEEGGRRIITTYY

UUSSEERR--DDEEFFIINNEEDD
IINNTTEEGGRRIITTYY

TTRRAANNSSAACCTTIIOONNSS

22000000
OOrraaccllee 99ii

 SQL SCRPITS IINNTTEEGGRRIITTYY TTEESSTTSS

IINNTTEEGGRRIITTYY TTEESSTTSS RREESSUULLTTSS

IInntteeggrriittyy
CCoonnssttrraaiinnttss

TTeessttss

Chapter 1: Background

13

Figure 1.2 - Conformity to SQL 2003 standard

These parts are further elaborated below.

1.4.1 The evaluation of data integrity
The Integrity subsystem is responsible for maintaining the accuracy, correctness and validity of the

data stored in a database, detecting and acting on integrity violations. It must exert deliberate

control on every process that uses the data to ensure the continued correctness of the information.

The evaluation of data integrity was done by carrying out experiments to test the maintenance of

data integrity in each DBMS. This was basically done by comparing simple integrity features such

as primary keys and unique up to complex features like triggers, stored procedures, transactions,

isolation levels and locking mechanism. Integrity tests were mainly grouped into Integrity

constraints and transactions.

 Evaluation of Integrity constraints.

Integrity constraints are generally categorized into main categories, namely: Entity Integrity,

domain Integrity, referential Integrity and user-defined Integrity which are shown in figure 1.1.

These are basically the four types of semantic integrity which have been implemented by each

22000000
OOrraaccllee

SSQQLL22000033 CCOONNFFOORRMMIITTYY
CCOOMMPPAARRIISSOONN RREESSUULLTTSS

SSQQLL 22000033

DDoo tthheeyy ccoonnffoorrmm
ttoo tthhee SSQQLL 22000033

ssttaannddaarrdd??

Chapter 1: Background

14

DBMS to help maintain data integrity. Appendix B gives the detailed background of the

different types of integrity that were considered. Essentially, it provides all the background

information for the integrity part.

 Evaluation of transaction handling and concurrence control – even with sound integrity

constraints, inept handling of transactions can still lead to severe data integrity problems. So this

part investigated transaction handling capabilities and options, locking mechanisms and

isolation levels provided by each DBMS to maintain data integrity.

1.4.2 The evaluation of conformity to SQL 2003 standards
This part was mainly of a research rather than experimental nature. That is, this part was mainly

done by a collation of the literature available on the SQL standards. This was carried by making an

investigation of the implementation of standard SQL by these DBMSs. This was mainly done

through researching on the standards and to what extent are these DBMSs shunning the attitude of

implementing their SQL in proprietary manners. Reference was also made to [Gulutzan. P: 2005],

[Kline K: 2004] and [Troels A: 2005] who have written articles on DBMSs SQL 2003 support. In

addition to the literature, a simple tool called “Mimer SQL Validator” was used to carry out some

of the tests that were carried out. An overview of the standards follows below.

1.4.2.1 SQL Standards
According to [Rosenzweig, B, Silvestrova E. 2003], [Kline, K: 2004] and [Beaulieu A, Mishra S.

2002], in the early 1970s, the work of the IBM research fellow Dr. E. F. Codd of the application of

the mathematical relational theory in databases, led to the emanation of a relational data model

product called SEQUEL, or Structured English Query Language. SEQUEL ultimately became SQL,

or Structured Query Language.

SQL is basically a language which allows programmers to manipulate the data stored in a database

and get results. This is basically done by issuing commands to the DBMS, which will take your

request perform the necessary operations and then return the appropriate information. SQL is a

useful and powerful language which enables us to communicate and interact with the DBMS. This

scenario it illustrated by the diagram below.

Chapter 1: Background

15

Figure 1.3 - Using SQL for database access1
Due to the rapid increase in the number of vendors in the market, SQL dialects proliferated and over

time, SQL proved popular enough in the marketplace to attract the attention of the American

National Standards Institute (ANSI), which released the first standard for SQL in 1986. The table

below is used to highlight the timeline of SQL standards since then.

Year Name Alias Comments

1986 SQL-86 SQL-87 First published by ANSI. Ratified by ISO in 1987.

1989 SQL-89 Minor revision.

1992 SQL-92 SQL2 Major revision.

1999 SQL:1999 SQL3 Added regular expression matching, recursive queries, triggers,
non-scalar types and some object-oriented features. (The last two
are somewhat controversial and not yet widely supported.)

2003 SQL:2003 Introduced XML-related features, window functions, standardized
sequences and columns with auto-generated values (including
identity-columns).

Table 1.1 - The milestones of the SQL Standards2

ISO and IEC are the world’s standardisation body. Members of ISO or IEC participate in the

development of international standard through technical committees which were set up. According

to [Gulutzan P. [1]: 2005], there is an international committee working on the SQL standard

(ISO/IEC JTC 1/SC 32/WG 3) as well as an American committee (ANSI TC NCITS H2).

After the first standard in 1986, a revised standard commonly known as SQL-89 or SQL1 was

1 Adapted from [Groff and Weinberg: 2004]
2 Adapted from [Wikipedia: 2005]

Chapter 1: Background

16

published in 1989. But due to partially conflicting interests among the commercial vendors, much

of the SQL-89 standard was intentionally left incomplete, and many features were labelled

implementer-defined. In order to strengthen the standard, the ANSI committee revised its previous

work with the SQL-92 standard ratified in 1992 also called SQL2. This standard addressed several

weaknesses in SQL-89 and set forth conceptual SQL features, which at the time exceeded the

capabilities of any existing RDBMS implementation. In fact, SQL-92 standard was approximately

six times the length of its predecessor. In 1999, the ANSI/ISO released the SQL-99 standard also

called SQL3. This standard addresses some of the more advanced and previously ignored areas of

modern SQL systems such as object-relational database concepts, call level interfaces, and integrity

management. Recently ANSI/ISO released the SQL-2003 standard also called SQL-200n. The big

SQL-2003 features are: more collection data types, cleaner object/relational specification, and

references to new parts such as XML. The big missing SQL-2003 feature is the SQL-99 standard

BIT data type [Daffodildb: 2004].

The SQL language is wide and deep. The fact that it is widely implemented in almost every DBMS

that stores and manipulates data, partially explains the amount of effort that went into the theory

and development of the standards.

According to the [Wikipedia: 2005], although the SQL standards are defined by both ISO/IEC and

ANSI, there are many disparities in the versions of the language provided by these bodies. Oracle

uses PL/SQL whilst Microsoft uses T-SQL. It is very common for these commercial

implementations to omit support of basic features such as DATE and TIME, preferring their own

variants. This means that even though there are standards, dialects still continue to persist.

According to [Kevin E. Kline: 2004], this is mainly because the user community of a given

database vendor often require capabilities in the database before the ANSI committee has created a

standard and some of the earliest vendors from the 1980s have variances in the most elementary

commands, such as SELECT, because their implementations predate the standards. Consequently,

unlike ANSI C or ANSI Fortran, which can usually be ported from platform to platform without

major structural changes, SQL code can rarely be ported between database systems without major

modifications.

The [Wikipedia: 2005] also went on to highlight some of the reasons for this lack of portability as:

I. The complexity and size of the SQL standard means that most databases do not implement the

entire standard.

Chapter 1: Background

17

II. The standard does not specify database behaviour in several important areas (e.g. indexes),

leaving it up to implementations of the standard to decide how to behave.

III. The SQL standard precisely specifies the syntax that a conformant database system must

implement. However, the standard's specification of the semantics of language constructs is

less well-defined, leading to areas of ambiguity.

IV. Many database vendors have large existing customer bases; where the SQL standard conflicts

with the prior behaviour of the vendor's database, the vendor may be unwilling to break

backward compatibility.

V. Some believe the lack of compatibility between database systems is intentional in order to

ensure vendor lock-in.

1.4.2.2 Levels of conformance

According to [Kline, K: 2004], “SQL92 first introduced levels of conformance by defining three

categories: Entry, Intermediate, and Full. Vendors had to achieve at least Entry-level conformance

to claim ANSI SQL compliance. Each higher level of the standard was a superset of the subordinate

level, meaning that each higher level of the standard included all the features of the lower level of

conformance”.

The introduction of SQL99 saw the base levels of conformance being altered. With SQL99, vendors

had to implement all the features of the lowest level of conformance, (this lowest level was called

the Core SQL99,) in order to claim (and publish) that they are SQL99 compliant. Core SQL99

included the old Entry SQL92 feature set, features from other SQL92 levels, and some brand new

features. Vendors were also free to implement additional feature packages described in the SQL99

standard. The latest standard is SQL 2003 which was based on a similar premise as SQL 99. It also

contains a Core part which is currently met by a few vendors. The relatively new part in this

standard was SQL/XML; other parts were persisted from older versions with or without a few

modifications.

[Kline K.:2004], however also states that, even if a DBMS conforms to the SQL99 standards, its

commands may differ from other DBMSs because the SQL statements may be parsed, compiled,

and executed differently, especially if differing binding styles are used.

1.4.2.3 The SQL 2003 standards

[Kline K.:2004] gives the SQL 2003 view of a DBMSs. A database language standard specifies the

syntax and semantics of various components of a DBMS. In particular, it defines the structures and

Chapter 1: Background

18

operations of a data model implemented by the DBMS as shown below. It is upon this view that all

the syntax and SQL constructs are based.

Chapter 1: Background

19

Figure 1.4 - SQL 2003 dataset hierarchy3

The basic structure of a relational model is a table composed of columns and rows, but in SQL 2003

Clusters contain sets of catalogs; catalogs contain sets of schemas; schemas contain sets of objects,

such as tables and views; and tables are composed of sets of columns and records. It is upon this

fundamental layout that most DBMSs start departing with the standards. Both Oracle’s and SQL

Server’s architectures are different from this implementation. According to the SQL 2003, schema

addressing should be in form Catalog.schema.object as shown in figure 1.4, but Oracle use

Schema.object whilst MS SQL Server 2000 use Server.database.schema.object [Kline.K: 2004].

According to [Kline.K: 2004] this standard is made up of the following parts:

Part 1 - SQL/Framework

This part includes common definitions and concepts used throughout the standard. It defines the

way in which the standard is structured and how the various parts relate to one another. It also

describes the conformance requirements set out by the standards committee.

Part 2 - SQL/Foundation

This part includes the Core which is an augmentation of the SQL99 Core, and is the largest and

most important part of the standard.

Part 3 - SQL/CLI (Call-Level Interface)

This part defines the call-level interface for dynamically invoking SQL statements from external

application programs. SQL/CLI also includes over 60 routine specifications to facilitate the

development of truly portable shrink-wrapped software.

Part 4 - SQL/PSM (Persistent Stored Modules)

Standardizes procedural language constructs similar to those found in database platform-specific

SQL dialects like PL/SQL and Transact-SQL.

Part 9 - SQL/MED (Management of External Data)

Defines the management of data located outside of the database platform using data links and a

wrapper interface.

Part 10 - SQL/OBJ (Object Language Binding)

3 Adapted from [Kline.K: 2004]

Chapter 1: Background

20

This part describes how to embed SQL statements in Java programs. It is closely related to JDBC,

but offers a few advantages over JDBC. It is also very different from the traditional host language

binding possible in early versions of the standard.

Part 11 - SQL/Schemata

Defines over 85 views (three more than in SQL99) used to describe the metadata of each database

and stored in a special schema called INFORMATION_SCHEMA. A number of views that existed

in SQL99 have been updated.

Part 12 - SQL/JRT (Java Routines and Types)

This part defines a number of SQL routines and types using the Java programming language.

Features of Java, such as Java static methods and Java classes, are now supported.

Part 14 - SQL/XML

This is the new part. It adds a new type, called XML. New operators like XMLPARSE,

XMLSERIALIZE, XMLROOT, and XMLCONCAT were introduced. It also includes rules for

mapping SQL-related elements (like identifiers, schemas, and objects) to XML-related elements.

Parts 5, 6, 7, and 8 do not exist by design.

SQL 92 was the most popular standard which used to define statement classes as Data manipulation

language, Data Definition language and Data Control language. However SQL2003 came with

seven core categories, now called classes. These provide a general framework for the types of

commands available in SQL. The table below identifies these classes and list some of the

commands that are found in those classes.

Class Description Example commands

SQL connection
statements

Start and end a client connection CONNECT,
DISCONNECT

SQL control
statements

Control the execution of a set of SQL statements CALL, RETURN

SQL data
statements

May have a persistent and enduring effect upon
data

SELECT, INSERT,
UPDATE, DELETE

SQL diagnostic
statements

Provide diagnostic information and raise
exceptions and errors

GET DIAGNOSTICS

Chapter 1: Background

21

SQL schema
statements

May have a persistent and enduring effect on a
database schema and objects within that schema

ALTER, CREATE, DROP

SQL session
statements

Control default behaviour and other parameters
for a session

SET statements like SET
CONSTRAINT

SQL transaction
statements

Set the starting and ending point of a transaction COMMIT, ROLLBACK

Table 1.2 - SQL2003 statement classes4

1.5 Database Management system selection criteria
As business applications become more and more complex, the DBMSs chosen to manage an

organisation's data becomes critical to the organisation's overall success, which is to provide greater

informational capabilities. Choosing the right DBMS involves more than making a tactical decision

to solve an organisational immediate need, meaning the DBMS selection process can be so complex

that it requires skill, knowledge and consideration. The wrong DBMS choice can lock the

organisation into a technology that does not serve its interests well and will be expensive to change.

Making the right decision in the first place can considerably alleviate the burden of maintaining and

expanding the organisational information infrastructure. But, the question is, how can this be

achieved? How does a user select the best DBMSs for his needs?

 The answer is not an easy one. Given the fact that DBMSs are very complex pieces of software

which are difficult to comprehend in their entirety, it becomes vital to build a checklist of criteria

which can be used by DBAs in their selection processes. This basically helps to dissect these

DBMSs into manageable criteria. Many database practitioners and authors including [Coronel C &

Rob P. 2002] have written articles on possible DBMS selection criteria. Generally, the selection

criteria revolve around the analysis of organisational needs and requisite DBMS features. Although

the factors determining the selection process can vary from organisation to organisation some of the

common factors are:

 Application requirements: These are basically the constraints that are put on the database by

the application. For example, an application which will be used to handle multi-user request

will definitely need to run on a database which supports transactions.

 DBMS features and tools. Gone are the days when DBAs had to hard code everything. Most

DBMSs have developed sets of tools which automate most common laborious tasks.

