

Benchmarking Databases

“An investigation of the TPC-H benchmark suite and techniques
used in the performance optimization of Decision Support

Systems (DSS).”

Case study: Microsoft SQL Server 2008, 64 bit, Enterprise Edition

Samy Kabangu

Thesis submitted in partial fulfilment of the requirement
of the degree of Bachelor of Science (Honours)

of Rhodes University

November 2009

ii

ABSTRACT

Benchmarking a given database is a process of performing well defined tests on that

particular database management system for the purpose of evaluating its performance. The

query response time is one of the main criteria on which the performance of a database can be

measured. An investigation of the TPC-H as the Transaction Processing Performance Council

benchmark for decision support systems was performed during the execution of this project.

Two techniques used in the performance optimization of decision support workloads were

investigated, with Microsoft SQL Server 2008, 64 bit, Enterprise edition as the database

management system .The first technique was the use of various kinds of index, including

clustered, non-clustered and covering indexes. It was observed that queries run with indexes

executed faster than queries run without indexes, but in this context a more important finding

was that the embedded tool known as the tuning advisor gave effective recommendations

about the indexes that should be created. This is valuable especially to help non-specialist

users who are setting up a database to insert indexes on the correct columns.

The second technique was the investigation of the effect of query parallel processing on the

execution time of queries. It was observed that queries run sequentially executed faster than

queries run in parallel. Being counter-intuitive, this finding has drawn comment from

Microsoft and others in the database user community, indicating a recognition of the

problem. The current belief is that the parallel execution times are explained by resource

contention, but this needs further investigation before applying the use of query parallel

execution on SQL Server 2008 in a production environment.

iii

ACKNOWLEDGEMENTS

I would like to thank my supervisor John Ebden for his guidance, support and more

especially for his patience with me throughout the completion of this thesis. I acknowledge

the financial aid of the ANDREW MELLON PRESTIGIOUS SCHOLARSHIP for giving me

the opportunity to further my studies at Rhodes University. I acknowledge the financial

support from Telkom SA, Business Connexion, Converse SA, Verso Technologies and

THRIP through the Telkom Centre of Excellence at Rhodes University. Last but not least I

would like to thank my parents Louis and Julienne Kabangu for their love and support.

iv

TABLE OF CONTENTS

Chapter 1- Introduction ... 1

1.1 Statement of the problem ... 1

1.2 Project motivation .. 1

1.3 Project overview .. 2

Chapter 2- Related Work ... 3

2.1 Introduction ... 3

2.2 Significance of database benchmark tests ... 3

2.3 Benchmarking Process flow chart .. 4

2.4 Types of database Benchmarks .. 6

2.4.1 Customer-application benchmarks ... 6

2.4.2 Industry standard benchmarks ... 6

2.4.3 Reservations about industry standard benchmarks ... 7

2.4.4 Transaction Processing Performance Council (TPC) .. 7

2.5 Database Performance optimization ... 12

2.5.1 Database engine .. 12

2.5.2 Query execution plan ... 13

2.5.3 Indexes .. 14

2.5.4 Parallel query execution .. 15

2.5.5 Query parallel processing on SQL Server .. 17

2.5.6 Workload optimization .. 18

2.5.7 Performance Bottlenecks ... 20

2.6 - Chapter Summary .. 24

Chapter 3-Design considerations ... 25

3.1 System specification .. 25

3.2 Microsoft Windows Server 2008 .. 26

3.3 Microsoft SQL Server 2008 ... 26

3.4 Benchmarking software tools ... 27

3.5 SQL Server Performance monitors tools .. 27

v

3.5.1 Microsoft SQL Tuning Advisor ... 27

3.5.2 Microsoft SQL Server profiler ... 28

3.6 TPC-H Database .. 28

3.7 Key configurations variables of interest ... 29

3.8 Chapter summary ... 29

Chapter 4-Methodology .. 30

4.1 Database loading process ... 30

4.2. Benchmark tests - with default configuration .. 30

4.3 Benchmark tests – Performance optimization ... 31

4.3.1 The use of indexes ... 31

4.3.2 Experimentation with Query Parallel Processing ... 32

4.3.3 Parallel query processing – variable of interest .. 32

4.3 Chapter summary ... 34

Chapter 5-Results .. 35

5.1 Performance measurements.. 35

5.2 Experimental set-up ... 35

5.3 Base line results – Databases set to their default configuration 36

5.3.1 Database of scale factor 1- “TPCH_1GB” ... 37

5.3.2 Database of scale factor 10 –“TPCH_10GB” ... 38

5.3.3 Database of scale factor 10 –“TPCH_10GB” ... 39

5.3.4 Baseline results summary ... 40

5.4 Selected queries ... 41

5.4.1 Long Running Queries .. 41

5.5 Query performance optimization – with indexes .. 41

5.5.1 Database with Scale Factor 10 – “TPCH_1GB” ... 42

5.5.2 Database with a Scale Factor of 30 – “TPCH_30GB” .. 43

5.5.3 Analysis of the suggested indexes .. 43

5.5.4 Tuning Advisor suggested indexes evaluation.. 61

5.6 Query Performance optimization-with parallel query execution 62

5.6.1 Max degree of parallelism set to 1 ... 62

5.6.2 Max degree of parallelism set to 2 ... 63

5.6.3 Max degree of parallelism set to 3 ... 64

5.6.4 Results interpretation – Query parallel processing ... 65

vi

5.7 Chapter summary ... 66

Chapter 6 –Conclusion .. 67

6.1 Findings ... 67

6.1.1 Experiment One: The use of indexes ... 67

6.1.2 Experiment Two: Parallel query execution .. 68

6.2 Recommendations.. 68

6.3- Future Work ... 69

References .. 70

Appendix A: TPC-H Database- Table Layouts .. 73

Appendix B: T-SQL Statements of indexes created before the Tuning Advisor indexes
suggestions .. 78

Appendix C: Server Configurations ... 81

vii

LIST OF FIGURES

Figure 1 : Benchmarking Process Flow chart ... 5
Figure 2- TPC-H Benchmark database schema .. 10
Figure 3- Logical and physical query operators ... 13
Figure 4 - Query 4 ... 44
Figure 5-Index suggested from Query 4 .. 45
Figure 6-Query 5 ... 46
Figure 7-Index suggested from Query 5 .. 47
Figure 8 - Query 9 ... 48
Figure 9-Index suggested from Query 9 .. 49
Figure 10 Index suggested from Query 9 ... 50
Figure 11-Index suggested from Query 9 ... 50
Figure 12-Query 10 ... 51
Figure 13-Index suggested from Query 10 ... 52
Figure 14-Query 12 ... 53
Figure 15-Indexes suggested from Query 12 ... 54
Figure 16-Index suggested from query 12 ... 55
Figure 17-Index suggested by Query 12 .. 55
Figure 18-Query 18 ... 56
Figure 19 Index suggested from Query 18 ... 57
Figure 20-Query 21 ... 58
Figure 21-Index suggested from Query 21 ... 59
Figure 22-Index suggested from Query21 .. 60
Figure 23-Index suggested from Query21 .. 60
Figure 24-Index suggested from Query21 .. 61

viii

LIST OF TABLES

Table 1-TPC Benchmark suites ... 8
Table 2-TPCH-Queries classification ... 19
Table 3-Processor performance bottlenecks ... 22
Table 4- SQL Server overall performance counters .. 23
Table 5-Table's cardinalities .. 28
Table 6- Baseline results with scale factor of 1 .. 37
Table 7-Baseline results with scale factor of 10 .. 38
Table 8-Baseline results with scale factor of 30 .. 39
Table 9-Long running queries .. 41
Table 10-Query4 run with different MAXDOP .. 65

ix

LIST OF GRAPHS

Graph 1 - Query response time (summary) .. 40
Graph 2 - Query response time with indexes vs query response without indexes(scale
factor=10) ... 42
Graph 3-Query response time with indexes vs query response time without indexes (scale
factor=30) ... 43
Graph 4-MAXDOP=1 vs MAXDOP=0 (Default configurations) ... 62
Graph 5-MAXDOP=2 vs MAXDOP=0 (Default configurations) ... 63
Graph 6-MAXDOP=3 vs MAXDOP=0 (Default Settings) .. 64

1

Chapter 1- Introduction

1.1 Statement of the problem

 As most applications in the area of computer science and information technology industry seek

for high performance, the database computing arena is not left behind. New database products

are being developed with much concern about the speed of loading, modifying and retrieving

stored data from the database. The Transaction Processing Performance Council (TPC) provides

various tests meant to evaluate the performance of database management system products under

specific workload, operating systems and hardware platforms.

This research aims to an investigation of the TPC-H benchmark suite as well as the

experimentation of techniques used in the performance optimization of decision support

workloads. As a case study, Microsoft SQL Server 2008 is used as the database management

system product on which to run the TPC-H benchmark tests.

1.2 Project motivation

With the advent of Business intelligence among many other applications of decision support

systems requiring the storage of large amount of data into databases for future analysis, querying

such systems might take hours or even day of execution runs. In some cases, the retrieval of data

might be required to be performed on a daily basis. With such constraints, It becomes evident

about not only to use databases that scale and perform well but also finding different techniques

of optimizing the performance of such systems with respect to the decision support workload

being run on them. Through Benchmarking and scalability testing, Database professionals can

simulate such applications before deploying them in a production environment.

2

1.3 Project overview

The rest of this thesis comprises five chapters. Chapter 2, provides an in-depth background of

database benchmarking techniques, a description of the TPC-H as the current decision support

benchmark suite for implemented by the Transaction Processing Performance Council (TPC) as

well some techniques used in database performance optimization. Chapter 3 provides the design

considerations under which this project was implemented. Chapter 4 is related to the

methodology used to tackle the problem posed in project. Chapter 5 provides the results gathered

during the experimentation phase of this project as well as their interpretations. Chapter 6

provides some recommendations, future extensions and conclusion of this project.

3

Chapter 2- Related Work

This chapter provides:

• Some fundamental concepts in database benchmarking tests,
• Some background information about the TPC-H benchmark suite,
• Some techniques used in database performance optimization.

2.1 Introduction

Benchmarking a database is the process of performing well defined tests on that particular

database for the purpose of evaluating its performance [24]. The Response time and the

throughput are the two main criteria on which the performance of a database can be measured

[17]. Specific parameters and settings external as well as internal to the database management

system need to be taken into consideration. These parameters include the hardware used to test

the system, the internal configuration of the database engine, the operating system configuration

as well as the database design and implementation [2][22][34]. All the parameters mentioned

play an important role in the overall performance of a database management system (DBMS).

2.2 Significance of database benchmark tests

Benchmark test results facilitate means for cross platform comparisons of various database

management systems by providing valuable information to database professionals on whether to

utilize a particular database product. Within an organization, the workload supported by a

database system might increase as the business expands; Proactive benchmark scalability testing

can be beneficial in preventing bottlenecks [23]. Furthermore, there might be a need of migrating

from one hardware platform, or system software or database product to a newer version or

release. Database benchmarks tests can be valuable by providing a proof of concept that facilitate

the job of the DBA to make an apple to apple comparison between different software releases

[21][23]. Finally, Benchmarks tests promote innovation due to competition between hardware

manufacturers, operating system developers and database vendors [34].

4

2.3 Benchmarking Process flow chart

Benchmarking is a difficult and never ending process that requires a lot of patience and

discipline [9]. As the benchmarking process is being executed, measurements about the overall

performance of the system have to be collected as various key configuration parameters specific

to the hardware; operating system and database management system are being altered if

necessary in order to improve the performance of the system under test [9]. We would like to

mention that the TPC benchmarks are used to evaluate the performance without any attempt to

modify the configuration parameters of the system under test [7][30]. Any benchmark test

performed using the TPC benchmark suites with the purpose of improving the performance of

the system under test is qualified as “special” [30].

5

The flow chart below illustrates the steps involved in the benchmarking process [6]:

Optimize Performance

Start

Choose
software

Choose
Hardware

Tune Benchmark
Application

software

Tune Operating
System

Tune database
engine

Optimize

Finish

Figure 1 : Benchmarking Process Flow chart [9]

6

2.4 Types of database Benchmarks

Benchmarking processes can be classified into three types: Industry-standard benchmarks,

vendor and customer-application benchmarks [9].

2.4.1 Customer-application benchmarks

A customer-application benchmark is the benchmark performed within an organisation. They

have the advantage of meeting the specific requirement of the organisation in terms of workload

and hardware implementation but they are costly and time consuming endeavours usually

difficult to undertake [34].

2.4.2 Industry standard benchmarks

Industry standard database benchmarks were developed to provide a cross platform comparison

among various database products in terms of performance and prices. The published

performance test results are measured depending on specific database workload types.

The most common workload types are:

• Online Transaction Processing (OLTP),

• Online Analytical Processing (OLAP); eg: An online business intelligence system

workload against which users submit queries to answer complex business questions [25].

• Decision support system

The decision support workload type will be of particular interest in this literature review since it

is implemented under the Transaction Processing Performance Council (TPC) benchmark suite

“TPC-H”. It is also the only TPC benchmark suite that has no clients and no network

components [34]. So the TPC-H benchmark suite appears to be the most suitable one for this

research due to the limited resources that we possess at hand.

7

2.4.3 Reservations about industry standard benchmarks

Though they provide means of knowing the performance of database products, their adoption

might be somewhat difficult in that:

• They simulate real world workload which might not reflect the actual workload of a

particular application of interest [13][21].

• They are performed on specific hardware and operating system which makes their

duplication not feasible especially for custom applications that do not match the platform

requirements on which the benchmark tests were run.

