
 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 1

An Investigation into Gesture Recognition in BingBee using

Neural Nets in MATLAB®

Submitted in partial fulfilment of the requirements of the Degree Bachelor of

Science (Honours) of Rhodes University

Primary Investigator: Ray Musvibe

Supervised by: Professor Peter Wentworth

2�� November, 2008

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 2

Abstract

A lot of work has been done towards developing intelligent and natural interfaces between human

beings and computer systems. Gesture recognition is a fast developing area in the field of

Human Computer Interaction. Present day system developers not only aim to develop fully

functional systems, but also aim for systems with more intuitive interfaces, allowing for

easier user/system interaction. Gestures have provided interface designers with a good

alternative to traditional users interface design approaches like the Command Line Interface

(CLI) and the Graphical User Interface. In this regard, for interface designers to develop

highly intuitive gesture based interfaces efficient and accurate gesture recognition approaches

have to be employed and the most suitable implementation packages selected if need be.

Artificial Neural Networks are a rapidly growing area in the field of Artificial Intelligence.

Whether neural nets are appropriate to the specific gesture recognition problem in BingBee

shall also be discussed here. Initial conclusions are that neural nets will provide a robust

gesture recognisor for BingBee. In addition, the reasons as to why MATLAB® is a suitable

platform for prototyping this proposed neural net solution will also be discussed in this work.

Again initial conclusions are that MATLAB® is a powerful tool for developing and testing a

highly optimized neural network solution for gesture recognition in BingBee.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 3

Acknowledgments

My greatest thanks goes to my Lord and Saviour, Jesus Christ, the bright morning star and

the very author of life, without whom there would be no life to the world as we know it. I

thank you Lord for the inspiration and the encouragement that you have given me over the

past few months. I also thank you for always having a listening ear whenever I ran into

trouble throughout this year, wether in my project or coursework. This work was only

possible through your gracious and all conquering love.

Secondly, I thank my ever present, patient, hardworking and encouraging supervisor,

Professor Peter Wentworth, for all the work that he put into this project. He was not only a

great supervisor, but in many ways a great teacher, for through him, I learned so much. I hope

this work brings much credit to you as supervisor; this work would not have been possible

without your wisdom and guidance.

I also extend my heart-felt thanks to Professor Mike Burton and Dr Denis Riordan for their

effort into the design and implementation of my gesture recognisor. This work would not

have progressed without their influence.

To Brenda, dear, thank you for being there for me as you have been for so long now, though

far, you are always by my side. May God almighty continue to bless you with much wisdom

and love.

Also, to great friends Taka, Shange, Curt, Martin, Bwini and Snax, it just wouldn’t have been

the same without you. Going through the year with you was lots of fun.

To my family that supported me throughout my first year at “Rhodes”, guys you have been

great, you make all this worth while. May there be showers of blessings to you!

Lastly, but not least, I gratefully thank the financial support of Telkom SA, Bright Ideas

Projects 39, Business Connexion, Verso Technologies, Comverse SA, Tellabs, Open Voice,

Mars Technologies, Tellabs, Amatole, THRIP and Stortech, through the Centre of

Excellence. I would also like to thank the trustees of the Andrew Mellon Foundation for

granting me this opportunity to study at such a distinguished and highly respected institution

as this.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 4

Contents Page

List of Figures………………………………………………………………………………..6

List of Tables…………………………………………………………………………………8

Chapter 1: Introduction and Background…………………………………………………9

1.1 Problem Statement…………………………………………………………………..9

1.2 The Proposed Gestures……………………….…………………………………….10

1.3 Background………………………………………..…………………………….…..10

1.4 Motivation…………………………………….……………………………………..11

1.5 Research Goals…………………………………….………………………………..13

1.6 Overview…………………………………………………………………………….13

Chapter 2: Related Work…………………………………………………………………..14

2.1 BingBee………………………………………………………………………….14

2.2 Gesture Recognition and Advances in HCI…………………………………...15

2.3 Online vs. Offline Recognition…………………………………………………17

2.4 Approaches to Gesture Recognition…………………………………………...18

2.4.1 Neural Computing……………………………………………………………18

2.4.2 Hidden Markov Models………………………………………………………26

2.4.3 Dynamic Time Warping……………………………………………………...27

2.5 Proposed Neural Net Based Classifier…………………………………………28

Chapter 3: An Evaluation of Neural Net Development Packages……………………….31

3.1 Matlab®………………………………………………………………………….31

3.2 STATISTICA®…………………………………………………………………34

3.3 SAS®…………………………………………………………………………….34

3.4 3GL’s…………………………………………………………………………….35

Chapter 4: Matlab® Implementation…………………….………………………..………36

4.1 Deciding on Neural Net Architecture………………………………………….36

4.2 Selection of Matlab training function………………………………………….43

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 5

4.3 Training for Gesture Recognition……………………………………………..43

Chapter 5: C# Implementation and BingBee Integration……………………………….45

5.1 BingBee’s Interface…………………………………………………………….45

5.2 Implementation of a Neural Net in C#..46

5.3 Evaluating the Gesture Recognisor……………………………………………49

5.4 Error Analysis and Correction………………………………………………...56

5.5 Evaluation of the new Gesture Recognisor ………..…………………………60

Chapter 6: Conclusions and Possible Extensions………………………………………...64

6.1 Conclusions……………………………………………………………………..64

6.2 Possible Extensions……………………………………………………………..65

Chapter 7: References………………………………………………………………………66

Appendix A: MATLAB® Scripts………………………………………………………….70

Appendix B: C# code………………………………………………………………………..76

Appendix C: Project Poster………………………………………………………………...90

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 6

List of Figures

Fig 1: Children playing at the Kiosk …………………………………………………………8

Fig 2: The Nintendo Wii® Remote…………………………………………………………..10

Fig 3: The Sony EyeToy® ...11

Fig 4: User interacting with TouchPad……………………………………………………...13

Fig 5: User inputs as captured by BingBee…………………...………...…………………...13

Fig 6: Microsoft’s Multi-touch Functionality………………………………………………..15

Fig 7: Hand gestures and mobile device control…………………………………………….15

Fig 8: Human Brain Cell…………………………………………………………………….18

Fig 9: Artificial Neuron………………………………………………………………………18

Fig 10: A feed-forward neural net…………………………………………………………...19

Fig 11: Gesture classification using HMM’s………………………………………………..27

Fig 12: The classification process…………………………………………………………..29

Fig 13: Results for testing a [40.40.4] net…………………………………………………..38

Fig 14: Results for testing a [30.30.4] net…………………………………………………..39

Fig 15: Results for testing a [25.25.4] net…………………………………………………..40

Fig 16: Results for testing a [25.20.4] net…………………………………………………..41

Fig 17: Training for gesture classification…………………………………………………..42

Fig 18: BingBee’s Ticklepad and TouchPad…………………………………….…………..44

Fig 19: Screenshot of Tetris…………………………………………………………………50

Fig 20: KeyPad based control……………………………………………………………….51

Fig 21: Gesture based control……………………………………………………………….52

Fig 22: Impact of frame rate on interaction speed………………………………………….54

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 7

Fig 23: Results of performance testing……………………………………………………..54

Fig 24: New gesture recognition process…………………………………………………...60

Fig 25: Code snippet of input filtering……………………………………………………...60

Fig 26: Final results…………………………………………………………………………61

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 8

List of Tables

Table 1: The ten proposed gestures…………………………………………………………...9

Table 2: Clockwise and anti-clockwise gestures…………………………………………….16

Table 3: ANN design trade-off’s……………………………………………………………..23

Table 4: The vectorisation process………………………………………………………….28

Table 5: Training functions and algorithms in Matlab……………………………………...31

Table 6: Line1 and Circle1 gestures………………………………………………………...36

Table 7: Games currently installed on BingBee………………………………….………....49

Table 8: Tetris’s arrow based control…………………………………………….………....50

Table 9: Proposed gesture interface for Tetris……………………………………………..51

Table 10: Comparing KeyPad based control vs. gesture based control…………………….53

Table 11: Main sources of error…………………………………………………………….55

Table 12: Conflicts involving diagonal gestures…………………………………………….56

Table 13: Gestures and new target sets……………………………………………………..57

Table 14: Noisy input vs. training samples………………………………………………....58

Table 15: Input filtering……………………………………………………………………..59

Table 16: Analysis of final results………………………………………………….………..61

Table 17: Improvements in new gesture recognisor…………………………….…………..62

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 9

Chapter 1: Introduction

 1.1 Problem statement

BingBee is a public information kiosk designed to stimulate children’s education

through entertainment. It can be set up in any secure building that has a window (for

visual interaction with users). Figure 1 shows an example of children playing with

BingBee

Figure 1 Children playing at the Kiosk

BingBee presently uses a pad on the window with key and mouse regions as a user

interface. A web cam picks up the input. Image analysis is performed on the images

captured to identify the input. Input is presently limited to these keys and mouse pad

movements.

In order to improve on user interaction and control, we are proposing a set of ten

primitive (2D) gestures that can be input through the touch pad, specifically targeting

control of a 3D scene fly-though scenario.

A study by IBM has shown that an accuracy rating of below 97% in character and

gesture recognition software such as Graphiti in PDA’s and Palm Tops is generally

viewed as inadequate by consumers. Most users have to change their writing styles for

proper recognition in most systems. [37] We however anticipate that reaching this

market standard may be difficult to achieve in BingBee due to observed noise levels

 An Investigation into Gesture Recognition in

and Pad sensitivity problems

thus be to come as close as possible to this market standard, thereby ensuring that user

expectations are met and building a truly intuitive

1.2 The Ten Proposed gestures

The following table below shows the target gesture

Please note that the arrow

show that the line in the first case

circular gestures is in the clockwise direction.

Table 1 Showing the ten proposed gestures

1.3 Background

Gesture recognition is currently an area of intense study as developers attempt to

make present day computers more human, and more intuitive.

This project presents some

recognition in general. It examines previous work in related studies and will explore

the various approaches available for

for building an intuitive 2D

I will conduct a survey on the many

recognition, particularly targeting architectures with low computational overhead and

good gesture classification performance. These would

implementation in BingBee

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

y problems. The aim in terms of classification and accuracy, will

thus be to come as close as possible to this market standard, thereby ensuring that user

expectations are met and building a truly intuitive gesture interface.

The Ten Proposed gestures

The following table below shows the target gestures for implementation in

Please note that the arrow-heads are not part of the gesture – they simply exist to

show that the line in the first case for instance, is drawn left-to-right, and the first

is in the clockwise direction.

howing the ten proposed gestures

ecognition is currently an area of intense study as developers attempt to

make present day computers more human, and more intuitive.

This project presents some of the literature available on neural computing and

ecognition in general. It examines previous work in related studies and will explore

the various approaches available for gesture recognition. It will form the foundation

building an intuitive 2D gesture recognisor for BingBee.

I will conduct a survey on the many neural network architectures suitable for

ecognition, particularly targeting architectures with low computational overhead and

good gesture classification performance. These would be ideal for our target

BingBee.

using Neural Nets in MATLAB® 10

accuracy, will

thus be to come as close as possible to this market standard, thereby ensuring that user

s for implementation in BingBee.

they simply exist to

right, and the first

ecognition is currently an area of intense study as developers attempt to

omputing and gesture

ecognition in general. It examines previous work in related studies and will explore

ecognition. It will form the foundation

rchitectures suitable for gesture

ecognition, particularly targeting architectures with low computational overhead and

be ideal for our target

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 11

I will also conduct a brief survey into MATLAB® and a few other software packages

available for developing neural nets in order to select the most suitable tool for

developing our solution.

1.4 Motivation

It is expected of BingBee, as with most modern day or future computer system, to

provide user friendly interfaces. Many games of the past decades had simple interface

designs and could be manipulated quite easily with a keyboard or Joystick. A good

example is of the 2D game Pac-Man that even today remains popular among gamers.

Four arrow keys were adequate for complete control of Pac-Man. [38]

As computers have evolved over the past decades, so has computer gaming.

Developments such as the continued introduction of more powerful CPU’s and

GPU’s, have led to the creation of a multi-million dollar gaming industry were

innovation is a critical survival trait. [39]

A more recent innovation on the gaming platform over the past few months have been

the Nintendo Wii®, which in many respects has revolutionised Human Computer

Interaction and the future of gaming interfaces through the Wii remote. [40] The Wii

remote comes fitted with an accelerometer and optical sensors that allow user to

manipulate objects on the screen.

Fig 2 The Nintendo Wii® remote

Another successful development in the gaming arena over the past few years was

Sony’s EyeToy®. The EyeToy uses a web cam and a microphone to allow user’s to

interact with it. [41]

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 12

Fig 3 A user interacting with a game using the Sony EyeToy’s webcam

It is with such developments in mind that we seek to improve upon the interface

design of BingBee. Due to the present interface design, consisting of a touch surface

and key area, gesture recognition was a natural option. A gesture recognisor could

easily be added in software without the need for specific hardware modifications.

With the current Xnasig group at Rhodes working on the implementation of 3D

games in BingBee, the gesture interface should be welcome development.

1.5 Research goals

In order to achieve the overarching goal of developing an intuitive interface for

BingBee, this thesis has the following research goals:

1. Conduct investigative studies into the most suitable approach for gesture

recognition in BingBee.

2. Conduct investigative studies into the most suitable tool set for developing our

solution for our target implementation in BingBee.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 13

3. Develop an optimised solution for implementation in BingBee and integrate this

solution into the interface design of BingBee.

1.6 Overview

This thesis begins by examining the BingBee interface design as well as looking into

the various approaches to the gesture recognition problem in Chapter 2. Here I will

also proceed to deliberate on the selected implementation method and architecture,

namely a neural net solution. In chapter 3, I will examine available software packages

for developing and simulation of neural nets. In Chapter 4, I will walk you through

my neural net development process in MATLAB® and in Chapter 5 go over the C#

implementation phase of the project. I provide my conclusions in Chapter 6 and also

provide some insight into possible extensions.

 An Investigation into Gesture Recognition in

Chapter 2: Related Work

2.1 BingBee [3]

BingBee presently uses a touch pad on the kiosk window

as a user interface. A web cam picks up the input as distortions in the fabric and some

image processing allows the software to map these onto corresponding keys or pad

position information. [10]

The image below shows a user ent

Fig 4 above shows a user entering data onto the pad.

frame capturing user input

 Fig 5 User input as captured by

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

Chapter 2: Related Work

presently uses a touch pad on the kiosk window with key and mouse regions

as a user interface. A web cam picks up the input as distortions in the fabric and some

image processing allows the software to map these onto corresponding keys or pad

[10]

The image below shows a user entering data on the pad;

above shows a user entering data onto the pad. Figure 5 below shows a single

capturing user input as seen by BingBee’s web cam.

User input as captured by BingBee’s web cam

using Neural Nets in MATLAB® 14

with key and mouse regions

as a user interface. A web cam picks up the input as distortions in the fabric and some

image processing allows the software to map these onto corresponding keys or pad

below shows a single

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 15

Positioning information is extracted from web-cam frames, captured at slow-rate

samples of between 5-25 frames per second. The position of the input is then

determined using an image differencing technique that subtracts each image from a

long-term historical average image. Thus we expect a typical Gesture would consist

of a sequence of roughly between eight and sixteen (x, y) coordinate pairs. [10]

2.2 Gesture Recognition and Advances in Human Computer Interaction

A primary goal of Gesture Recognition research over the years has been to create

systems which can identify specific human gestures and use them to convey

information or for device control [6].

Gesture Recognition is also important for developing alternative human-computer

interaction modalities [1]. It enables humans to interface with machines in a more

natural way.

Cadoz [5] describes three distinct roles for gestures

• Semiotic- the communication of meaningful information

• Ergotic- for manipulating the environment.

• Epistemic- for discovering the environment through tactile experience

In our case of the BingBee Recogniser, only the Ergotic roles are relevant. Users only

need to manipulate objects (Ergotic) through gestures.

Gesture Recognition can thus be defined as the process by which gestures made by

the users are made known to the target system [17].

Gesture Recognition has been applied to augmented reality, sign language

Recognition and Human Robot Interaction among others applications [20].

Microsoft recently unveiled its multi-touch functionality that is built into Windows 7.

 An Investigation into Gesture Recognition in

Fig 6 Microsoft multi-touch functionality with Gesture Recognition

Gesture Recognition has even gone mobile, with some manufactures employing

Gesture Recognition on their cellphones.

 Fig 7 above shows the use of hand gestures in mobile d

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

touch functionality with Gesture Recognition

Gesture Recognition has even gone mobile, with some manufactures employing

Gesture Recognition on their cellphones.

above shows the use of hand gestures in mobile device control

using Neural Nets in MATLAB® 16

Gesture Recognition has even gone mobile, with some manufactures employing

 An Investigation into Gesture Recognition in

According to techeblog [29], Gesture Recognition is set to become the next major

technology.

As more and more interface designers use gestures to complement traditional UI

designs like GUI, Gesture Recognition seems the way to go in developin

interactive, user friendly interfaces.

2.3 Online Recognition vs. Offline Recognition

In on-line recognition, characters are recognized as they are drawn whereas in off

recognition, characters are first drawn ‘on paper’ and then optically sc

represented as two-dimensional rasters [

Offline recognition has the major disadvantage of being unable to differentiate

gestures that are only distinguished by the direction in which they are drawn, say an

anticlockwise circle and a clockwi

character or gesture, irrespective of which recognition method is used. In

below, A and B would be classified as the same gesture using off

as different gestures using on

Gesture A

Table 2 Showing a clockwise circle

This significantly limits our set of input gestures. In this regard, online recognition

becomes our preferred choice.