Basically these tools are there to facilitate the application development task. For example,

the availability of report generators, query by example and so on.

4 Adapted from [Kline K: 2004]

Chapter 1: Background

22

 The underlying DBMS model. Is it Hierarchical, network, relational, object-oriented?

 Portability. How portable is it across platforms, systems, and languages

 DBMS hardware requirements. This includes things such as minimum processor speed,

RAM capacity, disk space and so on.

 Cost, this generally refers to all the monetary costs of choosing a specific DBMS. These

costs include: purchasing costs, maintenance costs, operational costs, license costs,

installation costs, training costs and conversion costs.

 Maintaining data consistency: Without this feature, the motive of using a DBMS will be

defeated. This can be regarded as the protection of the data in database from invalid

alteration or destruction. This is basically enhanced by security, which has to do with the

protection of data in the database against unauthorised disclosure, alteration or destruction.

Data consistency is also ensured by making sure that backups are performed regularly to

enable recovery.

 Response-Time requirements: The response time could be critical in certain cases, especially

in web-oriented database whereas it is less important under different circumstances.

This project is mainly focused on the maintenance of data consistency and portability criteria.

1.6 Overview of Oracle
The Oracle RDBMS is more than two decades old. In 2006 it will be celebrating its 29th

anniversary. It is the world's leading supplier of software for information management and the

world's second largest independent software company. This is evidenced by the fact that, 9 of the

top 10 automotive manufacturers use oracle, all 10 of the world's largest Web sites- from

Amazon.com to Yahoo! - use Oracle and 65% of the Fortune 100 use Oracle for e-business .

[Oracle [1]: 2005].

“Today, the Oracle DBMS is supported on over 80 different operating environments, ranging from

IBM mainframes, DEC VAX minicomputers, UNIX-based minicomputers, Windows NT and several

proprietary hardware-operating system platforms, and is clearly the world's largest RDBMS

vendor.” [Oracle [2]: 2005].

 According [MCAD, 2005], the Oracle database grew by 14.5 percent on a yearly basis and

increased its market share lead to 41.3 percent, whilst the worldwide market for relational database

management systems grew by 11.6 percent in 2004. In 2003, Oracle Database posted 8.6 percent

growth year over year and was the market share leader with 39.8 percent. However IBM and

Microsoft followed Oracle with 30.6% and 13.4%, respectively.

Chapter 1: Background

23

Oracle is a powerful DBMS which basically started from humble beginnings as one of the DBMSs

which were around in the early 70s to one of the leading DBMS in the world. According to [Mullins

C.S [1]: 2005], “Oracle is assembling a juggernaut of packaged application software by its

acquisition binge”. This is evidenced by its recent acquisitions of Siebel systems, PeopleSoft,

Innobase and many other small companies this year. Some of Oracle’s bright moments and

achievements are highlighted in the timeline shown below.

Figure 1.3 - 30 years of Oracle innovation5

5 http://www.oracle.com/corporate/history.html

Chapter 1: Background

24

1.7 Overview of SQL Server

According to the [Wikipedia [1]: 2005] in 1989, Microsoft, Sybase and Ashton-Tate teamed up to

create and market the first version of SQL Server named SQL Server 4.2 for OS/2. The timeline of

SQL Server releases can be highlighted as below.

1992 SQL Server 4.2

1993 SQL Server 4.21

1995 SQL Server 6.0, codenamed SQL95

1996 SQL Server 6.5, codenamed Hydra

1999 SQL Server 7.0, codenamed Sphinx and SQL Server 7.0 OLAP, codenamed Plato

2000 SQL Server 2000 32-bit, codenamed Shiloh

2003 SQL Server 2000 64-bit, codenamed Liberty

2005 SQL Server 2005, codenamed Yukon (November 7)

The current version, Microsoft SQL Server 2000, was released in August, 2000. Microsoft is beta

testing its successor, SQL Server 2005.

 “The success of SQL Server 2000 paved the way for the next two important milestones: leadership

in the Windows database market and $1 billion in annual sales. The first milestone was achieved

before the end of 2000, according to Gartner Dataquest, which reported on May 23 that SQL

Server accounted for 38 percent of new database license sales on the Windows Server platform that

year, compared with 37 percent for Oracle.”[Microsoft [1]: 2001]

After years of massive investment in academia, Microsoft is beginning to realise its dividends. This

is evidenced by the great strides it has made to be amongst the “Big three” DBMSs of the world.

According to [MCAD, 2005], Microsoft showed the strongest growth of the top three vendors with

a surge of 22% in 2004. SQL Server has also made great strides in such aspects as ease-of-use,

manageability and support, where many say it is the leader.

1.8 Summary of Chapter

This chapter basically gave an overview of the problem being dealt with. It highlighted the possible

DBMS selection criteria and why DBAs should bother about this process. An overview of the

timelines for both Oracle and SQL Server was also given. This helps us know how these DBMSs

have evolved.

Chapter 2: Design Considerations

25

Chapter 2: Design Considerations
As properly designed and executed experiments generate more precise results while using

substantially fewer experiments, it was crucial to formulate a plan of action on how the experiments

were going to be carried out. This chapter discusses the considerations and the steps taken in

designing the integrity experiments. It also discusses the considerations made for the investigation

for the conformity to SQL 2003 standards.

2.1 Considerations for integrity tests

There are important factors which influence experiments which need to be considered. These

factors generally revolved around the general experiment design principles like, controlling other

variables and replication. The issues considered in this project are discussed below as partly

adopted from [Stakemire T.S, 2000].

2.1.1 External factors
In planning experiments it was necessary to limit any bias that might have been introduced by the

experimental units or conditions. To improve the accuracy of the experiments, it was essential to

keep external variables as constant as possible. Both Oracle and SQL Server are commercial

RDBMSs which use the same formal language (SQL) for data definition and manipulation. So as

not to introduce unnecessary external influence on the results, a pre-defined database was used. The

SQL Server's Northwind database was mainly used. It was migrated to Oracle using 'AdventNet

SwisSQL SQL Server to Oracle Edition Release 2.6'. In cases where the desired functionalities

were not found in Northwind, custom tables and relationships were created. This basically ensured

the standardisation of the experiments by using the same data and the same database design. Also

the same operating systems were used.

2.1.2 Operating System
 The choice of operating system was Windows Server 2003, standard edition. This choice was made

 mainly because SQL Server only supports the windows platform.

2.1.3 Software
There are so many DBMSs in the market to choose from. The main reasons for choosing Oracle 9i

and SQL 2000 were:

 Both DBMSs are extensively used in the industry, many companies run Oracle and SQL

Chapter 2: Design Considerations

26

Server as their backend systems.

 Microsoft was still beta testing SQL Server 2005, so Oracle 10g would not be compared.

2.1.4 Sufficient tests
To be sure about the results obtained, a substantial number of tests were carried out for each

experiment. Where appropriate, experiments were run several times. This was mainly to ensure that

the same results were obtained for the same experiment. This was generally an application of the

experimental design principle of replication, where the same test is carried out a number of times to

have a higher degree of certainty in your results.

2.1.5 Accurate tests
It was of utmost importance that the experiment tested the correct operation. This was basically

achieved by first clearly stating the problem that had to be addressed by the experiment, then

control other unrelated variables such that they would not influence the results. For example, to use

the ID column to perform data type tests, the primary key attribute had to be turned off as this was

not of interest at that moment. This was augmented by the analysis of error messages to make sure

that they were for the operation that was being performed. That is, error messages were supposed to

be of the task being tested not other erroneous transactions.

2.2 Considerations for SQL 2003 standards.

The standards are too voluminous to be exhaustively examined against each of the documentations

of these two DBMSs to check their conformity. Certain aspects of the standard were evaluated. In

each case both DBMSs were evaluated against the same section at a time. For example. on data type

tests, the same data types were chosen for each DBMS. The SQL-2003 standard specification's

most important part is the Core SQL-2003. It is a subset of SQL-2003, which provides the minimal

conformance level for SQL-2003. Core SQL-2003 includes: all of Entry SQL-92, much of

Transitional and Intermediate SQL-92, some of Full SQL-92 and SQL-99 features, as well as new

features from SQL-2003. The features that were investigated in this project were chosen from the

Core listed at [Mimer Developer page: 2005].

Mimer SQL-2003 Validator was used in conjunction with documentations of both DBMSs and

various other sources to test and evaluate the conformity of the various statements to the SQL 2003

standards. The procedure undertaken can be highlighted as shown below:

Chapter 2: Design Considerations

27

Figure 2.1 - Mimer SQL-2003 Validator

Figure 2.2 - Mimer SQL-2003 Validator results

Using Mimer SQL-2003 Validator, an SQL implementation of a particular command was typed into

Chapter 2: Design Considerations

28

the text area as shown above. This was then submitted to Mimer using the Test SQL button. Results

were returned showing the support status of that statement. The picture above shows that the

statement tested made use of non core features F491 and F381, but still they were standard features.

All those statements which were non standard returned error messages. Suggestions were given for

the correct syntax.

2.3 Design of Integrity experiments

This process was involved in the planning and designing experiments. Integrity was broken down

into two main parts which are mainly integrity constraints and transactions. These experiments

were carried out in an iterative manner and the activities involved are highlighted below.

2.3.1 Choosing a dataset.
This was rather a prerequisite for the design and implementation of tests. This was basically

concerned with choosing the dataset upon which the tests were to be carried out. Northwind was

selected. It was only in those cases where a given functionality was not found in Northwind when

custom tables had to be created. After the database had been chosen, the next step was to decide on

the relations which would be used for a particular experiment. This decision was largely influenced

by the kind and nature of the experiments to be carried out.

2.3.2 Hypothesis and Experiments design
This was concerned with the identification of the necessary operations that can be carried out on a

particular constraint or feature, for example, INSERT UPDATE and DELETE. Control factors to be

included and varied in each experiment were identified. This was particularly necessary to ensure

that the correct operations were carried out for the correct tests. For instance, you had to ensure that

you will not get a primary key violation error whilst you are carrying out data type tests. After

deciding on the particular operations which had to be carried out, a general execution plan was

drafted. This was followed in the implementation stage.

This part experimented with and evaluated the use of the four main types of semantic integrity

mentioned above in each DBMS. This was essentially achieved using SQL scripts to carry out some

form of black box testing. This means that small unit tests were developed and executed for each

integrity constraint to check if there was any violation of integrity after implementing the

constraints as specified by the DBMS’s syntax.

Chapter 2: Design Considerations

29

2.3.3 Implementation of tests
After the execution plan was drawn, the tests were then implemented. This was basically achieved

by writing custom SQL scripts to perform the desired operation as many times as was necessary to

ensure that accurate results were obtained. This was mainly dependent on the table and fields being

used. SQL scripts were designed for each of the DBMSs. However, the first DBMS to be tested was

chosen randomly, the script was then adopted to work for the other DBMS. The scripts were loaded

using the respective enterprise managers of each DBMS.

2.3.4 Collection of results
The results were collected and recorded. This was mainly done by observing the results of the

operation which would have been carried out. Some of the results were collected from the enterprise

manager and some through the verification of how the particular operation would have affected the

database. For example, it was investigated whether a DBMS would not raise an error message but

carries on to make the change in the database, for example, insert a duplicate in a primary key field.

2.3.5 Analysis of results
Before executing a unit-test, the expected outcome was already known, for example, we know that

trying to insert a duplicate record should produce a violation of primary key constraint error. Failure

to achieve this result mean that the test had failed otherwise it would have passed. So results were

first analysed by checking if they were of that particular operation being tested or they were of

some other erroneous operations that were out of the scope of the current experiment. After that, it

was then verified if the expected outcome had been reached.

2.3.6 Drawing conclusions
The verification of whether or not outcomes conformed to expectations, led to the final stage of the

test which was to conclude whether the test had passed or failed. An example would be a test to

check whether the character ‘a’ is allowed in an Oracle INT field. If the character is allowed to go

in, then the test would have failed since this is a violation of domain integrity.

2.4 Summary of chapter

This chapter gave an overview of how the experiments were designed, planned and implemented. It

gave an outline of the basic steps that were followed in the design process. It also carried on

explaining the criteria that was used to decide whether a test has either passed or failed.

Chapter 3: Integrity Constraints Experiments

30

Chapter 3: Integrity constraints experiments
Integrity is generally defined as a fast adherence to a given set of rules. This means that as long as

these rules are maintained, integrity is always upheld. The general background on Integrity and the

different classifications that were considered is given in appendix B. The SQL scripts which were

used to carry out these tests can be found on the accompanying CD.

3.1 Entity integrity tests

This was mainly concerned with testing the maintenance of entity integrity. This was done by

investigating the two classes of entity integrity which are PRIMARY KEYs and UNIQUE KEY.

The entity integrity rule stipulates that every instance of an entity is uniquely identified or the value

of the PRIMARY KEY must exist, be UNIQUE, and cannot be null. So tests passed as long as this

rule was upheld.

3.1.1 PRIMARY KEY tests
To test primary keys the following commands were used:

INSERT

 Inserting a normal record. This was used for baseline purposes to show the expected

behaviour when everything have been done in the proper way.

 Inserting a duplicate record.

 Inserting a record with the primary key value omitted from the query string.

 Inserting a record with a null value supplied for the primary key

UPDATE

 Update to another normal record, this was also a baseline test

 Update to a record to a duplicate record.

 Update the primary key of a record to null.

ALTER

 Drop the primary key.

 Add a new primary key whilst there is some normal (non-duplicated, non null) data in

the primary of the table.

 Add a primary key whilst some of the data are duplicates/ nulls or just violate the

primary key constraint.

 Rename the PRIMARY KEY column.

Tests were performed for both single and multi-column primary keys. The primary key constraint

was satisfied if and only if it was UNIQUE and did not allow null values in the specified column(s).

Chapter 3: Integrity Constraints Experiments

31

The error messages, actions and the status of tests can be summarised in the table shown below.

SK: represents tests performed using single keys.

CK: represents tests performed using composite keys

Status

 Means tests passed, that is, it performed as expected

 Means tests failed that is, it did not perform as expected

The error messages that were generated for these tests can be summarised as follows:

I. Server: Msg 2627, Level 14, State 1, Line 1

Violation of PRIMARY KEY constraint 'PK_Region'. Cannot insert

duplicate key in object 'Region'. The statement has been

terminated

II. ORA-00001: unique constraint (PAUL.PK_REGION) violated

III. ORA-01400: cannot insert NULL into ("PAUL"."REGION"."REGIONID")

IV. Server: Msg 515, Level 16, State 2, Line 1

Cannot insert the value NULL into column 'RegionID', table

'Paulos.dbo.Region'; column does not allow nulls. INSERT fails.

