

Interpretation and Visualization of C/C++ Data Structures

Submitted in partial fulfilment of the requirements of the

BACHELOR OF SCIENCE HONOURS DEGREE IN COMPUTER SCIENCE

at

RHODES UNIVERSITY

by

DYLAN VAN DER MERWE

November 2008

ii

Abstract

Software visualization systems in 2D, 3D and immersive environments have been incorporated in numerous

fields such as software evolution, education, security and data mining. A simple C-like language has been

designed for this project to facilitate the teaching and learning of programming concepts, such as memory

management and data structures. An Integrated Development Environment (IDE) has been developed that

includes a parser, interpreter and Visualizer within which the user may experiment, demonstrate, correct

errors and learn. As directed by the source code, the Visualizer draws variables contained on the interpreter

heap and stack as contiguous blocks of memory with which the user can interact. By utilizing a visual

system to build an immersive application for novice C/C++ programmers to learn new programming

concepts and skills, students obtain an increased vocabulary of programming terms as well as increased

engagement in the material.

iii

Acknowledgements

I would like to thank my supervisor, Dr Karen Bradshaw, for her support and encouragement throughout the

year.

Many thanks to my family and friends for everything they have done to help me reach this point in my life.

A special thanks to Phillip Foulkes who spent countless hours debating with me, listening to my ideas and

supporting me while continuing to be a good friend.

I acknowledge the financial and technical support of this project of Telkom SA, Comverse SA, OpenVoice,

Stortech, Tellabs, Amatole, Mars Technologies, Bright Ideas Projects 39 and THRIP through the Telkom

Centre of Excellence at Rhodes University.

iv

Table of Contents

Abstract .. ii

Acknowledgements .. iii

Table of Contents .. iv

List of Figures ... vi

List of Tables ... vii

1 Introduction .. 1

1.1 Design and Implementation Considerations ... 1

1.2 Expected Output .. 2

1.3 Summary of Chapters .. 3

2 Literature Survey ... 4

2.1 Software Visualization .. 4

2.2 2D and 3D Visualization ... 5

2.3 Virtual Environments .. 5

2.4 Metaphors .. 6

2.5 Other Applications of SVs .. 7

2.5.1 Software Evolution .. 7

2.5.2 Software Security ... 7

2.5.3 Data Mining ... 7

2.6 Student Engagement .. 7

2.7 Algorithms and Software Engineering Education ... 8

2.8 Pointers .. 8

2.9 Complexity .. 9

2.10 Related Work ... 10

3 The Translator and Grammar ... 12

3.1 Background of Translators .. 12

3.1.1 Translation Phases ... 12

3.1.2 The Front End .. 13

3.1.3 The Back End ... 14

v

3.1.4 Top-Down Recursive Parsing .. 15

3.1.5 Available Parsing Tools ... 16

3.2 The CMinor Language .. 17

3.2.1 CMinor Supports .. 18

3.2.2 CMinor does not Support ... 18

3.3 Developing the Grammar .. 19

4 Interpreter ... 22

4.1 Intermediate language ... 22

4.2 Interpreter Data Structures .. 25

4.3 Operation of the Interpreter ... 26

4.3.1 First Pass: Environment Initialization .. 26

4.3.2 Second Pass: Interpreting Tokens .. 27

4.3.3 Scope .. 28

4.3.4 Errors.. 29

4.3.5 Memory Leaks ... 29

5 Visualization .. 31

5.1 Similar Work ... 31

5.2 CMinor Visualizer ... 33

5.3 Implementation.. 34

5.3.1 First Version of the Visualizer ... 34

5.3.2 The Visualizer Redesigned .. 36

6 CMinor Studio ... 38

7 Conclusion ... 45

8 References .. 48

Appendix A: CMinor Studio User Manual .. 52

Appendix B: CMinor.h Listing .. 53

Appendix C: CMinor Unattributed Grammar .. 54

Appendix D: Poster .. 62

vi

List of Figures

Figure 1: The basic concept of visualizing the source code on a line-by-line basis. ... 3

Figure 2: A simple C++ program utilizing a library ... 9

Figure 3: C-style program performing the same task as in Figure 2: A simple C++ program utilizing a

library ... 9

Figure 4: The steps of a translator forming the analytic and synthetic phases (Terry, 2005) 12

Figure 5: An abstract symbol tree formed by the expression: x = p + q * 10 .. 14

Figure 6: Low level operational codes can be optimized by the code optimizer to produce more efficient

code .. 14

Figure 7: An LL(1) compatible set of productions to parse a for loop successfully 20

Figure 8: Grammar productions allowing a pointer type to be declared on basic variable types 20

Figure 9: Missing braces around the inner for loop body is a clear example of syntax ambiguities and why an

intermediate language is required .. 22

Figure 10: Example of the intermediate language generated from a simple max function 23

Figure 11: Example of the intermediate language generated for a structure definition and append function

for a linked list ... 24

Figure 12: Class diagram of the interpreter‟s data structures .. 25

Figure 13: Tokens and expressions as evaluated by the interpreter... 28

Figure 14: Memory dump produced by the interpreter .. 30

Figure 15: Screenshot of Jeliot 3 (Myller, 2004) ... 32

Figure 16: Structural layout of Jeliot 3 (Myller, 2004) .. 32

Figure 17: Structural design of the user interface designed for this project .. 33

Figure 18: Class diagram showing how the MemoryMapPanel1 integrates into the system design 34

Figure 19: Class diagram illustrating the redesign of the human interaction component 36

Figure 20: Screenshot of CMinor Studio ... 39

Figure 21: Pointer variables as depicted by the Visualizer .. 39

Figure 22: Erroneous lines are highlighted in the code view and a corresponding message is given in the

console ... 41

Figure 23: User interaction through movement of the mouse changes the visual produced 41

Figure 24: Variables not in the currently executing scope are faded out... 43

Figure 25: Linked list representation by the Visualizer ... 43

Figure 26: Overall operation of the system.. 46

Figure 27: Algorithmic representation of a Binary Tree and other structures as an extension to the Visualizer

.. 47

vii

List of Tables

Table 1: Features supported by the CMinor language ... 18

Table 2: Features not supported by the CMinor Language.. 18

1

1 Introduction

The aim of this project is to design and implement a tool that will assist novice C/C++ programmers with

learning and understanding C/C++ code and coding concepts. The system engages users by allowing them to

type in their own source code which is then interpreted on a line-by-line basis. As a teaching tool, syntax

errors are highlighted to ensure that the language rules are adhered to and grasped. The system generates a

visual display of the interpreted code allowing the user to create a graphical mental mapping of the concepts

being taught.

The programming languages C and C++ are ranked 2
nd

 and 3
rd

 respectively (TIOBE Programming

Community Index, 2008) implying that both these languages are still widely used in both a learning

environment as well as in the computing industry. As such it can be assumed that students are being trained

in these languages. This project‟s main aim is to assist with the understanding of pointers and pointer

arithmetic through the aid of visual diagrams during the demonstration and practical application of

programming concepts, such as linked lists.

1.1 Design and Implementation Considerations

The first aspect of this project is to develop a suitable grammar to successfully parse the defined subset of

C/C++, called CMinor (Section 3.2). To do this, an analytic phase (Terry, 2005) is carried out in which the

source code is analysed to determine whether the syntactic and semantic constraints imposed by the

grammar are adhered to. Within the analytic phase, two processes occur. Firstly the scanner breaks up the

characters of the source code into tokens which are then passed onto the second process, the parser. The

parser then groups the tokens into syntactic structures through which the semantics of the code are validated.

To implement the analytic phase, a tool called Coco/R (Institut für Systemsoftware, 2008) is made used.

With this tool, a grammar defining the subset of C/C++ can be defined. Coco/R generates a scanner and a

parser class based on the rules of the grammar for the target language. An interpreter reads in the tokens

from the intermediate language which has been generated by the parser and then executes the user‟s source

code provided no errors have been encountered. Human component interaction (HCI) classes are created to

visualize the variables on the stack and heap. As the interpreter executes the source code on a line-by-line

basis, it sends a signal to the Visualizer which then redraws the current contents of the interpreter‟s heap and

stack memory spaces.

The output classes of Coco/R are generated in the C# language. By using C# as the implementation

language, the entire .NET framework (version 2) is available for use. This is most useful as it has a huge

library of assorted classes, such as a simple to use Thread class, which will greatly assist in the

2

implementation of the interpreter. Strong visualization/drawing classes are present which make the

implementation of the Visualizer and GUI more streamlined as less time is needed to implement basic

features. The environment used to program C#, Visual Studio 2005, is one in which rich GUIs can easily be

created, together with many other code generating assistance tools which speeds development time. C# is

run by a virtual machine in a managed environment, which also eases and speeds development by removing

the need to manage memory, as would be the case if using C++. The alternative output for Coco/R is Java

source code for the scanner and parser. Java would be a good alternative if this project were to be used on

other operating systems. Students, however, at Rhodes University learn C++ on a Windows platform and

these students are the primary focus of this project.

1.2 Expected Output

The final product is a tool that allows novice students learning C/C++ to actively engage in the learning

environment, as this has been shown (Hundhausen et al., 2002) (Myller, 2004) to improve the understanding

and comprehension of what they are being taught. The finished product therefore executes and visualizes the

code that the user has typed in, instead of running through predefined code snippets which have been pre-

programmed into the tool.

The proposed system provides an area in which the students can type in their code. This is a simulation of a

“real” IDE (such as Visual Studio, Borland, etc) so as to familiarize the user with that sort of environment.

Once finished typing their code, they can interact with the GUI by pressing buttons, which, in this case, is a

Play button. The system then does a pass through the code, parsing it to ensure that the semantics and syntax

are correct. At this point, if there are any errors the erroneous lines are highlighted and an error log is shown

to the user. This step, firstly, teaches the student the correct C/C++ syntax and rules of the language by

ensuring the code they write is correct and secondly to ensure that, upon the interpreter instructing the

Visualizer to draw graphics, the intermediate language produced is valid.

As each line is evaluated, it is highlighted so that the user can follow the program‟s execution (Figure 1).

The Visualizer draws two contiguous areas of memory to represent the heap and stack to simulate a real

C/C++ programming environment.

3

Figure 1: The basic concept of visualizing the source code on a line-by-line basis.

1.3 Summary of Chapters

Chapter 2 provides a summary of the field of software visualization. Various software visualization systems

in differing fields are evaluated. Work related to this project and an assessment of C/C++ with regards to

teaching techniques is discussed.

Chapter 3 provides an introduction to translators and the approach taken to the design of the translator in

this project. The CMinor language, together with its grammar, is examined in this chapter.

Chapter 4 discusses the interpreter used to execute the intermediate language generated by the translator.

Chapter 5 focuses on the Visualizer. An in depth discussion explains the design and operation thereof.

