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Abstract This research explores the problem of finding a preimage —  an input that, 
when passed through a particular function, will result in a pre-specified output —  for 
the compression function of the SHA-1 cryptographic hash. This problem is much more 
difficult than the problem of finding a collision for a hash function, and preimage attacks 
for very few popular hash functions are known.

The research begins by introducing the field and giving an overview of the existing work in 
the area. A thorough analysis of the compression function is made, resulting in alternative 
formulations for both parts of the function, and both statistical and theoretical tools to 
determine the difficulty of the SHA-1 preimage problem. Different representations (And- 
Inverter Graph, Binary Decision Diagram, Conjunctive Normal Form, Constraint Satis­
faction form, and Disjunctive Normal Form) and associated tools to manipulate and/or 
analyse these representations are then applied and explored, and results are collected and 
interpreted.

In conclusion, the SHA-1 preimage problem remains unsolved and insoluble for the fore­
seeable future. The primary issue is one of efficient representation; despite a promising 
theoretical difficulty, both the diffusion characteristics and the depth of the tree stand in 
the way of efficient search. Despite this, the research served to confirm and quantify the 
difficulty of the problem both theoretically, using Schaefer's Theorem, and practically, in 
the context of different representations.
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Chapter 1

Introduction

A hash function takes a variable-sized input and produces a fixed-size output.

Example 1.1. A simple hash function. A dictionary or hashset data structure uses 
hash functions to access items by key in O( 1) time. Such hash functions usually result 
in a 32-bit value as their output. A key is hashed, and the resultant 32-bit value is 
used to determine which “bucket” (out of many possible buckets) the desired item 
might be in. The bucket is then searched, and the item is returned.

The domain in Example 1.1 is of effectively infinite size since the hash function can 
accept very large keys, and the range has size 232 since that is the number of unique 
values that could possibly be generated. Any input that results in a particular output is 
called a preimage of that output. This work is concerned with analysing and exploring a 
particular cryptographic hash, SHA-1 (Secure Hash A lgorithm version 1) (NIST, 1995), 
within the context of finding preimages.

A cryptographic hash function is a hash function which is collision-resistant and preimage- 
resistant; the “resistant” suffix denotes computational infeasibility. By “computational 
infeasibility” , it is practically meant that the power to obtain such a preimage —  despite 
the fact that such a preimage may be known to exist —  is beyond the capabilities of 
any entity, no matter how much computing power they may bring to bear. A collision 
occurs when two inputs result in the same output. In the data structures used in Exam­
ple 1.1, collisions occur in the normal course of operation and a linear search is typically 
used to find the correct item in a bucket. As long as the hash values are uniformly dis­
tributed, the linear search time is negligible and lookup is therefore still O( 1). However,

2
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for a cryptographic hash function, any collision is extremely serious and it should not be 
possible to deliberately create two inputs which collide; in other words, a cryptographic 
hash should present the faQade of being 1-to-1. More formal definitions of resistance and 
computational infeasibility will be provided later.

Such computational infeasibility is achieved by a process of confusion and diffusion. The 
importance of these was first described by Shannon, who regarded them as methods “for 
frustrating a statistical analysis” (Shannon, 1949a). On the subject of diffusion, Shannon 
(1949a, p. 708-9) says:

In the method of diffusion the statistical structure of M  which leads to its re­
dundancy is “dissipated” into long range statistics— i.e., into statistical struc­
ture involving long combinations of letters in the cryptogram. The effect here 
is that the enemy must intercept a tremendous amount of material to tie down 
this structure, since the structure is evident only in blocks of very small in­
dividual probability. Furthermore, even when he has sufficient material, the 
analytical work required is much greater since the redundancy has been dif­
fused over a large number of individual statistics.

One can think of this as the relationship between input and output being obscured; each 
bit of the input affects each bit of the output, and although a relationship does exist, it is 
difficult to unravel what that relationship is. As for confusion, Shannon (1949a, p. 709) 
explains that:

The method of confusion is to make the relation between the simple statistics 
of E  and the simple description of K  a very complex and involved one. In the 
case of simple substitution, it is easy to describe the limitation of K  imposed 
by the letter frequencies of E . If the connection is very involved and confused 
the enemy may still be able to evaluate a statistic Si , say, which limits the 
key to a region of the key space. This limitation, however, is to some complex 
region R in the space, perhaps “folded ever” [sic] many times, and he has a 
difficult time making use of it. A second statistic S2 limits K  still further 
to R 2, hence it lies in the intersection region; but this does not help much 
because it is so difficult to determine just what the intersection is.

Although confusion and diffusion work towards the same goal, they do so in different 
ways. Using the principle of confusion, transformations which only make sense in a local
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context are used to eventually produce a final result. Successfully “undoing” any local 
transformation is of limited use since the result obtained is difficult to relate to the original 
input; and local transformations which build upon other local transformations exacerbate 
this issue.

Exam ple 1.2. The importance of preimage resistance. When passwords are stored 
on a remote system, they are usually hashed®. When the system needs to check 
whether an input is the correct password, it hashes the input and compares the result 
to the stored n-bit hash value. If the hash values match, then the input was the 
correct password. An attacker who obtains the database of passwords would need 
to find a preimage for each of the stored passwords; assuming that the passwords 
are uniformly distributed bit sequences (in reality, they are not), this would take 
approximately 2” guesses if the hash function used was preimage-resistant. If n was 
large enough (if n =  50, then 250 ^  1 x 10i5, for example), the work factor required 
would be insurmountable and it does an attacker little good to have the hashed 
passwords. If the hash function used was not preimage-resistant then obtaining the 
hash values is akin to obtaining the passwords and there would be little point in 
hashing the passwords in the first place. This shows that preimage-resistance is not 
only of academic value.

“In fact, they are usually salted and hashed. This detail adds nothing to the example and has 
been elided.

Technically speaking, a preimage is either a preimage or a second-preimage. The former 
is the original input that resulted in a particular output, and the latter is any input which 
results in a particular output.

Exam ple 1.3. The importance of second-preimage resistance. Aragorn discovers 
that recently-terminated employee Bilbo has absconded with important source code. 
Fortunately, the logs of the version control system provide the cryptographic hashes 
of the source code that was taken. Aragorn therefore demands that Bilbo hand over 
the source code. Importantly, Aragorn can verify that the data that Bilbo provides 
is correct since Bilbo, despite having the original code in his possession, is unable to 
generate data that will result in the same hash output. If the hash function used was 
not second-preimage resistant, then Bilbo would be able to generate nonsensical data, 
supply it to Aragorn, and insist that the data is correct. Aragorn would be unable to 
contest this assertion.
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Similar examples can be constructed to demonstrate the value of collision-resistance. 
Cryptographic hashes are used in many areas —  by banks, commercial and open-source 
software developers, governments, grassroots organizations, certificate authorities, browser 
vendors, and many others —  and their preimage-resistance (and collision-resistance) is 
extremely important to the functioning of the modern world.

An “attack” on a cryptographic hash function is any method or algorithm that reduces the 
difficulty of obtaining a collision, preimage, or second-preimage. The hash function that is 
the subject of such a successful attack is considered to be either “weakened” or “broken” , 
depending on the reduction in difficulty. Attacks may exploit oversights on the part of the 
hash function designers (e.g. Leurent (2008)), or they may take advantage of advances 
in technology such as General-Purpose Graphics Processing Units to perform operations 
faster than would be expected (e.g. Grechnikov (2010); Adinetz and Grechnikov (2012)), 
or they may use recent mathematical results to remove impediments that the algorithm 
places in the way; any method is permissible.

1.1 SHA-1

The SHA-1 hash (NIST, 1995) is a well-known cryptographic hash function which gen­
erates a 160-bit hash value. It is the successor to the equally well-known and -used 
MD5 (Rivest, 1992b) cryptographic hash function which generated a 128-bit hash value. 
SHA-1 was designed by the National Security Agency of the United States of America 
and published in 1995 as National Institute of Standards and Technology (NIST) Federal 
Information Processing Standard 180-1. Since this standardisation, it has become widely 
used across the world; Wikipedia (2014) lists some of the broad areas where it has been 
used:

SHA-1 forms part of several widely used security applications and protocols, 
including TLS and SSL, PGP, SSH, S/MIME, and IPsec. [...] SHA-1 hash­
ing is also used in distributed revision control systems like Git, Mercurial, 
and Monotone to identify revisions, and to detect data corruption or tamper­
ing. The algorithm has also been used on Nintendo’s Wii gaming console for 
signature verification when booting [...].

Both the hash function and the problem domain of preimage-resistance are worthwhile 
research topics. The hash function itself is well-specified and long-standing, having been
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formally promulgated as an official standard of the United States government more than 20 
years ago (at the time of this writing). Many attempts were made to find weaknesses in the 
hashing algorithm before, during, and after the standardisation process (Cryptographic 
Technology Group, 2016); however, to date, there has been no successful attack against 
the preimage-resistance of the hash function. Therefore, it is exceptionally unlikely that 
there is an obvious oversight on the part of the hash designers that could be exploited.

The rationale behind the design of the SHA-1 hash has never been made clear, nor are 
the security guarantees that it makes backed up by any formal proof of difficulty. Why, 
for example, does the hash function progress over 80 “rounds” instead of 40, or 60, or 
200? Why are particular three-input boolean functions used? What degree of confusion 
and diffusion does the hash provide? Its ancestry is clear: it takes many cues from the 
MD5 (M essage Digest version 5) algorithm (and predecessors). However, the security 
guarantees of those algorithms were similarly not backed up by any proof. The uncertainty 
around the design choices made during the creation of the hash algorithm makes it an 
intriguing subject to study.

Preimage research itself is an interesting area since most research into hash functions has 
focused on collisions instead (see Chapter 3). That focus is easy to understand since 
preimage research is typically more difficult than collision research. The output of a 
preimage is specified before the search for an input begins, and this severely restricts 
the set of acceptable solutions; by contrast, any two inputs which result in the same 
output constitute a valid collision, and neither inputs nor outputs need to be fixed before 
a collision search begins. Cryptography is widely considered to be a difficult and complex 
field and, since successful attacks are already so difficult to create, it makes sense to focus 
on an area where there is a greater chance of success.

1.2 Contribution of this work

The research described in this work does not follow directly from previous research into 
SHA-1 (see Chapter 3), which has typically fallen into two broad categories (attacks and 
optimisations), though it does intersect with that research at a number of points. The 
main contribution of this work is an in-depth exploration and analysis of the SHA-1 
compression function, focusing on the problem of finding preimages. The “compression 
function” can be thought of as the core of a hash function; a more formal definition is 
provided in Section 2.2. More specifically, the contribution can be enumerated as:
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1. an in-depth analysis of, and alternative valid formulations of, the SHA-1 compression 
function and its components (Chapter 4);

2. a statistical analysis of diffusion characteristics (Chapter 5);

3. multiple representations of the SHA-1 compression function, with preimage-focused 
practical experiments (Chapters 7, 8, 9, 10, and 11);

4. a reflection on representations and SHA-1 design choices (Chapter 12).

Much research is naturally written with members of the field in mind. Unfortunately, in 
the case of a relatively “niche” field such as cryptography, this decreases the accessibility 
of the research for those not in the field. Works such as Menezes, Van Oorschot, and Van- 
stone (1996), Ferguson and Schneier (2003), and Paar and Pelzl (2009) make it easier to 
gain entry to the cryptographic field, but none of these explore hash compression functions 
in great detail. Papers on hash function security (see, for example, Rjasko (2011) or Rog- 
away and Shrimpton (2009)) typically examine the structures within which a compression 
function is embedded, and make assumptions about the compression functions themselves. 
The reason is simple: compression functions are not well-understood in general, and the 
reasons why a compression function may be collision-resistant and preimage-resistant are 
not well-understood either. For example, the most recent of the accessible works cited 
(Paar and Pelzl, 2009) devotes approximately five pages to discussing SHA-1 -  and only 
two of these discuss the compression function itself. Very little space (if any) is given to 
preimage attacks. Note that the works cited are well-regarded in the field and this should 
therefore not be taken to mean that they are in any way inadequate; instead, the example 
shows that little can be said when little has been said.

This work aims to reduce this problem by providing accessible preimage-focused anal­
ysis, discussion, and results. Note that the determination of the “hardness” of SHA-1 
is not a primary goal of this work, though some theoretical and experimental analysis 
in this direction is provided in Chapter 5. The expected audience is comprised of three 
main groups: computer scientists, software developers, and interested members of the 
public. The knowledge that is assumed is therefore minimal: a reader should have some 
knowledge of basic computer programming and related terminology (e.g. “hash table” , 
“algorithm” , “indexing”), some knowledge of basic computer theory (e.g. “boolean func­
tion” , “Turing machine” , “time complexity”), some knowledge of basic algebra and sets 
(e.g. “coefficient” , “disjoint sets”), but no knowledge of more specialist mathematical no­
tation is necessary. Chapters 2 and 3 exist to bridge the gap between computer scientists
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and cryptographers, examples are provided throughout this work, and explanations are 
simplified where possible.

This thesis focuses on preimages at the expense of second-preimages, with the practical 
difference (for larger input sizes) being that the information that is assumed to be available 
to an attacker is only the final hash output, and sometimes the size of the input.

In terms of real-world impact, it must be understood that SHA-1 is a dedicated hash func­
tion: it is not based on any existing encryption algorithm, and no widely-used encryption 
algorithm is based upon it. Research into it may not result in general attacks that are 
applicable to the broader cryptographic field. Such research will also become increasingly 
irrelevant as time goes on since the next secure hash standard, SHA-3 /  K e c c a k  (NIST, 
2015), was conceptualized and developed independently of SHA-1 and uses very dissimilar 
compression function. Nevertheless, there are many SHA-1 hashes in the world, and these 
hashes will continue to exist for the foreseeable future. Preimage research into SHA-1 is 
useful in this context.

1.3 Structure

This thesis is broken up into four parts, I through IV. Introductory and prerequisite 
material is covered in Part I, which comprises two chapters; a reader who is familiar with 
the SHA-1 hash and the notation and terminology of the various fields that are discussed 
in this thesis may nevertheless be interested in Section 2.4, which describes the mechanics 
of the SHA-1 hash, and Section 2.5, which describes thesis-specific notation.

Part II is about analysing and understanding the SHA-1 hash. The three chapters of this 
section attempt to answer the following questions: •

• What does the existing literature say about hash functions, the SHA-1 hash, and 
preimage research?

• What does our own analysis of SHA-1 reveal?

• How difficult is the problem, and how may it best be approached?

Part III presents different representations of the SHA-1 compression function, along with 
practical experiments to determine how suitable a particular representation is in the 
context of addressing the preimage problem. Lastly, Part IV presents some discussion and 
analysis, and summarises some of the lessons learned during the course of the research.



Chapter 2

Prerequisites

This chapter deals with three things: mathematical concepts and notation, essential back­
ground and terminology related to cryptographic hashes, and the definition of the SHA-1 
hash. Additional notations and definitions which relate to fields other than cryptography, 
or which are not general mathematical notations, are introduced in the chapters where 
they are first used. Note that some items are defined less generally than is necessary, 
when a less general specification happens to be more useful for this work or in the field of 
cryptography; for example, the “multiplication” (*) and “addition” (+ ) operations over a 
field have been particularized to refer exclusively to the A and © operations.

The well-known Merkle-Damgard structure within which the SHA-1 compression function 
is embedded is also explained here. Although this structure is out of scope for this 
thesis, readers will inevitably find it explained in the existing literature and it is therefore 
worthwhile to make the link between compression function and embedding structure clear.

2.1 Notation and mathematical concepts

The notation for the usual boolean operators is A (“and”), V (“or”), — (“not”), and © 
(“exclusive or”).

A Galois field of order 2 is the set of boolean values, denoted GF(2) or Z 2, containing 
elements {0 ,1 } that can be combined using the binary operators © and A such that certain 
conditions hold, including:

9
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• © and A are associative ((x © y) © z =  x  © (y © z), and similarly for A) and 
commutative (x © y =  y © x, and similarly for A)

• A distributes over © (x A (y © z) =  (x A y) © (x A z)), but the converse is not true 
(x © (y A z) =  (x © y) A (x © z)).

• Identity elements 0 and 1 exist for © and A respectively, such that x  © 0 =  x  and
x  1 =  x .

A vector of length l is an ordered sequence of elements selected from a given set, and 
is denoted using set notation and a superscript. A boolean vector of length l may be 
denoted by either Zl2 or a two-element set and a superscript. A left-rotation of a vector 
(or unsigned integer) x  by n positions is indicated by the notation x ^  n, and a right- 
rotation is denoted by x  ^  n. The Hamming weight of a boolean vector is the number 
of “ 1” values in the vector, and the Hamming distance between two boolean vectors is the 
number of positions where the values in the vectors disagree.

For concision, the boolean vector may be written in hexadecimal; for readability, it may 
be written in binary. An “0x” prefix may precede a hexadecimal number and a “b ” suffix 
may succeed a binary number when the base of the number is ambiguous.

Exam ple 2.1. Notation: vectors and rotation. 13663, 66313 and 63116 are all dif­
ferent {3,1, 6 }5 vectors; 13663 ^  2 =  66313 and 66313 ^  2 =  13663. An unsigned 
32-bit integer can be regarded as the boolean vector {0 ,1}32.

A set is usually denoted by a capital letter (though not all capital letters denote sets). It 
may be defined extensionally by giving the elements (e.g., X  =  {9, 5, 2}) or intensionally 
by using a domain and rule(s) for set membership (e.g., X  =  {x  G N : x  mod 2 =  0} 
denotes all even natural numbers).

A function with multiple inputs can be understood as operating over variables with dif­
ferent names, or operating over a boolean vector. When the latter abstraction is used, 
the fact that the input is a vector is denoted by an underline and each component of the 
vector (starting from the left) is subscripted.
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Exam ple 2.2. Truth table formats. The truth tables below are equivalent; one uses 
multiple boolean variables and the other uses vector notation.

x y z a © (b A c) x xo © (xi A x2)
0 0 0 0 000 0
0 0 1 0 001 0
0 1 0 0 010 0
0 1 1 1 011 1
1 0 0 1 100 1
1 0 1 1 101 1
1 1 0 1 110 1
1 1 1 0 111 0

The size of a vector (also called the length) is the number of elements in the sequence; the 
size of a set is the number of elements it contains; and the size of a graph is the number 
of nodes in the graph. In all cases, the notation |X| is used to denote the size of the 
vector/set/graph X .

A function f  which has a domain X  and a range Y  is denoted by f  : X  ^  Y , assuming 
\Y| >  |X|. The inverse of a function f  —  that is, a function maps f ’s range to its domain 
—  is denoted by f -1 : Y  ^  X . Application of a function f  to a value v is denoted by f  (v). 
A tuple is an ordered group of possibly-disparate elements, and is denoted by the elements 
being shown in parentheses. The number of elements in a tuple (also called the arity) is 
sometimes given as a prefix, viz. “2-tuple” or “5-tuple”. The arguments to a function are 
also given in parentheses; context differentiates between a tuple and arguments.

A functionally complete set of boolean operators can be used to represent any boolean 
function, no matter how complex. Where a large binary symbol is used, the meaning is 
the same as for when a £  is used, with the modification that the specified binary operation 
should be used instead of addition.

The word “linear” is unavoidably used to mean three different, but related, things in this 
work. A “linear” relationship is one in which the relationship between two variables can be 
plotted as a straight line —  in other words, the variables are directly proportional to each 
other. A “linear” boolean function has a particular definition that is given in Section 4.2.2. 
Lastly, a “linear” system of equations is one which contains multiple equations, of degree 
<  1, over the same set of variables.

The probability of an event lies in the range 0.0 to 1.0, and is denoted by the syntax “Pr”.
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Sometimes it will be necessary to choose all combinations of k elements from a set of n 
elements. The number of such combinations that exist is denoted by G ) .

2.2 Cryptographic terminology

This section briefly covers some cryptographic terminology that is common in the field; 
for fuller explanations, see (for example) Menezes et al. (1996), Ferguson and Schneier 
(2003), or Paar and Pelzl (2009). Throughout this section, assume that a hash function 
h : Zn ^  Zmm exists, and further assume that the range is uniformly distributed. The 
input to such a hash function is sometimes called the message.

Given c G Z^ generated via h(a), if it is computationally infeasible to find a b such that 
h(b) =  c , then h is said to be one-way. The value b is called a second-preimage of c if 
a =  b, and a preimage if a =  b. If all hash values are equally likely to be obtained, then 
the chance of finding a particular one using a random input is (often written as 2-m); 
therefore, approximately 2m values must be tried before a successful match is found.

A collision is found for values d and e if h(d) =  h(e). A collision can be expected to be 
found after evaluating ^  2t  values; intuitively, as one approaches the 2t th value without 
having found any collision, it becomes increasingly likely that the next hash value will be 
one that has already been seen.

Computational infeasibility is described in terms of the number of evaluations of a hash 
function that would be required for a collision or preimage to be found; this has also 
been called the work factor. This description of infeasibility allows researchers to consider 
the number of evaluations independent of advancing technology, and therefore makes it 
easier to compare the difficulty of finding collisions or preimages across time and technolo­
gies. The strategy of attempting different combinations of input values until a preimage 
or collision is found is called a brute-force strategy; in recent times, GPUs have been 
particularly helpful in this regard. An attack on a hash function is any algorithm or ap­
proach that obtains the desired preimage/collision after doing less work than brute-force 
would require. The resistance of a cryptographic hash function is correlated with the 
computational infeasibility of attacking a particular property of that hash function.

The strength of a cryptographic hash function is expressed as the difficulty of attacking its 
least-difficult property, collision-resistance. In general, collisions are necessarily easier to 
find than preimages since 2t  < 2m; however, collisions are only guaranteed to exist when
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n > m. The difficulty of obtaining a useful preimage attack can be seen by observing that 
collisions for the 128-bit MD4 cryptographic hash function (Rivest, 1992a) —  a subject 
of study since 1990 —  can be found with a trivial work factor of approximately 28 (Wang, 
Lai, Feng, Chen, and Yu, 2005a), but preimages require a work factor of ~  278 (Guo, 
Ling, Rechberger, and Wang, 2010). The latter work factor is far below the theoretically 
optimal 2128 and, although it is within the bounds of possibility for well-funded entities, 
nevertheless demonstrates the difficulty of finding preimages as opposed to collisions.

The hash function relies upon repeated invocations of a compression function to create a 
final output. The amount of input data that is accepted by a compression function is called 
a block. The compression function transforms a block by looping over it for a number of 
rounds, which are occasionally called steps in the literature —  although the term “steps” 
can also refer to small subdivisions of a round, or of an attacking algorithm. If (as in 
this work) only single-block inputs are used, then the terms “block” and “message” are 
almost interchangeable: the difference is that a “message” includes additional data that 
is relevant to the overall hash structure (see Section 2.3).

A nothing-up-my-sleeve value is constructed so that an observer can be confident that 
the author of an algorithm has not chosen that value due to any inherent property of the 
value. Such values are exceptionally unlikely to have any “hidden” properties that lead 
to a weakness in the algorithm under particular circumstances. Furthermore, the use of a 
nothing-up-my-sleeve value implies that the properties of the algorithm are not dependent 
upon any particular specially-chosen value. Examples of nothing-up-my-sleeve values are 
the first n digits of n or e, the sequence {1, 2, 3, 4, 5,.., n}, and the first n prime numbers.

Most hash functions, including SHA-1, operate over words. A word is a 32-bit unsigned 
integer.

2.3 Merkle-Damgard structure

The core of a cryptographic hash function is a compression function C  : Z^ ^  Z£. It is 
typical for the relation n < m to hold, which means that the range contains fewer bits 
that the domain —  hence the use of the term “compression”. Assume that a hypothetical 
hash function H (a) =  c, which uses the compression function C (x) =  y internally as its 
compression function, exists. The hash function would apply the compression function to 
an input to generate the hash output.
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The size of the input cannot be predicted in advance, yet H  must accept any input size. A 
simple way of solving this problem is by truncating data that is too long or padding data 
that is too short. Truncation allows multiple “long” messages to have the same hash value, 
thus making collisions trivial to obtain; padding allows multiple short messages to have 
the same hash value after being padded, leading to the same issue. The Merkle-Damgard 
structure is a way of ensuring that any input size can be handled without introducing 
collisions.

By tweaking the definition of C , the situation can be improved. If C  is defined as C(x, v) =  
y, |v| >  |y| instead of C (x) =  y, it would be possible to pass along an chaining value (i.e. 
v ) to the compression function in addition to the data x . The first chaining value is called 
an initialization vector and would be pre-specified by the algorithm; each subsequent 
chaining value is derived from the most-recently-generated output y . Since the chaining 
value is used by C  during the calculation of the output, it forms a “link” to previous 
blocks of data which have been calculated. The H  function can now handle arbitrarily- 
large inputs with the output being dependent upon all of the blocks of the input.

In a broader sense, a cryptographic hashing algorithm can be viewed as an encryption 
algorithm. During encryption, a plaintext a is converted into a ciphertext b through the 
use of a key k and an encryption function: E (k,a) =  b. During hashing, a plaintext a is 
converted into a ciphertext b through a hashing function H (a) =  b which uses, internally, 
a compression function C (x ,v ) =  y. Notice the similarity between E  and C : it is due 
to this similarity that it is possible to regard a compression function as a function which 
encrypts the plaintext v using the key x . The difficulty of finding a preimage can be 
restated as the difficulty of finding a suitable encryption key, given a ciphertext; finding a 
second-preimage is equivalent to finding a suitable encryption key, given both ciphertext 
and plaintext. Viewing the algorithm (and, specifically, the compression function) in this 
light may make it easier to use results from the broader field of cryptography.

The SHA-1 hash is constructed using the Merkle-Damgard paradigm (Merkle, 1979; Gau- 
ravaram, Millan, and Nieto, 2005), which means that it consists of padding, chunking, 
and compression stages; see Figure 2.1.

unfamili

Padding begins by appending a single 1-bit to the input data, followed by a series of zero 
or more 0-bits, and ending with 64 bits that encode the length-in-bits of the input data. 
The number of 0-bits appended is the smallest number necessary for the entire padded 
message, including the length value, to end on a 512-bit boundary.
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Figure 2.1: SHA-1 algorithm overview

Chunking then breaks the message into 512-bit blocks: m0,m 1...mn. Due to padding, 
there are always a discrete number of 512-bit blocks. The compression function — which 
is the part of the SHA-1 algorithm that this work will be looking at — is applied to the 
tuple (m i,ji), where ji is 160 bits of data, and this results in some output Oi. Oi is added 
to j i to obtain the final output of the compression function (this is called Davies-Meyer 
construction (Winternitz, 1984)), and the final output is used as j i+i or, if all blocks are 
exhausted, as the final hash value.

The lengths of j  and o are necessarily the same. The initial input j 0 is the nothing- 
up-my-sleeve constants in Table 2.1, as defined by the FIPS 180-1 standard (NIST, 
1995). These constants, in little-endian1 hexadecimal notation, are 0123456789abcdef 

fedcba9876543210 f0e1d2c3. This follows a very obvious sequence of values in ascending 
order, values in descending order, and then interleaved descending/ascending values. If 
another constant were to be added, it would complete the interleaved descending/ascend­
ing sequence and be (in little-endian hexadecimal notation) b4a59687.

Recall that a collision occurs if two inputs are found which result in the same output. 
Collisions are theoretically easier to find than preimages, since any output is acceptable 
— as long as there are > 1 inputs which result in that output — whereas in the case of 
preimages, a particular output is desired. Merkle-Damgard hash functions are guaranteed 
to be collision-resistant if the compression function used is collision-resistant (Damgard, 
1989; Merkle, 1989).

1A little-endian word stores the least-significant byte first
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Table 2.1: Initialisation constants for SHA-1

Name Value
a 0x67452301
b 0xefcdab89
c 0x98badcfe
d 0x10325476
e 0xc3d2e1f0

Assuming that the output has been generated via application of the compression function, 
it is true that a preimage must exist. The pigeonhole principle (Brualdi, 2012) states 
that if n objects are distributed among k compartments where n > k, then at least one 
compartment must contain more than one object. Similarly, as long as the length of the 
message is greater than the length of the output, it is certain that more than one preimage 
exists. It is therefore the case that, without assuming a valid generation process but under 
the assumption of uniformly distributed output, more than one preimage should exist for 
any particular output hash within the maximum length of 447 input bits that constitutes 
a single “block” of SHA-1. The preimage problem can therefore be studied exclusively 
with reference to the compression function and without consideration of the embedding 
Merkle-Damgard structure.

Unless otherwise stated, the single blocks used in this thesis are always valid SHA-1 
inputs. This means that the last two words are always set to be appropriate values, and 
a terminator bit is inserted just after the end of the input data. Note that this is not 
the case with most preimage research such as De Canniere and Rechberger (2008); Aoki 
and Sasaki (2009); Knellwolf and Khovratovich (2012); Espitau, Fouque, and Karpman 
(2015).

2.4 Compression function mechanics

This section is purely descriptive and explanatory, and based on the FIPS 180-1 standard 
which defines the SHA-1 algorithm; see (NIST, 1995). Section 2.3 provided an overview of 
the SHA-1 algorithm as a whole, but omitted any description of how the compression func­
tion converts 672 input bits into 160 output bits. This section explains the compression 
function in detail.

The SHA-1 compression function occurs as two separate phases. The first phase takes a



2.4. COMPRESSION FUNCTION MECHANICS 17

set of 16 32-bit words and combines parts of different words to produce a further 64 32-bit 
words, for a total of 16 +  64 =  80 words. This phase is called message expansion since it 
“expands” 16 words into 80 words. The second phase makes use of addition, rotation, and 
logical functions (A , V , —, and © ), applied over the course of 80 rounds, to turn these 
80 words into a 5-word (160-bit) output. There is no agreed-upon name for the second 
phase. The nonsense-word spliffling has been coined as a way to refer to this phase easily: 
it has been chosen as a memorable and readable combination of syllables that avoids any 
confusion with terms that already exist.

Message-expansion uses the 16 words of an input block to create an additional 64 words, 
for a total of 16 +  64 =  80 words. We refer to the initial 16 words as data-words and 
the rest of the 80 words as expansion-words. Each of these words is used in one of the 
80 spliffling rounds described in Section 2.4. To obtain expansion-word wr>16, message- 
expansion XORs2 together wr-3, wr-8, wr-14, and wr-16, and left-rotates the result by 
1:

wr>l6 — (wr -3 © wr-8 © wr -14 © wr -16) ^  1

In most implementations of the SHA-1 compression function, if wr is itself an expansion- 
word, then it must be calculated before wr/>r can be calculated.

Spliffling consists of 80 rounds. It has been represented in pseudo-code form as Algo­
rithm 2.1.

There are 80 rounds, just as there are 80 words (after message-expansion). Each round 
utilises the corresponding word as input; after every 20 rounds, the function that produces 
f  is changed, as is the constant k. The k-constants are nothing-up-my-sleeve values: they 
are the first 32 bits of the binary representations of \/2, \/3, \/5, and \/l0 respectively.

Note that spliffling, as described by Algorithm 2.1, does not include the Davies-Meyer 
construction step (Winternitz, 1984). This step would add the initial (a,b,c,d,e) values to 
the final (a,b,c,d,e) values returned from spliffling. The omission is made for the sake of 
simplicity: the step is only relevant within the larger scheme of the hash. For inputs <  447 
bits, this step is irrelevant: the final values of a..e can be obtained easily by subtracting 
the initialization constants (Table 2.1) from the appropriate words of a hash after the 
Davies-Meyer construction step (Winternitz, 1984); see Section 4.4 for details.

2“Exclusive-Or”s. We use the shortened version of various operations as verbs to avoid awkward 
constructions such as “the message-expansion process applies the exclusive-or operation to...”.
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A lgorithm  2.1 “Spliffling”
Require:

w is an 80-element message-expansion array 
a, b, c, d, e are unsigned 32-bit words

Ensure:
A modified 5-tuple (a, b, c, d, e) representing spliffling output

1 function SPLlFFLE(a, b, c, d, e, w)
2 for i ^  0..79 do
3 if i <  20 then
4 f  ^  (b A c) V (—b A d) > “choice
5 k ^  0x5a827999
6 elif i <  40 then
7 f  ^  b © c © d > “parity”/ “minority
8 k ^  0x6ed9eba1
9 elif i <  60 then

10 f  ^  (b A c) V (b A d) V (c A d) > “majority
11 k ^  0x8f1bbcdc
12 else
13 f  ^  b © c © d
14 k ^  0xca62c1d6
15 temp ^  (a ^  5) +  f  +  e +  k +  w*
16 e ^  d
17 d ^  c
18 c ^  b ^  30
19 b ^  a
20 a ^  temp
21 return (a, b, c, d, e)
22 end function

function

function

function
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For inputs > 447 bits, another invocation of the compression function is necessary. How­
ever, this invocation places the problem out of the scope of this thesis, which is content 
to examine the compression function in isolation.

2.4.1 f  -functions

The choice, parity, and majority boolean functions are used during the spliffling phase:

• choice(b, c, d) =  (b A c) V (—b A d)

• parity(b, c,d) =  b © c © d

• majority(b, c, d) =  (b A c) V (b A d) V (c A d)

Table 2.2: Truth tables for choice, parity, and majority functions

b c d choice parity majority
0 0 0 0 0 0
0 0 1 1 1 0
0 1 0 0 1 0
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 0 0 1
1 1 0 1 0 1
1 1 1 1 1 1

Each function takes three inputs, called b, c, and d in this section. The choice function is 
so named because b acts as a “chooser” between c and d: when b is true, then the value 
of c is output; otherwise, the value of d is output. For the same reason, the function is 
sometimes called the “if” , “ if-then-else” , or “ite” function. The parity function outputs 
1 when an odd number of the inputs are true, and 0 otherwise; it is sometimes called the 
“minority” function, because it always chooses the value that is least-represented among 
the three inputs. The majority function outputs 1 if two (or more) of the inputs are true, 
and outputs 0 otherwise.
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2.5 Thesis-specific notation

Now that the mechanics of SHA-1 have been discussed, additional notation that is specific 
to the hash compression function and this thesis can be introduced.

All words are 32-bit big-endian and unsigned. The most significant bit of a word is its 
0th bit, and the least significant bit is its 31st bit. Certain variable names refer to certain 
words, when not given any other meaning:

• a refers to words of the internal state during hash computation;

• f  refers to the f -word, when used without parentheses, and the f -function when 
used with parentheses;

• k refers to the round constant called “k” in Algorithm 2.1;

• v refers to bits related to the carry of addition operations; and

• w refers to words from the message and their expansion.

When necessary, a distinction is made between the first 16 user-supplied words (called 
data-words) and the last 64 words generated via message expansion (called expansion- 
words). A similar distinction can be drawn at the level of bits, leading to the similar terms 
data-bit and expansion-bit. An unsigned 32-bit value x  is subscripted with a number to 
identify the round that it participates in; where the round is not specific, the variable r 
is used to denote any round. Rounds are zero-indexed. Similarly, the variable i refers 
to a zero-indexed bit-position within a word. All calculations involving i variables or bit 
positions are assumed to occur (mod 32). A word is superscripted to denote a bit position. 
Subscripts and superscripts may indicate relations (such as “all rounds greater than 22”) 
using the appropriate mathematical notation.

Whenever the size of the SHA-1 input is limited to a particular number of bits, the symbol 
u is used to denote the number of unfixed bits. These bits always occur at the “start” of 
the input; in other words, there are never any unfixed bits that follow fixed bits. Each 
unfixed bit is sometimes called a variable.

“Onwards” , “upwards” , and similar terms mean “in the direction of propagation” ; opposite 
terms indicate an opposite direction. A carry during addition is propagated towards the
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most significant bit, and this direction is sometimes called a propagation to the “left”. A 
message is propagated towards the final hash output.

Some examples are given below to make this notation and terminology easier to under­
stand intuitively.

• wr denotes a data-word or expansion-word in any round.

• wlr denotes any bit i in a data-word or expansion-word in any round.

• w4 is the 5th word of the input data and w0 is the first word.

• ar>32 or alr> 32 denote any internal state word from round 32 (using zero-indexing) 
upwards.

• w21 refers to the the 22nd bit of the 13th word.

• w26 or w26 both refer to bit 26 of any round.

• ar+1 refers to all internal state bits in rounds up to 79 (since r +  1 is not a valid 
round when r =  80).

2.6 Summary

This chapter has introduced necessary terminology and notations from mathematics and 
the field of cryptography, as well as thesis-specific notations and terminology. It has also 
provided an overview of the Merkle-Damgard structure and the SHA-1 hash function 
within which the SHA-1 compression function is embedded. This overview is provided 
only for background purposes since this research considers the compression function in 
isolation. More relevant to the remainder of this work is Algorithm 2.1 and the description 
of the f -functions given in Section 2.4. The next chapter examines related research, and 
will draw on the concepts and notations given in this chapter.
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SHA-1 in specific
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Chapter 3

Related work

Since its standardisation by NIST in 1995, SHA-1 has spawned a great deal of research 
activity, most of which has been focused on finding collisions. In this chapter, particular 
strands of related research are drawn together, starting with more theoretical and gen­
eral questions and moving steadily towards the practically-oriented and specific preimage 
attacks on SHA-1.

3.1 In theory: one-way functions

The compression function is ideally a one-way function: a function that cannot be in­
verted due to some “hard” problem that prevents its inversion. Unfortunately for the 
cryptographic field, nobody has yet shown that a one-way function exists. Levin (2003) 
provides a readable overview of the situation and constructs a universal one-way function 
as a subject of study: if such a universal function can be shown to be one-way, then 
one-way functions do exist. Kojevnikov and Nikolenko (2008) also describe such universal 
functions, coming at the problem from a somewhat different angle.

There is no formal proof that the SHA-1 compression function is a one-way function, nor 
has it been constructed along the lines of a universal one-way function such that it can be 
shown to be one-way iff one-way functions exist. The preimage-resistance of the function 
is simply due to exceptionally good confusion and diffusion characteristics over the course 
of 80 rounds, as well as the fact that it has withstood preimage attacks for more than two 
decades.

23
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3.2 A formalisation of cryptographic hash security

Rogaway and Shrimpton (2009) formalise the notions of cryptographic hash-function se­
curity. For the purposes of this work, the important formalizations that they provide are 
aPre and aSec. Their aPre formalisation corresponds to the notion of preimage resistance, 
and is given as

* i aPre[m] / a\A dvn  (A) maxKeK Pr M  l  { 0 ,1}m ; Y  l  Hk (M ); M  l  A (Y ) : Hk (M')

It is worthwhile to expand this formalisation. Let the length of the message be m. Now, 
given a compression function H(M , K ) =  Y  where M  G Z^ is the input message, K  G K 
is a fixed chaining value, and Y  G ZV, is the output, let A : Z% ^  S be an attacker-chosen 
algorithm such that S C Z^. Choose M  from a uniform distribution, pre-specify K , and 
calculate H (M ,K ) =  Y . Choose M ' from the distribution of A (Y ). Then the preimage 
resistance of H  with regard to the algorithm A is the maximum probability, over all 
K  G K and across all chosen M  and M ', that H (M ', K ) =  Y .

Intuitively, this means that the security of the hash depends on the degree of confusion 
and diffusion (Shannon, 1949a) of H . If the amount of confusion and diffusion is sufficient 
for A to be unable to formulate any input which matches the desired output, then any 
function A has no advantage over a brute-force search of the space.

Rogaway and Shrimpton (2009) further point out, using a similar notation to the one 
already seen, that the second-preimage security of the hash function (which they call 
aSec) is dependent upon the difference between domain m and range n. This makes 
intuitive sense, since a smaller range means that a single output can map to multiple 
inputs. If the range was equal to or larger than the domain, then there is no guarantee 
that a second-preimage would even exist.

3.3 Desirable features

While Rogaway and Shrimpton (2009) do not relate the concepts of collision-resistance and 
preimage-resistance, Preneel (1993) does, defining a Collision-Resistant Hash Function 
(CRHF) to also be effectively one-way. The rationale for this, though not stated in these
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terms, appears to be that a collision could be obtained from cryptographic hash function 
which is not preimage-resistant by finding two preimages. This rationale is quite plausible 
if one assumes a greater domain than range and applies the pigeonhole principle.

Preneel calls an attack on a single-block compression function a “Direct Attack” , stating 
that it “can be thwarted by imposing the requirement that [compression function] f  is 
one-way” (Preneel, 1993, p. 35). While trivially true, this requirement has not been shown 
to be met by the SHA-1 compression function. The same work classifies attacks on hash 
functions into five types (Preneel, 1993, p. 40):

1. attacks independent of the algorithm,

2. attacks dependent on the chaining,

3. attacks dependent on an interaction with the signature scheme,

4. attacks dependent on the underlying block cipher,

5. high-level attacks.