The statement has been terminated.

V. Server: Msg 1505, Level 16, State 1, Line 1

CREATE UNIQUE INDEX terminated because a duplicate key was

found for index ID 1. Most significant primary key is '2'.

Server: Msg 1750, Level 16, State 1, Line 1

Could not create constraint. See previous errors.

The statement has been terminated.

VI. ORA-01407: cannot update ("PAUL"."REGION"."REGIONID") to NULL

VII. ORA-02437: cannot validate (PAUL.PK_REGION) - primary key

violated

Example Test performed

SK/ CK: Insert Normal – Using single key (SK) or composite keys (CK), insert a normal record

into the database. No errors were raised from both DBMSs and the row was successfully inserted.

SK/ CK are used to mean that the results obtained using either SKs or CKs were generally the

same, so they are summarized into one row.

Table 3.1 provides a summary of the tests outcomes.

Chapter 3: Integrity Constraints Experiments

32

Table 3.1 - Primary key tests results

3.1.1.1 Analysis of error messages (Primary Keys tests)

As can be seen from the table above, there were ticks throughout, meaning that all the DBMS

maintained data integrity with respect to primary keys. This means that these DBMSs performed as

expected in all tests. Appropriate error messages were raised and the corresponding actions were

also executed. Both DBMSs enforced the primary key constraint correctly and ensured that at any

point in time no two records or rows could be the same if a primary key is set for a table.

3.1.2 UNIQUE KEY tests
The following commands were used to carry out the unique key tests. Given the fact that unique

keys can be set to allow or not allow nulls, it was imperative to set this property to a fixed state. In

this case the unique was set to not null. Another variable that had to be considered was the fact that

both DBMSs can allow you to use IGNORE_DUP_KEY, which will in-fact allow duplicates to be

entered, so for the purposes of these tests, this option was not used. So this means that unique keys

were satisfied if and only if no two rows in a table could have the same non-null values in their

UNIQUE columns.

The operations which were carried out can be highlighted as follows:

Tests performed Oracle
error
messages

Oracle Action and
status

SQL
Server
Error
messages

SQL Server Action and
status

SK/ CK: Insert
Normal

None
Inserted

None
Inserted

SK/ CK: Insert
Duplicate

II
Not Inserted

I
Not Inserted

SK/ CK: Insert
with PK Omitted

III
Not Inserted

IV
Not Inserted

SK/ CK: Insert
Null

III
Not Inserted

IV
Not Inserted

SK/ CK: Update to
Normal

None
Updated

None
Updated

SK/ CK: Update to
Duplicate

II
Not Updated

I
Not Updated

SK/ CK: Update to
NULL

VI
Not Updated

IV
Not Updated

Drop Primary Key None
Dropped

None
Dropped

Add PK when no
duplicates

None
Added

None
Added

Add PK when
there are duplicates

VII
Not Added

V
Not Added

Chapter 3: Integrity Constraints Experiments

33

INSERT

 Inserting a normal, record (baseline).

 Inserting a duplicate.

 Omitting the Unique key value

UPDATE

 Update to another normal record

 Update to a duplicate record

ALTER

 Drop the Unique key

 Add a new Unique key whilst the data is already there but with no duplicates.

 Add a primary key whilst some of the data are duplicates.

The summary of the various error messages generated for these tests can be found in appendix

C: summary of unique tests error messages.

Example test performed

Insert with unique Key Omitted – means run a query to insert a record into the database but with

unique key field omitted from the query string. Oracle and SQL Server gave error messages III and

IV respectively. And they both did not insert that particular record.

Table 3.2 provides a summary of the tests outcomes.

Tests performed Oracle error
messages

Oracle Action
and status

SQL Server
Error messages

SQL Server Action and
status

Insert Normal None Inserted

None
Inserted

Insert Duplicate I Not Inserted

II
Not Inserted

Insert with unique
Key Omitted

III Not Inserted

IV
Not Inserted

Update to Normal None Updated

None
Updated

Update to Duplicate I Not Updated

II
Not Updated

Drop unique Key None Dropped

None
Dropped

Add unique Key
when there are no
duplicates

None Added

None
Added

Add Unique Key
when there are
duplicates

V Not Added VI
Not Added

Chapter 3: Integrity Constraints Experiments

34

Table 3.2 – Unique tests results

3.1.2.1 Analysis of error messages

The major objective of these tests was to investigate if any of these DBMSs would allow duplicates

in its unique key field. As can be seen in the results obtained in the table above, in all cases both

DBMSs ensured that integrity was maintained as specified or as expected. No duplicates were

allowed in the unique key, hence all the tests passed.

3.1.3 Identity property
This is a new feature in the SQL 2003 standard, although it has been around for a long time in small

databases like Access. But however it is not supported in Oracle, so it was not investigated.

3.1.4 Overall analysis of Entity integrity tests
As evidenced by the results, there were no problems with this type of integrity. It was upheld in all

cases. As a result we conclude that both Oracle 9i and SQL Server 2000 implement and maintain

entity integrity.

3.2 Referential Integrity Tests

As mentioned in appendix B, referential integrity is all about maintaining and synchronising the

relationships between tables. Tests were carried out both for self-referencing foreign keys and

multi-table foreign keys.

The tests were carried out by performing the following operations:
On the referencing table/column (child)

 Insert a value that does not exist in the referenced table/ column. This was mainly aimed

at verifying whether or not an orphan record can be allowed.

 Update a value to a value that does not exist in the referenced table. Again this was aimed

at trying to create an orphan.

On the referenced table/column (parent)

 Delete/ Update where rule was NO ACTION (rules defined in the appendix)

 Delete/ Update where rule was CASCADE

 Delete/ Update where rule was SET DEFAULT – aimed at setting all referenced columns

to their default values.

Chapter 3: Integrity Constraints Experiments

35

 Delete/ Update where rule was SET NULL – here child records will be retained but the

referencing ID should be set to NULL.

 Drop referenced column

Figure 3.1 gives an example of multi-table foreign key. A region is uniquely identified by a region

ID, in a specific region there are territories. Each territory is in turn identified by a territory ID.

Figure 3.1 - Regions and territories relationship

Normally foreign keys reference primary keys in other tables, but at times they reference primary

keys in the same table. This type of referencing is called self referencing. For this type of foreign

keys, the students-student rep relationship was used. A class is made up of students and amongst

those students there is a class rep who is also a student. Figure 3.2 is used to illustrate this.

Figure 3.2 – Self referencing foreign keys

The results of the tests are summarised in table 3.3 shown below. The symbols used in this table are

first defined.

Child - this refers to the referencing Table or Column

Parent - this refers to the referenced Table or Column

T – Means table

C – Means column

Chapter 3: Integrity Constraints Experiments

36

Referential action or rule set.

NA – rule set to No Action

CS – rule set to CASCADE

SD – rule set to SET DEFAULT

SN – rule set to SET NULL

RS – rule set to RESTRICT

3.2.1 Summary of error messages
See appendix C: summary of referential integrity tests error messages

Example test performed

Insert orphan Child T/C rule not specified – means run a query to insert an orphan record into the

child table (T) or column (C) .Oracle and SQL Server generated error messages V and I

respectively, whilst they did not insert the record.

Tests performed Oracle
error
messages

Oracle Action
and status

SQL
Server
Error
messages

SQL Server Action
and status

Insert orphan Child T/C
rule not specified

V Not Inserted

I
Not Inserted

Update to orphan Child
T/C rule not specified

V Not Inserted

III
Not Inserted

Delete/ Update Parent T/C
where rule = NA

Not
supported

Not supported I Not Updated/

Deleted
Delete Parent T/C where
rule = CS

none
Deleted

none
Deleted

Update Parent C where rule
= CS

Not
supported

Not supported IV Not Updated/

Deleted
Delete/ Update Parent T/C
where rule = RS

V Not Updated/

Deleted

Not
supported

Not supported

Add Unique Key when
there are duplicates

V Not Added

VI
Not Added

Delete/ Update Parent T/C
where rule = SD

Not
supported

Not supported Not
supported

Not supported

Delete/ Update Parent T/C
where rule = SN

none Updated/

Deleted

Not
supported

Not supported

Drop referenced column VI
Not dropped

II
Not dropped

Table 3.3 – Referential integrity tests results

Chapter 3: Integrity Constraints Experiments

37

3.2.2 Analysis of error messages
From the results it can be seen that both Oracle and SQL Server maintained referential integrity,

there were slight differences in implementation here and there but the effect was generally the same.

Oracle supported RESTRICT as its default, although it did not allow its explicit definition. SQL

Server supported NO ACTION by default. These two actions are almost the same. The only

difference is when the referential constraint is enforced. RESTRICT enforces the delete rule

immediately; NO ACTION enforces the delete rule at the end of the statement (deferred).

The other difference is that Oracle did not support ON UPDATE CASCADE option natively; rather

complex custom PL/SQL code has to be written to implement this functionality. The other

difference was in implementing the delete cascade on self-referencing tables. Oracle deleted with no

error, but SQL Server couldn’t delete because it was citing cycles or multiple cascade paths (IV).

3.2.3 Overall analysis of referential integrity tests
As evidenced by the results, there were no problems with this type of integrity. It was upheld in all

cases. Therefore we conclude that both Oracle 9i and SQL Server 2000 implements and maintains

referential integrity. It is guaranteed that as long as you create the relationships correctly and

enforce the correct referential actions, your relations will always be synchronised.

3.3 Domain Integrity tests

These DBMSs have lots of data types, and these include both standard and proprietary data types.

For the comparison’s sake, it was imperative to consider only the standard data types that were

supported by both DBMSs. A selection of the data-types given in table 3.4 was made.

SQL2003 data type Oracle MS SQL server

CHARACTER, CHAR CHAR CHAR
DECIMAL,DEC DECIMAL DECIMAL
FLOAT FLOAT FLOAT
INTEGER, INT INTEGER INT
REAL REAL REAL
SMALLINT SMALLINT SMALLINT
VARCHAR, CHAR VARYING, CHARACTER VARYING VARCHAR2

…
VARCHAR ….

Table 3.4 - SQL 2003 data types considered for tests

Experiments were aimed at investigating whether or not a given data type will restrict values to fall

within the specified ranges. These experiments were mainly carried out using the commands:

Chapter 3: Integrity Constraints Experiments

38

INSERT, UPDATE, and ALTER.

Firstly, baseline tests were created to determine what the normal expected outcomes were. After

that a series of experiments which violated a given domain integrity constraint were designed and

implemented.

3.3.1 String or Character Tests (char, varchar and nchar)
Tests were carried out for data types char, varchar, and nchar. The results were generally the same,

thus, these data types’ results can be summarized as shown below

3.3.1.1 Summary of error messages.
I. Server: Msg 8152, Level 16, State 9, Line 1

String or binary data would be truncated.

The statement has been terminated.

II. ORA-01401: inserted value too large for column

III. ORA-01439: column to be modified must be empty to change datatype

Example test performed

Insert more than specified chars – means run a query to insert a record having more than specified

characters in the field being tested. Oracle and SQL Server raised error messaged II and I

respectively while not inserting the record.

Tests performed Oracle error

messages
Oracle Action and
status

SQL Server
Error
messages

SQL Server Action
and status

Insert normal values none
Inserted

none
Inserted

Update to normal value none
Updated

none
Updated

Insert more chars than
specified

II
Not Inserted

I
Not Inserted

Update to more chars than
specified

II
Not Updated

I
Not Updated

Alter to int III
Not Altered

None – as
long as there
were ints

Altered

Table 3.5 – String or character data type tests results.

3.3.1.2 Analysis of results

As stressed in the design chapter, in these experiments, it was necessary to fix all other factors

which were of no particular importance at that time. In these experiments features like, primary

keys, unique, null were turn off so as to ensure that only the actions being tested would determine

Chapter 3: Integrity Constraints Experiments

39

the outcome of the experiments.

As can be noted from the results, both DBMSs performed as expected, no problem was discovered

with their maintenance of data integrity using string data types, so these tests passed. However there

were differences on their implementation of altering from the char type to numeric types. Oracle did

not allow altering as long as there was data in the column. SQL Server permitted this operation. As

all these were deliberate moves, we can say they all performed as expected. But each approach has

it own advantages over the other. For example, one may say by allowing the change, SQL Server

provides greater flexibility in case, a mistake was made in the initial design, unlike Oracle where

you have to throw away all the data in that column to be able to make the change.

3.3.2 Numeric data type tests
Since there were many of them, several were tested. According to the SQL 2003 standard, there are

two categories of numeric data types. These are namely: Exact numeric and approximate numeric.

For the exact numeric DECIMAL, INTEGER and SMALLINT were investigated and for the

approximate, FLOAT and REAL were investigated.

3.3.2.1 Exact numeric data types

These include the integer types and those types with a specified precision and scale. Every number

has a precision, which is the number of digits. Moreover exact numeric types also have scales

which are the digits that come after the radix point.

3.3.2.1.1 Decimal tests

Decimal supports numbers which are up to 38 digits in length.

 - Means that the DBMS performed as expected, that is, it carried out the correct action and data

integrity was not lost. But the error messages that were generated showed a technical

implementation difference from the standards.

3.3.2.1.1.1 Summary of error messages

See appendix C: summary of decimal data type tests error messages

Example test performed

Insert an empty string – means run a query to insert a record having an empty string as the value

for the decimal field being tested. Oracle and SQL Server generated error messages V and I

respectively, whilst they did not insert the record.

Chapter 3: Integrity Constraints Experiments

40

The tests results and error messages are summarised in table 3.6 shown below.

Tests performed Oracle
error
messages

Oracle Action and
status

SQL
Server
Error
messages

SQL Server Action
and status

Insert normal values None
Inserted

none
Inserted

Insert a string III
Not Inserted

I
Not Inserted

Insert an empty string IV
Not Inserted

I
Not Inserted

Insert more digits than
specified

V
Not Inserted

II
Not Inserted

Insert a number with
decimal places when
precision is 0

None Inserted rounded

none Inserted rounded

Update to string III

Not updated
I

Not updated
Update to an empty string IV

Not Updated
I

Not Updated
Update to more digits than
specified

V
Not Updated

II
Not updated

Update to a number with
decimal places when the
precision is set to zero

None updated rounded

none updated rounded

Table 3.6 – Decimal tests results

3.3.2.1.1.2 Analysis of results

As can be seen from the results, most of the tests passed. Both DBMSs did not allow the entry of

strings in the Decimal data type field. SQL Server gave a very clear and concise error message, that

there was an error converting to varchar but Oracle just issued an “invalid number” error message.