• It is also difficult to compare database systems run on different hardware platforms

because of the different machine architecture under which they are manufactured [21].

• Database vendors use techniques such as preloading data and the SQL execution plans

into memory (RAM) in order to avoid disk I/O access overhead so as to improve the

benchmark performance [3].

2.4.4 Transaction Processing Performance Council (TPC)

The TPC is a non–profit corporation which defines transaction processing and database

benchmarks by publishing to the industry verifiable TPC performance data [29]. The term

transaction viewed from the business perspective is regarded by the TPC as a commercial

exchange of goods, services or money. As a computer function, “transaction” refers to a set of

operations comprising disk read/writes, operating system calls, or some data transfer from one

subsystem to another [29].

8

The TPC provides different benchmark suites designed according to specific workload type and

applications requirements. The TPC benchmark suites currently valid are given in the table

below [29]:

TPC Benchmarks Workload and applications Types

TPC-App • An application server and web services benchmark

• Focuses on the performance capabilities of application

server systems

TPC-C • Simulates an application where a population of users

executes transactions against a database (OLTP)

TPC-E • The new On-Line Transaction Processing

• Is scalable, the workload generated can be varied to

represent the workload of different-size businesses

TPC-H • Decision Support benchmark consisting of ad hoc queries

and concurrent data modifications.

Table 1-TPC Benchmark suites

2.4.4.1 TPC-H

The TPC BenchmarkTMH (TPC-H) is a decision support benchmark consisting of a suite of

business oriented queries and concurrent data modifications [30]. The queries and the data

populating the database have been selected to have a broad industry-wide relevance [30].

The TPC-H Benchmarks simulates decision support systems that [30]:
• Examine large amount of data;

• Execute queries with a certain degree of complexity;

• Give answers to critical business questions (operation).

Due to the ad hoc nature of the TPC-H queries, their execution time can be very long. That

makes it difficult for the database administrator to optimize the database system as opposed to

applications such as OLTP where the nature of queries as well as that of the workload is known

9

in advance [10]. The properties of the TPC-H as reported by the TPC BenchmarkTMH standard

specification Revision 2.8.0 are given as follows [30]:

• Give answers to real-world business questions;

• Simulate generated ad-hoc queries

• Are far more complex than most OLTP transactions;

• Include a rich variety of operators and selectivity constraints;

• Are executed against a database complying with specific population and scaling

requirements;

• Generate intensive activity on the part of the database server component of the system

under test;

• Are implemented with constraints derived from staying closely synchronized with an on-

line production database.

2.4.4.2 TPC-H Database design and implementation

The TPC-H benchmark defines different sizes of the database according to specific scale factor

as follows: 1GB, 10GB, 30GB, 100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB. The

scale factor of 1(1GB) is the minimum required size for a test database. Any database size not

mentioned is not permitted by the TPC. This requirement is meant to encourage comparability of

the results and to ensure a significant actual difference in test database sizes [30]. The TPC-H

Benchmark models the analysis end of the business environment where trends are computed to

support decision making of sound business decisions [30].

The TPC-H benchmark database has been designed to be in the third normal form [10]. That is, it

has the following properties [4]:

• All the key attributes are defined;

• There are no repeating group in the tables;

• All the attributes are dependent on the primary key;

• No attribute is dependent on only a portion of the primary key;

• It contains no transitive dependencies

10

The entity relationship model is given by the schema below:

Figure 2: TPC-H benchmark database schema

The database consisting of eight tables is populated using a designed program that comes with

the TPC-H benchmark suite called DBGEN. The maximum cardinality supported by each table

is dependent on the scale factor used. The tables “SUPPLIER” and “LINEITEM” contain about

83% of the total data stored in all the tables [10].

It is relevant for us to mention that according to [24], “TPC benchmark kits for most state-of-the-

art database systems are not readily available” and writing and tuning the benchmarks to meet

the required specifications of the workload of interest on a given database system may require

over six months of experimentation even by trained database system managers.

PARTSUPP 1:M

CUSTOME

PART

1:M 1:M SUPPLIER ORDERS

LINEITEM

REGION

M:1

M:1 NATION

1:M

M:1

Figure 2- TPC-H Benchmark database schema

11

2.4.4.3 TPC-H Workload

The TPC-H benchmark workload consists of a database load, the execution of twenty-two read

only queries running on single as well as in multiple users mode and two batch update statements

(RF1 and RF2) [10] [24]. RF1 inserts new rows into the tables LINEITEM and ORDERS while

RF2 removes the same number of rows from those tables [10][24].

The Database load consists of constructing the test database which includes the process of

loading the data into the database , the creation of tables, indexes, the definition and validation of

constraints, the collection of statistics and the configuration of the system so that it can meet the

ACID requirements. Synchronizing the loaded data on RAID (Redundant array of independent

disks) devices may also be taken into consideration.

The program used in the TPC-H benchmark to generate queries against the test database is the

QGEN program. It is written in ANSI’C’ and has been ported to a large number of platforms

[11]. Minor syntactic modifications of the TPC-H queries are permissible so that they can be run

on specific commercial database application and all the tables created during the execution of a

query must meet the ACID proprieties [30].

Each and every TPC-H benchmark query is defined by the following components [30]:

• The business question, which illustrates the business context in which the query could be

used;

• The functional query definition, which defines, using the SQL-92 language, the function

to be performed by the query;

• The substitution parameters, which describe how to generate the values needed to

complete the query syntax;

• The query validation, which describes how to validate the query against the current

database.

According to Zaharioudakis et al, modern decision-support queries involve joins, arithmetic

operations, complex aggregations and nested sub-queries which make them complex [35]. The

ad hoc nature of the TPC-H benchmark queries combined with their complexity make their

execution time longer. They may take hours or even days of execution runs.

12

Graefe et al., define a complex query as the one requiring a number of query processing

algorithms to work together and a large database, as the one using files with sizes ranging from

several megabytes to many terabytes [11].

 Some works have been done with the aim of optimizing decision support database applications

that are mainly characterised by their database size being large. Much detail will be given in the

performance optimization section that follows.

2.5 Database Performance optimization

In order to obtain an optimum performance from a database system, the design and

implementation model of the database must be well performed [4]. That alone does not guarantee

a complete solution to the performance issues. Other techniques such as query optimization need

to be taken into consideration as well. Key configuration variables specific to a particular

database product affecting the query optimization process might need to be altered.

2.5.1 Database engine

Graefe et al., define query processing as “the component filling the gap between the database

query languages and the data storage systems in a database management system” [11]. It

comprises the query optimizer that translates queries written in a high level query language into a

series of operations that are implemented in the query execution engine. The query optimizer has

the responsibility of finding a query evaluation plan that minimizes the performance cost

measures of a database [11]. These performance measures include:

• The database user’s wait for the first or last result item;

• CPU cycles;

• Memory costs(as maximum allocation or as time-space product);

• I/O (Input/Output) data transfer;

• Network time and effort;

• Total resource usage

13

2.5.2 Query execution plan

A query plan as stated by Shao et al. is made of “a cooperating tree of operators”. Since a logical

operator may be executed using a combination of various physical operators, a single query can

be executed using one of the many possible query execution plans that can be produced by the

query optimizer.[25].

The difference between the logical operators and physical operators as stated by Graefe et al.,

resides in the fact that physical operators implement logical operators [11]. A logical operator

defines how the query can be expressed in the data model where as a physical operator is more

specific to the query processing system.

 The difference is illustrated by the figure 2.3 below:

 Logical operator Physical operators

Figure 3- Logical and physical query operators [11]

 The most used physical operators as described by Shao et al. are [25]:

• A table scan: Reads through an entire table and generates a stream of records that satisfy

the condition (predicate) part of the query statement; An index scan operator provides the

same results as the table scan by using an index to access only records that meet the

predicate;

• Table joins: Match rows from two tables based on an equality or other condition on

common fields. Joins may be implemented using the nested loop, sort-merge or hash join

algorithms.

14

• Order-by clauses are implemented using the sort operator that sorts records in the input

table with respect to a subset of fields.

• Group-by: categorises the input records into groups based on a subset of fields and

outputs of the groups. It can be implemented using sorting or hashing.

• Aggregate: Refers to a function such as sum, max, min, count, avg etc. that can be

applied on the input records to output a single value.

2.5.3 Indexes

The database tables of decision support systems are “heavily indexed” and the raw data are

structured in such a way that they can support all the various types of queries that are being used

[16]. Having the knowledge that indices can improve greatly the query execution time if they are

properly designed to suit the workload of interest; some care must be taken when creating them.

Nevertheless, Microsoft SQL Server provides a means of helping with the analysis of the

database environment and in the selection of appropriate indexes via the Database Engine

Tuning Advisor tool [27].

The three main types of indexes considered in analysing queries in SQL Server are [5]:

• Clustered indexes: which index directly to the column on which is created and order the

data in that column in a given manner. A primary key is a good candidate for a clustered

index.

• Non-clustered indexes: which index one or many columns on which is created through

the primary key (clustered index).Good for non-clustered indexes are, foreign keys,

columns involves in join, Group by, and Having operators.

• Covering indexes: are non clustered indexes in which extra columns have been included.

They have the advantage of covering all the columns involved in a query, hence the

actual table need not to be accessed since the index table could retrieve directly the

records specified in that particular query [32].

15

As an illustration, using indexes could result in great performance improvement when running

them using the TPC-H query 1 given below:

select

l_returnflag,
l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice*(1-l_discount)) as sum_disc_price,
sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order

from
lineitem

where
l_shipdate <= DATEDIFF (DD, 3, '1998-12-01')

group by
l_returnflag,
l_linestatus

order by
l_returnflag,
l_linestatus;

Without indexes, the entire LINEITEM table consisting of 6000000 rows in a database of size

1GB has to be scanned so that the records meeting the “where clause” can be retrieved. The

result of this query consists of only four records and it is probable that it might take quite some

time to execute. So it is clearly evident that the use of indexes can dramatically reduce the

execution time of such queries.

2.5.4 Parallel query execution

As opposed to Online Transaction Processing workload, the decision support workload which

does not require frequent insertion, deletion or update operations can benefit significantly from

parallel query execution as they are characterized by large tables, and complex queries involving

multiple join operators between tables.

16

The three forms of parallelism in query execution that are common to designers of database

query processing systems are given as follows:

• Inter-query parallelism

• Inter-operator parallelism

• Intra-operator parallelism

Most of today’s database management systems make use of the inter-query parallelism and

specialized version of the inter-operator parallelism called “horizontal inter-operator parallelism”

[12].

2.5.4.2 Inter-query parallelism

Inter-query parallelism refers to the ability of a given database management system to execute

multiple queries concurrently [12]. The drawback of this technique is that it exhibits resource

contention as different queries would require accessing the same object.

2.5.4.3 Inter-operator parallelism

Inter-operator parallelism involves a parallel execution of different operators such as selection,

join or intersection in single query [12]. It is also referred to as pipeline parallelism. The two

ways in which inter-operator parallelism can be used are:

• Vertical inter-operator parallelism which involves the execution of query operators

composed by a “producer and consumer relationship” in a pipeline such that tuples

output by the producer are being received by the consumer as they are being produced.

• Horizontal inter-operator parallelism which involves the execution of independent

subtrees in a complex bushy-query evaluation plan concurrently. It is also referred to as

bushy parallelism.

17

2.5.4.4 Intra-operator parallelism

Intraoperator parallelism is a form of query processing parallelism which provides a means of

executing a single operator in a query plan in multiple processes [12]. It involves running more

than one instance of a single operator on different processors (machines) concurrently.

2.5.5 Query parallel processing on SQL Server

SQL Server is capable of executing query parallel processing using multiple processors

simultaneously when is running on a multiprocessor hardware platform [26]. It is only the task of

the query optimizer to decide depending on the cost whether a query has to be executed in

parallel or sequentially [26]. More often, a complex and expensive query processing many rows

will likely be a candidate of a parallel plan than a query that only processes few rows. The key

configuration variables that need particular attention are the “cost threshold for parallelism” and

the “max degree of parallelism (MAXDOP)” both variables can be configured using the

sp_configure stored procedure. If the query cost exceeds the value defines by the cost threshold

for parallelism, the query optimizer will attempt to generate a parallel plan for that particular

query. The max degree of parallelism defines the number of cores (CPU) that should be used

during the execution of a parallel query [26].

2.5.5.1 Exchange Operators

Query exchange operators are use in a SQL Server execution plan to prepare a given query for

parallelism. They provides in SQL Server execution plan:

• Process management,

• Data redistribution and

• Flow control.

The three type of exchange operators are: Distribute streams, repartition streams and gather

stream.

18

2.5.5.1.1 Distribute streams

It takes a single input stream of records and output multiple streams. So each record from the

input stream appears in each of the output streams [26].

2.5.5.1.2 Repartition streams
It takes multiple input streams of records and output multiple streams of records as well. Each

record of the input streams is placed into one output stream. [26]

2.5.5.1.3 Gather streams

It takes many input streams of records and output a single stream of records. If the Gather

streams operator is order preserving, then all the input streams should be ordered [26].

2.5.6 Workload optimization

After running the TPC-H benchmarks on IBM DB2 UDB V.7.2 using a 4 way 733MHz Intel

Pentium III server, Shao et al., observed that most of the TPC-H queries execute basic query

operations such as sequential scan or join [25].