Guyon [9] used on-line character recognition to achieve very good results for the

touch terminal that he built for character recognition. Guyon used a multi

feed-forward backpropagation network to identify the characters that he was working

on. On-line character recognition uses the ordering or the sequence of points of

characters for recognition. It can comfortably be adapted for Gesture Recognition in

BingBee.

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

According to techeblog [29], Gesture Recognition is set to become the next major

As more and more interface designers use gestures to complement traditional UI

designs like GUI, Gesture Recognition seems the way to go in developin

interactive, user friendly interfaces.

Online Recognition vs. Offline Recognition

line recognition, characters are recognized as they are drawn whereas in off

recognition, characters are first drawn ‘on paper’ and then optically sc

dimensional rasters [16].

Offline recognition has the major disadvantage of being unable to differentiate

gestures that are only distinguished by the direction in which they are drawn, say an

anticlockwise circle and a clockwise circle. . These would be classified as the same

character or gesture, irrespective of which recognition method is used. In

below, A and B would be classified as the same gesture using off-line recognition but

as different gestures using on-line Gesture Recognition.

Gesture B

Showing a clockwise circle gesture and an anticlockwise gesture

This significantly limits our set of input gestures. In this regard, online recognition

becomes our preferred choice.

line character recognition to achieve very good results for the

touch terminal that he built for character recognition. Guyon used a multi

forward backpropagation network to identify the characters that he was working

ecognition uses the ordering or the sequence of points of

characters for recognition. It can comfortably be adapted for Gesture Recognition in

using Neural Nets in MATLAB® 17

According to techeblog [29], Gesture Recognition is set to become the next major

As more and more interface designers use gestures to complement traditional UI

designs like GUI, Gesture Recognition seems the way to go in developing highly

line recognition, characters are recognized as they are drawn whereas in off-line

recognition, characters are first drawn ‘on paper’ and then optically scanned and

Offline recognition has the major disadvantage of being unable to differentiate

gestures that are only distinguished by the direction in which they are drawn, say an

. These would be classified as the same

character or gesture, irrespective of which recognition method is used. In Table 2

line recognition but

gesture and an anticlockwise gesture

This significantly limits our set of input gestures. In this regard, online recognition

line character recognition to achieve very good results for the

touch terminal that he built for character recognition. Guyon used a multi-layered

forward backpropagation network to identify the characters that he was working

ecognition uses the ordering or the sequence of points of

characters for recognition. It can comfortably be adapted for Gesture Recognition in

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 18

2.4 Approaches to Gesture Recognition

There are three common approaches to Gesture Recognition. These are Neural Nets,

Hidden Markov Models and Dynamic Time Warping. I discuss these here.

2.4.1 Neural Computing

2.4.1.1Machine Learning

Neural networks together with Genetic Algorithms form a broad subfield of Artificial

Intelligence called machine learning. Machine learning consists merely of techniques

and algorithms that allow computers to ‘learn’. [32].

Machine learning systems in part attempt to eliminate the need for human intuition in

the analysis of data which can come in a variety of forms. Data can take the form of

sound files, computer vision, financial data like stock market figures, DNA

sequences, bitmap images, cheminformatics data and many other data forms.

Machine learning has thus been mainly applied to pattern classification as well as for

prediction or forecasting based on data sets.

2.4.1.2 Background on Neural Nets

Neural nets represent an approach to Artificial Intelligence that attempts to model the

human brain. Neurons are processing units that operate in parallel inside the human

brain. There are an estimated 10 billion neurons in the human brain with about 60

trillion connections between these neurons. Each neuron receives inputs from other

neurons in the form of tiny electrical signals and, likewise, it also outputs electrical

signals to other neurons. These outputs are weighted in the sense that the neuron does

not ‘fire’ any output unless a certain threshold/bias is reached. These weights can be

altered through learning experiences; this is how the brain learns. The brain is

therefore a network of neurons acting in parallel – a Neural Network. [4]

The diagram below shows a typical brain cell;

 An Investigation into Gesture Recognition in

 Fig 8 Showing a typical human brain cell

Similarly, an Artificial Neural Nets consists of artificial neurons, which are

mathematical models of biological neurons.

like the biological neuron, an artificial neuron

numerical values and also outputs a numerical value.

The diagram below shows a representation of an artifi

 Fig 9 Showing an artificial neuron

The input into the perceptron consists of the numerical value multiplied by a weight

plus a bias. The perceptron only fires an output when the total strength of the input

signals exceeds a certain thresho

fed to other perceptrons. [26].

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

Showing a typical human brain cell

Similarly, an Artificial Neural Nets consists of artificial neurons, which are

of biological neurons. Instead of receiving electrical impulses

like the biological neuron, an artificial neuron (called a perceptron),

numerical values and also outputs a numerical value. [4]

The diagram below shows a representation of an artificial neuron.

Showing an artificial neuron

The input into the perceptron consists of the numerical value multiplied by a weight

plus a bias. The perceptron only fires an output when the total strength of the input

signals exceeds a certain threshold. As in biological neural Networks, this output is

fed to other perceptrons. [26].

using Neural Nets in MATLAB® 19

Similarly, an Artificial Neural Nets consists of artificial neurons, which are

Instead of receiving electrical impulses

(called a perceptron), receives

The input into the perceptron consists of the numerical value multiplied by a weight

plus a bias. The perceptron only fires an output when the total strength of the input

eural Networks, this output is

 An Investigation into Gesture Recognition in

The weighted input to a perceptron is acted upon by a function (the transfer function)

and this will determine the activation or output. Common transfer functions used in

Artificial Neural networks

function. [8]

Fig 10 below shows a representation of a simple (feed

four inputs, one hidden layer

their weights. [4]

Fig 10 A simple feed-forward Neural Net

 2.4.1.3 Types of Artificial Neural networks

There are several types of Artificial Neural Networks, the different strengths and

applications of these depend on their

[14]

Neural networks have been particularly noted to be good at identifying patterns or

trends in data, even where the smartest humans fail to identify any trends [4].

Artificial Neural networks

methods in areas such as Virtual Reality, Optimisation, Pattern Detection, Data

Mining and Signal Filtering.

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

The weighted input to a perceptron is acted upon by a function (the transfer function)

and this will determine the activation or output. Common transfer functions used in

Neural networks include the Hard Limiter, Log-Sigmoid and the Sign

below shows a representation of a simple (feed-forward) Neural Network wit

four inputs, one hidden layer and four outputs. Neural networks learn by changing

forward Neural Net

Neural networks and their Applications

There are several types of Artificial Neural Networks, the different strengths and

applications of these depend on their structure, dynamics and learning methods used.

have been particularly noted to be good at identifying patterns or

trends in data, even where the smartest humans fail to identify any trends [4].

Neural networks have offered better performance compared to traditional

methods in areas such as Virtual Reality, Optimisation, Pattern Detection, Data

Mining and Signal Filtering.

using Neural Nets in MATLAB® 20

The weighted input to a perceptron is acted upon by a function (the transfer function)

and this will determine the activation or output. Common transfer functions used in

Sigmoid and the Sign

forward) Neural Network with

learn by changing

There are several types of Artificial Neural Networks, the different strengths and

structure, dynamics and learning methods used.

have been particularly noted to be good at identifying patterns or

trends in data, even where the smartest humans fail to identify any trends [4].

etter performance compared to traditional

methods in areas such as Virtual Reality, Optimisation, Pattern Detection, Data

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 21

 2.4.1.3.1 Feed-forward Networks

These were the first types of Neural Networks to be devised. Information moves in

one direction, from the input layer to the output layer and there are no cycles. A

common learning technique for feed-forward networks is backpropagation; discussed

earlier. A common application of feed-forward Neural networks is pattern recognition

or classification. [26]

 2.4.1.3.2 Recurrent Networks

These are fundamentally different to feed-forward networks in that movement through

the net is bidirectional, not unidirectional as in feed-forward networks. Several

recurrent architectures exist, such as the Elman Network and the Hopfield Network

[42]. These can be trained using Backpropagation through Time (BPTT), Real-time

Recurrent Training and by Genetic Algorithms. Recurrent Networks have been used

in the problem of language acquisition [33], music composition and Time series

prediction. These, however, are processor intensive.

 2.4.1.3.3 Self-Organising maps

This is another type of Neural Network that uses a form of learning called

Unsupervised Learning. Self-Organising maps produce a ‘map’ that seeks to preserve

the topological properties of the input space. Applications of these include voice and

handwriting recognition. [28]

2.4.1.3.4 Other Neural Network Architectures

Several other Neural Network Architectures exist. Examples of these include: [42]

• Spiking Neural Networks

• Time Delay Neural Networks

• Stochastic Neural Networks

• Modular Neural networks

• Cascading Neural Networks

General feed-forward nets are by far a natural choice for our Gesture Recognition

case with BingBee. There is a lot of technical support on feed-forward nets as they

have been around the longest period of time and they are well documented. They also

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 22

have the added advantages of simplicity and low computational overhead, particularly

during training.

 2.4.1.4 Learning in Neural Nets

Neural Network Architectures generally fall into two broad categories; Supervised

and Unsupervised Learning.

 2.4.1.4 .1 Supervised Learning

The term ‘supervised' comes from the fact that the desired signals on individual

output nodes are provided as part of the training. The goal of the machine in this case

is to learn from the training set, so that it becomes able to produce the correct output

given new inputs. [32]

It is usually performed with feed-forward nets where training patterns are composed

of input and output vectors. A training cycle consists of the following steps.

a. An input vector is presented at the inputs together with a set of desired responses

(targets), one for each node at the output layer.

b. A forward pass is done and the errors between the targets and actual responses for

each node in the output layer are found. These are then used to adaptively make

changes in the net depending on the prevailing learning rule. [18]

 2.4.1.4 .1.1 The Backpropagation algorithm [8]

This is an algorithm used to train neural networks under supervised learning. It is

mostly useful in feed-forward neural networks and requires that the desired output be

known and transfer function be differentiable. Examples of suitable transfer functions

include the sigmoid function, tanh and the log sigmoid function. To train a neural

network using backpropagation, a training input pattern is propagated through the

neural net from layer to layer until the output pattern is generated by the output layer.

If the output pattern obtained is different from the desired output, an error is

calculated and appropriate weight changes are made and propagated backwards

through the entire network. The error is calculated by the equation.

����� 	
�,����

����

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 23

Where ����� is the error generated after P iterations on neuron k,
�,���� is the

desired output after P iterations on neuron k and
���� is the actual output from

neuron ‘k’ after P iterations.

The error is then used to generate the error gradient (�����). The error gradient is a

product of the error and the differential of the transfer function propagated backwards.

In the case of the sigmoid transfer function, the error gradient for the output layer

would be given by:

����� 	
����. ��

�����. �����

 The weights are modified as the error is propagated back. The weights are modified

by the equation:

∆������ 	 �.
����. �����

Where ∆������ is the weight change for the weight input to the ‘���’ neuron, inputs

from the ‘���’ neuron of the previous layer (neuron j’s input feeding into neuron k).

Where α is the learning rate,
���� is the output from neuron ‘j’. ����� is the

error gradient as calculated above.

The new weight for the neural net are thus calculated as:

����� � �� 	 ������ � ∆������

Where����� � ��is the new weight for the ‘���’ neuron after P iterations and

������ is the previous weight while ∆������ is the weight change as calculated

above. [8]

 2.4.1.4 .2 Unsupervised Learning

In Unsupervised Learning, the machine simply receives inputs (say x1, x2…) but

obtains no supervised target outputs. Unsupervised Learning has been used in finding

patterns in the data that would otherwise be considered pure unstructured noise.

Applications of Unsupervised Learning mainly centre on estimation problems; the

applications include clustering, the estimation of statistical distributions, compression

and filtering.[23]

Since we are not specifically looking for trends in data in our Gesture Recogniser,

Unsupervised Learning automatically becomes irrelevant and Supervised Learning

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 24

becomes a natural choice. We need to train the neural net with predetermined patterns

and expected outputs, so that it can later recognize similar gestures.

2.4.1.5 Artificial Neural networks and Design Tradeoffs

The general guideline when it comes to developing neural nets is to develop a neural

net with as few neurons as possible [4]. A small number of neurons have the

advantages of better noise tolerance, low computational overhead and low complexity

among others. Neural nets with large number of neurons tend to be more accurate but

suffer from overfitting or overtraining, which means the net has learned to classify

training data too well; hence it would find exact or very close matches, but may

struggle with noisy data. The table below compares and contrasts the tradeoffs when

moving from a low-count neural net to a net with many more neurons. [23]

Property General, Robust, Small

size nets

Accurate, Brittle, Larger

sized nets

Complexity

Resolution

Level of accuracy

Low High

Definition of the problem Usually bad, but may be

OK

Must be well-posed

Data coding Dimensionality reduction Many dimensions

Number of network units Low High

Data collection Less data needed

Sparse data

Even distribution

Noisy data tolerated

More data needed

Dense data

Uneven distribution

No noise tolerated

Test criteria Generalizes well to

unseen data

Reaches required level of

accuracy

Main problem in training Inaccuracy Overfitting

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 25

 Table 3 Comparing design trade-offs in neural net architectures.

The preferred trend among neural net developers is to go for the more robust

architecture. In our case a more robust net would also be a natural choice because we

would expect the nature of the input in most cases to have a great deal of noise and

variability, without generalisation our recogniser would surely struggle.

2.4.1.6 Optimising Neural Net Architectures

Optimising the training and recognition capability of a neural net has been achieved in

two ways. [4]

1. Using Genetic Algorithms

2. Using a trial and error approach.

Genetic Algorithms are a natural choice if we are trying to optimize the performance

of a neural net. The major problem in using this approach is correctly encoding the

Neural Net into the Genetic Algorithm [22]. A simpler yet effective method is to

conduct performance trials on the varied neural net architectures based on some

performance metric, say noise tolerance, and then deduce conclusions from these. I

would prefer conducting performance trials because of the simplicity of the approach,

but most importantly, it has also been noted that Genetic Algorithms are not always

correct. [4]

2.4.1.7 Advantages of Neural Computing

• Neural computing does not need to assume that an underlying data distribution

exists as is usually the case in statistical modelling.

• Neural networks are applicable to multivariate non-linear problems. In our

BingBee Recogniser we have two variables (x, y) .[2]

• Neural nets possess learning capabilities, [11]

• Fast computational ability[7]

2.4.1.8 Disadvantages of Neural Computing

• Minimizing overfitting in neural nets requires a great deal of computational

effort.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 26

• Individual relationships between input variables and the output variables are

not developed by engineering judgment, meaning that the Neural Network

model tends to be a black box or input/output table without analytical basis.

• The sample size has to be large.

• Neural networks are prone to overfitting [15]

2.4.2 Using Hidden Markov Models for Gesture Recognition

A Hidden Markov Model (HMM) is a statistical model in which the system being

modelled is assumed to be a Markov process with unknown parameters. The challenge

then is to determine the hidden parameters from the observable parameters. The

extracted model parameters can then be used to perform further analysis, with

particular applications to pattern recognition applications.

Hidden Markov Models are particularly known for their applications in temporal

pattern recognition problems such as speech, handwriting, gesture recognition and

musical score following.[13]

The HMM-based Gesture Recognition approach can be summarised as follows:

1. Define the Gestures – The Gestures must first of all be specified.

2. Describe each Gesture in terms of an HMM - A multi-dimensional HMM is

employed to model each Gesture. A Gesture is described by a set of N distinct hidden

states and r dimensional M distinct observable symbols.

3. Collect training data - With HMM-based approach, Gestures are specified through

the training data. Input data is preprocessed before being used to train the HMM.

4. Train the HMM’s through training data

5. Evaluate Gestures with the trained model - The trained model can be used to

classify the incoming Gestures. [16]

 The diagram below shows the gesture classification process using HMM.

Gesture Input

Module

Preprocessing

Module

HMM

Module

Output

Module

 An Investigation into Gesture Recognition in

 Input

 Fig 11 Gesture classification using HMM’s

 2.4.2.1 Advantages of HMM in Gesture Recognition

• HMM have efficient algorithms for learning and recognition.[

 2.4.2.2 Disadvantages of HMM in Gesture Recognition

• many parameters need to be set

• Large amount of training examples are required

• There is difficulty for extension to large vocabularies [30]

• The number of states of the (threshold) model increases as the

gesture models grows, which tends to cause a waste of running time. [

 2.4.3 Dynamic Time Warping (DTW) and Gesture Recognition

The DTW is a template-

with temporal variabilities.

Although it has been successful in small vocabulary problems, the DTW often needs

more templates for a range of variations. As DTW calculates variability information

during the matching process, it needs more templates for representing spatial

variabilities. Furthermore, it has no consideration for representing undefined patterns

[12]

It has mainly been used for off

Recognition, which makes it unsuitable for our recogniser in

fail to distinguish similar gestures like the circular clockwise and anticlockwise

gestures.