There was a slight problem in the empty string tests with Oracle. It did not allow the entry of empty

strings which was fine but its error message was:

ORA-01400: cannot insert NULL into ("PAUL"."TERRITORIES"."TERRITORYID”)

This raised questions as we were not dealing with any NULL here. Upon further investigation it

was found that Oracle treated empty strings as Nulls, and altering the column to accept nulls

resulted in nulls being inserted. However, this was against the very definition of NULL. The SQL

2003 definition of NULL says, a NULL value is unknown and no two Nulls can be the same. So

this means that there was something questionable about the way empty strings were handled in

Oracle.

Chapter 3: Integrity Constraints Experiments

41

When inserting a number with decimal digits where the precision was set to zero, both DBMSs

rounded the number without a warning, but in SQL Server there is an option to disallow this

roundabout. It is disallowed by using the SET NUMERIC_ROUNDABORT ON. Although the commands are

not directly apparent to programmer, maintaining data integrity becomes a matter of the

programmer knowing his tools.

3.3.2.1.2 Integer and Small Int tests

The same operations that were performed on decimal data types were performed for integer tests

and the error messages are summarised as below. Given the fact that the results obtained from both

the Integer and small integer tests were basically the same, the word integer will be used in this

context to mean both INT and SMALL INT tests.

3.3.2.1.2.1 Summary of error messages

See appendix C: summary of small int tests error messages

Example test performed

Insert more digits than specified – means run a query to insert a record having more than specified

digits in the field being tested. Oracle and SQL Server generated error messages V and II

respectively, whilst they did not insert the record.

Tests performed Oracle

error
messages

Oracle Action and
status

SQL
Server
Error
messages

SQL Server Action
and status

Insert normal values None
Inserted

none
Inserted

Insert a string III
Not Inserted

I
Not Inserted

Insert an empty string IV
Not Inserted

none Inserted a zero

Insert more digits than
specified

V
Not Inserted

II
Not Inserted

Update to string III
Not updated

I
Not updated

Update to an empty string IV
Not Updated

none Not Updated

Update to more digits than
specified

V
Not Updated

II
Not updated

Table 3.7 - Integer and small int tests results

3.3.2.1.2.2 Analysis of error messages

As discovered earlier on, Oracle treated empty strings as Nulls for all its operations, SQL Server

worked fine with the decimal data type but with the integer data type, there were problems.

Chapter 3: Integrity Constraints Experiments

42

Trying to insert an empty string into the database will result in a zero being actually inserted in

the database. So from this action somewhere somehow, their zeros are equal to empty strings.

Data integrity means the representing of real world scenarios as they are, since SQL Server

represented the real world empty string '' as something different in the database we say that data

integrity was lost here. It is essential for Nulls to be treated correctly. For instance consider a

product price tracking system. Having a product with a null value does not mean that, that product

is free. It only means that the price is not known.

3.3.2.2 Approximate numeric data types

These basically include FLOAT, REAL, and DOUBLE PRECISION where the precision may

optionally be specified.

3.3.2.2.1 Float tests
3.3.2.2.1.1 Summary of error messages
See appendix C: summary of float error tests error messages

Example test performed

Insert a number with too many decimal places than specified – means run a query to insert a

record having too many decimal places than those specified for the field being tested. No error

was generated by both DBMSs and the record was successfully inserted.

Tests performed Oracle

error
messages

Oracle Action and
status

SQL Server
Error
messages

SQL Server Action
and status

Insert normal values none
Inserted

none
Inserted

Insert a string III
Not Inserted

I
Not Inserted

Insert an empty string IV
Not Inserted

none Inserted zero

Insert more digits than
specified

V
Not Inserted

II
Not Inserted

Insert a number with too
many decimal places than
specified

none Inserted rounded

none Inserted rounded to 10

decimal places
Update to string III

Not updated
I

Not updated
Update to an empty string IV

Not Updated
none Updated

Update to more digits than
specified

V
Not Updated

II
Not updated

Update to a number with
too many decimal places
than specified

none Inserted rounded

none Inserted rounded to 10

decimal places

Table 3.8 - Float tests results

Chapter 3: Integrity Constraints Experiments

43

3.3.2.2.2 Analysis of results

As can be seen from the results the same problems which were imminent for some of the exact

numeric data types are the one which were found here “the treatment of empty strings”. The other

issue that was worth noting was the rounding of numbers with too many decimal places. This was

regarded as correct because both DBMSs provide an option to disallow rounding; ‘SET

NUMERIC_ROUNDABORT ON/OFF’. When this was set on, rounding was not allowed and an

error message was raised.

3.3.2.2.2 REAL tests
3.3.2.2.2.1 Summary of error messages
See appendix C: summary of real tests error messages

Example test performed

Insert a number with too many decimal places than specified – means run a query to insert a record

having too many decimal places than those specified for the field being tested. No error was

generated by both DBMSs and the record was successfully inserted.

Tests performed Oracle

error
messages

Oracle Action and
status

SQL
Server
Error
messages

SQL Server Action
and status

Insert normal values none
Inserted

none
Inserted

Insert a string IV
Not Inserted

I
Not Inserted

Insert an empty string V
Not Inserted

none Inserted zero

Insert more digits than
specified

VI
Not Inserted

III
Not Inserted

Insert a number with too
many decimal places than
specified

none Inserted rounded

II
Not Inserted

Update to string IV
Not updated

I
Not updated

Update to an empty string V
Not Updated

none Not Updated

Update to more digits than
specified

VI
Not Updated

III
Not updated

Update to a number with
too many decimal places
than specified

none Inserted rounded

II
Not updated

Table 3.9 – Real Tests results

3.3.2.2.2.2 Analysis of results

On the insertion of a number with too many decimal places than specified SQL Server produced a

different action from the previous approximate data types which were investigated, error (II).

Chapter 3: Integrity Constraints Experiments

44

However, nothing much of a problem would be deduced from this so the test was declared passed.

3.3.3 NOT NULL tests
The presence of a NULL value indicates that the actual value of the column is unknown or not

applicable [Wikipedia: 2005]. The tests implemented here, were mainly aimed at verifying whether

or the DBMSs allow data to only fall within the specified limit, by trying to insert Nulls either by

explicitly including them in the query string or omitting the non-null column from the query string.

However it was found that in both Oracle and SQL Server this is well implemented. Appropriate

error messages were generated and the correction actions were taken.

3.3.4 Check constraints tests
Although data types generally limit the values that a column can have, in most cases, we will not be

wishing to use all the length of a specified data type. This is where we can make use of check

constraints. Given a data type you would like the flexibility of choosing a custom length. For

example, when designing column to hold student ages, we would like to be able to limit it say to

two digits and so on. This enables the DBA to specify more robust data integrity rules directly into

the database.

 For these tests both column and table level check constrains were tested.

The tests that were carried out were:

 Those of a ceiling and floor nature (< or >) – here test were carried out to see if any

violation can go unnoticed.

 Tests of enumerated types nature, for example, limiting the choice of gender to (M and F)

 The other set of tests was to break the table level constraints for example, setting

constraints like (commission should be less than salary) and try to break them.

3.3.4.1 Summary of error messages

See appendix C: summary of check constraints tests error messages

Example test performed

Insert values outside the specified enumerated type – means run a query to insert a record having a

value outside the specified enumerated supplied as the value of the column being tested. Error

messages III and I were generated for Oracle and SQL Server respectively and the record was not

inserted.

Chapter 3: Integrity Constraints Experiments

45

Tests performed Oracle
error
messages

Oracle Action and status SQL
Server
Error
messages

SQL Server
Action and
status

Insert normal values none
Inserted

none Inserted

Insert values greater than
the ceiling value

III
Not Inserted

I Not Inserted

Insert values less than the
ceiling value

III
Not Inserted

I Not Inserted

Insert values outside the
specified enumerated type

III
Not Inserted

I Not Inserted

Insert values which
violated the table level
check constraints

III
Not Inserted

II Not Inserted

Table 3.10 - Check constraints tests results

3.3.4.2 Analysis of error messages

Check constraints are a form of integrity enhancement facility. As long they were implemented

properly there were no problems. This was evidenced by the fact that in all DBMSs there was no

insulation against creating conflicting constraints. For instance one can easily declare one

constraints CK1 which requires all salaries to be less than R20 000 and another one CK2 which

requires all salaries to be greater than R30 000. However this becomes a matter of programming

skills rather than a DBMS issue. We cannot blame DBMSs for our bad code.

Extreme caution had to be taken when working with check constraints as buggy programs could

lead to serious problems. This means that DBAs need to be well versed with such thing as deferring

checking and when to, and not to do certain operations. An example of such a situation is the father-

son relationship shown below:

CREATE TABLE father (fatherID INT PRIMARY KEY,

 SonID INT REFERENCES son (sonID));

CREATE TABLE son (sonID INT PRIMARY KEY,

 FatherID INT REFERENCES father (fatherID));

Creating these tables as shown above would not be possible, rather they have to be created without

specifying the foreign keys and then later use the ALTER table statement to include them as shown

below.

Chapter 3: Integrity Constraints Experiments

46

ALTER TABLE father ADD CONSTRAINT fatherToson

 FOREIGN KEY (sonID) REFERENCES son (sonID)

 INITIALLY DEFERRED DEFERRABLE;

ALTER TABLE son ADD CONSTRAINT sonTofather

 FOREIGN KEY (fatherID) REFERENCES father (fatherID)

 INITIALLY DEFERRED DEFERRABLE;

Likewise a systematic approach should be used when deleting them. This should be possible by

dropping the constraints first, then deleting afterwards. Other semantic problems may occur if two

contradictory constraints are set on the same column.

3.3.5 DEFAULTS Tests
Both Oracle and SQL Server have the ability to let you specify defaults for columns. When a row is

inserted and no value is specified for the column, the column will be set to the value defined as the

default value. Simple tests were created to test if a default value is inserted when appropriate. No

problems were found. This means that they functioned as expected. However there was still a risk

of semantic problems. For example, both DBMSs allow the setting of Defaults which contradict

with check constraints. One can set a default for the employee type column to be ‘TEMP’ yet the

check constraints will be stating only values {TEMPORARY, PERMANENT} are allowed. At the

end nothing will be able to be inserted into that field.

3.3.6 Overall analysis of domain integrity constraints
The general outcome of the experiments was that both DBMSs maintained data integrity in almost

all cases. The only cases where problems were noted are those when SQL Server replaced empty

strings for with zeros on almost all its numeric data types except, DECIMAL. This was the only

difference which can set these two apart, otherwise things were almost equal. During the

experiments it was noted that in some instances SQL Server flexible than Oracle, for example, in

the case of altering a column to another data type. Oracle did not allow this unless the column was

empty. With SQL Server as long as the data is compatible there was no problem in altering the

column.

3.4 User - Defined Integrity

This part of the experimentation was based on general programming concepts. It was all about

using the functionalities given by each DBMS, such as triggers, stored procedures and assertions to

Chapter 3: Integrity Constraints Experiments

47

define and implement business rules, for example, using these to convert a percentage mark to a

grade like 2.1.

Given these tools it was possible to define different business rules. Both DBMSs provide triggers,

stored procedures and functions to achieve this. SQL Server also provides assertions. So this means

that the DBMSs have provided the necessary tools it all up to the DBA to produce good code which

ensures that integrity is maintained.

3.5 Summary of Chapter

This chapter was about the different kinds of integrity constraints tests which were carried out and

their outcomes. Generally both DBMSs maintained data integrity besides the exceptional case of

empty strings. Although Oracle recognised empty strings as nulls, this did not result in the loss of

data integrity but with SQL Server we can say data integrity was lost because an empty string is not

a zero in real life. The other differences between these DBMSs were the support of certain

standards features, Oracle does not support the Identity property which has recently been added to

the standard and it also does not supported a common feature like update cascade. SQL Server also

has its shortfalls, it does not support standard referential actions like set default and set null.

Although they were differences here and there both DBMSs used the available features perfectly to

maintain data integrity. Thus, given the available features, maintaining data integrity becomes a

matter of writing good code.

Chapter 4: Transactions and concurrency control

48

Chapter 4: Transactions and concurrency
control
Integrity constraints alone are not adequate to completely ensure integrity maintenance. One of the

other important mechanisms in maintaining data integrity is the concept of a transaction. The

ANSI/ISO SQL standard definition of a transaction is a logical unit of work that comprises all the

executable SQL statements executed by a single user that ends when an explicit COMMIT or

ROLLBACK statement is issued by the user [Microsoft : 2005].

Since it is the DBMS which is responsible for maintenance of integrity, it must guarantee the

atomicity and durability of transactions, whilst accounting for current execution, multiple

transactions, and various failure points.

4.1 Types of transactions

1. Non-Distributed transactions, which manipulate or query only a single database, which is

the local database where the user is logged in.

2. Distributed transactions, which manipulate or query more than one node in a distributed

database.

3. Remote transactions, which manipulate or query only a remotely located database.

For this project, only the non-distributed transactions were considered.

One of the important tests for reliability of a DBMS is the ACID test. ACID-compliant databases

possess certain properties that offer greater protection to stored data in the event of an unexpected

hardware or software failure, even if the database is being read from or written to at the time the

failure occurs.

The ACID test alone does not guarantee reliability. Other factors such as the reliability of the host

environment (both hardware and software components), a strictly observed backup policy, etc. are

also crucial in maintaining any DBMS.

4.2 Transactions tests
Experiments to simulate possible failures whilst the data was being loaded into the database were

carried out. These experiments were basically looking at Atomicity, Consistency, Isolation, and

Durability (ACID) properties.

Chapter 4: Transactions and concurrency control

49

4.3 ACID Properties

 Atomicity. Either all operations of the transaction are committed in the database or none

are.

 Consistency. A transaction should basically transform a database from one consistent state

to another.

 Isolation. Although multiple transactions may execute concurrently, each transaction must

only see, the changes that were made before it started. Intermediate transaction results must

be hidden from other concurrently executed transactions.

 Durability. After a transaction completes successfully, the changes it has made to the

database persist, even if there are system failures.

4.4 Atomicity Tests

Assume that we want to transfer R2000 from the savings account 'YXZ', to the current account

'XYZ'. This should be carried as an atomic statement as shown below.