Chapter 6 presents the CMinor Studio application which is an integrated development environment

incorporating all aspects of this project and that is responsible for presenting the graphical output to the user.

int i

90

int* iPtr
int i = 90;

int* iPtr;

iPtr = &i;

4

2 Literature Survey

Software Visualization (SV) is a field that is continually changing and evolving (Eick et al., 2002). Software

today typically comprises millions of lines of code (Gracanin et al., 2005). Analysing the effects and impacts

of changes made to this code is thus a labour-intensive and often error-prone task (Hutchins & Gallagher,

1998). To ensure that systems are built correctly and maintained, a thorough understanding of the

implemented programming language is required (Stroustrup, 1997). Such knowledge is the foundation upon

which this project aims to build.

2.1 Software Visualization

Software Visualization can be defined as “a discipline that makes use of various forms of imagery to

provide insight and understanding and to reduce the complexity of the existing software system under

consideration” (Knight & Munro, 1999). SV attempts to give physical shape to shapeless or intangible

software by visualizing computer programs or algorithms. The goal is to provide better understanding and

comprehension of software artefacts (Ball & Eick, 1996).

What can be visualized? How? For what reasons? Research over the years (Gracanin et al., 2005) has shown

that various aspects of source code, the code itself, data flow as well as run-time behaviour can be

envisioned. Attributes which identify the properties of SV systems (Price et al., 1993) (Roman & Cox, 1993)

include:

 Scope and content: What is the aspect of the program being visualized?

 Abstraction: What kind of information is being conveyed by the visualization?

 Form and technique: How is the graphical information being conveyed?

 Method: How is the visualization specified?

 Interaction: How can the user interact with the visualization?

An argument for the task-oriented view of SV (Maletic et al., 2002) states that no single SV tool or

technique is able to address all visualization tasks. It is therefore necessary to identify the most suitable

technique to visualize the given SV task based on the SV‟s dimensions (Maletic et al., 2002):

 Tasks: Why is the visualization needed?

 Audience: Who will use the visualization?

 Target: What is the data source to represent?

 Representation: How should it be represented?

 Medium: Where the visualization is represented?

5

2.2 2D and 3D Visualization

Techniques used in two-dimensional visualizations involve graphs or tree-like structures (Van Ham, 2003)

consisting of a large number of nodes and arcs. Complex software systems may consist of thousands of such

nodes and arcs. Examples of systems which provide users with a number of different windows or views to

present varying characteristics or levels of detail include Seesoft (Eick et al., 1992) and SHriMP (Storey et

al., 1997).

There is, however, a negative aspect (Gracanin et al., 2005) inherently associated with two-dimensional

visualizations: cluttering. Although methods for avoiding clutter such as pan/zoom and fisheye (Storey et al.,

1997) have been explored, visualizing software in two-dimensions cannot avoid introducing an information

overload by presenting too much information. Ware et al. (1993) conducted an experiment in which a

subject‟s perception was analysed in both 2D and 3D and concluded that there is empirical evidence that

error rates are less when 3D visualizations are used. GraphVisualizer3D (Ware et al., 1993) was developed

to visualize object-oriented code in 3D taking advantage of the fact that 3D visualizations allow users to

perceive the depth of a presented structure. Stasko (1992) identifies the need for an extra spacial dimension,

stating that “by adding an extra spatial dimension, we supply visualization designers with one or more

possibility for describing some aspect of a program or system”.

Three-dimensions have also been explored for most areas where 2D visualizations are used, such as

visualization to track software errors, isolate problems, monitor progress of development as well as three-

dimensional UML representations (Gracanin et al., 2005).

2.3 Virtual Environments

To provide a better means to explore software structure, the Virtual Environment (VE) should be examined.

VEs open possibilities of immersion and navigation enabling the user to interact with a representation of a

familiar object. The concept of “worlds” in a VE can be associated with “entities” or “components” in a

software system (Gracanin et al., 2005). Source code may be presented and linked in a VE to improve

comprehension. VEs allow users to navigate through links in the world which affords a faster and more

intuitive interface for learning than 2D or 3D structures.

VEs representing object-oriented software systems have been designed and researched. Two of these

systems are ImsoVision (Maletic et al., 2001) and Software World (Knight & Munro, 1999). The former

system represents C++ code within an immersive VE, while the latter does the same for Java code. Both of

these visualization systems can only visualize static properties of the code and cannot be used to represent

the code‟s state in a run-time environment. It is therefore necessary to further investigate metaphors that will

allow us to move beyond representing static code (Asokan, 2003).

6

2.4 Metaphors

Abstract geometrical shapes, as in ImsoVision (Maletic et al., 2001), or real-world entities, as in Software

World (Knight & Munro, 1999), can be considered as metaphors. Metaphors in the medium of

representation therefore affect the expressiveness of the visualization and their essence conveys

understanding of one kind of thing in terms of another (Gracanin et al., 2005). The next question to be asked

is: What are the desirable characteristics of a VE for visualizing a code analysing software solution? To

answer this, the desirable properties of a SV metaphor in 2D, 3D and VEs must be defined.

There are two graphical design issues that need to be considered: expressiveness and effectiveness

(Mackinlay, 1986). Expressiveness refers to the medium used to express the visual representation while

effectiveness is the extent to which the representation is effective for comprehension of the content. To be

expressive and effective, the following key points in visual systems should be considered:

1. Scope

Scope, as defined by Price et al. (1993) implies isolating the characteristics of the system that the

visualization will address. If the scope is not defined, visualizing large systems can become highly

complicated and time consuming. Therefore the SV may choose to represent the static or dynamic

features of the software or alternatively may focus on representing control flow, data flow and/or

dependencies.

2. Medium of representation

The level of detail and the type of information displayed are but two factors to think about when

choosing a medium. Is a 2D graph sufficient? Or perhaps, due to an overwhelming amount of

information, 3D visualizations should be utilized.

3. Visual Metaphor

The metaphors chosen should be rich enough to provide the user with connections between aspects

of the software and what is being visualized.

4. Abstractedness

The ability of a user to focus away from certain parts of the representation depending on their

experience level with the presented material. Different levels of abstraction exist such as direct

representation, structural representation, synthesized representation and analytical representation

(Roman & Cox, 1992).

5. Level of automation

The degree to which the construction of the SV is automatic.

7

2.5 Other Applications of SVs

Software Visualizations have been researched and constructed for many different applications.

2.5.1 Software Evolution

There have been attempts to create SV solutions which visualize the evolution of a system. A

forerunner to version history visualization is Seesoft (Eick et al., 1992). Seesoft is a tool that can

visualize up to 50, 000 lines of code of line-oriented software statistics and can then provide

information to the user such as the number of files under version control.

Another work, by Gall et al. (1999), uses colour and 3D visualizations to visualize software release

histories effectively.

2.5.2 Software Security

A possible application of SV is in the area of software security analysis where the results of

dependency and traceability analyses in a software system can be visualized. This can help identify

the potential security vulnerabilities within the software. An SV has been implemented with the

ability to examine the visual fingerprint left by popular network attack tools, to provide a better

understanding of methodologies used by these attackers (Conti & Abdullah, 2004).

2.5.3 Data Mining

SV is used by Burch et al. (2005) for mining software archives. Visualization is extremely useful in

this field as it enables the user visually to sift through vast amounts of data to discover patterns and

analyse information.

2.6 Student Engagement

A study has been undertaken (Grissom et al., 2003) to measure the effect of varying levels of student

engagement with algorithm visualization to learn simple sorting algorithms. Grissom et al. show that

learning increases as the level of student engagement increases. Visualizations therefore have a bigger

impact on learning when students are required to actively engage in the additional activities structured

around the visualization rather than the students passively viewing the visualization.

As a result, this project aims to increase the comprehension of concepts taught in a C/C++ course by

building an SV based on the C/C++ code entered for compilation by the student.

8

2.7 Algorithms and Software Engineering Education

Visualization of software engineering and algorithms can assist instructors to explain as well as help learners

to understand algorithms and programming principles and practices (Hundhausen et al., 2002). For example,

this project aims to show the relevant variables and their values at each line of code following the execution

path of the code. This research is focused on C and C++ due to their popularity (Tiobe Software, 2008).

These languages have been extensively taught in classrooms at school and at a university level and this has

lead to widespread implementation of operating systems, graphics, databases, audio processing to microchip

programming using C/C++.

2.8 Pointers

One of the most powerful aspects of C and C++ is pointers (Deitel & Deitel, 2003). The majority of most

modern-day languages (Java, C#, VB) are able to pass variables by reference and by value. These modern

languages are based in a managed environment which implies that a managed heap is utilized. A managed

heap is an environment whereby the programmer allocates memory for use by the variables and objects, yet

the programmer has no control over this memory. This is a drastically different approach when compared to

the C languages as they provide the ability to manually maintain both the stack and heap without a managed

run-time system. This both complicates the languages as well as providing the programmer with more

refined, more powerful approaches for managing the program resources (Deitel & Deitel, 2003).

Pointers are thus used to provide a more refined pass-by-reference system by allowing the programmer to

manipulate both static and dynamic program data directly (Deitel & Deitel, 2003). The proposed “power” of

pointers however often provides a hurdle to learners (Stroustrup, 1997), hampering their ability to grasp the

concept of effective memory management. The C language‟s ability to manipulate memory is a fundamental

step required in the student‟s understanding of how data structures are implemented, as well as pointers‟

intimate relationship with arrays and strings, which exemplifies the relevance of proper teaching methods.

Vectors, link lists, stacks, queues and other basic data structures used for programming make use of dynamic

data which has the ability to grow and shrink at run-time (Deitel & Deitel, 2003), and at the most basic level

is manipulated by the proper use of pointers.

The C languages support a gradual approach to learning (Stroustrup, 1997) in the sense that the direction

taken depends on what you already know and what you aim to learn. If the aim is to become a better

programmer by learning a new language, then this must be done in a gradual fashion. Acquiring a new skill

takes time and practice, such as when learning to play a musical instrument or learning a natural language.

When learning a new language, according to Stroustrup (1997), the most important thing to focus on are the

concepts and not the language-level details. Stroustrup (1997) states that the purpose of learning a new

9

programming language is to become more efficient at designing, implementing and maintaining systems;

thereby becoming a better programmer.

2.9 Complexity

To reduce development time, ease maintenance and decrease the cost of testing, it is important to reduce the

size and complexity of the software system that is being worked upon (Stroustrup, 1999). This would also

simplify the task of learning C and C++.

Figure 2: A simple C++ program utilizing a library

An explanation to a novice of the program in Figure 2 would begin with the “scaffolding” with questions

such as “What is main()?”, “What does using do?” and “What does #include mean?” However the program

is conceptually simple and it can easily be ascertained what it is trying to accomplish. Other conventions

which need to be explained are the “\n” character, where semicolons are required, and what a string is.