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

Gesture classification using HMM’s

Advantages of HMM in Gesture Recognition

HMM have efficient algorithms for learning and recognition.[12]

Disadvantages of HMM in Gesture Recognition

many parameters need to be set

Large amount of training examples are required

There is difficulty for extension to large vocabularies [30]

The number of states of the (threshold) model increases as the

gesture models grows, which tends to cause a waste of running time. [

Dynamic Time Warping (DTW) and Gesture Recognition

-based matching technique that can be applied to problems

with temporal variabilities.

hough it has been successful in small vocabulary problems, the DTW often needs

more templates for a range of variations. As DTW calculates variability information

during the matching process, it needs more templates for representing spatial

Furthermore, it has no consideration for representing undefined patterns

It has mainly been used for off-line Gesture Recognition, not on-

Recognition, which makes it unsuitable for our recogniser in BingBee.

uish similar gestures like the circular clockwise and anticlockwise

Module

Bank

using Neural Nets in MATLAB® 27

The number of states of the (threshold) model increases as the number of

gesture models grows, which tends to cause a waste of running time. [12]

based matching technique that can be applied to problems

hough it has been successful in small vocabulary problems, the DTW often needs

more templates for a range of variations. As DTW calculates variability information

during the matching process, it needs more templates for representing spatial

Furthermore, it has no consideration for representing undefined patterns.

-line Gesture

 [43] It would

uish similar gestures like the circular clockwise and anticlockwise

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 28

It is quite clear that the leading approaches to on-line Gesture Recognition are Hidden

Markov Models and Neural Nets. Both methods have been vastly used in gesture

classification and several hybrid architectures of these have been proposed to take

advantage of their individual strengths.

They both suffer from a need for large training sets and thus tend to be processor

intensive. Neural nets, however are processor intensive only during training, unlike

HMM’s which remain processor intensive even during the actual classification. This

allows for computational speed-up in neural nets. There is always the remote chance

of over fitting with neural nets but we can work around this through prudent network

architecture selection. The ability of neural nets to generalise makes them a natural for

our case in BingBee.

Even though neural nets are a ‘black box’ approach, they hide the underlying details

and parameters, unlike HMM’s that involve setting many parameters, and they thus

offer a much simplified approach.

2.5 Proposed Neural Network Gesture Classifier

There are a set of ten proposed gestures. Users input the gestures using the touchpad.

The web-cam captures the input at slow-rate samples of between 15-25 frames per

second, and using an image differencing technique, the sequence of (x, y) coordinates

representing the gesture is determined.

2.5.1 Preprocessing

This raw set of (x, y) coordinates will have to be preprocessed before it can be fed into

the trained neural net for classification. One of the major limitations of neural nets is

that they require a fixed number of inputs. Preprocessing must ensure that this

condition is met. This means that a gesture with an inadequate number of inputs must

not be passed onto the neural classifier or it must be ‘enlarged’ in an appropriate

manner to meet the size requirement. A gesture that is too long must be sampled

appropriately to fit the exact number of inputs in the neural classifier.

The resultant processed input can now be passed into the classifier. Yet further

preprocessing can be performed. Preprocessing can also be used to extract further

 An Investigation into Gesture Recognition in

‘meaning’ from the raw data and then passing the interpreted data onto the neural

classifier. This has the general effect of improving the performance of neural nets [36].

In my approach, the n input sequence of (x, y) coordinates is preprocessed into an

vector sequence, which is then passed into the trained neural net for classification. And

yes, the general effect of this is improved gesture recognition performance as

compared to using raw (x, y) coordinates. Scaling can also be introduced to improve

performance. The table

gesture.

Gesture

Table 4 showing the vectorisation

2.5.2 Classification

The set of input is passed

gesture into one of several predefined classes that can be i

Fig 12 below represents the classification process

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

‘meaning’ from the raw data and then passing the interpreted data onto the neural

This has the general effect of improving the performance of neural nets [36].

input sequence of (x, y) coordinates is preprocessed into an

vector sequence, which is then passed into the trained neural net for classification. And

yes, the general effect of this is improved gesture recognition performance as

compared to using raw (x, y) coordinates. Scaling can also be introduced to improve

 below outlines the vectorisation of points representing a

n Corresponding (x,y)

input coordinates

n-1 Vector form

vector of form (δ

vectorisation process

of input is passed through the trained Neural Network which classifies the

gesture into one of several predefined classes that can be identified by the system.

below represents the classification process for system control

using Neural Nets in MATLAB® 29

‘meaning’ from the raw data and then passing the interpreted data onto the neural

This has the general effect of improving the performance of neural nets [36].

input sequence of (x, y) coordinates is preprocessed into an n-1

vector sequence, which is then passed into the trained neural net for classification. And

yes, the general effect of this is improved gesture recognition performance as

compared to using raw (x, y) coordinates. Scaling can also be introduced to improve

of points representing a

Vector form (each

vector of form (δ(x), δ(y))

Neural Network which classifies the

dentified by the system.

 An Investigation into Gesture Recognition in

Fig 12 The classification process

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

The classification process for system control

using Neural Nets in MATLAB® 30

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 31

Chapter 3: Evaluation of Neural Network Development Package’s

There is wide range of both proprietary and open source software products available to

Neural Network designers. I will discuss a few alternatives.

3.1 MATLAB®

3.1.1 Fourth Generation Languages (4GL) and MATLAB®

Fourth Generation Languages are a class of programming languages that are usually

designed with a particular application in mind. These follow on from Third

Generation Languages but they offer higher abstraction. The major objective of these

4GL’s is to reduce the amount of programming. 4GL’s have been largely used for

Rapid Application Development (RAD).

Examples of 4GL’s include DataFlex®, WinDev® and MATLAB®.

MATLAB® is a 4GL that allows rapid application development for computer

intensive tasks than traditional programming languages such as C, C++ and

FORTRAN. MATLAB® specialises in application development in areas such as

image processing, financial modelling and analysis as well as technical computing.

MATLAB® provides engineers, scientists, mathematicians and other professionals

with companion ‘Toolboxes’ with relevant tools and a suitable application

development environment [19]

 3.1.2 Popularity of MATLAB®

Recent surveys show that MATLAB® is number 22 on a list of the most popular

programming languages [31]. Perhaps a reason for its position among other

programming languages is that it is a proprietary programming language and it is

rather expensive [35].

 3.1.3 The Neural Network Toolbox in MATLAB®

This is a Toolbox available in MATLAB® that provides users with tools for the

design and implementation of Artificial Neural Networks.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 32

The Neural Network Toolbox supports various Neural Network Architectures

(supervised and unsupervised networks) and provides several Training and Learning

functions. It also provides preprocessing and postprocessing functions such as

fixunkowns, removerows and mapminmax.

Table 5 below shows a list of training functions and associated algorithms associated

in the MATLAB® Neural Network Toolbox [34].

Function name Algorithm

Trainb Batch training with weight & bias learning rules

Trainbfg BFGS quasi-Newton backpropagation

Trainbr Bayesian regularization

Trainc Cyclical order incremental training w/learning functions

Traincgb Powell -Beale conjugate gradient backpropagation

Traincgf Fletcher-Powell conjugate gradient backpropagation

Traincgp Polak-Ribiere conjugate gradient backpropagation

Traingd Gradient descent backpropagation

Traingdm Gradient descent with momentum backpropagation

Traingda Gradient descent with adaptive learning (lr) rate backpropagation

Traingdx Gradient descent momentum & adaptive lr backpropagation

Trainlm Levenberg-Marquardt backpropagation

Trainoss One step secant backpropagation

Trainr Random order incremental training w/learning functions

Trainrp Resilient backpropagation

Trainscg Scaled conjugate gradient backpropagation

Trains Sequential order incremental training w/learning functions

Table 5 Lists training functions and related algorithms available in MATLAB®

3.1.4 Preprocessing and Postprocessing in MATLAB®

Preprocessing is when data is processed in such a way as to make it more tractable for

analysis and design. Preprocessing Neural Network inputs and targets improves the

efficiency of Neural Network training.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 33

Postprocessing generally enables detailed analysis of network performance. The

MATLAB® Neural Network Toolbox provides preprocessing and postprocessing

functions that enable users to:

• Reduce the dimensions of the input vectors using principal component analysis

• Perform regression analysis between the network response and the corresponding

targets

• Scale inputs and targets so that they fall in the default range [-1, 1], or any other

user specified minimum or maximum range (using mapminmax).

• Normalize the mean and standard deviation of the training set

• Preprocessing and data division are built into the network creation process. [19]

3.1.5 Advantages of MATLAB®

• MATLAB® is quite easy to learn as a programming language. After only a

few hours of training, a new MATLAB® user can start developing simulation

tools.

• MATLAB® compilers can compile to C, C++ and binary code, allowing the

use of different optimization options for high-speed executables.

• The open architecture allows for very rapid extension of the range of

functionality of MATLAB® by developing and sharing new toolboxes.

MATLAB® is available for a range of environments such as MS-Windows,

Linux, Sun Solaris, Apollo, VAX, HP workstations, Gould, Apple Macintosh,

and several other parallel machines. .[36]

• Ease of portability.

3.1.6 Disadvantages of MATLAB®

• Some simulations are simply too complex to program in MATLAB® as

compared to third generation languages. This can lead to performance cuts.

• The ease with which new toolboxes are developed and then shared also has its

drawbacks. For some application domains, there is currently a redundant

choice of several overlapping toolboxes, some of which may be partially or

entirely dysfunctional. The quality of the software in different toolboxes also

varies dramatically.[36]

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 34

• MATLAB® is an interpreted language, therefore it tends to be slow compared

to 3GL’s.[21]

 3.2 STATISTICA® Automated Neural Networks

STATISTICA® Automated Neural Networks is a proprietary Neural Network

software package available from StatSoft®. It offers the following features to

developers.

• Integrated pre- and post-processing.

• A number of highly optimized training algorithms (including Conjugate

Gradient Descent and BFGS).

• Support for combinations of networks and network architectures of

practically unlimited sizes organized in network sets for forming ensembles.

• Comprehensive graphical and statistical feedback that facilitates interactive

exploratory analyses.

• Full integration with the STATISTICA® system.[25]

3.3 SAS®

SAS® is another software package available to developers. The major advantage of

neural nets in SAS is that the package is free, but you have to license SAS/Base

software and preferably the SAS/OR, SAS/ETS, and/or SAS/STAT products.

Neural Network Architectures supported in SAS are:

• Generalized linear model (GLIM) -, which is suitable when there is a linear

relationship between the target and the inputs.

• Multilayer perceptron (MLR) - default, which is often the best architecture

for prediction problems

• Radial basis function (RBF) [SAS, 2008]

SAS® is clearly outweighed by other available Neural Network Software packages

like MATLAB® or STATISTICA® which offer more in terms of available

architectures and training functions.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 35

 3.4 Third Generation Programming languages

Third generation programming languages like Java, Perl and C# have been used to

develop tailor made Neural Network solutions. These have the added advantages of

speed and flexibility over 4GL based implementations of Neural Networks like

MATLAB®.

The major advantages offered by these mainly proprietary, 4GL Neural Network

implementations like MATLAB®, is that they offer optimised development

environments for training and simulation [4]. Apart from this, 4GL’s are built along

the RAD framework, allowing for quicker development and simulation.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 36

Chapter 4: MATLAB® Implementation

4.1 Determining the Neural Net Structure

4.1.1 Deciding on the number of inputs for the neural net

In order to decide on the number of inputs for this project, I had to physically enter gestures

on the TicklePad and examine the output at the varying frame rate. In general, for the central

frame rate of 15 frames per second, the longest gestures were consistently the circle gestures,

consisting of roughly 10 vectors on average while the other gestures typically consisted of

between 2 and 10 vectors. So the important question was; how many vectors had to be

entered until a clear pattern could be observed that could distinguish between the individual

vectors. The closest similarity was observed between the diagonal gestures and the circular

gestures. The circle gestures are by far the most complex of the available gesture set and it

can be argued that exactly one vector can distinguish the other eight non-circular gestures.

But the complexity of the circular gestures could not allow this; all the eight non-circular

gestures can form part of a circular gesture.

To get around this problem, I physically conducted experiments on the TicklePad to see how

many vectors would define a clear circular pattern or curvature, strongly taking into

consideration the amount of noise on the Ticklepad. My findings were that four or more

vectors could clearly distinguish between a curvature and a (roughly) straight line entered on

the TicklePad. The minimum (four) was then taken for better interaction speeds and less

computational overhead since these inputs would need to be propagated through the neural

net.

4.1.2 The number of neurons in the output layer

The number on neurons in the output layer depends on how big your target set is and the

nature of the output layer transfer function. In my problem case, I require only a target set of

ten targets. My output layer transfer function being Logsig, whose output range falls between

zero and one. This would mean that for a single Logsig transfer function; there is only the

possibility of two targets, a zero or a one. So in order to cover my entire set of ten gestures, I

would require a minimum of four Logsig outputs (2⁴=16). This would also mean I will have 6

extra targets sets. In a typical classification scenario, if any of these six peripheral classes is

produced, we assume that the input had large amounts of noise and therefore could not match

any of the ten real target gestures.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 37

Because of severe noise problems and conflicts in classification, this number of output layer

neurons would have to later be changed as will be discussed in chapter 5.

4.1.3 Selection of transfer functions

Several training functions can be applied to a neural net, but these converge differently and

have varying output ranges. Selection of the correct transfer functions is thus an important

part of designing a solution specific optimised neural net structure. My first constraining

factor here is that I am using backpropagation during training, meaning that I am only limited

to differentiable transfer functions such as Tansig [4]. Another constraining factor was my

decision to produce my output in the form of bits. It would make sense for me to have an

activation function in the output layer that squeezes output between zero and one. For this

reason, Logsig was a natural choice for the output layer as it produces that desired output.

For my first layer and hidden layer, I selected Tansig as my activation function because it

allows for faster convergence during training and it is differentiable. [8]

4.1.4 Determining the number of neurons in the first layer and the hidden layer

There are two main approaches to determine an optimum neural net structure. Most experts in

industry use genetic algorithms or a trial and error approach to find an optimised neural net

structure for their projects. [8] The task of finding a correct neural net structure is a delicate

one because a net with too few neurons will tend to misclassify, while one with too many

neurons usually leads to overfitting as discussed earlier. I used a trial and error approached

because it’s a much simpler approach. [4] The number of neurons in the first layer and those

in the hidden layer need to be decided upon in this regard, while those in the output layer will

depend on the developers target set.

In my trial and error approach I started of with what most experts would call a large “neural

net”, with forty neurons in the first layer and forty in the hidden layer. The idea being to test

how this net with perform on program generated test data, and then continually scale down

the net to see if there is a drastic drop in classification, which would mark the end of the

scaling down process. [4] All the scripts and tests were done in MATLAB®. I now walk you

through the scaling down process, giving you screenshots of typical tests results and their

interpretation.

 An Investigation into Gesture Recognition in

4.1.4.1 Testing the [40.40.4] neural net

My initial performance test was with a

layer neurons and four output layer neurons. To evaluate this net, I trained it over the same

training set that I would use for the other, smaller nets and used the same evaluation function.

To obtain comparable results, I performed the tests on the same gestures,

will use only the results for the

for Line1.

Table 6 below shows Line1 and

Line1

The MATLAB® script for the evaluation exercise

%evaluation script for line1
count2=0;
n2=[];
pc2=[];
ns2=-1;
for q2=[0:1:100]
 ns2=ns2+1; % increasing noise levels
 for z=[1:1:100]%performs 100 recognition test
 %circle1;
 line1;
 xl=length(P1);%This section of code samples the (x,y) coordinates 'evenly'
 yl=floor(xl/5);
 vl=P1([yl yl*2 3*yl 4*yl 5*yl]);
 v1l=P1([xl+yl xl+yl*2 xl+3*yl xl+4*yl xl+5*yl]);
 data14=[vl' v1l'];
 cae2=[];
 ae2=2*ns2*rand(5,1)-ns2;%generates random #'s between +/
 be2=2*ns2*rand(5,1)-ns2;
 cae2=[ae2 be2];%5*2 column of random numbers between +/
 data14=data14+cae2;%add random vector with increasing magni
 data14=data14';
 rel=[];%holds vectors
 lel=length(data14);
 kel=1;
 for kel=1:lel-1
 wel=data14(:,kel);

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

4] neural net

My initial performance test was with a neural net with forty first layer neurons, forty hidden

layer neurons and four output layer neurons. To evaluate this net, I trained it over the same

training set that I would use for the other, smaller nets and used the same evaluation function.

n comparable results, I performed the tests on the same gestures, Line1 and

will use only the results for the Circle1 gesture since the results are quite the same as those

and Circle1 gestures used for testing

Circle1

script for the evaluation exercise is shown below;

% increasing noise levels
%performs 100 recognition tests per noise level

%This section of code samples the (x,y) coordinates 'evenly'

v1l=P1([xl+yl xl+yl*2 xl+3*yl xl+4*yl xl+5*yl]);%works great

%generates random #'s between +/-(ns)/2

%5*2 column of random numbers between +/-(ns)/2
%add random vector with increasing magnitude

using Neural Nets in MATLAB® 38

neural net with forty first layer neurons, forty hidden

layer neurons and four output layer neurons. To evaluate this net, I trained it over the same

training set that I would use for the other, smaller nets and used the same evaluation function.

and Circle1. I

gesture since the results are quite the same as those

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 39

 sel=data14(:,kel+1);
 tel=sel-wel;%subtracting consecutive columns to obtain a vector
 rel=[rel tel];%augment the matrix
 kel=kel+1;
 end
 rel=rel(:);
 data14=rel/100;
 load Neurons.mat
 sol2=(round(sim(net2,data14)));
 if sol2==t1
 count2=count2+1;
 end
 end
 %count=count*10;
 pc2=[pc2 count2];
 n2=[n2 q2];
 count2=0;
 end
 close all
 plot(n2,pc2)
 xlabel('Arbitrary Noise Levels ')
 ylabel('Percentage Recognition')
 title('Ploting Noise levels with recognition for line1 gesture using [25.25.4]')

The following output was produced after running the script.