Types (1), (3), (4), and (5) are inapplicable in the context of this work. Type (2) con­
tains the sub-categories “Analytical weaknesses” , “Meet-in-the-middle” and “Differential” 
attacks, and has been the focus of most preimage-focused research into the SHA-1 com­
pression function. However, instead of targeting multi-block messages, differential char­
acteristics of different words are used to “cancel out” changes with a certain probability, 
allowing meet-in-the-middle attacks to be more successful. A fuller description of these 
kinds of attacks is given in Section 3.6.

The recommendations of Preneel (1993) are mostly related to the overarching hash struc­
ture (see, for SHA-1, Section 2.3), but the recommendation to reuse every message bit as 
many times as possible does specifically apply to the compression function. Furthermore, 
it is recommended that a statistical evaluation be performed on the algorithm. To our 
knowledge, no such systematic statistical evaluation has been published for SHA-1, and 
this thesis contains some of the first results in that direction (see Section 5.2).

Chapter 8 of Preneel (1993) studies the importance of boolean function properties. The 
remaining research discussed in this chapter does not depend on such properties or their 
importance, and the topic is therefore mentioned here for completeness but will be dis­
cussed at greater length in Section 4.2.2.
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3.4 A family of functions

SHA-1 is an “A RX” function, which means that it uses Addition, Rotation, and eXclusive- 
or operations (as well as A, V, and —). The purpose of each of these is summarised by 
Khovratovich and Nikolic (2010):

Addition provides diffusion and nonlinearity, while XOR does not. Although 
the diffusion is relatively slow, it is compensated by a low price of addition 
in both software and hardware, so primitives with relatively high number 
of additions (tens per byte) are still fast. The intraword rotation removes 
disbalance between left and right bits (introduced by the addition) and speeds 
up the diffusion.

A general method of analysing ARX functions was suggested in the same work. This 
method, called rotational cryptanalysis, focuses on performing an analysis of the function 
using a pair (X , X  ^  r) throughout; the benefit is that probability analysis of the result 
of addition operations becomes easier. Further work in the same area (Velichkov, Mouha, 
De Canniere, and Preneel, 2011) extended this analysis, and Leurent (2012) published an 
analysis of differential path construction approaches using rotational analysis. Velichkov, 
Mouha, De Canniere, and Preneel (2012) suggested more improvements to the accuracy 
of addition probability estimation. Biryukov and Velichkov (2013) suggested an easier 
way to create good differential paths that were applicable to all ARX functions, but did 
not apply this method specifically to the case of SHA-1.

A differential path tracks the way in which message differences introduced in earlier rounds 
will be propagated to later rounds, with a certain probability. Such a path can then 
be used to identify or find a two messages which, when processed by the compression 
function, will result in the same output (and, therefore, a collision). To put it another way, 
differential path attacks aim to identify the characteristics of inputs that allow certain 
changes in the input bits to result in a greater probability of being “cancelled out” or 
“corrected” in later rounds. These characteristics can then be used to construct different 
inputs which would result in the same output at a particular round -  in other words, a 
collision. Section 3.3 of Leurent (2010) gives a very readable and understandable overview 
of how differential paths operate, and is recommended for readers interested in the details; 
the original work that describes the concepts is somewhat less readable.

Although there may be future research which uses the concepts of rotational cryptanalysis 
to create a preimage attack on ARX functions such as SHA-1, there is no obvious link
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between the two. Rotational cryptanalysis works naturally from input towards output 
and does not provide much insight into inputs that could result in outputs. It is therefore 
mentioned here as a relatively new direction to be followed, but no practical preimage 
results are expected to arise from this research in the short-term.

3.5 Optimisations

In a sense, the preimage problem is an optimisation problem. If it were possible to obtain 
a hash output with very little computational effort, then the brute-force method of finding 
a preimage (or collision) becomes feasible. As an extreme example, if 4 x 1044 hashes could 
be computed every hour, then it would take just over an hour to find a SHA-1 preimage 
using the brute-force approach. Computational power does not yet approach that level. 
The Sunway TaihuLight is (as of June 2016) considered to be the fastest supercomputer 
in the world and can perform at a rate of approximately 93 PFLOPS; if SHA-1 could be 
calculated at the same rate of 93 quadrillion hashes per second, then only ^  3.35 x 1020 
hashes could be calculated per hour, and a preimage would take 4.37 x 1027 hours to 
obtain —  far longer than it will take for our sun to burn out!

There are, however, significant barriers that stand in the way of such an “optimized” 
calculation. Bosselaers, Govaerts, and Vandewalle (1996); Bosselaers (1997); Bosselaers, 
Govaerts, and Vandewalle (1997) published the first in-depth research that investigated 
the maximum amount of parallelism that could be extracted from SHA-1 and similar algo­
rithms such as MD5. These concluded that SHA-1 exhibited a high degree of instruction- 
level parallelism and indicated a speedup factor of 1.76 for an optimised implementation 
on the original Pentium. Indeed, since 2013 it has been possible to use a built-in x86 
instruction set extension for Intel processors (Gulley, Gopal, Yap, Feghali, Guilford, and 
Wolrich, 2013) to calculate a SHA-1 hash with hardware support; AMD’s Ryzen CPUs, 
due in 2017, support the same extension (Gopalasubramanian, 2015). Nevertheless, it 
takes approximately 20 uses of the sha1rnds4 instruction, usually sandwiched between 
sha1msg2 and shalmsgl instructions, to obtain the hash value for a single block of data.

Dedicated hardware has also been used to good effect. Lien, Grembowski, and Gaj (2004) 
unrolled five rounds of SHA-1 on custom hardware (a Xilinx XCV1000), obtaining a 
hashing throughput of 1Gbit/s compared to a baseline hashing throughput of 544 Mbit/s 
obtained when no unrolling was done.



3.6. DIFFERENTIAL PATH CONSTRUCTION 28

Lastly, alterations to the way in which the algorithm proceeds can have big effects: Steube 
(2004) demonstrated that unrolling the message-expansion phase of the SHA-1 compres­
sion function resulted in a speedup factor of 1.21.

Each of the above authors note, in their respective works, the importance of data depen­
dencies in the SHA-1 algorithm. Each round is dependent on previous rounds as well as 
on a linear expansion of the original data. The amount of parallelism that is possible 
to obtain is therefore limited to a maximum of 5 rounds of the 80-round compression 
function, and each block must be calculated independently before calculation of the next 
block can proceed. The data dependencies are built into the algorithm itself and cannot 
be avoided in any obvious way; therefore, there is an inherent limit to how fast a SHA-1 
compression function can execute. To return to the example at the beginning of this 
section, in the absence of optimizations that are currently unknown it is impossible for a 
supercomputer to calculate SHA-1 at a speed that is near its PFLOPS rating, no mat­
ter how optimized the compression function implementation is. This limits the impact 
of advances in hardware and makes “brute-force” an unsuccessful strategy for finding a 
preimage well into the future.

3.6 Differential path construction

Instead of trying to find “good” w''r values and then seeing whether they result in the 
appropriate a76..80 values, De Canniere and Rechberger (2008) begin with unfixed a'r and 
wlr values and attempts to modify d'r in a way which satisfies wlr. The rationale for doing 
this is that changes made to dr are easier to propagate and understand in terms of their 
overall impact on other w\. They set up the following relations, expressed here in terms 
of the notation already described:

E =  wlr+31 © wlr_ 3 ® w'r -8 ® w'r_ 14 © w'r_ 16 =  0 when 16 <  r <  80

wr+ 5 — C*ffi f i+5 m d +30 m V/*— Cr © fr © dr_4 © Vr

cr — di CPi di+ 5 PC ki+ 5— dr+1 © dr © kr

V ir
j 0 when vlr G {0,2, 4} 

1 1 otherwise
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The E'r bits represent the amount of error in a particular solution. If a bit a0- j <27 is 
flipped, then the Ej bit changes and changes in E lr>j may occur; however, bits E lr<j do 
not change. This occurs because carry-bits propagate towards the most significant bit 
of a word. Therefore, bits may be fixed column-by-column with some trial and effort 
(De Canniere and Rechberger (2008) cite a computational effort that is “linear in the 
number of rounds”), until only non-zero E lr>25 bits remain. Removing these bits would 
require an exhaustive search of a 27̂64 =  2448 solution space, although an optimized way of 
addressing the problem that requires searching through 2181 possibilities is also presented.

Aoki and Sasaki (2009) describe a “meet-in-the-middle” attack, a basic version of which 
has a time complexity of 2156 7 compression-function evaluations and a memory complexity 
of 11 ■ 240 words. The attack will result in a pseudo-preimage which does not necessarily 
obey the Merkle-Damgard structure. The fundamental idea behind such an attack is to 
find two different ways in which a particular hash value can be obtained. The initial step 
is to find two w*> 16 values which are independent of different wi<1 6 ; the chosen words are 
called neutral words. For SHA-1, an exhaustive list of these is presented as Table 3.1. 
Suitable tuples of choices therefore include (w30,w43) or (w22,w42), but not (w34,w46) or 
any tuple involving w72.

Let (wj,wk) be the chosen tuple where j  < k, and let (wx,wy) be the respective neutral 
words. Choose a value j  < t <  k, and let the words a1..t_ 1 and at..80 be considered 
as different chunks. Select hash function output h to target and set wi/{x>y} to random 
values. Now compute the hash in both forward and backward directions using all possible 
values of wx and wy, stopping at at. If a common value of at is found, then the values of 
wx and wy used will result in a preimage.

Aoki and Sasaki (2009) also present two techniques for increasing the likelihood of success 
of the meet-in-the-middle attack. The first (“splice-and-cut”) is inapplicable in the context 
of this work since input sizes >  447 are not considered. The second (“partial-matching” 
and “partial-fixing”) relies on being able to find the one of the two chosen neutral words 
within 4 rounds of each other. Unfortunately, as Table 3.1 makes clear, this requirement 
is not met for SHA-1 for anything but the earliest rounds. Although a 0-1-13-14-15 cycle 
is evident, the period of the cycle is > 4. Furthermore, two words in the cycle (w14 and 
w15) are fixed by the requirements of the SHA-1 specification and cannot be modified in 
line with the described attack. A variation of the partial techniques based on bits, rather 
than words, is explored and attempted, but is superceded by later research.

Rechberger (2010) uses the idea of finding differentials to show that SHA-1 is more sus­
ceptible to second-preimage attacks than was believed. A differential is a 2-tuple of a/w
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Table 3.1: Expansion-word independence

Word Independent of... Word Independent of...
w16 1,2,3,4,5,6,7,9,10,11,12,14,15 w42 1,3,13
w17 0,2,4,5,6,7,8,9,10,11,12,13,15 w43 4,14
w18 0,1,3,5,6,7,8,9,11,12,13,14 w44 5,15
w19 1,4,6,7,9,10,12,14,15 w45 0,6
w20 0,2,5,7,8,10,11,13,15 w46 1,7
w21 0,1,3,6,8,9,11,12,14 w50 13
w22 1,4,7,9,10,12,15 w51 14
w23 0,2,5,8,10,11,13 w52 15
w24 1,3,6,9,11,12,13,14 w53 0
w25 4,7,10,12,14,15 w54 1
w26 0,5,8,11,13,15 w62 13
w27 0,1,6,9,12,14 w63 14
w28 1,7,10,15 w64 15
w29 0,2,8,11 w65 0
w30 1,3,9,12,13 w66 1,13
w31 4,10,14 w67 14
w32 5,11,15 w68 15
w33 0,6,12 w69 0
w34 1,7 w70 1
w36 13 w74 13
w37 14 w75 14
w38 13,15 w76 15
w39 0,14 w77 0
w40 1,15 w78 1
w41 0,2

bits where the value of one bit is expected to result in the other bit becoming known with 
probability p. A characteristic is a set of such probable differences. Good characteristics 
are useful for finding collisions; however, as Rechberger (2010) demonstrates, they are of 
limited utility when finding a preimage. Finding a second-preimage of a61 is estimated to 
take a work factor of 2159 42 even when constraints are relaxed somewhat, and finding a 
preimage of a80..76 requires even more work.

The research of Knellwolf and Khovratovich (2012) represents the cutting-edge of SHA-1 
preimage research at present. Their work ties the work of Aoki and Sasaki (2009) to a 
deep vein of existing research into differential cryptanalysis, reinterpreting it so that it can 
be understood in terms of the differential paradigm. This work will present a simplified 
summary of their approach, tailored more specifically to the constraints of SHA-1 and 
the context of single-chunk hashing. Knellwolf and Khovratovich (2012) represent the
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compression function f  : Z 2j-n -447 ^  Z 260 as the composition of functions f 1 : z ^ - ” -447 ^  
Z 160 and f 2 : Z 260 ^  Z^60, i.e. f  =  f 2 o f 1.

Let the number of input bits be K. The entire 512-bit message is M  and the compression 
function output is C  (or, in other words, f  : M  ^  C ). Choose sets D 1 and D 2 with size 
d <  K, such that D 1 fi D 2 =  0; for example, given K =  8, a set D 1 of size 3 could consist 
of {w°,w0,w3}, leaving 5 possible choices to choose for inclusion in D2.

As in the work of Aoki and Sasaki (2009), it is necessary to decide on a “meet-in-the- 
middle” point at which f 1 produces its output and from which f 2 takes its input. Ideally, 
this point would be near the middle of f  to provide sufficient space for the hashing 
of f 2 to result in C. Define A 1, A 2 e { 0 ,1}160 as A 1(^1) =  f 1(M ) © f 1 (M  © ^1) and 
A 2(62) =  f _ 1(M ) © f - 1 (M  © 62). In other words, A 1 is the difference in f 1’s output, 
given a ^  difference in the input. Similarly, A 2 is the difference in f 1’s output, given a 
52 difference in the input. Since we are searching for a preimage, is only necessary to be 
interested in cases where the output of f 2 is C .

Compute all values L 1 [62] =  f 1(M  © 6 2) © A 2. Now compute L2 [6 1 ] =  f _ 1(M  © A) © A 1. 
If L2 [6 1 ] © L1[̂ 2] =  0, then a preimage (M  © ^  © 62) has been found. To understand why, 
consider the expansion of these terms.

L2 [61 ] © L1 [62] — 0 
f 2 1(M  © 61) © A 1 © f 1(M  © 6 2 ) © A 2 =  0 

f 2 1(M © 61) © f 1(M ) © f 1(M  © 61) © f 1(M  © 62) © f 2 1(M) © f 2 1(M © 62) =  0

Since f  (x) =  f 2( f 1(x)) =  C  (or, equivalently, f  =  f 2 o f 1 =  C ), it follows that f 1 (x) =
f - 1 (C ) for all preimages. Identical terms “cancel” each other out, causing the LHS to be
0.

At least 160 ■ 2d bits are required to store L1 data naively (Knellwolf and Khovratovich 
state a figure of (n +  d) ■ 2d, but d can be inferred from implied data such as array/record 
index). The benefit of using a meet-in-the-middle approach is that 2” messages are tested 
at a cost of 2” _2d, making it easier to find a (second-)preimage. However, the time-space 
trade-off that results from using larger d does not scale well. Knellwolf and Khovratovich 
(2012) provide an estimated time complexity of 2158 44 to find a correctly-structured 52- 
round SHA-1 preimage.
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The amount of space required can be reduced by using truncated differentials —  in short, 
reducing the number of bits that are stored and compared for Li values. This leads to 
an unknown number of false positives, and a corresponding amount of time that must be 
spent retesting candidate values to see if they are correct.

Espitau et al. (2015) build on work of Knellwolf and Khovratovich (2012) by suggesting 
the use of higher-order derivatives to find better Di spaces. The original work on higher- 
order derivatives was done by Lai (1994), and it is worth noting that their definition of 
“derivative” differs from the standard one:

Definition Let (S, +) and (T, + ) be Abelian [i.e. commutative] groups.
For a function f  : S ^  T , the derivatives of f  at point a e S is defined as

A af (x) =  f  (x +  a) -  f  (x)

The net result of using this definition is the ability to effectively split each Di space into 
two, resulting in D i)1 and Dij2. This results in four L arrays (L1,1, L1j2, L2j1, and L2,2) 
in addition to the two existing Li arrays, making each check for a preimage require six 
lookups. The space complexity increases as a consequence, and it is only by ignoring any 
complexity that this adds that the time complexity remains the same. As a result, the 
authors have estimated a time complexity of 2159 4 to find a preimage for 56-round SHA-1.

The best time complexity estimates for finding a SHA-1 preimage have come about as a 
result of bringing together the strands of differential cryptanalysis and meet-in-the-middle 
attacks. Knellwolf and Khovratovich (2012) and Espitau et al. (2015) represent the best 
research in this area thus far. A large problem is finding “good” characteristics for SHA-1, 
and also overcoming the enormous space/time requirements that exist at present. The 
literature suggests no good way around either of these obstacles and, unfortunately, the 
best efforts in this direction have thus far yielded attacks with a work factor that is far 
beyond that of the brute-force strategy.

3.7 Other research

As has been mentioned, a great deal of research has focused on collision attacks and is 
therefore not directly applicable to the focus of this thesis. Nevertheless, for completeness, 
it is worth briefly mentioning some of the more important threads of this research so that
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interested readers can pursue what they find to be interesting. The research in this 
section is presented in mostly-chronological order and, where appropriate, the evolution 
of particular attacks has been explicitly noted.

Joux and Peyrin (2007) suggested a “boomerang” attack on SHA-1 which provides a 
better way of finding differential paths, based on previous research by Wagner (1999) into 
block ciphers, and reduced the work required to find a collision by a factor of 25.

In a separate vein of research, Wang, Yin, and Yu (2005b) published a differential path 
attack, based on previous work on the MD5 and SHA-0 algorithms (Wang and Yu, 2005; 
Wang, Yu, and Yin, 2005c), which was theoretically able to obtain a collision after 269 
hash evaluations. De Canniere and Rechberger (2006) published a further analysis of 
differential paths for SHA-1 that generalised Wang et al.’s results, making it easier to find 
suitable inputs which might lead to a collision. Cochran (2007), using improvements on 
Wang et al.’s method, verified an attack that required approximately 263 operations.

Manuel (2011) analysed the optimality of differential paths and their manner of genera­
tion, making it easier to select the most suitable differential path to use for an attack. 
Eichlseder, Mendel, Nad, Rijmen, and Schlaeffer (2013) published an optimisation to 
assist in the construction of valid differential paths. Stevens (2013) demonstrated a near­
collision at a cost of 257 5 hash evaluations using additional optimisations to previous 
differential path techniques.

Grechnikov approached the problem from a general-purpose graphics processing unit 
(GPGPU) point-of-view and used GPU clusters and performance optimisations to find col­
lisions for 73-round (Grechnikov, 2010) and, subsequently, 75-round (Adinetz and Grech­
nikov, 2012) versions of SHA-1.

More recently, Stevens, Bursztein, Karpman, Albertini, and Markov (2017) built upon 
previous research into differential paths (Stevens, 2013; Stevens, Karpman, and Peyrin, 
2016) to obtain the very first collision for the full 80 rounds of SHA-1. This feat was 
achieved using a time complexity of approximately 263 1 hash function evaluations.

For completeness, it is worth mentioning the work of Kelsey and Schneier (2005) in this 
section. Although the claim of finding second preimages on a n-bit hash function for less 
than 2” work is accurate, it is only accurate when very large inputs are used. In the case 
of the SHA-1 hash function, for 2k chunks (or message-blocks) of input, the work required 
is k x 281 +  2160_k+1.
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Exam ple 3.1. Kelsey and Schneier (2005). Assuming that one wishes to find a 
preimage for a hashed 25-byte password, for example, one would use k =  0 since 
25 bytes fits within a single 512-bit chunk. The work required would therefore be 
0 x 281 + 2160_0+1 =  2161, which is slightly more work than the brute-force work factor
of 2160.

Their attack is compression-function-agnostic: it can be applied to any hash function that 
uses a Merkle-Damgard structure, including SHA-1. For the purposes of this research, 
however, this means that Kelsey and Schneier’s research is not of any use since this 
research focuses specifically on the SHA-1 compression function.

3.7.1 Logical cryptanalysis

Massacci and Marraro (2000) coined the term logical cryptanalysis to refer to the idea of 
modeling and encoding a cryptographic problem in a way that makes them feasible to 
solve via heuristic methods. These heuristic methods include artificial intelligence (AI) 
techniques and boolean satisfiability (SAT) solving.

More recently, Legendre, Dequen, and Krajecki (2012) modeled and encoded both MD5 
and SHA-1, focusing more on the former than the latter, in a form suitable for SAT- 
solving. This approach was able to invert “about 1 round 3 steps” of SHA-1 which, as 
the authors point out, is somewhat worse than the results of De Canniere and Rechberger 
(2008) and Rechberger (2010). More in-depth work by the same authors analyses the 
representation and encoding of the same cryptographic hash functions in much more 
detail (Legendre, Dequen, and Krajecki, 2014).

The work of Li and Ye (2014) is representative of the direction that logical cryptanalysis 
has taken. It presents a different encoding of MD5 to the encoding chosen by Legendre 
et al. (2012) and this, in turn, makes it more suitable as a challenge for SAT-solvers.

Logical cryptanalysis is an avenue that is explored in more depth in Chapters 7 and 
11; these use SAT-solving and a constraint solver respectively. This research, and other 
related research, will be covered in more depth there, and is mentioned for completeness 
here.
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3.7.2 Summary

This chapter has presented an overview of preimage and related research. There are two 
items that are particularly of note as the chapter ends: firstly, that SHA-1 preimage 
research (and preimage research in most cases) has not yet resulted in any significant 
success; and, secondly, that there are some alternative formulations of SHA-1 that have 
been suggested in the literature. Notable alternative formulations include:

1. A spliffling phase that uses only a-values, by De Canniere and Rechberger (2008) 
and others:

ai+1 =  (ai ^  5) +  Wi +  f  (ai_ 1 , ai_2 c  ̂ 2, ai_3 c  ̂ 2) +  (ai_4 ^  2) +  ki

2. A partially-unrolled spliffling phase, by Lien et al. (2004):

ai+1 =  ai ^  5 +  fi(bi,Ci,di) +  ei +  £  kiWi
ai+2 =  ai+1 ^  5 +  [f i+ 1 (ai, bi ^  30, Ci+1) +  di +  £  ki+1Wi+1]
ai+3 =  ai+2 ^  5 +  [f i+2(ai+1, ai ^  30, bi ^  30) +  [ci +  £  ki+2Wi+2]]
ai+4 =  ai+3 ^  5 +  [fi+3(ai+2, ai+1 ^  30, ai ^  30) +  [bi ^  30 +  £  ki+3Wi+3]]
ai+5 =  ai+4 ^  5 +  [fi+4(ai+3, ai+2 ^  30, ai+1 ^  30) +  [ai ^  30 +  £  ki+4Wi+4

Formulation (1) will be discussed in Chapter 4. Formulation (2) is worth noting because 
it explicitly draws out the data dependencies of a single round; these dependencies will 
be discussed in their own section in Chapter 4.2.4 as well.



Chapter 4

An in-depth exploration

In this chapter an in-depth exploration of the SHA-1 hash is conducted. The chapter 
begins with an analysis of the message-expansion phase, followed by a similar analysis of 
the spliffling phase. A summary of the analysis thus far is presented and this is followed 
by a more unusual non-binary formulation. The chapter ends with a short recap of how to 
go from a “final” single-block hash function output to the compression function output.

4.1 Message-expansion analysis

Recall from Section 2.4 that the message-expansion equation is

Wr>16 — (Wr_3 © Wr_8 ® Wr_ 14 ® Wr_16) ^  1

As the expansion sequence progresses, more of the data-words tend to be used in each 
round. For the initial expansion-word w16, only four data-words are used: w16 =  (w13 © 
w8 © w2 © w0) ^  1. However, by the time that w34 (for example1) is considered, every 
data-word is used at least once.

1Note that w34 will appear in many places, but that should not be taken as meaning that it is 
significant in and of itself. It is of sufficient complexity to demonstrate some points, while still being 
simple enough for the necessary calculations to not overwhelm the reader or dominate the text. It also 
provides a common point of reference for comparing different calculation methods and representations.

36
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Exam ple 4.1. Increasing usage of data-words. To see that every data-word will be 
used at least once by w 34, the expansion-word can be unpacked in its entirety through 
substitution:

W34 — (W31 © W26 © W20 © W18) —  1
=  (((W28 © W23 © W17 © W15) —  1) © ((W23 © W18 © W12 © W10) —

1) © ((W17 © W12 © W6 © W4) —  1) © ((W15 © W10 © W4 © W2) —  1)) —  1 
=  (((((W25 © W20 © W14 © W12) —  1) © ((W20 © W15 © W9 © W7) —  1) ©

((W14 © W9 © W3 © W1) —  1) © W15) —  1) © ((((W20 © W15 © W9 © W7) — 
1) ©((W15©W10©W4©W2) —  1)©W12©W10) —  1)©((((W 14©W9©W3© 
W1) i—3 1) © W12 © W6 © W4) —3 1) © ((W15 © W10 © W4 © W2) i—3 1)) i—3 1

=  (((((((((((((W13 © W8 © W2 © W0) —3 1) © wn © W5 © W3) —3 1) ©
W14 © W8 © W6) i 3 1) © ((W14 © W9 © W3 © W1) —3 1) © W11 © W9) —3 
1)©((((W14©W9©W3©W1) i 3 1)©W12©W6©W4) —3 1)©W14©W12) —’ 
1) © ((((((W14 © W9 © W3 © W1) i 3 1) © W12 © W6 © W4) i 3 1) © W15 © W9 © 
W7) i 3 1) © ((W14 © W9 © W3 © W1) i 3 1) © W15) i 3 1) © ((((((((W 14 © 
W9 © W3 © W1) i 3 1) © W12 © W6 © W4) i—3 1) © W15 © W9 © W7) i 3 
1)©((W15 ©W10 ©W4 ©W2) i 3 1) ©W12 ©W10) i 3 1)©((((W14 ©W9 ©W3 © 
W1) i—3 1) © W12 © W6 © W4) i 3 1) © ((W15 © W10 © W4 © W2) i—3 1)) ——3 1

Another formulation of the expansion process takes into account the fact that an expansion- 
word, once calculated, may be used several times but cannot change its value. For in­
stance, w17 is referenced directly by W20, w25, and w31, and indirectly by any expansion- 
words that make use of these (such as w23, which references w20). Expansion-words can 
therefore be represented as partial results that lead to a final result.

At the level of bits, the bit which is affected by flipping another bit depends entirely on 
the number of rotations used to calculate the expansion-word. The number of rotations is 
the same as the depth to which the expansion is nested, since each level of nesting results 
in a left-rotation by a single bit-position. Therefore w%r will have the equation

Wi
r

w'r when r <  16

wr+3 © wr+8 © wr+14 © wr+16 otherwise
(4.1)
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Exam ple 4.2. Partial results leading to a final result.

W16 — (W13 © W8 © W2 © W0) —  1 
W17 =  (W14 © W9 © W3 © W1) i 3 1 
W18 =  (W15 © W10 © W4 © W2) i 3 1
W19 =  (W16 © W11 © W5 © W3) i 3 1
W20 =  (W17 © W12 © W6 © W4) i 3 1
W22 =  (W19 © W14 © W8 © W6) i 3 1
W23 =  (W20 © W15 © W9 © W7) i 3 1
W25 =  (W22 © W17 © W11 © W9) i 3 1
W26 =  (W23 © W18 © W12 © W10) —3 1
W28 =  (W25 © W20 © W14 © W12) —  1
W31 =  (W28 © W23 © W17 © W15) —  1
W34 =  (W31 © W26 © W20 © W18) —3 1

Using equation 4.1 it is trivial to obtain an equation which is dependent upon data-words 
only, for any bit of any word, by expanding each term fully.

Exam ple 4.3. Expanding a message-expansion equation.

w30 =  w 331 © W3g © w 32 © W3q

=  W00 © W05 © W°° © W0 © W°5 © W00 © W0 © W° © W32 © W30 
=  wj7 © wj2 © w 6 © w 4 © W05 © W0 © W00 © W05 © W00 © W° © W0 © W32 © W30
=  W24 © W2 © wf © W2 © wj2 © W2 © w\ © W05 © W0 © W00 © W05 © W00 © W° © 

W0 © w 32 © w 32

Later rounds tend to use more data-words than earlier rounds, as shown by Example 4.1, 
and they also tend to use more data-bits. The identities x  © x  =  0 and x  © 0 =  x  can be 
used to reduce the number of terms: any symbol that appears an even number of times 
can be removed from the equation entirely, and any symbol that appears an odd number 
of times can be replaced by a single instance of itself. For simple equations such as w 34 , 
the usefulness of this optimisation is limited. After application of the optimisation, w ^ ’s 
terms are reduced from 67 to 23. For later expansion-words with many dependencies, the 
optimisation is more significant:
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Exam ple 4.4. An analysis of w09. The expansion of w<09 results in a set of 162,007 
terms, viz. truncated:

W09 =  W45 ©W5 ©Wf ©Wf ©W54 ©Wf ©Wf ©W55 ©Wg ©Wg ©W62 ©W7 ©Wl ©Wl © w74 ©
W52 © W54 © W6 © wg © W62 © W7 © wl © W7 © W74 © Wg © W^ © W7 © W7 © W7 © 
W74 © wl © Wl © W74 © W8 © W8 © W^ © Wf © Wf © Wf © W93 © W5 © Wf © Wf © wf4 © 
Wf © Wf © Wjg ©wg ©wg ©wg © w63 © w" © Wjg © W6 © wg ©wg © w64 © w6 © w| © 
Wg4 © wl © wi7 © W72 © w0 © w| © Wf © W83 © Wf4 © Wg © Wg © w86 © w63 © Wg © 
w| © Wg4 © W7 © wi7 © W7g © w0 © W88 © w8 © W83 © wg2 © Wg3 © wl © wi7 © w7g ©
w0 © W88 © w8 © w83 © w7 ©W70 ©w0 ©W88 © w8 © w83 © w8 © w88 © w83 ©Wf © w49 ©
Wf0 © Wf5 © Wf © Wf © W55 © Wg © Wg © Wg2 © W7 © wl © w97 © w74 © Wf © Wf1 © 
Wg ©Wg © Wg © Wg4 ©Wg ©w86 © Wg4 © wj © wf ©w7g © w8 © w88 © w8 ©w83 © w"5 © 
Wg ©Wg © Wg © Wg4 ©Wg ©Wg © Wg5 © wj © Wl ©W72 © W8 © W88 © wf ©W8U © Wg2 © 
Wg4 © W7 © Wl © W72 © W8 © W88 © W8 © W84 © Wl © W7n © W8 © W8 © W8 © W84 © 
W88 © W88 © W84 © Wf © Wf © Wf1 © Wg0 © Wg0 © Wg0 © W10 © w46 © Wg © Wg2 © w7 © 
W7 © W7 © W74 ©Wg ©Wg ©Wg4 © W7 ©Wl ©W7g ©W88 ©W88 © w8 © w83 ©Wg2 ©. . .

These can be reduced from 162,007 terms to a mere 75.

W09 =  w0 © W22 © W7 © W8 © W15 © W18 © W20 © W88 © w22 © w22 © w15 © wg6 © w28 © 
wf0 © wf1 © Wg © w412 © w414 © W7 © wg2 © wf1 © wg © Wg2 © w24 © wg° © Wf © 
W88 © Wg1 © Wg2 © Wg3 © w18 © w8 © Wg2 © w816 © w|0 © w|2 © Wf © Wl © wf © 
Wg1 © Wg3 © W15 © Wg6 © Wg9 © Wg0 © Wg2 © Wg0 © W7g © W8g © Wgg © Wg4 © 
W g 5 © W g 6 © W g 9 © W2 g © W 62 © w82 © W 12 © W g 4 © W 188 © W 12 © W 19 © W22 © 
W 74 © W 19 © W4" © W f5 © W g5 © W75 © W8" © W g g © W 13 © W g 4 © W gl © W g 8

4.1.1 The impact of bits

The equation for w06 (i.e., w06 =  wg3 © wg © wg © wg) is a simple one in the sense that 
each position is only mentioned once. Solving for acceptable values is a trivial task: any 
four bits which, when XORed together, result in the desired bit are acceptable. Later 
expansion-bits, such as w22, have more interesting equations.
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W02 =  W3 © wf, © wf © wf © wg © w g © w 3 © w2g © w33 © wg4 (4.2)

Notice that w8 appears twice in this equation, with offsets 1 and 3. If we choose

01000000000000000000000000000000b

as our W8 and leave all other words as zero, then

W202 =  0 © 0 © 0 © 0 © 0 © 1 © 0 © 0 © 0 © 0 =  1
W22 =  0 © 0 © 0 © 0 © 0 © 0 © 0 © 0 © 0 © 0 =  0

. w°2'28 elided for brevity
W2229 =  0 © 0 © 0 © 0 © 0 © 0 © 0 © 0 © 0 © 0 =  0
W2320 =  0 © 0 © 0 © 0 © 0 © 0 © 1 © 0 © 0 © 0 =  1
W232 =  0 © 0 © 0 © 0 © 0 © 0 © 0 © 0 © 0 © 0 =  0

The final value of w22 is

10000000000000000000000000000010b

In other words, a 1-bit at offset 1 of W8 has affected two output bits. This is because the 
set bit participates in the final value twice: see the boldfaced entries above. This happens 
because a unique reference to w8 occurs twice in Equation 4.2. If a unique reference were 
to occur n times, bits set from that word would participate n times in the expansion-word.

One consequence of this is that bits within the same word expansion-word can affect each 
other: if W8 had the value

01010000000000000000000000000000b

the final value of W22 would be

00100000000000000000000000000010b

Notice that index 0 of w22 is no longer 1, despite index 1 of w8 being set. This is because 
the two bits have canceled each other out.
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The two affected output bits are separated by a single bit-position — just as the data-word 
indices, 1 and 3, are separated by a single bit-position. This makes it possible to describe 
the combined effect of the data-word terms on the expansion-word more concisely by 
expressing them as bit-patterns. Bit-patterns for each expansion-word, for each position, 
are shown in Table 4.1. Upon examination of this table, it is interesting to note that in 
some of the later expansions (such as w 78) it is evident that certain data-words (such as 
wg) have no effect upon the expansion-word whatsoever. For other expansions, such as 
w 79, the table shows some words (such as w 9) having a marked effect upon the expansion- 
word, whereas other words (w 9 or w 2, for example) have little impact.

Bit-patterns represent only the effect of a particular bit on the final expansion-word; 
information about positions and indices of the equation terms is lost. When combined 
with this information, bit-patterns can be used to determine the value of a particular 
expansion-word via lookup tables instead of partial calculations. This means that the 
calculation of later expansion-words, such as w 79, can be accomplished without needing 
to calculate intervening expansion-words. The size of the lookup table is not exorbitant: 
16 x 64 =  1024 entries are needed.

If we assume that such a lookup table exists and is indexed by data-word position dp and 
expansion-word position ep such that lookup(dp, ep) returns the appropriate bit-pattern 
for index 0, then the equation for wlr would be

15
w%r =  (J) (lookup(dp,r) ^  i) (4.3)

dp=0

This method of calculating an expansion word will be called the bitpattern method of 
calculation in the remainder of this thesis.

Algorithm 4.1 expresses Equation 4.3 in a more concrete form, unrolling the hypothetical 
lookup function. The input to this is a table (i.e. two-dimensional array) of bitpatterns; 
the desired round r ; the desired index i ; and the 16 data-words dw. The bitpatterns input 
is indexed first by the desired round, and next by the data-word rounds. Each bitpattern 
encodes the pattern (bp) and the offset from the start of the word (shift) as a 2-tuple of 
words.

The majority of the time in Algorithm 4.1 is spent checking whether particular bits in 
words are set and, consequently, whether the relevant bitpattern should be XORed. An 
alternative implementation could precalculate and store the appropriate W0 calculations
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A lgorithm  4.1 Bitpattern calculation method 
Require:

A 80 x 16 2-dimensional (unsigned integer, unsigned integer) array bitpatterns 
0 <  r <  79 
0 <  i <  31
A 16-element array unsigned integer data-words dw 

Ensure:
A single bit representing wlr G 0,1 

1: function wVAEVE(bitpatterns,r,i,dw)
2: final ^  0
3: pattern ^  bitpatternsr
4: for idx ^  0..31 do
5: for dr ^  0..15 do
6: shift, bp ^  patterndr
7: if (0x80000000 ^  (idx +  sh ift)) A dwdr then
8: final ^  (bp ^  idx) © final
9: return final,

10: end function

A lgorithm  4.2 Obtaining terms for w%r 
Require:

A 64-element array of precalculated (0 <  r <  15, 0 <  i <  31) tuples baseEquations 
0 <  r <  79 
0 <  i <  31 

Ensure:
A sequence of (0 <  r <  15, 0 <  i <  31) tuples indicating relevant data-word bits 

1: function wTERMS(baseEquations, r, i)
2: if r <  15 then
3: yield (r, i)
4: else
5: for (r/,i/) in baseEquationsr - l6  do
6: yield (r', ( i  +  i)%32)
7: end function



4.1. MESSAGE-EXPANSION ANALYSIS 43

for each position as 2-tuples, resulting in a 64-entry lookup table. Algorithm 4.2 shows 
such an algorithm and Appendix A provides the concrete data to be used as the baseE- 
quations input. Each tuple obtained from the w T e r m s  function refers to a bit of the 
data-words which can be looked up easily or analysed further.



Table 4.1: Message-expansion bit-patterns (• =  1, • =  0)
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4.1.2 Common subexpressions

Bit-patterns indicate which bits of which words participate in which expansion-word calcu­
lations. They may also be used to understand inter-bit relationships by examining which 
bits of which words participate together, or co-occur, in expansion-word calculations.

Since message-expansion works with 32-bit values, every inter-word relationship will be 
repeated 32 times with an identical offset. For example, if (wf1, wf0) co-occur, then so will 
(wf0, wf9), (wf9, w 8̂), (wf8, wf[), (wf7, wff), and so on for 27 additional co-occurrences. It 
adds little to the understanding of message-expansion to repeat such co-occurrences, and 
co-occurrences have therefore been represented as a base round followed by co-occurring 
round- and bit-offsets. The sequence that has been mentioned would thus be compactly 
represented as 111—f ; and in general, an n-tuple co-occurrence would be represented as

basel±%I - ■ - l±t"„ ■

Table 4.2: Co-occurring 2-tuples during message-expansion

Participation Co-occurrences
98 11|+f
93 12|+1
81 2 l+o|- f
79 3|+f
75 8|-8
74 8|+6, 5|+i, 131—1
73

O 00 
+ 1 
Oi

72 9|+6, 101+8, 111+8, 6|—f, 141+f
70 4|+f, 51 +f, 7|+f, 15|+f
69 10|+6, 12|+0, 10|+0
68 11|+6, 6|+f
67 8|+f, 11|+f
66 12|+6, 9|+f

65..1 elided for brevity

Table 4.2 lists 2-tuples, in order of the number of expansion-word calculations that they 
appear in, and Tables 4.3 and 4.4 do the same for 3- and 4-tuples. The “Participation” 
column of these tables shows the number of calculations that a particular co-occurrence 
participates in. This number may be greater than the number of expansion-words (i.e. 64) 
since there may be multiple co-occurrences per calculation. For example, the calculation 
of w°5 involves wf, wf, w^, and wf1. The relationships (w ^w ^) and (w f,w f1) can both
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Table 4.3: Co-occurring 3-tuples during message-expansion

Participation Co-occurrences
77 141+1|+1|-3 |-6
74 14|+1|+4 , 131+1111
72 151-11-4 , 151+31-6 , 141-31-2 , 131+31+5
70 131+31- 2 , 141+31-3
68 131+31 — 30 , 14|+3|- 30
66 15|+3i+8 , 14|+3i-
65 15 i+b- 2|-3 1- 10
64 15 l + 3l- 4|-3 1- 12

63..1 elided for brevity

Table 4.4: Co-occurring 4-tuples during message-expansion

Participation Co-occurrences
44 11 1 + 11 +21 +3 |-3 1- 61- 9
43 121 + 11 +21 +3 |-3 1- 61- 9
39 -2 +0 +0 +1 +0 +1 +01 +0 +0 |- 2|- 61- 8 |-3 1- 61- 9 |-  51- 11|- 13
38 81 +0i + 1i + 1 14 | +01 +0 +0|- 2|-3 1- 5 |-5 1- 11|- 13
37

131 -11 -11 -1 oi -11 +01+0 9| -21 +01 +0 11 I + 11 +01 + 1131- 21- 81- 10 , 8|-5 1- 61- 8 , 9|- 21- 61- 8 , 1 1 \-31- 61- 11,+0 +1 +1 +0 +1 +1 U21 - 31 -5 1 -2 1 -3 1 -5
111-31+0\-8 , 121-31+01-9 ,

36
14 |- 11- 11-1 9|-11 +01 +0 o 1 -11 +01 +0 11 | +01 + 11 + 1U 21 — 81 —10 U 51 — 61 — 8 U 31 — 61 — 8 U 2U 3 U 5>5 |+0i + 1i + 1 11 | +0 i + 1i + 1 11 | + 1i + 1i + 1 11 | + 1i+0i + 1\-21 - 31 -5 1 - 61 -9 1 -11 1 - 31 -9 1 -11 1 -3 1 - 81 -11

121-31+01-8 , 111-61+01-9 ,

35
81 -11 -11 +0 101 +0| + 1|+2 11 |+01 + 11 +2 121 + 11 +01 + 1 U 3 U 5U 8 U 2U 3U 6 U 2U 3U 6 U 3U 6U11 > 11 1 +01 +01 + 1 121+01 +01 + 1 151 +01 +0 +0 1 - 61 - 81 -11 1 - 61 - 81 -9 1 -5 1 -111 -13

6\- 2i-3\-1 , 121+11- 01+11,

34..1 elided for brevity

be represented by the co-occurrence 111+3, and this co-occurrence is therefore counted 
twice for the calculation of w25.