Figure 3: C-style program performing the same task as in Figure 2

10

Compared with Figure 2, Figure 3 may provide the same logic, but for a novice there are many more

concepts to grasp. For instance, the magic “%s” symbol and arrays need an explanation. The program will

also be corrupted if text longer than 19 characters (with a C-style terminating character as the 20
th

 character)

is input. For a novice, Figure 3 provides a complicated example of a simple algorithm. It can be argued

(Stroustrup, 1999) that the complicated aspects can be covered at a later stage, but this argument is at best

“acceptable” rather than “good”. Ideally, a novice should not be presented with a brittle program

(Stroustrup, 1999). Therefore by utilizing libraries, code complexity is reduced leading to robust programs

for beginners (Stroustrup, 1999).

This project employs the idea that implementing a library of its own to reduce the code complexity of the

programs written will ease the learning process for the novice programmer. This concept is especially valid

when applied to input from and output to a console.

2.10 Related Work

Many tools incorporating SV have been developed for specific areas of software design and development

(Tilley & Huang, 2002). CodeCrawler is an SV tool which provides metric information with its

visualizations (Lanza, 2003). SV tools have also been integrated within an integrated development

environment (IDE) such as Eclipse (Lintern et al., 2003), and have presented on the web together with web

services (Domingue & Mulholland, 1997).

SV research is often focused on object-oriented aspects such as class hierarchies, versioning, run-time

visualization (Smith & Munro, 2002), metrics as well as component-based software. C++ (LaFollette et al.,

2000), Java and UML (Malloy & Power, 2005) have also been a large focus of SV tools in that many

different types of visualizations have been created within such environments.

BlueJ (Kolling et al., 2003) was one of the first systems developed to teach introductory object-oriented

programming concepts. It utilized a static representation of the class structure as a UML diagram which

allowed the learner to interact with the class methods as well as inspect the class variable state.

Eliot (Sutinen et al., 1997), the predecessor to the Jeliot family, uses a library of self-animating data types to

represent the user‟s code, written in Java, in a semi-automatic fashion through the use of input on various

dialogs. Jeliot I is a web-based application (Sutinen et al., 2003) based on a client-server architecture. It is

similar to Eliot, however the user is able to modify the appearance of the “actors” used to display the self-

animating data types.

Jeliot 2000 (Ben-Bassat Levy et al., 2003) is a complete rewrite of previous versions to cater fully for

beginner students who do not have any prior programming knowledge in Java. Developed as a stand-alone

11

application, the graphical user interface (GUI) of Jeliot 2000 takes the form of a theatre in which the user

types in the code and presses the “Play” button for the animation to occur. Animations are used to visualize

how the expressions are being evaluated at run-time, and all aspects of the visualizations are shown on the

screen at the same time in two-dimensions. An empirical evaluation of Jeliot 2000 was undertaken (Ben-

Bassat Levy et al., 2003) between two classrooms, one without any aid of a VS and the other utilizing Jeliot

2000. The results showed that the improvement rate of the treatment class had increased, however the major

finding was that the treatment class had formed a vocabulary of verbal and visual terms of the programming

concepts taught, facilitating discussions of these concepts.

Jeliot 3 (Myller, 2004) is closely based on the work of Jeliot 2000, retaining the GUI of the previous

version; however modularity was the main focus and therefore the components within the system were

designed to be loosely coupled. The parser and interpreter of Jeliot 3 were redesigned, along with the self-

animating library of data types to fit their aim of modularity.

12

3 The Translator and Grammar

A new and simple language has been designed for this project called CMinor. The user‟s source code,

written in CMinor, must be syntactically and semantically correct to allow a visual to be produced. This is

accomplished through the use of a translator. But first, the basic concepts of translators must be introduced.

3.1 Background of Translators

3.1.1 Translation Phases

A translator is a complicated program which takes various steps to complete (Terry, 2005). In order to

analyse these steps, two main phases can be identified: the analytical phase and the synthetic phase (Terry,

2005). The analytical phase is where the source code of the program is read and analysed to determine

whether the syntactic and semantic constraints of the language are met. The synthetic phase proceeds by

generating the corresponding object code for the target machine. These two phases comprise the front end

and back end of a compiler. Within Figure 4 we can identify the components or steps of a translator that

form the analytical and synthetic phases.

Figure 4: The steps of a translator forming the analytic and synthetic phases (Terry, 2005)

13

3.1.2 The Front End

The character handler interfaces with the operating system to read in the individual characters from the

source code. Each character received is passed to the lexical analyser or scanner.

The scanner fuses characters from the source code together into groups of characters or tokens to form

symbols such as identifiers, numeric constants, strings and keywords such as „for‟ and „const‟. Extraneous

characters such as comments and white space are discarded at this stage as they are not valid tokens required

in the following steps.

The syntax analyser or parser groups the tokens produced by the scanner into syntactic structures (Terry,

2005). A grammar is presented to the parser which provides it with the syntactic rules to which the order of

the tokens must adhere. These rules ensure that the syntax of the grammar remains intact, yet are devoid of

any real meaning. A contextual constraint analyser is often combined with the parser. The job of a constraint

analyser is to determine that the components of the syntactic structures adhere to rules and attributes within

the language‟s current context. For example the syntax of a variable assignment in CMinor is described as:

Designator “=” Expression

The statement above with any form of Expression can be considered syntactically correct, however the

constraint analyser will perform a context analysis and determine whether the type returned from the

Expression matches, or is compatible, with the type of the Designator. The constraint analyser, often called

the static semantic analyser, thereby gives meaning to the syntactic structures. The output generated by the

syntax analysis and constraint analysis is often expressed in the form of an abstract syntax tree (AST) as

seen in Figure 5.

14

Figure 5: An abstract symbol tree formed by the expression: x = p + q * 10

3.1.3 The Back End

An intermediate code generator may be integrated in earlier steps as part of the front end of a translator or

may be omitted altogether in simple translators. The form of code generated at this step is ASSEMBLER, a

code skeleton, a macro or another high-level/intermediate code for processing by an external interpreter.

More information regarding the intermediate code generated in this project can be found in Section 4.1.

Optionally, a code optimizer may be present in an attempt to improve the intermediate code by making a

trade-off between speed and space. Terry (2005) gives the following example of how the code optimizer

changes the intermediate code (Figure 6).

Figure 6: Low level operational codes can be optimized by the code optimizer to produce more efficient code

The code generator is the heart of the back end of a translator as it takes the output from the previous steps

and produces object code. Some of the tasks of the code generator (Terry, 2005) are to decide on the

memory locations of data, generate code to access these locations, select registers to be used.

Assignment

Designator Expression (assign)

p

+

*

q 10

L0 if 1 < p goto L1

 goto L3

L1 if p < 9 goto L2

 goto L3

L2 p = p + q

 goto L0

L3 continue

L0 if 1 >= p goto L1

 if P >= 0 goto L1

 p = p + q

 goto L0

L1 continue

while(1 < p && p > 9) p = p + q;

15

3.1.4 Top-Down Recursive Parsing

As discussed in Section 3.1.2, the task of the front end of a translator is not to generate the target language

but rather to recognise the specific tokens of the input grammar (Terry, 2005). There are numerous methods

available to parse sentences; a simple and effective one is known as top down parsing by recursive decent

(Terry, 2005). Top-down methods start by examining a goal symbol and work through each successive

symbol by applying the relevant production rules thereby generating a sentence. Terry (2005) provides the

following example to illustrate the top-down parsing method.

Given the following productions for a simple grammar,

A → aB (1)

B → bB (2)

B → c (3)

with sentential form S = A, and input string abbbc, the sentence, which is clearly formed by the terminals in

this grammar, can be parsed using production (1). The leading terminal in the production and input string

match and therefore can be discarded. Production B must now be able to derive the input string of bbbc.

Sentential form B Input string bbbc

Productions (2) or (3) can be chosen at this point, however by simply looking at the leading character of the

input string, it is obvious that (2) is the correct choice.

Sentential form bB Input string bbbc

Sentential form bB Input string bbc

Sentential form bB Input string bc

Production (3) derives the term c directly and therefore is applied to complete the sentence. In a similar way

it can be shown that sentences such as aaaa or cb cannot be derived by this grammar.

As is observed, the input string is scanned from the left to right applying the productions to the leftmost non-

terminal in the sentential form and looking ahead k symbols to predict which production to apply at a given

stage. This is classified as LL(k) parsing. It can be seen that k = 1 in the example above, meaning that there

is a symbol look-ahead of one. LL(1) parsing is the most common form of parsing in practice (Terry, 2005)

and is employed by this project (Section 0). Although LL(1) parsing is relatively simple and efficient,

certain restrictions on the input grammar must exist to allow a look-ahead of one symbol to be used

successfully. Problems occur when there is more than one production which matches the next (left-most)

non-terminal in the sentential form. Ambiguities arise in this case as the parser can no longer determine

16

which production rule to follow. Simple languages such as Pascal, Modula-2 and simple C-like languages

can avoid such ambiguities, but C, and especially C++, have productions with multiple matching left-most

non-terminals in their grammar productions. Such LL(1) conflicts can be resolved by a multi-symbol look

ahead (LL(k)) or by implementing semantic checks (Institut für Systemsoftware, 2008).

3.1.5 Available Parsing Tools

A parser is one of the major aspects of this project and as such required much deliberation. C and C++

compilers have been available for many years and each contains a parser. The most obvious place to look for

a parsing tool for C++ is gcc (GNU Project, 2008). As a freely distributed and fully functional C++

compiler, it must be able to parse C++ successfully. Upon closer inspection, it was found that the various

stages of parsing (Section 3.1.1) are merged together and that the poor documentation provides little insight

to the inner workings of gcc. Gcc supports all aspects of the C++ language and as such can be considered a

complete C++ translator that also provides a symbol table combined with good performance. It was decided

that although gcc provides a comprehensive parsing solution it would be a non-trivial task to integrate its

output within the confines of the scope of this project to produce visual output.

Source Navigator (sourcenav NG development group, 2008) is cited as a “source code analysis tool”. It

operates by parsing the source code and enters the metadata gathered into database tables. From this point it

allows the user to edit the source code, display relationships between classes, functions and members and

display call trees. The actual parser found in Source Navigator is highly complex and is of very little

educational use.

ANTLR (Parr) is a parser generator operating on a predicted LL(k) grammar. This means that it uses a look

ahead of k symbols which is used to predict which grammar production will be followed. Additionally

ANTLR allows the grammar to specify syntactic and/or semantic predicates thereby giving unique attributes

to the productions. An example of this is if the parser looks up a certain identifier in the symbol table and

then determines the next production to use is based on the type retrieved.

Upon further investigation of the ANTLR parser, a C/C++ grammar developed by Sun Microsystems (Sun

Microsystems, 2008) was found that provides a fully attributed grammar used by the Netbeans IDE

environment (Sun Microsystems, 2008). Using ANTLR and the grammar developed by Sun Microsystems

(Sun Microsystems, 2008) appeared to be the best approach to use in designing a translator for this project.