 The query optimizer’s suggested plans for the TPC-H queries were found as follows [25]:

• 50% of the queries were dominated by tables scan(Over 95% of their execution time is

estimated to be due to table scans);

• 25% of the queries spent more than 95% of the time executing nested-loop joins;

• 25% of the remaining queries executed table scans for about 75% of the time on average

and nested-loop joins for about 25% of the time on average

The obtained results were said to be counterintuitive considering the complexity and depth of a

TPC-H query plan [25]. Such results could be explained by the filtering being done at the lowest

levels of the operator tree and the size of the result being reduced as the execution continues to

the upper levels of the tree. Shao et al. concluded by suggesting the scaling down of the TPC-H

workload by constructing representative queries that execute the dominant operators (Sort and

19

join) and the use of small datasets that fit in the research test bed [25]. The primary

characteristics of interest for measuring performance of the system under test were [25]:

• Query execution time breakdown;

• Memory stall time breakdown in terms of cycles lost at various cache levels and TLBs;

• Data and instruction cache misses per instruction at each level branch;

• Branch misprediction per instruction

Shao et al. noted that on average the processor remained idle more than 80% of the time when

executing the TPC-H queries [25].

Wasserman et al., after analysing the TPC-H queries run on DB2 UDB, grouped them into 4

classes based on their processing time, I/O and n-way table joins characteristics as described by

the table below [33]:

Classes Query Number Characteristics

Class 1 Q11, Q14, Q5, Q12, Q8, Q7,

Q1, Q3, Q4, Q10

• Medium-complexity Query

• High Response times

• Moderate CPU and I/O usage

Class 2 Q2, Q20, Q17 (Q19 and Q6

are borderline)

• Simple queries which are I/O-bound and join

small number of tables

Class 3 Q9, Q18, Q21 • Large and complex queries which are long-

running

• Have large number of tables joined

• Exhibit high sequential and random I/O usage

Class 4 Q13, Q22, Q15, Q16 • Trivial queries

• Short run times

• Small number of tables joined

• Exhibit high CPU utilization

Table 2-TPCH-Queries classification

20

2.5.7 Performance Bottlenecks

It is of great importance to pinpoint performance bottlenecks before embarking on the process of

optimizing the system under test. The system monitor embedded on SQL Server or on the

operating system (Microsoft Windows Server 2008) may be useful in monitoring and analyzing

the system performance behaviour.

 The performance data being generated by a particular component of the system under test is

represented by counters that reflect the status of that component. An example could be

percentage (%) processor time buffer cache hit ratio [6].

2.5.7.1 Bottlenecks identification and resolution

Dam et al. suggested two ways of resolving bottlenecks that are: Increasing the resource

throughput and/or decreasing the arrival rate of requests at the resource [6]. The first one can be

accomplished by adding more resources such as memory, disks, processors or network adapters.

The second one may be achieved by adding appropriate indexes on a table to limit the amount of

data that can be accessed. Decreasing the arrival rate of data refers to the process of identifying

the causes of high I/O requests to the disk subsystem with the aim of minimizing their number

[6].

2.5.7.2 Memory Bottlenecks

A memory bottleneck will rapidly impact on other resources such the processor or the disk [6].

SQL Server reserves memory for data as well as for the query execution plan using the memory

pool which consists of a collection of 8KB buffers to manage data pages, plain cache pages and

free pages. SQL Server manages its memory by dynamically growing or shrinking its memory

pool size dynamically so as to maintain free physical memory between 4MB and 10MB [6]. The

dynamic memory configuration is recommended for SQL Server with “min server memory” set

to zero and “max server memory” set to the maximum physical memory of the system. If other

21

applications are being run on the server while SQL Server is also running then the “min server

memory” value should be configured to 50% of the max server memory value in order to prevent

those applications from using memory that SQL Server might need [6]. The “min server

memory” and “max server memory” values can be configured using the “sp_configure” system

stored procedure.

Memory bottlenecks can be resolved by [6]:

• Optimizing the application workload (especially queries)

• Allocating more memory to SQL Server

• Increasing the system memory

• Using extended memory within SQL Server

2.5.7.3 Disk Bottlenecks

Intensive disk operations on the resources residing on the disk can result in performance decrease

of SQL Server since it usually uses much of the hard disk space [6]. Disk counters can be used to

monitor disk performance. The list below give an overview of some of those counters [6]:

• “% Disk Time”: Monitors the disk read/write activities and provides the result in terms of

percentage which should not be continuously high. If the “% Disk Time” counter is

consistently having a value of more than 85% then upgrading the disk subsystem could

be one of the options to bring that value down. A more suitable solution would be the one

of avoiding going to the data disk frequently that is caching the disk contents in memory

(Buffer cache).

• Current Disk Queue Length: Provides the number of requests outstanding on the disk

subsystem at the time the performance data is collected. The current disk queue length is

used to support the results provided by the “% Disk Time Counter”.

22

Disk bottlenecks can be resolved by [6]:

• Optimizing the workload;

• Using a faster disk drive;

• Creating multiple files and file groups

• Placing the table and indexes for that table on different disks

• Saving the log file to a separate physical drive

• Using a RAID array

2.5.7.4 Processor bottlenecks

The table below gives the normal values that can be provided by the processor objects counters

[6]:

Object(Instanace[In

stanceN])

Counter Description Value

Processor(_Total) % Processor Time Percentage of time the processor

was busy

Average

value<80%

% Privileged

Time

Percentage of processor time

spent in privileged mode

Average

value<10%

System Processor Queue

Length

Number of requests outstanding

on the processor

Average

value<2

Context

Switches/sec

Rate at which the processor is

switched from one thread to

another

Average

value<1000

per processor

Table 3-Processor performance bottlenecks

Any value greater than the ones specified in the table 2.3 above, might reveal some performance

bottlenecks on the part of the processor.

23

2.5.7.5 Overall performance on SQL Server

It might be useful to examine some general aspects of SQL Server itself besides the hardware

resource utilization. The table below lists counters for SQL Server overall performance [6]:

Object(Instance[InstanceN]) Counter

SQLServer:Access Methods FreeSpace Scans/sec, Full Scan/sec

SQLServer:Latches Total Latch Wait Time (ms)

SQLServer:Locks(_Total) Lock Timeouts/sec, Lock Wait Time (ms), Number of Deadlocks/sec

SQLServer:SQL Statistics Batch Requests/sec, SQL Re-Compilation/sec

SQLServer:General Statistics User Connections

Table 4 - SQL Server overall performance counters

The counters that might be relevant to us are explained below:

• FreeSpace Scan/sec and FullScan/sec: Both are counters provided by the access methods

object which monitor how the logical pages within the database are accessed. Monitoring

the methods used to access database pages can help in improving the query performance

by adding or modifying indexes or by rewriting the query [13]. The FreeSpace Scan/sec

provides the number of scans per second that were initiated to search for free space

within the pages already allocated to an allocation unit to insert or modify record

fragment. Each scan may find multiple pages [13]. The full Scans/sec provides number of

unrestricted full scans per second which can be either base-table or full-index scans [13].

• Total Latch Wait Time: Latches are used to protect the integrity of the internal structures

of SQL Server such as table row. They are not directly controlled by the users. The Total

Latch Wait Time monitors total latch wait time for latch requests that had to wait in the

last second [6].

• Lock Timeouts/sec and Lock wait Time: The Lock Time out should be expected to be

zero and the Lock Wait Time to be low otherwise a blocking might be occurring in the

database. Identifying the costly queries using the SQL Profiler tool provided by SQL

Server might be one of the options to resolve the blocking problem [6].

24

• Number of Deadlocks/sec: This counter should be expected to be zero; otherwise the

problematic request has to be identified [6].

• SQL Re-Compilation/sec: The reusability of an execution query plan is beneficial for the

fact that generating an execution plan for a stored procedure query requires more CPU

cycles [6]. So the SQL Re-compilation/sec counter is used to analyze the non-reusability

of a stored procedure. A value of zero should consistently be reflected by the SQL Re-

Compilation/sec counter. If a nonzero value is consistently reflected, that means there is

an overhead on the side of the processor because of the recompilation of the stored

procedure. The SQL Server Profiler should be used for further investigation [6].

2.6 - Chapter Summary

This chapter aimed to provide some background concepts about the TPC-H as the Transaction

Processing Performance Council (TPC) benchmark suite for decision support systems as well as

some techniques used in database benchmarking and performance optimization. It also provides

concepts relevant to the understanding of the experimentations that will performed in this project

as well as the interpretations of the results that will be obtained.

The next chapter provides a description of the design considerations relevant to this project.

25

Chapter 3-Design considerations

The aim of this chapter is to provide a description of all the components making part of the

system specification considered for this project. This includes the hardware platform, the

operating system, the database management system product and other software tool used. A brief

explanation of the motives behind their choice is also provided. Finally, this chapter also

includes a description of the structure of database used as well some specific configurations

variable of interest.

3.1 System specification

The system under test has the following features:

• Microsoft Windows Server 2008 Enterprise Service Pack 1, 64 bit version as the server

operating system.

• As database management system products, Microsoft SQL Server 2008, 64 bit version

Both the operating system and the database management system run on a Hardware platform

having the following features:

• 64 bit machine (Proline)

• Intel® Core ™ 2 Quad CPU @ 2.66GHZ (4 CPUs)

• 4 GB of RAM

• 500GB of Hard Disk

The motivations driving the choices of the database product and operating system are given in

the following sections.

26

3.2 Microsoft Windows Server 2008

As the latest server operating system released by Microsoft and the recommended one for

Microsoft SQL Server 2008 database, Microsoft Windows Server 2008 is the subject of positive

customer feedback such as cost saving as well as resource optimization which are essential in

today’s competitive IT industry [18]. Windows Server 2008 is able to achieve this due to the

features that come built into it. Systems such as the Microsoft hypervisor-based server

virtualization technology “Hyper-v” enables Windows Server to take advantage of the

multiprocessor architectural technology being offered by current hardware platforms [18].

Processor utilization level of servers running Windows Server 2008 can be monitored using a

balanced power policy which provides a means of dynamically adjusting the processor

performance level according to the workload, hence limiting the server processors power

consumption as well as the cooling cost [18]. These are among the reasons that motivated the

choice of Windows Server 2008 as the server operating system of this project.

3.3 Microsoft SQL Server 2008

SQL Server 2008 is believed to be the most robust and comprehensive database product released

by Microsoft to date. Its combination with Windows Server 2008 is said to be a powerful

platform for running mission-critical data and business intelligence solutions with high security,

compliance and availability. Being more scalable, SQL Server 2008 is said to be meeting the

needs of data warehouse of the largest enterprises with ease. These are among the characteristics

that set it apart from other database products on the market [17]. SQL Server 2008 also provides

tools for collecting and analyzing performance data such as the “Tuning Advisor” for

performance optimization. Experimenting with the features provided by SQL Server 2008 in

order to attain the objectives assigned in this project as well as verifying the claims made in its

favour were the principal motives behind the choice SQL Server 2008 as the database product

for this project [17].

27

3.4 Benchmarking software tools

Since the TPC does not currently provide a readily available benchmark kit for SQL Server, a

third party benchmarking software tool “Benchmark Factory for databases version 6” was used

to generate the TPC–H database workload. Another third party performance monitor tool

“Spotlight for SQL Server Enterprise” was used to support the performance monitors embedded

in Microsoft Windows Server 2008 and Microsoft SQL Server 2008. Spotlight for SQL Server

Enterprise provides a means of visualizing the main performance counters measuring the overall

performance of the system under test such as “% processor time”, buffer hit ratio and the average

disk queue length.

3.5 SQL Server Performance monitors tools

Microsoft SQL Server 2008 provides performance monitors tools that are valuable in collecting

and analyzing the database performance results as well as in identifying the causes and sources

of potential system bottlenecks with suggestions for resolving them. Below are some of the tools

that we found useful for this project.

3.5.1 Microsoft SQL Tuning Advisor

The Database tuning advisor automatically suggests optimal set of indexes, indexed views,

partitions and table statistics based on the type of workload being analyzed and the physical

implementation of the database [27]. The tuning advisor can also suggest the modification of the

physical design structure of the database. For this project we were only concerned with the

optimal indexes suggested since the database schema is part of the TPC-H specification. During

the process of generating the database workload using the benchmark factory for databases

benchmarking software, indexes were also created as recommended by the TPC-H

specifications. Nevertheless we still used the SQL Server database tuning advisor indexes

suggestions in order to experiment the capabilities of this tool especially for decision support

workload such as the TPC-H workload since some significant performance improvement in

terms of query response time was observed when indexes scripts suggested that by the tuning

28

advisor tool were used. Further details will be given in the discussion and evaluation chapter of

this project.

3.5.2 Microsoft SQL Server profiler

The SQL Server Profiler is a tool that provides a graphical user interface for capturing and

saving SQL Server events to a file or table for later analysis [31]. These saved files that can also

be referred to as SQL Trace can be used for the purpose of monitoring SQL statements and

stored procedure that are affecting the system performance by running slow, indexes and other

similar experiments.

3.6 TPC-H Database

Designed to be in the third normal form, any TPC-H database consists of eight tables whose

cardinalities depend on the scale factor being used except for the NATION and REGION tables.

The scale factor determines the size of the database generated for a given test. Much detail about

the schema and size of different database is provided in Chapter 2- Related work. The database

tables have the following cardinalities:

Cardinality (Number of rows for each table)

Tables Scale Factor 1 (1GB) Scale Factor 10 (10GB) Scale Factor 30 (30GB)
PART 200000 2000000 6000000
PARTSUPP 800000 800000 24000000
LINEITEM 6000000 60000000 1800000000
SUPPLIER 10000 100000 300000
CUSTOMER 150000 1500000 4500000
ORDERS 1500000 15000000 45000000
NATION 25 25 25
REGION 5 5 5

Table 5 -Table's cardinalities

29

3.7 Key configurations variables of interest

As stated by Microsoft, Microsoft SQL Server setting variables are configured for optimality.