Many of the inter-word relationships are simply a restatement of the existing spacings of 
2, 3, 5, 6, 8, 11, 13, 14, and 16 which are a consequence of the offsets used for message- 
expansion calculation in the canonical SHA-1 algorithm. Some, however, are not; for 
example, neither 14|+3—4’s round offset nor 21 +§’s bit offset is a obvious spacing.

An understanding of co-occurrences makes it easy to create additional intermediate words 
which simplify expansion-word calculations. These intermediate words are not necessarily 
identical to the words used during traditional message-expansion calculations. The length 
of the tuple that co-occurs and the participation of the tuple indicate the decrease in bit-
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pattern components that is possible, if an intermediate word representing that tuple is 
generated. For example, Example 4.4 shows that w°9 involves

.. .  © w 1 1 ® w 82 ® w [5 © w 1 5 © w 1 2 ® w 11 ® w 2 1 ® w 18 ® w 17 ® .. .

A quick examination reveals that this is equivalent to three occurrences of the 3-tuple 
151 +31 - 4, which participates 72 times in SHA-1 message-expansion (see Table 4.3). A 
3-tuple a can represent the exclusive-or of three words, b © c © d, reducing the number of 
exclusive-or operations by 2 each time that it us used. If one creates an intermediate word 
w' =  w15 © (w12 ^  3) © (w11 ^  4), then the specified portion of w°9’s equation can be 
represented as w7 © w11 © w17 instead, reducing 8 exclusive-or operations to 8 — 2 x 3 =  2. 
The intermediate word w' can still be used a further 72 — 3 =  69 times during SHA-1 
calculation, reducing the number of exclusive-or operations by an additional amount of 
69 x 2 =  138.

Although it is possible to generate exhaustive lists of co-occurring n-tuples, the utility of 
doing so decreases sharply as n increases. This is because the participation of co-occurring 
tuples decreases as n gets larger, as can be seen from Tables 4.2, 4.3 and 4.4.

4.1.3 Inversion

For a particular expansion-word wr, the data-word bits that could affect the expansion- 
word are given by expanding equation 4.1. Since bits in the expansion-word are deter­
mined through XORing, a 1-bit in an expansion-word must be due to an odd number of 
relevant data-word bits being set. Similarly, an 0-bit in an expansion-word must be due 
to an even number of relevant data-word bits being set.

By going through the bits of any concrete expansion-word, we can obtain a set of linear 
equations which we have called expansion-equations. Any set of data-word bits which sat­
isfies all of these expansion-equations will result in that concrete expansion-word. A simple 
Davis-Putnam-Logemann-Loveland-style backtracking algorithm (Davis, Logemann, and 
Loveland, 1962) is sufficient to enumerate all possible data-word values. Alternatively, 
the data-word bits can be regarded as a boolean vector that should have either an odd (if 
the result should be true) or even (if the result should be false) Hamming weight. Setting 
the bits can be done with very little overhead, and it is easy to see that a total of 2n-1 
suitable combinations exist for every n-bit vector.
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Padding and length-extension occur before message-expansion and affect the data-words 
to be processed by message-expansion. Therefore, while every solution to a set of expansion- 
equations is a valid solution, it is not true that every solution is a valid set of single-block 
SHA-1 data-words. For example, a solution that has w15 =  0, w14 =  0, and w0 =  0 cannot 
be valid: the length (as encoded in w14j15) indicates that the data is zero bits long, but 
w0 contradicts this. While not strictly necessary, it is interesting to find an efficient way 
to choose only valid solutions. Such solutions must satisfy the following conditions:

1. Each block is 512 bits long, with the exception of the last block, which may be up to 
447 bits long. Let len be the total length of the input, as encoded in w14>15 of the last 
block. Since 0 <  len <  447, wu  =  0, w15 A 11111111111111111111111000000000b =  
0, and the terminator bit must be found at w\Pn.

2. The bit at the terminator position must be 1.

3. All bits between the terminator position and w15 must be 0.

One way to ensure compliance with these conditions is to discard any solution which 
doesn't meet the conditions. A better way can be found by observing that message- 
expansion is achieved by XORing values together, and neither terminator nor padding nor 
encoded-length are treated specially in this regard. Therefore, we can use the following 
steps to create expansion-equations which must result in a valid solution:

1. For an expansion word wi which is expanded from a data-word block of length len, we 
can create a “template” set of data-words with the length and terminator bits filled- 
in and use it to calculate an expansion-word w^. Let win =  wi © w^. The modified 
expansion-word win is equivalent to an expansion-word generated from correctly- 
terminated data-words where w14 =  0 and w15 =  len, and expansion-equations 
based on it are equivalent to expansion-equations that took the terminator and 
length into account.

2. Generate expansion-equations for each bit in win. Modify each expansion-equation 
to only contain values in the range [0..len). If there are no expansion-equation terms 
within that range, then

(a) if the result of an expansion-equation is 0, then the expansion-equation can be 
left out entirely.

(b) if the result of an expansion-equation is 1, then there is no possible combination 
of terms within [0..len) that can result in the desired expansion-word.
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4.2 Spliffling analysis

The SHA-1 compression function applies a series of operations over the course of 80 
rounds. In theory, if the operations to be applied are known, then it should possible to 
find a single equation which represents the end result of all the operations.

As noted in the literature (Lien et al., 2004; De Canniere and Rechberger, 2008), the 
standard formulation of spliffling (see Algorithm 2.1 on page 18) can be streamlined 
somewhat. Whereas the standard formulation uses a, b, c, d, and e variables, only the 
a variable is necessary. The a value is the only one that undergoes a destructive change 
from one round to the next: the new b, d, and e values merely copy values that already 
exist, and the new c value is a left-rotated b value, which is a non-destructive operation. 
In other words, for a round r:

br =  ar- 2
Cr =  ar—3 ——3 30 
dr =  ar—4 ——̂ 30 
er =  ar_5 ——3 30

We can therefore obtain an equation similar to De Canniere and Rechberger’s (2008) for
ar:

ar (ar -1 — 3 5) +  f  (br -1, cr -1, d,—1 ]) +  er -1 +  kr -1 +  wr -1
(ar -1 ——3 5) +  f  (ar -2, ar - 3 —— 3 30, ar - 4 —— 3 30) +  ar -5 —— 3 30 +  kr -1 +  wr -1

Consider the operations that occur to obtain the value of ar. Based on Equation 4.4 and 
taking into account the necessary rotations, an initial formulation may look like

(4.5)
i+5 +  f i+5 (bi+5 ci+5 di+5 ) +  ei+5 +  ki+5 +  wi+5 r—1 \ Jr—1 \br_ 1,c^_ 1, d _̂ 1 J \ e^_ 1 1 1

ar+1 +  fr+5 (ar_■r_2, air+_33>, air+_30 ) +  a.i+30 +  ki+ 5 +  wi+5r—5 \ kr_ 1 \ 1

iar

4.2.1 Carry calculations

When bits are added in a column to arrive at the value of air, carries into one or more 
columns ai-1, ...,ai-m may occur. The number of columns directly affected by the carry
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from a single column is one less than the bit-length of the maximum possible result of a 
column addition. We give the name v0ir to the carry-digit generated by column a^ 1 which 
affects column air; v1, is the carry-digit generated by column ar+2 which affects column 
a'r; and so on.

Exam ple 4.5. v0 and v1 values. To see the use of v0 and v1 values in a more visual 
way, consider the following example of adding five binary numbers where each v0 and 
v 1 value has been colored to be the same as the column that resulted in its creation.

25 24 23 22 21 20 column value
1 1 0 0 0 v0
0 1 1 0 0 v 1

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

1 0 0 0 1 1 result

The value of v0, depends on a^ 1 for all values of i except for 26. This is because when 
i =  27, Equation 4.6 is a2?7 =  a0°_1 +  f ^  +  e ^  +  k°_1 +  w°_1 and it can be readily 
seen that this is an equation involving the most significant bits of these words. Since any 
carries from this position is irrelevant, v0 6̂ =  0. The same reasoning makes it clear that 
v 1̂ 6 =  0 and v 1̂ 5 =  0.

There are five bits, obtained from the respective values of a, f , e, k, and w, that participate 
in the addition in equation 4.6. The maximum possible result of adding the appropriate 
bits to generate a 6̂ is therefore 5 (101b). The bit-length of 101b is 3; therefore, the 
maximum number of columns that can be directly affected by the carry from a single 
column is 2. However, v024 and v 124 are potentially non-zero, and so the calculation of 
a 4̂ must account for bits to arrive at a maximum possible value of 7 (111b). Happily, 
the bit-length of this is 3, and so the maximum number of columns that can be directly 
affected by the carry from a single column is still 2.

When will v0'r be 1? The result of the appropriate addition must be either 10b, 11b, 110b, 
or 111b for this to happen; or, equivalently, we can say that exactly 2, 3, 6, or 7 of the
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bits must be 1. If we take the combinations of a set of boolean variables S , and say 
that for each combination U, let U' be the complementary set —(S \ U), then by joining 
all elements of each U and U' using A it is trivial to obtain individual explicit formulae 
for each case where exactly j|j bits are set. Let q(n, S) be a function which generates such 
formulae and joins each formula to the next with V . Now we can describe a function 
v0(r, i), which calculates a v0'r value, as

v0(r, 26) =  0

v0(r, 25) q(2, S) V q(3, S)

where S =  {a26, f f , e f ,  k f , w f }

v0(r,i £  {25, 26}) q(2, S) V q(3, S) V q(6, S) V q(7, S)

where S =  {a^ 1 f
j  i
i+1
r ei+1 k'+1 wi+1 v0r+1,v 1r+1}

A similar argument applies to the question of when v1, will be 1. The result of the 
appropriate addition must be either 100b, 101b, 110b, or 111b; or, equivalently, we can 
say that exactly 4, 5, 6, or 7 of the bits must be 1. Therefore,

v1(r,i e {25,26}) =  0

v1(r, 24) q(4, S) V q(5, S)

where S =  {a;:6, f f ,  e f , k f ,  w f }

v1(r, i £  {24..26}) q(4, S) V q(5, S) V q(6, S) V q(7, S) 

where S =  {ar+2, fi+2, er+2, klr+2 ,wr+2,v 0 r+2 ,v 1r+2}

The basic idea presented above is to model carries separately from additions, and then 
reintegrate them into the calculation at a later stage. The idea is not unique, and should be 
familiar to a student who has studied basic circuit design as a ripple-carry adder. Legendre 
et al. (2012) describe essentially the same model of addition, arriving at it in a different 
way and pointing out that it is a model which uses the fewest number of variables out of 
all the considered alternatives, and Nossum (2013) represents the constraints algebraically 
with the same ripple-carry design being the result.

A great deal of work has examined the probabilities of carries during addition, given par­
ticular conditions, and their cryptographic significance from the collision perspective. A 
representative precis of this work is that 5-operand addition is a biased operation that
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tends to generate a carry slightly more often (a +133% probability) than not (Staffelbach 
and Meier, 1991); efficient algorithms exist to calculate the differential properties of ad­
dition (Lipmaa and Moriai, 2001); and an analysis of the probability of a run of carries 
is quite possible (Borodin, Diaconis, and Fulman, 2010). From the perspective of SHA-1 
preimage-resistance, the probabilities involved in 5-ary addition provide an edge that is 
too slight to lead directly to a practical preimage attack; however, they may be useful for 
guiding the actions of a constraint solver (see Chapter 11).

Optim isation: accounting for known k

The value of a k bit is known beforehand. Following on from our reasoning in the previous 
section, if k =  0 then the k value cannot affect any carry and we need not consider it as 
part of S . Conversely, if k =  1 then there is are fewer bits in S that are needed for a 
carry to occur; therefore, we can remove k from S and reduce the n parameter of the q 
function by 1.

We remove k from S and add it as a parameter to the existing (r, i) parameters of v0 and 
v1 functions. After making this change, the v0(r, i, k) functions look like

v0(r, 26, k) =  0

v0(r, 25, 0) 

v0(r, 25,1)

q(2, S) V q(3, S) 

q(1, S) V q(2, S) 

where S =  {a ;:6, t f 6, e2 ,w ‘T&}

v0(r,i £  {25, 26}, 0) 

v0(r,i £  {25, 26}, 1)

q(2, S) V q(3, S) V q(6, S)

q(1, S) V q(2, S) V q(5, S) V q(6, S)
where S =  { air+1 fr+1, er+1, wr+1, v0:i+1r v1r+1}

Similarly-modified equations can be obtained for v1(r, i, k).

This optimisation reduces the number of equations that need to be combined. For exam­
ple, q(2, S) V q(3, S) V q(6, S) V q(7, S) when |S| =  7 means that ^  ^  +  (2) =  64
equations must be combined. Since k is known, we can remove it from S so that |S | =  6. 
Then if k =  0, we need only combine Q) +  Q) +  Q) =  36 equations; and if k =  1, we 
need only combine ^  +  5̂) +  (6) =  28 equations.
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Optim isation: m inimising equations

A second optimisation can be realised by minimising equations. Given an equation such 
as q(n0, S) Vq(n1, S) V . .. Vq(nm, S) Vq(6, S), we can use boolean function minimisation to 
obtain a minimal form for this equation. The Espresso algorithm (Brayton, Sangiovanni- 
Vincentelli, McMullen, and Hachtel, 1984), as implemented by Logic Friday2, was used 
to find exact minimal forms. Assuming suitable a, f , e, w, v0, v1 values in S , the resulting 
non-constant v0(r, i, k) and v1(r, i, k) equations are as follows:

v0(r, 25, 0) 

v0(r, 25,1)

f  A (a A — w V — e A w V —a A e) V — f  A (w A (e V a) V a A e) 

—a A ( f  A— w V— e A w V e A—f ) V a A (—w A (—f  V—e) V— e A—f )

v0(r,i £  {25, 26}, 0)

v0(r,i £  {25, 26}, 1)

v1(r, 24, 0) 

v1(r, 24,1)

—a A—e A—v0 Av1 Aw V f  A (a Ae Av0 Av1 A w V— w A (a A—e A 
—v0 V (a A —v1 V —a A v1) A —(v0 V —e)) V —v1 A (a A — e A —v0 V 
—a A (v0 A — w V — e A w V e A —v0))) V — f  A — (a A v0 A—v1 A w V 
—e A —(a A v0 A v1 V a A (v0 A — w V —v1 A w V —v0 A v1)) V e A 
— (v0 A —(a A w V a A —v1) V— w A (v1 A —(v0 V—a) V v0 A —v1))) 
a A f  A v0 A v1 A w V— e A —(a A — f  A v1 A— w V —v0 A —(a A — f  A 
w V — w A (a © f )) V —v1 A — ( f  A (a A — (w V —v0) V —a A v0) V 
f  A —(w A —(v0 V —a) V—a A—v0))) V e A —(a A—f  A—v1 A — w V 
a A f  A v1 A w V v0 A (a A f  A w V v1 A (w A ( f  V a) V a A f )) V 
—v0 A —(a A — f  A — w V —v1 A —(w A —( f  V —a) V —a A — f ))) 
a A f A e A w

a A e A w V f  A (w A (e V a) V a A e)

v1(r, i £  {24..26}, 0) =  aAeAv1AwVf A(aAeAwVv1A(wA(eVa) VaAe)) Vv0A(aAeA
w V f A(w A(eVa)VaAe) Vv1 A (f A(eVa) Vw A (f VeVa)VaAe)) 

v1(r, i £  {24..26}, 1) =  aAeAw Vf A(wA(eVa) VaAe)Vv0A(f A (eVa)VwA(f VeVa)V
aAe) V v1A (f A (eV a) Vv0 A (f VeVa) Vw A (v0Vf V eVa) VaAe)

4.2.2 Component functions

As briefly discussed in Section 2.4, the component f -equations are “choice” , “majority” , 
and “parity”. Their truth tables are given as Table 2.2 (p. 19).

2Homepage: http:/ /sontrak.com/

http://sontrak.com/
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The f-value is calculated using b, c, and d values —  which are, as discussed above, merely 
previous incarnations of a values —  and therefore relies upon a comprehensive equation 
for a to have any sensible meaning. Assume that such an equation exists for the moment; 
it will be fully specified in Section 4.2.3. The f-value (as distinct from the f-function) is 
calculated before the additions of equation 4.5, and it is therefore possible (and usually 
convenient) to regard f  as a single value rather than a function. The f -function and the f - 
value are distinguished by always following the former with its parameters in parentheses.

A more readable formulation of equation 4.5 is thus

air ai+5 r—1

ai+5
r—1

+  fr+5 

+  fr+5

+ er—1 + k + + w —1 

+  ar—30 +  kS—1 +  w —1
(4.6)

Five-operand addition can be represented as the function + : { 0 ,1} 5 ^  {0 ,1}3, with
the least significant bit being the “sum” bit and the remaining two being “carry” bits. 
The {0 ,1} 3 vector will be denoted by s in this section and, by an abuse of notation, the 
function which generates each bit will be denoted in the same way. The truth tables for 
5-ary addition are given as Table 4.5.

Table 4.5: 5-ary addition truth tables

0 1 1 0 1 00 110 010 110 100 10 110 011 010 01
s1 00010111011111100111111011101000

s2 00000000000000010000000100010111

The properties of these boolean functions will be considered in this section; Chapter 8 
of Preneel’s 1993 thesis, as mentioned in Section 3.3 gives an overview of most of the 
important features that should be examined and Braeken (2006) provides a more up- 
to-date (but narrower) exploration. A boolean function can be stated in many ways. 
Some of those ways are “canonical” : when two functions which may have different initial 
formulations are formulated in the same canonical way, then they are guaranteed to 
be identical. The most important canonical forms —  Algebraic Normal Form (ANF), 
Conjunctive Normal Form (CNF), and Disjunctive Normal Form (DNF) —  are presented 
as Table 4.6.



Table 4.6: Canonical forms of component functions

ANF CNF DNF
Choice (6 A  c) ©  (6 A  cl) 0  cl (-i& V  c) A  (6 V  d) (6 A c )  V  (-i& A  d)

Majority (b A  c) 0  (6 A  cl) 0  (c A  cl) (6 V  c) A  (6 V  d) A  (c V  d) (b A c )  V  (b A  cl) V  (c A  d)

Parity b 0  c  0  cl
(—'& V  —>c V  d) A  (—'6 V  c V  “ id) A  (b V  

-ic  V  -id ) A  (6 V  c V  cl)

(6 A c  A  cl) V  (6 A  -ic  A  -id ) V  (->6 A  

c A  —id) V  (—1& A  —'C A  cl)

so lo 0  A 0  t2 ©  *3 ©  *4

(to V - 111V —it2 V  —d3 V  —114) A  (—ito V t  i V  

—112 V - d3 V - it4) A ( —'to V - 'ti V t 2 V - it3 V  

—iis)  A  (to V t i  V t 2 V  —it3 V  —iis)  A  (—>to V  

—iti V  —112 V  is V  —iis) A  (to V  t4 V  —>t2 V  

t3 V  —114) A  (to V  —iti V  t2 V  t3 V  —iis) A  

(—'to V  t4 V i-2 V  is V  —114) A  (—'to V  —1 i\ V  

—112 V  —it3 V  is)  A  (to V  ti V  —112 V  —it3 V  

t4) A  (to V  —iti V  t2 V  —it3 V  is) A  (—ito V  

ti V t 2 V  —it3 V is) A  (to V - 111V - it2 V t 3 V  

is) A  (—'to V  t4 V  —it2 V is V i s )  A  (—‘to V  

-it i V  t2 V  t3 V  t4) A  (t0 V11V  t2 V  t3 V  t4)

(to A t i  A t 2 A t 3 A t 4) V  (—ito A - 't i A t 2 A  

t3 A t4) V  (—'to A 1 1 A - it2 A t 3A t 4) V  (to A  

—'ti A - it2 A t3 A t4) V ( —'to A t i  A t2 A - it3 A  

is) V  (to A  —iti A  t2 A  —it3 A  is) V  (to A  

t4 A  —it2 A  —it3 A  t4) V  (—ito A  —>ti A  —it2 A  

—iis A  is)  V  (—'to A  i\ A  i-2 A  is A  —'t4) V  

(to A  —'ti A  t2 A  is A  —iis) V  (to A  t4 A  

—>t2A t 3A —it4) V  (—11 o A  —111 A - it2 A t 3 A  

—1 is) V  (to A t i  A t 2 A  —it3 A  —i't4) V  (—ito A  

—iti A t 2 A  —>t3 A  —'t4) V  (—ito A t i  A  —'t2 A  

—it,3 A  —'t4) V  (to A  —111A —112 A  —113 A  —114)

S l

(to a  i i )  0  (to A  t2) 0  (to A  t3) 0  (to A  

t4) 0  (ti A  t2) 0  (ti A  is) 0  (ti A  is) 0  

(t2 A  is) 0  (t2 A  is) 0  (is A  is)

(—iti V  —it2 V  —it3 V  —iis)  A  (—'to V  —112 V  

—1 is V  —iis)  A  (—ito V  —'ti V  —it3 V  —>t4) A  

(—ito V  —iti V  —112 V  —iis) A  (to V  t4 V  

t2 V  is) A  (—'to V  —iti V  —it2 V  —iis)  A  

(t0 V  t4 V  t2 V  is)  A  (t0 V  t4 V  is V  t4) A  

(t0 V  t2 V  is V  is) A  (t4 V  t2 V  t3 V  t4)

(—ito © —‘ti A  t2 A  is) V  (to A  t i A  —112 A  

—1 is) V  (—ito A  ti A  —112 A  is) V  (—>ti A  

—112 A  is A  is) V  (to A  —iti A  —113 A  t4) V  

(—ito © t2 A  —it3 A  is) V  (—'to A  t i A  t2 A  

—1 is) V  (to A  —iti A  is A  —114) V  (ti A  

—112 A  t3 A  —iis) V  (to A  t2 A  —it3 A  —114)

s 2

(t0 A  ti A  t2 A  is)  0  (t0 A  ti A  t2 A  t4) 0  

(t0 A  ti A  is A  is)  0  (t0 A  t2 A  t3 A  t4) 0  

(ti A  t2 A  t3 A  is)

(t0 V  t4) A  (t0 V  t2) A  (t4 V  t2) A  (t0 V  

t3) A  (t4 V  is)  A  (t2 V  t3) A  (t0 V  is)  A  

(t4 V  is) A  (t2 V  is) A  (t3 V  t4)

(to A  ti A  t2 A  is) V  (to A  ti A  t2 A  t4) V  

(to A  ti A  is A  is) V  (to A  t2 A  t3 A  t4) V  

(ti A  t2 A  is A  is)

OlOl
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The algebraic normal form (ANF), also called Zhegalkin polynomial form (Crama and 
Hammer, 2010; Zhegalkin, 1927), is of particular note. This form expresses the function 
as the exclusive-or of conjunctions (i.e., using © and A only), and is useful for examining 
some of the properties of functions. An ANF function makes some properties of a function 
relatively simple to obtain: for example, the degree of a function (also called the nonlinear 
order) is simply the maximum number of variables in any conjunction. It is trivial to see 
that the degrees of choice, majority, and parity are 2, 2, and 1 respectively. The ANF of 
addition gives degrees of 1, 2, and 4 for S0..2 respectively.

The basic properties of note are as follows:

linearity Both confusion and diffusion are achieved through the use of nonlinear func­
tions (Pieprzyk and Finkelstein, 1988). A minimal linear function is a function 
in which the output always depends on all of the inputs. By contrast, a minimal 
nonlinear function is a function in which the output does not always depend on 
all of the inputs. For example, consider the functions f  (a,b,c) =  (a A b) V c and 
g(a, b,c) =  a © b © c which have the following truth tables:

a b c f  (a ,b,c) g(a,b,c)
0 0 0 0 0
0 0 1 1 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
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Note that when c is 1, the other inputs to f  are irrelevant: the output will be
1. However, when c is 0, the other inputs to f  determine what the output value 
will be. It is clear that f  (a,b, c) is a nonlinear function since its output does not 
always depend on all the inputs. By contrast, the output of g always depends 
on each input and g is therefore a linear function. Given an output of 0, it is 
possible to say that an even number of the variables a, b, c are 1-valued in the case 
of g ; however, a similar deduction cannot be made in the case of f . Repeated 
application of different nonlinear functions, using different inputs, increases the 
amount of confusion (O ’Connor and Klapper, 1994).

The parity and s0 functions are linear, but the choice, majority, and s1..2 functions 
are nonlinear. In fact, all boolean functions which have a degree of at most 1 are 
linear. Addition in toto is therefore a nonlinear operation due to the degrees of s1 
and s2. Leurent (2010) makes the point that in “any non-linear function has an 
absorption property for at least one variable” ; this is essentially a restatement of 
the linear/nonlinear definition, but is nevertheless an interesting way in which to 
regard the difference.

A related metric is nonlinearity, which is the number of 1-outputs of a function 
which, if changed to 0, would cause the function to be linear. This gives an indication 
of how much distance there is between a nonlinear function and a linear function. 
Choice and majority have a nonlinearity of 2; s1 has a nonlinearity of 12, and s2 has 
a nonlinearity of 6.

affine An affine boolean function is a function which has a degree of 1. All affine functions 
are linear, but may contain a constant term. An f -function which refers to constant 
values —  for example, those in the first rounds of the SHA-1 compression function 
—  may be affine, and s0 is affine in SHA-1 due to the use of the k constant.

balance A boolean function is balanced if half of the possible inputs produce the output 
1, and the other half produce the output 0. All of the f -functions are balanced. 
Addition is not balanced (Staffelbach and Meier, 1991), but a rotation done during 
spliffling attempts to compensate for this. More specifically, s0 is balanced, but an 
examination of the Hamming weight of s1 and s2 shows increasing disbalance (H 
and 32 bits set respectively).

non-degeneracy A boolean function is degenerate if it contains variables which cannot 
affect the output (Dubuc, 2001). For example, the function f  (a, b,c) =  a V b is de­
generate: it ignores the c input entirely. It is important to make the distinction that 
a nonlinear function is not necessarily a degenerate function: the former disregards
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certain inputs based on the value of other inputs, and the latter always disregards 
certain inputs. All of the component functions used in the calculation of the SHA-1 
hash are non-degenerate.

correlation im m unity The correlation immunity of a boolean function is the degree to 
which the output cannot be correlated with any particular set of inputs. A function 
f  that is mth-order correlation-immune is one in which there is no significant corre­
lation between any boolean function comprised of >m  of f  ’s inputs and f  ’s outputs. 
Siegenthaler (1984) showed that a balanced non-degenerate function with n inputs 
and degree d satisfies the equation m +  d <  n — 1. The balanced, non-degenerate 
choice and majority are therefore 0th-order correlation-immune; parity is 1st-order 
correlation-immune; and s0 is 3rd-order correlation-immune.

Neither s1 nor s2 are balanced, so Siegenthaler’s inequality does not apply. How­
ever, Xiao and Massey (1988) provides a way to nevertheless find their correlation- 
immunity. s1 is 1st-order correlation-immune and s2 is 0th-order correlation-immune. 
A balanced nth-order correlation-immune is said to be nth-order resilient.

autocorrelation  The autocorrelation of a boolean function f  : { 0 ,1}n ^  {0 ,1 } is defined 
as (Preneel, 1993)

A / ( j ) =  ^  (_ i) /(o© /
ie{0,1 }n

This measures how often the input and output disagree if changes to the input are 
made. If, for all values, f  (i) =  f  (i © j ), then A /(j) =  2n; and, similarly, if f  (i) =
f  (i © j ) for all values then A / ( j ) =  — (2n). The magnitude of the autocorrelation 
value shows how sensitive particular rows are to input bits being flipped. The j  
vector ranges from 0..2n—1, and the autocorrelation values therefore form a spectrum. 
The spectra for SHA-1 component functions are as follows.

Choice 8, 0, 0, -8, 0, 0, 0, 0 
Majority 8, 0, 0, 0, 0, 0, 0, -8 
Parity 8, -8, -8, 8, -8, 8, 8, -8
s0 32, -32, -32, 32, -32, 32, 32, -32, -32, 32, 32, -32, 32, -32, -32, 32,

-32, 32, 32, -32, 32, -32, -32, 32, 32, -32, -32, 32, -32, 32, 32, -32 
s1 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 32
s2 32, 16, 16, 16, 16, 16, 16, 8, 16, 16, 16, 8, 16, 8, 8, 8, 16, 16, 16, 8,

16, 8, 8, 8, 16, 8, 8, 8, 8, 8, 8, 8
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The maximum absolute value in the spectrum is called the absolute indicator. This 
can be given as a figure relative to 2n, where n is the size of the input vector, to 
provide a better picture of the autocorrelation property.

bent A bent boolean function is one which is as nonlinear as it is possible for a boolean 
function to be (Rothaus, 1976). Balanced functions cannot be bent (Seberry and 
Zhang, 1993) and functions with an odd number of inputs cannot be bent (Braeken, 
2006); therefore, none of the component functions are bent.

sym m etry A symmetric boolean function is one which depends only on the Hamming 
weight of the input. Parity, majority, and all addition functions are symmetric. The 
only non-symmetric function is choice.

A summary table of properties is given as Table 4.7.

Table 4.7: Summary table of boolean function properties

Parity Majority Choice So Si S2
degree 1 2 2 1 2 4
nonlinearity 0 2 2 0 12 6
balanced? '  (8) '  (8) '  (8) '  (I ) x  (I ) x  (32)
degenerate? x x x x x
correlation-immunity i 0 0 3 1 0
absolute indicator 2n 2n 2n 2n 2n 2n
bent? x x x x x x
symmetric? x

4.2.3 A better equation

A more comprehensive equation for a%r is

a%r+_f1 +  f  (a%r_2, a%r+ f ,  a%rt 340)%rt 51 +  air+- f  +  kr+__\ +  wl+__\ +  v0r +  v1%r

At the level of bits, because XOR is equivalent to addition over GF(2) this can be restated 
as

ar

4-1 © f  (ar_ 2, a r -f , a r - f  )r-i © a r -f  © k -\ © w r-i © vor © vir

a%+i © fr+i © < + ?  © k%+i © wr+i © vor © vi
(4.7)

ar

r



4.2. SPLIFFLING ANALYSIS 60

Expanding this equation gives an equation which is fully-specified in terms of data-word 
bits alone. The equation for a%r is recursive, and known initial values provide the “base 
case” values. In the case of single-block SHA-1, these are:

f i =  Oxfbfbfefe
ao =  0xe8a4602c
f o =  0x98badcfe
a- 1 =  0xf9b5713d
a- 2 =  0x5d6e7f4c
a- 3 =  0x192a3b08
a- 4 =  0xe970f861

Of these, the ao, f o and f i values are the only ones calculated from the initialization 
values; the rest are straightforward rotations of the initialization values.

4.2.4 Inputs and Outputs

It is useful to diagram the dynamic inputs and outputs of various functions that have 
been discussed, in order to understand their dependencies. The k inputs have been left 
out because they are static: no function must “wait” for them to be calculated. Similarly, 
the w inputs may be calculated independently, and can therefore not be dependencies of 
any other function.

At the highest level we find equation 4.7,

i+ 5  f i + 5  i + 30

inputs

vor,vir □
->• ->•

_l output

The dependencies for f  are

ai+ 217 ,ai+ f , a i + 2t5 nr —1 ’ r — 2 , r - 3  i fr
%nputs _l output

The v0 function has the dependencies

a i + 6  f  i + 6  a-i+ 31 vo'i+1
ar—1 f r—1>ar — 5 r

%nputs

,v i r voir___' \
output
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Similarly, the v 1 function’s dependencies are

< t7! f —  ,<-5 M  + 2
inputs

i+ 2 i+ 2

output

Index (for carrying purposes)
27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

OOOOOOOOOOOOOOOOOO^OOOOOOOOOOOOO
oooooooooooooooooo#ooooooooooooo

a OOOOOOOOOOOOOOOOOO^OOOOOOOOOOOOO
Toooooooooooooooo*ooooooooooooooo 
]00000000000*00000000000000000000 
!oooooooooooooo*****ooooooooooooo
IOOOOOOOOOOOOOOOOOOOOO a oooooooooo
^0000000000000000*000000000000000
OOOOOOOOOOOOOO*00000000000000000 
00000000000000*00000000000000000 
00000000000000*00000000000000000

Figure 4.1: a-dependencies

The dependencies of a single a value are shown in Figure 4.1, which visually illustrates 
the a values for 12 rounds of the SHA-1 compression function. The bit under examination 
is shown in black in the center of this diagram, and the values that it is dependent on are 
shown in different colors and labelled using the traditional variable names; f  has been 
expanded into (b,c,d), and the carries are v0 and v 1. In turn, the bits that depend on 
the central black a value are shaded in magenta.

4.3 Summary and non-binary formulation

The equation for each air-value can be differentiated by the following factors:

1. whether the kr value is 0 or 1;

2. whether the bit-position i falls into the category:

(a) i =  26, in which case there is no v0 or v 1 term;

(b) i =  25, in which case there is no v 1 term;

(c) i =  24, in which case there is both a v0 and v 1 term



4.3. SUMMARY AND NON-BINARY FORMULATION 62

3. whether the klr+1 value is 0 or 1, which affects the equation of v0;

4. whether the klr+2 value is 0 or 1, which affects the equation of v1;

5. whether the interval the round r falls into the category:

(a) r =  [0..3], in which case the f -value is constant;

(b ) r =  4, in which case a single argument of the f  -function is constant, causing 
one of the two cases to be true:

i. the constant a0+30 =  1, in which case f  (b, c) =  —b V c

ii. the constant a0+30 =  0, in which case f  (b,c) =  b A c

(c) r =  [5.. 19], in which case the f  function is choice: f  (b,c,d) =  (b A c) V (—b A c);

(d) r =  [40..59], in which case the f  function is majority: f  (b, c, d) =  (b A c) V (b A 
d) V ( c A d) ;

(e) r =  [20..39, 60..80], in which case the f  function is parity: f  (b,c,d) =  b © c © d

The calculation of each individual ar value can be represented using six variables, assuming 
that f  is expanded and w is not expanded: a, b, c, d, e, and w. If calculation proceeds 
from i =  26 and continues onward, wrapping around towards i =  27, then v0 and v1 can 
be represented in terms of previously-defined a variables.

Thus far, an entirely binary formulation of the hashing process has been used. This is not 
necessary: if a non-binary perspective is more tractable, then such a perspective should 
be used. Consider the following non-binary formulation which meets all of the above 
conditions:
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q; = aj+i +  fr+5 +  a;+350 +  wr+5 +  vr +  kr+1

a%r

v%r

f r

k%r

w%r

0 iff qr G {0,2, 4, 6, 8}

1 otherwise

0 when i =  26 or qlr+1 G {0 ,1 }

1 when q;+1 G {2, 3}

2 when q;+1 G {4, 5}

3 when q;+1 G {6, 7}

4 when q;+1 G {8, 9}

(ar+f A ar+225) © ( a ^ f  A ar+235) © ar+i+25

(ar—!  A ar+25) © ^ + 1  A ar+235) © (ar+25 A ar+235)r
ai+27 ai+25 ai+25ar 1 © ar 2 © ar 3
0x5a827999i

0x6ed9eba1i

0x8f1bbcdci

0xca62c1d6i

when 0 <  r <  19 

when 20 <  r <  39 

when 40 <  r <  59 

when 60 r 79

wr+3 © wr+8 © wr+14 © wr+16 when r >  16i+1

w otherwise

when 0 <  r <  19 

when 40 <  r <  59 

otherwise

(4.8)

The traditional algorithm for calculating SHA-1 (NIST, 1995) uses addition; the above 
relations include vlr and qlr terms instead, and are semantically equivalent. The hash 
output is, as in the binary formulation, a75..g0.

4.4 Preimage equations

Assume that a “full” SHA-1 hash value, including Davies-Meyer construction, is generated 
from u bits of data, u <  447. The original a..e values (which correspond to a80..a76 
respectively) can be obtained via subtraction.
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a — xo — ho 
b =  x 1 — h1 
c =  X2 — h,2 
d =  x3 — h3
e =  x4 — h4

Appropriate rotations result in concrete a76..80 values.

a80 = a

a79 = b

a78 =  c c—y 30
a77 =  d —  30
a76 =  e —  30

At this point, it is only necessary to consider bits; the boundaries between words may 
safely be ignored. Therefore, for ease of notation, let u be the concatenated a80..76 values, 
regarded as a single 160-bit value with u0 being the MSB (i.e. u0 =  a80). Each bit of u 
is associated with a corresponding equation a'r. Let C (n) be the corresponding equation 
for un, and let C'(n) be the negation of C (n). These equations may be combined into a 
single equation F :

F
160 |C'(n) if un =  1

0 =  V  I
n=0 I C (n) if un =  0

or, equivalently,

F
160 I C (n) if un =  1

1 =  A  in=0 I C'(n) if un =  0

(4.9)

(4.10)

4.5 Summary

This chapter has comprehensively analysed the SHA-1 compression function. Analysis 
of message expansion has led to the bitpattern method of calculation, as well as a com­
prehensive understanding of which bits are used for each expansion-word and how bits
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interact with each other. Common sub-sequences were analysed and an algorithm was 
proposed to efficiently enumerate valid single-block SHA-1 data-words that result in a 
particular expansion-word.

Spliffling, and the component functions used during spliffling, was likewise subjected to 
comprehensive analysis. Table 4.7 summarises the salient properties for each function. 
The analysis covered the constants that occur during single-block spliffling as well as 
the inputs and outputs of component functions. An alternative non-binary formulation 
was proposed, followed by recursive equations that represent a SHA-1 preimage. For 
completeness, a way to obtain the output of the compression function from the single­
block SHA-1 hash function was also covered in this chapter.



Chapter 5

Phrasing the question

This chapter uses results from the fields of constraint satisfaction and complexity theory to 
quantify the theoretical difficulty of finding a preimage. After this, the practical difficulty 
is then addressed by some statistical analyses of SHA-1. The chapter and part closes with 
some reflections on how best to approach the problem, given the explorations thus far.

Each of the operations used in the SHA-1 algorithm is well-understood and has well- 
defined behaviour that any computer scientist can understand; yet by the end of the 
compression function, there is no observable correlation between input and the output. 
The SHA-1 compression function has been subjected to continuous attention for at least 
two decades, and it can be assumed that any trivial issues which would prevent it from 
being used as a one-way function would likely have been uncovered in this time. This 
also means that there is a wealth of literature to draw on while studying the compression 
function, unlike the universal one-way functions —  which are “one-way functions” if and 
only if one-way functions exist —  described by Levin (2003) or Kojevnikov and Nikolenko 
(2008).

The preimage-resistance of the SHA-1 compression function has not been proven, though 
it has been demonstrated over the years. There is no “intractable” problem that lies 
behind SHA-1’s preimage resistance; it is not based on the inherent difficulty of finding 
an efficient algorithm to solve any particular mathematical problem. By contrast, the 
security of the RSA public-key cryptosystem (Rivest, Shamir, and Adleman, 1983) lies in 
the difficulty of efficiently factorising large prime numbers. To the best of the researcher’s 
knowledge, there has been no work which has focused specifically on the question of 
why the SHA-1 compression function is preimage-resistant or the degree to which it is 
preimage-resistant.

66
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Message-expansion and spliffling have been covered in some detail, and it is now possible 
to undertake a more detailed discussion of the difficulty of finding preimages. Recall that 
if H (a) =  c, an input b such that H (b) =  c is called a second-preimage of c if a =  b and 
a preimage if a =  b. Just as H  maps a to c, so the SHA-1 compression function maps 
inputs to outputs. Any inputs which satisfy either Equations 4.9 or 4.10, which expressed 
the entirety of the compression function, would be a preimage of the hash.

The problem of finding such inputs is similar to the boolean satisfiability problem, ex­
pressed by Knuth (2011, p. 55) as finding “an algorithm that inputs a Boolean formula of 
length N  and tests it for satisfiability, always giving the correct answer after performing 
at most N O(1) steps”. The boolean satisfiability problem is known to be NP-complete. In 
the case of a particular hash, it is known that a solution does exist; however, the exact 
assignment of inputs (i.e. the preimage) is unknown.