Due to Sun‟s grammar being very comprehensive and encompassing the entire C and C++ languages,

problems arose when making even very simple modifications. For example, in order to remove the

grammar‟s ability to parse classes, as they fall out of the scope of this project, it was found that many of the

productions and attributes were reliant upon information contained in the class productions. Modifying such

17

a large grammar, which is tightly coupled, to allow only a very small subset of a language to be parsed

(Section 3.2) makes little sense. The best possible route would be to base a new grammar (or a modified

similar grammar) on the C++ BNF grammar provided by Stroustrup (1997). ANTLR is a very

comprehensive parsing utility; however such a powerful tool is beyond the requirements of this project.

Originally developed by Hanspeter Mössenböck, Coco/R (Institut für Systemsoftware, 2008) is a tool very

similar to ANTLR in that it takes an attributed grammar of a source language and generates a scanner and

parser for a target language. The attributed grammar is written using the EBNF syntax with attributes and

semantic actions that conform to LL(1) restrictions. The task rests on the user to supply modules for symbol

table handling, optimization and code generation to build a running compiler.

Coco/R was chosen as the tool to generate the front end for this project due to its ease of use, simple

integration of semantic actions and modularity regarding the symbol table. A benefit of using Coco/R is that

it can be used to construct other syntax-based applications that are less like a “compiler” and more like a

parser for a programming language.

3.2 The CMinor Language

Many features of the C/C++ language are not pertinent in the visualization of data structures. An example of

a C++ feature not required, although useful, is the overloading of functions. To restrict the scope of the

grammar, a subset of the C/C++ languages has thus been created called CMinor. This small language is

syntactically and semantically similar to C/C++ and as such most novice users will be unable to tell the

difference.

A header file is included with the CMinor language called “CMinor.h”. This is the only header file allowed

to be hash included. This header file extends the language by allowing an interface with the IDE (Section 0)

to perform additional tasks, such as the ability to write information to a console. Refer to Appendix B for a

listing of the code for “CMinor.h”. Tables 1 and 2 detail the features supported by the CMinor language.

18

3.2.1 CMinor Supports

Table 1: Features supported by the CMinor language

Basic Types int, char, bool

Constant Types

Pointers

Loop Statements while, do while, for

If Else Statement

Functions

Structures

Arrays and Array Initializers

3.2.2 CMinor does not Support

Table 2: Features not supported by the CMinor Language

Else If Statements

Function Prototypes

String Literals

Reference Types

Operator or Function Overloading

Default Function Arguments

Const Function Arguments

Certain Keywords extern, auto, volatile, static, register,

sizeof, this

Typedef

Bitwise Operator

The ? Operator condition ? x ! y

Compound Operators +=, =, *=, /=, %=

Certain cases of post increment/decrement operators

Pre increment/decrement operators ++x

Hash includes Except "CMinor.h" (See Appendix B)

Classes

Multidimensional arrays

Exception Handling

Type Casting

void Pointers

19

3.3 Developing the Grammar

The CMinor grammar is based on two separate works. For a full listing of the CMinor grammar, see

Appendix C.

Terry (2005) provides a complete working parser, code generator and symbol table along with semantic

actions for a language dubbed C#Minor. This language is a minimal object-oriented programming language

which has evolved from C# and Java. It incorporates integer, character and Boolean types as fields, methods

or constants, one-dimensional arrays and the manipulation of objects. Upon first glance this looks to be very

similar to what this project is trying to accomplish with CMinor. While and Do While loops, expression

evaluation and type checking have already been implemented in such a way that is easily understandable,

but more importantly, easily modified.

The C#Minor grammar has been designed, upon compilation, to generate a byte-code language to be

interpreted by either the Java Virtual Machine (JVM) or Common Language Runtime (CLR) of Sun

Microsystems and Microsoft‟s .NET Framework respectively. This aspect of a translator, as discussed in

Section 3.1, is handled by the back end of the translator. The first step in making use of the C#Minor

grammar by Terry (2005) is effectively to remove all aspects of the grammar which generate JVM byte-code

or CLR instructions. This project does not make use of the JVM or CLR to run the user‟s program as that

would require receiving a call back on each instruction interpreted by the run-time engine to visualize the

memory mapping of variables. Both the JVM and CLR are managed systems and as such do not form a

proper correlation with the C/C++ environment. For this reason a custom-built interpreter has been

constructed (Section 4) that executes the instructions generated by the CMinor translator in such as way as

to facilitate the visualization aspect of this project. Coco/R generates C# classes to perform the scanning,

parsing and code generation aspects of a translator. This project makes use of the C# language and its run-

time engine to execute, however the task is upon the CMinor interpreter to simulate an unmanaged

environment within a managed one.

The C#Minor grammar required drastic modifications for it to fit the CMinor mould. Classes, forming a

major portion of C#Minor, are beyond the scope of this project and as such not supported. However the class

handling aspect of the C#Minor language formed an important basis for the implementation of a structure‟s

syntax. After modifying the class production by effectively renaming class to struct, removing the ability to

define methods inside a class, removing the member modifiers (public, private and protected) and ensuring a

semi-colon is present at the end of the structure definition, a perfectly valid structure production has been

created. Due to a class and structure being a distinct “entity” (or object) many semantic actions already in

place hold and required little alteration.

20

However before semantic actions are put in place to provide the grammar with “meaning” (Section 3.1.2),

the actual syntax of CMinor has to be defined. Stroustrup‟s (1997) BNF grammar for C++ formed the

second work upon which CMinor was based. Utilizing Stroustrup‟s grammar, many missing features of the

C#Minor language could be successfully implemented. An example of such a feature is a for loop (Figure

7). Due to the restrictions placed upon the grammar as a result of LL(1) parsing, Stroustrup‟s grammar had

to be altered in certain cases to maintain compliance with the respective LL(1) rules.

Figure 7: An LL(1) compatible set of productions to parse a for loop successfully

A major alteration to the C#Minor grammar was the typing infrastructure. Basic type pointers and structure

pointers had to be added to the grammar (Figure 8) which posed a great challenge. Many new semantic

checks had to be put in place to ensure that the integrity of the pointer was valid. Pointer arithmetic and

pointer assignments had to mimic the exact functionality of a real C/C++ application. The ampersand (&)

and dereference (*) operators also had to be incorporated into the language along with their semantic

actions. A pointer is therefore not just another “type” which had to be integrated into CMinor, but an entirely

new category of type with its own regulations that differ from those of a regular type (i.e., an integer).

Figure 8: Grammar productions allowing a pointer type to be declared on basic variable types

ForStatement

 = "for" WEAK "(" ForInitStatement

 [Condition] ";"

 [ForExpression {"," ForExpression }]

 WEAK ")" SYNC Statement

 .

 ForInitStatement

 = AssignCallObjDecl | VarDeclarations | ";"

 .

 ForExpression

 = ["*"] Designator

 (

 (AssignOp Expression | "++" | "--")

)

 .

 BasicType

 = ((("int" | "char") [PointerType])

 | "bool")

 .

 PointerType

 = "*"

 .

21

CMinor must also support pointers to structures as these form an integral part in the construction of data

structures. As such the dot (.) and arrow (->) operators were implemented. Ensuring that semantic rules were

in place to prohibit inappropriate use of these operators took much trial and error as well as comparisons

with how a real C/C++ compiler treats the operators in various test cases. An example of an inappropriate

use of the arrow operator would be to point to a variable which is being dereferenced by the dereference

operator thereby causing an illegal indirection error.

Arrays, and pointers to arrays, also proved troublesome and required much deviation from the C#Minor

grammar. Syntactically the main difference in C#Minor is in the array declaration compared to C/C++. In

C#Minor however, an array is seen as an entirely different type therefore prohibiting assigning a non-array

type to an array. This had to be overcome in CMinor as a pointer of a certain type must be able to point to an

array of a similar type, effectively making the pointer hold the memory address of the first element in the

array. Passing an array as an argument to a function can be done in two ways: using array notation or by

using pointer notation. Both syntax formats had to be implemented along with corresponding semantics to

ensure that the array and its elements are accessed correctly.

Other changes had to be made with respect to how certain expressions are evaluated. For example, the

majority of basic types in C/C++ can be equated to an integer (including the Boolean type) which is not

possible in C#Minor. A NULL type was implemented to which every type in C/C++ can be assigned thereby

effectively giving the variable a value of zero.

 The CMinor.h header file (Appendix B) has been embedded within the grammar itself and not as a separate

header file. Through the use of semantics within the grammar, the behaviour of hash including this header

file can be simulated. If the source code does not contain the valid hash define statement, a Boolean variable

within the grammar will be set to false throughout the parsing instance. Therefore when the user tries to call

a function requiring the CMinor.h header file, a semantic check is performed on the Boolean and if it is not

set an “undefined function” error will be shown to the user. This prevents the user from utilizing functions

without first declaring them by the inclusion of the appropriate header file. This is a clear example of how

semantics can be used to give additional meaning to a grammar.

22

4 Interpreter

The CMinor source code has passed through the translator and as such meets the syntax and semantic

constraints enforced by the grammar. The resultant output of the parser is a high-level, structured

intermediate language which is passed onto the interpreter. An unmanaged environment must then be

initialized and the individual tokens processed in order to execute the user‟s code.

4.1 Intermediate language

The intermediate language is passed on to the interpreter after a successful run of the parser on a source file.

As such, the intermediate language needs to encompass all the functionality of the CMinor language and

present the instructions in such a way for the interpreter to be able to perform the required actions.

C#Minor contains the back end of a translator which generates code for the Java Virtual Machine or the

.NET Runtime. This low-level language embodies the actions that the user is trying to perform from their

source code. Each line of source code is translated into many low-level commands which utilize exact

memory addresses and perform operations based on these. Each instruction is interpreted by the virtual

machine to provide a functioning application. These instructions could be used and a memory map could be

visualized from them, however the Visualizer (Section 5) steps through each line of the source file at a time,

performing the actions specified on that specific line. The low-level byte code has no recollection of, or any

similarity to, the source code thus making this task impossible.

The actual tokens read from the source file in CMinor cannot be sent “as is” to the interpreter. Many

variations exist within the syntax of CMinor, making the task of the interpreter very difficult in trying to

interpret all possible syntax ambiguities successfully. An example of such ambiguities can be seen in

Figure 9.

Figure 9: Missing braces around the inner for loop body is a clear example of syntax ambiguities and why an intermediate
language is required

There is no clear end to the inner for loop. By sending these tokens to the interpreter, it must be able to

handle all cases of syntax differences which is a non-trivial procedure. Therefore an intermediate language

for(int i = 0; i < 10; i++)

{

for(int j = 0; j < 10; j++)

arr[i][j] = i+j;

}

23

has been developed for specific use with this project‟s interpreter. Figures 10 and 11 show examples of two

simple functions in CMinor and the corresponding intermediate language generated by the parser.