However such recommendations are not cast in stone since experience has proven that altering

some of these internal settings can result in some performance gain. Driven by an experimental

mind, we have assigned ourselves the task of modifying some of these variables that can impact

on the performance of query execution. These variables of interest are given as follows:

• Maximum degree of parallelism

• Cost threshold of parallelism

• Max worker threads

Detailed explanations of these variables will be given in chapter4- Methodology.

3.8 Chapter summary

This chapter gave a description of the components making part of the system specification that

are the hardware platform and software chosen as well the reason behind their choice. A brief

description of the database structure, the table’s cardinalities and specific configuration settings

of interest were also reviewed. The next Chapter provides more detailed information about the

methodology used to solve the stated problem.

30

Chapter 4-Methodology

The approach used in solving the problem posed in this project was to carry out an investigation

on the TPC-H queries workload before running the benchmark test on our custom application

being configured with its default settings. Performance monitors were then used to collect

information about the database performance in both real time and after running the queries.

Based on the investigations done on the TPC-H workload as well as the results measured by the

performance monitors, the performance optimization of the system under test was guided

through two main operations given as follows:

• The use of the tuning advisor suggested indexes,

• The experimentation of different configuration variables pertaining to parallel query

processing.

4.1 Database loading process

Three different databases named “TPCH_1GB”, TPCH_10GB1”, TPCH_30GB” were

respectively generated with the TPC-H workloads of scale factor 1, 10, and 30. As required by

the TPC-H specification, the three different scale factors were selected in order to observe

significant differences in query response between these three different scale factors. The process

of generating the workload was made easy through the use of the “Benchmark factory of

databases” software tool which loaded the required data for the three different sizes of databases.

4.2. Benchmark tests - with default configuration

After the process of loading the data into the three databases, each of the twenty-two TPC-H

queries was then run against each of the three databases set to their default settings. Performance

monitor tools were used to capture the health of the system under test. Performance test results

such as the query response time, CPU average spent for each query as well as the number of disk

reads occurred during the execution of each query were recorded for later comparison with the

31

results obtained after the configuration of the three databases. More detailed explanation is

provided in chapter 5-Result of this project.

4.3 Benchmark tests – Performance optimization

The performance optimization process was guided by the performance test results collected with

all the databases set to their default configurations as well as the results about the health of the

system under test provided by the performance monitors. The two methods of optimizing the

system under test were: the use of indexes and the experimentation of the settings pertaining to

the execution of queries in parallel. Their selection was based on the type of performance

bottleneck occurring on the server. A high number of disk activities was reported by the

performance monitors. This selection was also supported by the literature survey provided in

Chapter 2-“Related work” in section 2.5.3 and section 2.5.4 of this project concerning the

optimization of decision support systems workload.

4.3.1 The use of indexes

After the process of recording the query performance results with each of the three databases set

to their default configurations, a set of seven queries with the highest response time in both, the

database generated with a scale factor 10 (10 GB) and the one generated with a scale factor of 30

(30 GB) were analyzed by the tuning advisor tool. The tuning advisor then generated non

clustered index scripts which were run against each of the two different databases. The selected

seven queries were again run against each of the two databases (scale factor =10 and 30) and

their execution time was compared with the ones run when no indexes were created on both

databases except the indexes that were created during the process of generating the workload.

These indexes were mainly clustered indexes created on primary key columns, and non clustered

indexes created on foreign key columns for each of the tables. The T-SQL scripts of these

indexes are provided in appendix B.

32

4.3.2 Experimentation with Query Parallel Processing

The second method of optimization of the performance of the system under test was the

experimentation of the server settings involving the execution of queries in parallel. Comparing

the response time of queries run with a serial execution plan against the response time of queries

run with a parallel execution plan was among the objectives to be attained through this

experiment.

Since Microsoft SQL Server 2008 is by default configured to use all the available processors of

the multiprocessor architecture hardware platform on which it is installed, the results obtained

with the server set to its default configurations were assumed to be the optimized ones.

Experimenting with only one processor, two processors or three processors made available to

SQL Server processes was then performed in order to establish a correlation between the number

of processors used and the query response time observed. Each of the results set obtained were

respectively compared with the results obtained with the database set to its default

configurations. This was mainly done in order to experiment the effect of intra-query parallelism

in SQL Server 2008. The same set of seven queries run with the experiment involving the

indexes suggested by the tuning advisor tool were also used for this experiment but with only the

database of scale factor =10 (10GB).

4.3.3 Parallel query processing – variable of interest

The main configurations allowing parallel query execution in Microsoft SQL Server 2008 are:

• The Max degree of parallelism

• The Cost threshold for parallelism

• The max worker threads

33

4.3.3.1. The Max degree of parallelism

This is a configuration variable that instructs to SQL Server the number of processor to be used

during the execution of a particular query [26]. By defaults, SQL Server is configured to use all

the available processors offered by the hardware platform on which is being run. Setting the Max

degree of parallelism to 1, restricts SQL Server from generating any parallel execution plan since

there will only be single processor made available for SQL Server processes. Different values of

the Max degree of parallelism 1, 2, 3 and 0 were experimented since the hardware platform

provides four processors.

4.3.3.2 The Cost Threshold for parallelism

The Cost threshold for parallelism specifies the elapsed time in seconds above which SQL Server

stops generating a serial execution plan and starts generating a parallel execution plan. This

happens when query optimizer estimates that the cost of a serial plan is higher than the one of a

parallel plan for the same query. In this experiment The Cost Threshold for parallelism was left

to its default configuration of five as recommended by Microsoft [26].

4.3.3.3 The Max worker threads

This configuration variable specifies the number of threads made available to the Microsoft SQL

Server processes. It has the responsibility of creating a pool of worker threads meant to service a

considerable number of query requests hence, improving the system’s performance. The Max

worker threads value was left to its default value of zero as recommended by Microsoft as being

the best for most systems [28].

34

4.3 Chapter summary

This chapter aim was the description of the methodology adopted for the execution of every test

performed during the experimental phase of this project. Specific variables of interest relevant to

parallel query execution are also described. The next chapter focuses on the results obtained for

each test performed.

35

Chapter 5-Results

This chapter is dedicated to the results gathered during the experimental phase of this project.

5.1 Performance measurements

The performance measurements were done using “SQL Server profiler” tool embedded in SQL

Server which was used to trace all the SQL events that were taking place on the server.

“Spotlight on SQL Server Enterprise” with its user interface provided an easy way of visualizing

in real time the health of the system under test.

The performance measurements of interest were:

• The Average query response (in seconds) which is the amount of time it takes a single

query to complete its execution run.

• The Average CPU time (in millisecond) which is the amount of the CPU spent on

processing a given query

• The Average Disk Read which provides the average number of reads per second of data

from the disk.

• The Average Disk write provides the average number of writes per second of data to the

disk.

5.2 Experimental set-up

As already mentioned, the “Benchmark factory for databases version 6” software tool was used

to generate three different databases of scale factor 1, 10, 30. The three databases as well as the

operating system Microsoft Windows Server 2008 were left to their default configurations. Each

of the twenty-two queries was then run against each of the three databases. The Microsoft SQL

Server profiler tool was used to trace the time it took each query to execute, the average time it

took the CPU to process each query, the average number of reads per second from the disk as

well as the average number of writes per second to the disk that occurred during the execution of

each query.

36

Though the benchmark factory for databases software provides a means of running queries

against the database under test automatically after the loading of data into the database has

completed, queries were run manually in order to compare the results produced from the

execution of each query with the ones specified by the TPC-H specification manual provided in

appendix since queries run automatically on the background using the benchmark factory for

databases software do not produce any results. The Benchmark Factory for database software

tool was just used to generate the workload against which the TPC-H queries were run manually.

5.3 Base line results – Databases set to their default configuration

The tables below provide the performance results for each of the twenty two queries run against

the three databases: “TPCH_1GB” (scale factor=1), TPCH_30GB (scale factor=10),

“TPCH_30GB” (scale factor=30GB)

37

5.3.1 Database of scale factor 1- “TPCH_1GB”

The table 6 below provides the performance results obtained after running a series of twenty two

queries against the database “TPCH_1GB” generated with a scale factor of 1. Having

approximately a size of 1GB, The largest table in this database which is the “LINEITEM” table

has a cardinality of six million rows.

Transaction Results – Scale Factor 1 (1GB)
Query
Number

Average Response
Time (s)

Average CPU
Time (ms)

Average Number of
Reads (per ms)

Average Number of
Writes (per ms)

Q1 2.756 7816 119552 1

Q2 0.971 874 8357 4

Q3 0.781 2076 80134 0

Q4 0.873 2217 119530 0

Q5 0.999 2576 121061 0

Q6 0.481 702 22192 3

Q7 0.642 1559 60029 0

Q8 1.402 4285 62521 0

Q9 2.577 6505 137565 21

Q10 2.047 2682 123041 0

Q11 0.113 309 19380 0

Q12 0.385 1404 259539 0

Q13 1.425 3370 27831 20

Q14 0.132 404 5726 0

Q15 0.532 563 7746 0

Q16 0.333 983 6363 5

Q17 0.557 1264 9754 0

Q18 2.169 7285 116596 0

Q19 1.418 531 6360 0

Q20 1.156 1389 35726 2

Q21 2.622 6755 410683 12

Q22 0.511 732 19395 11
Table 6 - Baseline results with scale factor of 1

With a quick look at the table 6 above, it can be observed that the query response time differs for

each and every query execution run. This can be explained by the complexity of each and every

38

query as well as the number of disk reads or writes per second that need to be performed during

the execution of that particular query in order to retrieve the expected results. A high number of

disk reads per second can also be observed.

5.3.2 Database of scale factor 10 –“TPCH_10GB”

The table 7 below provides the performance results obtained after the execution of the twenty-

two queries run against the database “TPCH_10GB” generated with a scale factor of 10. The

largest table in this database is the “LINEITEM” table that has a cardinality of sixty million

rows.

Transaction Results - Scale Factor 10 (10GB)
Query
Number

Average Response
Time (second)

CPU Average
Time(ms)

Average Number
Reads(per ms)

Average Number
Write(per ms)

Q1 932.122 93960 1160969 0

Q2 8.724 1950 46794 4
Q3 540.312 26740 778008 1

Q4 1007.875 29030 1185965 0

Q5 1049.707 71133 1212349 0

Q6 150.49 6397 185053 5

Q7 347.422 16349 598865 0
Q8 361.627 53132 912599 0

Q9 1039.455 80415 1357287 32

Q10 1064.473 25240 1211881 0

Q11 16.345 2480 177867 0

Q12 995.891 18721 3819258 0
Q13 43.266 37051 250550 22

Q14 14.103 3898 54315 0

Q15 75.977 5321 54496 2

Q16 15.476 9705 57599 18

Q17 0.985 1123 41951 0
Q18 1000.466 105891 1193145 2

Q19 42.17 5195 53287 9

Q20 99.573 3868 255463 7

Q21 3136.353 97235 5055285 16
Table 7-Baseline results with scale factor of 10

39

5.3.3 Database of scale factor 10 –“TPCH_10GB”

The table 8 below provides the performance results obtained after the execution of the twenty-

two queries run against the database “TPCH_10GB” generated with a scale factor of 10. The

largest table in this database is the “LINEITEM” table that has a cardinality of 180000000 rows.

Transaction Results – Scale Factor 30
Query
Number

Average Response
Time(s)

CPU Average
time(ms)

Average of
Read(per ms)

Average number of
Writes(per ms)

Q1 3084.724 293813 3466568 4

Q2 19.289 3102 129418 4

Q3 1814.337 89219 2330392 1

Q4 3106.35 86299 3549087 0
Q5 3228.433 249650 3682531 0

Q6 477.071 17440 545860 3

Q7 1158.625 52744 1797544 0

Q8 1302.811 165970 3040130 0

Q9 3270.1 256403 4124784 37
Q10 3191.434 79478 3649833 15

Q11 39.88 7565 533713 0

Q12 3272.998 55192 11326237 0

Q13 166.292 113881 745064 28

Q14 49.372 11761 157166 0
Q15 199.772 15959 156898 3

Q16 35.693 30138 169601 20

Q17 31.797 2559 119253 2

Q18 3422.056 357149 3736301 31

Q19 91.943 10422 139647 3
Q20 306.369 8192 1085089 15

Q21 9622.959 304884 11346020 26

Q22 82.483 13823 1345647 14
Table 8-Baseline results with scale factor of 30

40

5.3.4 Baseline results summary

The graph 1 below provides a summary of individual query response time obtained from the

tables 6, 7 and 8 above.

Graph 1 - Query response time (summary)

As the scale factor increases, the response time of each individual query also increases

depending on complexity of that particular query. We were particularly interested in queries that

had the highest response time in the scale factor of 10 and 30 for the purpose of minimizing their

execution time.

0
1000
2000
3000
4000
5000
6000
7000

8000

9000

10000

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

932.122
1049.707

1039.455
995.891

1000.466

3136.353

3084.724
3228.433

3191.4343272.998

3422.056

9622.959

Scale Factor 1 Scale Factor 10 Scale Factor 30

Seconds

41

5.4 Selected queries

5.4.1 Long Running Queries

Q1, Q4, Q5, Q9, Q10, Q12, Q18 and Q21, were found to have long execution runs. Similar

results were also obtained by Wasserman et al. who classified Q9, Q18, and Q21 as large and

complex long running queries [24]. We chose to optimize queries Q4, Q5, Q9, Q10, Q12, Q18

and Q21 since they had the longest execution time in both scale factor 10 and 30.