The compression function maps inputs to outputs in a complex way. Any reduction in the 
complexity of the mapping makes it easier to link inputs and outputs. The boolean min­
imization problem is the problem of reducing a function to its simplest form —  in other 
words, expressing it using the least number of terms. This problem is NP-hard (Buch- 
fuhrer and Umans, 2008): an exact solution may be found via a Karnaugh map (Karnaugh, 
1953) or the Quine-McCluskey algorithm (McCluskey, 1956), both of which are only suit­
able for small problems since the latter, which is more efficient, nevertheless has a time 
complexity of O ( n ) (Nelson, 1995).

Although both boolean satisfiability and boolean minimization are difficult problems, they 
are not entirely intractable: appropriate data representations and complementary heuris­
tic approaches can often provide “good-enough” solutions. Part III identifies potentially- 
useful representations and heuristics and attempts to apply them in the context of SHA-1. 
However, before beginning on such a path, it is worth analysing how difficult the SHA-1 
preimage problem really is.

5.1 SHA-1 as a CSP(T)

Computational infeasibility can take many forms and the field of computational complex­
ity exists to categorise and understand these forms. Computational complexity can be 
broken down into time complexity and space complexity, and a problem may be cate­
gorised as being in a particular complexity class. Time complexity is typically of more
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concern than space complexity, but the two are (at worst) linearly related since it can 
only take a limited amount of time to explore a limited amount of space.

The SHA-1 compression function can be viewed as a very structured kind of constraint 
satisfaction problem (CSP). CSPs are NP-hard in the general case, which means that 
solutions to a problem may be verified in polynomial time but obtained in nondeterministic 
polynomial time (Tack, 2009). However, not all CSPs are NP-hard, and adding additional 
constraints to a CSP —  such as those shown in Equation 4.8 —  typically reduces their 
difficulty since the interaction between constraints can make it easier to infer suitable 
values.

Jutla and Patthak (2005) model the internal state (i.e. the a variables) of SHA-1 as a 
constraint satisfaction problem that is similar to, but not equivalent to, SHA-1. Addition 
is modeled using only © and the majority function, and neither the choice function nore 
the linear message expansion are modeled. Such a model can be reduced to the Exact 
Cover problem, which is NP-hard (Karp, 1972):

INPUT: family {S j} of subsets of a set { ui,i =  1,2, ...,t}
PROPERTY: There is a subfamily {Th} C {S j} such that the sets Th are 
disjoint and UTh =  USj =  {ui,i =  1, 2, ...,t}.

This demonstrates that finding a solution to the NP-hard problem will likely result in 
significant advances towards finding a SHA-1 preimage. However, it does not demonstrate 
that SHA-1 itself is an NP-hard problem; such a demonstration would have to remodel 
an NP-hard problem in terms of SHA-1.

Jutla and Patthak (2005) also point out that establishing the difficulty of finding a SHA-1 
preimage is equivalent to establishing the “one-wayness” of SHA-1 (Levin, 2003). To 
summarise the difficulty of this, they note that:

...actually proving the above one-way claim, even in an asymptotic sense 
is an extremely difficult problem. One approach could be to show that (in 
an asymptotic version of the above problem) the problem can be framed as a 
Polynomial Constraint Satisfaction Problem over F2 (where each polynomial 
has degree at most two), which is known to be NP-hard ([GJ79]). However, 
the notion of cryptographic one-wayness requires showing the problem to be 
average-case hard for NP. Unfortunately, all advances in this direction have
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been stymied by a theorem of Impagliazzo ([Imp95]) that any such result must 
be non-relativizing. Further, it has been shown ([FF76, BT05]) that under 
non-adaptive reductions this reduction is not possible unless the polynomial 
hierarchy collapses to the third level.

An oracle in complexity theory is a “black box” which answers a particular kind of difficult 
(or impossible) question in a single step. As such, problems can be placed into different 
complexity classes which are relative to a particular oracle. This technique can be used to 
prove that certain problems are more or less computationally-infeasible relative to certain 
other problems. However, such a relativizing proof does not necessarily extend to an 
implication in the real (sans oracle) world, and this approach is therefore not feasible at 
present.

Another way to look at the computational infeasibility of finding a SHA-1 preimage is to 
use Schaefer’s theorem (Schaefer, 1978), a readable and modernised version of which is 
presented by Chen (2009). Schaefer’s theorem permits us to evaluate the computational 
complexity of any two-element CSP in polynomial time. It is necessary to model SHA-1 
in a way that makes it easy to analyze in terms of Schaefer’s theorem, and to do this, 
it is necessary to understand those terms. A self-contained summary of the terminology 
and semantics of the field, derived from Chen (2009) and sufficient for understanding 
Schaefer’s theorem, is as follows.

dom ain A domain is equivalent to a set. It specifies the legal values that a variable may 
take. Example: the boolean domain is {0 ,1 }.

relation A relation R over a domain D  is a set of tuples of D. Example: the V relation 
over the boolean domain is {(0 , 1), (1, 0), (1, 1)}.

arity The arity of a relation is the arity of the tuples of the relation. An arity must 
necessarily be >  1 and is here denoted by |R|. Example: the arity of the V relation 
is 2.

constraint language A constraint language r  is a set of relations —  in other words, a 
set of sets-of-tuples. Example: If a constraint language contains the © and majority 
relations, then it is defined as
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© =  { ( 0, 1) , ( 1, 0)}
Maj =  {(1 ,1 , 0), (0,1,1), (1, 0,1), (1 ,1 ,1 )} 
r  =  {© , Maj}

=  { { ( 0, 1), (1, 0)}, { { ( 1, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1) } }

variable This is an input to the CSP which may take on any value from the CSP domain.

constraint A constraint over r  is an expression R(v\, ...,v\r\) where vi is a variable. 
Example: © (x ,y) =  (—x  A y) V (x A —y), which is simply a restatement of the © 
relation already described.

m apping (sometimes called assignment) A mapping is a function f  which assigns values 
to variables in an attempt to satisfy a constraint.

constraint satisfaction problem  CSP(r) is a decision problem that attempts to de­
termine whether, given a constraint language r , a set of variables V , and a set of 
constraints C , a mapping f  : V  ^  D  which satisfies all constraints exists.

polym orphism  Consider a relation R and a function f  : D n ^  D. For any n |R|-tuples 
£ R, apply f  coordinate-wise. A polymorphism is defined as any f  for which, 
irrespective of the tuples chosen, the result is in R. Richerby (2016) illustrates this 
as follows: * 1 * 111

(t1,1 t1,2 • '' • t1,k) £ R

(t2,1 t2,2 • '' • t2,k) £ R

(tm,1 tm,2 • • tm,k) £ R
(f ( t 1,1, . . .  , tm,1 ) f  (t 1,21 . . . , tm,2) • • • f  (t 1,k i . . .  , tm,k )) £ R

Exam ple 5.1. Is the binary operation © a polymorphism of the majority rela­
tion Maj ? If the majority tuples are arranged into a grid G,

1 1 0 
0 1 1
1 0 1
1 1 1

A particular zero-indexed (column, row) entry is denoted Gcolrow. There is at 
least one combination ((G0,0 © G2,1, G1,0 © G2,1, G2,0 © G2,2) =  (0, 0, 1)) where the
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result is not in Maj. Therefore, the binary operation © is not a polymorphism 
of Maj.

Exam ple 5.2. Is the binary operation V a polymorphism of the majority rela­
tion Maj ? Using the same approach as in the previous example, it can be seen 
via exhaustive testing that it must be. However, a more intuitive approach could 
be used as well. It can be seen by scanning down the columns that each column 
has a single 0-value. Therefore, no matter which 0-value is used, that 0-value 
must be combined with a 1-value. Since x  V 1 =  1, the result will always be 
(1,1,1), which is in Maj. Therefore, the binary operation V is a polymorphism 
of the majority relation Maj.

constraint language polym orphism  An operation f  : D n ^  D  is a polymorphism of 
constraint language r  if f  is a polymorphism of every relation in r . The set of all 
polymorphisms of r  is denoted by Pol(r).

inverse constraint language polym orphism  The set of all relations for which all op­
erations in a set X  are a polymorphism is denoted by Inv(X).

prim itive positive definable (or pp-definable) Intuitively, if a relation can be used 
to simulate some other relation, then that relation is said to be pp-definable. The 
set of all relations which are pp-definable from a constraint language r  is denoted 
by <r>, and <r> =  Inv(Pol(r)).

reduction If all relations in a constraint language r  are pp-definable in another constraint 
language r ', then CSP(r) reduces to CSP(r').

Note that the constraint language defines which relations are possible in a CSP(r), and 
a constraint defines which relations exist between particular variables. The proofs for 
the above have been omitted, but are presented in Chen (2009). It is now possible to 
succinctly state Schaefer’s theorem (Schaefer, 1978).

Schaefer’s theorem  CSP(r) where domain D  =  {0 ,1 } is polynomial-time tractable if 
r  has any of the following operations as a polymorphism:

1. Constant 0 (i.e. f  (x) =  0)

2. Constant 1 (i.e. f  (x) =  1)
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3. Binary and (i.e. f  (x, y) =  x  A y)

4. Binary or (i.e. f  (x, y) =  x V y)

5. Ternary majority (i.e. f  (x, y, z) =  (x A y) V (x A z) V (y A z))

6. Ternary parity (i.e. f  (x ,y ,z )  =  x  © y © z); this is also called the minority 
operation

Otherwise, CSP(r) is NP-complete.

The SHA-1 problem for the {0 ,1 } domain can be modeled using the following relations.

• Choice: {(0 ,0 ,1 ), (0,1,1), (1,1, 0), (1 ,1 ,1 )}

• Majority : {(0 , ^ ^  (1, 0, ^  (1, 1  0 )  (1, 1 1)}

• © : {(0 , 1) , (1, 0)}

Addition can be represented by the majority and © functions for sum and carry bits 
respectively, following the approach of Jutla and Patthak (2005). All other ©-using 
functions, such as parity and message expansion, can be represented by extra variables 
and the © relation. Rotations change which variables are affected by which relations, and 
therefore affect constraints —  but not relations themselves. The above relations should 
therefore be all that is needed to determine tractability. Each of the six cases mentioned 
by Schaefer’s theorem will now be considered in turn.

Constant 0 /  Constant 1 Neither of these is a polymorphism of © since neither (0, 0) 
nor (1, 1) are part of the © relation.

Binary and (A) This is not a polymorphism of © since (0, 0) is not a part of the © 
relation.

Binary or (V) Similarly to A, this is not a polymorphism of © since (1,1) is not a part 
of the © relation.

Ternary m ajority This is a polymorphism of choice, majority, and ©.

Ternary parity This is not a polymorphism of choice since the tuples (0, 0,1), (0,1,1), 
and (1, 1, 0) give the result (1,0, 0), which is not a part of the choice relation.
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Since majority is a polymorphism of all relations, it is known that SHA-1 is not in NP. 
Understanding why the majority case makes the problem tractable in polynomial time 
will provide clues as to how the problem may best be approached. Chen (2009) provides 
the following definition to illuminate the issue:

Definition 4.1. Let n >  0. An instance of the CSP with variable set V  has 
the n-extension property if, given any subset W  C V  of size |W | =  n and a 
variable v G V , any partial solution f  : W  ^  D  can be extended to a partial 
solution f  : W  U {v } ^  D.

A “partial solution” is described as (Chen, 2009)

Let 0 be a set of constraints over variable set V . We say that f  : W  ^
D, for W  a subset of V , is a partial solution of 0 if, for every constraint 
R(v\, ...,vk) G 0, there exists a tuple (d\, ...,dk) G R such that f  (v*) =  di for 
all v* G W .

Chen (2009) shows that every majority-polymorphism CSP(r) has a 2-extension property; 
and, furthermore, they prove that if a majority-polymorphism CSP(r) has the 2-extension 
property, then it also has a n-extension property for n >  3. Given this guarantee, a 
promising approach would therefore be to find a partial solution for at least two variables, 
after which the solution should be gradually extensible to the rest of the variables. Chen 
(2009) provides the outline of a generic approach to doing this as “Algorithm for Majority 
Polymorphism”.

The work of Allender, Bauland, Immerman, Schnoor, and Vollmer (2009) makes it possible 
to refine this even further and discover exactly which complexity class within P the SHA-1 
problem falls in. Since the majority function is a polymorphism of the SHA-1 constraint 
language, the applicable subclass of P is NL (nondeterministic logarithmic). NL shares the 
same relationship with L (logarithmic) that NP shares with P, and the question of whether 
NL =  L is similarly an open problem. A decision problem in the L complexity class can 
be solved by a deterministic Turing Machine using O(log n) space. Time complexity is a 
maximum of O (2logn), since this is the time that is required to exhaustively explore the 
entire space.

A nondeterministic Turing Machine, unlike its deterministic counterpart, can simultane­
ously execute multiple actions. Savitch’s theorem (Savitch, 1970) gives the relationship
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between deterministic and non-deterministic space as N SPA C E f (n)) C D SPA C E f (n)2), 
for any f  (n) >  log n. Therefore, the exploration of the relevant space should not take 
more than O(log2 n) space, and a corresponding maximum of O (2log2 n) time.

5.2 Statistical analysis using the Strict Avalanche Cri­
terion

Recall that a boolean n-bit hash function H  is the transform Z™ ^  Zn. A cryptographic 
hash function attempts to obscure the relationship between the input and output of H , 
and the degree to which this is accomplished is directly related to the preimage resistance 
of the hash function. This implies that two similar inputs should have very different 
outputs.

The Strict Avalanche Criterion (SAC) (Webster and Tavares, 1986; Forre, 1990) formalizes 
this notion by measuring the amount of change introduced in the output by a small change 
in the input. It builds on the definition of completeness, which means that each bit of the 
output depends on all the bits of the input, in a way that is cryptographically relevant. 
Using the definition of H  as above, an output H (x) =  y is obtained for an input x. 
The initial bit of x  is now flipped, giving H (x0) =  y0. This process is repeated for xi..n, 
resulting in y1..n. The SAC is met when the Hamming distance between y and y0..n is, on 
average, |.

Unfortunately, the Strict Avalanche Criterion was not originally defined as rigorously 
as it could have been. This has led to some confusion about what it is, and it is worth 
diverting some effort towards justifying the definition that this research uses. The original 
definition (Webster and Tavares, 1986) of the SAC is:

Consider X  and X *, two n-bit, binary plaintext vectors, such that X  and 
Xi differ only in bit i, 1 < i < n. Let

Vi =  Y  © Yi

where Y  =  f  (X ) , Y  =  f  (X *) and f  is the cryptographic transformation, 
under consideration. If f  is to meet the strict avalanche criterion, the prob­
ability that each bit in Vi is equal to 1 should be one half over the set of all 
possible plaintext vectors X  and X*. This should be true for all values of i.
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Forre (1990) expresses this as:

Let x  and x* denote two n-bit vectors, such that x  and x* differ only in 
bit i, 1 <  i <  n. Z% denotes the n-dimensional vector space over 0,1. The 
function f  (x) =  z ,z  G {0 ,1 } fulfills the SAC if and only if

^  f  (x) © f  (x*) =  2n-1, for all i with 1 <  i <  n.
xezn

Similarly, Lloyd (1990) understands the SAC as:

Let f  : Z'n M Z2m be a cryptographic transformation. Then f  satisfies the 
strict avalanche criterion if and only if

y  f  (x) © f  (x © c*) =  (2n 1, ..., 2n 1) for all i, 1 <  i <  n.
xezn

where © denotes bitwise exclusive or and c* is a vector of length n with a 
1 in the ith position and 0 elsewhere.

Other works (Preneel, 1993; Lloyd, 1993; Babbage, 1990; Kim, Matsumoto, and Imai, 
1991) follow in the same vein. However, these definitions calculate the sum over all pos­
sible inputs as leading to the fulfillment of the SAC, which is contrary to the original 
definition. The original definition separates a baseline value from the avalanche vectors, 
and states that the SAC holds true when “the probability that each bit [in the avalanche 
vectors] is equal to 1 should be one half over the set of all possible plaintext vectors” (Web­
ster and Tavares, 1986). Therefore, a better test of whether f  : Zn m  Z 2 fulfills the SAC 
would use a universal quantifier,

Vx G Z n ,P r(f (x) =  f  (x*)) =  0.5

for all x * which differ from x  in bit i, 0 <  i < n

A simple example clarifies the difference. Babbage (1990) uses Lloyd (1990)’s definition 
of the SAC and defines a SAC-compliant function:



5.2. STATISTICAL ANALYSIS USING THE STRICT AVALANCHE CRITERION 76

Define f  : Zn m  Z2 by

I f  (x1,...,xn) =  0 if x 1 =  0

f  (x1,...,xn  ) =  x2 © ... © xn if x 1 =  1

The simplest function of this nature is f  (x) =  x0 Ax1. Then, taking g(x) =  f  ( x ) © f  (x©01) 
and h(x) =  f  (x) © f  (x © 10),

x f  (x) g (x ) h(x) P  ( f  (x) =  f  (x*))
00 0 0 0 1.0
01 0 0 1 0.5
10 0 1 0 0.5
11 1 1 1 1.0

Sum: 2 2

Note that the sum of each of the third and fourth columns is 2n-1 , as predicted, and that 
this function fulfills the summed definition of the SAC. However, the first and last rows 
do not fulfill the original definition of the SAC at all: the probability of change, given the 
baseline values 00 and 11, is 0.0 in each case. It is therefore more correct to regard the 
row probability as important. This understanding is also in accordance with the original 
text that defined the term. Under this definition, x0 A x 1 is not SAC-compliant.

It is worth noting that the original definition, as per Webster and Tavares (1986), is 
slightly ambiguous. They state that “the probability that each bit in V is equal to 1 
should be one half over the set of all possible plaintext vectors X  and X*” ; however, 
they also state that “to satisfy the strict avalanche criterion, every element must have 
a value close to one half ” (emphasis mine). Under Lloyd’s interpretation, the SAC is 
only satisfied when an element changes with a probability of precisely 0.5. This is an 
unnecessarily binary criterion, as it seems to be more useful (and more in line with the 
original definition) to understand how far a particular sample diverges from the SAC. 
Therefore, this work regards the SAC as a continuum but takes Lloyd’s formulation as 
the definition of what it means to “meet” the SAC.

Preneel (1993) suggests a more general form of the SAC called the propagation criterion 
(PC), defined as
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Let f  be a Boolean function of n variables. Then f  satisfies the propa­
gation criterion o f  degree k, PC(k),  (1 <  k <  n), if f ( x )  changes with a 
probability of 1/2 whenever i (1 <  i <  k) bits of x  are complemented.

The SAC is equivalent to P C (1). The same work defines an extended propagation criterion 
which regards the SAC as a continuum. Much of the subsequent work (Seberry, Zhang, 
and Zheng, 1994; Zhang and Zheng, 1996; Carlet, 1998; Sung, Chee, and Park, 1999; 
Canteaut, Carlet, Charpin, and Fontaine, 2000; Gouget, 2004) in this area has more 
closely examined the relationship between PC and nonlinearity characteristics. Many 
of these extend the PC in interesting ways and examine ways of constructing functions 
which satisfy P C (n), but experimental research that targets existing algorithms is scarce. 
Part of the reason for this may be that PC(n  >  2) and above is prohibitively expensive 
to calculate, even when using a statistical approach: there are (6n2) combinations to 
consider. For SHA-1, this leads to ~  225, 000 combinations when n =  2, ^  50, 000, 000 
when n =  3, and so on.

Curiously, Bellare and Kohno (2004) define a measure called “balance” which, to distin­
guish it from the balance property of a boolean function, is called h-balance in this work. 
The measure comes close to the original definition of the SAC in some respects, but is 
not equivalent to it. Bellare and Kohno (2004) define a hash function as any h : D  M R 
where |D| > |R|. For a bit of the range R*, let d* =  |{x G D  : h(x) =  R*}|; then the 
h-balance ji(h) is

M h) =  log|fl| |D| ■ |D| A 
E S  d* ■ d j

The ideal h-balance indicates that output bits are distributed uniformly, and has the value 
1. A short example may make it easier to see the relationship between h-balance and the 
SAC.

Exam ple 5.3. Calculating h-balance. Assume that the boolean function h : Z| M Z2 
maps inputs as follows:
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000 00
001 01
010 00
011 01
100 11
101 10
110 11
111 ->• 10

Calculating the h-balance of this function,

L(h) =  log2
=  log2 ( ! )
=  1

Example 5.3 shows that the h-balance of the function indicates how well outputs are 
distributed with respect to input vectors. Note, however, that the outputs in the example 
are not distributed uniformly with respect to bits: the first bit of the output mirrors 
the first bit of the input. It can be seen from this example that whereas the h-balance 
measure is concerned with the uniform distribution of output bits with respect to input 
vectors, the SAC is instead concerned with the uniform distribution of output bits with 
respect to input bits.

Although there are proven theoretical ways to construct a function which satisfies the 
SAC (Kim et al., 1991), there is no way (apart from exhaustive testing) to verify that an 
existing function satisfies the SAC. By contrast, useful cryptographic properties such as 
non-degeneracy (Dubuc, 2001) or bentness (Rothaus, 1976) are verifiable without having 
to resort to exhaustive testing. However, the SAC metric is no worse in this regard than 
the correlation immunity (Siegenthaler, 1984) and balance (Staffelbach and Meier, 1991) 
metrics which also require exhaustive testing.

5.2.1 Experimental design

It is computationally infeasible to exhaustively test the degree to which SHA-1 meets 
the SAC since the input space (2672) is too large. However, it is possible to use a sam­
pling approach instead, where representative samples are drawn from a population and
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inferences are made based on an analysis of those samples. This approach relies on each 
input being statistically independent of other inputs. Generating such input can be an 
extraordinarily difficult task (Chaitin, 2001); however, random.org1 provides data which 
meets this requirement (Kenny, 2005; Foley, 2001). A source which may be more random, 
but which has undergone far less scrutiny, is HotBits1 2. Data for these experiments has 
therefore been obtained from random.org.

The inputs which make up the population should represent real-world usage, and the form 
of the input is therefore of concern. The inputs to the SHA-1 compression function are 
twofold: 16 32-bit words of input data and an initialization vector of 5 32-bit words, for a 
total of 21 32-bit words (or 672 bytes). The initial initialization vector is defined by the 
FIPS 180-1 specification, and the input data is padded and terminated such that the last 
two words processed by the algorithm encode the length of the input data. Subsequent 
initialization vectors are generated from the output of the previous application of the 
compression function. For any input which is larger than 1024 bytes, there is therefore 
at least one iteration of the compression function for which all 672 bytes are effectively 
"random" —  if it is assumed that a previous iteration of the compression function can 
possibly result in the applicable initialization vector. To make this assumption, is sufficient 
to assert that there are no values which cannot be generated as intermediate intitialization 
vectors (given a pool of <264 different bitstreams). Therefore, we can take independent 
672-byte inputs as our population of concern.

The hypothesis to be tested is that SHA-1 meets the SAC. The desired margin of error is 
1%, at a 99% confidence level. The required sample size is therefore determined by

n
erf- 1(0.99)A 

0.01^2 )
16587

where erf-1 is the inverse error function

Given the 2672 input space, this seems to be a very small number; however, “it is the 
absolute size of the sample which determines accuracy, not the size relative to the popu­
lation” (Freedman, Pisani, and Purves, 2007). Data collected during the experiment also 
indicates the degree to which SHA-1 does not meet the SAC, and the round at which the 
SAC comes into effect.

1https://www.random.org
2https: / /www.fourmilab.ch/hotbits/

https://www.random.org
https://www.fourmilab.ch/hotbits/
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Each of the 16587 inputs is passed through a custom implementation of the SHA-1 com­
pression function. This implementation has not been validated by NIST's Cryptographic 
Algorithm Validation Program3, but nevertheless passes all of the byte-oriented test vec­
tors provided by NIST; in addition, source code for the compression function is available 
on request. When presented with a 672-byte input, the compression function outputs a 
list of 80 vectors, one for each round of the compression function. Baseline and avalanche 
vectors are generated for each input, and per-round compliance with the SAC is deter­
mined by these.

The primary question that this section seeks to answer is: to what degree do each of the 
output bits meet the SAC? To determine this, the per-input SAC value for each bit must 
be calculated, as described above. The geometric mean of the SAC values is representative 
of the central tendency. From the data that is generated to answer the primary question, 
two other questions may be fruitfully answered:

• W hat is the distribution o f  SAC values per input? The geometric mean 
provides a way to understand the degree to which an output bit meets the SAC, on 
average over a range of inputs. The distribution of SAC values quantifies how likely 
any particular input is to meet the SAC.

• H ow  quickly do the bits o f  the SH A-1 hash m eet (or not m eet) the SA C ?

For repeatability, it is disclosed that the data used to create inputs is the first 16587x 672 =  
11,146, 464 bits generated by random.org from the 2nd to the 12th of January 2015. This 
data is available from https://www.random .org/files/.

5.2.2 Results

As shown by Figure 5.1, the SHA-1 hash diverges from the SAC by remarkably small 
amounts. The initial divergence is due entirely to the fact that the very last bits of a 
672-bit input are found in rounds 15 and 16 and, when modified, have an exaggerated 
effect on subsequent rounds. This effect is largely due to the fact that the changes have 
not yet had time to diffuse through the rounds. Data which is most representative of the 
final hash output can therefore be seen in rounds >  24.

3http:/ /csrc.nist.gov/groups/STM/cavp/\#03

https://www.random.org/files/
http://csrc.nist.gov/groups/STM/cavp//%2303
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Figure 5.1: Divergence from SAC, round 17..80

If sufficient time is provided for diffusion, a different picture emerges. Figure 5.2 shows 
the absolute divergence from round 24 onwards. Although the heatmap looks noisier, the 
most important thing to note is that the maximum divergence from the “ideal” SAC value 
of 0.5 is only 0.0009, which is within the margin of error for this sample size.

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82

Round

Figure 5.2: Divergence from SAC, rounds 24..80

A 5-figure statistical summary (minimum, lower quantile, median, upper quantile, and 
maximum) of deviation from the SAC is plotted as Figure 5.3. In this graph, (round, 
bit) tuples have been converted to single value bits using the function bit(r,i) =  (r — 
1) • 32 +  (i — 1). This was done to better illustrate noteworthy points, and because there 
is no round-specific pattern in the data. The median value is 0.0 throughout, and the
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lower and upper quartiles demonstrate remarkable consistency across the rounds despite 
minima and maxima which fluctuate significantly. It is interesting to note that rounds 
24..44 show the same pattern as rounds 60..80, which are the final rounds of the hash. 
The distribution of values appears to remain constant from round 24 all the way up to 
round 80.

« Minimum
—  Lower quartile 

Median
—  Upper quaitile 

Maximum

Figure 5.3: Summary statistics

The distribution of SAC values for rounds >  24 is shown in Figure 5.4, and there are 
few surprises here. It has a median, mean, and mode of 0.5, and appears to be a normal 
distribution. To verify whether the distribution is, in fact, normal, a quantile-quantile 
plot was generated. A quantile-quantile plot overlays points from a data-set on top of 
the theoretically-predicted distribution; if the actual points lie along the theoretically- 
predicted line, then the data fits the specified distribution.

Three possible distributions were plotted (see Figure 5.5):

• Normal (a =  0.019285397, n =  0.5), using the standard deviation and mean of the 
data where round >  24.

• Log-normal (a =  0.059899039, n =  0.49855239), estimated from the data.

• Weibull (k =  9.6116811, A =  0.52480750), estimated from the data.

None of the distributions match the data exactly; in fact, the normal distribution is 
the worst fit, with log-normal and Weibull distributions being much closer fits. The 
distribution that the data conforms to is unknown.
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Figure 5.4: Distribution of SAC values

5.2.3 Quantifying the difficulty

As the experimental results show, each of the output bits meets the SAC by round 24, 
and it therefore takes only 8 rounds from the end of the input data for the SAC values to 
settle into a “stable” state. This stable state persists through all of the remaining rounds.

This work is concerned with preimage resistance: the computational infeasibility of find­
ing an input that results in a particular output. The SAC results obtained from these 
experiments highlight the difficulty of obtaining a specific preimage since, from round 24 
onwards, the SAC is either met or very closely approximated. This makes it extraordinar­
ily difficult to determine which input bit could contribute to a particular output change, 
since the answer is “all of them”! The straightforward approach of attempting to find 
relationships between input bits and output bits is thus largely useless.

5.3 Summary

Theoretically, Schaefer's theorem indicates that it would be possible to find a preimage in 
a reasonable amount of time, as long as a partial solution can be found first. The problem 
lies with the requirement for the partial solution to be known as a solution: values cannot 
simply be guessed since it would be impossible to extend such a solution in a way which 
is correct, given that the correctness of the original solution cannot be established.
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Figure 5.5: Quantile-quantile plot showing goodness of fit

Existing attempts, detailed in Chapter 3, have failed. The obstacles to meet-in-the-middle 
attacks (Knellwolf and Khovratovich, 2012; Espitau et al., 2015) seem, at present, to be 
insurmountable —  though it is hoped that future research will prove that statement to 
be incorrect. The use of GPGPU and similar technology (Grechnikov, 2010; Adinetz and 
Grechnikov, 2012) may be useful in finding collisions, but are very far from being practical 
for preimage purposes since the chance of success for finding a preimage is so much lower.

A different way will be attempted in the following part of the thesis: different ways of 
representing SHA-1 will be tried in the hope of finding one which will make it easier to 
find a partial solution which can then be extended towards a full solution.
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Chapter 6

A framework for representations

This chapter sets out a framework for studying different representations of SHA-1. The 
word “representation” , in this context, denotes a data structure that encodes the SHA-1 
algorithm. The chapter begins with a high-level description and justification of the 
framework that makes it easier to explore different representations. This is followed 
by an unsuitable representation that uses the framework. The unsuitable representa­
tion illustrates the fact that it is not useful to implement any representation; merely 
“fitting” the framework does not make a representation worthwhile. The illustration 
is followed by a discussion of “worthwhile” representations in the context of this re­
search. An overview and brief justification of the chosen representations is then pre­
sented. Each chapter in the remainder of this part discusses a particular representa­
tion. The language of implementation is F #  and the framework itself is open-sourced at 
https://github.com/cynic/RepresentationFramework .

6.1 Framework description

The SHA-1 algorithm is, at the core, nothing more than a very complicated boolean 
function that maps inputs to outputs. This means that it could be represented using any 
of the many ways of representing a boolean function —  and, since boolean functions are 
fundamental to many fields, this is a very large set of possible representations. Correctness 
of the representation is paramount: if the representation does not faithfully encode the 
SHA-1 algorithm, then it is useless. The flexibility to add new representations was also 
very important since it was unknown whether the initial set of worthwhile representations

86

https://github.com/cynic/RepresentationFramework
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would be comprehensive enough. It is also important to be able to increase and decrease 
the size of the representations, for two reasons: it became clear that many representations 
would be unable to handle 512 (or even 447) bits of input; and the ability to scale the 
problem up and down is useful for examining the behaviour of representations.

To address these issues, the developed framework represents the workings of the SHA-1 
algorithm as the set (A, V, ®, —} of boolean operations following on from the exploration 
of Chapter 4. Data was represented as the abstract set ( 0 ,1,w0, ...,wu}, where w0 rep­
resented the first bit of the input, wi represented the second bit, and so on. Each rep­
resentation had to provide a way to implement these abstract operations, and represent 
the data abstractions, in whatever way was most “natural” to that representation. The 
framework accepted a representation and used it to execute exactly the same sequence of 
abstract operations, in exactly the same order, irrespective of concrete form of the rep­
resentation. Assuming that the framework represented the SHA-1 algorithm faithfully, 
each representation would necessarily do the same. Another benefit of this approach was 
that it allowed new representations to be added more easily than would otherwise have 
been the case.

If a representation could not handle larger numbers of bits, a smaller set of input variables 
was used, with the terminator and length being set as appropriate in the data-words. Since 
the abstractions for 0 and 1 were provided by the representation, this was reasonably 
simple to achieve.

Figure 6.1 shows the basic abstractions that are used. The purpose of the Constants 

and IRepresentation abstractions have been discussed above. An “input bit” is linked to 
a data representation of that input by the MakeVariable method of IRepresentation; the 
Evaluate method evaluates the value of a representation, given the supplied data-words, 
and returns a boolean result. The a, f , w, v0, and v1 bits are tracked throughout the 
calculation and assigned individual Designator tags; they are stored and retrieved by tag 
from a IStorage. Sub-calculations to generate each tracked value are implemented by a 
ISubCalculator, which utilizes a IWords for generating w values.

The Evaluate function was at the heart of the validation process. The “concrete” represen­
tation for each a'p was stored and, later on, passed back to the representation with a set 
of suitable randomly-initialized data-words. The value of a'p, given those data-words, was 
calculated using a known-good SHA-1 implementation that was validated against both 
the NIST test-vectors and the standard GNU SHA-1 implementation, shalsum. Several 
different sets of data-words were used, and the result of Evaluate was compared against
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Figure 6.1: Representation framework: class diagram

the known value each time. Any deviation, for any bit, raised an error in the system. The 
validation was conveniently associated with the code through the use of a unit testing 
framework, which made it very easy to test every representation in an automated way 
whenever larger changes were made. The unit testing framework was also configured to 
verify the basic logical operation abstractions, and basic data abstractions, using truth 
tables.

The HashCalculator object brings all of these interfaces together, accepting a IRepresen­

tation, ISubCalculator, and IStorage to calculate the necessary representations. The total 
size of the HashCalculator class is < 40 lines; all significant functionality is performed by 
the inputs. Similar classes exist to calculate the hash in a top-down fashion; to generate
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a single value that represents a particular preimage, using Equation 4.10; and to perform 
different analyses and transformations.

Many different concrete implementations of the various interfaces were created over the 
course of the research. The “traditional” and “bitpattern” calculation of w-values, for 
example, are both implemented as IWords implementations. This flexibility made it trivial 
to swap in, test, and swap out different implementations and analyse their interactions. 
It also allowed different trade-offs to be made: for example, larger representations could 
be written to disk and smaller ones could be stored entirely in memory (or a database) 
by using suitable IStorage implementations.

6.2 Unsuitable representation: truth tables

It can be argued that the simplest and most direct way to represent any boolean function 
is via a truth table such as Table 6.1. A truth table explicitly lists the function value for 
all possible variable values, but requires 2n bits to represent an n-variable function. A 
32-variable function would therefore require 4GiB to be representable, and approximately 
a petabyte is needed to represent a 50-variable function.

Table 6.1: Truth table for f  (x0..3) =  (x0 A x 1) V (x2 V x3) A — (x2 A — x0)

xo x 1 x2 x3 f  (xo..3)
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1
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On the positive side, truth table representation is exceptionally simple to implement, 
requiring fewer then 100 lines in a modern garbage-collected language with bit-vector 
support. A variable wlr in this representation is a bit-vector of length 2W in which sets of 
2^32+* bits are set at intervals of 2W -  just as has been done in Table 6.1.

Boolean operations using truth table representations are embarrassingly parallel bit- 
operations on bit-vectors of size 2W, and consequently become much more expensive as u 
increases. Each bit in the bit-vector represents the result of operations up to that point 
for the appropriate row in the table.

6.2.1 Collision detection

The truth table representation effectively calculates every possible hash value that could 
be obtained from an u-bit string. If subsequent bits from different rows are equal, a 
collision involving the input bits (i.e. the row bit-vectors) has occurred. A simplistic 
Bloom-filter-inspired algorithm (Bloom, 1970) for finding such collisions is described as 
Algorithm 6.1.

The key insights of this algorithm are to only undertake an extended search if the first 
filterSize bits of the outputs are exactly the same, and to only record the results of an 
extended search if the near-collision found is better than the previous near-collision. The 
former feature greatly reduces the number of full checks that need to be performed: for 
u =  22, 524857 full checks (12.5% of a possible 4194304 checks) were performed.

Extending the algorithm to multiple cores (or multiple machines) involves a straightfor­
ward partition of the search-space. Write-contention is greatly limited by the filter. For 
u =  22, the actual number of writes to the shared result structure is 18, out of a search 
of 4194304 positions. Although the fitness value is also shared, the maximum value of 
fitness is 160 and it can therefore be represented as a 32-bit (or smaller) integer. It is 
worth noting that the value is only used during full checks, and most instruction sets 
support reasonably efficient atomic operations on such values.

For u =  24 bits, near-collisions matching between 85 and 122 (out of 160 bits) were found 
by a multi-core variant of Algorithm 6.1 after a runtime of approximately 8.5 minutes 
on a 4-core i5-class CPU. The best near-collisions for various input sizes are shown in 
Table 6.2. Note that these are near-collisions for the compression function before the 
Davies-Meyer step is applied. Applying the step does not add much to the runtime.
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A lgorithm  6.1 Near-collision detection using truth-table representation 
Require:

2 <  u <  447 
2 <  filterS ize  

Ensure:
A list of near-collisions and the number of colliding bits 

1: function examineR ound(u , filterSize)
2: bv ^  Array of 2fllterSlze empty lists
3: size ^  2W
4: data ^  Array of 160 truth-tables for u bits
5: best ^  0
6: result ^  expandable list
7: function FULLCHECK(i, j )
8: fitness ^  0
9: for t ^  0..160 do

10: if datati =  datatj then
11: fitness ^  fitness  +  1
12: if fitness > best then
13: result ^  ( i , j ) :: result
14: end function
15: for row ^  0..size do
16: idx ^  0
17: for j  ^  (27..27 +  filterSize) do
18: idxj mod 32  ̂ datajrow
19: bvidx ^  row :: bvidx
20: for x  in bvidx do
21: if x  =  row then fullCheck(x , row)
22: return result
23: end function
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Table 6.2: Near-collisions for 24-bit inputs

u Matching bits Input A Input B

12 93 0xed8 0x67f
14 98 0x5798 0x75d0
16 106 0xe329 0x9555
18 115 0x5dc2 0xa50bc
20 117 0xebd23 0x7816c
22 119 0x4d260 0x6cbd7
24 122 0xc9313b 0xe68786

This work is not concerned with collisions, but with preimages; the above, therefore, 
simply demonstrates one possible use of the truth-table representation that relates to 
SHA-1.

The effectiveness of the compression function is correlated with the incompressibility of 
this representation. The Shannon entropy (Shannon, 1948) quantifies the difficulty of 
predicting the next bit in a sequence, and hence the “randomness” of the sequence. The 
greater the Shannon entropy, the more difficult a sequence of bits is to compress. A hash 
function strives to obscure the relationship between input and output, and the output 
for a particular input should be effectively random —  and, therefore, incompressible. 
Since all possible values of an n-bit hash are being computed for this representation, the 
incompressibility of data is an indication of the difficulty of finding a preimage for any
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Figure 6.3: Compression ratio vs bit position

input.

The ideal compression ratio is as close to zero as possible, with 1.0 indicating that no com­
pression was possible. Data was compressed using the DEFLATE algorithm (Deutsch, 
1996). Attempting to compress data involves some overhead (such as a dictionary of 
symbols), and an increase in size of the compressed data is therefore possible. Figure 6.2 
shows the average compression ratio for 8 <  u <  24. It can readily be seen that compres­
sion becomes much more difficult as u increases, and effectively plateaus around u >  14 
(i.e. a truth-table size of 16Kib).

Figure 6.3 shows the median compression ratio across 8 <  u <  24 as the bit-position 
increases. The graph is difficult to read, but illustrates the overall trend very well: except 
for the regular instances where v 1 =  0 or v0 =  0, the data is largely incompressible. 
In fact, median values of a and f  hover at, or just over, 1.0 throughout the rounds. 
This reinforces the results of Section 5.2, since a compression function which meets the 
SAC would tend to be incompressible. Figure 6.4 zooms into the last five rounds of the 
compression function to better show the incompressibility.
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Figure 6.4: Compression ratio vs bit position (last five rounds)

6.3 Worthwhile representations

A representation which is worthwhile is one which is likely to reveal some information 
about SHA-1 preimages, or which may make it feasible to attack the SHA-1 preimage 
problem in some way. Not all representations are worthwhile; this will be demonstrated 
in the next section. Some characteristics of a worthwhile representation are given below. •

• A representation must be able to represent the the entire SHA-1 calculation; it must 
therefore be able to represent a functionally complete set of boolean operators and 
the operands for those operators.

The truth table representation is able to represent the entire SHA-1 calculation.

• A representation must be able to represent the links between bits. Some of the best 
preimage research to date (see Espitau et al. (2015), for example) does not represent 
all the links between rounds, but represents a “forward” and “backward” link and 
attempts to match them in order to find a preimage. However, the approach in this 
thesis is predicated on attempting to understand the connections between input and 
output; this is not possible if all links are not faithfully represented.