Figure 10: Example of the intermediate language generated from a simple max function

18|FUNCTION|START|int|max|ARGUMENT|int|a|ARRAY|,|int|size|;

19|OPENSCOPE|;

20|DECLARE|int|biggest|;|ASSIGN|biggest|EXPRESSION|'0'|ENDEXPRESSION|;

22|STARTLOOP|FOR|1992962814|,|DECLARE|int|i|;|ASSIGN|i|EXPRESSION|'0'|ENDEXPRESS

ION|;|,|CONDITION|i|<|size|ENDCONDITION|;|,|ASSIGN|i|EXPRESSION|i|+|'1'|ENDEXPRE

SSION|;|BEGIN|;

23|OPENSCOPE|;

24|IFSTAT|496374889|CONDITION|ARRAYINDEX|a|EXPRESSION|i|ENDEXPRESSION|;|>|bigges

t|ENDCONDITION|;

25|ASSIGN|biggest|EXPRESSION|ARRAYINDEX|a|EXPRESSION|i|ENDEXPRESSION|;|ENDEXPRES

SION|;

26|ENDIF|496374889|;|CLOSESCOPE|;|ENDLOOP|FOR|1992962814|;

28|RETURN|EXPRESSION|biggest|ENDEXPRESSION|;

29|CLOSESCOPE|;|FUNCTION|END|max|;

24

Figure 11: Example of the intermediate language generated for a structure definition and append function for a linked list

4|STRUCT|START|node|;

5|DECLARE|int|data|;

6|DECLARE|node|next|DEREF|;

7|STRUCT|END|node|;

10|DECLARE|GLOBAL|node|p|DEREF|;

13|FUNCTION|START|void|append|ARGUMENT|int|num|;

14|OPENSCOPE|;

15|DECLARE|node*|q|;|DECLARE|node*|t|;

17|IFSTAT|1338149892|CONDITION|p|==|'NULL'|ENDCONDITION|;

18|OPENSCOPE|;

19|ASSIGN|p|EXPRESSION|HEAPALLOC|node|ENDEXPRESSION|;

20|ASSIGN|STRUCT|p|->|data|EXPRESSION|num|ENDEXPRESSION|;

21|ASSIGN|STRUCT|p|->|next|EXPRESSION|'NULL'|ENDEXPRESSION|;

22|CLOSESCOPE|;

23|ENDIF|1338149892|;

24|ELSESTAT|1338149892|;|OPENSCOPE|;

25|ASSIGN|q|EXPRESSION|p|ENDEXPRESSION|;

26|STARTLOOP|WHILE|1605528512|;|CONDITION|STRUCT|q|->|next|!=|'NULL'|ENDCONDITIO

N|;

27|ASSIGN|q|EXPRESSION|STRUCT|q|->|next|ENDEXPRESSION|;|ENDLOOP|WHILE|1605528512

|;

29|ASSIGN|t|EXPRESSION|HEAPALLOC|node|ENDEXPRESSION|;

30|ASSIGN|STRUCT|t|->|data|EXPRESSION|num|ENDEXPRESSION|;

31|ASSIGN|STRUCT|t|->|next|EXPRESSION|'NULL'|ENDEXPRESSION|;

32|ASSIGN|STRUCT|q|->|next|EXPRESSION|t|ENDEXPRESSION|;

33|CLOSESCOPE|;

34|ENDELSE|1338149892|;|CLOSESCOPE|;|FUNCTION|END|append|;

25

As Figures 10 and 11 illustrate, the intermediate language translates the CMinor language into a more

structured form, for example the beginning and ending of a loop is clearly discernable. Each token is

separated by the pipe (|) symbol and each statement is terminated by a semi-colon. Most importantly,

however, is the correlation between the line numbers and tokens. This recording of line numbers allows the

interpreter to execute the exact instructions on a line-by-line basis.

4.2 Interpreter Data Structures

Before the interpreter is able to start executing instructions, a viable environment must exist in which it can

operate. As such, certain data structures must be defined for the interpreter to maintain the current program‟s

state, process variables, call and return to and from functions as well as output data to a console.

Figure 12: Class diagram of the interpreter’s data structures

A class named VMType, as seen in Figure 12, has been defined to hold all information pertaining to a

particular variable. A VMType will effectively emulate all aspects of a variable from the CMinor language.

When a user declares a variable, the interpreter creates a VMType object in which it records all details of the

variable declaration such as its current scope, the variable‟s name, it‟s type and if it is a constant, pointer,

array or structure. The interpreter then assigns the variable a memory address with which can be accessed

with the ampersand operator (&). Within a VMType class, two lists exist, initially set to null, which have

been declared to hold additional VMType objects. These lists represent the member definitions of a structure

26

and the elements in an array respectively. Upon declaration of an array, the interpreter will create a VMType

object, set the name to the name of the array and populate the array list with new VMType objects each

representing each individual element in that array. Therefore when accessing an element of the array, the

VMType with the array name is first located, and then the list is referenced at the required position. A very

similar process occurs when working with structures, except the structure list is populated instead of the

array list.

By utilizing the VMType class, the interpreter has access to all the details of any variable and as such can

perform operations on their values as per the user‟s instructions. This system thereby removes the need for a

low level opcode-based intermediate language as the interpreter makes use of C# constructs to execute

operations.

Another data structure required by the interpreter is one that contains information about the functions

defined within the source code. If a function call occurs, the current position in a function must be stored

and the program counter moved to the beginning of the new function. Likewise when a function has finished

executing, the program counter must be returned to the calling function and if there is a value to be returned

it must also be stored. Therefore a class called VMFunction (Figure 12) has been defined which encapsulates

all aspects of a function, such as its name, type, scope, beginning line and end line. The arguments and

return value of the function are stored as a VMType. VMFunction objects are created and stored by the

interpreter during its first pass of the intermediate language (Section 4.3.1).

Four lists are defined for use by the interpreter. Two, containing VMType variables, are representative of the

stack and heap memory spaces. The third holds the skeleton definition of a structure as created by the first

pass of the interpreter. Upon declaration of a structure, this structure list is searched for a matching name of

the respective structure which is then copied and added to the stack or heap lists for later use. The fourth list

contains the definitions of VMFunction objects.

4.3 Operation of the Interpreter

4.3.1 First Pass: Environment Initialization

The interpreter passes over the intermediate code in order to setup the program‟s environment by initializing

the various data structures (Section 4.2). Firstly it tokenizes the intermediate code (Section 4.1) and stores

the tokens in a form that is easily accessible. The pipe symbol between each token in the intermediate

language makes the tokenizing process trivial. It then maps the line numbers, as seen in Figure 10 and

Figure 11, to a two-dimensional array with the first dimension representing the line number and the second

holding the individual tokens for that line.

27

When the interpreter starts executing the intermediate code, beginning in the main function, certain

information must be present for successful execution of the program. The interpreter must therefore run

through all tokens from the beginning to end before “executing” the program, effectively performing

compile-time code generation by initializing the data structures.

Certain tokens are searched for during the first pass such as global variable, function and structure

declarations. Global variables are created, assigned a global scope and placed on the interpreter‟s stack list.

Initializations of global variables also occur at this stage. The starting position, arguments received, ending

position and type of a function are recorded in VMFunction objects as these tokens are processed.

Structure skeletons are also added to the structure list during this phase. These VMType objects contain the

name and elements of the structure being defined. This provides a blueprint of the structure which is later

copied and placed in the stack or heap lists by the interpreter upon declaration of the type.

Certain run-time errors, which are unable to be checked by the parser, are also caught by the interpreter

during the first pass. An example of an error that is caught at this stage is a global or structure member array

with a negative array index.

The final step of the first pass is to set the program counter to the first token of the main function. A signal is

sent to the GUI to prepare for the interpretation process to proceed if no errors have been detected and once

all structures have been initialized.

4.3.2 Second Pass: Interpreting Tokens

The interpreter is designed to read tokens from the intermediate language in a particular order. Many

different techniques are used in the interpreting of these tokens such as recursion (loops, function calls) as

well as a look-ahead. By peeking at a token that is still to come, different paths may be taken which cannot

be determined from the value of the current token. This technique is employed to determine, for example, if

there is an else statement following an if statement, if during an assignment (Figure 13) an array index is

being referenced, if a variable is being declared as a constant, etc.

An example, taken from Figure 10, can be used to illustrate the internal workings of the interpreter.

28

ASSIGN|biggest|EXPRESSION|ARRAYINDEX|a|EXPRESSION|i|ENDEXPRESSION|;|ENDEXPRESSION|;

Start

Token
Variable Evaluate Array Array Name Array Index

Figure 13: Tokens and expressions as evaluated by the interpreter

When the interpreter encounters the token ASSIGN it knows that the next token it will receive will be the

name of a variable. The stack list is then searched for a variable with the name of the next token as it must

have a reference to the specific VMType object to modify its value. In the case that no variable matches the

name of the token, the interpreter will throw an exception and the interpreter will halt, however errors such

as these are most often ruled out during the parsing phase. The interpreter now knows of the variable and

must set its value which it does by calling upon the expression evaluation handler. The expression handler

builds an expression tree according to the precedence rules, as defined by Stroustrup (1997), and returns a

value after the tree has been evaluated. The expression handler reads the ARRAYINDEX token which is an

instruction to return a value within an array. The following token is the name of the array which is searched

for in the stack. The array index is in itself an expression and the expression handler must call itself to

generate a different expression tree to return a value for the index. Once the index is returned, the interpreter

retrieves the value of the VMType object at that position in the array that ends the expression evaluation. As

the semantic actions of the parser in previous steps have validated this operation, the value of the variable

can then be set to the value returned by the expression evaluation.

4.3.3 Scope

Scoping, whether implied by the language or explicitly stated by the programmer, need only occur within

the stack. Each function, once called, has an associated VMFunction object defined and placed on a stack

within the object. The VMFunction class (Figure 12) defines a stack of integers as a container to hold the

scopes of the currently executing function within the interpreter. As a scope opens, a unique integer is

pushed onto this stack. All variables declared from that moment on are given this value as their stack

reference. Upon the closure of a scope, all variables with a scope reference matching the value popped from

the scope stack are removed. Utilizing this system provides a full scoping system that effectively manages

29

the variables within the stack, as well as providing all relevant information for the Visualizer (Section 5) to

display variables in different scopes.

4.3.4 Errors

Run-time errors can occur within a C/C++ program, and as such the CMinor interpreter should mimic that

behaviour. These are errors that cannot be foreseen during parsing as the variables are not active in working

memory at that point in time and therefore do not have values associated with them. When a run-time

exception is thrown, program execution halts and the GUI is signalled to show that an error has occurred.