 BEGIN TRAN

UPDATE accounts

SET Balance = Balance - 2000

WHERE Account_ID = 'YXZ'

UPDATE accounts

SET Balance = Balance + 2000

WHERE Account_ID = 'XYZ'

 END TRAN

In carrying out these kinds of experiments, it was found that the two DBMSs had different

implementations of transactions. For example, given a transaction T1 shown below

BEGIN TRAN

 Write A

 ERROR Occur

 Write B

COMMIT TRAN

Chapter 4: Transactions and concurrency control

50

In these types of transactions, B was actually written in SQL Server. This was mainly because with

SQL Server, transactions do not care if the statements run correctly or not. They only care if SQL

Server, itself, failed in the middle. For example, the transaction will try to insert a duplicate entry

into a primary key field but you get a primary key violation error message. A message will even tell

you that the statement has been terminated. But the transaction will still be going. The UPDATE

statement runs just fine and SQL Server then commits the transaction. So here there was a problem

with the definition of a transaction in SQL server, even though one of the statements in the TRANS

failed the transaction committed anyway. This means that other functionalities had to be included to

check when these errors had occurred and rollback the transaction. An example of the workaround

is shown below.

USE pubs

DECLARE @ErrorInt INT

BEGIN TRAN

 UPDATE Authors

 SET Phone = '213 354-8888'

 WHERE au_id = '586-60-5874'

 SELECT @ErrorInt = @@ERROR

 IF (@ErrorInt <> 0) GOTO EXCEPTION

 UPDATE Publishers

 SET city = 'Calcutta', country = 'India'

 WHERE pub_id = '9999'

 SELECT @ErrorInt = @@ERROR

 IF (@ErrorInt <> 0) GOTO EXCEPTION

COMMIT TRAN

EXCEPTION:

IF (@ErrorInt <> 0) BEGIN

PRINT 'AN ERROR OCCURRED'

 ROLLBACK TRAN

END

As can be seen above after every statement you need to have a,
 SELECT @ErrorInt = @@ERROR

 IF (@ErrorInt <> 0) GOTO EXCEPTION,

Chapter 4: Transactions and concurrency control

51

section which will check that no errors had occurred otherwise execution will be transferred to the
EXCEPTION.

To start with, they have different transaction settings. SQL Server auto commits transactions by

default whilst this functionality is off by default in Oracle. This means that to be able to carry out

these tests, all DBMSs had to set the AUTO COMMIT OFF so that the DBA can explicitly choose

when to commit or rollback the transactions.

To simulate a bigger transaction the looping capability of T-SQL and PL/SQL was used. My

transaction generator was based on the funds transfer example but this time around it was on a large

scale.

 Figure 4.1 – Example transaction
This means that there are 100 000 equal payments to these people. Using transactions, this is a

funds transfer of some sort. It would make sense to record a payment of R1 billion from the

government’s account to the respective peoples’ accounts. But as usual it should be done in such a

way that the Accounts will balance. After all the transferred were finished the results were checked

and they were consistent. This was then implemented using threading in visual studio.NET 2005.

Systems crashes were simulated by:

 Restarting the MSSQLSERVER service whilst the transaction was running

The Error message

[Microsoft][ODBC SQL Server Driver]Unspecified error occurred on SQL Server. Connection

may have been terminated by the server. Connection Broken error message was return as the

transaction stopped, upon checking the database it was still in a consistent state as all changes

had been rolled back. Oracle also maintained data integrity.

 Restarting the machine whilst the transaction was running.

 Plugging off the machine from the power plug.

 Switching off the power.

All these operations were done whilst different transactions were running but not yet committed. In

all cases data integrity was maintained. After these transaction transactions an investigation was

made on the different types of locking mechanisms and isolation levels implemented these DBMSs.

The government is paying R1000 000 000 000 into the unemployment
fund which is going to be debited to, say 100 000 people.

Chapter 4: Transactions and concurrency control

52

4.5 Interactions and isolation levels

The ANSI/ISO SQL standard SQL92 defines three possible kinds of transaction interaction, and

four levels of isolation that provide increasing protection against these interactions.

 Dirty read - a dirty read occurs when a transaction reads data that has not yet been committed.

For example, suppose transaction 1 changes a row. Transaction 2 reads the changed row before

transaction 1 commits the change. If transaction 1 aborts the change, transaction 2 will have

read data that is considered to have never existed.

 Non-repeatable read — a non-repeatable read occurs when a transaction reads the same row

twice but gets different data each time. For example, suppose transaction 1 reads a row.

Transaction 2 changes or deletes that row and commits this change or deletion. If transaction 1

attempts to reread the row, it retrieves different row values or discovers that the row has been

deleted.

 Phantom — a phantom is a row that matches the search criteria but is not initially seen. For

example, suppose transaction 1 reads a set of rows that satisfy some search criteria. Transaction

2 inserts a new row that matches the search criteria for transaction 1. If transaction 1 re-executes

the statement that read the rows, it gets a different set of rows.

The other problem which is part of these interactions is lost updates.

 Lost Updates

Lost updates occur if two transactions modify the same data at the same time, and the

transaction that completes first is lost or overwritten. These are common with the READ

UNCOMMITED isolation level. Suppose that the beginning balance on my savings account is

R5000. I deposit a R3000 at 08:30 a.m., and my brother withdraws R2000 from the ATM at

08:30 a.m. If all is well, my ending balance should be R5000 + 3000 – 2000 = R6000. However,

if the transaction isolation level is set to READ UNCOMMITTED, and my brother's transaction

is committed after mine, my ending balance at 08:32 a.m. will be R5000 – 2000 = R3000.

These interactions and isolation levels are:

Isolation Level Dirty Read Non-Repeatable Read Phantom Read

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Not possible Possible Possible

REPEATABLE READ Not possible Not possible Possible

SERIALIZABLE Not possible Not possible Not possible

Chapter 4: Transactions and concurrency control

53

Table 4.1 - Interactions and isolation levels6

The behaviour of Oracle and Microsoft SQL Server 2000 is:

Isolation Level Description

READ
UNCOMMITTED

Oracle never permits "dirty reads." Although SQL Server use this
undesirable technique to improve throughput, it is not required for high
throughput with Oracle.

READ
COMMITTED

Both SQL Server and Oracle meets the READ COMMITTED isolation
standard.

REPEATABLE
READ

Oracle does not normally support this isolation level, except as provided
by SERIALIZABLE. Is supported in SQL Server

SERIALIZABLE You can set this isolation level using the SET TRANSACTION
command or the ALTER SESSION command. This is the highest level
of isolation.

Table 4.2 – Oracle and SQL Server isolation levels7

This means that since READ COMMITTED is always the default for both SQL Server and Oracle

problems non-repeatable and phantom reads possible [Akadia Information Technology: 2005]

4.6 Concurrency in a nutshell

With Oracle, readers do not block readers, readers do not block writers and writers do not block

readers. This is called multi-version concurrency control. But with SQL Server readers block

writers and writers block readers. With Oracle locks can be at less granular levels like rows whilst

this is not possible with SQL Server. There are generally architectural implementation differences

on transactions. Oracle uses redo log files and roll back segments to keep track of its transactions

whilst SQL Server uses transactions log files. However this does not have a major influence on

integrity but rather on the performance of the two DBMSs. Each approach has its own advantages.

6 Adapted from [Akadia Information Technology: 2005] http://www.akadia.com/services/ora_important_part_4.html
7 Adapted from [Akadia Information Technology: 2005] http://www.akadia.com/services/ora_important_part_4.html

Chapter 4: Transactions and concurrency control

54

4.7 Summary Conclusion

After this several tests were carried out using SQL scripts to tests things such as nested transactions

and play around with different database settings, but the overall result was that, it was all about

knowing what to use and when to use it in order to maintain integrity. Oracle was somehow

superior to SQL Server in transaction handling by not allowing such things as dirty reads and its use

of multi-version concurrency model, where readers do not block writers. A thorough investigation

of locking mechanisms can be a project on its own, hence it was not considered in detail in this

project. Probably that’s the reason why Oracle is mostly the choice for big companies.

Chapter 5: SQL Standards Conformance

55

Chapter 5: SQL Standards conformance

5.1 SQL Standards investigation

Like SQL 99, in order to claim conformance to SQL 2003, there is a minimum level of

conformance which had to be first met. This minimum level conformance can be defined as a claim

to meet the conformance requirements of the two parts that make the core of this standard which are

Part 2 - SQL/Foundation and Part 11 - SQL/Schemata. After the minimum has been met several

claims on parts, features and packages can be made.

To be in a position to determine whether a DBMS conforms to this standard, it has to at least

conform to the minimum level. So, it is this minimum level which was investigated in this project.

This was done by investigating the features which are found in these two parts.

The findings for this part are in the form of summarised tables. In these tables the following

conventions adapted from [Kline.K:2004] and [Gulutzan P: 2005] were used.

• Supported (S)

The vendor supports the SQL 2003 standard for the particular command.

• Supported, with variations (SWV)

The vendor supports the SQL 2003 standard for the particular command, using vendor-

specific code or syntax.

• Not supported (NS)

The vendor does not support the particular command according to the SQL 2003 standard.

Mimer SQL-2003 Validator was used in conjunction with documentations of both DBMSs and

various other sources to test the conformity of the various statements to the SQL 2003 standards.

As mentioned before, SQL 2003 defines seven types of SQL classes. Each of those classes has its

own different commands. Using Mimer Validator, the following command classes adapted from

[Kline.K:2004] were investigated and the results which were obtained can be summarised as shown

below.

Chapter 5: SQL Standards Conformance

56

SQL schema commands
According to [Kline, K: 2004], these are commands that may have a persistent and enduring effect

on a database schema and objects within that schema. Table D.1 in appendix D gives an overview

of the support extent to which Oracle and SQL Server 2003 support this class of commands. The

table can be represented graphically as shown in figure 5.1.

0

5

10

15

20

Number of
commands

Schema commands

MS SQL SERVER 2000
ORACLE 9i

MS SQL SERVER 2000 3 15 11

ORACLE 9i 4 20 5

Supported Supported with
Variations

Not Supported

Figure 5.1 - Schema commands summary

This graph shows that there was a gap between Oracle and SQL Server, with Oracle leading. The

fact that the number of features they support was about a fifth of those they support with variations

shows how much these vendors are into product differentiation. However supporting with variations

is better than not supporting the standard at all, thus Oracle was better off because it missed only 5

whilst SQL Server missed 11.

Chapter 5: SQL Standards Conformance

57

SQL-data commands
According to [Kline, K: 2004], these are statements that may have a persistent and enduring effect

upon data. This is the class where the most common SQL statements like Select, Insert, Update and

Delete are found. Table D.2 in appendix D gives an overview of the support extent to which Oracle

and SQL Server support this class of commands. This can be graphically illustrated by figure 5.2.

0

2

4

6

8

10

Number of
commands

2003 SQL-data commands

MS SQL SERVER 2000
ORACLE 9i

MS SQL SERVER
2000

6 9 3

ORACLE 9i 9 9 0

Supported Supported with
Variations

Not Supported

Figure 5.2 - SQL-data commands summary

On these type of commands, Oracle had the upper hand as it supported all the features considered

whilst SQL Server missed 3.

SQL-connection, session and transaction statements

Table D.3 in appendix D gives highlights of the extent to which Oracle and SQL Server support

these classes of commands. Again this can be diagrammatically represented by figure 5.3 shown on

the next page.

Chapter 5: SQL Standards Conformance

58

0

1

2

3

4

5

6

Number of
commands

SQL-Connection,Session and Transaction commands

MS SQL SERVER 2000
ORACLE 9i

MS SQL SERVER
2000

2 6 5

ORACLE 9i 3 4 6

Supported Supported
with

Not Supported

Figure 5.3 - SQL-connection, session and transaction statements summary

The results show that SQL Server supported 2 commands according to the standards whilst 6 with

variations and missed 5. On the other hand Oracle missed 6 which was 1 more than SQL Server’s,

but supported 3 according to the standard and 4 with variations.

After the command classes an investigation was made on their support of SQL data types. Both

Oracle 9i and SQL Server 2000 have a vast pool of data types. Some of them are proprietary whilst

some are SQL 2003 data types. In this investigation only the SQL 2003 data types implemented by

both DBMSs were considered.

SQL 2003 data types

 For this part the MySQL crash-me8 toolkit in conjunction with other necessary documentation were

used. With the MySQL crash-me tool, you choose any two or more DBMSs you want to compare.

After you have made your selection a comparison is done. After verifying its results with the

standards documents, it was found that it included some other data types like bit, which are no

longer part of the standards.

The graph below is used to give a collation of the results of the data-types investigations.

8 The data types considered are found using the mysql crash me tool found at:
http://dev.mysql.com/tech-resources/crash-me.php

Chapter 5: SQL Standards Conformance

59

0

5

10

15

20

25

Number of
Data types

SQL 2003 data types

MS SQL SERVER 2000
ORACLE 9i

MS SQL
SERVER 2000

20 18

ORACLE 9i 25 13

Supported Not Supported

Figure 5.4 - SQL 2003 data types

Of the 38 SQL 2003 data types investigated Oracle supported more data types than SQL Server.

Oracle support 25 whilst SQL Server supported 20. For example, SQL Server does not support

types DATE and TIME; instead it uses its own dialect, DATETIME which is basically a time

stamp. Another instance when both DBMSs fell short is in the support for the Boolean data type.

They do not support this data type. After the data type investigation, the categories of syntax were

investigated.

Categories of Syntax

Syntax falls into four categories which are identifiers, literals, operators and reserved words and key

words. Identifiers were considered.

Identifiers – this describe a user or system supplied name for a database object. SQL 2003 provides

rules for identifying these objects. The table below contrast the SQL 2003 rules with those of

Oracle and SQL Server.

SQL 2003 rules for naming Identifiers

Figure D.4 in appendix D gives a comparison of the SQL 2003 rules of naming identifiers to those

implemented in Oracle 9i and SQL Server 2000. This can be further refined to show the total

numbers supported and not supported as shown in figure 5.5.

Chapter 5: SQL Standards Conformance

60

0

1

2

3

4

5

Number of rules

SQL 2003 Rules for regular object identifiers

MS SQL SERVER 2000
ORACLE 9i

MS SQL SERVER
2000

4 4 1

ORACLE 9i 5 2 2

Supported Supported with
Variations

Not Supported

Figure 5.5 - SQL 2003 rules for naming Identifiers

There was a thin line between the two DBMS. Oracle supported 5 of the rules according to the

standards, 2 with variations and missed 2. On the other hand SQL Server supported 4 as per the

standards, 4 with variations and missed only 1.