The truth table representation is not able to represent the links between bits. Infor­
mation about the operands is entirely lost and cannot be recovered by examination 
of the final output.
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• It must be possible to analyse a representation. One possibility is to create lambda 
functions for each operation which “wrap” other functions, with a base-case function 
simply returning “true” or “false” ; executing a particular function would execute 
sub-functions until a result is obtained. This sort of representation represents the 
links between rounds, but hides them within opaque lambda-function “boxes”. It is 
therefore of limited use for preimage research.

The truth table representation makes it impossible to analyse a representation be­
cause the links between bits are lost.

• The encoding of the algorithm should be separate from the encoding of an instance. 
Instance data can reveal interesting things about an algorithm —  see, for example, 
the statistical analysis in Chapter 5. However, the focus of this thesis is on the 
algorithm itself and not on any particular instance. A representation that encodes 
an instance without encoding the algorithm is not worthwhile.

The truth table representation represents all the possible encodings of u bits. How­
ever, it does not encode the algorithm itself; only the results of the algorithm are 
represented.

In addition to the above points, it is not worthwhile to examine two or more represen­
tations which provide the same insight. The representations must therefore be carefully 
selected in an attempt to understand different aspects of the SHA-1 preimage problem. 
Five different representations which meet the above criteria have been selected for exam­
ination.

C onjunctive N orm al Form (Chapter 7). This canonical representation is amenable to 
SAT-solving, which is a form of logical cryptanalysis.

D isjunctive N orm al Form (Chapter 8). This canonical representation makes it ex­
ceptionally easy to identify preimages by inspection. However, it is also difficult to 
represent some functions in this form, and function minimization is necessary for 
larger inputs.

R educed Ordered Binary D ecision Diagram s (Chapter 9). This canonical repre­
sentation is arc-consistent, which makes it very easy to see the relationships between 
variables. Furthermore, certain functions have an exceptionally small ROBDD rep­
resentations, and many Binary Decision Diagram variants exist.
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A nd-Inverter Graphs (Chapter 10). This non-canonical representation has stimulated 
great interest in recent years due to its scalability, flexibility, and ability to make 
local changes that have larger global effects.

Constraint Satisfaction P roblem  (Chapter 11). This is likely the most general of the 
representations, and is the only representation that is unsuitable for representation 
using the described framework. A language r  (see Section 5.1) maps naturally to a 
set of constraints that a sophisticated solver can attempt to solve.

6.4 Other excluded representations

There are innumerable ways in which data can be modeled, structured, and represented, 
and the field of data structures is almost as old as the field of Computer Science itself. 
It is therefore true that this chapter, although it examines the representation of SHA-1 
using very different structures, cannot be as comprehensive as a researcher might want it 
to be. Some of the data representations that were not discussed, but may be interesting 
to explore in a future work, are:

Integer representation Boole (1854) originally represented boolean logic using integers 
as a multivariate algebra over GF(2), and it is simple to convert any boolean formula 
into this algebra (Brown, 2011):

• —x  ^  1 — x

• x  A y ^  x  ■ y

• x  V y ^  x  +  y — x  ■ y

The result is a multivariate polynomial can be manipulated by powerful mathe­
matical software. Note, however, that the translations of A and V both involve 
multiplication. Although there are fast and efficient ways to multiply polynomials, 
there are no known efficient ways to multiply multivariate polynomials, and it is 
especially difficult to multiply polynomials with a large number of different vari­
ables (Bodrato, 2007; van der Hoeven and Lecerf, 2013; Popescu and Garcia, 2016). 
If an algorithm is found to make this computationally feasible, then an integer 
representation would be worth investigating.
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Propositional D irected A cyclic Graphs These represent the basic operations A, V, 
and — as nodes in a directed acyclic graph (Wachter and Haenni, 2006b). In general, 
the number of nodes required to represent a function as a PDAG is greater than 
the number of nodes required to represent a function as a ROBDD, and PDAGs 
do not have a canonical form (Wachter and Haenni, 2006a). Two very different 
graph-based representations (AIG and BDD), as well as one variant (ZBDD), will be 
considered in this work, and the literature on other graph-based representations does 
not indicate that additional graph-based representations would provide additional 
insight. Despite this indication, the only way to be sure would be to experiment 
with such representations, and this is therefore an additional avenue that could be 
investigated.

A lgebraic N orm al Form  An equation in Algebraic Normal Form (ANF) uses only the 
{© , A} operations and the constants 1 and 0. ANF, like CNF and DNF, is a canon­
ical form. The mapping of the — and V operations to ANF is straightforward: 
a V b ^  a ® b ® (a A b), and — x  ^  1 ® x. An ANF equation distributes both A and 
V operations algebraically, and is thus even less suitable than DNF as a represen­
tation. It is possible to ignore V operations entirely by rephrasing the “choice” and 
“majority” f  functions as ANF; however, distributing A is still very difficult and is 
akin to the difficulty of multiplication for multivariate polynomials (Samajder and 
Sarkar, 2013).

Sparse function representations Ternary trees (for example) can be used to repre­
sent a particular boolean formula in terms of variables, irrelevant variables, and 
negated variables which are assigned to “left” , “mid” , and “right” subtrees respec­
tively. This representation is useful for minimising functions by moving variables 
between branches as operations are applied. However, it has been established (see 
Section 5.2) that SHA-1 is not such a function: each output bit relies upon every 
input bit. Therefore, ternary trees and other representations suitable for use with 
sparse boolean functions are not considered.

6.5 Summary

This chapter has laid out the framework that will be used by the majority of the repre­
sentations that will be discussed in the next chapters. Not all representations are equally 
suitable; some characteristics that make a representation worth examining from a preim­
age perspective have been discussed, and the unsuitable representation of truth tables has
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been shown to reinforce the importance of this. Different categories of excluded repre­
sentations, and the reasons for their exclusion, have been discussed. This sets the stage 
for discussing each of the worthwhile representations in Chapters 7 through 11 in an 
essentially self-contained way.



Chapter 7

Conjunctive Normal Form

This chapter examines a representation that is widely-used in the boolean satisfiability 
community: conjunctive normal form (CNF). The chapter begins be defining the form 
and describing how arbitrary formulas can be converted into it. Some time is then spent 
to discuss the best way to encode SHA-1 in such a form, taking into account the relevant 
literature on the subject. As it so happens, the CNF representation of any formula is 
easily consumed by powerful boolean satisfiability software; such software is therefore 
applied to the SHA-1 preimage problem.

A “normal form” for an equation is a canonical form for that equation. If two equations, 
which appear to be different upon visual inspection, have the same normal form, then 
they are equivalent. Conjunctive normal form represents an equation as a conjunction of 
disjunctions. Each set of disjunctions is called a clause (or covering), and each variable 
is called a literal. Clauses cannot be negated, but individual literals may be. The order 
of clauses is irrelevant.

Exam ple 7.1. CNF. Consider the function represented by Table 6.1: (x0 A xi) V 
(x2 V x3) A — (x2 A —x0). It can be converted to CNF by using De Morgan’s law 
to remove all negated clauses, distributing V operations over A operations so that 
a V (b A c) ^  (a V b) A (a V c), and then simplifying.

99
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(x0 A x 1) V (x2 V x3) A —(x2 A —x0)

=  (x0 A x 1) V (x2 V x3) A (—x2 V x0)

=  (xo V ((x2 V x3) A (—x2 V xo)) A (xi V ((x2 V x3) A (—x2 V xo))

=  ((xo V (x2 V x3)) A (xo V (—x2 V xo)) A (xi V (x2 V x3)) A (xi V (—x2 V xo))

=  (xo V x2 V x3) A (xo V —x2 V xo) A (x1 V x2 V x3) A (x1 V —x2 V xo)

=  (xo V x2 V x3) A (xo V —x2) A (x1 V x2 V x3) A (x1 V —x2 V xo)

=  (xo V x3) A (x1 V x2 V x3) A (—x2 V xo)

The clauses of a minimal CNF function can be viewed as a set of “filters” which exclude 0­
valued rows of the truth table. Therefore, finding a preimage of a CNF function necessarily 
involves evaluating each of the clauses of the function, and discarding those rows which 
do not match. For functions where the number of variables is large, and the number of 
1-valued rows is small, this process of elimination can take a great deal of computational 
effort.

Converting a function to CNF can be difficult; see Example 7.1. Though mechanical, 
the process involves computationally-expensive distribution of terms and application of 
boolean identities, and could result in an exponential increase in the size of the resulting 
CNF. For example, the formula (a A b) V (c A d) V (e A f ) leads to the CNF (a V c V e) A 
(a V c V f ) A (a V d V e) A (a V d V f ) A (b V c V e) A (b V c V f ) A (b V d V e) A (b V d V f ). 
Note that the 3 initial clauses have become 23 =  8 clauses, each of which is more complex 
than the initial clauses. In fact, this expansion of n clauses to 2n clauses is not unusual, 
and many parts of the SHA-1 compression function —  such as calculations involving © 
—  lead to an exponential expansion of the resulting CNF when Vs are distributed over 
As.

However, one of the great advantages of CNF is that any function can be converted 
to an equisatisfiable CNF via Tseitin encoding (Tseitin, 1983) with, at most, a linear 
increase in the number of terms. An equisatisfiable formula has additional variables, but 
is only satisfiable whenever the original formula is satisfiable. Tseitin encoding involves 
replacing each operation xo op x 1 with a corresponding CNF sub-expression that uses a 
new variable x2: •

• xo A x 1 ^  (—xo V —x 1 V x2) A (xo V —x2) A (x1 V —x2)
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• xo V x 1 ^  (—xo V —x 1 V —x2) A (xo V x2) A (x1 V x2)

• —xo ^  (—xo V — x2) A (xo V x2)

• xo © x 1 ^  (—xo V —x 1 V —x2) A (—xo V x 1 V x2) A (xo V —x 1 V x2) A (xo V x 1 V —x2)

The new variable takes the value of the output of the expression, and can therefore be 
used in further expressions as a proxy for that output. Once a solution has been obtained, 
the new variables can be discarded and the values of the original variables substituted 
into the the original equation, with the same result being obtained.

A CNF formula can be stored compactly as a vector of clauses, where each clause may have 
a maximum of three terms. The index of the clause in the vector identifies it uniquely. 
This representation makes it easy to store a large formula with minimal overhead. It also 
makes it simple to create files in the de facto standard DIMACS format, in which a simple 
header line is followed by a single clause per line.

Finding a preimage for a CNF formula is equivalent to finding a set of inputs which will sat­
isfy the formula. The ease of converting boolean formulae into CNF via the Tseitin trans­
formation has led to CNF being accepted as the de facto standard for use with satisfiability 
(SAT) solvers, which exist to solve the well-known (and NP-complete) boolean satisfia­
bility problem (Cook, 1971). Despite being theoretically unsolvable in computationally- 
feasible time, many practical boolean satisfiability problems can be solved heuristically 
using modern SAT solvers (Malik and Zhang, 2009). In the SAT literature, clauses are 
often called constraints since they constrain the possible solution space.

SAT algorithms may be split into two broad categories:

D PLL-based Davis-Putnam-Logemann-Loveland (Davis et al., 1962) (DPLL) solvers 
(either backtracking or non-backtracking) try to find logical contradictions between 
variable assignments, and thus eventually derive an implication graph which con­
tains no contradictions. Such an implication graph is a solution. Powerful modern 
solvers such as MiniSat (Een and Sorensson, 2003) are DPLL-based. Conflict-Driven 
Clause Learning (CDCL) solvers are advanced variants of DPLL solvers.

Stochastic Local Search Whereas DPLL-based solvers work by proving relationships 
between the variables, stochastic local search (SLS) solvers -  also known as “random 
walk” solvers -  start with an assignment of random values to each variable. A 
limited number of variables is then flipped, and the solution which has the least
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number of unsatisfied clauses is chosen. Using this solution as the new assignment, 
the same procedure is repeated until a solution where all clauses are satisfied is 
obtained. (Biere, Heule, and van Maaren, 2009, Ch. 8)

The split is, in some instances, more theoretical than practical since there is a great 
cross-pollination of ideas and techniques between different families of solvers; indeed, 
solvers such as SATzilla (Xu, Hutter, Hoos, and Leyton-Brown, 2008) choose between 
what they believe to be the most “appropriate” method for a given problem. In the 
case of finding preimages, it is known that the formula is satisfiable (SAT) instead of 
unsatisfiable (UNSAT). Where a solution is known to exist, SLS solvers may significantly 
outperform DPLL-based solvers (Kautz and Selman, 1996; Selman, Kautz, Cohen et al., 
1993). However, when applied to a hash function, SLS solvers have performed much worse 
than their DPLL-based counterparts (Massacci, 1999).

A big drawback of SAT-solving solutions is that they are of limited generality. Although 
the basic algorithms used during DPLL-solving stay the same, some of the choices made 
by a solver are effectively arbitrary. After how many conflicts should a solver stop pur­
suing a branch of reasoning? Which variable should a solver try to find a value for? How 
much of an abandoned branch of reasoning might it be useful to keep for future reference? 
These questions are decided in different ways by different solvers (and different algorithm 
variants). A SAT solver, applied to a particular problem, is very sensitive to the parame­
ters which govern its behaviour. The advantage of this is that there may be a particular 
set of parameters —  Lingeling (Biere, 2013), for example, has approximately 340 tunable 
parameters! —  which could find a SHA-1 preimage within a relatively short span of time. 
The disadvantage of such a solution is that it tells the computer scientist a great deal 
about the behaviour of various SAT-solving algorithms, but very little about the problem 
domain for which those particular parameters happened to work. It is therefore unlikely 
to lead to a cognitive breakthrough or generalisable understanding. Even worse, there 
is a possibility that a SAT solver will only find a solution for a particular problem case, 
and not for problems of a particular type, since “it is exactly the non-adversarial nature 
of practical instances that is exploited by SAT solvers” (Malik and Zhang, 2009). One 
practical consequence of this is that the time taken to solve a particular problem -  even if 
the problem may be considered “similar” to a previously-solved problem -  is very difficult 
to predict.
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7.1 CNF encoding of SHA-1

The most relevant works in this regard are by Een and Sorensson (2006); Nossum (2012); 
Legendre et al. (2012, 2014). Nossum’s exceptionally comprehensive work discusses a min­
imal encoding of SHA-1 in order to find preimages, and conducts numerous experiments 
to identify the best ways to SAT-solve the resulting CNF.

The thesis of Nossum (2012) represents some of the most recent SHA-1 preimage research 
and focuses specifically on the application of SAT-solvers to the SHA-1 preimage problem. 
It begins, as this work has done, by attempting to find alternative ways to understand and 
encode the message expansion phase, and then tackles the equation for a*. Most of the 
work was done on a reduced-round variant of SHA-1, focusing on the first 20-23 rounds; 
interestingly, this range ends just before the SAC is satisfied. While this work has focused 
on multiple representations, of which CNF is one, the primary reference for SAT-solving 
of SHA-1 remains Nossum (2012).

A SAT solver uses the technique of unit propagation to simplify a problem. A unit clause 
is a clause consisting of a single literal (which may be negated). When such a clause is 
encountered, all clauses containing the literal may be removed: if the problem is satisfiable, 
then the literal will make all clauses containing it satisfiable as well. In addition to this, 
if a clause containing the negation of the literal is encountered, then the literal may be 
removed from this clause: it cannot possibly be true in any solution, and can therefore 
not contribute to the meaning of the clause.

Een and Sorensson (2006) highlight the importance of arc consistency as a worthwhile 
property of an encoding; an arc consistent encoding allows unit propagation to be used 
much more effectively, often to the extent of solving a problem entirely. A definition of 
arc consistency that is specific to CNF encoding is given by Een and Sorensson (2006):

Definition. Let x  =  (x1, x 2, . . .  , xn) be a set of constraint variables, t =  
(t1 ,t2, .. .  , tm) a set of introduced variables. A satisfiability equivalent CNF 
translation p(x,t )  of a constraint C(x) is said to be arc-consistent under unit 
propagation iff for every partial assignment a, performing unit propagation 
on p(x, t) will extend the assignment to a' such that every unbound constraint 
variable x * in a' can be bound to either True or False without the assignment 
becoming inconsistent with C(x) in either case.
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More informally, a formula has constraints that must be satisfied by any solution; an 
equisatisfiable formula should try to represent these constraints faithfully; and an arc 
consistent equisatisfiable formula is one where an assignment leads unambiguously to 
constraint satisfaction or unsatisfiability. Thus, arc consistent representations of a formula 
may be efficiently solved for satisfiable solutions.

XOR constraints occur during message-expansion, during the encoding of addition, and 
during the parity function (used as the f  -function in 40 of the 80 SHA-1 rounds). Unfortu­
nately, they also involve the longest clauses (four 3-term clauses) and the largest number 
of these clauses (four, as opposed to a maximum of three to encode other operations). A 
naive encoding of a XOR constraint such as p © q © r thus involves taking any two of the 
variables, applying the Tseitin transformation, and then using the resulting additional 
Tseitin variable as a participant in another Tseitin transformation; viz.

p © q © r =  ( ( -p  V -q  V -to ) A (-p  V q V to) A (p V -q  V to) A (p V q V -to )) © r

=  ( - p V - q V - 10) A ( - p V q V t0) A (p V - q V t0) A (p V q V - t0)A 

( - 10 V - r V - 11) A ( - 10 V r V t1) A (t0 V - r V t1) A (t0 V r V - 11)

Thus does a constraint involving n terms expand to 2n-1 3-clause constraints. Bard 
(2007), observing that n causes problems of scale, suggests a pre-processing of n-term 
XOR-clauses to break them down into c-term XOR-clauses, c < n, where each new clause 
introduces an additional variable; c is called the cutting number.

Exam ple 7.2. Pre-processing XORclauses (Bard, 2007). Assume that the 5-term 
formula p © q © r © s © t must be converted to CNF. As above, this would require 
25-1 =  32 3-term clauses in a naive Tseitin encoding. If we apply Bard’s procedure 
using c =  4, however, we end up with the equisatisfiable clauses p © q © r © s © x0 and 
t © x0 © x 1. The single clause has been split into two clauses, each having a maximum 
of c + 1  terms, and the corresponding number of clauses when converted to CNF is 
24 +  22 =  16 +  4 =  20; 12 clauses fewer than would be obtained from a naive encoding. 
When c =  3, the clauses p © q© r © x0 and s © t © x0 © x 1 would be obtained, for a total 
number of 23 +  23 =  8 +  8 =  16 clauses. The cost of each clause is the introduction 
of an additional “dummy” variable, denoted by xi above. According to Bard (2007), 
the optimal cutting number is 6.
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It is also known that the clauses-to-variables ratio of a CNF formula is correlated with 
the difficulty of solving that formula, with ratios between 4 and 6 being most difficult 
to solve and ratios below 3.5 being relatively easy to solve; larger ratios are more often 
found in unsatisfiable formulae (Van Harmelen, Lifschitz, and Porter, 2008, p. 110-111). 
Nossum (2012) therefore attempts to reduce this ratio, encoding the addition step of a 
SHA-1 round by using the Espresso heuristic logic minimizer (Rudell and Sangiovanni- 
Vincentelli, 1987) to express formulae using the least number of terms; using the Crypt- 
LogVer toolkit (Morawiecki and Srebrny, 2013) for a similar reason; and using a straight 
Tseitin transformation (for comparison purposes).

By comparison, Legendre et al. (2014) hand-crafts the SHA-1 CNF encoding in an attempt 
to decrease the complexity of solving the formula, from the perspective of a DPLL-based 
SAT solver. The clauses-to-variables ratio is ignored in favour of simplifications and 
creating “logical bridges” (Legendre et al., 2014, p. 16) —  clauses containing only two 
variables —  that may help during solving. Unfortunately, while improved results for the 
MD5 algorithm are demonstrated, improved results for SHA-1 are absent. The importance 
of this approach in the context of SHA-1 is therefore uncertain.

Table 7.1: CNF encodings, 80 rounds of SHA-1

Reference Encoding Clauses Variables Ratio 2-clauses
(Nossum, 2012) Espresso 478,476 13,408 35.69 unknown
(Nossum, 2012) CryptLogVer 248,220 44,812 5.54 unknown
(Nossum, 2012) Simple 223,551 56,108 3.98 unknown

(Legendre et al., 2014) Hand-crafted 491,791 12,779 38.48 259
(Legendre et al., 2014) Hand-crafted, simplified 375,195 12,771 29.38 908

Both Legendre et al. (2014) and Nossum (2012) call out the addition step as being worthy 
of special effort when encoding. Nossum (2012) notes that the difficulty of the prob­
lem stems from the fact that “a binary k-bit (k >  2) ripple-carry adder encoded using 
the Tseitin transformation has 4 x k — 4 ‘hidden’ clauses, i.e. clauses which must be 
learnt through conflict propagation”. In the case of 32-bit numbers, this would mean that 
4x 32 —4 =  124 such hidden clauses exist. Nossum (2012) therefore try several approaches: 
using the Espresso heuristic logic minimizer (Rudell and Sangiovanni-Vincentelli, 1987) to 
express formulae using the least number of terms; using the CryptLogVer toolkit (Moraw­
iecki and Srebrny, 2013) for a similar reason; and using a straight Tseitin transformation. 
The clauses, variables, and ratios for various 80-round encodings are presented as Ta­
ble 7.1.
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Table 7.2: The effect of Glucose 4.0 simplification options on a 210,121-variable, 629,597- 
clause CNF encoding of SHA-1

Simplification options Clauses Variables 2-clauses
-elim 356,395 66,457 81,446

-elim  -asymm 350,673 64,901 85,185
-elim  -grow=50 -asymm 482,577 23,653 16,476
-elim  -grow=100 -asymm 486,735 16,730 5,687
-elim  -grow=200 -asymm 470,176 12,700 1,314
-elim  -grow=500 -asymm 506,669 11,587 751

-elim  -grow=10000 -asymm 2,486,170 9,277 534

No such encoding optimisations have been enacted in this work. A simple, naive encoding 
of the SHA-1 algorithm, as described by Equation 4.7, results in 210,121 variables and 
629,597 clauses, giving a clause-to-variable ratio of 2.996 —  which is a “better” ratio 
than any listed in Table 7.1. Legendre et al. (2014) focuses on longer clauses with more 
2-clause bridges, giving a higher ratio. When this naive encoding is passed to the Glucose 
4.0 solver1 (Audemard and Simon, 2009; Een and Sorensson, 2003) along with suitable 
simplification options, the result is a CNF encoding with 470,176 clauses, 12,700 variables, 
and 1,314 2-clauses —  arguably a “better” encoding than the hand-crafted one, under the 
assumption that simplification works towards making solving easier. Table 7.2 shows the 
effect of using various simplification options on the simple CNF encoding that has already 
been described.

Table 7.3: The effect of Glucose 4.0 simplification options on a 267,603-variable, 857,477- 
clause CNF encoding of SHA-1

Simplification options Clauses Variables 2-clauses
-elim 582,924 98,119 81,093

-elim  -asymm 577,616 96,653 85,542
-elim  -grow=50 -asymm 983,082 38,184 16,690
-elim  -grow=100 -asymm 1,185,483 28,789 5,323
-elim  -grow=200 -asymm 1,186,745 24,930 1,247
-elim  -grow=500 -asymm 2,304,868 20,423 659

-elim  -grow=10000 -asymm 14,422,346 14,835 448

For comparison purposes, Table 7.3 presents figures for an encoding of SHA-1 that uses 
the bitpattern w-calculation method explained in Section 4.1. The figures demonstrate 
that the trends caused by simplification are similar, even when the initial encoding of

1 Glucose version 4.0, with Glucose Syrup
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the problem is quite different: the number of variables decreases, the number of clauses 
increases, and the number of 2-clauses decreases. The 2-clauses column, in particular, is 
interesting because of how similar it is between the encodings.

Not directly evident from Tables 7.2 and 7.3, but worthwhile to note, is the time and 
space costs of different initial encodings. More effort spent on simplification requires 
more computational power, and the final rows of Tables 7.2 and 7.3 took 7 minutes and 
120 minutes respectively, and resulted in simplified DIMACS files that were 113Mb and 
858Mb respectively.

No encoding tricks, such as those already described, have been used to simplify the CNF 
encoding in this work. Taking into consideration the previous work on this topic, the 
experimental results detailed above, and the possible advantages and disadvantages, the 
conclusion reached is that the built-in simplification routines used by modern solvers 
(see, for example, Een and Biere (2005)) are likely to be powerful enough for all practical 
purposes; there is little to be gained by hand-tweaking a SHA-1 encoding.

There are basic encodings which appear to be objectively worse to begin from; a compara­
tive examination of Tables 7.2 and 7.3 appears to show that the bitpattern w-formulation 
leads to one such encoding. However, the results of the following section will demonstrate 
that this appearance is deceptive.

7.2 SAT-solving

An exploration of CNF as a representation would be incomplete without some attempt to 
find preimages using SAT solving: the DIMACS format for CNF has become synonymous 
with SAT solving. The Glucose (Audemard and Simon, 2009; Een and Sorensson, 2003), 
YalSAT2 (Biere, 2014), Plingeling3 (Biere, 2013), and CryptoMiniSat4 (Soos and Lindauer, 
2015) SAT solvers were chosen as being representative of a cross-section of SAT-solving 
approaches. Glucose is a modern, state-of-the-art CDCL solver; YalSAT is a modern take 
on a Stochastic Local Search solver; Plingeling is a SAT solver that attempts to exploit 
multi-core architectures; and CryptoMiniSat is a well-regarded open-source CDCL solver, 
originally targeted towards solving cryptographic problems, which supports a XOR-clause 
extension to the DIMACS format. All solvers were run in their default configurations and

2 YalSAT version 03l
3Plingeling version bbc-9239380-160707
4CryptoMiniSat version 5.0.0 (with gaussian elimination)
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solvers which did not find a solution within 10 minutes were terminated. This methodology 
is similar to that employed in Nossum (2012, Chapter 4).

Table 7.4: SAT-solving to find a preimage

Input bits Solver Time taken (s)
standard bitpattern

6

Glucose 1.3 1.3
YalSAT /  ProbSat /  CSCCSat14 - -
Plingeling 1.0 1.4
CryptoMiniSat 2.5 2.2

12

Glucose 16.4 7.1
YalSAT /  ProbSat /  CSCCSat14 - -
Plingeling 15.9 7.6
CryptoMiniSat 3.6 16.6

16

Glucose 135.6 252.0
YalSAT /  ProbSat /  CSCCSat14 - -
Plingeling 25.8 250.0
CryptoMiniSat 256.1 18.5

18

Glucose 403.6 138.2
YalSAT /  ProbSat /  CSCCSat14 - -
Plingeling 82.7 463.2
CryptoMiniSat - 181.9

20

Glucose 227.8 132.0
YalSAT /  ProbSat /  CSCCSat14 - -
Plingeling - -
CryptoMiniSat - -

22

Glucose - -
YalSAT /  ProbSat /  CSCCSat14 - -
Plingeling - -
CryptoMiniSat - -

SAT solver results are presented in Table 7.4. YalSAT, in line with the reported results 
of Massacci (1999), was unable to solve any of the problems. To check whether this was 
a problem with YalSAT or with the SLS approach, two other independently-developed 
SLS solvers (ProbSat (Balint and Schoning, 2012) and CSCCSat14 (Luo, Cai, Wu, and 
Su, 2013, 2014)) were applied to the smallest (6-bit input) problem. Both failed to arrive 
at a solution within 10 minutes, and this confirms that the problem is likely to be the
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SLS approach rather than the YalSAT solver itself. CDCL-based solvers worked some­
what better, with Glucose outperforming both Plingeling and CryptoMiniSat. The time 
taken to find solutions varied significantly and unpredictably, and neither the standard w- 
encoding nor the bitpattern w-encoding showed itself to be definitively superior. Glucose 
seemed to find the bitpattern w-encoding to be easier to solve for bit-lengths 18 and 20, 
but more difficult for bit-length 16; Plingeling found the bitpattern w-encoding to be uni­
formly harder to work with; and CryptoMiniSat seemed to find the bitpattern w-encoding 
to be uniformly easier to work with. This unpredictability casts some doubt on the weight 
that should be given to “second-guessing” a solver by simplifying or hand-tweaking a CNF 
encoding.

No solver could find a preimage for more than 20 bits of input. With that being said, 
finding a preimage for hash inputs of <  20 bits on consumer-level hardware is no mean 
feat; if anything, it demonstrates the enormous advances that have been made in the field 
of SAT-solving over the past decades. The raw speed of the computation is not what 
is impressive: brute-force search is many times faster. However, SAT-solvers resort to 
brute-force when all other heuristics fail, and reduced times such as Glucose’s ~  227s 20- 
bit solution vs. its ~  403s 18-bit solution indicate that heuristics are being used to reduce 
the time spent. It is the increased semantic understanding of the underlying problem that 
provides some hope for a breakthrough on this front. Another two decades of progress 
in the field may make SAT-solving for larger bit-lengths much easier. If a solver is able 
to find preimages for inputs that are ~  160 bits, then it is reasonably sure to find a 
preimage for most SHA-1 hashes, given their balance (Bellare and Kohno, 2004), strict 
avalanche criterion characteristics (see Section 5.2), and the formalisation of aPre laid out 
by Rogaway and Shrimpton (2009).

These results serve to update some of the results of Nossum (2012), and demonstrate 
the interaction between different SAT-solvers and the encoding of the problem. Note that 
where that work focused equally on the encoding of SHA-1 and the heuristics employed by 
SAT-solvers, this work has not examined the heuristics in any detail due to the already- 
described difficulty in generalising any results since the interactions between multiple 
heuristics are not well-understood. Interested readers who wish to discover more about 
SAT-solving and CNF as they relate to SHA-1 will find much of interest in the work of 
Nossum (2012).
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7.3 Summary

As a representation for SHA-1, CNF is reasonably compact and, after conversion to DI­
MACS format, facilitates the use of powerful SAT-solving software. However, a major 
drawback is that a CNF formula is inevitably equisatisfiable, and the added Tseitin vari­
ables add little but noise. Furthermore, finding a set of variable assignments which satisfy 
a particular set of constraints is the goal of both preimage-finding using a CNF repre­
sentation, and boolean satisfiability. Reducing the SHA-1 preimage problem to a known 
NP-complete problem domain offers one way to solve smaller problems, but provides 
neither the insight nor the ability to approach larger problems.



Chapter 8

Disjunctive Normal Form

The conjunctive normal form discussed in the previous chapter represents formulae as a 
conjunction of disjunctions. It is equally possible to represent formulae as a disjunction 
of conjunctions instead. This chapter begins by considering the cost of the operations re­
quired to represent a SHA-1 preimage, and then segues into a discussion of the disjunctive 
normal form (DNF) and its relative advantages and disadvantages (as compared to CNF). 
The difficulties of manipulating such a representation are discussed, and state-of-the-art 
minimization software is used to automate the process.

The representation that is chosen can greatly affect the cost of operations to be carried 
out using that representation. Calculation of most alr equations involves a large number 
of A, V, ®, and — operations, most of which are performed upon equations themselves. 
For example, assuming that dependent a-representations already exist, the calculation of 
a30 involves •

• at least four ® operations to calculate w,

• two further ® operations to calculate f ,

• thirty-nine A operations, one ® operation, twenty V operations, and six — opera­
tions to calculate v0,

• thirteen A operations, and nineteen V operations to calculate v1,

• five ® operations and a — operation to calculate a.
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This gives a total of 110 operations to obtain a single equation. Some equations (notably 
aj:6 and â 5 equations) will, of course, involve significantly fewer operations. Nevertheless, 
there are 32 x 80 =  2560 a'r equations to calculate, so if an average of 90 operations 
per equation is assumed then it can be estimated that approximately 230,000 operations 
will be required. In fact, the actual number obtained for a reference implementation is 
218,564 operations (103,840 A’s, 72,500 V’s, 21,664 ® ’s, and 20,560 —’s). Various micro­
optimisations might be applied to reduce this number slightly, but it would be surprising 
if this number could be drastically reduced. Therefore, it can be assumed that there are 
upwards of 200,000 operations required to get to all.

Disjunctive normal form represents an equation as a disjunction of conjunctions. Each set 
of conjunctions is called a clause (or covering), and each variable is called a literal. Clauses 
cannot be negated, but individual literals may be. The order of clauses is irrelevant.

The clauses of a minimal DNF function can be viewed as expressing sets of 1-valued 
rows of the truth table. Therefore, each clause of a DNF function is equivalent to one or 
more preimages. This makes DNF an ideal form for finding a preimage very quickly and 
easily: each clause represents a different preimage. However, it is difficult to determine 
the values which do not satisfy a DNF function, for much the same reason that it is 
difficult to determine the values which do satisfy a CNF function.

Unfortunately, constructing a DNF is much more difficult than constructing a CNF. Recall 
that a CNF is relatively quick and easy to construct, using the Tseitin encoding, but is 
susceptible to an exponential increase in size without using the encoding. Converting a 
function to DNF may entail a similar exponential increase in size, but there is no analogous 
encoding trick for a DNF.

This situation leaves the researcher with a conundrum: CNF is easy to construct, but 
makes it difficult to find preimages; DNF is difficult to construct, but makes it easy to 
find preimages. It would therefore be best to construct using CNF, but find preimages 
using a DNF. The difficulties of this approach are best illustrated by an example.

Exam ple 8.1. Converting CNF to DNF. Assume that one wishes to find all satisfying 
assignments for the function f  (x0..3) =  (x0 A x 1) V (x2 V x3) A — (x2 A — x0), which has 
the truth table shown in Table 6.1 on page 89. The minimal DNF is (x0 A xi) V (x0 A 
x2) V (—x2 A x3). It can readily be seen that each clause of this DNF is equivalent to 
one or more sets of satisfying assignments (or preimages).
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The minimal CNF for the function is (x0 V —x2) A (x0 V x3) A (x1 V x2 V x3). By De
Morgan’s Law, the negation of a DNF is a CNF (and vice versa). Therefore, it seems 
natural to try to construct a DNF is by constructing a CNF of a function’s negation, 
and then negating that CNF. In effect, this is simply an assertion of the fact that 
——f  (x) =  f  (x), with different forms being used to make the computation easier.

The negation of the original function is (—x0 V —x 1) A (—x2 A —x3) V (x2 A —x0). The 
minimal CNF of this is (—x0 V —x 1) A (—x0 V —x2) A (x2 V —x3), and by applying de 
Morgan’s law again, the resulting function becomes (x0 A x 1) V (x0 A x2) V (—x2 A x3) 
—  which is exactly the form that is sought.

Example 8.1 shows how easily CNF may be converted to DNF. However, the difference 
between “equisatisfiable” and “equivalent” means that this approach is not viable: recall 
that the Tseitin-encoded CNF is equisatisfiable, and not equivalent. When the Tseitin 
encoding is used, the resulting CNF is

(—xo V — to) A (xo V to) A (—x 1 V —£1) A (x1 V £1) A (—x2 V —£2) A (xj V £2) A (—x3 V —£3) A
(x3 V £3) A (—£0 V —£1 V —£4) A (£0 V £4) A (£1 V £4) A (—£2 V —£3 V £5) A (£2 V — £5) A (£3 V 
—£5) A (—x2 V —£0 V £6) A (x2 V —£6) A (£0 V —£6) A (—£4 V —£5 V £7) A (£4 V —£7) A (£5 V 
—£1) A (—£5 V —£6 V —£g) A (£5 V £g) A (£6 V £g)

Tseitin variables have been given the names £0..8. Note that this form is significantly larger 
than the minimal CNF given before. However, as has been shown, the maximum increase 
in formula size is linear, and the Tseitin encoding is therefore more generally applicable 
than a direct translation. Negating the Tseitin-encoded CNF gives the DNF

(xo A £0) V (—xo A —£0) V (x1 A £1) V (—x 1 A —£1) V (x2 A £2) V (—x2 A —£2) V (x3 A £3) V 
(—x3 A —£3) V (£0 A £1 A £4) V (—£0 V —£4) V (—£1 A —£4) V (£2 A £3 A —£5) V (—£2 A £5) V 
(—£3 A £5) V (x2 A £0 A —£6) V (—x2 A £6) V (—£0 A £6) V (£4 A £5 A —£7) V (—£4 A £7) V (—£5 A 
£1) V (£5 A £6 A £g) V (—£5 A —£g) V (—£6 A — £g)

Each term contains at least one Tseitin variable, and the ability to obtain preimages by 
inspection has effectively been removed.
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A DNF formula can be represented easily using bits: a bit to indicate whether a variable 
is present, and a bit to indicate whether the variable is complemented or not.

Exam ple 8.2. Representing a DNF formula using bits. The function in Example 8.1 
uses four variables and three clauses. Therefore, two bit-vectors (present and comple­
mented ) of four bits each would be used to represent it:

present 1100 1010 0011 
complemented 0000 0000 0010

Since there is no Tseitin-analogous encoding for DNF functions, size must be kept in check 
by attempting to minimise (or reduce) the number of terms in the formula. Minimizing 
a DNF formula is a matter of applying certain identities to reduce the number of terms. 
Some identities in this regard are listed below.

Elim ination (a A b) V (—a A b) =  b

Sim plification (a A b A c) V (a A —b) =  (a A c) V (a A —b)

A bsorption  (positive) a V (a A b) =  a 

A bsorption  (negative) —a V (a A b) =  —a V b

R etention a V (b V c) =  a V b V c

Building up an equation using bits to represent clauses in a normal form is straightforward, 
but expensive. Whether a top-down or bottom-up approach is used, a clause added to an 
equation may need to be distributed over all the clauses already existing in that equation. 
Since there may be 2n clauses in a minimal representation, this quickly becomes very 
expensive. Furthermore, distributing a new clause over the existing clauses does not 
result in a minimal representation; for this to happen, identities such as those mentioned 
above must be applied. Since the application of one identity may make it possible to 
apply a different identity, the minimization process is recursive and very time-intensive.

In fact, the minimization of a DNF formula has been shown to be an NP-complete prob­
lem (Umans, 1998), and circuit minimization in general is NP-complete as well (Buch- 
fuhrer and Umans, 2011). These results show that it is impractical to obtain an exactly- 
minimized formula, given a non-trivial input size; however, many NP-complete problems
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Figure 8.1: Espresso’s diminishing returns

admit to heuristic “good enough” solutions and the effectiveness of these remains to be 
evaluated.

Well-known heuristic tools such as Espresso (Rudell and Sangiovanni-Vincentelli, 1987) 
are able to minimize an equation adequately, but grow increasingly expensive to apply as 
the number of variables and the number of terms increases. Figure 8.1 shows the size that 
Espresso reduces a 8-, 12-, and 16-variable SHA-1 inputs to, as the equation is being built 
up in a bottom-up manner. The formula size is approximate, measured as the number of 
characters in a string-form equation using Espresso’s eqntott output, but correlates very 
strongly with the number of clauses and terms in the minimized equation. It is evident 
that, even before the data-word rounds are exhausted, the minimization has failed to have 
any significant effect.

An alternative, and in some instances superior, method of minimization is implemented 
by the BOOlean Minimizer II (BOOM-II)1 (Fiser and Kubatova, 2004, 2006). Although 
this method results in smaller DNF representations, the cost (in time) of using it is much 
more unpredictable, ranging from ^  1 second to ~  25 seconds. It is also unable to handle 
even the limited input sizes that Espresso does: 16-variable inputs can take between 10 
minutes and 2 hours to minimize, and this time does not appear to be entirely dependent 
on the round of the input. BOOM-II’s algorithm does make more use of randomness than 
Espresso’s, and it is hypothesised that it is this increased randomness that leads to the 
increased unpredictability. As a consequence, few 16-variable SHA-1 inputs are shown in 
Figure 8.2.

1BOOM-II version 2.7 (http: / /ddd.f i t .cvut .cz /prj /BOOM/)

http://ddd.fit.cvut.cz/prj/BOOM/
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Figure 8.2: BOOM-II’s diminishing returns

8  b i t s  +
1 2  b i t s  
1 6  b i t s  *

It is clear that BOOM-II does a better job than Espresso, but at a higher computational 
cost, when u >  12. For smaller input sizes (u =  8), BOOM-II does a much better job at 
a comparable computational cost to Espresso.

8.1 Summary

DNF is an ideal representation for the final preimage. However, constructing a DNF is 
exceptionally difficult since there is no Tseitin-equivalent encoding. Minimizing a DNF 
exactly is computationally infeasible; it has been shown to be an NP-complete problem. 
Unfortunately, the experiments conducted in this chapter demonstrate that heuristic ap­
proaches to achieve “good enough” results are not feasible as the input size grows: they 
either fail to produce the desired result (in the case of Espresso) or take an exorbitant 
and unpredictable amount of time (in the case of BOOM-II).