The following are the most common run-time exceptions that are thrown during normal C/C++ program

execution and are supported by the CMinor interpreter:

 Divide by Zero

 Null Pointer Exception

A further restriction imposed by the CMinor interpreter is that a variable cannot be used until it has been

initialized. If a user tries to perform an action on a variable without first initializing it, a run-time error will

be thrown and program execution will halt. If a user makes use of an un-initialized variable in a C/C++

environment, the value of the variable will be whatever is currently in memory at that point in time, which

normally produces an unexpected result. Therefore, as a teaching tool, it was decided to prevent this from

happening and instil the user with a sense of good programming practice.

The CMinor interpreter will also present the user with run-time warnings. Such warnings will not halt the

execution of the program, yet are present to provide additional information not normally received in a

C/C++ environment. In such cases where warnings are given, the programmer is more often than not

performing an operation that will return an unexpected result yet is not a critical error. An example of such a

case is an “Array Out of Bounds” warning. Although valid in a C/C++ context, working outside the bounds

of an array is not considered good programming practice and therefore a warning is given to the user to

indicate this.

4.3.5 Memory Leaks

An important aspect of a C/C++ implementation is memory management (Section 2.8). The CMinor

language does not have a managed heap, exactly as in a C/C++ environment, which implies that if users

allocate memory it is their responsibility to de-allocate it. As a teaching tool the CMinor interpreter provides

a mechanism, once the “HALT” token is processed at the end of a program, which displays all memory

30

leaks (Figure 14). This verbosity is intended to focus the users attention on the fact that managed memory

has not been managed correctly and alter the source code to rectify the problem.

Figure 14: Memory dump produced by the interpreter

31

5 Visualization

The aim of the Visualizer is to generate a visual based on the currently executing code in the interpreter. The

drawing area is divided into a stack and heap, which the Visualizer utilizes to draw the variables as

contiguous memory blocks. The GUI developed and visuals produced have been designed to assist the user

in their learning and understanding of the C/C++ environment.

5.1 Similar Work

In a study conducted by Lattu et al. (2003) it was found that the vizualization of programs, and their various

components, was an important part of the communication process in assignments as well as in the teaching

environment. Many variations of explanation strategies exist and as such there is a demand for a general

purpose visualization tool, especially in the field of C and C++ due to their popularity in academic and

professional environments (Tiobe Software, 2008).

Both Ford (1993) and Lattu et al. (2003) specify a range of criteria which should be met when visualizing

programs:

 Ability to browse through the source code throughout all states of the Visualizer .

 Syntax highlighting as a feature since this greatly assists novices when learning a language as well as

reduces the number of mistakes (Myller, 2004).

 Informative error messages that help direct the user‟s attention to the exact position of the error.

 Simple user interface to reduce the learning curve in a new programming environment and encourage

the users to test code.

 Adjustable speed of animations to match the pace of the user.

Jeliot 3 (Myller, 2004), as discussed inSection 2.10, provides a simple user interface matching all of the

above criteria. Jeliot 3 makes use of a theatre metaphor in which users type in their code, press a Play button

and the actors produce the animations within a 2D virtual environment. Jeliot 3 divides the screen space into

certain panels (Figure 15) through which each panel is responsible for the control, visualization and output

of the program and can be moved around to suit the needs of the user. As such, there are many similarities

between the aims and objectives of Jeliot 3 and the CMinor Visualizer.

Jeliot 3 supports a vast array of Java features with an object-orientation focus. Due to the fact that Java is a

managed language, all variable and class declarations occur on the managed heap which is not the case in

C/C++. Jeliot 3 has one main visualization area for this managed heap which is further divided into a

Method Area, Expression Evaluation Area and Constant Area in which varying animations occur (Figure

16).

32

Figure 15: Screenshot of Jeliot 3 (Myller, 2004)

Figure 16: Structural layout of Jeliot 3 (Myller, 2004)

33

5.2 CMinor Visualizer

As the CMinor Visualizer has the same goals as Jeliot 3, many aspects of the visualization area are quite

similar. Jeliot 3‟s visualization techniques have been proven through various user tests to assist the learning

of the Java language (Section 2.10). Therefore the CMinor Visualizer has been build upon the successes of

Jeliot 3 while aligning itself to the C/C++ environment.

In C/C++ there are two distinct memory areas, the stack and heap, which must both be independantly drawn

according to the state of the intepreter. Therefore the CMinor Visualizer ‟s drawing area has been split in

two to represent the different memory areas. Animations, as used by Jeliot 3, are not used although they can

be implemented at a later stage. Unlike Jeliot 3, the drawing area is not split into a Method Area, Expression

Evaluation Area and Constant Area, but rather representes a contiguous block of memory. As a variable is

declared, it fills up the next available block of memory on the stack or heap which is depicted by the CMinor

Visualizer.

The user interface has been designed to be simple to use, visually appealing and easy to understand. Figure

17 illustrates a simplified design of the panels which make up the user interface. All user controls have been

placed in a “ribbon”-type interface at the top of the application. User customization can be accomplished by

providing the user with grip bars between the Code Editor, Drawing Area and Console panels so that the

sizes can be adjusted. The theatre metaphor has been carried across from Jeliot 3 in that when a user wants

to run their program the Play button is pressed. Much time was spent ensuring that the environment is as

simple to use as well as being highly functional so as not to inhibit learning.

Figure 17: Structural design of the user interface designed for this project

File Management Interpreter Controls

Code Editor

Console

Stack Drawing Area

Heap Drawing Area

34

5.3 Implementation

5.3.1 First Version of the Visualizer

The visualization area, comprising the Stack and Heap Drawing Areas, was built from one single

component: the MemoryMapPanel class. A requirement of the Visualizer is that it must be loosely coupled

to the rest of the system. The interface of a program falls into the Human Component Interaction (HCI)

category and as such should contain very few ties to the Program Domain Component (PDC), which in this

case is the parser and interpreter. So if changes were made to the interpreter or the parser in the future, the

Visualizer would not need to be adjusted to process the same information to be processed.

Figure 18: Class diagram showing how the MemoryMapPanel1 integrates into the system design

The first version of the interpreter did not follow the rule of keeping the HCI separate from the PDC. Figure

18 shows that the VMType class inherits directly from a class called Drawable. The Drawable class contains

information which the Visualizer makes use of to store the coordinates required so it can be drawn.

35

Another link exists between the PDC and the HCI in this model through the interpreter. As a line of source

code is processed, a signal is sent to the Visualizer instructing the MemoryMapPanel to redraw itself. A

reference of the stack and heap lists are then sent to the Visualizer which processes the items within,

assigning the individual VMType objects coordinates through the Drawable class. If changes were to be

made to the interpreter, such as changing the visuals to 3D thus requiring a Z-coordinate, the Drawable class

would have to be modified which is not ideal as a program domain component would have to be modified

for an HCI change.

Performance was also an issue with this model, as one panel is responsible for the drawing of all the

components. Upon the Visualizer being signalled to redraw itself, the stack and heap lists must be traversed

twice in order to recalculate the variable‟s coordinates and then paint the individual components to the

screen. The problem with this is that recursion must be used as each VMType may be an array or structure.

Therefore, as each VMType object contains lists each holding additional VMType objects (Figure 12), these

lists must also be traversed. In turn the VMType objects within those lists could also be arrays or structures

containing additional lists which must be traversed, and so forth. Therefore the traversal of the stack and

heap lists is an expensive operation, especially with many objects in the heap and stack, and should be kept

to an absolute minimum. As the mouse is moved across the drawing surface, each list must be traversed in

order to determine if the mouse coordinates fall between the coordinates of a particular variable in order to

change its appearance. This is so the Visualizer can make the object “pop up” and show a floating panel with

the variable‟s particular details. However as the mouse is moved, the entire visual area must be repainted

which, as already discussed, is an expensive operation.

This method was implemented and worked sufficiently for small numbers of variables on-screen; however

with a large number of elements a noticeable slowdown became apparent due to all the list traversals. This

performance decline greatly hampered user interaction. Therefore another, more efficient method of

visualization was developed.

36

5.3.2 The Visualizer Redesigned

Figure 19: Class diagram illustrating the redesign of the human interaction component

To rectify the performance issues, a redesign of the Visualizer was necessary. Two separate components

were therefore developed (Figure 19). The second version of the MemoryMapPanel is responsible for

calculating the coordinates of the variables which reside in the heap and stack lists, as well as creating a list

of VMTypePanel objects mapping the required information from each of the VMType objects. The

VMTypePanel objects remove the need for the Drawable class in Section 5.3.1. By removing the Drawable

class, a decoupling takes place between the HCI and PDC which is ideal. The VMTypePanel class is

responsible for the painting of the variable, removing the responsibility from the MemoryMapPanel as well

as removing one of the recursive traversals of the heap and stack lists. By utilizing the OnMouseEnter and

OnMouseExit event methods of the VMTypePanel class there is no need to traverse the variable lists to

determine if the mouse coordinates fall between the bounds of a variable. This thereby removes another list

37

traversal as the VMTypePanel objects now raise certain events which determine whether they should redraw

themselves.

Through the decoupling of the various components as well as the reduction in list traversals there is a

noticeable performance increase. Overall, the number of list traversals has been reduced to one per signal

from the interpreter. A very responsive user interface is the outcome from the above mentioned changes.

38

6 CMinor Studio

CMinor Studio is the final product of this research and as such incorporates a working parser, interpreter and

Visualizer (Figure 20). The application provides an interactive development environment (IDE) with which

the user can program, run, debug and visualize the CMinor source code.

39

Figure 20: Screenshot of CMinor Studio

Figure 21: Pointer variables as depicted by the Visualizer

40

As a teaching tool, it provides syntax highlighting, ability to control the speed of interpretation of a program,

error tracing, input and output through a console as well as the visualization of variables on the stack and

heap.

Pointers and memory management (Section 2.8) are one of the main areas which students struggle to

comprehend. Therefore the main focus of the CMinor Studio application is to produce clear visuals with

regards to pointers, as can be seen in Figure 21. As a program can contain many variables and pointers, the

pointer lines are drawn with a very slight opacity to increase legibility. The pointer lines are drawn to a grid

which allows them to follow a direct route to their destination. To ensure an uncluttered visual, pointer lines

will never intersect the variables drawn on the screen.

Errors occur during the creation of programs, and as such the user must be notified. CMinor Studio provides

a clear description of the errors encountered and draws a red line where the error occurred (Figure 22) to

direct the user‟s attention to the erroneous part of the program.

41

Figure 22: Erroneous lines are highlighted in the code view and a corresponding message is given in the console

Figure 23: User interaction through movement of the mouse changes the visual produced

42

CMinor Studio provides the user with the ability to interact with the Visualizer. As the user moves their

mouse over a variable, it will “pop up” (Figure 23). This clearly shows which variable is currently under

inspection, which is useful for demonstration purposes. If the user hovers over a pointer variable, the opaque

line to the variable being pointed at will become solid. In a program with numerous variables, this

highlighting of the pointer line helps clearly identify the variables being pointed to. When hovering over a

variable for a certain period of time, a floating panel will appear just below the highlighted variable. This

panel displays all information concerning the variable being hovered over.