Fig 13 Showing results for testing a [40.40.4] net

4.1.4.1.1 Interpretation

The graph shows the gradual decline in classification as noise levels increase, this is to be

expected. An important thing here is that this neural net fails to completely recognise all the

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 40

gestures when there is absolutely no noise. This can be attributed to the overfitting problem

discussed earlier. I will set this as a benchmark in my tests to ascertain an optimum neural net

structure.

4.1.4.2 Testing the [30.30.4] neural net

I then proceeded to test a trained [30.30.4] net to see if there would be any significant drop in

performance as compared to the [40.40.4] net. I used the same evaluation script used above,

in the exact same conditions.

Fig 14 Showing performance results for testing a [30.30.4] net

4.1.4.2.1 Interpretation

Briefly inspecting the first performance graph (Fig 13) and Fig 14 above, the smaller net,

[30.30.4], appears to have outperformed the larger net. As noted previously, a neural net with

too many neurons suffers from overfitting, which is when a neural net does not classify as

expected when small amounts of noise is added, a well sized net would be able to generalise

correctly and produce the desired output. Observe also that the net achieves 100% recognition

when no noise is applied; it thereby meets my previously set benchmark.

4.1.4.3 Testing a [25.25.4] neural net

Results for testing a trained [25.25.4] net, over the same conditions are shown below

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 41

Fig 15 Showing performance test results for a [25.25.4] net

4.1.4.3.1 Interpretation

There is no significant drop in performance observed in this net and it meets my previously

set benchmark of achieving 100% recognition at 0 % noise levels. This will pass as a suitable

neural net structure.

4.1.4.4 Testing a [25.20.4] neural net

The result of this test is shown below in the graph.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 42

Fig 16 above shows the results for testing a trained [25.20.4] neural net

4.1.4.4.1 Interpretation

You may observe that though there isn’t much difference between this graph and the previous

one for the [25.25.4] net, it fails my benchmark test of 100% recognition for zero noise level.

Because of this reason, I conclude at this point that this [25.20.4] net will be inadequate for

my classification process.

4.1.4.4.5 Final conclusions

Since the [25.20.4] net fails my benchmark test, I will not proceed any further with these tests

as it is almost certain that subsequent test will produce even poor performance. I then

conclude that my optimum neural net structure for my classification problem is [25.25.4].

4.2 Selection of MATLAB® Training algorithm

In Table 5 of Section 3.1.3, I outline the numerous training functions available in

MATLAB®. For training my neural net for gesture recognition, I used the MATLAB®

function trainscg. The reason behind this decision was simply the amount of time that was to

be consumed during training. Trainscg allows for faster convergence (to targets) during

training, especially when dealing with input in the range {0<x<1} [4]. In my problem case, as

 An Investigation into Gesture Recognition in

with many neural net problem cases,

selection of a fast training algorithm will

4.3 Training for gesture classification

As mentioned, the most suitable tra

BingBee is supervised training

trained against a given set of targets

produce these same targets when presented with more or less of the same input

(noise tolerance). The diagram below outlines the training process employed in this work.

Fig 17

4.3.1 Inputs

Users are able to input gestures into the system through the touch surf

captured as (x, y) coordinates.

training gestures manually because large training sets are required

wrote ten MATLAB® scripts that

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

with many neural net problem cases, developers usually deal with large training

selection of a fast training algorithm will always save the developer much time.

Training for gesture classification

As mentioned, the most suitable training approach for our gesture classification problem in

 via Backprogation. This is when a neural net is iteratively

trained against a given set of targets, when particular inputs are fed through.

ame targets when presented with more or less of the same input

The diagram below outlines the training process employed in this work.

Users are able to input gestures into the system through the touch surface. These gestures are

captured as (x, y) coordinates. But for training purposes, it would be impractical to input

because large training sets are required [15]. For this reason, I

scripts that model the ten gestures, each generating (x, y) coordinates

using Neural Nets in MATLAB® 43

deal with large training sets;

ining approach for our gesture classification problem in

. This is when a neural net is iteratively

. The net must

ame targets when presented with more or less of the same input sequence

The diagram below outlines the training process employed in this work.

ace. These gestures are

But for training purposes, it would be impractical to input

. For this reason, I

stures, each generating (x, y) coordinates

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 44

that capture the essence of the gesture. I coded the scripts such that each time a particular

script runs, it produces the same gesture, but with a small, random amount of noise and to

model the type of (noisy) input obtained from the BingBee touchpad as much as possible.

MATLAB® scripts that generate the proposed gestures can be found in Appendix A1.

4.3.2 Preprocessing

One of the major limitations of neural computing is that neural nets deal with fixed size input.

For this reason, preprocessing is usually a necessary step before passing data into the neural

net. The preprocessing module employed during training and simulation will perform this

operation and transform the input sequence of (x, y) coordinates into a vector sequence. It is

necessary to transform to coordinates into a vector sequence because it has been noted that

neural nets are more likely to pick up a pattern when dealing with vectors [36].

Transformation of (x, y) coordinates into vector sequences is already being done on the

TicklePad in BingBee and hence will not be part of my final implementation in BingBee.

The MATLAB® script used to preprocess the inputs can be found in Appendix A2.

4.3.3 Training a Neural Net via Backpropagation

As mentioned earlier, neural nets store their knowledge as weights and thresholds. An

untrained neural net has random amounts of weights and thresholds (biases), which have no

meaning. [8]Through supervised learning and backpropagation training against the set target,

the weights and biases are altered to have meaning in our classification problem. This

training process is repeated for all the ten gestures against their targets. The end result is a

trained neural net, capable of distinguishing one gesture from another.

The MATLAB® script used for training can be found in Appendix A3.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 45

Chapter 5: C# Implementation and BingBee Integration

5.1 BingBee’s Interface design

BingBee’s interface is primarily designed to capture touch-surface motion using a webcam at

15 frames per second. Any motion on the touch surface generates TickleMessages that are

fed into a queue. The software implementation allows for separation of input from the

KeyPad area and from the TicklePad. Key-area inputs are mapped to their corresponding

keys using a configuration file while TicklePad inputs can be used for mouse motion control

or for gesture recognition.

Since I’m not interested in the key area, I’ll concentrate my discussion on the TicklePad.

Interacting with the TicklePad/TouchPad generates TickleMessage’s. These TickleMessage’s

from the TicklePad are of types KeyDown, KeyUp and KeyMoved. Each name depicts the

type of activity being captured on the TicklePad. In a normal sequence of events, we would

expect a KeyUp or KeyMoved TickleMessage only after an initial KeyDown action.

Fig 18 Showing BingBee’s TicklePad ant KeyPad areas

KeyPad Area

TicklePad

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 46

5.1.2 Preprocessing of user inputs in BingBee

In BingBee’s interface design, KeyMoved TickleMessages are generated each time motion is

detected on the Ticklepad, as such; these will be used for gesture classification as they

capture the essence of a gesture.

In the neural net training phase of this project, I generated n (x, y) coordinates corresponding

to the respective gesture. These were converted to an n-1 vector sequence that was scaled

down.

The already defined Dx and Dy property of the KeyMoved TickleMessage represent the

change in x and the change in y from the previous TickleMessage generated off the

TicklePad. These will be ideal for my neural classier which uses vector input for gesture

classification. There will be no need to Vectorise my input as it will be in vector format

already. I only need to capture the Dx and Dy values and scale them down before feeding the

result into my neural classifier. As pointed out in previous discussions, one major

disadvantage of neural nets is that they require a fixed sized input. For our target case in our

BingBee implementation, we shall use four vector pairs (four Dx values and four Dy values),

meaning eight (scaled) inputs will be fed into the neural net. This scenario implies that

KeyMoved TickleMessage’s will be queued until they meet the required number (eight),

before we can classify. Failure to meet this threshold will mean we have insufficient inputs

for classification and the gesture will have to be re-entered.

5.2 Implementing a neural net in C#

There are no C# library’s that provide API’s for the creation, training or simulation of neural

nets. I coded a Neuron class (found at Appendix B1) that defines the class variables and

contains the Neuron constructor. It also defines the public methods for interacting with the

Neuron object. The code snippet below shows the class variables and two constructors.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 47

public class Neuron
 {
 #region PROTECTED FIELDS (State variables)
 protected double[] w;
 protected double[] input;
 protected double threshold;
 protected int N;
 protected ActivationFunction f = null;
 protected double o;
 #endregion

 public Neuron(double thresh, ActivationFunction af, int Ni)
 {
 w = new double[Ni];
 f = af;
 threshold = thresh;
 N = Ni;
 }
 public Neuron()
 {
 w = new double[8];
 f = new Tansigmoid();
 threshold = 0;
 }

I also defined an interface, ActivationFunction (found in Appendix B2) that defines the

necessary activation functions Logsig and Tansig. The following code snippet defines the

interface and public methods for the LogSigmoid (Logsig) activation function.

public interface ActivationFunction
 {
 double Output(double x);
 }
 #region Logsigmoid

 //for the output layer
 [Serializable]
 public class SigmoidActivationFunction : ActivationFunction
 {

 // Get the name of the activation function

 public string Name
 {
 get { return "Log Sigmoid"; }
 }

 public double Output(double x)
 {
 return (double)(1 / (1 + Math.Exp(-x)));
 }

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 48

A third class, Classifier (Appendix B3), calls the Neuron constructor and implements the

activation function interface. Scaling the input and subsequent classification is also done

here. The weights and thresholds for the neurons are imported from the trained neural

prototype in MATLAB®. An alternative to this approach was to develop and train the neural

based recognisor in C#.

The reason why we chose to prototype our solution in MATLAB® was because

MATLAB®’s training functions have been developed and optimised over time. According to

[Burton, 2008], it is difficult to develop and train your own neural network that will perform

at par with neural solutions developed in MATLAB®. [8]

5.2.1 Extracting weights and biases from MATLAB® for BingBee integration

 The following MATLAB® commands assign the variable g to hold the first layer biases

(thresholds) of the first layer, and then write g to a Microsoft Excel file (import).

>>g = net2.b{1};

>>xlswrite ('import', g);

The biases obtained from the Excel file can then be hard coded into the respective first layer

neuron through the neuron constructor. I placed the (25 first layer) thresholds in an array as

follows.

double[] thresh1 = new double[25] { 1.303793107, 1.688246453, -1.243791373, -1.37607394, -0.794420995, -

0.371868635, 0.127802655, 0.374340852, 0.560241243, 0.108020291, 0.302797518, -0.166342412,

0.121101233, -0.015519909, 2.506639247, -0.036533335, -0.504898662, 0.139638468, 1.0364786,

1.294939702, -1.19264938, 0.7718653, 1.427070406, -1.863300612, -1.791804725};//25 threshold values for

layer 1

The same process is repeated for the respective layers and for the weights. The following

code snippet instantiates the three layers, each consisting of the assigned number of neurons.

Neuron[] Layer1 = new Neuron[25];//the first layer neurons
Neuron[] Layer2 = new Neuron[25];//the 2nd layer neurons
Neuron[] Layer3 = new Neuron[4];//the output layer neurons

 An Investigation into Gesture Recognition in

The following code snippet, part of the Classifier class

array of inputs (scaled vectors), passes

output. This method handles all the neural calculations.

public int[] Outputs(double[] a)
 {
 double[] OutputLayer1 = new d
 double[] OutputLayer2 = new double
 int[] OutputLayer3 = new int[4];
 for (int k = 0; k < 25; k++)
 {
 OutputLayer1[k] = Layer1[k].ComputeOutput(a);
 }
 for (int k = 0; k < 25; k++)
 {
 OutputLayer2[k] = Layer2[k].ComputeOutput(OutputLayer1);
 }
 for (int k = 0; k < 4; k++)
 {

if (Layer3[k].ComputeOutput(OutputLa
 else OutputLayer3[k] = 0;
 }
 return OutputLayer3; }

5.3 Evaluating the gesture interface

After successfully transferring the weights and biases from

implementation, it was then time to tes

function as expected in BingBee.

As mentioned, the gesture interface is specifically to target control in a 3D fly

scenario. The lists of games installed on

Game 2D

Tetris

Xox

Minesweeper

Slidinggame

Rubliccolors

Rubicgame

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

, part of the Classifier class (found in Appendix B3)

(scaled vectors), passes it through the neural net layers and returns an array as

This method handles all the neural calculations.

double[25];
double[25];

[4];

OutputLayer1[k] = Layer1[k].ComputeOutput(a);

OutputLayer2[k] = Layer2[k].ComputeOutput(OutputLayer1);

(Layer3[k].ComputeOutput(OutputLayer2) >= 0.5) OutputLayer3[k] =1;//Post Processing...

gesture interface

After successfully transferring the weights and biases from MATLAB®

t was then time to test and see whether the gesture recognisor would

.

As mentioned, the gesture interface is specifically to target control in a 3D fly

The lists of games installed on BingBee at present are as follows;

2D game 3D game

using Neural Nets in MATLAB® 49

3), takes in an

through the neural net layers and returns an array as

rocessing...

 into my C#

t and see whether the gesture recognisor would

As mentioned, the gesture interface is specifically to target control in a 3D fly-through

 An Investigation into Gesture Recognition in

Boxworld

Reversi

Dropblock

Timestables

Sketchart

Sudoku

FreeDraw

WireArt

MemoryPairs

MemorySequence

Table 7 Showing the list of games currently installed on

 After careful consideration, Tetris

gesture interface to evaluate its capabilities

the interface will be used by 3D games as more 3D games are added.

5.3.1 Integrating the gesture recognisor with Tetris

Tetris is a simple 2D game in which

to arrange the shapes as neatly as possible as more and mo

environment. Buy ‘completely filling a row

removed, thereby lowering the structure and

earning him/her more points.

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

list of games currently installed on BingBee.

consideration, Tetris was identified for implementing and initial testing of

to evaluate its capabilities and performance. The ultimate goal

ll be used by 3D games as more 3D games are added.

gesture recognisor with Tetris

Tetris is a simple 2D game in which random shapes are presented to the player and the task is

to arrange the shapes as neatly as possible as more and more shapes are added to the game

completely filling a row’, a user gets the bonus of having that entire row

removed, thereby lowering the structure and thereby buying the player more game time

using Neural Nets in MATLAB® 50

and initial testing of the

ultimate goal though is that

shapes are presented to the player and the task is

re shapes are added to the game

, a user gets the bonus of having that entire row

buying the player more game time and

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 51

Fig 19 Showing a screenshot of BingBee’s Tetris

The table below summarises the current interface design for Tetris

Control Method Function

Key Pad Left Arrow Move Left

Key Pad Right Arrow Move right

Key Pad Up Arrow Rotate Left

Key Pad Down Arrow Move Down Faster

Key Pad Enter Button Drop current shape to bottom

TicklePad/Gesture’s None

Table 8 Showing the current KeyPad based interface for Tetris

The following flow diagram below represents the control process for KeyPad based control.

 An Investigation into Gesture Recognition in

Fig 20 Showing the implementation of Key Pad based control

The following table below represents the propo

Gesture

LeftToRight gesture

RightToLeft gesture

Down gesture

Anticlockwise Circle gesture

Clockwise Circle gesture

DoubleTap

Table 9 showing the proposed gesture interface for

The following flow diagram summarises the proposed gesture

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

mplementation of Key Pad based control

able below represents the proposed gesture interface for Tetris

Control action

Move Right

Move Left

Move current shape down faster

Rotate Right

Rotate Left

Drop current shape to bottom

showing the proposed gesture interface for Tetris

The following flow diagram summarises the proposed gesture based control proces

using Neural Nets in MATLAB® 52

Move current shape down faster

control process

 An Investigation into Gesture Recognition in

Fig 21 Summarising the proposed gesture interface

As pointed out earlier, the aim of adding a gesture interface was to make interaction with the

system more intuitive, and perhaps add an extra modality of interaction as is common with

most modern systems. In attempting to improve the interface design, I created a rotate left

control, previously not catered for in the previous setup. It is my hope that having a rotate

right and rotate left gestures is an improvement on the interface design for Tetris and

intuitive, as compared to having a single UP arrow representing a single rotate left direction

with no provision for rotating right

5.3.2 Evaluation of the gesture interface

5.3.2.1 A comparison between arrow key controls and hand gestu

To evaluate the new gesture interface, I

interface with the already existing Key Pad interface.

Table 10 below summarises my

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

Summarising the proposed gesture interface

As pointed out earlier, the aim of adding a gesture interface was to make interaction with the

system more intuitive, and perhaps add an extra modality of interaction as is common with

ms. In attempting to improve the interface design, I created a rotate left

for in the previous setup. It is my hope that having a rotate

and rotate left gestures is an improvement on the interface design for Tetris and

intuitive, as compared to having a single UP arrow representing a single rotate left direction

with no provision for rotating right.