Chapter 9

Reduced Ordered Binary Decision 
Diagram

CNF and DNF are both “typical” representations of a formula, in the sense that they 
both represent a formula using variables and operations. However, it is possible to rep­
resent a formula —  sometimes very compactly —  using choices instead, and the decision 
diagram representation discussed in this chapter does exactly that. The chapter begins by 
introducing the representation and describing its salient properties. A  powerful software 
package that can manipulate the representation is used to examine the scalability of the 
representation in the context of the SHA-1 preimage problem. Lastly, decision diagram 
variations are discussed, and an attempt is made to find a more suitable way of encoding 
the preimage problem using decision diagrams.

A reduced ordered binary decision diagram (ROBDD, though conventionally shortened 
to BDD) is a directed, rooted, acyclic graph which represents a boolean formula (Bryant, 
1986; Wegener, 1994; Knuth, 2011). Each node in a BDD represents a variable v and has 
two children: the “high” or “then” child, which represents the “decision” of setting v =  1, 
and the “low” or “else” child, which represents the “decision” of setting v =  0 -  hence the 
terminology of “decision diagram”. Many other types of decision diagram exist, such as 
MDD (Multi-Valued Decision Diagram), ADD (Algebraic Decision Diagram), and ZBDD 
(Zero-Suppressed Binary Decision Diagram). The BDD representation is both relatively 
simple and applicable to the problem domain, and will therefore be discussed first.

More formally, each level of a BDD splits the problem space into two based on Boole’s ex­
pansion theorem (Boole, 1854) f  (vo ,Vi, ...,Vn) =  (Vo A f (0,V1, ...,Vn )) V(v0 A f  (1,V1, ..,Vn)),
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more commonly known as the Shannon expansion (Shannon, 1949b). One branch repre­
sents the result when the variable is 1-valued, and the other branch represents the result 
when the variable is 0-valued.

A BDD has the desirable property of being able to represent certain formulae with sur­
prising brevity; however, the brevity of the BDD is largely dependent on the formula and 
the variable ordering that is chosen (Langberg, Pnueli, and Rodeh, 2003). The size of a 
BDD is the number of nodes in the BDD, and could be up to 2n-1 for an n-variable for­
mula in a worst-case scenario. Such a scenario can arise if an inefficient variable ordering 
is chosen; however, choosing a suitable variable ordering is an NP-hard problem (Bollig 
and Wegener, 1996; Sieling, 2002). Heuristics exist to guess at a suitable variable or­
dering with a fair degree of success, and research on this topic is proceeding at a rapid 
pace (Minato, 2013). With that said, there are particular functions that are known to have 
approximately 2n nodes when represented as a BDD, no matter which variable ordering 
is chosen (Bryant, 1991).

To create a ROBDD, a variable ordering must be chosen. A particular variable ordering 
results in a canonical BDD: in other words, equivalent functions will result in the same 
BDD, no matter what their original formulation was. The first variable serves as the root 
of the diagram, as described above, with the “then” and “else” edges both leading to the 
next variable in the ordering. After all variables have been ordered, the leaves of the 
graph will be either 0 or 1, and the graph is now an OBDD. To reduce the OBDD, the 
following rules are applied repeatedly:

1. Merge nodes which have identical (i.e. isomorphic) subgraphs; and

2. Remove nodes which have identical subgraphs.

Implementation optimizations which make the reduction of a OBDD more efficient are 
possible, but not necessary to understand at the level of semantics. The first rule reduces 
the number of nodes by allowing node functionality to be shared in the graph. The second 
rule eliminates duplicate nodes.

Exam ple 9.1. ROBDD creation. Assume that a function f  (a, b, c, d) =  (a A b) V (b A 
—c) V d is used. Using the variable ordering d, c, b, a, the resulting OBDD is shown as 
Figure 9.1.
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Figure 9.1: Example: ordered binary decision diagram

After applying rule (1) and merging identical subgraphs, the graph is partially reduced 
and has a size of 11. A fully-reduced graph, which is the final form of the ROBDD, 
has a size of 7. Partially-reduced and fully-reduced graphs are shown as Figure 9.2. 
Any equivalent formulation of the formula (such as f  (a, b,c,d) =  d V (b A (a V c))) will 
have exactly the same ROBDD representation, given the same variable ordering.

Figure 9.2: Example: reduction of an ordered binary decision diagram

Boolean operations may be performed between BDDs, resulting in another BDD. Such 
operations are typically recursive, involving the modification of subtrees within the graph, 
but an optimised implementation can reduce the cost of recursive operations through 
memoization (Bryant, 1992). In an optimised implementation, the cost of an operation 
that combines BDDs x an y is |x| • |y|. Since a particular variable-ordering of the graph 
is canonical, the only way to reduce the size of the tree is by rearranging the order of the 
variables.

The state-of-the-art CU Decision Diagram (CUDD)1 (Somenzi, 2015) package was used

1 CUDD version 3.0.0



120

to create and manipulate BDDs. Importantly, the software includes nineteen different 
reordering heuristics (and heuristic variants) that aim to reduce the size of a BDD. The size 
of a BDD is the primary factor that affects the efficiency of operations, and consequently 
the scalability of BDDs as a representation.

Figure 9.3: BDD for 3-input SHA-1

CUDD’s BDDs are, strictly speaking, an extended form of ROBDD called a Comple­
mented Reduced Ordered Binary Decision Diagram (CROBDD, more commonly short­
ened to CBDD). While a ROBDD has two possible types of edges -  the “then” and “else” 
edges -  a CBDD has an additional type, the “complement” edge, which indicates logical 
negation (Drechsler and Sieling, 2001). A CBDD is equivalent to a ROBDD, and can 
easily be translated into an ROBDD (Madre and Billon, 1988); however, a CBDD may 
have a somewhat smaller representation than a ROBDD and can be manipulated more 
efficiently (Somenzi, 2001). Figure 9.3 shows such a CBDD, where dotted lines indicate 
complemented edges, dashed lines indicate “else” edges, and solid lines indicate “then” 
edges. The boxes at the top of the figure show the outputs a|0"30, with the boxes at the 
bottom being the constant terminal nodes.

Exam ple 9.2. Interpreting a ROBDD. Using Figure 9.3 as an example, assume that 
one wanted to find the value of a jl, given the 3-bit input vector 100. Let • be an 
as-yet-unresolved result; initially, a|0 =  •. Starting at the ajj7, one encounters a 
complementation edge, giving <  =  —(•). The value of the 0th bit is 1, so the “then” 
edge is taken. This brings us to the 1st bit, which is 0; and so the “else” edge, which is 
a complemented edge, is taken; aj0 =  — (—(•)). Finally, the 2nd bit is 0, so the “else”
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edge is taken, giving the final value of 0; therefore, aj0 =  —(—(0)) =  1 when the input 
vector is 100.

The importance of arc-consistency has already been covered in Chapter 7. One useful 
property of a BDD is that it is always arc-consistent (Een and Sorensson, 2006); indeed, 
Example 9.2 would not be possible if the BDD was not arc-consistent.

Figure 9.4: Preimage for a 3-input SHA-1 BDD

Finding a preimage using a BDD is similarly simple: by forcing the output of the BDD 
to be a constant value via Equation 4.9 or 4.10, a preimage is found by tracing the 
transitions down the tree that lead to a non-constant node, whenever the option is given 
to do so. Figure 9.4 illustrates this for a 3-input BDD that has had the final output 
fixed to 1, using the hash value 4754c111532732b8c54c97538a735fdc20cc4568. Using 
the same notation as the previous example, and beginning at the output, 1 =  —(•). The 
“else” child leads to the constant node 1, and hence a contradiction; therefore, the “then” 
child is taken. Following the same logic until the terminal node 0 gives the identity 
1 =  —(0). The transitions taken to reach the terminal node are “then” , “then” , and 
“else” , from bits 0, 1, and 2 respectively. The corresponding mappings for bits vn are 
v0 =  1, vi =  1, and v2 =  0; and, indeed, the 3-bit input 110 results in the hash value 
4754c111532732b8c54c97538a735fdc20cc4568.

The importance of each output bit during preimage creation is shown by Figure 9.5, which 
examines the size of the BDD as each output bit is combined using A. It can readily be 
seen that the number of nodes that need to be combined to find a preimage is «  u . If 
the trend continues, and there is little reason to suspect that it would not, then it would 
take «  160 combined output bits to find a preimage for a 160-bit input.
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F i g u r e  9 .5 :  N o d e  r e d u c t i o n  d u e  t o  o u t p u t  n o d e  c o m b i n a t i o n

A n  i m p o r t a n t  p o i n t  t o  n o t e  is  t h a t  t h e  n u m b e r  o f  i n p u t s  s t r o n g l y  i n f l u e n c e s  t h e  i m p a c t  o f  

e a c h  o u t p u t  b i t .  S c h n o r r  ( 1 9 8 9 )  p o i n t s  t o  m u l t i p l i c a t i v e  c o m p l e x i t y ,  w h i c h  c a n  b e  t h o u g h t  

o f  a s  t h e  s u m  o f  t h e  d e g r e e s  o f  e a c h  p r o d u c t  t e r m  i n  t h e  f u n c t i o n ’ s A N F ,  a s  a  m e a s u r e  

o f  b o o l e a n  f u n c t i o n  c o m p l e x i t y .  T h i s  r e s u l t  i m p l i e s  t h a t  t h e  m u l t i p l i c a t i v e  c o m p l e x i t y  o f  

S H A - 1  is  min( u, 1 6 0 ) .

S u c h  c o m p l e x i t y  is  l e s s  t h a n  t h e  u p p e r  b o u n d  f o r  m u l t i p l i c a t i v e  c o m p l e x i t y ,  s h o w n  b y  

B o y a r ,  P e r a l t a ,  a n d  P o c h u e v  ( 2 0 0 0 )  t o  b e  ~  2 2 - 1 . I t  c a n  n e v e r t h e l e s s  b e  s a i d  t h a t  t h e  

S H A - 1  c o m p r e s s i o n  f u n c t i o n  h a s  t h e  m a x i m u m  p o s s i b l e  m u l t i p l i c a t i v e  c o m p l e x i t y  f o r  a  

c o l l i s i o n - r e s i s t a n t  h a s h  f u n c t i o n .  T h i s  is  b e c a u s e  a  f u n c t i o n  w h i c h  a c h i e v e d  a  g r e a t e r  

m u l t i p l i c a t i v e  c o m p l e x i t y  w o u l d  n e e d  t o  h a v e  m u l t i p l e  p r o d u c t  t e r m s  i n  i t s  A N F  —  a n d  

m u l t i p l e  p r o d u c t  t e r m s  e n t a i l  a  c o l l i s i o n .

Exam ple 9.3. Exceeding u multiplicative complexity necessitates a collision. C o n ­

s i d e r  a  f u n c t i o n  f  ( x ) =  Z n ^  Z ™, a n d  a n  i n v e r t i n g  f u n c t i o n  f - 1 ( x )  =  Z ^ ^  Z n. B y  

d e f i n i t i o n ,  f - 1 ( f  ( x ) )  =  x ' , w h e r e  x ' i s  e i t h e r  p r e i m a g e  o r  s e c o n d - p r e i m a g e .  I f  x  =  x ' , 

t h e n  t h e r e  a r e  a t  l e a s t  t w o  i n p u t s  t h a t  c o l l i d e .

N o w  c o n s i d e r  t h e  m u l t i p l i c a t i v e  c o m p l e x i t y  o f  f - 1 . I f  i t  is  n ,  t h e n  e v e r y  b i t  in  a  

v e c t o r  { 0 , 1 } n m u s t  b e  c o m b i n e d  u s i n g  A t o  p r o d u c e  t h e  o u t p u t :  t h e  A N F  m u s t  b e  

e q u i v a l e n t  t o  x0 A x 1 A ■ ■ ■ A xn, w h e r e  e a c h  xi m a y  b e  n e g a t e d .  I f  i t  is  g r e a t e r  t h a n  

n ,  t h e n  a  s e c o n d  p r o d u c t  t e r m  m u s t  e x i s t  s i n c e  r e p e a t i n g  a  v a r i a b l e  xi w i t h  t h e  s a m e  

p o l a r i t y  w o u l d  b e  r e d u n d a n t  a n d  r e p e a t i n g  a  v a r i a b l e  xi w i t h  a n  i n v e r t e d  p o l a r i t y  

w o u l d  c a u s e  t h e  t e r m  t o  b e  0 .
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Assume that two product terms exist in the ANF of f -1 , such that f -1 =  a © b where 
a,b E { 0 ,1}n. It is evident that there must be at least two inputs which, when XORed 
together, produce this result. The maximum possible multiplicative complexity that 
can be achieved while remaining collision-free is therefore n .

As a more concrete example, let f -1 =  (x0 A x 1 A x 2 A x3) © (—x0 A x 1 A —x 2 A x3).
The two colliding vectors can be determined, by inspection of the ANF, to be 1111 
and 0101.

A consequence of the above discussion for a general preimage-finding algorithm is that it 
will not be sufficient to concentrate on a subset of the output bits that numbering less 
than ^  u to obtain a preimage: at least ~  u output bits must be considered.

9.1 Scalability

To understand the scalability characteristics of various reordering heuristics, a simple 
experiment was performed. For a particular number of input bits n , starting from n =  1, a 
SHA-1 BDD representation was created using each of the nineteen heuristics. The amount 
of time that it took to apply each of the logical operations {A, V, © } was recorded. The 
— operation for BDDs is implemented in CUDD as a simple complement of a pointer’s least 
significant bit, and is therefore very fast, non-recursive, and guaranteed to create no new 
nodes; no statistics were gathered for this operation. A six-figure statistical summary 
(minimum, lower quartile, median, geometric mean, upper quartile, maximum) of the 
recorded times, per-operation and across all operations, was generated. Furthermore, the 
number of nodes in the final SHA-1 representation as recorded to ensure that the heuristics 
resulted in reasonable representations. The number of input bits n was increased, and the 
same procedure was repeated again; however, if the total time taken to generate a SHA-1 
representation using a heuristic exceeded two minutes, then that heuristic was excluded 
from consideration for future values of n . The experiment was considered to be complete 
when no usable reordering heuristic remained.

Figure 9.6 plots the sizes of the resulting BDDs for each number of inputs. It can readily 
be seen that the difference in size is entirely negligible, no matter what reordering method 
is used; the data points overlap in all cases. Note that the y-axis is logarithmic, and the 
line (from n =  3 onwards) is reasonably straight. This allows us to approximate the size 
of a BDD representation of SHA-1, based on the gathered data, to be 16 ■ 2L02n, for an 
n-bit input.
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N o n e X
R a n d o m  s w a p s *

R a n d o m  p iv o t □
S i f t  ■

S i f t  ( i te r . ) O
S if t  ( s y m m e t r ic )

S i f t  ( s y m m e t r ic ,  i te r . ) A

W in d o w  ( s z = 2 ) A
W in d o w  ( s z = 3 ) V
W in d o w  ( s z = 4 ) ▼

W in d o w  ( s z = 2 ,  i te r . ) 0
W in d o w  ( s z = 3 ,  i te r . )  ♦
W in d o w  ( s z = 4 ,  i te r . ) Q

S i f t  ( g r o u p ) *
S i f t  ( g r o u p ,  i te r . )  

S im u la t e d  a n n e a l in g  O  
G e n e t ic  ©  

S i f t  ( la z y )
E x a c t

P r e d ic t e d ■ ■

Figure 9.6: Size of SHA-1 BDD representation under different reordering heuristics 

Table 9.1: BDD orderings and related size variance

Input bits Heuristics Unique orderings Min. size Max. size Size variance
2 19 1 14 14 0%
3 19 1 133 133 0%
4 18 5 330 334 1.2%
5 18 8 695 696 0.1%
6 16 6 1351 1361 0.7%
7 15 8 2633 2641 0.3%
8 10 4 5136 5136 0.0%
9 5 2 10068 10071 0.0%
10 2 1 19612 19612 0.0%
11 2 1 37464 37464 0.0%

It was initially thought that the similar sizes were due to the quality of the reordering 
heuristics, but further investigation proved this hypothesis to be incorrect. Table 9.1 shows 
that while all heuristics converge on a set ordering when very few input bits (n <  3) or 
very few heuristics (n < 5) are being used, there are multiple different competing orderings 
for the majority of the runs seen. Nor were these permutations only slightly different: for 
example, two 7-bit orderings were 0-1-2-3-4-5-6 and 5-1-0-4-3-6-2, with the resulting sizes 
being 2633 and 2634 respectively. This is a very surprising result, given that the existing 
literature makes it clear that the ordering of variables typically results in very different 
sizes of BDD (Bryant, 1992; Bollig and Wegener, 1996; Krause, Savicky, and Wegener, 
1999; Sieling, 2002). However, the result does make some sense in the light of Section 5.2, 
which implies that all variables are equally important.

The data collected on the time taken by various reordering heuristics is largely irrelevant if 
all heuristics result in equally-bad outcomes. If all are equally bad then the best solution 
is to simply not apply any reordering heuristic at all: any heuristic has a non-zero cost



9.1. SCALABILITY 125

and not applying any heuristic is the only solution that adds no cost at all.

Bryant (1992, p. 6) separates functions into three typical classes: symmetric, integer addi­
tion, and integer multiplication. The last class is the worst, with the BDD representation 
invariably requiring an exponential number of bits. Given the failure of all the attempted 
heuristics to find a non-exponential representation for any set of input bits, it is likely 
that SHA-1 happens to fall into this class. Wegener (1994, p. 368) defines the concept of 
■sensitivity as “the quotient of the size of a reduced OBDD for [a function] f  with respect 
to a worst ordering of the variables and the size of a reduced OBDD for f  with respect to 
an optimal ordering of variables” , and states that symmetric functions have a sensitivity 
of 1. It appears that SHA-1 shares this sensitivity, but is not symmetric since no heuristic 
was able to find a non-exponential representation.

An argument could be made that the heuristics are at fault, and that a non-exponential 
BDD representation is possible. To investigate this, three heuristics which utilised ran­
domness were selected from the available set of CUDD heuristics, under the assumption 
that a random ordering is more likely to happen upon a “better” ordering (if one exists). 
These heuristics were examined in detail, informed by the official CUDD documenta­
tion (Somenzi, 2015) and by an examination of the CUDD 3.0.0 source code.

The RandomSwaps heuristic (called CUDD_REORDER_RANDOM in CUDD) randomly chooses 
n pairs of variables, where n is the number of inputs, and swaps the order of adjacent 
variables between the pairs. The most reduced order is the one which is used.

Exam ple 9.4. RandomSwaps heuristic. Assume that a 5-variable BDD has the or­
dering (a ,b ,c,d ,e). A random swap may choose the variables b and e to swap. This 
occurs by enacting the following adjacent swaps: (b ^  c), (d ^  e), (b ^  e). At the 
end of the process, there are three moves which took place; the size of the tree after 
each move is retained, and the tree with the smallest size becomes the new BDD. 
Since there are five variables, this process is repeated five times, with the swapped 
variables being randomly chosen each time.

The RandomPivot heuristic (called CUDD_REORDER_RANDOM_PIVOT in CUDD) is similar, 
but chooses the variables to swap more deterministically. The variable which has the 
largest number of nodes is selected as a target; in case of a tie, the tied variable closest to 
the root becomes the target. The first variable to swap is chosen randomly from variables 
closer to the root than the target, and the second is chosen randomly from variables
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further away from the root than the target. If there are no variables closer to the root 
than the target, or further away from the root than the target, then the target is chosen as 
the appropriate variable to swap. The swapping sequence (as detailed above) occurs using 
the chosen variables, with the smallest size being selected. The RandomPivot heuristic 
thus ensures that the layer that takes up the most space is targeted.

The Genetic heuristic (called CUDD_REORDER_GENETIC in CUDD) uses a genetic algorithm 
to attempt to find a better order, inspired by the work of Drechsler, Becker, and Gockel 
(1996). It uses a deterministic heuristic to ensure that at least one “reasonable” order 
exists in a population, and then proceeds to randomly generate other members of the 
population. Crossover in the algorithm is implemented by a Partially Matched Crossover 
operation, which attempts to “construct the children by choosing the part between the 
cut positions from one parent and preserve the position and order of as many variables as 
possible from the second parent”. The “best” children, as determined by size, are chosen 
for use in subsequent generations.

Neither the random nor the deterministic heuristics achieve better than exponential repre­
sentations. This does not rule out the possibility, but it does make it much more unlikely 
that a non-exponential representation exists.

A binary decision diagram can provide a compact representation for many functions, but 
the SHA-1 compression function is not among this set. Operations performed on a BDD 
are reasonably fast, and the representation makes it easy to find a preimage. However, a 
set of 64 inputs would require ~  264 nodes to represent; this makes it infeasible to use for 
the purposes of this work.

9.2 BDD Variants

As mentioned in the introduction of this chapter, there are many different variants of 
BDD. To over-simplify somewhat, a BDD variant (hereafter *DD) does two things: it 
makes a decision at each node to go “left” or “right” (or “high”/ “low” , “then”/ “else” , 
etc), and it ends up at a particular constant value when it runs out of non-terminal 
children. Most *DDs, such as Algebraic Decision Diagrams (ADD) (Bahar, Frohm, Gaona, 
Hachtel, Macii, Pardo, and Somenzi, 1997) or Biconditional Binary Decision Diagrams 
(BBDD) (Amaru, Gaillardon, and De Micheli, 2013), change one (or, in more extreme 
variants, both) of these things. For example, an ADD uses a wider range of terminal 
values, and a BBDD makes decisions using the biconditional expansion f  (v0,vi, ...,vn) =
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((vo © vi) A f  (—vi ,v i , ...,vn)) V (—(v0 © Vi) A f  (vi, v i, ...,vn)) instead of Boole’s expansion 
theorem. In this way, and by complementary changes to the reduction rules, a variant 
can support more scenarios and/or increase the scalability and applicability of the *DD.

Although the improvement is welcome, it does not fundamentally change the difficulty 
of representing SHA-1 using a *DD. Amaru et al. (2013), for example, claim a reduction 
in the size of a ROBDD of between 28-50%. Assuming that a 64-input BBDD were to 
be created, and a reduction of 50% were to be achieved, the diagram would still require 
~  263 nodes to be represented. A more fundamental change of the representation is 
required, and this subsection therefore examines one of the most unusual *DDs that may 
be applicable to the problem: zero-suppressed BDDs.

A zero-suppressed binary decision diagram (ZBDD) (Minato, 1993) is a specialized *DD 
which represents combination sets instead of bits. A combination set expresses a set of
solutions to a combinatorial problem. Technically speaking, any BDD can represent a 
combination set: the transitions that lead to a 1-terminal are the transitions that make 
the function represented by the BDD (called the characteristic function) true, and the 
ones that lead to a 0-terminal make the characteristic function false.

Figure 9.7: Example: BDD representation of carry calculation

A ZBDD replaces the second reduction rule of a BDD with the rule Remove nodes with a 
“then” child that leads to 0, rerouting the node’s input to the “else” child. As a result, the 
interpretation of the diagram changes: when a node is not present at a particular level,
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it is assumed to be zero-valued for the terminal value to be 1. This means that a diagram 
does not need to explicitly record 0-valued nodes: it is “zero-suppressed”.

Consider a combinatorial problem such as the “carry” problem described in Section 4.2.1. 
In that problem, the v0 carry-value is set if exactly 1, 2, 5, or 6 bits (assuming k =  1) 
happen to be set. Note that the combination of the bits matters, but the order does not. 
There are then ^  +  (5) +  (6) =  28 possible ways for v0 to equal 1. Figure 9.7 shows
what this would look like in a ROBDD (sans complement edges) and a ZBDD, both of 
which represent each bit as a node.

Exam ple 9.5. Difference in interpretation of BDD and ZBDD. Consider the red path 
in Figure 9.7, which represents the vector 001010 and should end at the 1-terminal. 
The paths between the nodes form a combination set, mapping out the combinations 
where the value will be 0 or 1. In the BDD, all paths are explicit. In the ZBDD, the 
final path is implicit: the last bit of the vector is implicitly 0 for the terminal to be 
1. Now consider the vector 001011, which should end at the 0-terminal. In the BDD, 
the path taken diverges onto the magenta path that leads to 0. In the ZBDD, the 
same path is taken as before; however, since the bit5 value which was assumed to be 
0-valued is 1, the result is 0.

One consequence of this is that while the paths of the BDD shown in the figure can 
handle 6-bit numbers, the ZBDD can handle n-bit numbers and will follow the implicit 
0-terminal path for 001011, 0001011, 1001010, and so on. Another consequence is that 
the number of “then” paths is exactly equal to the smallest number of set combinations 
that lead to the 1-value (in this case, 15); this will always be true of a ZBDD (Minato, 
1993).

A ZBDD can be seen as representing all of the set combinations that can lead to the 
characteristic function being true. As a result, ZBDDs cannot be used with the usual 
boolean manipulations described by Bryant (1986) and others. Set operations (fl, U, \} 
must be used instead. The advantage of this, however, is that ZBDDs are excellent for 
representing sparse combinatorial problems which have very few 1-valued solutions. Un­
fortunately, SHA-1 representation is not such a problem; the balance (Bellare and Kohno, 
2004) and SAC characteristics (see Section 5.2) of SHA-1 ensure that every output bit has 
a very large potential number of inputs that may cause it to be 1-valued. When restricted 
to a particular preimage, the situation changes drastically; however, as Figure 9.4 shows, 
a BDD representation of a preimage is very small, and little would be gained by a ZBDD 
representation.
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9.3 Intermediate representation size reduction

Bradley and Davies (1998) describes a technique to lazily construct a BDD in a top-down 
fashion, using a maximum space complexity of O(|t|) where |t| is the number of nodes in 
the final tree. Since the final tree is very small, this approach is very attractive. However, 
lazy construction takes place from the root downwards, and terminal nodes are therefore 
not available without being explicitly created via a traversal down the tree. This means 
that the path that leads to the 1 terminal is unclear, and finding it involves an extensive 
search of the state space; the nodes that lead to 0 are not shared or eliminated in the 
un-decomposed lazy representation. The result is a typical time-space trade-off that is 
comparable to the trade-off made by SAT solvers.

One way of investigating the size increase in more detail is by looking at the per-round 
sizes of generated BDDs. The calculation of each individual ar value can be represented 
using six variables, assuming that f  is expanded and w is not expanded: a, b, c, d, e, 
and w. If calculation proceeds from i =  26 and continues downwards, wrapping around 
towards i =  27, then v0 and vl can be represented in terms of previously-defined a 
variables. Each a-BDD can be referenced separately.
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Figure 9.8: BDD size increase (substituted w vs expanded w)

Although it is tempting to expand the w term, the consequences of doing so are dire. 
Figure 9.8 demonstrates the difference in BDD size for 128 bits of input. As each sepa­
rate a-BDD is created, it is combined with the previously-created a-BDD. This should, 
theoretically, reduce the size of the BDD since the solution space is being increasingly 
constrained. The reduction is not sufficient to overcome the increase in size due to the 
number of variables, and this points to the importance of keeping the number of variables 
to an absolute minimum when BDDs are used.
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Let the calculation begin from r =  80 and move towards r =  1. The initial BDD cal­
culated, a|0, is obviously the smallest and comes in at 11 nodes. Subsequent a-BDDs 
increase in size since they must make use of carry calculations. The maximum size of the 
BDD for each row is not exorbitant, coming in at ~  1245 nodes when i =  27. However, 
combining BDDs between rows involves an increase in the number of variables, and a 
correspondingly large increase in the size of BDDs; the situation quickly devolves into one 
similar to that shown by Figure 9.8.

Figure 9.9: Pattern of divergence/convergence (left), solution to w09 (right)

Since it is possible to start with the output a-BDDs, it is also possible to combine them 
using Equation 4.10. The resulting graph has ~  155 nodes and is deep, with divergence 
and convergence between a75 and w nodes. This is expected since the a>76 BDDs have 
fixed values. The very final w variable, w09, has a definite solution since there can be 
no possible carry from the related a|7 variable. Note that the w variables are expansion- 
words, not data-words, and therefore represent sets of data-words. This is necessary to be 
able to scale up to a larger number of inputs. Figure 9.9 is an example BDD that shows 
the pattern of divergence and convergence, highlights the w09 solution, and gives some 
indication of the depth of the tree. Interestingly, this BDD also shows that both w09 and 
a25 are irrelevant, as long as a particular path is followed that leads to the leftmost node 
of w79. However, there is no guarantee that this path would be taken — and, in fact, the 
SAC characteristics of SHA-1 make it unlikely for u <  160.



9.4. SUMMARY 131

9.4 Summary

ROBDDs are a versatile representation, but this research was unable to discover any way 
to reduce their intermediate size and *DD variants are unlikely to offer solutions. The 
SHA-1 preimage problem cannot be efficiently encoded without such a reduction. The 
experiments conducted illustrate the importance of each output bit (up to ~  u output 
bits) in finding a preimage, imply the multiplicative complexity of the SHA-1 compression 
function, and reestablish the inability of heuristics to overcome the fundamental difficulty 
in efficient representation.



Chapter 10

And-Inverter Graphs

Representations examined up to this point share the trait of being difficult to optimize 
in a local context. In other words, a short segment of the function cannot be “lifted” 
from the rest, optimized, and then dropped back into the global picture; instead opti­
mization must take place globally or not at all. This chapter examines a representation 
that is both scalable and very amenable to local optimizations: the and-inverter graph 
(AIG). The representation is first described and discussed, and a powerful state-of-the-art 
tool for manipulating the representation is introduced. Various local optimizations are 
described and applied to the SHA-1 preimage problem. A more focused optimization is 
then attempted, and the results of this are presented.

An and-inverter graph is a directed acyclic graph (DAG) which represents a boolean 
formula using only A and — operations (Kuehlmann, Ganai, and Paruthi, 2001). The set 
(A, — } is functionally complete. •

• a A b ^  a A b

• a V b ^  —(—a A —b)

• —a ^  — a

• a ® b ^  —(a A b) A —(—a A —b)

Most nodes in the graph have two inputs (called fan-ins) and one output (called a fan-out); 
each fan-in may be inverted such that ‘true’ becomes ‘false’ and vice-versa. Given fan-ins 
a and b, the fan-out is a A b. If a node does not have any fan-ins then it is called a primary

132
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input. Each variable is represented as a primary input. AIG representations are very 
useful for electronics engineering work, where the area of a circuit and the delay between 
circuit input and output are important. The number of nodes in an AIG is correlated 
with the area of the graph, and the maximum number of nodes between primary input(s) 
and final fan-outs is correlated with the delay. In other representations, these would be 
more commonly be called the size and depth of a graph.

An AIG represents formulae in a compact and convenient way: the representation of 
a formula correlates linearly with the number of variables, and nodes in an AIG are 
cheap to refer to and reuse (Mishchenko, Chatterjee, and Brayton, 2006). Furthermore, 
interactive logic synthesis software such as ABC1 is able to minimise an AIG heuristically 
via DAG-aware transforms (Berkeley Logic Synthesis and Verification Group, 2016).

Although AIGs have existed for decades, it is only within the past decade that they 
have become important as tools for logic re-synthesis and minimisation. Most other 
representations rely on a global view of the entire function to minimise or analyse the 
function, and this can lead to complex functions and/or many variables being a source 
of scalability problems. By contrast, AIGs are typically manipulated in terms of local 
transformations, and therefore do not suffer from these issues. An AIG representation of a 
function is not canonical: two identical functions may have different AIG representations. 
This is both an advantage and a disadvantage: AIGs can be modified more easily and 
flexibly than many other representations, but verifying that two AIG representations have 
the same semantics requires additional (and potentially expensive) computation.

Another advantage of AIGs is the ability to easily use structural hashing. Structural 
hashing ensures that elements of the graph are not duplicated by checking the inputs of 
a graph. Inversion of inputs is considered during the check. If two nodes have the same 
inputs, then one may be replaced entirely by the other.

At runtime, each node in an AIG can be represented as a pair of 32-bit unsigned integers 
(or, equivalently, a single 64-bit unsigned integer). The graph itself consists of multiple 
nodes, and is represented by a list of nodes. This design follows on directly from the work 
of Biere (2007) on the AIGER format, which is the default input and output format of 
ABC. The main points of this representation are as follows:

1. Each index in the list represents the output of a node.

2. The constants true and false are 1 and 0 respectively.

1ABC version 1.01 (compiled July 7 2016)
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3. Inputs are numbered sequentially from 1 onwards.

4. An even integer n represents the input |, and an odd integer n represents the 
inverted input A-1.

5. The number of primary inputs is specified explicitly.

Given the above rules, the value stored at a particular index of a list can be unambiguously 
interpreted as either a fan-out or a primary input.

Exam ple 10.1. AIGER format. The compact in-memory AIG representation and 
the AIGER format are closely related. The following example of an AIGER file 
represents the function — (a © b), and may help to understand this representation 
more intuitively.

aag 6 2 0 1 3  

2 

4 

11

6 2 4 

8 3 5 

10 7 9

This example is also represented visually as Figure 10.1. The file begins with a format 
identifier string aag. This is followed by five variables. For our purposes, the first and 
third variables are unimportant. The second variable (2) is the number of primary 
inputs; the fourth (1) is the number of outputs; and the last (3) is the number of 
non-primary-input nodes in the graph.
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Figure 10.1: And-inverter graph example (derived from ABC’s dotfile output)

The next two lines declare the two inputs (2 and 4), which are positive and therefore 
even. Inputs are considered to be nodes in the AIG, and therefore take up space in 
the list. The index of the first input is | =  1, and the index of the second is | =  2. 
The output (11) follows the input, and indicates the index 11—1 =  5 from which the 
output value can be read. Since 11 is an odd value, the actual output is the inverted 
value found at index 5.

The next three lines have the format [idx] [i0] [i1], where idx is the doubled index 
of the node in the list, and i0 and i1 are the inputs to that node. Therefore, 6 2 4 

will perform an AND of the values at § =  1 and | =  2, storing the result at | =  3; 
and 10 7 9 performs an AND of the inverted value at 7—1 =  3 and the inverted 
value at 9—1 =  4, storing the result at y  =  5. The AIG that is thus described 
has two inputs, and performs an XNOR of those inputs via the logic f  (i1,i2) =
— (—(ii A i2) A —(—i1 A —i2)).

It requires approximately 221,500 nodes and a graph depth of approximately 18,140 to 
represent a SHA-1 calculation. The computational cost of generating an AIG represen­
tation is minimal since the addition of a node involves no changes to any other node. 
Evaluation of the representation, given particular input values, is likewise quick and easy: 
each node needs to be evaluated only once, and the result can be cached for future use. 
The cost of evaluation is therefore O(n).

An AIG with fewer nodes has fewer logical operations separating the final fan-outs and 
the primary inputs, and is consequently easier to work with to find a preimage. For­
tunately, one of the primary uses of an AIG is to reduce the area of a circuit which is 
represented as an AIG, and this goal is often achieved by reducing the number of nodes in 
the AIG. Therefore, existing state-of-the-art tools such as ABC contain many algorithms 
for reducing the node count, including

R ew riting This is “a fast greedy algorithm for minimizing the AIG size by iteratively 
selecting AIG subgraphs rooted at a node and replacing them with smaller pre­
computed subgraphs, while preserving the functionality of the root node” (Mishchenko 
et al., 2006; Mishchenko and Brayton, 2006). The pre-computed subgraphs, located 
in a statically-compiled look-up table (LUT), are exhaustive and have 4 inputs each;
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rewriting should therefore always be able to find the smallest possible representa­
tion of a 4-input AIG. If the best alternative representation has the same number of 
nodes, then it is considered to be a “zero-cost” replacement; the user decides, using 
a - z  switch, whether zero-cost replacements are substituted.

R efactoring “A cut C of node n is a set of nodes of the network, called leaves, such 
that each path from a [primary input] to n passes through at least one leaf. Node 
n is called root of cut C. The cut size is the number of its leaves.” (Mishchenko and 
Brayton, 2006). Refactoring attempts to find, using various heuristics, a large cut 
for each node which can be replaced by a smaller, or equally-sized, set of nodes. 
Similarly to rewriting, zero-cost replacements can be used at the user’s option by 
specifying a -z switch.

Collapsing This effectively transforms an AIG into a BDD; however, all the disadvan­
tages of BDD representation remain, and larger functions may be effectively unrep­
resentable as a BDD.

R ebalancing This is the process of reducing the number of levels between inputs and 
outputs —  otherwise known as the depth of the graph —  without duplicating logic. 
It is possible only because AIG representation is non-canonical.

F R A IG in g  Using a SAT-solver and simulation, this set of functionality attempts to con­
vert an AIG into a Functionally Reduced And-Inverter Graph (FRAIG) (Mishchenko, 
Chatterjee, Jiang, and Brayton, 2005). FRAIGing attempts to identify sets of nodes 
which perform the same function in an AIG, and remove redundant sets of nodes 
which are no longer needed.

Perhaps more interestingly, the choices made during construction of a FRAIG can 
be accumulated for later examination and reevaluation. This allows future trans­
formations to examine multiple possible representations of functionality and choose 
between them.

Each algorithm is used on an AIG by invoking the appropriately-named ABC command. 
Other algorithms included in ABC, such as redundancy removal and removal of extra­
neous nodes (cleanup), are largely not applicable to SHA-1 since there is no obviously- 
redundant or extraneous logic in the algorithm (see Chapter 4). The above algorithms are 
often interleaved and iterated, with each transformation of the AIG giving rise to new op­
portunities for additional improvement. They are also typically used in conjunction with 
algorithms which affect the graph structure, but do not decrease the number of nodes in
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the graph. An example of such an algorithm is balance, which attempts to reorganise the 
AIG to reduce the number of nodes between primary-inputs and final outputs. In doing 
so, additional opportunities for subsequent area improvement may be created.

In the context of SHA-1, most of the local transformations described act to decrease the 
amount of diffusion that is present in the algorithm. It is particularly noteworthy that in 
AIG form, all internal state (i.e. a-variables) is last since the notion of individual vari­
ables is replaced by the abstraction of A gates and inverters —  and these are represented 
exclusively in terms of their structure, and without names.

ABC comes with script aliases which can execute commands sequentially, and additional 
script aliases can be defined very easily. The default scripts have been shown to reduce the 
size of AIG representations of problems from various domains (Mishchenko et al., 2006). 
For example, one of the more useful scripts, resyn , executes the commands balance; 

rew rite; rew rite -z; balance; rew rite -z; balance . This takes approximately a 
minute to run, but reduces the size needed to represent a 447-input single-chunk SHA-1 
calculation from ^  221,500 to ~  179,200, and reduces the depth from ^  18, 770 to 
~  18,140. Although these figures are still too high to be useful, it is a distinct improve­
ment at a reasonable cost and clearly demonstrates the utility of AIG representation 
and transformations. Additional time spent using rewriting, refactoring, rebalancing, and 
FRAIGing reduces the size to ~  165, 900 and the depth to ~  16,630.

10.1 Pushing variables up the graph

Choose a non-input, non-output node in an AIG. It is connected to at least one input and 
at least one output, perhaps via other nodes. In what follows, the paths leading towards 
outputs at the “top” are considered to be “up” , and the paths leading towards inputs at 
the “bottom” are considered to be “down”.

It is possible to restructure the AIG to push particular variables up or down the graph; 
the case of pushing up will be discussed first. Assume that, is shown by Equation 4.10, the 
graph has a single output. By pushing a particular variable up to the top of the graph, 
the only node that refers to that variable ends up being the topmost variable in the 
graph. This effectively partitions the AIG into two sub-graphs, one of which represents 
the function when the variable is true, and the other which represents the function when 
the variable is false. In essence, this partitioning is the same as that accomplished by 
Boole’s expansion theorem.
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Boole (1854) showed that, given a boolean function f  (v0,v1,...,vn) =  0, the following 
identity holds:

f  (vo ,vi ,...,vn) =  f  (0,vi ,...,vn) A f  (1,vi ,...,vn) =  0

Chapter 9 briefly discussed this in the context of BDD decision functions. For the purposes 
of this chapter, it is significant to understand the expansion that occurs: the remaining 
terms in the original equation are doubled so that a single variable can be removed. While 
this would ordinarily be a bad idea, it is hoped that the structural hashing of nodes in 
an AIG would compensate for this doubling, and that local rewriting and refactoring 
after each “push” would be able to find more opportunities for minimization when fewer 
variables exist in each subgraph.

Exam ple 10.2. Pushing a variable up (simple case). Consider the formula a A b A c, 
where a is the variable that should be pushed up. Figure 10.2 shows the necessary 
transformation.

Figure 10.2: Example: simple push upwards

Although the literals b and c are used in this example, the non-a inputs can just as 
easily be non-primary nodes.

In the absence of clause negation, the process of pushing a variable upwards is simple (see 
Example 10.2): a transposition of inputs is all that is required.

Exam ple 10.3. Pushing a variable up (more complex case). Consider the formula 
—(a A b) A c A d, where a is the variable to be pushed up. Figure 10.3 shows the 
necessary transformation.
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Figure 10.3: Example: more complex push upwards

Notable features of this transformation are that an additional node in the graph is 
necessary; it is necessary to operate on a larger cut of the graph in order to achieve 
the transformation; and the advance is limited. If the original node that takes a d 
input was not present, it would be impossible to advance the a node by a level.