After the identifier rules, the MySQL crash-me tool and Mime SQL 2003 Validator were used to

evaluate the two DBMSs support for SQL 2003 built-in functions. The results are summarised as

shown below.

Chapter 5: SQL Standards Conformance

61

0

2

4

6

8

10

12

14

16

Number of
functions

SQL 2003 Built-in Functions

MS SQL SERVER 2000
ORACLE 9i

MS SQL SERVER
2000

14 14

ORACLE 9i 16 12

Supported Not Supported

Figure 5.6 - SQL 2003 built-in functions support summary

As can be seen from the results Oracle again had a slight lead against SQL Server. It supported 16

and missed 12, whilst SQL Server supported 14 and missed 14.

As the standards conformance did not change very much from SQL 99. Conformance requirements

also did not change, a DBMS which was SQL 99 conformant automatically became SQL 2003

conformant. [P. Gulutzan [1]: 2005] made a comparison of Oracle’s and SQL Server’s SQL 99

Core feature support. The outcome is summarised as below.

Chapter 5: SQL Standards Conformance

62

0

2

4

6

8

10

12

14

Number of
features

SQL 99 Core feature support

MS SQL SERVER 2000
ORACLE 9i

MS SQL SERVER 2000 5 14 3

ORACLE 9i 6 14 2

Supported
Supported with

Variations
Not Supported

Figure 5.7 - SQL 99 Core feature support summary

Again from the results shown above there was a slight difference but Oracle was ahead. It supported

6 and supported 14 with variations whilst missing 2. On the other hand SQL Server supported 5, 14

with variations and missed 3.

5.2 Weighting of all the SQL 2003 results

After all these findings, it was decided to summarise all the results obtained from the different

categories. This was essential as we needed to be in a position to conclusively say which one is

better than the other. This was achieved formulating a weighting of these results. The process of

devising the weighting criteria involved a disciplined subjective approach.

This approach involved first identifying the kind results that were obtained. As noted, these results

are in three general categories namely: Supported, Supported with variations and Not supported.

 The category having a chief importance in making the decision ahead was identified as Supported

since this shows the act of exactly implementing the feature as specified by the standard. This was

Chapter 5: SQL Standards Conformance

63

followed by Supported with variations. Although this category shows that they support, it also

cause the general problems of lack of portability due to the fact that features/ commands would

have been implemented in a proprietary manner. This might also have advantages of adding some

more powerful features which are not provided by the standard. The last which was the undesirable

category was the not supported category. This category refers to all those features that are not

supported, even in a proprietary manner.

Since these weights were to be used to determine the points each DBMSs will get, 10 points were

given for each supported feature, 6 points given for each feature supported with variations and 3

points deducted for each feature not supported, meaning a weighting of 10, 6 and -3 was used.

The weighted results can then be summarised and be shown in figure 5.8 below.

-200

0

200

400

600

800

1000

Number of
Points

SQL 2003 Weighted Results (Points)

MS SQL SERVER 2000
ORACLE 9i

MS SQL SERVER 2000 540 288 -165 663

ORACLE 9i 680 294 -120 854

Supported
Supported

with
Variations

Not
Supported TOTAL

Figure 5.8 - SQL 2003 weighted results

Chapter 5: SQL Standards Conformance

64

As can be seen from the results in figure 5.8, it can be concluded that Oracle supports SQL 2003

better than SQL Server. Using the proposed weighting method, MS SQL Server had 540 points for

supported features, 288 for those supported with variations and (-165) for those not supported. On

the other hand Oracle have 680 for the supported features, 294 for those supported with variations

and (-120) for those not supported. This shows that Oracle was ahead, although the gap was always

narrow in the different categories considered.

5.3 Summary of Chapter

This chapter explored the SQL standards. This was done by first giving a general background on the

standards that is their history and timeline. The important standards and their conformance

requirements were highlighted. The SQL structure of and conformance requirements of SQL 2003

were also given after which evaluations were carried out. The two DBMSs were evaluated with

respect to different standards features and components. The general result was that Oracle supported

the SQL 2003 better than SQL Server.

Chapter 6: Conclusions and Possible Extensions

65

Chapter 6: Conclusions and Possible
Extensions

6.1 Conclusions

Integrity which is one of the main reasons for using DBMSs has gone through many years of

refining in both Oracle and SQL Server. As a consequence, they now provide almost all the tools

and functionalities which are necessary for the maintenance of integrity. Thus, as far as data

integrity is concerned it is not true that SQL Server 2000 is better than Oracle 9i or vice versa. Both

products can be used to build stable and reliable systems. And the stability and reliability of your

applications and databases depend rather on the experience of the database developers and database

administrator rather than on the database's provider. But however, SQL Server 2000 has some

advantages in comparison with Oracle 9i and vice versa.

Although these DBMS have made tremendous efforts, they do not conform to the SQL2003

standards. But, as the first commercial implementation of SQL over 25 years ago, Oracle continues

to lead SQL Server in implementing SQL standards. Surprising even SQL 2005 will not be SQL 99

compliant [Channel 9 forums: 2005]. However, all RDBMS platforms in the market are always

behind the standards. Many times, as soon as vendors close in on the standard, the standards bodies

update, refine, or otherwise change the benchmark. Conversely, the vendors often implement new

features that are not yet part of the standard, probably because they are required by their customers

before the standard is made [Kline, K 2004].

6.2 Possible extensions

6.2.1 Evaluating SQL Server 2005 and Oracle 10g
Since SQL Server 2005 is now released, future projects might carry out a state of the art

comparison of this version with Oracle 10g.

6.2.2 Evaluating DBMSs with respect to Security
The maintenance of data integrity is also largely depended on the security mechanism or principles

which a DBMS use. In recent years there have been a number of security attacks on various DBMS

products. The attacks were mainly SQL injection and buffer-overflows. So it would be quite

interesting to know which one is the most vulnerable.

Appendix A: Prerequisite for Investigation and Implementation

66

Appendix A: Prerequisite for Investigation and
Implementation

Before any kind of experiment or investigation could be done it was necessary to gain adequate

knowledge of each of SQL languages used by each DBMS so as to able to manipulate, interact and

experiment with them effectively. Oracle uses PL/SQL whilst SQL Server uses T-SQL.

1. Overview of PL/SQL

PL/SQL stands for Procedural Language/SQL. PL/SQL extends SQL by adding constructs found in

procedural languages, thus providing a structural language that is more powerful than SQL.

By adding procedural constructs to SQL, such as encapsulation, function overloading, information

hiding, block structure, conditional statements, loop statements, variable types, structured data and

customized error handling, the PL/SQL language takes on characteristics of object-oriented

programming languages. PL/SQL's language syntax, structure and data types are similar to that of

the ADA programming language. Integrated with a database server, PL/SQL does not exist as a

standalone language. It typically is used to write data-centric programs to manipulate data in an

Oracle database.

SQL does not readily provide "first row" and "rest of table" accessors, and it cannot easily perform

some constructs such as loops. PL/SQL, however, as a Turing-complete procedural language which

fills in these gaps, allows Oracle database developers to interface with the underlying relational

database in an imperative manner [Wikipedia: 2005]

The basic unit in PL/SQL is a block. All PL/SQL programs are made up of blocks, which can be

nested within each other. Typically, each block performs a logical action in the program. Blocks

take the general form:

Appendix A: Prerequisite for Investigation and Implementation

67

2. Overview of T-SQL

Just like oracle T-SQL is a proprietary extension of standard SQL to provide more flexibility and

power.

T-SQL (Transact-SQL) is a set of programming extensions from Sybase and Microsoft that add

several features to the Structured Query Language (SQL) including transaction control, exception

and error handling, row processing, and declared variables. Microsoft SQL and Sybase both support

T-SQL statements. Sybase refers to its statements as T-SQL while Microsoft refers to its statements

as Transaction-SQL.

The name Transact-SQL isn't exactly self-explanatory, but it does imply the idea of "transactional"

extensions to the SQL database programming language. Transact-SQL isn't a standalone product.

You cannot use it to write applications in the same way you could with C++ or Java. Instead,

Transact-SQL is the main enabler of programmatic functionality within the relational databases

provided by Microsoft and Sybase. Transact-SQL is very closely integrated with SQL while adding

programming capabilities not already standardized within the SQL database programming

language. At the same time Transact-SQL extends SQL, it also integrates seamlessly with it [Kline

K et al: 1999]

Appendix B: Integrity Constraints

68

Appendix B: Integrity constraints
The Integrity subsystem is responsible for maintaining the accuracy, correctness and validity of the

data stored in a database, detecting and acting on integrity violations. It must exert deliberate

control on every process that uses the data to ensure the continued correctness of the information.

One of the major drives behind the development of RDBMSs was to ensure data consistency, yet

this is one of those things that do not seem like an obvious topic for administrators to address

directly and has been totally ignored by database benchmarks. According to [Mullins C S: 2002] a

database is of little use if the data it contains is inaccurate. Integrity can be defined as a steadfast

adherence to a strict moral or ethical code.

 [Türker and Gertz: 2000] state that the accuracy of the data managed by a DBMS is vital to any

application using the data for business, research and decision making purposes. Integrity basically

deals with the extent to which the data managed by a DBMS reflect the real-world data or artefacts

consumed and operated on by applications. Data integrity requirements are gathered from users,

application developers, and business policies and then translated into integrity constraints. When

these constraints have been defined in a DBMS language, they specify conditions which DBMS

objects have to meet in order to correctly reflect real world data. This means that, they are translated

into constraint enforcing mechanisms provided by the DBMS. Integrity constraints are predicates

that specify what database states are admissible, that is, correctly reflect the real world semantics.

[Mullins C S: 2002] states that, integrity can be classified as Database structure integrity and

Semantic data integrity. This section discusses a state-of-the-art overview and comparison of

semantic integrity features provided by Oracle 9i and SQL Server 2000. We do so by considering

the four different types of semantic integrity constraints which are namely: Entity Integrity,

Referential Integrity, Domain Integrity, and User – Defined Integrity.

1.1 The motive behind the maintenance of data

integrity

[Webopedia: 2005] states that data integrity can be compromised in a number of ways which

include:

Human errors in entering data, errors that occur when data is transmitted from one computer to

another, software bugs or viruses, hardware malfunctions, such as disk crashes and natural

Appendix B: Integrity Constraints

69

disasters such as fires and floods.

After data has been loaded into a database, the question now would be why should we bother

maintaining its integrity? There are several reasons for this, but the major ones can be identified as:

1.1.1 Protecting the data existence
After a customer has deposited his money into a bank account he expects it to be there the next time

he comes to make a withdrawal, otherwise he would not have deposited it in the first place. This

means that we expect all the data stored in a database to be available when needed, despite any

problems which might have occurred. This includes safeguarding the data from catastrophes like

fire and floods highlighted above.

1.1.2 Maintaining quality
This is all about ensuring that the data is accurate, current, consistent and complete. This is

generally achieved by employing mechanisms of ensuring correct, consistent data entry, always

having timely and up-to-date records and avoiding software bugs or viruses.

1.1.3 Ensuring Confidentiality
This is a responsibility of the security subsystem of the DBMS. The security subsystem should be to

detect and disallow unauthorised access of data.

1.2 Database Structure Integrity

This refers to the architectural, internal structures and pointers used to keep database objects in the

proper order. If these are disturbed in any way, database access will be compromised.

1.3 Semantic Data Integrity constraints in SQL 2003

This deals with the DBMS features and processes that can be used to ensure data consistency. The

DBMS should exert deliberate control on every process that uses your data to ensure the continued

correctness of the information. However the RDBMSs automatically enforce integrity up to a

certain point, and from there DBAs have to ask themselves how best they could enforce data

integrity, because the RDBMSs will not protect them from inept handling of transactions.

The current SQL standard, SQL 2003 provides support of semantic integrity constraints, both

declaratively as well as procedurally using triggers. Semantic Integrity constraints define the valid

Appendix B: Integrity Constraints

70

states of SQL-data by constraining the value stored in the database. A constraint can either be a

table constraint, a domain constraint or an assertion and is described by a constraint descriptor. This

descriptor is composed of:

• A name - which makes sure that, an integrity constraint is uniquely identified by its name

within a database schema. If a name is not specified explicitly, then the system will

implicitly provide an implementation-dependent name.

• The initial checking mode – which is an indication whether this is set to deferred or

immediate.

• A flag indicating whether or not the checking of the constraint can be deferred.

The declarative integrity support in each DBMS as compared to the SQL 2003 standard can be

depicted in the table below.

- means that this feature is supported

 - means that this feature is not supported

INTEGRITY FEATURES

SQ
L

 2
00

3

M
S

SQ
L

 2
00

0

O
ra

cl
e

9i

NOT NULL

DEFAULT

UNIQUE

PRIMARY KEY

MATCH SIMPLE
PARTIAL
FULL

ON DELETE

NO ACTION

RESTRICT

CASCADE

SET NULL

SET DEFAULT

FOREIGN KEY

ON UPDATE NO ACTION

RESTRICT

Appendix B: Integrity Constraints

71

 CASCADE

SET NULL

SET DEFAULT

Column – level

Row – level

Table – level

CHECK

Database – level
DOMAIN

ASSERTION

Table B.1 – Oracle’s and SQL Server’s support of SQL2003 declarative integrity9

As can be seen from the table above, both DBMSs have made big efforts in trying to implement all

the standard features but they are still lagging behind the standards.

1.3.1 Entity Integrity constraints
Entity integrity is all about uniquely identifying each instance of an entity. The entity integrity rule

stipulates that every instance of an entity is uniquely identified or the value of the PRIMARY KEY

must exist, be UNIQUE, and cannot be null [SQL- 92]. In this case, each table represents an entity,

and each row of a table represents an instance of that entity. For example, if order is an entity, the

orders table represents the idea of an order and each row in the table represents a specific order.

Thus experiments were carried out for UNIQUE and PRIMARY KEY constraints. The experiments

were centred on testing if each of the two constraints performed as expected in each DBMS. Basic

INSERT, UPDATE and ALTER command were used to create the scripts for these tests. SQL 2003

introduced a new entity integrity constraint called IDENTITY, however this was not considered as it

was implemented in these DBMSs.