As functions are called, many new variables may be introduced which can fill up the visualization area

making it difficult for the user to focus on the variables currently in scope. Therefore as variables go out of

scope during the execution of a program, the Visualizer will change their opacity (Figure 24). By fading out

variables which have moved out of scope, the user is able to focus their attention on the applicable areas of

the visualization.

43

Figure 24: Variables not in the currently executing scope are faded out

Figure 25: Linked list representation by the Visualizer

44

The visualization of data structures was one of the main aims of this project. Data structures form an integral

part of many programs and as such are taught in various programming classes (Deitel & Deitel, 2003). For a

student to gain an understanding of a data structure, they must be able to visualize how the data structure is

being represented in memory as well as which variables are linked together. Through the user‟s ability to

interact with the visualization produced by the CMinor Studio, data structures can be easily grasped (Figure

25).

45

7 Conclusion

Developments within the field of SV are leading to pervasive adoption (Gracanin et al., 2005) for better

comprehension, engineering and enhancements within the field of algorithm animation, software evolution

and software metrics. A survey of software maintenance and engineering studies (Diehl, 2005) shows that

40% of researchers consider SV “absolutely necessary for their work”, while 42% of researchers find SV to

be “important but not critical”.

Education benefits arise due to the increasing amount of software written utilizing efficient and effective

visualization systems to provide an environment to facilitate the rapid adoption and reduced complexity of

learning new programming concepts and/or a new programming language. These benefits have been

evaluated by Ben-Bassat Levy et al. (2003) with the use of Jeliot 2000, and Grissom et al. (2003) and show

that due to the increased level of engagement, the student‟s vocabulary of programming verbal and visual

terms increases thereby improving comprehension of these terms and supporting discussions.

CMinor is a programming language which has been designed to be syntactically similar to and a subset of

C/C++ whilst reducing the complexity by excluding features not deemed necessary for a beginner. By

utilizing a simple language, the novice programmer is able to focus on the other aspects of programming

such as memory management, pointer handling and data structure assembly.

A translator has been designed to perform syntax and semantic checks on the source code entered by the

user. If no errors are found, the parser translates the source code into an intermediate language. The

intermediate language is a high-level and structured representation of the source code which is fed into the

interpreter. The interpreter is responsible for the execution of the user‟s program, as well as signalling the

Visualizer to draw the variables present on the heap and stack memory spaces. The interpreter makes two

passes over the resultant tokens from the intermediate language to initialize the data structures required for

the interpretation process and then to perform the interpretation process. The entire process from parsing

through to signalling the Visualizer is illustrated in Figure 26.

46

Figure 26: Overall operation of the system

The Visualizer produces a visual that represents contiguous memory blocks on the stack and heap. Through

a link to the program domain component (Figure 19), the interpreter‟s stack and heap is analysed to produce

a memory mapping of the variables contained inside. The visual is generated in such a way to as allow the

user easily to identify the variables currently in use by the interpreter, for example by fading out variables

not in the currently executing scope. User interaction is supported by moving the mouse over a particular

variable. This action “pops up” the variable making it easily discernable. If the mouse is positioned over a

pointer variable, the line which points to the referenced variable is drawn bolder so as to clearly show which

variables are active. This helps especially for the visualization of data structures as pointers within nodes can

easily be traced.

CMinor Studio is the integrated development environment (IDE) featuring a simplistic user environment

through which CMinor code is entered, parsed, interpreted and visualized. CMinor Studio provides the

following usability features:

 Speed controls provide the user with the ability to change the interpreter execution speed.

 The ability to pause interpreter execution in order to manually step through the code.

 Function highlighting providing an uncomplicated means to follow code execution through various

function calls.

 Syntax highlights, liner numbers and automatic tabbing in the code editor mimics a professional C/C++

IDE.

 An error reporting facility provides detailed error messages and the ability to easily pin-point the

erroneous line of code.

User
Interface Parser

Visualizer Interpreter

1. Source

Code

2. Generated

Intermediate Language

3. Program

Execution

4. User interacts

with the GUI

47

The Visualizer is limited by the interpreter and the CMinor language in what it can visualize. In order to

make the tool useful for intermediate programmers that require a greater set of features than what CMinor

currently offers, a possible extension to this project would be to add additional language features of C/C++.

Object oriented programming would enhance this project by providing additional functionality and teaching

possibilities. The current method of visualizing variables on the heap and stack would therefore have to be

redesigned in order to portray classes in a meaningful way. Another future extension could be an algorithmic

visual which is displayed by the Visualizer instead of a direct memory map of variables on the heap and

stack. Additional meta-data could be used by the interpreter to signal the Visualizer to, for example, build a

visual representing a binary tree or another structure (Figure 27).

Figure 27: Algorithmic representation of a Binary Tree and other structures as an extension to the Visualizer

A software visualization system has been successfully developed for a beginner C/C++ programmer that can

be utilized within a practical or demonstration environment. By utilizing the CMinor language, beginner

programmers are able to focus on core programming concepts. The aims of this project have thus been

accomplished through the creation of the CMinor Studio application, incorporating a fully functional parser,

interpreter and Visualizer, that provides an interactive 2D visual used to complement teaching methodology.

48

8 References

Aho, A., Sethi, R., & Ullman, J. (1986). Compilers: Principles, Techniques and Tools. Reading, MA:

Addison-Wesley.

Asokan, R. (2003). Automatic visualization of the version history of a software system in three dimensions.

Virginia Polytechnic Institute and State University, Virginia.

Ball, T., & Eick, S. (1996). Software visualization in the large. IEEE comput 29(4), (pp. 33-43).

Ben-Bassat Levy, R., Ben-Ari, M., & Uronen, P. (2003). The Jeliot 2000 program animation system.

Computers & Education 40 (1) , 15-21.

Burch, M., Diehl, S., & Weissgerber, P. (2005). Visual data mining in software archives. ACM symposium

on software visualization (pp. 37-46). New York: ACM Press.

Conti, G., & Abdullah, K. (2004). Passive visual fingerprinting of network attack tools. ACM Workshop on

visualization and data mining for computer security, (pp. 45-54).

Deitel, H., & Deitel, P. (2003). C++ How to Program. New Jersey: Pearson Education, Inc.

Diehl, S. (2005). Software Visualization. 27th Internation conference on Software engineering (pp. 718-

719). New York: ACM Press.

Domingue, J., & Mulholland, P. (1997). Staging software visualizations on the web. IEEE symposium on

visual languages, (pp. 364-371).

Eick, S., Graves, T., Karr, A., Mockus, A., & Schuster, P. (2002). Visualizing. IEEE Trans Softw Eng , pp.

396-412.

Eick, S., Steffen, J., & Summer, E. J. (1992). Seesoft: a tool for visualizing line oriented software statistics.

IEEE Trans Softw Eng 18(11), (pp. 957-968).

Ford, L. (1993). How programmers visualize programs. Department of Computer Science. Exeter, England:

University of Exeter.

Gall, H., Jazayeri, M., & Riva, C. (1999). Visualizing software release histories: The use of colour and third

dimensions. IEEE international conference on software maintenance.

GNU Project. (2008, September 4). GCC, The GNU Compiler. Retrieved October 2008, 10, from Free

Software Foundation: http://gcc.gnu.org/

Gracanin, D., Matkovic, K., & Eltoweissy, M. (2005). Software visualization. Springer-Verlag.

49

Grissom, S., McNally, M., & Naps, T. (2003). Algorithm visualization in CS education: comparing levels of

student engagement. ACM Symposium on software visualization, (pp. 87-94).

Hundhausen, C., Douglas, S., & Stasko, J. (2002). A meta-study of algorithm visualization effectiveness. J

Vis Lang Comput 13(3), (pp. 259-290).

Hutchins, M., & Gallagher, K. (1998). Improving visual impact analysis. International Conference on

software maintenane, (pp. 294-303).

Institut für Systemsoftware. (2008, September 23). The Compiler Generator Coco/R. Retrieved October 13,

2008, from http://www.ssw.uni-linz.ac.at/coco/

Knight, C., & Munro, M. (1999). Comprehension with[in] virtual environments visualizations. Proceedings

of the 7th international workshop on program comprehension, (pp. 4-11). Pittsburgh, PA.

Kolling, M., Quig, B., Patterson, A., & Rosenburg, J. (2003). The BlueJ system and its pedagogy. Journal of

Computer Science Education .

LaFollette, P., Korsh, J., & Sangwan, R. (2000). A visual interface for effortless animation of C/C++

programs. J Vis Lang Comput 11(1), (pp. 27-48).

Lanza, M. (2003). CodeCrawler: lessons learned in building a software visualization tool. 7th European

conference on software maintenance and reengineering, (pp. 409-418).

Lattu, M., Meisalo, V., & Tarhio, J. (2003). A vizualization tool as a demonstration aid. Computers &

Education 41 , 133-148.

Lintern, R., Michaud, J., Storey, M., & Wu, X. (2003). Plugging-in visualization: experiences integrating a

visualization tool with Eclipse. ACM symposium on software visualization (pp. 47-56). New York: ACM

Press.

Mackinlay, J. (1986). Automating the design of graphical presentations of relational information. ACM

Trans Graph 5(2), (pp. 110-141).

Maletic, J., Leigh, J., Marcus, A., & Dunlap, G. (2001). Visualizing object-oriented software in virtual

reality. 9th International workshop on program comprehension, (pp. 26-35). Toronto.

Maletic, J., Marcus, A., & Collard, M. (2002). A task oriented view of software visualization. Proceedings

of the 1st international workshop on visualizing software for understanding and analysis, (pp. 32-40).

Malloy, B., & Power, J. (2005). Exploiting UML dynamic object modeling for the visualization of C++

programs. ACM symposium on software visualization, (pp. 105-114).

50

Myller, N. (2004). The fundamental design issues of Jeliot 3. University of Joensuu.

Parr, T. (n.d.). Retrieved October 2008, 9, from ANTLR Parser Generator: http://www.antlr.org/

Price, B., Baecker, R., & Small, I. (1993). A principled taxonomy of software visualization. J Vis Lang

Comput 4(3), (pp. 211-266).

Roman, G., & Cox, K. (1993). A taxonomy of program visualization systems. IEEE Computer 26(12), (pp.

11-24).

Roman, G., & Cox, K. (1992). Program visualization: the art of mapping programs to pictures. 14th

Internation conference on Software Engineering (pp. 412-420). Melbourne: ACM Press.