Evaluation of the gesture interface in Tetris

A comparison between arrow key controls and hand gestures

To evaluate the new gesture interface, I initially compared the performance of the gesture

interface with the already existing Key Pad interface.

elow summarises my initial findings.

using Neural Nets in MATLAB® 53

As pointed out earlier, the aim of adding a gesture interface was to make interaction with the

system more intuitive, and perhaps add an extra modality of interaction as is common with

ms. In attempting to improve the interface design, I created a rotate left

for in the previous setup. It is my hope that having a rotate

and rotate left gestures is an improvement on the interface design for Tetris and is more

intuitive, as compared to having a single UP arrow representing a single rotate left direction

the performance of the gesture

 An Investigation into Gesture Recognition in

Property Key Pad Action

Accuracy of control

modality

100%

Speed of control

Modality

Fast

Table 10 Summarising differences between KeyPad based control and Gesture based

Most neural implementations of

the case with our gesture recognisor.

input from the TicklePad. As my earlier experiments demonstrated, we expect 100%

accuracy when there is no noise present and this continues to fall gradually as

noise is added.

Another problem with the gesture interface is

single gesture, the gesture recognisor must wait for

of time taken to generate the four TickleMess

and on the webcams frame rate. (A higher frame rate would allow more TickleMessages to be

capture per unit time) To add to this delay, the inputs must be fed through a three layer, 54

neuron neural net.

5.3.2.2 Initial Test Results

The diagram below highlights the impact of from rate on the total classification interval.

total classification interval in this case is the amount of time spent waiting for the correct

number of inputs plus the entire period spent

54 neuron net. The result will also need to be mapped to the corresponding key event for

system control as with key based control. These figures therefore represent the extra amount

of time for controlling the system via gesture recognition as compared to KeyPad inputs.

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

Key Pad Action Hand Gestures Improvement?

100% <100%

Fast Slower

Summarising differences between KeyPad based control and Gesture based

implementations of do not always demonstrate a 100% accuracy rate, and so is

e with our gesture recognisor. I attribute most of the classification errors to the noisy

input from the TicklePad. As my earlier experiments demonstrated, we expect 100%

accuracy when there is no noise present and this continues to fall gradually as more

Another problem with the gesture interface is the interaction speed. In order to classify a

single gesture, the gesture recognisor must wait for at least four TickleMessages. The amount

taken to generate the four TickleMessages depends on the users hand motion speed

and on the webcams frame rate. (A higher frame rate would allow more TickleMessages to be

capture per unit time) To add to this delay, the inputs must be fed through a three layer, 54

highlights the impact of from rate on the total classification interval.

total classification interval in this case is the amount of time spent waiting for the correct

number of inputs plus the entire period spent propagating the entire input stream through the

will also need to be mapped to the corresponding key event for

system control as with key based control. These figures therefore represent the extra amount

he system via gesture recognition as compared to KeyPad inputs.

using Neural Nets in MATLAB® 54

Improvement?

Summarising differences between KeyPad based control and Gesture based

demonstrate a 100% accuracy rate, and so is

I attribute most of the classification errors to the noisy

input from the TicklePad. As my earlier experiments demonstrated, we expect 100%

more and more

order to classify a

four TickleMessages. The amount

ages depends on the users hand motion speed

and on the webcams frame rate. (A higher frame rate would allow more TickleMessages to be

capture per unit time) To add to this delay, the inputs must be fed through a three layer, 54

highlights the impact of from rate on the total classification interval. The

total classification interval in this case is the amount of time spent waiting for the correct

propagating the entire input stream through the

will also need to be mapped to the corresponding key event for

system control as with key based control. These figures therefore represent the extra amount

he system via gesture recognition as compared to KeyPad inputs.

 An Investigation into Gesture Recognition in

Fig 22 showing the impact of frame rate on interaction speed

A higher frame rate will no doubt increase the interaction speed, yet an evaluation of the

gesture recognisor indicated that low

below illustrates this point.

Fig 23 Showing the overall performance of the gesture recognisor at the various frame rates

The above results clearly demonstrate that the gesture interface is fair

classification performance and interaction

0

10000

20000

30000

40000

50000

60000

10fps 15fps

Clock Ticks

82%

58%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10fps 15fps

Percentage Accuracy

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

showing the impact of frame rate on interaction speed

A higher frame rate will no doubt increase the interaction speed, yet an evaluation of the

gesture recognisor indicated that lower frame rates allowed for better classification. The chart

Showing the overall performance of the gesture recognisor at the various frame rates

demonstrate that the gesture interface is fairly distant in terms of

classification performance and interaction speed.

20fps 25fps

Clock Ticks

Clock Ticks

58%

49%

38%

15fps 20fps 25fps

Percentage Accuracy

using Neural Nets in MATLAB® 55

A higher frame rate will no doubt increase the interaction speed, yet an evaluation of the

er frame rates allowed for better classification. The chart

Showing the overall performance of the gesture recognisor at the various frame rates

ly distant in terms of

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 56

5.4.1 Error Analysis and Correction

5.4.1.1 Source of errors

After completing these experiments, I sought after trying to improve the gesture recognisor’s

classification performance. To begin with, I identified two potential sources of accuracy in

the gesture recognisor. These are;

• Misclassification due to noisy input

• Gesture is too short, hence no classification takes place, meaning desired action is not

implemented

To evaluate the extent to which noise or gesture length contributed to the observed errors, I

took a random sample of some of the observed errors in the above trial. My investigations are

summarised below;

Type of error Percentage contribution

Misclassification [input too noisy] 87.5%

Gesture too short [Human Error] 12.5%

Table 11 Showing the main sources of error

Analysis of the gesture input giving rise to incorrect classification also revealed that the first

two TickleMessages were usually the noisiest. This may be attributed to hand motion being

unstable at the time that the user presses the TicklePad to enter his/her gesture, but gradually

stabilising as the user completes the gesture.

5.4.1.2 Conflicts involving diagonal gestures

More detailed test on the gesture recognisor on the entire gesture set revealed that due to

noise effects, two of the diagonal gestures were frequently misclassified. These two were not

included in the earlier tests with Tetris because they were not deemed intuitive for Tetris’s

game control as compared to the arrow and circle gestures which were then selected. The

frequency of the misclassification was quite high in comparison with the other gestures.

The table below summarises the problem of the two diagonal vectors.

 An Investigation into Gesture Recognition in

Gesture Training t

Table 12 Showing two conflicts present in the gesture recognisor

You will notice that the error output is just one bit off the actual target. To compound this

problem, the error output belongs to the left

actions could possibly be erroneously conceived by the system as a left

scenario does not hold well for our main aim; namely to build an intuitive gesture interface

for BingBee. The system would be high

5.4.1.2.1 Solving the off-by-one

This problem could easily be solved by defining the targets set in such a way

targets sets differ by only one bit. The only way to implement this would be to enlar

present length of the target set from four bits. New targets would have to be reassigned and

the neural net retrained for the new architecture, differing only in the output layer.

I retrained the net using a [25.

respective gestures. I also added more noise to the training sets during this retraining

exercise, seeing that my previous classifier could not cope with the encountered noise levels.

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

Training target Error outputs

Showing two conflicts present in the gesture recognisor

You will notice that the error output is just one bit off the actual target. To compound this

problem, the error output belongs to the left-arrow gesture, meaning entering one of these two

actions could possibly be erroneously conceived by the system as a left-arrow gesture. This

scenario does not hold well for our main aim; namely to build an intuitive gesture interface

The system would be highly unusable and very unpredictable.

one-bit problem

This problem could easily be solved by defining the targets set in such a way

targets sets differ by only one bit. The only way to implement this would be to enlar

present length of the target set from four bits. New targets would have to be reassigned and

the neural net retrained for the new architecture, differing only in the output layer.

I retrained the net using a [25.25.10] neural net with the following target sets for the

I also added more noise to the training sets during this retraining

exercise, seeing that my previous classifier could not cope with the encountered noise levels.

[1101] [0101]

[0111] [0101]

using Neural Nets in MATLAB® 57

You will notice that the error output is just one bit off the actual target. To compound this

meaning entering one of these two

arrow gesture. This

scenario does not hold well for our main aim; namely to build an intuitive gesture interface

This problem could easily be solved by defining the targets set in such a way that no two

targets sets differ by only one bit. The only way to implement this would be to enlarge the

present length of the target set from four bits. New targets would have to be reassigned and

the neural net retrained for the new architecture, differing only in the output layer.

target sets for the

I also added more noise to the training sets during this retraining

exercise, seeing that my previous classifier could not cope with the encountered noise levels.

[0101]

[0101]

 An Investigation into Gesture Recognition in

Gesture

Table 13 Showing the respective gestures and the new target set

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

Old Targets New Targets

[0 1 0 1]

[0 0 0 0 0 1 0 0 0 0]

[0 0 1 1]

[0 0 0 0 1 0 0 0 0 0]

[0 1 1 0]

[0 0 0 1 0 0 0 0 0 0]

[1 0 0 1]

[0 0 1 0 0 0 0 0 0 0]

[1 1 1 0]

[0 0 0 0 0 0 1 0 0 0]

[1 1 0 1]

[0 0 0 0 0 0 0 1 0 0]

[0 0 0 1]

[0 0 0 0 0 0 0 0 1 0]

[0 1 1 1]

[0 0 0 0 0 0 0 0 0 1]

[1 0 1 0]

[1 0 0 0 0 0 0 0 0 0]

[1 1 0 0]

[0 1 0 0 0 0 0 0 0 0]

Showing the respective gestures and the new target set

using Neural Nets in MATLAB® 58

New Targets

[0 0 0 0 0 1 0 0 0 0]

[0 0 0 0 1 0 0 0 0 0]

[0 0 0 1 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 0 0 0 0 1]

[1 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0]

 An Investigation into Gesture Recognition in

5.4.1.3 Noise during gesture input

Analysis of misclassified gestures revealed that most o

inception of the gesture and towards the end as the user follows through to complete the

gesture. They were usually several, very small, chaotic vectors at the beginning of most

misclassified gesture. Towards the end of mos

small chaotic vectors or very large vectors. These

some kind of input sanitisation on the vector inputs.

The diagram below highlights the stark difference between

actual misclassified inputs obtained from the

Gesture Typical input vector

(misclassified)

Table 14 Noisy input vs. training samples

It is also important to note that due to low frame rates, inputs were restricted to the first four

vectors because not much data could be captured at low frame rates.

inputs were the noisiest and scarcely resembling the training ex

5.4.1.3.1 Input Sanitization/Noise filtering

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

Noise during gesture input

nalysis of misclassified gestures revealed that most of the noise was generated at the

inception of the gesture and towards the end as the user follows through to complete the

gesture. They were usually several, very small, chaotic vectors at the beginning of most

misclassified gesture. Towards the end of most misclassified gestures were either the s

small chaotic vectors or very large vectors. These results provided a basis for me to conduct

some kind of input sanitisation on the vector inputs.

highlights the stark difference between typical training set inputs and

inputs obtained from the TicklePad.

Typical input vector

(misclassified).

Typical training vector

with some noise

Noisy input vs. training samples

is also important to note that due to low frame rates, inputs were restricted to the first four

vectors because not much data could be captured at low frame rates. Unfortunately, these first

and scarcely resembling the training examples.

/Noise filtering

Noise

using Neural Nets in MATLAB® 59

f the noise was generated at the

inception of the gesture and towards the end as the user follows through to complete the

gesture. They were usually several, very small, chaotic vectors at the beginning of most

t misclassified gestures were either the same,

results provided a basis for me to conduct

pical training set inputs and

raining vectors

with some noise added.

is also important to note that due to low frame rates, inputs were restricted to the first four

Unfortunately, these first

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 60

Having identified the main source of error in my gesture classifier, I sought to improve the

performance of the classifier with some input sanitization. It was clear that most of the

misclassified gestures either had very large vectors in them, or numerous tiny ones.

This made the decision of how to sanitize the input much easier. Excessively large or small

vectors were simply to be filtered out. The main drawback here is that we would require

much larger input space.

The diagram below details how a typically noisy input with enough points can be filtered to

remove noise for the clockwise circle gesture.

Gesture Input Vector Filtered result

Noise

Table 15 Showing proposed input filtering

The filtered result bears deeper resemblance to the training set (shown in the previous

diagram) and hence will more likely be classified correctly than the raw, unfiltered input.

5.5 Evaluation of gesture recognisor with input sanitization and expanded target set.

I then added some input sanitisation to my recogniser and the new neural net structure with

ten outputs and evaluated the results of this experiment. The flow diagram representing the

new gesture recognition process is as follows;

 An Investigation into Gesture Recognition in

Fig 24 Showing a flow diagram of the new gesture recognition process

I implemented the noise filtering by looking for excessively large or small inputs by setting

flags as follows.

Fig 25 Showing C# code snippet

I tested the new gesture interface at the various frame rates using the arrow left gesture, arrow

right gesture and the clockwise circle gesture

frame rate. The results for this evaluation are as follows;

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

Showing a flow diagram of the new gesture recognition process

I implemented the noise filtering by looking for excessively large or small inputs by setting

snippet for the gesture recognisor with input filtering

I tested the new gesture interface at the various frame rates using the arrow left gesture, arrow

right gesture and the clockwise circle gesture, running between 50 and a hundred tests per

The results for this evaluation are as follows;

using Neural Nets in MATLAB® 61

I implemented the noise filtering by looking for excessively large or small inputs by setting

I tested the new gesture interface at the various frame rates using the arrow left gesture, arrow

, running between 50 and a hundred tests per

 An Investigation into Gesture Recognition in

Fig 26 showing final test results

5.5.1 Analysis of final results

The table below provides explanation

Frame rate Accuracy Comments

10 fps 63% Input filtering severely constraints the number of accepted

inputs, at low frame rates, the m

inadequate inputs after filtering.

User generally needs to input long gesture for recognition.

15 fps 93% A fairly acceptable

noise, input filtering does not filter much data because of the

larger frame rate.

20 fps 83% At higher frame rates, more and more small sized vectors are

created,

inadequate inputs after noise filtering.

25 fps 80% Again ev

main source of error is

classification.

Table 16 above providing explanations on recognisor

63%

92%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10fps 15fps

Percentage Accuracy

An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB®

The table below provides explanations of the above findings

Comments

Input filtering severely constraints the number of accepted

inputs, at low frame rates, the main source of error becomes

inadequate inputs after filtering.

User generally needs to input long gesture for recognition.

A fairly acceptable accuracy figure given the amount of

noise, input filtering does not filter much data because of the

larger frame rate. Inputs most closely match training sets.

At higher frame rates, more and more small sized vectors are

created, meaning more filtering. Main source of error here is

inadequate inputs after noise filtering.

Again even higher frame rates results in high input filtering,

main source of error is again inadequate inputs resulting in no

classification.

above providing explanations on recognisor classification

92%

83% 80%

15fps 20fps 25fps

Percentage Accuracy

using Neural Nets in MATLAB® 62

Input filtering severely constraints the number of accepted

ain source of error becomes

User generally needs to input long gesture for recognition.

accuracy figure given the amount of

noise, input filtering does not filter much data because of the

Inputs most closely match training sets.

At higher frame rates, more and more small sized vectors are

more filtering. Main source of error here is

input filtering,

inadequate inputs resulting in no

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 63

5.6 Summary of this chapter

After implementing these changes, I realised the following changes in the upgraded

recognisor with input filtering and expanded target set.

Property Observed change Improvement?

Interaction Speed Faster

Accuracy of Classifier Better

Table 17 Showing improvements in the gesture recognisor after error analysis and correction

These changes allow for a fairly acceptable gesture based interface. The gesture recognisor

may not match KeyPad based control in terms of interaction speed and accuracy, but at 93%

optimum classification capability, it does offer an alternative control modality that users may

find more intuitive for 2D or 3D gaming control.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 64

Chapter 6: Conclusions and Possible Extensions

6.1 Conclusions

I conclude that the neural net based gesture recognisor has proved to be suitable for our

gesture recognition problem in BingBee as seen by the performance tests. This neural net

based solution was developed using MATLAB®’s power libraries through its Neural

Network Toolbox. The critical weights and biases that define the net were hard coded into a

C# implementation for integration in BingBee. The new gesture interface has been tested on

BingBee’s Tetris game, with some success. The target implementation for the gesture

recognisor still remains for 3D gaming control, though some 2D games like Tetris can use

part of the gesture set.

 It may not meet the market standard of 97% accuracy [37] for complete user satisfaction but

at an optimum classification performance of 93%, it does come fairly close to the standard,

particularly taking into consideration the amount of noise coming into the recognisor from

the Pad. It is also important to note that most classification errors at this point are mainly due

to users entering gestures that are too short, and these cannot be classified and hence result in

no action.

In this work, I have also endeavoured to develop a highly optimised neural net solution for

our gesture recognition problem in BingBee, prudent error analysis has allowed us to identify

the main cause of misclassification error and to find ways to work around these, namely input

sanitization to handle noise and increasing the target set to avoid conflicts in classification.

MATLAB® has been proven in this work to be an adequate tool for the development and

simulation of this project’s feed-forward neural net based gesture recognisor. The wide range

of training, post and pre-processing functions provides a highly optimised development

environment suitable for training and simulation of neural nets.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 65

6.2 Possible Extensions

I have identified several possible extensions for this project. Firstly there can be an increase

in the gesture set. This may however require building a larger neural net or perhaps

introducing a new gesture recognition approach altogether. In this light, an alphabet can also

be added which I think may be popular with the children.

Secondly, the performance of the recognisor does not match industry standards and

performance is not uniform across the available frame rates. In this regard, more work can be

done to improve upon these attributes of this projects gesture recognisor.