The table 9 below provides response time of the selected queries in both scale factor 10 and 30.

Scale Factor =10 Scale Factor =30

Query
Number Average Response time(second) Average Response Time(second)

Q4 1007.875 3106.35

Q5 1049.707 3228.433

Q9 1039.455 3191.434

Q10 1064.473 3272.998
Q12 995.891 3272.998

Q18 1000.466 3422.056

Q21 3136.353 9622.959
Table 9-Long running queries

5.5 Query performance optimization – with indexes

For each of the two scale factors 10 and 30, each of the seven selected TPC-H query scripts (Q4,

Q5, Q9, Q10, Q12, Q12, Q18, and Q21) was analyzed by the Tuning Advisor tool embedded in

Microsoft SQL Server 2008 which then suggested indexes pertaining to query performance

improvement.

 This experiment aimed at the evaluation of the index suggestions provided by the Microsoft

SQL Server Tuning advisor tool with respect to the decision support workload namely the TPC-

H as the workload being used for this project.

42

5.5.1 Database with Scale Factor 10 – “TPCH_1GB”

The Graph 2 below provides a comparison of the response time obtained without indexes against

ones obtained after creating the indexes generated by the Microsoft SQL Server Tuning Advisor

tool.

Graph 2 - Query response time with indexes vs query response without indexes(scale factor=10)

It can easily be observed from the Graph above that the execution time of queries run with

indexes has significantly decreased as compared to the ones run without indexes (default

settings).

0 1000 2000 3000 4000

Q4

Q5

Q9

Q10

Q12

Q18

Q21

1007.875

1049.707

1039.455

1064.473

995.891

1000.466

3136.353

117.412

155.365

511.379

49.467

32.5

139.309

151.356

Average Response Time (With
Indexes)
Average Response
Time(Without Indexes)

43

5.5.2 Database with a Scale Factor of 30 – “TPCH_30GB”

The Graph 3 below provides a comparison of the response time obtained without indexes against

ones obtained after creating the indexes generated by the Microsoft SQL Server Tuning Advisor

tool.

Graph 3-Query response time with indexes vs query response time without indexes (scale
factor=30)

It can easily be depicted from Graph above that the execution time of queries run with indexes

has significantly decreased as compared to the one run without indexes (default settings).

5.5.3 Analysis of the suggested indexes

Since clustered indexes are created automatically when a primary key is created for a given table,

the tuning advisor tool’s suggestions are non clustered indexes. Knowing how indexes can

improve the response time of a given query if they created on appropriate columns, an analysis

of how the tuning advisor selects columns on which to create indexes under the TPC-H workload

was performed. That is, how the Tuning advisor tool suggests indexes with respect to the TPC-H

0 2000 4000 6000 8000 10000

Q4

Q5

Q9

Q10

Q12

Q18

Q21

3106.35

3228.433

3191.434

3272.998

3272.998

3422.056

9622.959

84.429

854.377

699.612

122.203

49.041

105.858

413.081

Average Response Time (With
Indexes)

Average Response
Time(Without Indexes)

44

database schema, based on the complexity of the queries and the size of the database. The

indexes scripts generated by the tuning advisor after processing queries: Q4, Q5, Q9, Q10, Q12,

Q18, and Q21 served as the basis for the analysis. These scripts were the same for scale factor 10

and 30.

Each of the selected queries is designed to provide answers to specific business questions as

defined by the TPC-H specification.

5.5.3.1 Query4 – Order Priority

• Business question

“The Order Priority Checking Query counts the number of orders ordered in a given quarter of a

given year in which at least one lineitem was received by the customer later than its committed

date. The query lists the count of such orders for each order priority sorted in ascending priority

order.”[30]

USE TPCH_10GB
SELECT o_orderpriority,
 COUNT (*) AS ORDER_COUNT
FROM H_Order

WHERE o_orderdate >= '1997-07-01'
 AND o_orderdate < DATEADD (mm, 3, cast ('1997-07-01' as SMALLDATETIME))

 AND EXISTS (SELECT *
 FROM H_Lineitem

 WHERE l_orderkey = o_orderkey
 AND l_commitdate < l_receiptdate
)
GROUP BY o_orderpriority

ORDER BY o_orderpriority

Figure 4 - Query 4

45

Query 4 involves:

• A join operator between the H_Order and H_Lineitem tables on columns l_orderkey,

o_orderkey, l_commidate and l_receiptdate.

• A Group by operator on column o_orderpriority and an order by operator on column

o_orderpriority.

5.5.3.1.1 Query 4 Tuning Advisor suggested index

4

It can be observed from the figure 5 above that the tuning advisor suggested the creation of a non

clustered index on columns “l_orderkey, l_commitedate and l_receiptdate involved in a join

between tables H_Lineitem and H_Order. (Tables are defined in appendix A).

USE [TPCH_10GB]

GO
CREATE NONCLUSTERED INDEX [_dta_index_H_Lineitem_11_2137058649__K1_K12_K13]
ON [dbo].[H_Lineitem]
(
 [l_orderkey] ASC,
 [l_commitdate] ASC,
 [l_receiptdate] ASC
)
 WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB =
OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

Figure 5-Index suggested from Query 4

46

5.5.3.2 Query5 – Local Supplier Volume Query

• Business question

“The Local Supplier Volume Query lists for each nation in a region the revenue volume that

resulted from lineitem transactions in which the customer ordering parts and the supplier filling

them were both within that nation. The query is run in order to determine whether to institute

local distribution centers in a given region. The query considers only parts ordered in a given

year. The query displays the nations and revenue volume in descending order by revenue.

Revenue volume for all qualifying lineitems in a particular nation is defined as

Sum (l_extendedprice * (1 -l_discount)).”[29]

Figure 5.3 - Query 5

Query 5 involves:

• A join operator on column c_custkey and o_custkey between H_customer and H_orders

tables, a join operator on column l_orderkey and o_orderkey between tables H_lineitem

and H_Order, a join operator on columns l_suppkey and s_suppkey between H_Supplier

and H_Lineitem, a join operator on columns c_nationkey and s_nationkey between tables

USE TPCH_10GB
SELECT n_name,
 SUM (l_extendedprice * (1 - l_discount)) AS REVENUE
FROM H_Customer, H_Order, H_Lineitem, H_Supplier, H_Nation, H_Region

WHERE c_custkey = o_custkey
 AND l_orderkey = o_orderkey
 AND l_suppkey = s_suppkey
 AND c_nationkey = s_nationkey
 AND s_nationkey = n_nationkey
 AND n_regionkey = r_regionkey
 AND r_name = 'AFRICA'
 AND o_orderdate >= '1997-01-01'
 AND o_orderdate < DATEADD (YY, 1, cast ('1997-01-01' as SMALLDATETIME))

GROUP BY n_name
ORDER BY REVENUE DESC

Figure 6-Query 5

47

H_Customer and H_Supplier, a join operator on columns s_nationkey and n_nationkey

between tables H_Supplier and H_Nation, and finally a join on columns n_regionkey

and r_regionkey between tables H_Nation and H_Region.

• A “group by” operator on column n_name,

• An “order by” operator on the column revenue which is created by the aggregate operator

“sum” involving columns: l_extendedprice and l_discount on H_lineitem table.

5.5.3.2.1 Query 5 Tuning Advisor suggested index

The tuning advisor suggested a non clustered index on columns: l_orderkey and l_suppkey, that

are involved in a join between H_Lineitem and H_Supplier tables as well as a join between

H_Lineitem table and H_Order table It also contains included columns l_exentededpprice and

l_discount.

USE [TPCH_10GB]

GO

CREATE NONCLUSTERED INDEX
[_dta_index_H_Lineitem_11_2137058649__K3_K1_6_7] ON [dbo].[H_Lineitem]
(
 [l_suppkey] ASC,
 [l_orderkey] ASC
)
INCLUDE ([l_extendedprice],
[l_discount])
WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
 SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING =
OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
GO

 Figure 7-Index suggested from Query 5

48

5.5.3.3 Query9- Product Type Profit Measure Query

• Business question

“The Product Type Profit Measure Query finds, for each nation and each year, the profit for all

parts ordered in that year that contain a specified substring in their names and that were filled by

a supplier in that nation.

The profit is defined as the sum of [(l_extendedprice*(1-l_discount)) – (ps_supplycost *

l_quantity)] for all lineitems describing parts in the specified line. The query lists the nations in

ascending alphabetical order and, for each nation, the year and profit in descending order by year

(most recent first).”[30]

Figure 8 - Query 9

USE TPCH_10GB
GO
SELECT NATION,
 O_YEAR,
 SUM(AMOUNT)AS SUM_PROFIT
FROM (SELECT n_name NATION,
 DATEPART (YY, o_orderdate) AS O_YEAR ,
 l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity AS AMOUNT
 FROM H_Part, H_Supplier, H_Lineitem, H_Partsupp, H_Order, H_Nation
 WHERE s_suppkey = l_suppkey AND ps_suppkey = l_suppkey
 AND ps_partkey = l_partkey AND p_partkey = l_partkey
 AND o_orderkey = l_orderkey AND s_nationkey = n_nationkey
 AND p_name LIKE '%almond%'
) AS PROFIT
GROUP BY NATION,
 O_YEAR
ORDER BY NATION,
 O_YEAR DESC
GO

49

Query 9 involves:

• A join operator on columns s_suppkey and l_suppkey between tables H_Supplier and

H_Lineitem, a join operator on column ps_suppkey and l_suppkey between tables

H_Partsupp and H_Lineitem, a join operator on columns ps_partkey and l_partkey

between tables H_Partsupp and H_Part, a join operator on columns p_partkey and

l_partkey between tables H_Part and H_lineitem, a join operator on columns o_orderkey

and l_orderkey between tables H_Order and H_Lineitem, and finally a join operator on

column s_nationkey and n_nationkey between tables H_Supplier and H_nation.

• A group by operator on n_name(nation) and o_year columns,

• An order by on n_name (nation) and o_year columns.

5.5.3.3.1 Query 9 Tuning Advisor suggested index

The tuning advisor suggested the creation of three non clustered indexes given as follows:

• A non clustered index on columns ps_partkey and ps_name columns based on H_part
table, as given by the following script

USE [TPCH_10GB]
GO

CREATE NONCLUSTERED INDEX [_dta_index_H_Part_11_5575058__K1_K2] ON
[dbo].[H_Part]

(
 [p_partkey] ASC,
 [p_name] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
 SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING =
OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS =
ON) ON [PRIMARY]
GO

 Figure 9-Index suggested from Query 9

50

• A non clustered index on columns ps_partkey, s_suppkey both involved in a join operator
and an included column ps_supplycost based on H_partsupp table as given by the
following script.

• A non clustered index on columns: l_partkey, l_orderkey and l_suppkey that are involved
in joins as well as an included columns l_quantity, l_extendedprice, l_discount as given
by the following script.

USE [TPCH_10GB]
GO

CREATE NONCLUSTERED INDEX
[_dta_index_H_Partsupp_11_2121058592__K1_K2_4] ON [dbo].[H_Partsupp]

(
 [ps_partkey] ASC,
 [ps_suppkey] ASC

)
INCLUDE ([ps_supplycost]) WITH (PAD_INDEX = OFF,
STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

USE [TPCH_10GB]
GO
CREATE NONCLUSTERED INDEX
[_dta_index_H_Lineitem_11_2137058649__K2_K1_K3_5_6_7] ON
[dbo].[H_Lineitem]
(

[l_partkey] ASC,
[l_orderkey] ASC,
[l_suppkey] ASC

)
INCLUDE ([l_quantity],[l_extendedprice],
[l_discount]) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF,
ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
GO

Figure 10 Index suggested from Query 9

Figure 11-Index suggested from Query 9

51

5.5.3.4 Query10-Returned Item Reporting Query

• Business question

“The Returned Item Reporting Query finds the top 20 customers, in terms of their effect on lost

revenue for a given quarter, who have returned parts. The query considers only parts that were

ordered in the specified quarter. The query lists the customer's name, address, nation, phone

number, account balance, comment information and revenue lost. The customers are listed in

descending order of lost revenue.

Revenue lost is defined as sum(l_extendedprice*(1-l_discount)) for all qualifying lineitems”[29]

USE TPCH_10GB
GO
SELECT c_custkey,
 c_name, SUM (l_extendedprice * (1 - l_discount)) AS REVENUE,
 c_acctbal, n_name, c_address, c_phone, c_comment
FROM H_Customer, H_Order, H_Lineitem, H_Nation
WHERE c_custkey = o_custkey AND l_orderkey = o_orderkey
 AND o_orderdate >= '1993-09-01'
 AND o_orderdate < DATEADD (MM, 3, cast ('1993-09-01' as SMALLDATETIME))

 AND l_returnflag = ‘R’ AND c_nationkey = n_nationkey
GROUP BY c_custkey,
 c_name, c_acctbal, c_phone, n_name,
 c_address, c_comment
ORDER BY REVENUE DESC
GO

Figure 12-Query 10

52

Query10 involves:

• A join operator on columns c_custkey, o_custkey between tables H_Customer and

H_Order, a join operator on columns l_orderkey, o_orderkey between tables H_Lineitem

and H_Order, as well as a join operator on columns c_nationkey and n_nationkey

between tables H_Customer and H_nation.

• A group by operator on columns: c_custkey, c_name, c_acctbal, c_phone, n_name,

c_address, c_comment.

• An order by operator on column revenue which is created from the aggregate operator

“sum” applied on column l_extendedprice and l_discount.