Both Oracle [Oracle: 2005] and Microsoft SQL Server [Microsoft: 2003] enforce uniqueness by

automatically creating unique indexes whenever a PRIMARY KEY or UNIQUE constraint is

defined. Additionally, primary key columns are automatically defined as NOT NULL.

1.3.1.1 Unique constraints

These constraints are satisfied if and only if no two rows in a table have the same non-null values in

Appendix B: Integrity Constraints

72

their UNIQUE columns. [Türker, Gertz: 2000], states that:

A uniqueness constraint UNIQUE(X1,……..,Xn) holds for a table R in a database if and only if there

are no two rows r1, r2 in R such that the values of all their uniqueness columns Xi match and are not

null.

1.3.1.2 Primary constraints

A primary key is a special unique constraint. A primary key constraint is satisfied if and only if it is

UNIQUE and does not allow null values in the specified column(s). Entity integrity simply ensures

that every row in a table is unique. In other word it makes sure that duplicate rows are not possible.

1.3.2 Domain Integrity
This basically operates at field level. It is all about the permissible entries that a column can have.

And according to [Oracle: 2005] and [Microsoft: 2005], you can enforce domain integrity by

restricting the type (through data types), the format (through CHECK constraints and rules), or the

range of possible values (through FOREIGN KEY constraints, CHECK constraints, DEFAULT

definitions, NOT NULL definitions, and rules). Oracle treats a default as a column property, and

Microsoft SQL Server treats a default as a constraint. The SQL Server DEFAULT constraint can

contain constant values, or NULL. It is also added that the syntax used to define CHECK

constraints is the same in Oracle and SQL Server, and they create column constraints to enforce

nullability. Their columns default to NULL, unless NOT NULL is specified in the CREATE

TABLE or ALTER TABLE statements [Sheldon R, Wilansky E. 2001].

1.3.2.1 Check constraints

Check constraints place specific data value restrictions on the contents of a column and any attempt

to modify the column data will cause the search condition to be evaluated. This ensures that values

match specific conditions you would have set out.

The diagram below illustrated some of the domain integrity constraints.

9 Adapted from [Kline et.al : 1999]

Appendix B: Integrity Constraints

73

Figure B.1- Domain Integrity: Datatypes, Not Null Constraints, and Check Constraints10

Domain integrity ensures that each field value falls within a specified range. For example, in the

diagram above, the ORDER_ID column only allows numbers, no string, no dates and the likes. The

ORDER_DATE column only allows dates and in addition it cannot be NULL. Lastly the status column

only permits a single character which is either F or B only.

1.3.3 Referential Integrity
Referential constraints are an important means to describe dependencies among (portions of) rows

in tables. There are the referenced (or parent) and referencing (or child) tables where a subset fi,

..., fk of the columns of the referencing table builds the foreign key and refers to the unique/primary

key columns uj, ..., ul of the referenced table [Türker, Gertz: 2000].

These are concerned with keeping the relationship between tables synchronized. In order for this

type of integrity to be maintained, a FOREIGN KEY (FK) in a “child table” should only accept

values if they exist in the “parent table”. In SQL Server 2000 and Oracle 9i referential integrity is

based on relationships between foreign keys and primary keys or between foreign keys and unique

keys (through FOREIGN KEY and CHECK constraints). This ensures that values are consistent

across the tables. The diagram below depicts the relationships between Customers and their orders.

10 Adapted from [Animated Learning: 2002]

Appendix B: Integrity Constraints

74

Figure B.2 - Referential constraints11

A referential constraint is described by a referential descriptor which is composed of the following

amongst other things.

 A list of the referencing columns

 The referenced table

 A list of the referenced columns

 Different match types and the referential actions.

1.3.3.1 Referential Actions

The ANSI SQL-2003 standard contains the concept of a referential action. Sometimes, instead of

preventing a data-modification operation that would violate a foreign key reference, you might want

the database system to perform another, compensating action that allows the modification and still

honours the constraint. For example:

 Figure B.3 – Referential action example

11 Adapted from [Animated Learning: 2002]

If you delete a row from the customers table that the Orders table references, you could
instruct your DBMS to automatically delete all related Orders table rows (i.e., cascade
the delete to Order table). That way, you can modify the customers table without violating
the constraint.

Appendix B: Integrity Constraints

75

 The ANSI standard defines four possible referential actions that apply to deletes from or

updates to the referenced table: NO ACTION, CASCADE, SET DEFAULT, and SET

NULL.

 The NO ACTION option, which is the ANSI-standard default, prevents the modification if

the row is referenced by another row in another table.

 CASCADE allows a delete or update of all matching rows in the referencing table.

 SET DEFAULT lets the delete or update occur but sets all foreign key values in the

referencing table to a default value.

 SET NULL allows the delete or update and sets all foreign key values in the referencing

table to NULL.

Referential constraints are generally satisfied differently depending on the match type selected.

1.3.3.2 FOREIGN KEY constraints

Foreign key constraints help join, establish and synchronise the relationships between tables. There

are mainly two types of foreign keys which are: self-referencing and the ordinary foreign keys.

1.3.3.2.1 Self-referencing (same table foreign keys)

Normally foreign keys references primary keys in other tables, but at times they reference primary

keys in the same table. This type of referencing is called self referencing. For example, in the

students table as shown below, each student is associated to a class Rep who is also a student.

Figure B.4 - Self-referencing foreign key

Appendix B: Integrity Constraints

76

The other type of referential integrity is based on different table foreign keys or just foreign keys.

These are the most commonly used type of foreign keys.

1.3.3.3 Threats to Referential Integrity

1.3.3.3.1 Update threat

This can produce orphans when either the (PK) in the parent table or the (FK) in the child is

updated without any synchronization mechanism. This is where the ON DELETE and ON

UPDATE clauses are used with the FOREIGN KEY constraint [Microsoft: 2005].

1.3.3.3.2 Insert threat

This occurs when we allow insertion of records in the child table, with no associated records in the

parent table.

1.3.3.3.3 Delete threat

This occurs when we delete records from the parent table and not do anything about the

corresponding records in the child table.

1.3.4 User-defined integrity
This refers the to specific business rules not covered by the types of integrity. Business rules may

pertain to business calculations, for example, one of the implementation was how to convert a

percentage mark (for example, 82%) into a grade. This is usually implemented using triggers,

assertions and stored procedures. Also of utmost importance is the normalization of tables. The

integrity rules will be useless unless your tables are normalized [Microsoft: 2005].

.

1.3.4.1 Triggers

Triggers are basically database objects that are attached to a table, and are only fired when an

INSERT, UPDATE or DELETE occurs. This means that it specifies a particular action to take place

whenever a given event takes place on a particular object. This idea can be diagrammatically

presented as shown below.

Appendix B: Integrity Constraints

77

Figure B.5 – Oracle triggers stored in the database separate from their associated tables12

1.3.4.1.1 Uses of Triggers

 Maintaining integrity constraints

 Auditing of database actions

 Propagation of database modifications

To design a trigger, one has to specify

 The event and condition under which the trigger is to be executed, and

 The action(s) to be performed when the trigger executes

Figure B.6 - SQL 2003 triggers syntax

A trigger is fired if <trigger event(s)> occurred before/after an event in a transaction immediate/

deferred). It is executed if <condition> evaluates to true

The important feature underlying triggers is that the DBMS keeps track of modifications done by a

transaction using transition tables and use of special variables is made to make the data in the

transition tables available to the triggered action.

Create trigger <name>

{before/after} <trigger event(s)>

on <table> [referencing <transition table or variable list>]

[for each {row | statement}]

[when <condition>]

<triggered SQL statement>

Appendix B: Integrity Constraints

78

1.3.4.2 Stored procedures

A Stored procedure is a name group of SQL statements that is previously created, compiled and

stored in a database. It is processed as a unit that can be called from another SQL statement. It can

accept input parameters and pass values to output parameters. Some of the advantages of using

stored procedure over ad hoc queries as highlighted by [Henderson. K: 2002] include:

 Execution plan retention and reuse – they are beneficial to performance, since when you run

a stored procedure for the first time. The query optimiser builds an execution plan so that it

does not have to repeat parsing, optimization and other important stages during execution.

 Query auto parameterization

 Encapsulation of business rules and policies

 Application modularization

 Sharing of application logic between applications

 Access to database objects that is both secure and uniform

 Consistent and safe data modification

 Network bandwidth conservation

 Support for automatic execution at system start-up

1.3.4.3 Assertions

An assertion is a check constraint. It is a predicate expressing a condition that we want the database

to satisfy.

An assertion is described by an assertion descriptor. In addition to the components of every

constraint descriptor an assertion descriptor includes a <search condition>. An assertion is satisfied

if and only if the specified <search condition> is not False. However Oracle does not support

assertions.

1.4 Advantages of Integrity constraints

[Oracle: 2002], describes some of the advantages of using integrity constraints over other

alternatives. These are illustrated below.

 Declarative Ease

They enable you to define integrity constraints using SQL statements. This means that no

additional programming is required when you define or alter table. The DBMS will control

and manage the functionality of integrity constraints for you.

12 Adapted from Oracle reference : http://www-rohan.sdsu.edu/doc/oracle/server803/A54643_01/ch15.htm

Appendix B: Integrity Constraints

79

 Centralized Rules

Since Integrity constraints are defined for tables and are stored in the data dictionary. There

are always enforced no matter what application tries to access the database. Server

implementation of business rules ensures that no erroneous data will make it to the database

without being noticed. This centralises the maintenance of integrity and easies the amount of

application logic.

 Maximum Application Development Productivity

This works in same manner as code re-factoring. Implementing business rules by an

integrity constraint means that if these rules change, the administrator need only change that

integrity constraint and all applications will automatically adopt. Unlike implementing it at

the application level which means a change in the business rule will need multiple changes

in all applications that use that rule.

 Immediate User Feedback

As information pertaining to each integrity constraint is usually stored in the data dictionary,

constraint violations can be detected immediately and the feedback propagated to the user.

 Superior Performance

The semantics of integrity constraint declarations are clearly defined, and performance

optimizations are implemented for each specific declarative rule. The query optimizer can

use declarations to learn more about data to improve overall query performance.

 Flexibility for Data Loads and Identification of Integrity Violations

Even though integrity constraints are there to ensure that your data adhere to predefined

steady fast rules, there is an overhead associated with them. This might be costly to

performance when performing huge data loads. The good news is that they are flexible

enough to be turn off when necessary. Checking of data which violates integrity constraints

will then be initiated at a later stage when you have finished loading the data.

Appendix C: Summaries of Integrity tests error messages

80

Appendix C: Error messages.

1 Summary of unique tests error messages

I. ORA-00001: unique constraint (PAUL.UK_REGION) violated

II. Server: Msg 2627, Level 14, State 2, Line 1

Violation of UNIQUE KEY constraint 'UK_Region'. Cannot insert

duplicate key in object 'region'. The statement has been

terminated.

III. ORA-01400: cannot insert NULL into ("PAUL"."REGION"."REGIONID")

IV. Server: Msg 515, Level 16, State 2, Line 1

Cannot insert the value NULL into column 'regionID', table

'Paulos.dbo.region'; column does not allow nulls. INSERT fails.

The statement has been terminated

V. ORA-02299: cannot validate (PAUL.UK_REGION) - duplicate keys

found

VI. Server: Msg 1505, Level 16, State 1, Line 1

CREATE UNIQUE INDEX terminated because a duplicate key was

found for index ID 4. Most significant primary key is '2'.

Server: Msg 1750, Level 16, State 1, Line 1

Could not create constraint. See previous errors.

The statement has been terminated.

2 Summary of referential Integrity tests error messages
I. Server: Msg 547, Level 16, State 1, Line 1

INSERT statement conflicted with COLUMN FOREIGN KEY constraint

'FK_Territories_region'. The conflict occurred in database

'Paulos', table 'region', column 'regionID'. The statement has

been terminated.

II. Server: Msg 5074, Level 16, State 8, Line 1

The object 'PK_Region' is dependent on column 'regionID'.

Server: Msg 5074, Level 16, State 1, Line 1

The object 'PK_Region' is dependent on column 'regionID'.

Server: Msg 5074, Level 16, State 1, Line 1

Appendix C: Summaries of Integrity tests error messages

81

The object 'FK_Territories_region' is dependent on column

'regionID'.

Server: Msg 4922, Level 16, State 1, Line 1

ALTER TABLE DROP COLUMN regionID failed because one or more

objects access this column

III. Server: Msg 547, Level 16, State 1, Line 1

UPDATE statement conflicted with COLUMN SAME TABLE REFERENCE

constraint 'FK_Students_Students'. The conflict occurred in

database 'Paulos', table 'Students', column 'ClassRepID'.

The statement has been terminated

IV. Server: Msg 1785, Level 16, State 1, Line 1

Introducing FOREIGN KEY constraint 'FK_Students_Students' on

table 'Students' may cause cycles or multiple cascade paths.

Specify ON DELETE NO ACTION or ON UPDATE NO ACTION, or modify

other FOREIGN KEY constraints.

Server: Msg 1750, Level 16, State 1, Line 1

Could not create constraint. See previous errors

V. ORA-02291: integrity constraint (PAUL.FK_REGION_TERRITORIES)

violated - parent key not found

VI. ORA-12992: cannot drop parent key column

3 Summary of decimal data type tests error messages
I. Server: Msg 8114, Level 16, State 5, Line 1 Error converting data

type varchar to numeric.

II. Server: Msg 1007, Level 15, State 1, Line 3

The number '211564155656456465565645645645645645454565645645' is

out of the range for numeric representation (maximum precision

38).

III. ORA-01722: invalid number

IV. ORA-01400: cannot insert NULL into

("PAUL"."TERRITORIES"."TERRITORYID).

V. ORA-01401: inserted value too large for column

Appendix C: Summaries of Integrity tests error messages

82

4 Summary of small int tests error messages

I. Server: Msg 245, Level 16, State 1, Line 1

Syntax error converting the varchar value 'test' to a column of

data type int.

II. Server: Msg 8115, Level 16, State 2, Line 1

Arithmetic overflow error converting expression to data type int.

The statement has been terminated.

III. ORA-01722: invalid number

IV. ORA-01400: cannot insert NULL into

("PAUL"."TERRITORIES"."TERRITORYID")

V. ORA-01401: inserted value too large for column

5 Summary of float tests error messages
I. Server: Msg 8114, Level 16, State 5, Line 1

Error converting data type varchar to float.

II. Server: Msg 168, Level 15, State 1, Line 3

The floating point value '9.87987567273373E+308' is out of the

range of computer representation (8 bytes).