Other examples can be constructed for additional cases, but this is a very time-consuming 
and error-prone process. Let the desired variable be a. The following steps can then be 
used to automate such construction: 1

1. Identify a cut which includes a on the lowest level. A cut comprising a 
maximum of 7 nodes and 8 variables across 3 levels of the AIG was chosen (see 
Figure 10.4). Some non-root nodes may be primary inputs and the size of the cut 
may therefore be less than 7.

Figure 10.4: Illustration of chosen cut

2. Assign a variable for each non-constant, unique term inal o f  the cut. A
terminal is an input to the cut.

3. Generate a truth-table for the cut. Since there are a maximum of 8 variables 
for the chosen cut, the maximum size of the truth table is 28 =  256.
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4. Split the truth table based on the value o f  a. This is trivially done if, in the
previous step, the a variable was used as the “leftmost” variable in the truth table. 
The resulting truth tables will contain all variables except for a.

5. G enerate a minimal representation. Non-heuristic methods such as Karnaugh 
maps (Karnaugh, 1953) or the Quine-McCluskey algorithm (McCluskey, 1956) and 
Petrick’s method (Petrick, 1956) are reasonably efficient for small numbers of vari­
ables. Using the cut shown in Figure 10.4 and after the table split, the maximum 
number of variables to be handled is 7, which is well within the bounds of compu­
tational feasibility.

6. C onvert the minimal representations into replacem ent cuts. One of the
representations gives the function value when a =  0 and the other gives the function 
value when a = 1 . The variables extracted in step (2) are reintegrated into the cuts 
in this step.

7. Join the representations appropriately, w ith a at the top. The identity 
xVy =  — (—xA —y) can be used to give the correct gates. An implementation must be 
sure to catch all the “edge cases” , such as when one of the representations is always 
true or always false, since these edge cases could result in a simpler representation.

An iterative approach that keeps pushing a variable upwards will, with a cost that is linear 
with reference to the size of the AIG, succeed in pushing the desired variable to the top of 
the graph. The most expensive step is (5), but this can be greatly reduced by maintaining 
a cache of minimal representations that is indexed by truth table; conveniently, step (5) 
is also one in which the truth table matters and the variables do not.

Optimization opportunities arise during the rewriting process when duplicated variables 
are found in a cut. This is more likely to happen with larger cuts, but the rewriting of 
larger cuts is correspondingly more expensive since there are many more possible varia­
tions to consider.

Figure 10.5 shows a representative sample of the results of this approach. The overall 
algorithm works in a single pass over the AIG and is therefore linearly related to the size, 
but is dominated by the exponential time taken by the Quine-McCluskey algorithm that 
is used. It can readily be seen that the size of the AIG almost doubles each time despite 
the use of minimization techniques. As expected, the situation changes dramatically as 
soon as the remaining number of variables fall to 4 or 5 since, due to the built-in lookup
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N u m b e r  o f  r e m a in in g  v a r ia b le s  t o  p u s h  u p

Figure 10.5: AIG doubling

tables, any graph with 4 or fewer variables can be immediately reduced to a minimal form 
—  in other words, a preimage.

Several different minimization techniques were attempted, including FRAIGing and lookup 
table creation. Unfortunately, these techniques did not improve the size of the AIG 
by an appreciable amount and, furthermore, they led to runtimes that were more diffi­
cult to predict. Rewriting, refactoring, and rebalancing were therefore exclusively used 
via the resyn2 alias, which expands to the following sequence of commands: balance ; 
rew rite ; re fa c to r ; balance ; rew rite ; rew rite -z ; balance ; re fa c to r -z ; rew rite 

-z ; balance .

As an optimization, the doubled graph can be split into two branches and each of these 
can be processed independently. The overall CPU time spent remains the same since both 
graphs must ultimately be processed, but the time can be split across multiple processors 
and/or machines. Figure 10.6 demonstrates that the majority of the time spent is taken 
up by rewriting and refactoring; therefore, another possibility is to push a number of 
variables upwards before incurring the expense of rewriting and refactoring. A classic 
time-space trade-off is incurred in the process.

No optimization changes the fundamental issue: an AIG representation where u >  6 
cannot be minimized to a degree that offsets the space increases incurred by pushing 
variables upwards.
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F i g u r e  1 0 .6 :  P e r f o r m a n c e :  p u s h i n g - u p  a l g o r i t h m  v s .  r e w r i t e / r e f a c t o r / b a l a n c e

10.2 Summary

A n  A I G  is  a  v e r s a t i l e ,  c o m p a c t ,  a n d  s c a l a b l e  r e p r e s e n t a t i o n  t h a t  is  w e l l - s u i t e d  t o  e x ­

p r e s s i n g  a n y  b o o l e a n  f o r m u l a .  T h e  s t r e n g t h  o f  A I G s  is  t h e i r  f l e x i b i l i t y :  n o d e s  c a n  b e  

a d d e d  i n e x p e n s i v e l y ,  f u n c t i o n s  c a n  b e  r e p r e s e n t e d  i n  m a n y  d i f f e r e n t  w a y s ,  a n d  D A G -  

a w a r e  r e w r i t i n g  o f  t h e  g r a p h  is  a  l o w - c o s t  o p e r a t i o n  t h a t  c a n  h a v e  l a r g e r  c u m u l a t i v e  

e f f e c t s .  H o w e v e r ,  t h i s  f l e x i b i l i t y  is  a l s o  t h e  w e a k n e s s  o f  A I G s  s i n c e  i t  is  d i f f i c u l t  t o  a r r i v e  

a t  t h e  s i m p l e s t  r e p r e s e n t a t i o n  o f  a  f u n c t i o n  w h e n  a  “ f u n c t i o n ”  c a n n o t  b e  r e c o g n i z e d  a s  

s u c h .  T h e  A B C  p a c k a g e  p a r t i a l l y  a d d r e s s e s  t h i s  t h r o u g h  t h e  u s e  o f  l o o k u p  t a b l e s  d u r i n g  

r e w r i t i n g ,  a n d  c a n  a l w a y s  r e c o g n i z e  t h e  s i m p l e s t  r e p r e s e n t a t i o n  o f  a n y  4 - i n p u t  f u n c t i o n  

v i a  a  l o o k - u p  t a b l e .  H o w e v e r ,  t h i s  a p p r o a c h  d o e s  n o t  s c a l e :  a  4 - i n p u t  L U T  m u s t  r e p ­

r e s e n t  2 24 =  6 5 ,  5 3 6  f u n c t i o n s ,  b u t  a  5 - i n p u t  L U T  t o  d o  t h e  s a m e  f o r  5 - i n p u t  f u n c t i o n s  

w o u l d  n e e d  t o  r e p r e s e n t  2 25 =  4 ,  2 9 4 ,  9 6 7 ,  2 9 6  f u n c t i o n s .  A s  a  r e p r e s e n t a t i o n  f o r  S H A - 1 ,  

a n  A I G  is  a b l e  t o  s c a l e  t o  l a r g e r  i n p u t s  a n d  p e r f o r m  ( l i m i t e d )  m i n i m i z a t i o n  o p e r a t i o n s .  

I n  t h e  f i n a l  a n a l y s i s ,  h o w e v e r ,  l o c a l  t r a n s f o r m a t i o n s  m u s t  e v e n t u a l l y  r e l y  o n  h e u r i s t i c s ,  

a n d  t h o s e  h e u r i s t i c s  a r e  ( a t  p r e s e n t )  u n a b l e  t o  r e d u c e  t h e  S H A - 1  p r e i m a g e  p r o b l e m  t o  i t s  

m o s t  m i n i m a l  f o r m .

T h e  f a c t  t h a t  i t  is  d i f f i c u l t  t o  r e d u c e  t h e  s i z e  a n d  d e p t h  o f  t h e  g r a p h ,  d e s p i t e  s t r u c t u r a l  

h a s h i n g ,  d e m o n s t r a t e s  t h a t  t h e r e  is  i n h e r e n t  c o m p l e x i t y  i n  t h e  d i f f u s i o n .  B y  c o n t r a s t ,  

t h e  a . . e  v a r i a b l e s  o f  t h e  t r a d i t i o n a l  f o r m u l a t i o n  ( s e e  S e c t i o n  2 . 4 )  a r e  m e r e l y  r e n a m e d  a  

v a r i a b l e s ;  t h e  f a c t  t h a t  t h e y  h a v e  d i f f e r e n t  n a m e s  i n  t h e  s p e c i f i c a t i o n  d o e s  n o t  l e a d  t o  a n y  

i n c r e a s e d  i n h e r e n t  c o m p l e x i t y ,  t h o u g h  i t  m a y  l e a d  t o  t h e  a p p e a r a n c e  o f  s u c h .



Chapter 11

Constraint Satisfaction Problem

This chapter describes a representation that considers the SHA-1 preimage problem as a 
search problem. The preimage problem is encoded as a set of constraints on each variable, 
putting the theory described in Section 5.1 into practice. This aspect of the representation 
makes it unsuitable for use with with the structure described in Section 6.1. A naive 
implementation provides fertile ground for discussion of the difficulties of this course, and 
a sophisticated implementation provides results for further analysis.

A Constraint Satisfaction Problem (CSP) must be considered as both an abstract problem 
to model and a practical problem to implement. At an abstract level, the problem must be 
modeled appropriately since the manner in which it is modeled can have a big impact on 
how difficult it is to solve. The difficulty of solving the problem is, in this case, expected 
to be directly tied to the difficulty of finding a valid partial solution —  or, to phrase it 
another way, the difficulty of finding a partial solution which can be shown to be valid. 
On the practical side, an efficient way of propagating constraints —  a process which is 
crucial to efficiently solving CSPs —  must be implemented. The latter problem is made 
much easier by the existence of well-justified, efficient CSP toolkits such as Gecode1 (see 
Tack (2009) for details), and will therefore not be addressed here.

Using the constraints previously described in Equation 4.8 (page 63), SHA-1 can be 
modeled as additions using w variables and q variables, with the remainder of the variables 
(a, v, f , and k) being either derived from these or constant. A q variable is particularly 
useful because it contains sufficient information to identify both a and v values, as well 
as the carry behaviour from one position to another.

1http://www.gecode.org/
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Exam ple 11.1. The sufficiency of q and w variables. Assume that the values for a 
round r are expressed entirely in terms of q and w variables, viz.

qr-values 57447642343411344443345333256335
Wr-i-values 01100010011101001001001100010000

The q1  value (boldfaced above) has been singled out for examination; however, the 
reasoning in this example applies to any index. The equation for q1  is

q18
r a23 

r— 1+  fr-1 +  a ^ 5 +  wr+5 +  v,.8 +  k23
r—1

The k value is constant and can therefore be disregarded. The w value is known. Any 
ar value is equivalent to qr mod 2, and can therefore be calculated when q values are 
available. Since f  values rely on a values, they are also calculable. Lastly, the vf8 value

19
is equivalent to (using integer division), and is 1 in the case of the example data 
since q^ =  3. Tracking q and w variables is therefore sufficient for all calculations.

This is not the only way of modeling SHA-1. On a practical level, a CSP can be defined 
by the 3-tuple (constraints, domains, variables), and there are often many variations of 
these that are possible for any given problem. The way in which a problem is modeled, 
and the algorithm used to find a solution, can have a very large impact on the time taken 
to find a solution (Rossi, van Beek, and Walsh, 2006).

Two kinds of algorithms that are used in practice to search for a solution to a CSP are 
forward checking (Brailsford, Potts, and Smith, 1999) and arc consistency (Regin, 2005). 
Both of these approaches attempt to eliminate values from domains based on an extension 
of a partial solution. A forward checking algorithm will tentatively make an assignment 
to a variable x, and check whether all other variables are consistent with that assignment. 
Arc consistency enforces consistency between the values of all variables such that each 
variable is consistent with each other variable when all constraints between variables 
are taken into account. An arc consistency algorithm will therefore tentatively make an 
assignment to a variable x, and check whether all pairs of variables are consistent with 
that assignment. This involves more checking and is therefore more expensive, but will 
result in more implications between variables being determined.

It is possible to use a more “traditional” formulation of binary variables, or to convert the 
q-variable representation to the binary domain using either the hidden-variables or dual­
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graphs technique as described in (Bacchus, Chen, Van Beek, and Walsh, 2002). However, 
Brailsford et al. (1999) suggest that “a few variables with large domains are in general 
preferable to many variables with small domains” since the former lead to a smaller search 
space, and they specifically state that “zero-one variables are not desirable and should be 
avoided if possible”.

The work of Bacchus et al. (2002) empirically examines the advantages and disadvantages 
of using binary/non-binary constraints, as well as the effect of particular translations of 
non-binary constraints into binary constraints. Using examples and proofs, Bacchus et al. 
(2002) examine dual-graph, hidden-variables, and non-binary formulations and show that 
it is possible for any formulation of a problem to be exponentially worse than other 
formulations —  and that this is a feature of the problem itself. However, they provide 
no guidance about how to determine whether a particular problem will be exponentially 
worse when using a particular formulation.

Bacchus et al. (2002) do show that if a problem is arc consistent in a non-binary formu­
lation, then it will be arc consistent when converted to a binary domain using the hidden 
variables technique. Furthermore, they show that the computational cost of maintain­
ing arc consistency is never more than a polynomial factor worse when considering the 
non-binary and hidden-variables binary formulations. They also show that the hidden- 
variables formulation is never more than a polynomial factor worse than the dual-graphs 
formulation. As a result, there is no reason to avoid a non-binary formulation: the 
performance of such a model is not necessarily worse than the performance of binary 
formulations, and when it is worse, it is guaranteed to not be much worse.

Another reason to not model the SHA-1 CSP in binary terms is because this has been done 
—  unsuccessfully —  before, usually in the context of SAT-solving. Nossum (2012) models 
the SHA-1 problem domain in binary terms in order to represent it in CNF; Jovanovic 
and Janicic (2005) shows a generic encoding for any hash function; and Nossum (2013) 
have submitted a tunable instance generator for SHA-1-based CNF formulae. It therefore 
seems worthwhile to take the path less-travelled and use a non-binary model, in the 
absence of any reason to avoid it.

Exam ple 11.2. An advantage of a non-binary model. Consider the input 0xdeadbeef-
cafeb4be. The last five rounds of this, using the coordinate system described in
Equation 4.8, are given as side-by-side q and a values.



11.1. NAIVE IMPLEMENTATION 146

Round q-values

76
77
78
79
80

44555544253441333244234344244335
45346412453323445463443366254666
57447642343411344443345333256335
44434556442544566653325355255447
44346452355455644568645222133243

a-values

00111100011001111000010100000111
01100010011101001001001100010000
11001000101011100001101111010111
00010110000100100011101111011001
00100010111011000100001000111001

Index 26 is equivalent to index 0 for carrying purposes and has been indicated by 
boldface in the rows above. Carries occur to the left and wrap around. It can 
readily be seen that the q-values contain sufficient information to identify v-values, 
a-values, and carry behaviour.

As discussed in Section 5.1, majority is a polymorphism of SHA-1, and this means that 
the CSP has an n-extension property for n >  2. Since a valid partial solution should 
be extendable in this fashion, ensuring that a partial solution is valid is of paramount 
importance.

11.1 Naive implementation

A naive non-binary implementation utilizing arc consistency was created to explore the 
CSP representation. Three kinds of constraints could be applied immediately:

1. A constraint that reduces the domain of known w values such as w'r when r x 32 +  
i > =  n for an n-bit input; and

2. A constraint that reduces the domain of known q values by restricting them to be 
all-odd or all-even, depending on the known a-values of a76..80; and

3. A constraint that reduces the domain of q values, consistent with the maximum and 
minimum possible contributing values.

Assume that the CSP is modeled with only these three constraints. As a result, |D(q®0)| =  
2, max(|D(q77..79|) =  3, max(|D(q761) =  4, and max(|D(q1..75|) =  9. A partial solution 
cannot be found by manipulating these values, however, because it is always possible to 
manipulate earlier-round q-values to obtain a particular outcome. This is because the q®0 
equations are typically of the form
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q8o a 79 5 +
fi+5
f 79 + a7+530 +  w 7+5 +  v ®0 I k i+5k 79

Typical domains associated with such an equation might be

( 4, 6} =  {1 } +  {1 } +  {0 ,1 } +  {0 ,1 } +  ( 2, 3} +  {0 }

The possibilities make it easy to obtain any value. This manipulation remains possible 
until the initial rounds are reached and fixed a-values are encountered. Therefore, it 
is difficult to check whether a set of values constitutes a valid partial solution without 
extensive effort.

Instead of starting to search for solutions from round 80, it is possible to start the search 
from round 1. For most of the round |D(q1)| =  3, with the exception being |D(q^6) | =  2. 
Although this is a larger domain than is present in round 80 (where |D(q®0)| =  2), the 
domains associated with the equations in round 1 make them much less amenable to 
manipulation. A typical example of such domains is

{2 ,3 ,4 } =  {0 } +  {0 } +  {0 } +  {0 ,1 } +  {2 ,3 } +  {0 }

As values are fixed for q-values closer to i =  26, the possible choices for other domains 
tends to reduce since v-values become increasingly constrained. Thus, although the num­
ber of choices is ostensibly 3, it is 2 in practice if values are fixed from i =  26 onwards. 
However, it is still very difficult to check whether a chosen value is a partial solution or 
not since there is no direct link to the known al76. 80 values. Due to the manipulation that 
is possible during later rounds, any w-value assignment is acceptable and can be adjusted 
for by modifications to earlier q-values. Once again, this manipulation remains possible 
until the earlier rounds are encountered.

The aforementioned constraints can be strengthened by the addition of constraints over 
w , which constrain those values to be in accordance with the linear system that generates 
those values. This system can, when used in conjunction with Gauss-Jordan elimina­
tion (Anton, 2010), be used to indicate that an erroneous assignment has occurred at 
some point by obtaining an insoluble system. This kind of detection is most useful when 
working from later rounds towards earlier rounds; in earlier rounds, w values are being 
assigned directly and simply asserted to be correct. However, two issues arise from the 
use of such a system of constraints.
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1. The number of equations must be equal to the number of variables being examined.

2. No degenerate equations are permitted.

A system where the number of equations is less than the number of variables is under­
determined, and Gauss-Jordan elimination will not be able to find values for variables. 
Conversely, a system where the number of equations is greater than the number of vari­
ables is overdetermined, and Gauss-Jordan elimination will result in an inconsistent set 
of assignments. Issue (1) relates to the number of equations that must therefore be cho­
sen. Ideally, each equation would cover the same set of variables; however, this is not 
possible in practice. The particular expanded-word w-values must be carefully chosen to 
overlap while introducing as few additional variables as possible. In addition, it would 
be useful for the chosen w-values to be as close to q76..80 as possible since, given their 
already-constrained domains, this makes it easier to obtain empty domains. Unfortu­
nately, the later w-values are also those which have the largest number of terms in their 
expansion-word equations.

Issue (2) is about which equations are included in the system. A degenerate equation 
in a linear system is one which can be formulated by the linear combination of other 
equations in the system. Therefore, it provides no additional information about variable 
values and, if not replaced by a non-degenerate equation, will result in a solution which 
is not unique (and, in our context, therefore likely to be incorrect) or a solution which 
is incorrect. A degenerate system can be detected by calculating the determinant of the 
system’s coefficient matrix. If the determinant is non-zero, then the system does not 
contain any degenerate equations. Determining which equations are linear combinations 
of other equations can be done via exhaustive testing, though it may be simpler to “swap 
out” equations until a non-degenerate system is found. For example, given a pool of 
13 equations and 8 variables, there are 5 equations which should be excluded from the 
linear system; by permuting or shuffling the pool and taking the first 8 equations, a non­
degenerate system may be found. A more structured, but much more computationally 
intensive, option may be to pre-calculate which equations are degenerate in relation to 
which other equations, since this depends purely on the equations themselves and not on 
the data.

A significant problem with relying on the w-equation constraints to detect errors is that 
although an error indicates that an incorrect assignment has been made, the location 
of the assignment is unknown. Assuming that n variables are considered in the linear 
system, this means that a search space of 2 n possibilities has to be considered.
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N o  s o l u t i o n  t o  t h e s e  i s s u e s  c o u l d  b e  f o u n d .  I t  t h e r e f o r e  a p p e a r s  t h a t  a  n o n - b i n a r y  r e p r e ­

s e n t a t i o n  r e s u l t s  i n  s i m i l a r  c o m p u t a t i o n a l l y  i n f e a s i b l e  r e s u l t s  t o  t h e  b i n a r y  r e p r e s e n t a t i o n s  

m e n t i o n e d  i n  t h e  l i t e r a t u r e .

11.2 Sophisticated implementation

T h e  C S P  m a y  b e  m o r e  t r a c t a b l e  i f  i m p l e m e n t e d  i n  a  m o r e  s o p h i s t i c a t e d  w a y ;  i t  m a y  

b e  t h e  c a s e  t h a t  m o r e  s o p h i s t i c a t e d  p r o p a g a t o r s  w o u l d  b e  a b l e  t o  f i n d  r e l a t i o n s h i p s  t h a t  

a r e  n o t  i m m e d i a t e l y  o b v i o u s ,  o r  t o  p a r e  d o m a i n s  d o w n  m o r e  e f f i c i e n t l y  t h a n  a n  a d - h o c  

i m p l e m e n t a t i o n .  T o  t h i s  e n d ,  t h e  s t a t e - o f - t h e - a r t  G e c o d e 2 ( T a c k ,  2 0 0 9 )  f r a m e w o r k  w a s  

u s e d  t o  r e p r e s e n t  t h e  n o n - b i n a r y  m o d e l  t h a t  h a s  b e e n  d e s c r i b e d ,  u s i n g  q  a n d  w  v a r i a b l e  

a r r a y s  r e s p e c t i v e l y .  B r a n c h i n g  “ d e f i n e s  t h e  s h a p e  o f  t h e  s e a r c h  t r e e ”  ( S c h u l t e ,  T a c k ,  

a n d  L a g e r k v i s t ,  2 0 1 6 )  i n  G e c o d e ,  a n d  r e q u i r e s  t w o  t h i n g s :  t h e  s e l e c t i o n  o f  a  v a r i a b l e  t o  

b r a n c h  o n ,  a n d  a  m e a n s  o f  s p l i t t i n g  t h e  v a l u e s  i n  t h e  d o m a i n  t o  c r e a t e  a  c h o i c e .  I n  a l l  

c a s e s ,  d o m a i n s  w i t h  a  s m a l l e r  n u m b e r  o f  v a r i a b l e s  w e r e  s e l e c t e d  ( t h e  IN T_VA R_SIZE_M IN  

o p t i o n  i n  G e c o d e ) ,  a n d  d o m a i n s  w e r e  s p l i t  u s i n g  t h e  m e a n  o f  l a r g e s t  a n d  s m a l l e s t  d o m a i n  

v a l u e s ,  w e i g h t e d  t o w a r d s  l a r g e r  v a l u e s  ( t h e  IN T_V A L_SP LIT _M A X  o p t i o n  i n  G e c o d e ) .

B r a n c h i n g  d e f i n e s  t h e  s h a p e  o f  t h e  s e a r c h  t r e e ,  a n d  s e a r c h  a l g o r i t h m s  d e f i n e  t h e  o r d e r  

i n  w h i c h  t h e  t r e e  is  e x p l o r e d .  A  c u s t o m  s e a r c h  a l g o r i t h m  w h i c h  t o o k  i n t o  a c c o u n t  t h e  

p r o b a b i l i t y  o f  c a r r i e s  m a d e  n o  d i f f e r e n c e  t o  a n y  r e s u l t .  T h e  d e p t h - f i r s t  s e a r c h  a l g o r i t h m  

( DFS in  G e c o d e )  w a s  u s e d  in  a l l  c a s e s ;  t h e  m o r e  r e c e n t  L e a s t  D i s c r e p a n c y  S e a r c h  ( L D S )  

o c c a s i o n a l l y  r e t u r n e d  f a l s e - n e g a t i v e  r e s u l t s ,  a n d  t h e  B r a n c h - A n d - B o u n d  ( B A B )  s e a r c h  is  

m o r e  g e a r e d  t o w a r d s  f i n d i n g  t h e  b e s t  p o s s i b l e  s o l u t i o n .

F o r  r e p r o d u c i b i l i t y ,  i t  s h o u l d  b e  s t a t e d  t h a t  t h e  C + +  c o d e  o f  t h e  s o p h i s t i c a t e d  i m p l e ­

m e n t a t i o n  n e e d e d  t o  b e  c o m p i l e d  w i t h  t h e  clang++3 c o m p i l e r ;  b o t h  t h e  V i s u a l  S t u d i o  

2 0 1 5  C + +  t o o l c h a i n  ( c l 4 a n d  lin k 5) a n d  t h e  G N U  g++6 c o m p i l e r  s p e n t  c l o s e  t o  a n  h o u r  

a t t e m p t i n g  t o  c o m p i l e  t h e  c o d e  b e f o r e  g i v i n g  u p .  T h e  e x a c t  r e a s o n s  f o r  t h i s  a r e  u n k n o w n ,  

b u t  i t  is  h y p o t h e s i s e d  t h a t  s u c h  l o n g  c o m p i l a t i o n  t i m e s  c o u l d  b e  d u e  t o  G e c o d e ’ s e x t e n s i v e  

u s e  o f  C + +  t e m p l a t e  f u n c t i o n a l i t y .  S i n c e  t h e  f u n d a m e n t a l  d e s i g n  o f  G e c o d e  is  u n l i k e l y  

t o  c h a n g e ,  i t  is  l i k e l y  t h a t  r e s e a r c h e r s  w i s h i n g  t o  r e p l i c a t e  o r  e x t e n d  t h e s e  r e s u l t s  w i l l  r u n  

i n t o  s i m i l a r  i s s u e s .

2Gecode version 5.0.0 
3clang version 3.8.1 
4cl version 19.00.24210 
5link version 14.00.24210 
6g++ version 6.2.0
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T h e  m o d e l  a d m i t t e d  t h e  p o s s i b i l i t y  o f  s e v e r a l  v a r i a t i o n s :

1. T h e  u ,  a s  w i t h  o t h e r  r e p r e s e n t a t i o n s ,  c o u l d  b e  a l t e r e d .

2 . B r a n c h i n g  c o u l d  o c c u r  o n  w  v a r i a b l e s ,  q  v a r i a b l e s ,  q - t h e n - w  v a r i a b l e s ,  o r  w - t h e n - q  

v a r i a b l e s .

3 . T h e  n u m b e r  o f  c o n s t r a i n t s  c o u l d  b e  r e d u c e d  b y  e x c l u d i n g  a  c e r t a i n  p e r c e n t a g e  o f  

c o n s t r a i n t s ;  h o w e v e r ,  t o  m a k e  f a l s e - p o s i t i v e s  l e s s  l ik e ly ,  t h e  l a s t  f i v e  r o u n d s  w o u l d  

a l w a y s  b e  f u l l y - c o n s t r a i n e d .

4 . I n  t h e  c a s e  o f  a  s e c o n d - p r e i m a g e ,  t h e  e x a c t  q  v a l u e s  w o u l d  b e  k n o w n ;  t h i s ,  i n  t u r n ,  

w o u l d  d e c r e a s e  t h e  s e a r c h  s p a c e  b y  f i x i n g  t h e  f i n a l  v a l u e s  i n s t e a d  o f  s i m p l y  r e s t r i c t i n g  

t h e m  t o  b e  e v e n ,  i f  a %r > 76 =  0 ,  o r  o d d  o t h e r w i s e .

5 . T h e  n u m b e r  o f  r o u n d s  c o u l d  b e  r e d u c e d .

F i g u r e  1 1 .1 :  T r a c t a b i l i t y  o f  n o n - b i n a r y  f o r m u l a t i o n ,  u s i n g  a  s o p h i s t i c a t e d  i m p l e m e n t a t i o n

V a r i a t i o n s  ( 1 )  a n d  ( 2 )  p r o v i d e  a  b a s e l i n e  f o r  h o w  t r a c t a b l e  a  m o r e  s o p h i s t i c a t e d  i m ­

p l e m e n t a t i o n  c a n  m a k e  t h e  p r e i m a g e  C S P  r e p r e s e n t a t i o n .  V a r i a t i o n  ( 2 )  is  p a r t i c u l a r l y  

s i g n i f i c a n t  s i n c e  t h e  s h a p e  o f  t h e  s e a r c h  t r e e  d e t e r m i n e s  t h e  o v e r a l l  s c a l a b i l i t y  o f  t h e  a p ­

p r o a c h .  F i g u r e  1 1 .1  s h o w s  t h a t  t h e  t r a c t a b i l i t y  o f  t h e  p r o b l e m  r e m a i n s  t h e  s a m e  d e s p i t e  

t h e  s h a p e  o f  t h e  s e a r c h  t r e e ,  a l t h o u g h  t h e  s h a p e  o f  t h e  t r e e  d o e s  h a v e  a  s i g n i f i c a n t  e f f e c t  

o n  t h e  t i m e  t a k e n  t o  o b t a i n  a  p r e i m a g e .  T h i s  r e s u l t  i m p l i e d  t h a t  t h e  m o r e  s o p h i s t i c a t e d  

i m p l e m e n t a t i o n  is  u n a b l e  t o  f i n d  a n y  a d d i t i o n a l  i n f e r e n c e s  t o  c o n s t r a i n  t h e  m o d e l ,  a n d
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that implication was verified through an interactive exploration of the search tree using 
Gecode’s Gist user interface (Schulte et al., 2016). Figure 11.1 makes it clear that branch­
ing on w is the most efficient way to approach the problem, and the following variations 
will therefore restrict themselves to this branching method. A depth-first search through 
the q variables involved a larger number of choices to be made and this accounts for the 
increased time taken.

Gecode, by default, uses the concept of “no-goods” : paths that can be shown to be 
impossible are excluded from the list of paths to try in future. The exponential curve 
shown in Figure 11.1 implies that this no-goods list is not being used effectively: failed 
paths give no information about correct paths.

9 5  9 8  9 9  9 9 . 5  9 9 . 9  9 9 . 9 5  1 0 0

P e r c e n t a g e  o f  c o n s t r a i n t s  r e t a i n e d

Figure 11.2: Number of solutions generated for reduced constraints (u =  12)

Variation (3) is premised on the idea of reducing the number of constraint checks to be 
made and thus increasing the efficiency of the system. Performance is, indeed, increased: 
each solution takes mere milliseconds to find. However, the false positive rate is 2W — 1 
(see Figure 11.2), which means that the solutions generated are simply an enumeration 
of the search space. Although Figure 11.2 shows results for u =  12, the same pattern 
was obtained for u G {4,8,16, 20}. Removing a single constraint results in the same 
performance characteristics, and the same single solution, as removing no constraints; 
removing more than one constraint results in an exhaustive enumeration of the search 
space. It is hypothesised that the reduced number of checks makes it more difficult to 
prune values efficiently and an exhaustive search through unpruned values must therefore 
be undertaken. This result demonstrates the importance of every constraint in the system; 
no simplification of the system through constraint removal is possible. It also demonstrates
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t h e  i m p o r t a n c e  o f  d e t e r m i n i n g  c o n s t r a i n t s  f o r  t h e  s y s t e m  s i n c e  m o r e  c o n s t r a i n t s  l e a d  t o  

f e w e r  v a l u e s  t h a t  n e e d  t o  b e  e x h a u s t i v e l y  t e s t e d .

F i g u r e  1 1 .3 :  R e d u c i n g  t h e  o u t p u t  s e a r c h  s p a c e

V a r i a t i o n  ( 4 )  c a n  b e  e x p e c t e d  t o  h a v e  a  s i g n i f i c a n t  p o s i t i v e  e f f e c t  o n  p e r f o r m a n c e  s i n c e  

i t  r e d u c e s  t h e  s e a r c h  s p a c e .  S u c h  a n  e f f e c t  c a n  b e  s e e n  in  F i g u r e  1 1 .3 ,  w h i c h  is  w o r t h  

c o m p a r i n g  t o  t h e  b a s e l i n e  s h o w n  i n  F i g u r e  1 1 .1 .  T h e  r e s u l t s  i n d i c a t e  t h a t  t h e  p o s i t i v e  

e f f e c t  is  s h a r p l y  c u r t a i l e d  a s  u  i n c r e a s e s .  T h i s  is  l i k e l y  d u e  t o  t h e  f a c t  t h a t ,  a l t h o u g h  t h e  

s e a r c h  s p a c e  is  g r e a t l y  r e d u c e d ,  i t  is  n o t  e n t i r e l y  e l i m i n a t e d  —  a n d  a  l a r g e r  i n p u t  s i z e  

n e c e s s a r i l y  e n t a i l s  a  l a r g e r  s p a c e  t o  s e a r c h  t h r o u g h .  A l t h o u g h  t h e  a m o u n t  o f  t i m e  t a k e n  is  

d r a s t i c a l l y  r e d u c e d ,  t h e  r e s u l t  is  o f  l i m i t e d  u t i l i t y  s i n c e  f i x i n g  t h e  o u t p u t  in  a  n o n - b i n a r y  

f o r m u l a t i o n  c o n v e r t s  t h e  c o m p r e s s i o n  f u n c t i o n  i n t o  a n  e x p a n s i o n  f u n c t i o n .

R e c a l l  t h a t  t h e  p i g e o n h o l e  p r i n c i p l e ,  f i r s t  m e n t i o n e d  i n  C h a p t e r  2 ,  s t a t e s  t h a t  i f  n  o b j e c t s  

a r e  d i s t r i b u t e d  a m o n g  k  c o m p a r t m e n t s  w h e r e  n  >  k ,  t h e n  a t  l e a s t  o n e  c o m p a r t m e n t  m u s t  

c o n t a i n  m o r e  t h a n  o n e  o b j e c t .  A  n o n - b i n a r y  f o r m u l a t i o n  i n c r e a s e s  k  b y  a  f a c t o r  o f  5 : a  

0 - v a l u e  is  m a p p e d  t o  { 0 ,  2 , 4 ,  6 ,  8 }  a n d  a  1 - v a l u e  is  m a p p e d  t o  { 1 , 3 ,  5 , 7 , 9 } .  T h i s  m e a n s  

t h a t  t h e  5 1 2  ( o r  ^  4 5 6 ,  f o r  v a l i d  s i n g l e - b l o c k  S H A - 1 )  i n p u t s  a r e  m a p p e d  t o  1 6 0  x  5  =  

8 0 0  p o s s i b l e  c o m p a r t m e n t s  a n d  s e c o n d - p r e i m a g e s  f o r  a n  a r b i t r a r y  c o m p r e s s i o n  f u n c t i o n  

o u t p u t  a r e  n o  l o n g e r  g u a r a n t e e d  t o  e x i s t .  S i n c e  t h e  n o n - b i n a r y  o u t p u t  c a n  o n l y  b e  f i x e d  

t o  e x a c t  v a l u e s  i f  a n  i n p u t  is  k n o w n ,  b u t  e x a c t  v a l u e s  d o  n o t  n e c e s s a r i l y  r e s u l t  in  a  s e c o n d -  

p r e i m a g e ,  t h e  u t i l i t y  o f  v a r i a t i o n  ( 4 )  is  l i m i t e d .  N e v e r t h e l e s s ,  i f  s o m e  w a y  c a n  b e  d e v i s e d  

t o  g u e s s  q - v a l u e s  f r o m  t h e  p a t t e r n  o f  a - v a l u e s ,  t h e n  r e s t r i c t i n g  q - v a l u e s  a p p r o p r i a t e l y  c a n  

p r o v i d e  a  v e r y  s i g n i f i c a n t  r e d u c t i o n  i n  s o l v i n g  t i m e .
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F i g u r e  1 1 .4 :  R e d u c i n g  t h e  d e p t h  o f  t h e  t r e e

V a r i a t i o n  ( 5 )  r e d u c e s  t h e  d e p t h  o f  t h e  t r e e  t h a t  m u s t  b e  e x p l o r e d ;  s e e  F i g u r e  1 1 .4  s h o w s  

t h a t  e v e r y  2 0  r o u n d s ,  s t a r t i n g  f r o m  u  =  1 2 ,  a d d s  a  r e l a t i v e l y  c o n s t a n t  f a c t o r  t o  t h e  t i m e  

r e q u i r e d  t o  f i n d  a  s o l u t i o n .  T a k i n g  t h e  g e o m e t r i c  m e a n  o f  t h e  d i f f e r e n c e s  a c r o s s  i n p u t  

s i z e s  f r o m  u  = 1 2  o n w a r d s ,  4 0  r o u n d s  t a k e s  ~  2 . 5 3 x  m o r e  t i m e  t h a n  2 0  r o u n d s ;  6 0  r o u n d s  

t a k e s  ~  1 .8 0 x  m o r e  t i m e  t h a n  4 0  r o u n d s ;  a n d  8 0  r o u n d s  t a k e s  ~  1 .6 8 x  m o r e  t i m e  t h a n  

6 0  r o u n d s .

11.3 Summary

T h e  c h o i c e  o f  w h e t h e r  t o  m o d e l  t h e  S H A - 1  p r e i m a g e  p r o b l e m  a s  b i n a r y  o r  n o n - b i n a r y  

C S P  l e a d s  t o  a n  i n t e r e s t i n g  t h e o r e t i c a l  d i s c u s s i o n  o f  t r a d e - o f f s ,  b u t  h a s  l i t t l e  i m p a c t  

o n  t h e  f i n a l  r e s u l t :  n o  m o d e l ,  e i t h e r  i n  t h e  l i t e r a t u r e  o r  i m p l e m e n t e d  i n  t h i s  r e s e a r c h ,  

p r o v i d e d  a  b e t t e r - t h a n - b r u t e - f o r c e  w a y  t o  f i n d  a  s o l u t i o n .  B r a n c h i n g  o n  w  w a s  b e t t e r  

t h a n  b r a n c h i n g  o n  q , a n d  t h e  n o n - b i n a r y  m o d e l  m a d e  i t  e a s i e r  t o  f i x  b o t h  t h e  c a r r y  a n d  

t h e  f i n a l  v a l u e  a n d  u n d e r s t a n d  t h e  i m p a c t  o f  d o i n g  s o .  A n  i m p o r t a n t  r e s u l t  f r o m  t h i s  

s e c t i o n  is  t h a t  a d d i n g  m o r e  r o u n d s  t o  t h e  p r o b l e m  b e c o m e s  i n c r e a s i n g l y  i n e f f e c t i v e .
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Chapter 12

Discussion

T h i s  c h a p t e r  r e f l e c t s  o n  t h e  d e s i g n  d e c i s i o n s  t h a t  l e a d  t o  t h e  r e m a r k a b l e  p r e i m a g e  r e s i s ­

t a n c e  o f  S H A - 1 ,  n o t e s  c e r t a i n  n o v e l  c o n t r i b u t i o n s  o f  t h i s  r e s e a r c h ,  a n d  d i s c u s s e s  g e n e r a l  

l e s s o n s  l e a r n e d  f r o m  t h e  e x p e r i m e n t s  c o n d u c t e d  i n  P a r t  I I I .  F u t u r e  r e s e a r c h  d i r e c t i o n s  a r e  

p r o p o s e d  t o  e n d  o f f  t h e  c h a p t e r .

B y  w a y  o f  s u m m a r i s i n g  t h e  p r o g r e s s  t o w a r d s  f i n d i n g  a  p r e i m a g e ,  i t  is  w o r t h w h i l e  t o  o n c e  

a g a i n  l o o k  a t  t h e  f r a m e w o r k  o f  R o g a w a y  a n d  S h r i m p t o n  ( 2 0 0 9 ) .  T h i s  f r a m e w o r k  p r e s e n t s  

t h e  a P r e  f o r m a l i s a t i o n  i n c l u d e d  i n  t h i s  w o r k  a s  E q u a t i o n  3 .1  in  S e c t i o n  3 .2  ( s e e  p a g e  2 4 ) .  

A  s i m p l i f i e d  f o r m a l i s a t i o n  t h a t  d o e s  n o t  t a k e  t h e  c h a i n i n g  v a l u e  i n t o  c o n s i d e r a t i o n  is

A dvH re[ml (A) =  p r]
M  { 0 , 1 } m ; Y  ^  H ( M ) ;  M  c -  A ( Y ) : H ( M ' ) Y

N o  r e p r e s e n t a t i o n ,  a l g o r i t h m ,  o r  a p p r o a c h  t h a t  h a s  b e e n  c o n s i d e r e d  is  l i k e l y  t o  g i v e  a n  

a t t a c k e r  a n y  a d v a n t a g e  o v e r  t h e  b r u t e - f o r c e  a p p r o a c h ;  n o  A ( Y ) h a s  b e e n  d i s c o v e r e d .