Smith, M., & Munro, M. (2002). Runtime visualization of object oriented software. 1st Internation

workshop on visualizing software for understand and analysis, (pp. 81-89).

sourcenav NG development group. (2008). Source Navigator NG. Retrieved October 2008, 10, from

http://sourcenav.berlios.de/

Stasko, J. (1992). Three-dimensional computation visualization. College of Computing, Graphics,

Visualization and Usability Center. Atlanta: Georgia Institute of Technology.

Storey, M., Wong, K., Fracchia, F., & Muller, H. (1997). On integrating visualization techniques for

effective software exploration. IEE symposium on information visualization, (pp. 38-45). Pheonix, AZ.

Stroustrup, B. (1999). Learning Standard C++ as a new language. The C/C++ Users Journal , 1-5.

Stroustrup, B. (1997). The C++ Programming Language (3rd ed.). Michigan: Addison-Wesley.

Sun Microsystems. (2008, June 3). C/C++ Grammar by Sun Microsystems. Retrieved October 13, 2008,

from ANTLR Grammar List:

http://hg.netbeans.org/main/file/tip/cnd.modelimpl/src/org/netbeans/modules/cnd/modelimpl/parser/cpppars

er.g

Sun Microsystems. (2008, October 31). Netbeans IDE. Retrieved October 31, 2008, from Netbeans:

http://www.netbeans.org/

Sutinen, E., Tarhio, J., & Teravirta, T. (2003). Easy algorithm animation on the web. Multimedia tools and

applications 19(2) , 179-184.

Sutinen, E., Tarhio, J., Lahtinen, S., Tuovinen, A., Rautama, E., & Meisalo, V. (1997). Eliot - an Algorithm

Animation Environment. Retrieved 5 24, 2008, from http://www.cs.helsinki.fi/TR/A-1997/4/A-1997-4.ps.gz

51

Terry, P. (2005). Compiling with C# and Java. London: Pearson Education Limited.

Tilley, S., & Huang, S. (2002). On selecting software visualization tools for program understanding in an

industrial context. 10th International workshop on program comprehension, (pp. 285-288).

Tiobe Software. (2008, May 1). TIOBE Programming Community Index. Retrieved November 3, 2008, from

TIOBE Software: http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

van Ham, F. (2003). Using multilevel call matrices in large software projects. Proceedings of 2003 IEEE

symposium on information visualization, (pp. 227-232).

Ware, C., Hui, D., & Frank, G. (1993). Visualizing object oriented software in three dimensions. IBM

Center for Advanced Studies conference, (pp. 612-660). Toronto.

52

Appendix A: CMinor Studio User Manual

53

Appendix B: CMinor.h Listing

Function Summary

int rand()

Returns the next pseudorandom, uniformly distributed int

value from this random number generator's sequence.

bool readBool()

Reads the next token of the input from the console into a

boolean value and returns that value.

char readChar()

Reads the next token of the input from the console into a

char value and returns that value.

int readInt()

Reads the next token of the input from the console into an

int value and returns that value.

void write(Expression | String Constant {, Expression | String Constant})

Prints a variable number of expressions or string constants to the

console.

Example:

write(x + 10);

write(“sum”);

write(“sum is”, x + 10);

void writeLine(Expression | String Constant {, Expression | String Constant})

Prints a variable number of expressions or string constants to the

console and appends a newline character.

Example:

writeLine(x + 10);

writeLine(“sum”);

writeLine(“sum is”, x + 10);

54

Appendix C: CMinor Unattributed Grammar

COMPILER CMinor $NC

CHARACTERS

 lf = CHR(10) .

 cr = CHR(13) .

 backslash = CHR(92) .

 control = CHR(0) .. CHR(31) .

 letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .

 digit = "0123456789" .

 stringCh = ANY - '"' - control - backslash .

 charCh = ANY - "'" - control - backslash .

 printable = ANY - control .

TOKENS

 identifier = letter { letter | digit | "_" } .

 number = digit { digit } .

 stringLiteral = '"' { stringCh | backslash printable } '"' .

 charLiteral = "'" (charCh | backslash printable) "'" .

 eol = cr lf.

COMMENTS FROM "//" TO lf

COMMENTS FROM "/*" TO "*/"

IGNORE CHR(9) .. CHR(13)

PRODUCTIONS

 CMinor

 = {

 StructDeclaration

 | ConstDeclarations

 | FunctionOrVarDeclarations

 | "#include" stringLiteral

 } EOF

 .

 StructDeclaration

 = "struct" Ident

 "{"

 (ConstDeclarations

 | StructFieldDeclarations

) SYNC

 {

 (ConstDeclarations

 | StructFieldDeclarations

) SYNC

 }

 "}"

 WEAK ";"

 .

 ConstDeclarations

 = ("const"

)

 BasicType

 OneConst

 WEAK ";"

 .

55

 OneConst

 = Ident

 AssignOp

 Expression

 .

 Constant

 = IntConst

 | CharConst

 | "true"

 | "false"

 | "NULL"

 .

 FunctionOrVarDeclarations

 = IdentType Ident

 (

 "("

 [ParamList]

 ")"

 "{" StatementList

 "}"

 |

 ("[" (

 Expression

 |

)

 WEAK "]"

 | AssignOp

 Expression

 |)

 { WEAK ","

 Ident

 ("[" (

 Expression

 |

)

 WEAK "]"

 | AssignOp

 Expression

 |)

 } WEAK ";"

) .

 StructFieldDeclarations

 = IdentType Ident

 ("[" (

 Expression

 |

)

 WEAK "]"

 |)

 { WEAK "," Ident

 ("[" (

 Expression

 |

)

 WEAK "]"

 |)

 }

 WEAK ";"

 .

 ParamList

 = OneParam

56

 { WEAK ","

 OneParam

 } .

 OneParam

 = IdentType

 Ident

 ["["

 "]"

]

 .

 IdentType

 = SimpleType

 | "void"

 .

 SimpleType

 = BasicType

 | Ident

 ["*"

]

 .

 BasicType

 = ((("int"

 | "char"

)

 [PointerType]

)

 | "bool"

)

 .

 PointerType

 = "*"

 .

 StatementList

 = { Statement

 SYNC

 } .

 Statement

 = Block

 | AssignCallObjDecl

 | IfStatement

 | IterationStatement

 | JumpStatement

 | OutputStatement

 | ConstDeclarations

 | VarDeclarations

 | DeleteStatement

 | ";"

 .

 Block

 = "{" StatementList

 "}"

 .

 AssignCallObjDecl

 =

 ["*"

]

 ["("

]

 Designator

 [")"

]

57

 (

 (AssignOp

 Expression

)

 |

 "("

 Arguments

 ")"

 |

 ["*"

]

 OneVar

 { WEAK ","

 ["*"

]

 OneVar }

 |

)

 WEAK ";" .

 VarDeclarations

 =

 BasicType

 OneVar

 { WEAK ","

 [PointerType]

 OneVar }

 WEAK ";"

 .

 OneVar

 = Ident

 ("["

 Expression

 WEAK "]"

 [AssignOp

 (StringConst

 |

 "{"

 (Expression

 { ","

 Expression

 }

 | ","

 |

)

 WEAK "}"

)

]

 | AssignOp

 Expression

 |

)

 .

 Designator

 = Ident

 { "."

 Ident

 | HeapDerefOp

 Ident

 | "["

 Expression

 "]"

 }

 .

58

 IfStatement

 = "if"

 "(" Condition WEAK ")"

 Statement

 ["else"

 Statement

] .

 IterationStatement

 = WhileStatement | DoWhileStatement | ForStatement

 .

 WhileStatement

 = "while"

 "(" Condition WEAK ")"

 Statement

 .

 DoWhileStatement

 = "do"

 Statement

 "while" WEAK "("

 Condition

 ")" WEAK ";" .

 ForStatement

 = "for" WEAK "(" ForInitStatement

 [Condition] ";"

 [ForExpression {"," ForExpression }]

 WEAK ")" SYNC Statement

 .

 ForInitStatement

 = AssignCallObjDecl | VarDeclarations | ";"

 .

 ForExpression

 = ["*"] Designator

 (

 (AssignOp Expression | "++" | "--"

)

)

 .

 JumpStatement

 = ContinueStatement | ReturnStatement | BreakStatement

 .

 ContinueStatement

 = "continue"

 WEAK ";"

 .

 BreakStatement

 = "break"

 WEAK ";" .

 ReturnStatement

 = "return"

 (

 Expression

 |

)

 WEAK ";" .

 DeleteStatement

 = "delete"

 ["[""]"

]

 Designator

59

 WEAK ";"

 .

 ReadStatement

 =

 ("readInt"

 | "readChar"

 | "readBool"

)

 "(" WEAK ")"

 .

 OutputStatement

 = WriteStatement | WriteLineStatement

 .

 WriteLineStatement

 = "writeLine"

 "("

 [WriteElement] ")"

 WEAK ";"

 .

 WriteStatement

 = "write"

 "(" WriteElement ")"

 WEAK ";"

 .

 WriteElement

 = (Expression

 | StringConst

)

 { WEAK ","

 (Expression

 | StringConst

)

 }

 .

 Arguments

 = [

 ArgList]

 .

 ArgList

 = OneArg

 { WEAK ","

 OneArg

 } .

 OneArg

 = Expression

 .

 Condition

 =

 Expression

 .

 Expression

 =

 AndExp

 { "||"

 AndExp

60

 }

 .

 AndExp

 = EqlExp

 { "&&"

 EqlExp

 } .

 EqlExp

 = RelExp

 [EqlOp RelExp

] .

 RelExp

 = AddExp

 [RelOp AddExp

] .

 AddExp

 = MulExp

 { AddOp MulExp

 } .

 MulExp

 = Factor

 { MulOp Factor

 } .

 Factor

 = Primary

 | "+"

 Factor

 | "-"

 Factor

 | "!"

 Factor

 .

 Primary

 = Designator

 (

 "("

 Arguments ")"

 | "++"

 | "--"

 |

)

 | Constant

 | "("

 Expression ")"

 | AddressOf

 | Dereference

 | HeapAllocation

 | ReadStatement

 | "rand" "(" ")"

 .

 HeapAllocation

 = "new"

 ("int"

 | "char"

 | Ident

)

 ("["(

 Expression

 |

)

 "]"

 |

61

 "("

 [

 Expression

]

 ")"

 |

)

 .

 Dereference

 = "*"

 ("(" Expression

 ")"

 | Ident

 ["["

 Expression

 "]"]

)

 .

 AddressOf

 = "&"

 Designator

 .

 AssignOp

 = "="

 | ":="

 .

 HeapDerefOp

 = "->"

 .

 EqlOp

 = "=="

 | "!="

 .

 RelOp

 = ">"

 | ">="

 | "

 = "+"

 | "-"

 .

 MulOp

 = "*"

 | "/"

 | "%"

 .

 Ident

 = (identifier

) .

 CharConst

 = charLiteral

 .

 IntConst

 = number

 .

 StringConst

 = stringLiteral

 .

END CMinor.

62

Appendix D: Poster