III. ORA-01722: invalid number

IV. ORA-01400: cannot insert NULL into

("PAUL"."TERRITORIES"."TERRITORYID").

V. ORA-01426: numeric overflow

6 Summary of real tests error messages

I. Server: Msg 8114, Level 16, State 5, Line 1

Error converting data type varchar to float

II. Server: Msg 1007, Level 15, State 1, Line 3

The number

'2.534564864654848648486486468484834548484848484212315645' is out

of the range for numeric representation (maximum precision 38).

III. Server: Msg 1007, Level 15, State 1, Line 3

The number

'2534564864654848648486486468484834548484848484212315645' is out

Appendix C: Summaries of Integrity tests error messages

83

of the range for numeric representation (maximum precision 38).

IV. ORA-01722: invalid number

V. ORA-01400: cannot insert NULL into

("PAUL"."TERRITORIES"."TERRITORYID").

VI. ORA-01426: numeric overflow

7 Summary of check constraints tests error messages
I. Server: Msg 547, Level 16, State 1, Line 1

INSERT statement conflicted with COLUMN CHECK constraint

'CK_Salary'. The conflict occurred in database 'Paulos', table

'Employee', column 'Salary'.

The statement has been terminated

II. Server: Msg 547, Level 16, State 1, Line 1

INSERT statement conflicted with TABLE CHECK constraint

'CK_Sal_Comm'. The conflict occurred in database 'Paulos', table

'Employee'.

The statement has been terminated.

III. ORA-02290: check constraint (PAUL.CK_SALARY) violated

Appendix D: SQL Standards

84

Appendix D: SQL standards

1. Vendor lock in

[Wikipedia: 2005] states that this is a situation where a customers becomes so dependent on

vendor’s products that it will be difficult to switch to another vendor without substantial switching

costs. This will act as barrier to market entry for other products and if it is great enough, a

monopoly might even arise. Microsoft software was also cited as carrying a highest level of vendor

lock-in, based on its extensive set of proprietary APIs. As a solution to this problem in the 80s and

90s public, royal free standards were proposed. But this solution did not seem to work effectively.

Ever since the late 90s, Free/Open Source software is being pushed as the way to go.

SQL is an open standard, not owned by any company, thus only ANSI-SQL is considered pure

SQL. But, because the spirit of product differentiation is very strong among the different vendors

in their endeavours to gain more customers, you could find that not only does a product support the

standard SQL, but it also offers proprietary extra features, enhancements or extensions, and

consequently, dialects are continuing to proliferate.

2. SQL dialects

 According to [Kline.K:2001], the constantly evolving nature of the SQL standards has given rise to

the number of dialects in the market. This is because the user community of a given database

vendor required capabilities before the ANSI had set up the standard for that functionality. In some

cases new features are produced by the research and academic communities.

These dialects have introduced procedural commands to support the functionality of a much more

complete programming language. However, even if a DBMS conforms to the SQL99 standards, its

commands may differ from other DBMSs because the SQL statements may be parsed, compiled,

and executed differently, especially if different binding styles are used[Kline.K :2001].

SQL2003 schema
Command

SQL2003 class Oracle 9i SQL Server 2000

ALTER DATABASE SQL-schema SWV SWV

ALTER DOMAIN SQL-schema NS NS

ALTER FUNCTION SQL-schema SWV SWV

Appendix D: SQL Standards

85

ALTER METHOD SQL-schema NS NS

ALTER PROCEDURE SQL-schema SWV SWV

ALTER TABLE SQL-schema SWV SWV

ALTER TYPE SQL-schema SWV NS

CREATE DOMAIN SQL-schema NS NS

CREATE FUNCTION SQL-schema SWV SWV

CREATE METHOD SQL-schema NS NS

CREATE PROCEDURE SQL-schema S S

CREATE ROLE SQL-schema SWV NS

CREATE SCHEMA SQL-schema SWV SWV

CREATE TABLE SQL-schema SWV SWV

CREATE TRIGGER SQL-schema SWV SWV

CREATE TYPE SQL-schema SWV NS

CREATE VIEW SQL-schema SWV SWV

DROP DOMAIN SQL-schema NS NS

DROP FUNCTION SQL-schema SWV SWV

DROP METHOD SQL-schema SWV NS

DROP PROCEDURE SQL-schema S S

DROP ROLE SQL-schema SWV NS

DROP TABLE SQL-schema SWV SWV

DROP TYPE SQL-schema S NS

DROP TRIGGER SQL-schema SWV SWV

DROP VIEW SQL-schema S S

GRANT SQL-schema SWV SWV

OPERATORS SQL-schema SWV SWV

REVOKE SQL-schema SWV SWV

Table D.1 - Schema commands13

13 Adapted from [Kline.K : 2004]

Appendix D: SQL Standards

86

SQL2003 data
Command

SQL2003
class

Oracle 9i SQL Server 2000

ALL/ANY/SOME SQL-data S S

BETWEEN SQL-data S S

CLOSE CURSOR SQL-data S SWV

DECLARE CURSOR SQL-data SWV SWV

DELETE SQL-data SWV SWV

EXCEPT SQL-data SWV NS

EXISTS SQL-data S S

FETCH SQL-data SWV SWV

IN SQL-data SWV S

INSERT SQL-data SWV SWV

INTERSECT SQL-data SWV NS

IS SQL-data S S

JOIN subclause SQL-data S SWV

LIKE SQL-data S SWV

MERGE SQL-data S NS

OPEN SQL-data S S

ORDER BY SQL-data SWV SWV

SELECT SQL-data SWV (ANSI joins
supported)

SWV (ANSI joins
supported)

Table D.2 - SQL-data commands14

14 Adapted from [Kline.K: 2004]

Appendix D: SQL Standards

87

SQL2003 Command SQL2003 class Oracle 9i SQL Server 2000
CONNECT SQL-connection S SWV
DISCONNECT SQL-connection SWV SWV
SET CONNECTION SQL-connection NS SWV
SET CONSTRAINT SQL-connection SWV NS
RETURN SQL-control S S
SET SQL-session NS S
SET CATALOG SQL-session NS NS
SET COLLATION SQL-session NS NS
SET DESCRIPTOR SQL-session NS NS
COMMIT SQL-transaction SWV SWV
RELEASE SAVEPOINT SQL-transaction NS NS
ROLLBACK SQL-transaction SWV SWV
SAVEPOINT SQL-transaction S SWV

Table D.3 - SQL-connection, session and transaction statements15

Characteristic Platform Specification

Identifier size SQL2003 128 characters

 Oracle 30 bytes (number of characters depends on the character set);
database names are limited to 8 bytes

 SQL Server 128 characters (temp tables are limited to 116 characters)

Identifier may contain SQL2003 Any number, character, or underscore

 Oracle Any number, character, and the underscore (_), pound (#), and
dollar ($) symbols

 SQL Server Any number, character, and the underscore (_), at sign (@),
pound (#), and dollar ($) symbols

Identifier must begin
with

SQL2003 A letter

 Oracle A letter

 SQL Server A letter, underscore (_), at sign (@), or pound (#)

Identifier cannot
contain

SQL2003 Spaces or special characters

 Oracle Spaces, double-quotes ("), or special characters

 SQL Server Spaces or special characters

Allows quoted SQL2003 Yes

15 Adapted from [Kline.K : 2004]

Appendix D: SQL Standards

88

identifiers

 Oracle Yes

 SQL Server Yes

Quoted identifier
symbol

SQL2003 Double-quote (")

 Oracle Double-quote (")

 SQL Server Double-quote (") or brackets ([]); brackets are preferred

Identifier may be
reserved

SQL2003 No, unless as a quoted identifier

 Oracle No, unless as a quoted identifier

 SQL Server No, unless as a quoted identifier

Schema addressing SQL2003 Catalog.schema.object
 Oracle Schema.object

 SQL Server Server.database.schema.object

Identifier must be
unique

SQL2003 Yes

 Oracle Yes

 SQL Server Yes

Table D.4 - SQL 2003 rules for naming Identifiers16

16 Adapted from [Kline.K : 2004]

Appendix E: Tutorial and what is on the CD

89

Appendix E: Tutorial and what is on the CD
On the CD there are the tools that were used for the project, tools like “DB Tools Version 5 for

Oracle”, were mainly used as editors for SQL scripts.

On the CD there is also a working draft of the SQL 2003 standards which was used. The overview

of the CD contents is given by the picture below.

Figure E.0 – CD- contents

1. Performing the tests in SQL Server 2000

To start working with SQL Server 2000 you need to have administrative privileges on the machine.

In addition you need to have OLAP administrative powers.

The simplest way to work with SQL Server is through the Enterprise Manager, which found by

following the steps shown below.

Appendix E: Tutorial and what is on the CD

90

Figure E.1 starting Enterprise Manager.

Expand items under the Console Root node until you can access the databases as shown below

Appendix E: Tutorial and what is on the CD

91

Figure E.2 Console Root node.

From there click on tools -> SQL Query analyzer

You then have to login using the sa password or windows authentication.

After this load and execute the script called Paulos_SQL SERVER.sql which is on the CD. This

script will create most of the base tables needed for the experiments.

After that the tests can carried out by running the different integrity scripts on the CD in any logical

order.

1. Performing the tests on Oracle 9i

First of all you have to login to the Oracle enterprise manager using username paul: and password:

smirage in the dialogue box shown figure E.3

After you are connected, you have to now choose the SQL*Plus Worksheet which will display as

shown in figure E.4.

Appendix E: Tutorial and what is on the CD

92

Figure E.3 – Oracle login dialog box

Figure E.4- SQL* Plus Worksheet

After you have connected to SQL*Plus Worksheet, you have load the PAUL_Oracle.SQL script to

create the base tables. After that the experiments can be carried out following the structure given in

the tests performed column of each integrity test in chapter 3.

Appendix F: References

93

Appendix F: References

[Akadia Information Technology:
2005]

Akadia Information Technology: 2005, Oracle Tips and Tricks of
the Week Part 4
http://www.akadia.com/services/ora_important_part_4.html

[Beaulieu A, Mishra S. 2002]
Beaulieu A, Mishra S. 2002, Mastering Oracle SQL, O'Reilly,
2002

[Channel 9 forums: 2005].
Channel 9 forums: 2005, The version of SQL after version 2005

[Coronel C & Rob P. 2002]

Coronel C & Rob P. 2002, Database systems design,
implementation and management 5 th Ed , Course Technology ,
2002

[Groff and Weinberg: 2004]
Groff-Weinberg, 2004, SQL: The Complete Reference, Second
Edition, McGraw-Hill Osborne, 2004

[Gulutzan. P [1]: 2005]

Peter Gulutzan: 2005, Standard SQL: Do IBM, Microsoft, and
Oracle support the SQL: 1999 standard? And will they support
the SQL: 2003 standard as well?
http://www.dbazine.com/db2/db2-disarticles/gulutzan3

[Gulutzan. P [2]: 2005]
Peter Gulutzan: 2005, SQL Naming Conventions
http://www.dbazine.com/db2/db2-disarticles/gulutzan5

[Hawthorne R. 2002]

Rob Hawthorne. 2002, The Battle of the RDBMSs: SQL Server
2000 Versus Oracle 9i (Part 1)
http://www.informit.com/articles/article.asp?p=27317&rl=1

[Kline K E. 2004]
Kline Kevin. E. 2004, SQL in a Nutshell, 2nd Edition, O'Reilly,
2004.

[Kline K et al: 1999] Kevin Kline with Daniel Kline, 1999, SQL IN A NUTSHELL A
Desktop Quick Reference

Appendix F: References

94

[Kline.K :2001],
Kline.K :2001, SQL IN A NUTSHELL A Desktop Quick
Reference, 2001

[MCAD, 2005]

MCAD Article Management. 2005, Oracle Recognized As Leader
In Worldwide Database Market Share, According To Leading
Research Firm
http://www10.mcadcafe.com/nbc/articles/index.php?section=Cor
pNews&articleid=169782

[Microsoft [1]: 2001]
REDMOND, Wash., June 28, 2001, Building the Billion Dollar
Database: Microsoft SQL Server Climbs to New Heights

[Microsoft: 2005]

Microsoft: 2005, Migrating Oracle Databases to SQL Server
2000
http://www.microsoft.com/technet/prodtechnol/sql/2000/deploy/s
qlorcle.mspx

[Mimer Developer page: 2005].
Mimer Developer page: 2005, Mimer SQL-2003 Validator
http://developer.mimer.com/validator/parser200x/index.tml

[Mullins C S. 2002]
Mullins C S. 2002, Database Administration: The Complete
Guide to Practices and Procedures, Addison Wesley, 2002

[Mullins. C.S [1]: 2005]

Mullins. C.S [1]: 2005, The Data Administration Newsletter
(TDAN.com): The Database Report - October 2005 Reporting on
Database Industry News from July through September, 2005
http://www.tdan.com/dbreport_issue34.htm

[Oracle [1]: 2005]
Oracle [1]: 2005, Oracle Company Profile Page
http://company.monsterindia.com/oraclein/

[Oracle [2]: 2005]
Oracle [2]: 2005, Oracle FAQ Page
http://www.orafaq.com/faqora.htm

[Rosenzweig B, Silvestrova E.
2003] Rosenzweig B, Silvestrova E. 2003, Oracle® PL/SQL by

Appendix F: References

95

Example, Third Edition, Prentice Hall PTR, 2003

[Stakemire T.S, 2000].

Stakemire T.S, 2000, An evaluation of the integrity of MySQL
and Oracle database management systems
http://hobbes.ict.ru.ac.za/csae/research/dbgroup/final_writeup.doc

[Troels A: 2005]
Troels A: 2005, Comparison of different SQL implementations
http://troels.arvin.dk/db/rdbms/

[Türker, Gertz: 2000]

Türker, Gertz: 2000, Semantic Integrity Support in SQL-99 and
Commercial (Object-)Relational Database Management Systems,
VLDB Journal 10(4): 241-269, 2000

[Webopedia [1]: 2005]
Webopedia: 2005, Data integrity
http://www.pcwebopaedia.com/TERM/d/data_integrity.html

[Wikipedia [1]: 2005]
Wikipedia [1]: 2005, Microsoft SQL Sever
http://en.wikipedia.org/wiki/Microsoft_SQL_Server

[Wikipedia [2]: 2005] Wikipedia : 2005, PL/SQL
http://en.wikipedia.org/wiki/PL/SQL