5.5.3.4.1 Query 10 Tuning Advisor suggested index

The tuning advisor suggested a non clustered index on l_returnflag and l_orderkey columns as

well as an included columns l_extendedprice and l_discount as given by the following script.

USE [TPCH_10GB]

Go
CREATE NONCLUSTERED INDEX
[_dta_index_H_Lineitem_11_2137058649__K9_K1_6_7] ON [dbo].[H_Lineitem]
(

[l_returnflag] ASC,
 [l_orderkey] ASC
)
INCLUDE ([l_extendedprice],
[l_discount]) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING =
OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
GO

Figure 13-Index suggested from Query 10

53

5.5.3.5 Query12 – Shipping Query Order Priority Query

• Business question

“This query determines whether selecting less expensive modes of shipping is negatively

affecting the critical-priority

orders by causing more parts to be received by customers after the committed date.”[30]

Figure 14-Query 12

USE TPCH_10GB

GO

SELECT l_shipmode,

 SUM (CASE WHEN o_orderpriority = '1-URGENT' OR o_orderpriority = '2-HIGH'

 THEN 1 ELSE 0

 END) AS HIGH_LINE_COUNT,

 SUM (CASE WHEN o_orderpriority <> '1-URGENT' AND o_orderpriority <> '2-HIGH'

 THEN 1 ELSE 0 END) AS LOW_LINE_COUNT

FROM H_Order, H_Lineitem

WHERE o_orderkey = l_orderkey AND l_shipmode IN ('REG AIR', 'FOB')

 AND l_commitdate < l_receiptdate AND l_shipdate < l_commitdate

 AND l_receiptdate >= '1997-01-01'

AND l_receiptdate < DATEADD (YY, 1, cast('1997-01-01' as SMALLDATETIME))

GROUP BY l_shipmode

ORDER BY l_shipmode

GO

54

Query12 involves:

• A “Join” operator on columns o_orderkey and l_orderkey between tables H_order and
H_lineitem,

• A “Group By” operator on column l_shipmode,
• An ‘order by” operator on column l_shipmode

5.5.3.5.1 Query 12 Tuning Advisor suggested index

The Tuning Advisor suggested indexes as follows:

• A non clustered index with columns o_orderkey and o_orderdate as well as an included
column o_orderpriority based on table H_Order as given by the following script.

USE [TPCH_10GB]
GO

CREATE NONCLUSTERED INDEX [_dta_index_H_Order_11_21575115__K1_K5_6] ON
[dbo].[H_Order]
(
 [o_orderkey] ASC,
 [o_orderdate] ASC
)
INCLUDE ([o_orderpriority]) WITH (PAD_INDEX = OFF,
STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY
= OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

Figure 15-Indexes suggested from Query 12

55

• A non clustered index on columns l_shipmode, l_receiptdate, l_shipdate, l_orderkey
based on table H_Lineitem as given by the following script

• A non clustered index on columns l_shipmode, l_receiptdate, l_shipdate, l_commitdate
based on table H_Lineitem as given by the following script

USE [TPCH_10GB]
GO

CREATE NONCLUSTERED INDEX
[_dta_index_H_Lineitem_11_2137058649__K15_K13_K11_K1] ON [dbo].[H_Lineitem]

(
 [l_shipmode] ASC,
 [l_receiptdate] ASC,
 [l_shipdate] ASC,
 [l_orderkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF,
ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON
[PRIMARY]
GO

USE [TPCH_10GB]
GO

CREATE NONCLUSTERED INDEX
[_dta_index_H_Lineitem_11_2137058649__K15_K13_K11_K12] ON [dbo].[H_Lineitem]

(
 [l_shipmode] ASC,
 [l_receiptdate] ASC,
 [l_shipdate] ASC,
 [l_commitdate] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF,
ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON
[PRIMARY]
GO

Figure 16-Index suggested from query 12

Figure 17-Index suggested by Query 12

56

5.5.3.6 Query18-Large Volume Customer

Business question

“The Large Volume Customer Query finds a list of the top 100 customers who have ever placed

large quantity orders. The query lists the customer name, customer key, the order key, date and

total price and the quantity for the order.” [30]

Figure 18-Query 18

Query18 involves:

• A Join operator on columns c_custkey and o_custkey between tables H_Customer and

H_Order and another join operator on columns o_orderkey and l_orderkey between

tables H_Order table and H_Lineitem,

• An order by operator on columns o_totalprice and o_orderdate,

• A Group by operator on columns c_name, c_custkey, o_orderkey, o_orderdate,

o_totalprice, l_orderkey,

• An aggregate operator on column l_quantity.

USE TPCH_10GB
GO
SELECT c_name,
 c_custkey, o_orderkey, o_orderdate, o_totalprice, sum (l_quantity)
FROM H_Customer, H_Order, H_Lineitem
WHERE o_orderkey in (SELECT l_orderkey
 FROM H_Lineitem
 GROUP BY l_orderkey
 HAVING sum (l_quantity) > 315
)
 AND c_custkey = o_custkey AND o_orderkey = l_orderkey
GROUP BY c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice
ORDER BY o_totalprice DESC,
 o_orderdate
 GO

57

5.5.3.6.1 Query 18 Tuning Advisor suggested index

The tuning advisor suggested a non clustered index on column l_orderkey and contains included

columns l_quantity and l_shipedate as given by the following figure:

USE [TPCH_10GB]

GO
CREATE NONCLUSTERED INDEX [_dta_index_H_Lineitem_11_2137058649__K1_5_11] ON
[dbo].[H_Lineitem]

(
 [l_orderkey] ASC
)

INCLUDE ([l_quantity],
[l_shipdate]) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE =
OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

Figure 19 Index suggested from Query 18

58

5.5.3.7 Query21- Suppliers Who Kept Orders Waiting

• Business question

“The Suppliers Who Kept Orders Waiting query identifies suppliers, for a given nation, whose

product was part of a multisupplier order (with current status of 'F') where they were the only

supplier who failed to meet the committed delivery date.”[30]

USE TPCH_10GB
GO
SELECT s_name,
 Count (*) numwait
FROM H_Supplier, H_Lineitem l1, H_Order, H_Nation
WHERE s_suppkey = l1.l_suppkey AND o_orderkey = l1.l_orderkey AND o_orderstatus = 'F'
 AND l1.l_receiptdate > l1.l_commitdate
 AND EXISTS (SELECT *
 FROM H_Lineitem l2
WHERE l2.l_orderkey = l1.l_orderkey AND l2.l_suppkey <> l1.l_suppkey
)
 AND NOT EXISTS (SELECT *
 FROM H_Lineitem l3
 WHERE l3.l_orderkey = l1.l_orderkey AND l3.l_suppkey <> l1.l_suppkey
 AND l3.l_receiptdate > l3.l_commitdate
)
 AND s_nationkey = n_nationkey AND n_name = 'ALGERIA'
GROUP BY s_name
ORDER BY numwait desc, s_name
GO

Figure 20-Query 21

59

Query 21 involves:

• A Join operator on columns s_suppkey and l_suppkey between tables H_Supplier and

H_Lineitem, a second Join operator on columns o_orderkey and l_orderkey between

tables H_Order and H_Lineitem, and third Join operator on columns s_nationkey and

n_nationkey between H_Supplier and H_nation tables

• A “Group by” operator on column s_name,

• An Order by operator on columns s_name and numwait which is created from the

aggregate operator “count”,

5.5.3.7.1 Query21 Tuning Advisor suggested index

The tuning advisor suggested the following indexes:

• A Non Clustered index on columns: s_nationkey, s_suppkey, and s_name based on table
H_Supplier, as provided by the index script below

USE [TPCH_10GB]
GO
CREATE NONCLUSTERED INDEX [_dta_index_H_Supplier_11_37575172__K4_K1_K2] ON
[dbo].[H_Supplier]
(

 [s_nationkey] ASC,
 [s_suppkey] ASC,
 [s_name] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB
= OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

GO

Figure 21-Index suggested from Query 21

60

• A Non Clustered index on columns: o_orderstatus, o_orderkey and o_orderdate based on
table H_Order,

• Non Clustered index on columns: l_orderkey, l_suppkey and l_receiptdate based on
table H_Lineitem as provided by the index script below

USE [TPCH_10GB]
GO

CREATE NONCLUSTERED INDEX [_dta_index_H_Order_11_21575115__K3_K1_K5] ON
[dbo].[H_Order]

(
 [o_orderstatus] ASC,
 [o_orderkey] ASC,
 [o_orderdate] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB =
OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
GO

USE [TPCH_10GB]
GO

CREATE NONCLUSTERED INDEX [_dta_index_H_Order_11_21575115__K3_K1_K5] ON
[dbo].[H_Order]

(
 [o_orderstatus] ASC,
 [o_orderkey] ASC,
 [o_orderdate] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB =
OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

Figure 22-Index suggested from Query21

Figure 23-Index suggested from Query21

61

• A Non Clustered index on columns: l_suppkey, l_orderkey, l_receiptdate and
l_commitdate based on table H_Lineitem as provided by the index script below

USE [TPCH_10GB]

 GO

CREATE NONCLUSTERED INDEX
[_dta_index_H_Lineitem_11_2137058649__K3_K1_K13_K12] ON [dbo].[H_Lineitem]

(
 [l_suppkey] ASC,
 [l_orderkey] ASC,
 [l_receiptdate] ASC,
 [l_commitdate] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB =
OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

 GO

5.5.4 Tuning Advisor suggested indexes evaluation

After the analysis of each individual index suggested by the tuning advisor, it can be observed

that most of the columns involved in joins were chosen by the tuning advisor tool as being the

columns on which to create Non Clustered indexes. Most of these columns are foreign keys on

table on which the non clustered indexes are created. Some of the non clustered indexes contain

included-columns which are non key columns of datatype that normaly are not supposed to be

included in an index. Having more columns involved in joins in an index as well as included

nonkey columns could justify how the query response time has greatly decreased. The reason

being, the reading from the disk is reduced since the data required during the execution of a

query can be found directly from the columns present in the index table instead of scanning the

actual tables residing on the disk.

Figure 24-Index suggested from Query21

62

5.6 Query Performance optimization-with parallel query execution

The main objective to attain in executing queries in parallel was to take advantage of the

multiprocessor architecture of the hardware platform consisting of four CPUs that were being

used during experiment since SQL Server supports intra-operators parallel processing discussed

in the Chapter 2 -Related work chapter of this thesis

The main idea is to experiment the variation in the query response time run with the default

configurations (Max degree of parallelism set to 0, all the four CPUs are made available for the

execution of the query). The database that was used for this experiment was the database of scale

factor =10 (TPCH_10GB Database)

5.6.1 Max degree of parallelism set to 1

The graph 4 below compares query response time obtained with the Max degree of parallelism

set to 1 with the query response time obtained with database set to its defaults configuration. By

setting the Max degree of parallelism to 1, the query optimizer was forced to generate a serial

query execution plan.

Graph 4- MAXDOP=1 vs MAXDOP=0 (Default configurations)

0 1000 2000 3000 4000

Q4

Q5

Q9

Q10

Q12

Q18

Q21

1007.875

1049.707

1039.455

1064.473

995.891

1000.466

3136.353

869.388

867.267

900.021

903.658

844.583

1014.985

2814.57

Average Response
time(MAXDOP=1)

Average Response time (with
defaults settings,MAXDOP=0)

Seconds

63

It can be observed that for all the query runs, the query execution time for the queries with the

Max degree of parallelism set to 0 takes a bit longer to execute compared to the one with the

Max degree of parallelism set 1 except for Query number 18. This goes against the performance

improvement expected from executing complex and long running queries in parallel.

5.6.2 Max degree of parallelism set to 2

The graph 5 below compares the query response time obtained with the Max degree of

parallelism set to 2 against the query response time obtained with the database set to its default

configurations with the max degree of parallelism set 0 (All the four CPUs made available for

SQL Server processes)

Graph 5-MAXDOP=2 vs MAXDOP=0 (Default configurations)

It can be observed from the Graph above that the execution run of each query with the database

configured with the Max degree of parallelism set to 2 is slightly shorter than the one with the

Max degree of parallelism set to 0 except for query Q18. From the results above it can be

concluded that running the set of query above with two processors execute slightly faster that

running them using four processors.

0 500 1000 1500 2000 2500 3000 3500

Q4

Q5

Q9

Q10

Q12

Q18

Q21

1007.875

1049.707

1039.455

1064.473

995.891

1000.466

3136.353

987.923

999.916

1032.431

996.375

992.119

1023.081

3076.63

Average Response
time(MAXDOP=2)

Average Response time (with
defaults settings,MAXDOP=0)
All the 4 CPU working

64

5.6.3 Max degree of parallelism set to 3

The graph 6 below compares query response time obtained with the Max degree of parallelism

set to 3 with the query response time obtained with the database set to its default configurations

with the Max degree of parallelism set to 0 (All the four CPUs are made available to SQL Server

processes).

Graph 6-MAXDOP=3 vs MAXDOP=0 (Default Settings)

The graph above reveals slight differences between the execution run of queries with the Max

degree of parallelism set to 3 and the response time obtained with the database set to its default

configurations (MAXDOP=0). Q18, Q12 and Q9 executed slightly faster when run with four

processors (MAXDOP=0) compared to their execution time when run with three processors but

differences are not significant.