Finally, our recognizer recognizes 2D gestures made on the pad surface. Some modern day

systems have moved on to 3D gesture recognition, as seen with Sony’s EyeToy® discussed

earlier for gaming control. In an effort to make the system more intuitive and in adding to the

number of control modalities, perhaps the next step could be to attempt a 3D gesture interface

that could be added to BingBee’s interface in the near future.

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 66

7. References

[1] Aditya Ramamoorthy et al. “Recognition of dynamic hand gestures “, page 1-13.

Department of Electrical Engineering IIT New Delhi-110016 India. Department of

Computer Science and Engineering, IIT New Delhi-110016, India.7 October 2002.

[2] Andrew Vogt and Joe G. Bared. “Artificial Neural Networks”

<http://www.tfhrc.gov/safety/98133/ch02/body_ch02_05.html> Retrieved 20/4/8

[3] BingBee. www.BingBee.com Retrieved 02/11/8

[4] Burton Mike, lectures and lecture notes, 2008.

[5] Cadoz, C. “Les realites virtuelles”. Dominos, Flammarion. 1994.

[6] Charles Cohen,” A Brief overview of Gesture Recognition”. 1999

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/COHEN/Gesture_overview.ht

ml Retrieved 19/4/2008

[7] Chowdhury, Badrul H. and Wilamowski, B.M. “Security assessment using

neural computing”. Institute of Electrical and Electronics Engineers, 1991.

[8] Denis Riordan, lectures and lecture slides, 2008. Web site at

http://hobbes.ict.ru.ac.za/csdr/cs404/resources/

[9] I. Guyon, P. Albrecht, Y. LeCun, J. Denker, and W. Hubbard. “Design of a Neural

Network Character Recognizer for a Touch Terminal”, pages 105-119. Pattern Recognition,

1990

[10] Hannah Slay et al. “BingBee, an Information Kiosk for Social Enablement in

Marginalized Communities”. SAICS 2006

[11] Hossein Bidgoli. “Intelligent Management Support Systems”, page 201. Greenwood

Publishing Group, 1998.

[12] Hyeon-Kyu Lee and Jin-Hyung Kim “Gesture spotting from continuous hand motion”,

pages 1-8, Department of Computer Science, KAIST, Taejon, South Korea. September 1997

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 67

[13] Ian Buck, “New Applications”, pages 2-17.merrimac.stanford.edu/applications/newaps-

merrimac.12.8.03.pdf Retrieved 24/6/08

[14] Japan Singapore AI centre. “Neural Network Applications”

http://tralvex.com/pub/nap/index.html Retrieved 20/5/8

[15] Jack V Tu. “Advantages and Disadvantages of Using Artificial Neural Networks”, pages

1-7. Institute for Clinical Evaluative Sciences, North York, Ontario, Canada, Department of

Medicine. 1996

[16] Jie Yang, Yangsheng Xu. “Hidden Markov Model for Gesture Recognition “, pages 4-

15. The Robotics Institute, Carnegie Mellon University Pittsburgh, Pennsylvania 15213 May

1994. Carnegie.

[17] Kay M. Stanney.” A Handbook of Virtual Environments”, page 223. Lawrence Erlbum

Associates, 2002.

[18] K Gurney “Supervised Learning”

http://www.shef.ac.uk/psychology/gurney/notes/l10/subsubsection3_3_6_2.html Accessed

04/05/08

[19] Mathworks http://www.mathworks.com/products/MATLAB®/index.html?sec=apps

Retrieved 22/6/8.

[20] M D Hasanuzzaman et al. ”Adaptive Visual Gesture Recognition for Human Robot

Interaction using Knowledge Based Software platform”, pages 1-12. North-Holland

Publishing Co. Amsterdam, Netherlands, 2007.

[21] Melissa Lin. “Problem Solving with MATLAB®”, pages 12-20, HenEm, Inc. Parkville.

The Distance Learning Center.2005

[22] Philipp Koehn “Combining Genetic Algorithms and Neural Networks: The Encoding

Problem” The University of Tennessee, Knoxville, USA.

[23] Robert Turetsky, “Training Neural Networks”, pages 7-58, Systems, Man and

Cybernetics Society IEEE, North Jersey Chapter. December 12, 2000

www.ee.columbia.edu/~rob/talks/neuralnet.ppt. Accessed 18/4/8

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 68

[24] SAS, 2008

<http://www.sas.com/technologies/analytics/datamining/miner/neuralnet.html> Retrieved

23/6/8.

[25] StatSoft http://www.statsoft.com/products/stat_nn.html Retrieved 20/06/08.

[26] Stanford http://cse.stanford.edu/class/sophomore-college/projects-00/neural-

networks/Neuron/index.html Retrieved 04/05/08.

[27] Lubomir T. Dechevsky, Arne Lakså. “A Brief Report on MATLAB®” pages 1-9. April

2004.

[28] Self Organising Maps

http://www.ucl.ac.uk/oncology/MicroCore/HTML_resource/SOM_Intro.htm. Retrieved

20/5/8

[29] Techeblog http://www.techeblog.com/index.php/tech-gadget/video-wiimote-used-for-

touchless-Gesture-Recognition-system-microsoft-surface- Retrieved 20/06/08

[30] Tae-Kyu Lee and Roberto Cipolla. “Gesture Recognition under Small Samples Sizes”,

pages 1-10. Sidney Sussex College, University of Cambridge, Cambridge, CB2 3HU, UK.

2007

[31] Tiobe, 2008. “Programming Community Index for November 2008”.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html Retrieved 03/10/08.

[32] Tom Mitchell, “Machine Learning”. McGraw-Hill, 1997.

[33] Ryotaro Kamimura, “Analysis of Neural Net Applications Conference”, pages 14-28,

ACM, 1991

 [34] Vladimir Vacic. “Summary of the training functions in MATLAB®’s NN toolbox”,

pages 1-9, http://www.cs.ucr.edu/~vladimir/cs171/nn_summary.pdf Retrieved 19/04/2008

[35] Java.net. http://wiki.java.net, 2008. Retrieved 04/05/08

[36] Will Dwinnell, Dwinnell Consulting. Correspondence via email, web site at

http://will.dwinnell.com/.

 [37] Araokar, S. “Visual character recognition using artificial neural networks”, pages 1-7.

MGM’s College of Engineering and Technology, 2005

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 69

[38] The PCman Website, retrieved 02/11/08,

http://www.thepcmanwebsite.com/media/pacman1/pacman1.shtml

[39] Walt Scacchi, Research and Educational Innovations in Computer Games, pages 2-4

California Institute for Telecommunications and Information Technology, 2002

[40] Nintendo, http://www.nintendo.com/wii/what/controllers, retrieved 30/10/08

[41] EyeToy, http://www.us.playstation.com/PS2/Games/EyeToy_Play/ogs/, retrieved

30/10/08

[42] Martin T. Hagan, Howard B. Demuth, and Mark H. Beale. “Neuron Model and Network

Architectures”, http://hagan.ecen.ceat.okstate.edu/2_Architectures.pdf

[43] Andrea Corradini, “Dynamic Time Warping for Off-Line Recognition of a Small Gesture

Vocabulary”, IEEE Computer Society, 2001

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 70

Appendix A: MATLAB® scripts

This section contains MATLAB® scripts used in the training and simulation of the

gestures recognisor

A1. Training sets

% Written by Ray Musvibe
% This script generates (x,y) coordinates for the
% Diagonal right up gesture
% Polar Coordinates line 1
r1=0;
deg1=50*rand(1)+20;
%diff1=200*rand()+30;
we1=[];
for qw1=[0:1:4]
 r1=r1+200*rand()+30;%adds that extra required random length factor;
 y1=sin(deg1*pi/180)*r1;
 x1=cos(deg1*pi/180)*r1;
 we1=[we1; [x1 y1]];
 %plot(x,y)
end
we1;
% we1 is a matric containing the coordinates

% Written by Ray Musvibe
% This script generates (x,y) coordinates for the
% Diagonal left down gesture
% Rectangular Coordinates line 2
% deg varies the slope of the line, simulating similar gestures
r2=1000;
deg2=50*rand(1)+200;
we2=[];
for qw2=[0:1:4]
 r2=r2-(200*rand()+30);
 y2=-sin(deg2*pi/180)*r2;
 x2=-cos(deg2*pi/180)*r2;
 we2=[we2; [x2 y2]];
 end
we2;
% we2 is a matric containing the coordinates

% Written by Ray Musvibe
% This script generates (x,y) coordinates for the
% Diagonal right down gesture
% Rectangular Coordinates line 3
% deg varies the slope of the line, simulating similar gestures
r3=1000;
deg3=50*rand(1)+290;
we3=[];
for qw3=[0:1:4]
 r3=r3-(200*rand()+30);
 y3=-sin(deg3*pi/180)*r3;
 x3=-cos(deg3*pi/180)*r3;
 we3=[we3; [x3 y3]];
end

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 71

we3;
% we3 is a matric containing the coordinates

% Written by Ray Musvibe
% This script generates (x,y) coordinates for the
% Diagonal right up gesture
% Rectangular Coordinates line 4
% deg varies the slope of the line, simulating similar gestures
r4=0;
deg4=50*rand(1)+110;
we4=[];
for qw4=[0:1:4]
 r4=r4+200*rand()+30;
 y4=sin(deg4*pi/180)*r4;
 x4=cos(deg4*pi/180)*r4;
 we4=[we4; [x4 y4]];
end
we4;
% we4 is a matric containing the coordinates

% Script written by Ray Musvibe
% This script generates (x,y) coordinates for the
% Right arrow gesture
% Coordinates line 5
P5=[];
x5=round(30*rand(1)+5);
s5=linspace(-600,600,x5);
 rn=40*rand(1,x5);
 P5=[P5 s5];
 P5=P5';
 w5=40*rand(1,x5)-40;
 w5=w5(:);
 P5=[P5 w5];
 P5;
% P5 contains the coordinates simulating line 5/right arrow gesture

% Script written by Ray Musvibe
% This script generates (x,y) coordinates for the
% Left arrow gesture
% Coordinates for line 6
r6=0;
P6=[];
for qw6=[0:1:4]
 r6=r6-(40+160*rand());%diff4;
 x6=r6;
 y6=80*rand()-40;
 P6=[P6; [x6 y6]];
end
P6;
% P6 contains the coordinates simulating line 5/left arrow gesture

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 72

% Script written by Ray Musvibe
% This script generates (x,y) coordinates for the
% Down gesture
% Coordinates for line 7
P7=[];
x7=round(7*rand(1)+5);
s7=linspace(-300,300,x7);
 P7=[P7 -s7];
 P7=P7';
 w7=20*rand(1,x7);
 w7=w7(:);
 P7=[w7 P7];
 f7=[0;0;0;0;0;0];
 P7;
% P7 contains coordinates for line7/down gesture

% Script written by Ray Musvibe
% This script generates (x,y) coordinates for the
% Up gesture
% Coordinates for line 8
P8=[];
x8=round(7*rand(1)+5);
s8=linspace(-300,300,x8);
 P8=[P8 s8];
 P8=P8';
 w8=20*rand(1,x8);
 w8=w8(:);
 P8=[w8 P8];
 P8;
 % P8 contains coordinates for line7/Up gesture

% Script written by Ray Musvibe
% This script generates (x,y) coordinates for the
% Clockwise gesture
% Coordinates for circle 1

c1=[];
ac1=round(5*rand(1))+5;
bc1=(12*rand(1));%random # from 0-12,ie 360/30=20
rc1=round(400*rand(1)+75);%defining radius range
t = linspace(2*pi,0,ac1);%random # of divisions for training(5-10)
h=0;
k=0;
xp = rc1*cos(t+bc1*pi/6)+h; %randomly select start off points
yp = rc1*sin(t+bc1*pi/6)+k;
c1=[c1 [xp; yp]];
c1=c1';%varies in size ,space btwn points and drawing origin

% c1 contains coordinates for circle1/clockwise circle gesture

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 73

% Script written by Ray Musvibe
% This script generates (x,y) coordinates for the
% Anti-Clockwise gesture
% Circle2 anticlockwise
c2=[];
ac2=round(5*rand(1))+5;%too much would be almost linear
bc2=(12*rand(1));%random # from 0-12,ie 360/30=20
rc2=round(400*rand(1)+75);
t = linspace(0,2*pi,ac2);
h=0;
k=0;
x1 = rc2*cos(t+bc2*pi/6)+h;
y1 = rc2*sin(t+bc2*pi/6)+k;
c2=[c2 [x1; y1]];
c2=c2';

% c2 contains coordinates for circle1/clockwise circle gesture

A2. Preprocessing script

% Script written by Ray Musvibe
% Vectorise (x,y) coordinates from polarline1/ can be used for the other gestures as well
polarline1;
data=we1;
data=data';
data=data(:,[1 2 3 4 5]);% constraining input to the first five coordinates
data=data';
a1=30*rand(1,5)-15;%add random component to handle noise
a1=a1(:);
b1=30*rand(1,5)-15;
b1=b1(:);
ca1=[a1 b1];%5*2 column of random numbers
data=data+ca1;
data=data';
r1=[];%holds vectors
l1=length(data);
k1=1;
 for p1=1:l1-1
 w1=data(:,k1);
 s1=data(:,k1+1);%
 t1=s1-w1;%subtracting consecutive columns to obtain a vector
 r1=[r1 t1];%augment the matrix
 k1=k1+1;
 end
 r1=r1(:);
 r1=r1'; %outputs the vectors , one less than input number
 data=r1/200;%scalling down
 data=data(:);

 %data contain vectors representing polarline1, the same for all other %gestures

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 74

A3. Training script

% Written by RS Musvibe
% 29/4/8
% Matlab script that takes in preprocessed data and uses as it as input to ANN for training
net2=newff([-5 5;-5 5;-5 5;-5 5;-5 5;-5 5;-5 5;-5 5], [25 25 10],{ 'tansig' 'tansig' 'logsig' },'trainscg');
for kt=1:10000 % 10 000 iterations

sortdata10;%has a random element added with each iteration for first gesture
sortdata1;%import vectors from 1st gesture
sortdata2;%2nd gesture...
sortdata3;
sortdata4;
sortdata5;
sortdata6;
sortdata7;
sortdata8;
sortdata9;
net2.trainParam.show = NaN; %speed up training by not plotting training process
t1=[0 0 0 0 0 0 0 0 0 1];%targets
t1=t1';
t2=[0 0 0 0 0 0 0 0 1 0];
t2=t2';
t3=[0 0 0 0 0 0 0 1 0 0];
t3=t3';
t4=[0 0 0 0 0 0 1 0 0 0];
t4=t4';
t5=[0 0 0 0 0 1 0 0 0 0];
t5=t5';
t6=[0 0 0 0 1 0 0 0 0 0];
t6=t6';
t7=[0 0 0 1 0 0 0 0 0 0];
t7=t7';
t8=[0 0 1 0 0 0 0 0 0 0];
t8=t8';
t9=[0 1 0 0 0 0 0 0 0 0];
t9=t9';
t10=[1 0 0 0 0 0 0 0 0 0];
t10=t10';
T=[t1 ,t2 ,t3 ,t4 ,t5 ,t6 ,t7 ,t8 ,t9 ,t10];
%Add inputs matrix
input=[data ,data1 ,data2 ,data3 ,data4 ,data5 ,data6 ,data7 ,data8 ,data9];
net2.trainParam.epochs = 200;
net2.trainParam.goal = .0001;
net2=train(net2,input,T);

end
%close all;
save Neurons.mat; % Save the result

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 75

A4. Simulation scripts (used for testing Matlab implementation)

% functions simulates the trained network
% RSM 30/4/8
importer; % grabs inputs from file
(round(sim(net2,data11)))
delete('D:\Documents and Settings\g08m3079\My Documents\MATLAB\MyTextFileTest1.txt');

% importer script
% Written by R S Musvibe
% Sortdata/Pre-process data from a file
% import data for simulation of Matlab Neural Net
data11=importdata('MyTextFileTest1.txt');
x3=length(data11);%This section of code samples the (x,y) coordinates 'evenly'
y3=floor(x3/5);
v3=data11([y3 y3*2 3*y3 4*y3 5*y3]);
v13=data11([x3+y3 x3+y3*2 x3+3*y3 x3+4*y3 x3+5*y3]);
data11=[v3' v13'];
data11=data11';
ri=[];%holds vectors
li=length(data11);
ki=1;
 for ptu=1:li-1
 wi=data11(:,ki);
 si=data11(:,ki+1);
 ti=si-wi;%subtracting consecutive columns to obtain a vector
 ri=[ri ti];%augment the matrix
 ki=ki+1;
 end
 ri=ri(:);
 ri=ri';
 %outputs the vectors , one less than input number
 data11=ri/100;
 data11=data11(:);

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 76

Appendix B: C# Code

This section contains C# code use for integrating the Neural based recognisor

prototyped in MATLAB® into BingBee.