0 1000 2000 3000 4000

Q4

Q5

Q9

Q10

Q12

Q18

Q21

1007.875

1049.707

1039.455

1064.473

995.891

1000.466

3136.353

1006.285

1019.017

1043.11

1022.471

1007.36

1026.296

3119.342

Average Response
time(MAXDOP=3)

Average Response time (with
defaults settings,MAXDOP=0)

Seconds

65

5.6.4 Results interpretation – Query parallel processing

The results obtained above appear to be counterintuitive to what was being expected. In order to

understand the underlying problem causing such results, a close look at the SQL Server 2008

stored procedure “sys.dm_os_wait_stats” that provides information about all the waits

encountered by the threads executed during the parallel execution of a given query needs to be

done [20]. This stored procedure returns the:

• Wait_type : which is the name of the wait type,

• Waiting_tasks_count: which is the number of waits of a given type,

• Wait_time_ms: which is the total wait time for a particular wait type in milliseconds,

• Signal_wait_time_ms: which is the difference between the waiting time that the thread

was signaled and when it started running.

The wait type that is of particular interest is the “CXPACKET” which occurs during the

synchronization of the query processor exchange operators that are discussed in Chapter 2 –

Related work (section 2.5.5.1) of this project.

The table 10 below provides the results that were observed after the execution of Query 4 against

the database of size 10GB.

CXPACKET Waiting_tasks_count Wait_time_ms Max_wait_time_ms Signal_wait_time_ms

Q4(MAXDOP=1) 0 0 0 0

Q4(MAXDOP=2) 5199 3000981 998654 9309

Q4(MAXDOP=3) 6073 4153593 1036513 10096

Q4(MAXDOP=0)
All the 4 CPUs
running

5319 5006926 997765 70764

Table 10-Query4 run with different MAXDOP

The “sys.dm_os_wait_stats” stored procedure was cleared for each and every query execution

run since the results returned accumulate for any SQL Server events running on the server. It can

be observed that as the number of processors increases, the signal waiting time increases as well.

A high number of waiting tasks and signal waiting time can be a good indicator of resource

contention which can impact negatively on query response time as it can be observed with the

66

results obtained above. There are indications that Microsoft may be addressing these problems.

These indications are in the form of a recommendation that to overcome these problems the user

should in the interim reduce the number of processors (i.e. set MAXDOP=1) [20]. There are also

numerous blogs on the issue [1][14].

5.7 Chapter summary

The aim of this chapter was to provide the results obtained during the experimentation phase of

project. The twenty-two TPC-H queries were run against three different databases of scale factor

1, 10, 30. A set of seven queries having the highest execution time in both the database of scale

10 and 30 were selected.

The first experiment consisted in submitting the selected queries to the tuning advisor tool

embedded in SQL Server 2008 of analysis. The tuning advisor suggested indexes for each of the

two databases. These indexes were then created on each of the two databases (scale factor of 10

and 30). Queries run after the creation of the tuning advisor suggested indexes executed faster

than queries run without indexes. An in-depth analysis of the tuning advisor suggested queries

revealed that the non clustered indexes suggested by the tuning advisor tool were created on

appropriate columns such as foreign key columns and columns involved in joins.

The second experiment consisted in altering the database configuration settings involved in

parallel query execution. It was observed that queries run sequentially executed faster than query

in parallel. Queries with the database set to its default configuration (all the processors made

available to SQL Server processes) took longer to execute compared to queries run with less than

four processors.

67

Chapter 6 –Conclusion

As assigned at the beginning of this project, the objectives to be attained were an investigation of

the TPC-H benchmark suite as the Transaction processing performance council for decision

support systems, the explorations of different techniques used in performance optimization of the

decision support systems as well as the application of some of these techniques in the

performance optimization of Microsoft SQL Server 2008, 64 bit, Enterprise Edition run on

Microsoft Windows Server 2008, 64 bit both installed on a 64 bit machine proline, with a core 2

quad CPUs at 2.66GHz each , 4GB of RAM and 500GB of hard disk.

The two techniques of optimizing the performance of decision support systems were

experimented: The use of indexes as well as query parallel processing.

6.1 Findings

6.1.1 Experiment One: The use of indexes

The main objective to attain in using indexes was the analysis of indexes suggested by the tuning

advisor tool embedded in Microsoft SQL Server 2008 on which the TPC-H workload was being

run. A set of seven TPC-H queries (Q4, Q5, Q9, Q10, Q12, Q18, Q21) were run against two

databases of size 10GB and 30GB left at their default configurations. Their response time was

recorded. Furthermore, for each of the two databases, each of the selected queries were analyzed

by the tuning advisor which then suggested Non clustered indexes scripts that were executed

against both databases. A significant decrease in query response time was observed. The results

of the analysis of indexes proved that the Tuning advisor created Non-clustered indexes on

appropriate columns such as foreign key columns, columns involved in joins and where clauses,

Group by and Order by operators are good candidates for Non clustered indexes (section 5.5).

The suggested Non Clustered indexes also included non key columns allowing indexes to cover

all the columns present in some of the queries hence, speeding up the retrieval of the data since it

can be located directly from the index tables instead being fetch from the actual tables that might

large to scan.

68

6.1.2 Experiment Two: Parallel query execution

 Since SQL Server 2008 is configured to use by defaults all the available processors of the

multiprocessor architecture hardware platform on which is installed, the main objective of

altering the configuration settings pertaining to query parallelism was to compare the results

obtained with all the four CPUs made available to SQL Server processes against the results

obtained with only one CPU, two CPUs and three CPUs so as to establish a correlation between

the query response time obtained with the number of CPUs made available to SQL Server

processes. It was observed that queries run with a “max degree of parallelism” configuration

variable set 1, only one CPU made available to SQL Server processes, executed faster than

queries run with the server set to its default configurations (“max degree of parallelism” set to 0,

i.e. 4 processors on a quad core computer). It was also observed that queries run with a “max

degree of parallelism” variable set to 2, only two CPUs made available for SQL Server

processes, executed faster than queries run with the server set to its default (max processors)

configuration. The same facts were also observed with queries run with a he “max degree of

parallelism set to 3”. However there were some queries that had a faster response time (than

serial operation) with the server set to its default configurations but the differences were just

slight.

6.2 Recommendations

Being characterized with a high number of disk reads activities, when used appropriately indexes

appear to beneficial in the performance optimization of decision support workloads such as the

TPC-H. The experiments conducted in project have proved that the tuning advisor tool

embedded in SQL Server suggests indexes where appropriate. It is a tool to consider when

planning the creation of indexes.

Query parallel processing on SQL Server 2008 needs to be examined carefully before being

implemented on a production environment since queries run sequentially can execute faster than

queries in parallel. The experiments conducted in this research again proved so.

69

6.3- Future Work

Some of the works that can be furthered with respect to this project are:

• The design of the transaction processing performance council benchmark software tool

kits readily available for use on any operating systems platform that will easily allow

database benchmark experimenters to compare their results with the published ones.

• The experimentation of performance optimization techniques such as the use of

Redundant Array of Independent Disk and computer clusters.

• A comparison of parallel query processing between Microsoft SQL Server 2008 and

other database products open source or proprietary.

70

References

[1]. Aaron Bertrand, Six reasons you should be nervous about parallelism

http://sqlblog.com/blogs/aaron_bertrand/archive/2009/03/21/six-reasons-you-should-be-nervous-

about-parallelism.aspx, 2009, [Accessed 01-10-2009]

[2]. Burgess G, What is the TPC Good For? Or, the Top Reasons in Favour of TPC Benchmarks,

http://www.tpc.org/information/other/articles/TopTen.asp, 2009 [Access 17-06-2009]

[3]. Burleson, D., Database benchmarking,

http://www.builderau.com.au/strategy/businessmanagement/soa/Database-

benchmarking/0,339028271,320267276,00.htm, 2002, [Accessed 17-06-2009]

[4]. Coronel, C., Database Systems: Design, Implementation & Management, 5th Edition,

Thomson Learning Inc, Massachusetts, USA, Inc., 2002

[5] Creating Indexes (Database Engine), http://msdn.microsoft.com/en-us/library/ms190197.aspx

[6]. Dam, S., SQL Server Query Performance Tuning Distilled, 2nd Edition, Appress, USA 2004

[7]. Darmont, J., Bentayeb, F., Boussaid, O., “Benchmarking data warehouses”, Inderscience

Publishers, Int. J. Bus. Intell. Data Min, 2007, Issue No 2, Vol 1 pages (79-104)

[8] Database Tuning Advisor Overview, http://msdn.microsoft.com/en-

us/library/ms173494.aspx, [Accessed, 09-05-2009]

[9]. Dietrich, S., Brown, M., CORTES-RELLO, E., WUNDERLIN, S., “A Practitioner’s

Introduction to Database Performance Benchmarks and Measurements”, THE COMPUTER

JOURNAL, 1992, VOL.35, NO. 4

[10]. Floyd, C., Meikel, P., “New TPC benchmark for decision support and web commerce”,

SIGMOD Record, Volume 29 Issue 4, ACM, December 2000

[11]. Graefe, G.,”Query Evaluation Techniques for Large Databases”, Computing Surveys

(CSUR), ACM, 1993

[12] Huber, F. and Freytag J.C., “Query Processing on Multi-Core Architectures”,

http://rosdok.uni-rostock.de/file/rosdok_derivate_000000004041/gvd2009_2.A.04_Huber.pdf

[Accessed 9-10-2009]

http://sqlblog.com/blogs/aaron_bertrand/archive/2009/03/21/six-reasons-you-should-be-nervous-about-parallelism.aspx�
http://sqlblog.com/blogs/aaron_bertrand/archive/2009/03/21/six-reasons-you-should-be-nervous-about-parallelism.aspx�
http://msdn.microsoft.com/en-us/library/ms173494.aspx�
http://msdn.microsoft.com/en-us/library/ms173494.aspx�
http://rosdok.uni-rostock.de/file/rosdok_derivate_000000004041/gvd2009_2.A.04_Huber.pdf�

71

[13]. Hoste, K., Eeckhout, L., Blockeel H., “Analyzing commercial processor performance

numbers for predicting performance applications of interest”, SIGMETRICS international

conference on Measurement and modelling of computer systems, San Diego, California, USA

June 12–16, 2007

[14]. Journey to SQL Server Authority with Pinal Dave,

http://blog.sqlauthority.com/2009/03/24/sql-server-2008-scope_identity-bug-with-multi-

processor-parallel-plan-and-solution/, 2009, [Accessed, 03-10-2009]

[15] Max degree of parallelism option, http://msdn.microsoft.com/en-

/library/aa196725(SQL.80).aspx [Accessed, 08-05-2009]

 [16]. MicrosoftTechNet, Online Transaction Processing vs. Decision Support,

http://technet.microsoft.com/en-us/library/ms187669.aspx, June 2009, [Accessed 10-07-2009]

[17] Microsoft SQL Server 2008, http://www.microsoft.com/sqlserver/2008/en/us/overview.aspx

[Accessed, 31-05-2009]

[18] Microsoft Windows Server 2008,

http://www.microsoft.com/windowsserver2008/en/us/default.aspx, [Accessed, 01-05-2009]

[19]. MSDN, SQL Server, Access Methods Object, http://msdn.microsoft.com/en-

us/library/ms177426(SQL.90).aspx, November 2008, [Accessed 7-07-2009]

[20]MSDN, sys.dm_os_wait_stats (Transact-SQL), http://msdn.microsoft.com/en-
us/library/ms179984.aspx, 2009, [Accessed, 03-07-2009]

[21]. Oracle, Database Benchmarking, http://wiki.oracle.com/page/Database+Benchmarking,

2009, [Accessed 16-06-2009]

[22]. Petkovic D., Microsoft SQL Server 2005, A Beginner’s Guide, The McGraw-Hill

Companies, California, USA, 2006

[23]. Scalzo, B., Benchmark Factory for Databases,

http://www.quest.com/events/podcast/default.asp?path=/Quest_Site_Assets/podcasts/Quest_Soft

ware_-_Benchmark_Factory_-

_Bert_Scalzo.mp3&title=Benefiting%20your%20IT%20Environment%20with%20Benchmark%

20Factory, 2009, [Accessed 12-09-2009]

http://blog.sqlauthority.com/2009/03/24/sql-server-2008-scope_identity-bug-with-multi-processor-parallel-plan-and-solution/�
http://blog.sqlauthority.com/2009/03/24/sql-server-2008-scope_identity-bug-with-multi-processor-parallel-plan-and-solution/�
http://msdn.microsoft.com/en-/library/aa196725(SQL.80).aspx�
http://msdn.microsoft.com/en-/library/aa196725(SQL.80).aspx�
http://www.microsoft.com/sqlserver/2008/en/us/overview.aspx�
http://www.microsoft.com/windowsserver2008/en/us/default.aspx�
http://msdn.microsoft.com/en-us/library/ms179984.aspx�
http://msdn.microsoft.com/en-us/library/ms179984.aspx�

72

[24]. Scalzo B., Ault M., Burleson D., Fernandez C., Klein K., Database Benchmarking,

Practical Methods for Oracle & SQL Server, Rampant TechPress, USA, April 2007

[25]. Shao, M., Ailamaki, A., Falsafi, B., “DBmbench: Fast and Accurate Database Workload

Representation on Modern Microarchitecture”, CASCON '05: Proceedings of the 2005

conference of the Centre for Advanced Studies on Collaborative research, ACM, 2005

[26]. SQL Server Book Online, Parallel Query Processing, http://msdn.microsoft.com/en-

us/library/ms178065.aspx, October 2009, [Accessed, 27-06-2009]

[27]. SQL Server 2008 Books Online, Understanding Database Engine Tuning Advisor,

http://technet.microsoft.com/en-us/library/ms188639.aspx, June 2009, [Accessed 11-07-09]

[28]. The Max worker threads option, http://msdn.microsoft.com/en-us/library/ms187024.aspx,