B1. The Neuron class

using System;
using System.Collections.Generic;
using System.Text;
using BingBee.Core;

namespace BingBee.Book
{
 [Serializable]
 public class Neuron
 {
 #region PROTECTED FIELDS (State variables)
 protected double[] w; //holds weight array
 protected double[] input; //array of inputs
 protected double threshold; //bias
 protected int N; //number of weights
 protected ActivationFunction f = null;
 // Value of the last neuron ouput
 protected double o;
 #endregion

 //#region PROTECTED FIELDS (State variables)
 public Neuron(double thresh, ActivationFunction af, int Ni)
 {
 w = new double[Ni];
 f = af;
 threshold = thresh;
 N = Ni;
 }
 public Neuron()
 {
 w = new double[8];
 f = new TanSigmoid();
 threshold = 0;
 }
 //#endregion

 #region PUBLIC METHODS (COMPUTE THE OUTPUT VALUE)
 // returns number of input synapses
 public int N_Inputs
 {
 get { return w.Length; }
 }
 public void setWeight(double[] a)
 {
 w = a;
 }
 public void setActivation()
 {
 f = new SigmoidActivationFunction();
 }

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 77

 public void setWeightNum()
 {
 w = new double[8];
 }
 public string tomyString()
 {
 string s = "\nThe Weghts are as follows\n ";
 int k = 0;
 for (k = 0; k < w.Length; k++) s += w[k].ToString() + "\n";
 return (f.ToString() + " is the Activation Function \n" + "The Threshold : " + threshold.ToString() + s);
 }
 // Compute the output of the neurone
 public double ComputeOutput(double[] input)
 {
 if (input.Length != N)
 throw new Exception("NEURON : Wrong input vector size. " + N.ToString() + " Required");
 double ws = new double();
 ws = 0;
 for (int i = 0; i < N; i++)
 ws += w[i] * input[i];//sums up weights and inputs...change ipout name
 ws -= threshold;//subtract the thresholh
 if (f != null)
 o = f.Output(ws);
 else
 o = ws;
 return o;//fires the output
 }
 #endregion
 }
}

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 78

B2. ActivationFunction interface

using System;
using System.Collections.Generic;
using System.Text;

namespace BingBee.Book
{
 public interface ActivationFunction
 {
 double Output(double x);
 }
 #region LogSigmoid

 //for the output layer
 [Serializable]
 public class SigmoidActivationFunction : ActivationFunction
 {

 // Get the name of the activation function

 public string Name
 {
 get { return "Log Sigmoid"; }
 }

 public double Output(double x)
 {
 return (double)(1 / (1 + Math.Exp(-x)));
 }

 }
 #endregion LogSigmoid

 #region TanSigmoid

 //For the first layer and hidden layers

 [Serializable]

 public class TanSigmoid : ActivationFunction
 {

 public double Output(double n)
 {
 return (double)(2 / (1 + Math.Exp(-2 * n)) - 1);
 }
 public string Name
 {
 get { return "TanSig"; }
 }
 }
 #endregion TanSigmoid
}

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 79

B3. Classifier Class (calls the neuron constructor, instantiates the neural net, performs

input sanitization and classifies input, returning the direction)

using System;
using System.Collections.Generic;
using System.Text;
using BingBee.Core;
using System.IO;

namespace BingBee.Book
{
 public class Classifier
 {
 public enum Direction { None, N, E, S, W, Rotate2 ,DoubleTap};
 int n;
 double[] points2 = new double[8];
 long timeDown;
 bool decentinput;
 bool classified = false;
 //int largestX = 0;
 //int largestY = 0;
 //double positiveroot;
 string path = @"D:\Documents and Settings\g08m3079\My
Documents\MATLAB\MyTextFileTest1.txt"; //for matlab simulation
 double[] points = new double[16];//holds initial points from messages before classification
 double[] Results1 = new double[8];//input into neural net
 double[] thresh1 = new double[25] { -2.051279621,2.001852342,-0.974504443,-1.145053705,-
0.568929463,0.121177165,-0.274908596,-0.06030077,-0.369015101,0.908433767,-0.297260357,-0.07100664,-
1.19957886,-0.168492324,0.586195711,0.304975398,0.322019748,0.007346143,-0.313086065,2.006670017,-
0.693348007,-1.787040907,1.578222005,1.969755139,1.991356555 };//25 threshold values
 double[] thresh2 = new double[25] { -2.043121698,-2.085151023,-1.613747397,-
1.420984364,1.180875052,-1.14725735,1.242071649,0.778528871,0.443364791,0.556787911,0.437774169,-
0.398541,-0.395154818,-0.260583585,-0.890618422,-
0.603528779,0.226949419,1.04513532,1.215511571,0.618629951,1.555930241,1.44609328,1.619309416,-
0.745154934,-1.568825597 };
 double[] thresh3 = new double[10] { -3.993388436,-2.564790716,0.095210652,-2.269235049,-
0.675450622,-1.13476461,-0.065134988,0.819667375,-3.413841493,2.055070488};//4 threshold values for
outputlayer
 Neuron[] Layer1 = new Neuron[25];//the first layer neuronsS
 Neuron[] Layer2 = new Neuron[25];//the 2nd layer neurons
 Neuron[] Layer3 = new Neuron[10];//the output layer neurons
 double[] OutputLayer1 = new double[25];//output from first layer
 double[] OutputLayer2 = new double[25];//output from 2nd layer
 int[] OutputLayer3 = new int[10];//output from output layer
 int[] Rotate2 = new int[10] { 0, 1,1,1,1,1,1,1,1,1 };
 int[] Down = new int[10] { 1,1,1, 0, 1,1,1,1,1,1 };
 int[] RightToLeft = new int[10] { 1,1,1,1,1, 0, 1,1,1,1};
 int[] LeftToRight = new int[10] { 1,1,1,1, 0, 1,1,1,1,1};
 int[] Rotate = new int[10] { 1,0,1,1,1,1,1,1,1,1};
 int[] err1 = new int[10] { 1,1,1,1,1,1,1,1,1,1 };
 int[] Up = new int[10] { 1,1,0,1,1,1,1,1,1,1};
 int[] err3 = new int[10] { 1, 1, 1, 1, 1, 1, 1, 1, 0, 1 }; //for diagonal gestures not used
 int[] err4 = new int[10] { 1, 1, 1, 1, 1, 1, 1, 1,1, 0 };
 int[] err5 = new int[10] { 1, 1,1, 1, 1, 1, 0, 1, 1, 1};
 int[] err6 = new int[10] { 1,1, 1, 1, 1, 1, 1, 0, 1, 1};
 //int[] err7 = new int[10] { 1,0, 0, 0, 0, 0, 0, 0, 0, 0};
 //int[] err8 = new int[10] { 1,0, 0, 0, 0, 0, 0, 0, 0, 0};
 //int[] err9 = new int[10] { 1,0, 0, 0, 0, 0, 0, 0, 0, 0,};

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 80

 //bool alreadyTriggered;
 long InterArrivalWindowTicks = 500 * TimeSpan.TicksPerMillisecond;
 long timeOfLastDown=0;
 bool isPressed;
 bool Initialised=true;
 public void init(){
 n=0;

 for (int k = 0; k < 25; k++)//instantiating each neuron for layer 1, 8 inputs
 {
 Layer1[k] = new Neuron(thresh1[k], new TanSigmoid(), 8);
 switch (k)
 {
 case (0): Layer1[k].setWeight(new double[] { 0.223825563, 0.096038338, 0.04234459,
0.148619838, 0.00864996, -0.070325203, 0.168426247, 0.016703687 });
 break;
 case (1): Layer1[k].setWeight(new double[] { -0.124795271, -0.186919107, -0.067989483,
0.031619789, -0.046349558, -0.081790489, -0.146788155, -0.048794054 });
 break;
 case (2): Layer1[k].setWeight(new double[] { -1.475900953, -0.681635215, -1.187451003,
1.003945594, -0.757184836, 0.909343809, 0.211578995, 0.52107016 });
 break;
 case (3): Layer1[k].setWeight(new double[] { 1.04716269, -0.163194355, 0.192635713, -
1.234088427, -0.82026418, -1.251202164, -1.116375355, 0.395348004 });
 break;
 case (4): Layer1[k].setWeight(new double[] { 1.411870952, -0.822519897, 1.112854641, -
0.22534622, 0.457467083, 0.873927175, -0.152072524, 0.664561032 });
 break;
 case (5): Layer1[k].setWeight(new double[] { -0.811249643, 0.305063267, -1.656841714, -
0.300294947, -1.416861498, 0.088478148, -0.227693035, -0.006896374 });
 break;
 case (6): Layer1[k].setWeight(new double[] { 0.088236443, -2.133099497, -0.448972258, -
1.328726918, -1.446855924, 0.280950335, -2.330663959, 1.397182355 });
 break;
 case (7): Layer1[k].setWeight(new double[] { 0.567313234, 1.373547298, 1.145388454,
0.523922216, 0.016987521, 0.367223281, -1.157722518, 1.127204113 });
 break;
 case (8): Layer1[k].setWeight(new double[] { 3.027260651, 0.672762912, 1.31230223,
0.321917074, 0.375298296, -0.912625979, -0.221604193, -0.677868165 });
 break;
 case (9): Layer1[k].setWeight(new double[] { -0.328990098, -0.726789929, -0.638159856, -
1.161562285, -0.917975588, -0.500432176, -1.547311166, 0.771101855 });
 break;
 case (10): Layer1[k].setWeight(new double[] { -1.066436194, -0.356566867, -2.889893039,
0.148171954, -2.894403246, 0.252535603, -1.684239359, 0.640992152 });
 break;
 case (11): Layer1[k].setWeight(new double[] { 1.753475823, -0.283813725, 1.336781918, -
0.897777219, 0.336568085, -2.289673622, -0.988300792, -3.454984507 });
 break;
 case (12): Layer1[k].setWeight(new double[] { 1.456152547, -0.771389254, 0.738741844, -
1.232970749, 0.316142542, 0.307167396, -0.72013601, 1.196201375 });
 break;
 case (13): Layer1[k].setWeight(new double[] { -0.832904558, -1.980783643, 0.101236488, -
1.463621275, 0.454911023, -0.6851666, 1.169720504, 0.790033962 });
 break;
 case (14): Layer1[k].setWeight(new double[] { 0.569832329, -0.616756123, 0.36474505, -
1.709385867, 0.852630526, -1.264759933, 1.966056398, 0.512375529 });
 break;
 case (15): Layer1[k].setWeight(new double[] { 1.365737342, -1.624251916, 0.572335644, -
1.250727293, -0.808120516, -0.593772006, -2.420198033, -1.015669835 });

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 81

 break;
 case (16): Layer1[k].setWeight(new double[] { 1.176879095, 0.144000288, 0.919133051,
1.789268772, 0.228809814, 3.258560615, -0.188128834, 2.607328045 });
 break;
 case (17): Layer1[k].setWeight(new double[] { -1.65907038, 1.639237091, -1.027860322,
0.157662857, -0.309649963, -1.238797476, -1.376708526, -2.536615373 });
 break;
 case (18): Layer1[k].setWeight(new double[] { 1.584581998, 1.535163706, 0.380383013,
1.517404167, -1.169073764, 1.018915888, -2.23601214, 0.571046992 });
 break;
 case (19): Layer1[k].setWeight(new double[] { 0.287552418, 0.032989501, -0.413946828, -
0.016336508, 0.570028062, 0.168124549, -0.297919008, 0.274730751 });
 break;
 case (20): Layer1[k].setWeight(new double[] { -0.076312975, 1.122967732, -0.309639715,
1.487345709, -0.270549217, 0.033361551, -0.083547764, -0.877843895 });
 break;
 case (21): Layer1[k].setWeight(new double[] { -0.102937604, 0.103295579, -0.067267488,
0.036310146, -0.15722179, -0.156010827, -0.015860494, -0.020057941 });
 break;
 case (22): Layer1[k].setWeight(new double[] { -0.310310668, -0.155974324, -0.215092119, -
0.039063395, 0.078979484, -0.026204081, -0.444639796, -0.043092237 });
 break;
 case (23): Layer1[k].setWeight(new double[] { 0.030869365, -0.09440003, 0.003892177, -
0.11082302, 0.003896548, 0.084192117, 0.009784272, -0.111316145 });
 break;
 case (24): Layer1[k].setWeight(new double[] { 0.078636099, 0.123551358, 0.258441081,
0.016404474, -0.101227594, 0.200522153, 0.200177003, -0.045255966 });

 break;

 }
 }
 for (int k = 0; k < 25; k++)//instantiating each neuron for layer 2, 25 inputs, Tansig activation function
 {
 Layer2[k] = new Neuron(thresh2[k], new TanSigmoid(), 25);
 switch (k)
 {
 case (0): Layer2[k].setWeight(new double[] { 0.438471085, -0.436273026, 0.894297795, -
0.10687904, -1.029684532, -0.370784951, 0.101448186, -0.166737572, 0.027065834, -0.280308394, -
1.626207413, 0.095013246, -0.414813616, -0.625555743, -0.079635496, -0.791761211, -0.27174594,
0.766730915, -0.28689151, -1.046355739, 0.989268537, -0.009830758, 0.246491231, -0.545221721, -
0.367662011 });
 break;
 case (1): Layer2[k].setWeight(new double[] { 0.822681603, -1.153999363, 0.243810247,
1.072045647, -0.165404869, 0.47037717, 0.805932708, 0.322850955, -0.184084071, 0.205993147,
0.492512156, 0.457829963, -0.184985546, 0.605969828, -0.182503162, 0.59147788, -0.189331042,
1.301527459, -0.759838497, -1.861365831, 0.682747976, 0.541619104, -0.647349509, -0.754531034,
0.021095906 });
 break;
 case (2): Layer2[k].setWeight(new double[] { 0.718187658, 0.081512388, -0.244072551, -
0.815599983, -0.081449667, 0.159804269, -0.473923415, 0.5893641, -0.087118139, 0.418751739,
1.38258178, -2.377771991, -0.146563706, -0.617759459, -0.606362582, -0.924809286, -0.679202667,
0.543975506, 1.805468874, -0.515910479, 0.183378571, 0.504500938, 0.080218547, -0.186692931, -
0.013439968 });
 break;
 case (3): Layer2[k].setWeight(new double[] { 0.448085601, -0.663935901, -0.194349271,
0.116662701, 0.836200395, -0.58941108, -0.834374286, 0.469991811, -0.304713238, -0.05136612,
0.530274131, -0.544042112, -0.039818059, -0.980797194, -0.475171416, -0.922806147, 1.096009211,
0.148717384, 1.814123845, 0.148986431, -0.424184295, -0.275587352, 0.037910552, -0.567898885,
0.289575655 });

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 82

 break;
 case (4): Layer2[k].setWeight(new double[] { -0.196609507, 0.040647744, -1.324026778, -
1.165491532, 0.816831696, -0.42774803, -1.599338558, 0.606941415, 0.100387598, -0.002670366, -
1.940618512, 0.85253692, -0.263548401, 0.122325237, 0.279556048, -0.085300399, -0.276665343,
0.108147319, 0.178156727, -0.460057099, 1.098294159, -0.253167313, 0.488318594, -0.255070762, -
0.198626844 });
 break;
 case (5): Layer2[k].setWeight(new double[] { 0.569541431, 0.136627981, 0.170528822,
0.294537316, 0.331567221, 0.420474381, -0.223593657, 0.077703377, -0.099000701, 0.160159343, -
0.07334376, -0.334996235, 0.252282262, 0.059500394, 0.293862372, 0.241497898, 0.390901141,
0.302299206, 0.10627943, -0.70608349, 0.210279951, 0.568853317, -0.567855096, -0.646729297, -
0.165502973 });
 break;
 case (6): Layer2[k].setWeight(new double[] { -0.827105523, 0.328322528, 0.437616889,
0.528763048, 0.74469054, -0.736276544, -0.601286132, 0.253185307, 1.44858533, -0.57219494, -0.17469546,
-1.342254304, 1.362705014, 0.416496355, 0.121397932, 0.716748633, 0.58616136, -1.124839941,
0.548274683, 0.347991263, 0.220793945, -0.940756843, 0.350328076, 0.248555152, -0.04378597 });
 break;
 case (7): Layer2[k].setWeight(new double[] { -0.606749211, 0.206010371, -0.207990826, -
0.709154266, -0.300306784, -0.510292591, -1.477633613, 0.601698667, -1.13322056, 0.644999966, -
0.678862536, -1.660643284, 0.307795665, -0.740162762, -0.426231609, -2.142735604, 1.581486714,
0.741230219, 1.021946819, -0.180888826, 0.657380949, 0.173506863, 0.291126992, 0.431311965,
0.458737146 });
 break;
 case (8): Layer2[k].setWeight(new double[] { -0.373490816, 0.276085639, 0.878675006,
0.40602628, -1.021683439, 0.294306425, -0.566051472, -0.041411707, -1.104246914, 0.979960845,
0.741486635, 1.49891259, -0.572612145, -0.77420927, -0.774601432, 0.408453201, 1.245250902,
0.850737519, -1.111039123, 0.36845549, 0.283733201, 0.673962801, 0.409242411, -0.372739885,
0.031985842 });
 break;
 case (9): Layer2[k].setWeight(new double[] { -0.56125762, 0.621161305, 0.171901053, -
0.428070209, -0.458197758, -0.177778694, -0.210043783, 0.364453762, 0.092188147, -0.342784032,
0.221378602, 0.330686552, -0.209161755, -0.225310426, 0.056575701, -0.272015106, -0.076541284, -
0.110888378, 0.128748634, 0.070541876, -0.512565282, -0.401559289, 0.54308824, 0.443953841,
0.582475337 });
 break;
 case (10): Layer2[k].setWeight(new double[] { -0.354493804, 0.633760318, -0.283333982,
0.042519386, -0.106229137, -0.037297551, -0.348006798, -0.201358902, -0.219973494, 0.059143885,
0.222487984, -0.270199161, -0.058396837, 0.249324532, 0.362370063, 0.555524805, 0.320161754, -
0.2089552, 0.466322026, 0.054842759, 0.108144337, -0.544677049, 0.587412785, 0.368123471, 0.695740082
});
 break;
 case (11): Layer2[k].setWeight(new double[] { 0.247747772, -0.907836282, 0.350555901,
0.431965229, 0.222763047, 0.292918096, -0.239089871, -0.277153555, -0.368337289, -0.268886352,
0.00206285, -0.101440043, 0.453062363, 0.45910698, -0.214653143, 0.297383669, -0.169115827,
0.170094552, 0.54543801, -0.829970666, 0.49014636, 0.727432183, -0.363283681, -0.082111524, 0.04226685
});
 break;
 case (12): Layer2[k].setWeight(new double[] {-0.204121565,-0.651256459,0.156119678,-
0.153614267,0.43760272,-0.316567773,0.331057103,0.355724259,-0.099601327,-0.517949279,0.523045775,-
0.317404975,0.176999055,0.322864822,-0.717023039,-0.148222754,-0.560580564,0.095717864,-
0.01302365,-0.70239556,-0.098168025,0.826097067,-0.266033495,0.006657712,-0.49887397 });
 break;
 case (13): Layer2[k].setWeight(new double[] { 0.395841001, 0.008250053, 0.763481068, -
0.11421465, -0.565011619, 0.316627341, 1.543312774, -0.003361956, -1.112103176, 0.013823431,
0.223732438, -1.728399377, 0.036932139, -0.694413452, -0.692424908, 0.643591079, -1.304144625,
0.334775942, 0.580985051, -0.529651521, -0.175605382, 0.426652555, -0.011661239, -0.560969406, -
0.814342269 });
 break;