[Accessed, 01-06-2009]

[29]. TPC, TPC Benchmarks, http://www.tpc.org/information/benchmarks.asp, 2009, [Accessed

15-06-2009]

[30]. TPC-H, http://www.tpc.org/tpch/default.asp, 2009, [Accessed 14-06-2009]

[31]. Using SQL Server Profiler, http://msdn.microsoft.com/en-us/library/ms187929.aspx,

[Accessed, 10-05-2009]

[32]Webb Joe, Using covering indexes to improve query performance, http://www.simple-

talk.com/sql/learn-sql-server/using-covering-indexes-to-improve-query-performance/, 28

September 2008, [Accessed 02-06-2009]

[33]. Wasserman, T.J., Martin, P., Rizvi, H., “Sizing DB2 UDB® Servers for Business

Intelligence Workloads”, ACM, 2004

[34]. Watts, D., Slavko, B., Watson, C., Understanding IBM eServer xSeries Benchmarks,

http://www.redbooks.ibm.com/redpapers/pdfs/redp3957.pdf, 2005, [Accessed 3-06-09]

[35]. Zaharioudakis, M., Cochrane, R., Lapis, G., Pirahesh, H., Urata, M., “Answering complex

SQL queries using automatic summary tables”, Proceedings of the 2000 ACM SIGMOD

international conference on Management of data, ACM,

http://msdn.microsoft.com/en-us/library/ms178065.aspx�
http://msdn.microsoft.com/en-us/library/ms178065.aspx�
http://msdn.microsoft.com/en-us/library/ms187024.aspx�
http://www.simple-talk.com/sql/learn-sql-server/using-covering-indexes-to-improve-query-performance/�
http://www.simple-talk.com/sql/learn-sql-server/using-covering-indexes-to-improve-query-performance/�

73

Appendix A: TPC-H Database- Table Layouts

Required Tables

The following list defines the required structure (list of columns) of each table. The annotations

for primary keys and foreign references are for clarification only and do not specify any

implementation requirement such as integrity constraints:

PART Table Layout

Primary Key: P_PARTKEY

Column Name Data type Requirements Comment

P_PARTKEY identifier SF*200,000 are populated

P_NAME variable text, size 55

P_MFGR fixed text, size 25

P_BRAND fixed text, size 10

P_TYPE variable text, size 25

P_SIZE integer

P_CONTAINER fixed text, size 10

P_RETAILPRICE decimal

P_COMMENT variable text, size 23

74

SUPPLIER Table Layout

Primary Key: S_SUPPKEY

Column Name Data type Requirements Comment

S_SUPPKEY identifier SF*10,000 are populated

S_NAME text, size 25

S_ADDRESS variable text, size 40

S_NATIONKEY identifier Foreign key reference to

N_NATIONKEY

S_PHONE fixed text, size 15

S_ACCTBAL decimal

S_COMMENT variable text, size 101

PARTSUPP Table Layout

Compound Primary Key: PS_PARTKEY, PS_SUPPKEY

Column Name Data type Requirements Comment

PS_PARTKEY identifier key reference to P_PARTKEY

PS_SUPPKEY identifier Foreign key reference to

S_SUPPKEY

PS_AVAILQTY integer

PS_SUPPLYCOST decimal

PS_COMMENT variable text, size 199

75

CUSTOMER Table Layout

Primary Key: C_CUSTKEY

Column Name Data type Requirements Comment

C_CUSTKEY identifier SF*150,000 are populated

C_NAME variable text, size 25

C_ADDRESS variable text, size 40

C_NATIONKEY identifier Foreign key reference to

N_NATIONKEY

C_PHONE fixed text, size 15

C_ACCTBAL decimal

C_MKTSEGMENT fixed text, size 10

C_COMMENT variable text, size 117

ORDERS Table Layout

Primary Key: O_ORDERKEY

Column Name Data type Requirements Comment

O_ORDERKEY identifier SF*1,500,000 are sparsely

populated

O_CUSTKEY identifier Foreign key reference to

C_CUSTKEY

O_ORDERSTATUS fixed text, size 1

O_TOTALPRICE decimal

O_ORDERDATE date

O_ORDERPRIORITY fixed text, size 15

O_CLERK fixed text, size 15

O_SHIPPRIORITY integer

O_COMMENT variable text, size 79

76

LINEITEM Table Layout

Compound Primary Key: L_ORDERKEY, L_LINENUMBER

Column Name Data type Comment

L_ORDERKEY identifier Foreign key reference to O_ORDERKEY

L_PARTKEY identifier Compound

Foreign Key Reference to (PS_PARTKEY,

PS_SUPPKEY) with L_SUPPKEY

L_SUPPKEY identifier Foreign key reference to S_SUPPKEY, Compound

Foreign key reference to (PS_PARTKEY,

PS_SUPPKEY) with L_PARTKEY

L_LINENUMBER integer

L_QUANTITY decimal

L_EXTENDEDPRICE decimal

L_DISCOUNT decimal

L_TAX decimal

L_RETURNFLAG fixed text, size 1

L_LINESTATUS fixed text, size 1

L_SHIPDATE date

L_COMMITDATE date

L_RECEIPTDATE date

L_SHIPINSTRUCT fixed text, size 25

L_SHIPMODE fixed text, size 10

L_COMMENT variable text size 44

77

NATION Table Layout

Primary Key: N_NATIONKEY

Column Name Data type Requirements Comment

N_NATIONKEY identifier 25 nations are populated

N_NAME fixed text, size 25 Foreign key reference to R_REGIONKEY

N_REGIONKEY identifier

R_NAME fixed text, size 25

R_COMMENT variable text, size 152

REGION Table Layout

Primary Key: R_REGIONKEY

Column Name Data type Requirements Comment

R_REGIONKEY identifier 5 regions are populated

R_NAME fixed text, size 25

R_COMMENT variable text, size 152

78

Appendix B: T-SQL Statements of indexes created before the Tuning Advisor indexes
suggestions

CREATE CLUSTERED INDEX [H_lineitem_idx1] ON [dbo].[H_Lineitem]
(
 [l_shipdate] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

CREATE NONCLUSTERED INDEX [H_lineitem_idx2] ON [dbo].[H_Lineitem]
(
 [l_partkey] ASC,
 [l_suppkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

CREATE NONCLUSTERED INDEX [H_lineitem_idx3] ON [dbo].[H_Lineitem]
(
 [l_orderkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

CREATE UNIQUE CLUSTERED INDEX [H_customer_idx1] ON [dbo].[H_Customer]
(
 [c_custkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

CREATE NONCLUSTERED INDEX [H_customer_idx2] ON [dbo].[H_Customer]
(
 [c_nationkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

79

CREATE UNIQUE CLUSTERED INDEX [H_nation_idx1] ON [dbo].[H_Nation]
(
 [n_nationkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

CREATE NONCLUSTERED INDEX [H_nation_idx2] ON [dbo].[H_Nation]
(
 [n_regionkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

CREATE CLUSTERED INDEX [H_orders_idx1] ON [dbo].[H_Order]
(
 [o_orderdate] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

CREATE NONCLUSTERED INDEX [H_orders_idx2] ON [dbo].[H_Order]
(
 [o_custkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

CREATE UNIQUE NONCLUSTERED INDEX [H_orders_idx3] ON [dbo].[H_Order]
(
 [o_orderkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

CREATE UNIQUE CLUSTERED INDEX [H_part_idx1] ON [dbo].[H_Part]
(
 [p_partkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

80

CREATE UNIQUE CLUSTERED INDEX [H_partsupp_idx1] ON [dbo].[H_Partsupp]
(
 [ps_partkey] ASC,
 [ps_suppkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

CREATE NONCLUSTERED INDEX [H_partsupp_idx2] ON [dbo].[H_Partsupp]
(
 [ps_suppkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

CREATE UNIQUE CLUSTERED INDEX [H_region_idx1] ON [dbo].[H_Region]
(
 [r_regionkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

CREATE UNIQUE CLUSTERED INDEX [H_supplier_idx1] ON [dbo].[H_Supplier]
(
 [s_suppkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

CREATE NONCLUSTERED INDEX [H_supplier_idx2] ON [dbo].[H_Supplier]
(
 [s_nationkey] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,
IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS =
ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
GO

81

Appendix C: Server Configurations

Server Name: MYSERVER

Operating System: Microsoft Windows Server 2008

The Administrator password: Samy_2009_01

Database Management system product: Microsoft SQL Server 2008

The three databases tested can be accessed directly using the Microsoft SQL Server Management

Studio graphical interface with the following details:

• Server type: Database Engine

• Server name: MYSERVER

• Authentication: Windows Authentication

The three databases tested are named:

• TPCH_1GB

• TPCH_10GB

• TPCH_30GB

	TABLE OF CONTENTS
	Chapter 1- Introduction
	1.1 Statement of the problem
	1.2 Project motivation
	1.3 Project overview

	Chapter 2- Related Work
	2.1 Introduction
	2.2 Significance of database benchmark tests
	2.3 Benchmarking Process flow chart
	2.4 Types of database Benchmarks
	2.4.1 Customer-application benchmarks
	2.4.2 Industry standard benchmarks
	2.4.3 Reservations about industry standard benchmarks
	2.4.4 Transaction Processing Performance Council (TPC)
	2.4.4.1 TPC-H
	The TPC-H Benchmarks simulates decision support systems that [30]:
	2.4.4.2 TPC-H Database design and implementation
	2.4.4.3 TPC-H Workload

	2.5 Database Performance optimization
	2.5.1 Database engine
	2.5.2 Query execution plan
	2.5.3 Indexes
	2.5.4 Parallel query execution
	2.5.4.2 Inter-query parallelism
	2.5.4.3 Inter-operator parallelism
	2.5.4.4 Intra-operator parallelism

	2.5.5 Query parallel processing on SQL Server
	2.5.5.1 Exchange Operators
	2.5.5.1.1 Distribute streams
	2.5.5.1.2 Repartition streams
	2.5.5.1.3 Gather streams

	2.5.6 Workload optimization
	2.5.7 Performance Bottlenecks
	2.5.7.1 Bottlenecks identification and resolution
	2.5.7.2 Memory Bottlenecks
	2.5.7.3 Disk Bottlenecks
	2.5.7.4 Processor bottlenecks
	2.5.7.5 Overall performance on SQL Server

	2.6 - Chapter Summary

	Chapter 3-Design considerations
	3.1 System specification
	3.2 Microsoft Windows Server 2008
	3.3 Microsoft SQL Server 2008
	3.4 Benchmarking software tools
	3.5 SQL Server Performance monitors tools
	3.5.1 Microsoft SQL Tuning Advisor
	3.5.2 Microsoft SQL Server profiler

	3.6 TPC-H Database
	3.7 Key configurations variables of interest
	3.8 Chapter summary

	Chapter 4-Methodology
	4.1 Database loading process
	4.2. Benchmark tests - with default configuration
	4.3 Benchmark tests – Performance optimization
	4.3.1 The use of indexes
	4.3.2 Experimentation with Query Parallel Processing
	4.3.3 Parallel query processing – variable of interest
	4.3.3.1. The Max degree of parallelism
	4.3.3.2 The Cost Threshold for parallelism
	4.3.3.3 The Max worker threads

	4.3 Chapter summary

	Chapter 5-Results
	5.1 Performance measurements
	5.2 Experimental set-up
	5.3 Base line results – Databases set to their default configuration
	5.3.1 Database of scale factor 1- “TPCH_1GB”
	5.3.2 Database of scale factor 10 –“TPCH_10GB”
	5.3.3 Database of scale factor 10 –“TPCH_10GB”
	5.3.4 Baseline results summary

	5.4 Selected queries
	5.4.1 Long Running Queries

	5.5 Query performance optimization – with indexes
	5.5.1 Database with Scale Factor 10 – “TPCH_1GB”
	5.5.2 Database with a Scale Factor of 30 – “TPCH_30GB”
	5.5.3 Analysis of the suggested indexes
	5.5.3.1 Query4 – Order Priority
	5.5.3.1.1 Query 4 Tuning Advisor suggested index
	5.5.3.2 Query5 – Local Supplier Volume Query
	5.5.3.2.1 Query 5 Tuning Advisor suggested index

	5.5.3.3 Query9- Product Type Profit Measure Query
	5.5.3.3.1 Query 9 Tuning Advisor suggested index

	5.5.3.4 Query10-Returned Item Reporting Query
	5.5.3.4.1 Query 10 Tuning Advisor suggested index

	5.5.3.5 Query12 – Shipping Query Order Priority Query
	5.5.3.5.1 Query 12 Tuning Advisor suggested index

	5.5.3.6 Query18-Large Volume Customer
	5.5.3.6.1 Query 18 Tuning Advisor suggested index

	5.5.3.7 Query21- Suppliers Who Kept Orders Waiting
	5.5.3.7.1 Query21 Tuning Advisor suggested index

	5.5.4 Tuning Advisor suggested indexes evaluation

	5.6 Query Performance optimization-with parallel query execution
	5.6.1 Max degree of parallelism set to 1
	5.6.2 Max degree of parallelism set to 2
	5.6.3 Max degree of parallelism set to 3
	5.6.4 Results interpretation – Query parallel processing

	5.7 Chapter summary

	Chapter 6 –Conclusion
	6.1 Findings
	6.1.1 Experiment One: The use of indexes
	6.1.2 Experiment Two: Parallel query execution

	6.2 Recommendations
	6.3- Future Work

	References
	Appendix A: TPC-H Database- Table Layouts
	Appendix B: T-SQL Statements of indexes created before the Tuning Advisor indexes suggestions
	Appendix C: Server Configurations