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 83

 case (14): Layer2[k].setWeight(new double[] { 0.208287996, -0.511363164, -0.561297369, -
0.328699329, -0.440073639, 0.034275499, -0.991408912, 0.766790717, 0.226039331, 0.497189343, -
1.443143661, 0.68445973, -0.920994699, -0.956449144, 1.31317784, -1.392579395, 2.433499195, -
1.039161448, 0.044143707, -0.369081004, 0.653773202, 0.873353698, -0.990431653, -0.793769376, -
0.527784436 });
 break;
 case (15): Layer2[k].setWeight(new double[] { -0.201036468, -0.184055389, -0.414304719, -
0.880744631, 0.695009505, -1.430757769, -0.997331386, -0.441133232, 1.141442589, -0.111150315, -
0.129933164, -0.260929274, 0.605680636, 1.574465549, -0.419741126, 0.350577949, 0.389503905, -
1.614414952, -0.003140918, -0.669170268, -0.260966791, -0.199857064, 0.215639845, -0.171742549, -
0.561825832 });
 break;
 case (16): Layer2[k].setWeight(new double[] { 0.46251183, -0.134689007, 1.205125964,
0.731759818, -0.661474212, 0.080379704, -0.338000774, 0.019401042, -0.130248583, -0.576469091,
0.843922773, -1.984981156, 0.015350311, -0.580061166, -0.052365292, -2.213702537, 2.313110999, -
0.683107897, 0.516212985, 0.056838412, -0.1769518, 0.733851392, -0.444098226, -0.551893411, -
0.67163397 });
 break;
 case (17): Layer2[k].setWeight(new double[] { -0.02226647, 0.664581204, 0.11329233, -
0.003426421, 0.120703104, -0.156548152, -0.278127277, 0.55448878, 0.228442936, 0.326364172,
0.189650713, 0.346777676, -0.504275538, 0.261368491, 0.303513252, -0.318244508, 0.430595813, -
0.252508183, -0.266928096, 0.59864517, -0.445064689, -0.484160015, -0.085448769, 0.671277616,
0.202226904 });
 break;
 case (18): Layer2[k].setWeight(new double[] { 0.083565026, 0.421504844, 0.242330834,
0.116599889, -0.046619581, -0.035576721, -0.24919591, 1.427407046, -0.269503418, 0.215158226,
0.821435787, -0.500605894, 0.95408477, -0.663232623, -0.22738177, -1.203291246, 0.856621325,
0.873064644, 0.560201906, 0.636694671, -0.198084311, -0.368835632, 0.598829094, 0.66504759, -
0.027245772 });
 break;
 case (19): Layer2[k].setWeight(new double[] { 0.443957878, -0.715401973, 0.794746259,
0.780208407, 0.008667494, -0.807288397, -1.264451384, 0.045037289, 0.827079516, -1.437765628, -
2.438006371, 1.177905172, -0.255904349, -0.171254034, 0.583159701, 0.143161055, 1.170644224,
0.046924397, -0.779204787, -0.368877919, 0.824870111, -0.176685374, -0.732630215, -0.219084055,
0.086582636 });
 break;
 case (20): Layer2[k].setWeight(new double[] { 0.049881418, 0.419258471, -0.603802049,
1.068251501, 0.67326185, -0.6629349, -0.889769019, -0.232978592, 0.409970524, 0.067647275, -
2.087727671, -0.029502779, 0.81026397, 0.293624971, 1.301420301, -0.186527341, 1.71374753, -
1.974580445, -0.966138314, -0.008360011, -0.710530434, -0.111366694, 0.086378956, 0.269914261,
0.795987894 });
 break;
 case (21): Layer2[k].setWeight(new double[] { -0.206281161, 0.184638702, -0.19485691, -
0.42511687, 0.006531259, -0.469275492, 0.084423627, 0.994644954, -1.240276664, -0.480342062, -
0.940660039, -0.807750561, 0.237065537, 0.587372509, 0.205252623, -0.250247309, -1.017681542, -
0.447453581, 0.17176192, -0.274103692, -0.667337764, 0.018492814, 0.366665879, 0.445872954,
0.265051576 });
 break;
 case (22): Layer2[k].setWeight(new double[] { -0.262443234, 0.742233808, 0.727586296,
0.652995189, -0.705109552, 0.319451882, -0.294860143, 0.637656842, 0.533952281, 0.393314714,
2.642095117, -0.637414868, 0.72159997, -1.336465062, -0.429268228, -0.162062199, -0.549093362,
1.565768733, 0.159299592, 0.430365849, 1.040540814, -0.077708335, 0.054772889, -0.016183323,
0.090926686 });
 break;
 case (23): Layer1[k].setWeight(new double[] { -0.845040774, 0.80577241, -0.068204269, -
0.752065353, 0.779074509, -0.172897064, -2.182546107, 0.708615219, 1.277605684, -0.047206857, -
0.314338583, -0.121661663, 0.451961516, -0.033293716, 0.398232057, -1.567708262, 1.754483065, -
0.211054892, 1.126809538, 0.59541346, 0.418894774, -0.381574218, 0.470076672, 0.61377033, 1.064073064
});
 break;

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 84

 case (24): Layer2[k].setWeight(new double[] { -0.132863387, 0.272572172, -0.976103717,
0.724771412, -0.159985227, 0.878983804, 0.329121461, -1.199284943, -0.015689726, 1.130812416, -
0.172728707, 2.045655352, 0.224756003, 1.22829352, 1.337759652, 1.232771373, 0.132618641, -
0.973996195, -1.610337397, 0.021775094, -0.824287954, -0.310230156, 0.013897892, -0.102591148,
0.01770426 });
 break;
 }
 }
 for (int k = 0; k < 10; k++)//instantiating each neuron for layer 3, 25 inputs, Sigmoid activation function
 {

 Layer3[k] = new Neuron(thresh3[k], new SigmoidActivationFunction(), 25);
 switch (k)
 {
 case (0): Layer3[k].setWeight(new double[] { 0.411672049, -0.251587702, 1.90160852, -
0.578192733, 2.444197303, 0.55747988, -0.763075709, 4.471591252, -1.102530258, -0.105841965, -
1.307245757, 1.758895612, 1.193230849, -1.457024271, -5.180232214, 1.35446102, -2.472155019, -
0.692672058, 1.210255541, -3.152537718, -0.118185085, -4.611106898, -1.003687814, 1.813132506,
1.517368913 });
 break;
 case (1): Layer3[k].setWeight(new double[] { 4.013300611, 3.209033002, -2.460855545, -
2.62025627, -2.463521979, -0.376002153, 2.686293276, -0.151976016, 0.084257551, 0.52592128, -
0.237044567, 0.2888329, 0.722459666, -1.072373047, -1.634519164, -2.285711964, 2.094178357, -
0.255559817, 1.675494421, 1.841159743, 2.413193151, -0.190900365, 2.576765581, 0.52063487,
0.438733724 });
 break;
 case (2): Layer3[k].setWeight(new double[] { -0.309299437, 1.52665324, 1.67296603,
0.771804596, 1.821091431, 1.167429381, 1.95097226, -0.906896516, 0.233567726, -1.720007314, -
1.921525029, 2.180620951, 0.640046887, 0.941703757, 2.926048668, -1.422800604, 1.058068278, -
2.460976167, -2.049451182, -3.854592099, 2.589722393, -0.671667416, 3.433265605, 0.640850193, -
0.037139843 });
 break;
 case (3): Layer3[k].setWeight(new double[] { 1.262306043, 1.959438831, -0.822716157,
0.906889682, 2.664830605, 1.449925886, -1.698858467, -1.390693572, 0.250681855, -0.487028947, -
0.440455103, 0.797849803, 0.752344495, 1.145959413, 0.566905328, -2.830850227, -0.933547446, -
1.110345904, -1.788006161, -1.829342441, 2.594401313, -0.486637122, -1.61683089, -3.558553265, -
0.627793927 });
 break;
 case (4): Layer3[k].setWeight(new double[] { 0.499785559, 0.705629336, 1.83834583, -
0.749109894, -0.995909285, 1.691429675, -0.243833821, 2.125679048, -0.584262788, -1.759443042, -
0.000245108, 1.112734078, 2.407868261, 3.202883797, -0.487773372, -0.677961339, -2.196054786, -
1.27652502, -0.734507078, -0.357387733, -1.210473677, 0.338763064, -1.509750048, -3.179264399, -
2.061084949 });
 break;
 case (5): Layer3[k].setWeight(new double[] { 0.29203351, 1.771988325, -2.695812995, -
0.061665049, 0.039539218, 1.006340229, -0.443653072, 2.24371242, 2.181814392, -1.233501704, -
2.084139817, 2.070446289, 1.064061949, 1.713353804, 4.52555874, 1.243500862, -2.877691572, -
2.109911934, 0.664995693, 1.783518555, 0.823562667, -1.361021811, -1.606163609, 0.816247514,
4.064539368 });
 break;
 case (6): Layer3[k].setWeight(new double[] { 1.002070682, 1.8298545, 0.662999193,
3.129248504, -1.280608493, 0.818159511, -0.950478469, 0.212037526, -0.850461616, -1.619627419, -
1.671247118, 1.190248977, 1.080953916, 1.049556164, -1.40389815, -0.566483721, 3.404233547, -
1.097921589, -0.317124196, -0.64199143, -3.524635028, 1.313631633, 0.336441244, 2.847541891, -
0.301902261 });
 break;
 case (7): Layer3[k].setWeight(new double[] { 1.068705057, 0.182257989, -1.33290029,
1.230177388, 0.599741016, 1.721589045, 1.453919777, -4.012625222, -0.832410304, -1.009740078, -
0.390142522, 2.078646007, 1.810519042, 0.908408026, -2.294509199, 2.406199761, -0.92087747, -

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 85

0.982987453, -3.333319308, 3.056288572, -0.798792596, -0.326126922, -0.062947163, 1.007385445,
0.588547384 });
 break;
 case (8): Layer3[k].setWeight(new double[] { 0.125016769, 0.137343055, -2.043351783,
1.707405761, -2.520783957, 1.270682623, -1.885679185, -2.78223711, 0.433227066, -0.213456585, -
1.284498873, 1.511475896, 1.855126314, -0.593875091, -0.522330084, 0.545052139, -0.264215841, -
0.831983818, -0.581589367, -0.268329536, -3.759311511, 0.464124331, 1.900725494, -1.6657732,
1.877554749 });
 break;
 case (9): Layer3[k].setWeight(new double[] { 3.057964271, -0.052570934, 2.471234669,
1.445124961, -0.292643223, 1.914738362, 1.972276262, 0.981849951, -3.769404411, -1.567690127, -
0.110087215, 0.92185617, 1.194015452, 1.704208281, 1.234274519, 1.485708218, 2.069632577, -
0.400391722, -1.361631884, 2.655589523, 1.238128283, -0.70599401, -2.80477845, -0.611454626, -
2.443099529 });
 break;

 }
 }
 }
 public int[] Outputs(double[] a)
 {
 double[] OutputLayer1 = new double[25];
 double[] OutputLayer2 = new double[25];
 int[] OutputLayer3 = new int[10];
 for (int k = 0; k < 25; k++)
 {
 OutputLayer1[k] = Layer1[k].ComputeOutput(a);
 }
 for (int k = 0; k < 25; k++)
 {
 OutputLayer2[k] = Layer2[k].ComputeOutput(OutputLayer1);
 }
 for (int k = 0; k < 10; k++)
 {
 if (Layer3[k].ComputeOutput(OutputLayer2) >= 0.5) OutputLayer3[k] = 1;//Post Processing...
 else OutputLayer3[k] = 0;
 }
 return OutputLayer3;
 }

 public void Reset()
 {
 n = 0;
 decentinput = false;
 classified = false;
 //Initialised = false;
 //alreadyTriggered = false;
 //timeOfLastDown = 0;
 }

 public Classifier()
 {
 Reset();
 }

 public bool isEqual(int[] a, int[] b)//for comparing arrays
 {
 bool res = true;
 for (int k = 0; k < 10; k++)
 {

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 86

 if (a[k] != b[k]) res = false;
 }
 return res;
 }

 public Direction pushGestureTickle(TickleMessage msg)//I used arrays
 {
 Direction result = Direction.None;
 switch (msg.KeyEventType)
 {
 case TickleMessageEventType.KeyDown:
 //alreadyTriggered = false;
 timeDown = DateTime.Now.Ticks;
 long prevDownTime = timeOfLastDown;
 timeOfLastDown = DateTime.Now.Ticks;
 if (timeOfLastDown - prevDownTime < InterArrivalWindowTicks)
 {
 //return Direction.DoubleTap;
 }
 if (Initialised)
 {
 init();//initialise the net if not already intialised
 }
 Reset();
 isPressed = true;
 break;
 case TickleMessageEventType.Moved:
 Console.WriteLine(msg.DX.ToString() + " and " + msg.DY.ToString() + " Delta. KeyMoved");
 int delta1=(int) Math.Sqrt(msg.DX*msg.DX);
 int delta2=(int) Math.Sqrt(msg.DY*msg.DY);

 if (delta1 >= 35 || delta2 >= 35) decentinput = true;//input sanitization
 if (delta1 >= 400 || delta2 >= 400) decentinput = false;

 if (decentinput && n <= 10)
 {
 points[n] = msg.DX; n++;
 points[n] = msg.DY; n++;
 Console.WriteLine(n.ToString() + " inputs added so far");
 }

 if (n == 10 && isPressed) {
 Initialised = false;
 using (StreamWriter SW = File.AppendText(path))
 {
 for (int k = 0; k < 10; k += 2)
 SW.WriteLine(points[k] + " " + points[k + 1] + " ");
 SW.Close();
 }//FOR testing WITH matlab

 for (int k = 0; k < 8; k++)
 {
 points2[k] = points[k+2] / 200;//clipping off some vectors
 }

 int []final=new int[10];
 final = Outputs(points2);
 //for (int k = 0; k < 10; k++) Console.WriteLine(final[k].ToString());
 if (isEqual(final, Rotate)) { result = Direction.N; classified = true; }

 An Investigation into Gesture Recognition in BingBee using Neural Nets in MATLAB® 87

 if (isEqual(final, Down)) { result = Direction.S; classified = true; }
 if (isEqual(final, LeftToRight)) { result = Direction.W; classified = true; }
 if (isEqual(final, RightToLeft)) { result = Direction.E; classified = true; }
 if (isEqual(final, Rotate2)) { result = Direction.Rotate2; classified = true; }
 if (isEqual(final, err1)) { result = Direction.N; classified = true; }
 if (isEqual(final, Up)) { result = Direction.N; classified = true; }
 if (isEqual(final, err3)) { result = Direction.N; classified = true; }
 if (isEqual(final, err4)) { result = Direction.Rotate2; classified = true; }
 if (isEqual(final, err5)) { result = Direction.N; classified = true; }
 if (isEqual(final, err6)) { result = Direction.Rotate2; classified = true; }
 //if (isEqual(final, err7)) { result = Direction.Rotate2; Console.WriteLine(" Rotate2 Err"); } for
diagonal vectors not used here
 //if (isEqual(final, err8)) { result = Direction.N; Console.WriteLine(" North Err"); }
 //if (isEqual(final, err9)) { result = Direction.N; Console.WriteLine(" North Err"); }
 if (!classified)
 {
 //Produce deep sound to alert user that gesture could not be matched
 }
 Reset();
 isPressed = false;
 //long timeDown2 = DateTime.Now.Ticks - timeDown; For evaluating interaction speed
 //Console.WriteLine(timeDown2.ToString());
 }
 decentinput = false;

 break;
 case TickleMessageEventType.KeyUp:
 Reset();
 break;
 case TickleMessageEventType.Other: break;
 }

 return result;
 }
 }
}