12.1 Design decisions

I n  t e r m s  o f  h a s h  f u n c t i o n  e v o l u t i o n ,  S H A - 1  f o l l o w s  o n  f r o m  M D 5  ( R i v e s t ,  1 9 9 2 b ) ,  w h i c h  

i n  t u r n  f o l l o w e d  o n  f r o m  M D 4  ( R i v e s t ,  1 9 9 2 a ) .  M D 4  w a s  o r i g i n a l l y  c r e a t e d  i n  1 9 9 0  a s  a  

c r y p t o g r a p h i c  h a s h  w i t h  a n  e m p h a s i s  o n  p e r f o r m a n c e ;  i t  s e e m s  l i k e l y  t h a t  t h i s  e m p h a s i s  

c o u l d  h a v e  b e e n  i n t e n d e d  t o  o v e r c o m e  t h e  o b j e c t i o n  t h a t  a d d i n g  s e c u r i t y  m a d e  s y s t e m s

155
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“slow”. However, MD4 was quickly broken (Dobbertin, 1998), and the signs of this im­
pending collapse were evident soon after the algorithm was created. MD5 took a different 
approach (Rivest, 1992b):

MD5 is slightly slower than MD4, but is more “conservative” in design.
MD5 was designed because it was felt that MD4 was perhaps being adopted 
for use more quickly than justified by the existing critical review; because 
MD4 was designed to be exceptionally fast, it is "at the edge" in terms of 
risking successful cryptanalytic attack. MD5 backs off a bit, giving up a little 
in speed for a much greater likelihood of ultimate security.

SHA-1 follows in this tradition of prioritising security over speed. The diffusion of SHA-1, 
as investigated in Section 5.2, is critical to preimage-resistance of the compression function 
since it ensures that there are no clues in the output that could indicate which input was 
used. The way in which linear and nonlinear functions are mixed is essential to SHA-1’s 
excellent diffusion characteristics; the properties of each function have been discussed in 
Section 4.2.2. Of particular interest, as far as preimage resistance is concerned, is the fact 
that all f -functions are balanced and almost all component-functions are either 0th-order 
or 1st-order correlation-immune.

The message-expansion phase (Section 4.1) of SHA-1 is purely linear, and most of the 
spliffling functions —  i.e., the majority, choice, and carry sub-functions —  are nonlinear 
(Section 4.2.2). Recall that the essential difference between a linear and nonlinear func­
tion is that the output of the former always depends on all the inputs. By using a linear 
function in message-expansion to distribute the bits of the input, and a nonlinear function 
in spliffling to process them, the SHA-1 function ensures that each bit has multiple op­
portunities to participate in the hash function output, even if any particular bit happens 
to be ignored by a nonlinear function. This aspect of the design is an improvement over 
SHA-1’s predecessor MD5 (Rivest, 1992b), which does not diffuse the bits in a separate 
message-expansion phase.

The theoretical investigation of SHA-1 as a CSP (Section 5.1) showed that SHA-1 is a 
decision problem in the L complexity class, solvable in O (2logn) time. However, it should 
be noted that the complexity class of a decision problem relates the size of the input to 
the time/space requirements of that problem, ignoring any constant factor. The results 
of Section 11.2 relate the tree depth to the time taken to find a preimage. It is this 
tree depth of 80 rounds that adds a constant factor, making the average case difficult to
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s o l v e .  S e c t i o n  1 1 .2  d e m o n s t r a t e d  t h a t  t h e  i n c r e a s e d  d i f f i c u l t y  i m p o s e d  b y  e v e r y  a d d i t i o n a l  

2 0 - r o u n d  b l o c k  d e c r e a s e s .  I t  is  t h e r e f o r e  p l a u s i b l e  t h a t  s i m i l a r  e x p e r i m e n t s  o n  t h e  p a r t  

o f  S H A - 1 ’ s d e s i g n e r s  c a u s e d  t h e m  t o  s e t t l e  o n  8 0  a s  a  n u m b e r  o f  r o u n d s  t h a t  b a l a n c e s  

p r e i m a g e  r e s i s t a n c e  a n d  c o m p u t a t i o n a l  c o s t .

12.2 Contribution

M u c h  o f  t h e  r e s e a r c h  d e s c r i b e d  in  t h i s  w o r k  is  n o t  f o u n d  i n  a n y  p u b l i s h e d  l i t e r a t u r e .  

T h e  a n a l y s i s  o f  m e s s a g e - e x p a n s i o n  a n d  s p l i f f l i n g  ( C h a p t e r  4 )  r e s u l t e d  i n  a n  a l t e r n a t i v e  

w - f o r m u l a t i o n  ( S e c t i o n  4 . 1 . 1 ) ,  a n  a l t e r n a t i v e  g - v a r i a b l e  f o r m u l a t i o n  ( S e c t i o n  4 . 3 ) .  A n  

a l g o r i t h m  t o  e f f i c i e n t l y  f i n d  v a l i d  e x p a n s i o n - e q u a t i o n s  ( S e c t i o n  4 . 1 . 3 )  a n d  a n  e x p l o r a t i o n  o f  

b i t - p a t t e r n  s u b e x p r e s s i o n s  ( S e c t i o n  4 . 1 . 2 )  a r e  a l s o  p r e s e n t e d .  T h e  t r e a t m e n t  o f  S H A - 1  a s  a  

C S P  ( S e c t i o n  5 .1 )  is  a l s o  n o v e l ,  a n d  t h e  r e s u l t  —  t h a t  S H A - 1 ,  a s s u m i n g  a  p a r t i a l  s o l u t i o n ,  

is  t h e o r e t i c a l l y  s o l v a b l e  i n  O ( 2 lo g n ) t i m e  —  w a s  n o t  f o u n d  i n  a n y  o f  t h e  l i t e r a t u r e  s u r v e y e d .  

T h e  s t a t i s t i c a l  a n a l y s i s  o f  S H A - 1  t o  d e t e r m i n e  i t s  a d h e r e n c e  t o  t h e  S t r i c t  A v a l a n c h e  

C r i t e r i o n  ( S e c t i o n  5 .2 )  is  a l s o  n o v e l ,  a n d  is  b a s e d  o n  p r e v i o u s l y - p u b l i s h e d  w o r k  ( M o t a r a ,  

2 0 1 6 ) .

P a r t  I I I  c o m p r i s e s  m a n y  d i f f e r e n t  r e p r e s e n t a t i o n s  o f  t h e  S H A - 1  p r e i m a g e  p r o b l e m .  T o  

t h e  b e s t  o f  m y  k n o w l e d g e ,  s u c h  p r a c t i c a l  e x p e r i m e n t s  h a v e  n o t  b e e n  d e s c r i b e d  i n  t h e  l i t ­

e r a t u r e ,  w i t h  t h e  e x c e p t i o n  o f  s o m e  a s p e c t s  o f  C h a p t e r  7 . T h e  e x p e r i m e n t s  c o n f i r m e d  t h e  

d i f f i c u l t y  o f  t h e  S H A - 1  p r e i m a g e  p r o b l e m ,  a n d  i n  m a n y  c a s e s  t h e y  r e p r e s e n t  t h e  v e r y  f i r s t  

r e s u l t s  o f  t h e i r  t y p e .  C e r t a i n  e x p e r i m e n t s ,  s u c h  a s  t h o s e  r e l a t i n g  t o  i n t e r m e d i a t e  r e p r e s e n ­

t a t i o n  s i z e  r e d u c t i o n  ( S e c t i o n  9 .3 )  a n d  t h o s e  r e l a t i n g  c a l c u l a t i o n  m e t h o d  t o  s o l v i n g - t i m e  

( S e c t i o n  7 . 2 ) ,  s e r v e  t o  q u a n t i f y  t h e  d i f f i c u l t y  i n  t h e  c o n t e x t  o f  a  p a r t i c u l a r  r e p r e s e n t a ­

t i o n .  S e l e c t e d  e x a m p l e s  o f  n o v e l  e x p e r i m e n t s  a n d  r e s u l t s  a r e  t h e  a p p l i c a t i o n  o f  a  m o d e r n  

h e u r i s t i c  m i n i m i z e r  s u c h  a s  B O O M - I I  ( C h a p t e r  8 ) ,  t h e  i r r e l e v a n c e  o f  h e u r i s t i c  r e o r d e r i n g  

a l g o r i t h m s  f o r  R O B D D s  ( S e c t i o n  9 . 1 ) ,  a n d  t h e  u s e  o f  A I G s  a n d  r e l a t e d  t o o l s  t o  a t t e m p t  

t o  s i m p l i f y  a  d i r e c t e d  a c y c l i c  p r e i m a g e  g r a p h  ( C h a p t e r  1 0 ) .

12.3 Preimage representation

E x i s t i n g  r e p r e s e n t a t i o n s  m a k e  i t  p o s s i b l e  t o  d o  o n e  o f  t w o  t h i n g s :  t o  d e s c r i b e  t h e  c o n ­

s t r a i n t s  o f  a  s e a r c h  s p a c e  ( C N F ,  A I G  a n d  C S P ) ,  o r  t o  d e s c r i b e  a  s e a r c h  s p a c e  ( D N F
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a n d  B D D ) .  T h e  f o r m e r  is  i n e v i t a b l y  t i m e - i n e f f i c i e n t ,  a n d  t h e  l a t t e r  is  i n e v i t a b l y  s p a c e -  

i n e f f i c i e n t .  A  r e p r e s e n t a t i o n  m u s t  r e f l e c t  a l l  t h e  n e c e s s a r y  c o n s t r a i n t s ,  a n d  m u s t  t h e r e f o r e  

f u l l y  m o d e l  t h e  S H A - 1  c o m p r e s s i o n  f u n c t i o n .  A n y  r e p r e s e n t a t i o n  t h a t  d o e s  n o t  d o  t h i s  

m a k e s  i t  i m p o s s i b l e  t o  c h e c k  w h e t h e r  a  p a r t i a l  s o l u t i o n  h a s  b e e n  f o u n d .

A n  i d e a l  r e p r e s e n t a t i o n  o f  S H A - 1  d o e s  n o t  e x i s t .  A n  i d e a l  d a t a  s t r u c t u r e  w o u l d  b e  

c o m p a c t l y  a n d  f l e x i b l y  r e p r e s e n t e d  (a s  is  t h e  c a s e  w i t h  a n  A I G ) ;  e f f i c i e n t  a n d  m i n i m a l  

t o  r e p r e s e n t  i n  p r e i m a g e  f o r m ,  a n d  r e t a i n i n g  a r c - c o n s i s t e n c y ,  a s  is  t h e  c a s e  w i t h  a  B D D ;  

a n d  e a s i l y  m a n i p u l a b l e  a n d  t r a v e r s e d  u s i n g  s t a t e - o f - t h e - a r t  t o o l s ,  a s  is  t h e  c a s e  w i t h  b o t h  

C N F  a n d  A I G  f o r m s .  N o n e  o f  t h e  r e p r e s e n t a t i o n s  h a s  a l l  o f  t h e s e  q u a l i t i e s .  A  B D D  

e x p a n d s  f a r  t o o  m u c h  b e f o r e  a  p r e i m a g e  c a n  r e s t r i c t  i t ;  a n  A I G  is  f l e x i b l e ,  b u t  d i f f i c u l t  

t o  r e d u c e  t o  a  m i n i m a l  f o r m ;  a n d  t h e  d i f f i c u l t i e s  o f  s o l v i n g  f o r  a  s o l u t i o n  u s i n g  C N F  o r  a  

C S P  r e p r e s e n t a t i o n  h a v e  b e e n  e x p e r i m e n t a l l y  d e m o n s t r a t e d .

T h e  r e s e a r c h  i n t o  r e p r e s e n t a t i o n s  m a k e s  i t  p o s s i b l e  t o  d r a w  c o n c l u s i o n s  a b o u t  p r o p e r t i e s  

o f  t h e  S H A - 1  c o m p r e s s i o n  f u n c t i o n ,  a n d  p o t e n t i a l l y  a b o u t  p r e i m a g e  r e s e a r c h  i n  g e n e r a l .

I t  is  d i f f i c u l t  t o  e s t a b l i s h  a  “ g o o d ”  w a y  ( i n  t h e  c o n t e x t  o f  t h e  p r e i m a g e  p r o b l e m )  t o  

g e n e r a t e  a  S H A - 1  r e p r e s e n t a t i o n .  S e c t i o n  7 .2  d e m o n s t r a t e s  t h a t  d i f f e r e n t  S A T  s o l v e r s  

f o u n d  d i f f e r e n t  w - c a l c u l a t i o n  m e t h o d s  t o  b e  o p t i m a l ,  d e s p i t e  t h e  a  p r i o r i  r e c o m m e n d a t i o n s  

i n  t h e  r e l e v a n t  l i t e r a t u r e  ( s e e  N o s s u m  ( 2 0 1 2 ) ;  L e g e n d r e  e t  a l. ( 2 0 1 2 ) )  a b o u t  w h a t  s h o u l d  

b e  o p t i m a l .  T h i s  p o i n t s  t o  t h e  i m p o r t a n c e  o f  e x p e r i m e n t a l  v e r i f i c a t i o n  w h e n  h e u r i s t i c  

m e t h o d s  a r e  e m p l o y e d .

S H A - 1  h a s  e x c e l l e n t  d i f f u s i o n  p r o p e r t i e s .  T h e  S t r i c t  A v a l a n c h e  C r i t e r i o n  r e s u l t s  ( S e c ­

t i o n  5 .2  a n d  r e s u l t s  s u c h  a s  t h o s e  s h o w n  in  F i g u r e  9 .5  i n d i c a t e  t h e  i m p o r t a n c e  o f  c o n ­

s i d e r i n g  e v e r y  o u t p u t  b i t  w h e n  a t t e m p t i n g  t o  f i n d  a  p r e i m a g e ;  a n  a t t a c k e r ’ s a l g o r i t h m  

c a n n o t  s i m p l y  c o n s i d e r  a  s u b s e t  o f  t h e  o u t p u t  b i t s .

F i n d i n g  a  S H A - 1  p r e i m a g e  is ,  a s  e x p e c t e d ,  a  v e r y  h a r d  p r o b l e m  a l t h o u g h  i t  is  n o t  a m o n g  

t h e  h a r d e s t  k n o w n  p r o b l e m s  ( S e c t i o n  5 . 1 ) .  T h i s  r e s e a r c h  h a s  v e r i f i e d  t h a t  t h e  S H A - 1  

p r o b l e m  is  n o t  e a s i l y  s o l v a b l e  v i a  h e u r i s t i c  m i n i m i z a t i o n  ( C h a p t e r  8 ;  S e c t i o n  1 0 . 1 ) ,  n o r  

b y  d e c o m p o s i t i o n  ( C h a p t e r  9 ) ;  n o r  is  a n y  a d v a n c e  in  t h e s e  f i e l d s  ( a p a r t  f r o m  a  s o l u t i o n  

t o  P = N P )  l i k e l y  t o  m a k e  t h e  p r o b l e m  e a s ie r .

T h e  d i f f u s i o n  p r o p e r t i e s  a n d  m i n i m i z a t i o n  r e s i s t a n c e  o f  S H A - 1  m a k e  p r o b a b i l i t y - b a s e d  

a t t a c k s  d i f f i c u l t  t o  c o n c e p t u a l i z e :  e v e r y  p a t h  a p p e a r s  t o  b e  e q u a l l y  p o s s i b l e  a n d  a l l  p a t h s  

a r e  a p p r o x i m a t e l y  t h e  s a m e  l e n g t h .  S i n c e  t h e  i n p u t  is  f i x e d  i n  a d v a n c e  a n d  t h e  o u t p u t  

c a n n o t  b e  m o d i f i e d ,  t h e  “ s t a n d a r d ”  p r o b a b i l i t y - b a s e d  a t t a c k s  u s e d  t o  f i n d  c o l l i s i o n s  a r e  

i n a p p l i c a b l e .
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12.4 Future research directions

R e f l e c t i n g  o n  t h e  w o r k  p e r f o r m e d  d u r i n g  t h i s  r e s e a r c h  h a s  l e d  t o  c o n s i d e r a t i o n  o f  t h e  

r e s e a r c h  d i r e c t i o n s  m e n t i o n e d  in  t h i s  c h a p t e r .  T h e s e  p o s s i b i l i t i e s  a r e  n o t  e x h a u s t i v e :  i t  

m a y  b e  t h a t  a  b r e a k t h r o u g h  in  a n  “ u n r e l a t e d ”  f i e l d ,  s u c h  a s  m u l t i v a r i a t e  p o l y n o m i a l  

m u l t i p l i c a t i o n  ( s e e  t h e  e x c l u d e d  “ I n t e g e r  r e p r e s e n t a t i o n ”  in  S e c t i o n  6 . 4 ) ,  w o u l d  l e a d  t o  a n  

e a s i e r  w a y  t o  f i n d  a  p r e i m a g e .  I n s t e a d  o f  e n u m e r a t i n g  s u c h  p o s s i b i l i t i e s ,  o f  w h i c h  t h e r e  

a r e  m a n y ,  t h i s  s e c t i o n  s u g g e s t s  w o r k  t h a t  c a n  b u i l d  d i r e c t l y  u p o n  t h e  f o u n d a t i o n  l a i d  in  

e a r l i e r  c h a p t e r s .

T h e  A I G  r e p r e s e n t a t i o n ,  o u t  o f  a l l  t h e  r e p r e s e n t a t i o n s  e x p l o r e d  i n  t h i s  w o r k ,  is  p a r t i c ­

u l a r l y  i n t e r e s t i n g  a s  a  t a r g e t  f o r  f u t u r e  p r e i m a g e  r e s e a r c h .  I t  is  s c a l a b l e  a n d  a m e n a b l e  

t o  o p t i m i z a t i o n  a t  m i c r o -  a n d  m a c r o - l e v e l s ,  a n d  b e n e f i t s  f r o m  r e s e a r c h  c o n d u c t e d  i n  t h e  

f i e l d s  o f  g r a p h  t h e o r y  a n d  e l e c t r o n i c  d e s i g n ,  a u t o m a t i o n ,  a n d  o p t i m i z a t i o n .

T h e  S H A - 1  p r e i m a g e  p r o b l e m  is  c o m p l i c a t e d ,  b u t  n o t  n e c e s s a r i l y  c o m p l e x .  R e c a l l i n g  t h e  

d e f i n i t i o n  o f  “ p a r t i a l  s o l u t i o n ”  ( C h e n ,  2 0 0 9 ) ,  t h e  i s s u e  b e c o m e s  o n e  o f  r e p r e s e n t a t i o n .  

E a c h  p r e i m a g e  h a s  a  s i m p l e ,  a n d  t y p i c a l l y  s m a l l ,  d e f i n i t i o n ;  h o w e v e r ,  t h e  i n t e r m e d i a t e  

r e p r e s e n t a t i o n  t h a t  is  c r e a t e d  t o  f i n d  t h e  p r e i m a g e  e n d s  u p  r e p r e s e n t i n g  t h e  s o l u t i o n  s p a c e  

o f  a l l  p o s s i b l e  s o l u t i o n s  b e f o r e  b e i n g  “ p a r e d  d o w n ”  t o  t h e  m u c h - s i m p l e r  p r e i m a g e  d e f i ­

n i t i o n .  A l t h o u g h  d i f f e r e n t  r e p r e s e n t a t i o n s  h a v e  b e e n  c o n s i d e r e d ,  a  h y b r i d  r e p r e s e n t a t i o n  

a n d  a c c o m p a n y i n g  s e a r c h  a l g o r i t h m  m a y  b e  w o r t h  i n v e s t i g a t i n g .

S A T  s o l v e r s  a r e  o n e  o f  t h e  m o s t  p o w e r f u l  t o o l s  a v a i l a b l e  f o r  s o l v i n g  c o m b i n a t o r i a l  p r o b ­

l e m s ,  a n d  a r e  w i d e l y  a p p l i c a b l e  t o  a  v a s t  r a n g e  o f  p r o b l e m  d o m a i n s .  H o w e v e r ,  t h e y  

a r e  a l s o  u n a b l e  t o  e x p l o r e  t h e  g e n e r i c a l l y - r e p r e s e n t e d  p r o b l e m  s p a c e  e f f i c i e n t l y ,  t a k i n g  

i n t o  c o n s i d e r a t i o n  a l l  t h e  c o n s t r a i n t s .  S A T  s o l v e r s  a r e  g e a r e d  t o w a r d s  s o l v i n g  t r a c t a b l e  

p r o b l e m s  v i a  h e u r i s t i c  m e t h o d s  a n d ,  a s  m e n t i o n e d  in  C h a p t e r  7 , t h e y  t y p i c a l l y  h a v e  a n  

i n o r d i n a t e  n u m b e r  o f  v a r i a b l e s  t h a t  m a y  b e  t w e a k e d .  I t  w o u l d  b e  i n t e r e s t i n g  t o  b u i l d  o n  

t h e  r e s e a r c h  o f  L e g e n d r e  e t  a l. ( 2 0 1 2 )  o r  N o s s u m  ( 2 0 1 3 )  t o  c r e a t e  a  S A T  s o l v e r  t h a t  is  

s p e c i f i c a l l y  t u n e d  t o w a r d s  t h e  s t r u c t u r e  o f  t h e  S H A - 1  p r e i m a g e  p r o b l e m .  T h e  u s e  o f  a n  

i n t e r a c t i v e  v i s u a l i s e r ,  o r  a  n o n - b i n a r y  f o r m u l a t i o n ,  m a y  a l s o  b e  u s e f u l  i n  t h i s  r e g a r d .

L a s t l y ,  t h i s  w o r k  f o c u s e d  o n  a  s i n g l e - t h r e a d e d  a l g o r i t h m i c  a p p r o a c h .  A  m u l t i - t h r e a d e d  

a p p r o a c h  t o  t h e  p r e i m a g e  p r o b l e m  is  q u i t e  p o s s i b l e ,  e s p e c i a l l y  i n  t h e  c a s e s  o f  C S P  s e a r c h  

a n d  A I G  d e c o m p o s i t i o n ,  a n d  m a y  b e  w o r t h  p u r s u i n g .  T h i s  is  a  b r u t e - f o r c e  s t y l e  o f  s o l v i n g  

t h e  p r o b l e m ,  a n d  u n l i k e l y  t o  b e  s u c c e s s f u l  ( s e e  S e c t i o n  3 . 5 ) .  H o w e v e r ,  i f  c o m b i n e d  w i t h  

s o m e  a l g o r i t h m i c  i n s i g h t ,  i t  m a y  b e  g o o d  e n o u g h  f o r  a l l  p r a c t i c a l  p u r p o s e s :  i f  a n  i n p u t
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w h e r e  u  ~  1 6 0  c a n  b e  s o l v e d  b y  b r u t e  f o r c e ,  t h e n  t h e  b a l a n c e  a n d  S A C  c h a r a c t e r i s t i c s  o f  

S H A - 1  s u g g e s t  t h a t  a  p r e i m a g e  c a n  b e  f o u n d  f o r  ( a l m o s t )  a n y  o u t p u t .

12.5 Summary

T h i s  c h a p t e r  h a s  d i s c u s s e d  a n d  r e l a t e d  t h e  r e s u l t s  o f  t h e  e x p e r i m e n t s  a n d  a n a l y s i s  d e t a i l e d  

i n  P a r t  I I ,  a n d  p r o p o s e d  a d d i t i o n a l  r e s e a r c h  q u e s t i o n s  t h a t  c o u l d  f r u i t f u l l y  b e  e x p l o r e d .  

T h e  i m p a c t  o f  t h i s  r e s e a r c h  is ,  a s  a l r e a d y  e x p r e s s e d  i n  S e c t i o n  1 .2 ,  l i m i t e d .  A t  t h e  t h e o r e t ­

i c a l  l e v e l ,  S H A - 1  is  a  d e d i c a t e d  h a s h  f u n c t i o n  a n d  i d e n t i f y i n g  a  f l a w  i n  t h e  f u n c t i o n  m a y  b e  

d i f f i c u l t  t o  g e n e r a l i z e  t o  a n y  o t h e r  a r e a .  A t  t h e  p r a c t i c a l  l e v e l ,  m o d e r n  ( a n d  m a i n t a i n e d )  

s y s t e m s  s h o u l d  e v e n t u a l l y  s w i t c h  t o  a  h a s h  f u n c t i o n  s u c h  a s  S H A - 3 ,  a n d  t h i s  w i l l  l i m i t  

t h e  p r a c t i c a l  a p p l i c a b i l i t y  o f  a n y  S H A - 1  p r e i m a g e  r e s e a r c h .  O u t d a t e d ,  u n m a i n t a i n e d ,  o r  

s e c u r i t y - i g n o r a n t  s o f t w a r e  w i l l  c o n t i n u e  t o  u s e  S H A - 1 ,  a n d  f u r t h e r  r e s e a r c h  i n t o  S H A - 1  

p r e i m a g e s  w i l l  b e  a b l e  t o  t a r g e t  t h e s e .  S u c h  s o f t w a r e ,  a n d  t h e  s o f t w a r e  d e v e l o p e r s  w h i c h  

d e v e l o p  i t ,  c a n  t a k e  c o m f o r t  i n  t h e  k n o w l e d g e  t h a t  i n a s m u c h  a s  t h e i r  s o f t w a r e  r e l i e s  o n  

t h e  p r e i m a g e - r e s i s t a n c e  o f  S H A - 1 ,  i t  s h o u l d  b e  s e c u r e  f o r  t h e  f o r e s e e a b l e  f u t u r e .

T h e  n e x t  c h a p t e r  b u i l d s  o n  t h e  d i s c u s s i o n  o f  t h i s  c h a p t e r  a n d  l a y s  o u t  t h e  p r i m a r y  c o n ­

c l u s i o n s  o f  t h i s  r e s e a r c h .



Chapter 13

Conclusions

T h e  g o a l  o f  t h i s  r e s e a r c h  w a s  t o  e x p l o r e  a n d  u n d e r s t a n d  t h e  S H A - 1  c o m p r e s s i o n  f u n c t i o n ,  

f o c u s i n g  o n  t h e  p r o b l e m  o f  f i n d i n g  p r e i m a g e s .  T h e  s p e c i f i c  c o n t r i b u t i o n s ,  a s  n o t e d  in  

S e c t i o n  1 .2 ,  a r e :

1. a n  i n - d e p t h  a n a l y s i s  o f ,  a n d  a l t e r n a t i v e  v a l i d  f o r m u l a t i o n s  o f ,  t h e  S H A - 1  c o m p r e s s i o n  

f u n c t i o n  a n d  i t s  c o m p o n e n t s  ( C h a p t e r  4 ) ;

2 . a  s t a t i s t i c a l  a n a l y s i s  o f  d i f f u s i o n  c h a r a c t e r i s t i c s  ( C h a p t e r  5 ) ;

3 . m u l t i p l e  r e p r e s e n t a t i o n s  o f  t h e  S H A - 1  c o m p r e s s i o n  f u n c t i o n ,  w i t h  p r e i m a g e - f o c u s e d  

p r a c t i c a l  e x p e r i m e n t s  ( C h a p t e r s  7 ,  8 ,  9 ,  1 0 ,  a n d  1 1 ) ;

4 . a  r e f l e c t i o n  o n  r e p r e s e n t a t i o n s  a n d  S H A - 1  d e s i g n  c h o i c e s  ( C h a p t e r  1 2 ) .

T h i s  c h a p t e r  r e c o u n t s  i n t e r e s t i n g  r e s u l t s  a n d  c o n c l u s i o n s  f r o m  P a r t s  I I  a n d  I I I  o f  t h i s  

w o r k  a n d  p r e s e n t s  t h e m  h e r e  in  s u m m a r i s e d  f o r m .

A s  m e s s a g e  e x p a n s i o n  p r o g r e s s e s ,  m o r e  d a t a - w o r d s  a n d  b i t s  f r o m  e a c h  d a t a - w o r d  t e n d  t o  

b e  u s e d  i n  e a c h  r o u n d ,  b u t  t h i s  t r e n d  is  n o t  s t r i c t :  f o r  e x a m p l e ,  r o u n d  7 8  u s e s  n o  b i t s  

f r o m  w \  ( S e c t i o n  4 .1  a n d  T a b l e  4 . 1 ) .  D i f f e r e n t  b i t s  f r o m  a  s i n g l e  d a t a - w o r d  a f f e c t  t h e  

c a l c u l a t i o n  o f  a n  e x p a n s i o n - w o r d ,  a n d  t h i s  c a n  b e  m o d e l e d  u s i n g  t h e  i d e a  o f  b i t p a t t e r n s  

( S e c t i o n  4 . 1 . 1 ) ;  s e e  A l g o r i t h m s  4 .1  a n d  4 .2 ,  a s  w e l l  a s  T a b l e  4 .1  a n d  A p p e n d i x  A .  C e r t a i n  

c o m m o n  s u b - s e q u e n c e s  o c c u r  d u r i n g  m e s s a g e - e x p a n s i o n ,  b u t  b e c o m e  m u c h  r a r e r  a s  t h e  

l e n g t h  o f  t h e  s u b - s e q u e n c e  i n c r e a s e s  ( S e c t i o n  4 . 1 . 2 ) .
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T h e  c a r r y  c a l c u l a t i o n  d u r i n g  s p l i f f l i n g  is  m o s t  n a t u r a l l y  r e p r e s e n t e d  u s i n g  a  r i p p l e - c a r r y  

d e s i g n ,  w h e t h e r  i n  t h i s  r e s e a r c h  o r  t h e  w o r k  o f  o t h e r s  ( s e e  ( L e g e n d r e  e t  a l . ,  2 0 1 2 ;  N o s ­

s u m ,  2 0 1 3 ) ) ,  b u t  d o e s  a d m i t  t o  s o m e  s m a l l  o p t i m i z a t i o n  ( S e c t i o n  4 . 2 . 1 ) .  T h e  c o m p o n e n t  

f u n c t i o n s  u s e d  f o r  s p l i f f l i n g  h a v e  p r o p e r t i e s  s u m m a r i s e d  i n  T a b l e  4 .7  o n  p a g e  5 9 .  T h e  

i n p u t s  a n d  o u t p u t s  f o r  e a c h  o f  t h e  c o m p o n e n t  f u n c t i o n s  c a n  b e  u n p a c k e d  f o r  f u r t h e r  a n a l ­

y s i s  ( S e c t i o n  4 . 2 . 4 )  a n d  a  n o n - b i n a r y  f o r m u l a t i o n  o f  s p l i f f l i n g  is  p o s s i b l e  ( S e c t i o n  4 . 3 ) .  

F i n a l l y ,  a  s i n g l e  e q u a t i o n  c a n  b e  u s e d  t o  r e p r e s e n t  t h e  p r e i m a g e :  e i t h e r  E q u a t i o n  4 .9  o r  

E q u a t i o n  4 .1 0  ( p a g e  6 4 ) .

W h e n  m o d e l e d  a s  a  C S P ( r ) ,  t h e  S H A - 1  p r e i m a g e  p r o b l e m  is  a  m a j o r i t y - p o l y m o r p h i s m  

C S P ( r )  w h i c h  c o n s e q u e n t l y  h a s  a  2 - e x t e n s i o n  p r o p e r t y  a n d  is  in  t h e  N L  c o m p l e x i t y  c la s s  

( S e c t i o n  5 . 1 ) .  S t a t i s t i c a l  a n a l y s i s  o f  t h e  d i f f u s i o n  o f  S H A - 1  r e v e a l s  t h a t  e v e r y  b i t  f r o m  

r o u n d  2 4  o n w a r d s  m e e t s ,  o r  v e r y  c l o s e l y  a p p r o x i m a t e s ,  t h e  S t r i c t  A v a l a n c h e  C r i t e r i o n ;  

a l l  i n p u t  b i t s  c o n t r i b u t e  e q u a l l y  t o  e a c h  o u t p u t  b i t  a n d  t h e r e  is  n o  w a y  t o  d e t e r m i n e  a  

r e l a t i o n s h i p  b e t w e e n  i n p u t  a n d  o u t p u t  b i t s  ( S e c t i o n  5 .2 ) .

N o t  a l l  r e p r e s e n t a t i o n s  a r e  s u i t a b l e  f o r  r e p r e s e n t i n g  t h e  S H A - 1  p r e i m a g e  p r o b l e m  ( S e c ­

t i o n s  6 .2  a n d  6 . 4 ) .  T h e  c h a r a c t e r i s t i c s  o f  a  w o r t h w h i l e  r e p r e s e n t a t i o n  h a v e  b e e n  d i s c u s s e d  

( S e c t i o n  6 . 3 ) .

T h e  a s s u m p t i o n s  m a d e  t o  f i n d  a  “ b e t t e r ”  C N F  r e p r e s e n t a t i o n  o f  S H A - 1  m a y  b e  u n f o u n d e d  

( S e c t i o n  7 .1 )  s i n c e  d i f f e r e n t  s o l v e r s  f i n d  d i f f e r e n t  e n c o d i n g s  t o  b e  m o r e  o r  le s s  t r a c t a b l e  

( S e c t i o n  7 . 2 ) .  S L S  S A T - s o l v e r s  f i n d  t h e  S H A - 1  p r e i m a g e  p r o b l e m  t o  b e  e n t i r e l y  i n t r a c t a b l e  

a n d  D P L L  S A T - s o l v e r s  a r e  n o t  s u p e r i o r  t o  a  b r u t e - f o r c e  a p p r o a c h ;  T s e i t i n  v a r i a b l e s  a d d  

l i t t l e  b u t  n o i s e  ( S e c t i o n  7 .2 ) .

D N F  is  a n  e n t i r e l y  u n s u i t a b l e  r e p r e s e n t a t i o n  a n d  h e u r i s t i c  m e t h o d s  a r e  u n a b l e  t o  o v e r c o m e  

t h e  N P - h a r d n e s s  o f  t h e  b o o l e a n  m i n i m i z a t i o n  p r o b l e m  ( C h a p t e r  8 ) .

T h e  S H A - 1  p r e i m a g e  p r o b l e m  e x p a n d s  t o  a n  u n m a n a g e a b l e  s i z e  w h e n  u s i n g  a  R O B D D  

r e p r e s e n t a t i o n ,  i r r e s p e c t i v e  o f  v a r i a b l e  o r d e r i n g  ( S e c t i o n  9 . 1 ) .  T h e  m u l t i p l i c a t i v e  c o m p l e x ­

i t y  o f  S H A - 1  is  t h e  g r e a t e s t  t h a t  i t  c a n  b e  w h i l e  p r e s e r v i n g  c o l l i s i o n  r e s i s t a n c e  ( E x a m p l e  9 .3  

o n  p a g e  1 2 2 ) .  A  w a y  t o  r e d u c e  t h e  R O B D D  s i z e  c o u l d  n o t  b e  d i s c o v e r e d  ( S e c t i o n  9 .3 )  

a n d  i t  is  u n l i k e l y  t h a t  * D D  v a r i a n t s  w o u l d  p r o v i d e  t h e  n e c e s s a r y  r e d u c t i o n  ( S e c t i o n  9 . 2 ) .

L o c a l  t r a n s f o r m a t i o n s  o f  t h e  S H A - 1  D A G ,  i n  A I G  f o r m ,  f a i l  t o  r e d u c e  t h e  s i z e  o f  t h e  g r a p h  

b y  a  s i g n i f i c a n t  a m o u n t  ( C h a p t e r  1 0 ) ,  a n d  t h e  s t r u c t u r a l  h a s h i n g  o f  n o d e s  is  i n s u f f i c i e n t  t o  

c o m p e n s a t e  f o r  t h e  d o u b l i n g  t h a t  o c c u r s  a s  v a r i a b l e s  a r e  p u s h e d  “ u p w a r d s ”  i n  t h e  g r a p h  

( S e c t i o n  1 0 .1 ) .  A l t h o u g h  4 - i n p u t  f u n c t i o n s  c a n  a l w a y s  b e  m i n i m i z e d  d u e  t o  p r e c a l c u l a t e d  

L U T s ,  t h e  t e c h n i q u e  d o e s  n o t  s c a l e  t o  l a r g e r  i n p u t  s i z e s  ( S e c t i o n  1 0 .2 ) .
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W h e t h e r  m o d e l e d  in  b i n a r y  o r  n o n - b i n a r y  f o r m ,  n a i v e l y  o r  u s i n g  a  s o p h i s t i c a t e d  f r a m e ­

w o r k ,  t h e  S H A - 1  p r e i m a g e  p r o b l e m  r e m a i n s  i n t r a c t a b l e  ( S e c t i o n s  1 1 .1  a n d  1 1 .2 ) .  A n y  

s i g n i f i c a n t  c o n s t r a i n t  r e m o v a l  c a u s e s  t h e  s y s t e m  t o  c o l l a p s e  i n t o  a  s i m p l e  e n u m e r a t i o n  

o f  a l l  p o s s i b l e  v a l u e s  in  t h e  s e a r c h  s p a c e ;  f a i l e d  p a t h s  g i v e  n o  i n f o r m a t i o n  a b o u t  c o r r e c t  

p a t h s ;  a n d  t h e  d i f f i c u l t y  a d d e d  b y  a d d i t i o n a l  r o u n d s  d e c r e a s e s  a s  m o r e  r o u n d s  a r e  a d d e d  

( S e c t i o n  1 1 .2 ) .  A  g - v a r i a b l e  f o r m u l a t i o n  w h i c h  c o u l d  b e  p r e d i c t e d  c o u l d  l e a d  t o  s i g n i f i c a n t  

p e r f o r m a n c e  i n c r e a s e s  d u r i n g  s o l v i n g ,  b u t  n o  w a y  is  k n o w n  t o  o b t a i n  s u c h  a  p r e d i c t i o n  

( S e c t i o n  1 1 .2 ) .
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Appendix A

Bitpattern terms

T h e  2 - t u p l e s  i n  t h i s  t a b l e  g i v e  t h e  b a s e E q u a t i o n s  i n p u t  f o r  A l g o r i t h m  4 . 2 .

I n d e x T u p l e s

0 0 , 1 ;  2 , 1 ;  8 , 1 ;  1 3 ,1

1 1 ,1 ;  3 , 1 ;  9 , 1 ;  1 4 ,1

2 2 , 1 ;  4 , 1 ;  1 0 , 1 ;  1 5 , 1

3 0 , 2 ;  2 , 2 ;  3 , 1 ;  5 , 1 ;  8 , 2 ;  1 1 , 1 ;  1 3 , 2

4 1 ,2 ;  3 , 2 ;  4 , 1 ;  6 , 1 ;  9 , 2 ;  1 2 , 1 ;  1 4 , 2

5 2 , 2 ;  4 , 2 ;  5 , 1 ;  7 , 1 ;  1 0 , 2 ;  1 3 , 1 ;  1 5 , 2

6 0 , 3 ;  2 , 3 ;  3 , 2 ;  5 , 2 ;  6 , 1 ;  8 , 1 ;  8 , 3 ;  1 1 , 2 ;  1 3 , 3 ;  1 4 ,1

7 1 ,3 ;  3 , 3 ;  4 , 2 ;  6 , 2 ;  7 , 1 ;  9 , 1 ;  9 , 3 ;  1 2 , 2 ;  1 4 , 3 ;  1 5 ,1

8 0 , 2 ;  2 , 2 ;  2 , 3 ;  4 , 3 ;  5 , 2 ;  7 , 2 ;  8 , 1 ;  8 , 2 ;  1 0 , 1 ;  1 0 , 3 ;  1 5 , 3

9 0 , 4 ;  1 ,2 ;  2 , 4 ;  3 , 2 ;  3 , 3 ;  5 , 3 ;  6 , 2 ;  8 , 2 ;  8 , 4 ;  9 , 1 ;  9 , 2 ;  1 1 , 1 ;  1 1 , 3 ;  1 3 , 4

1 0 1 ,4 ;  2 , 2 ;  3 , 4 ;  4 , 2 ;  4 , 3 ;  6 , 3 ;  7 , 2 ;  9 , 2 ;  9 , 4 ;  1 0 , 1 ;  1 0 , 2 ;  1 2 , 1 ;  1 2 , 3 ;  1 4 , 4

11 2 , 4 ;  3 , 2 ;  4 , 4 ;  5 , 2 ;  5 , 3 ;  7 , 3 ;  8 , 2 ;  1 0 , 2 ;  1 0 , 4 ;  1 1 , 1 ;  1 1 , 2 ;  1 3 , 1 ;  1 3 , 3 ;  1 5 , 4

1 2 0 , 5 ;  2 , 5 ;  3 , 4 ;  4 , 2 ;  5 , 4 ;  6 , 2 ;  6 , 3 ;  8 , 3 ;  8 , 5 ;  9 , 2 ;  1 1 , 2 ;  1 1 , 4 ;  1 2 , 1 ;  1 2 , 2 ;  1 3 , 5 ;  1 4 , 1 ;  1 4 , 3

1 3 1 ,5 ;  3 , 5 ;  4 , 4 ;  5 , 2 ;  6 , 4 ;  7 , 2 ;  7 , 3 ;  9 , 3 ;  9 , 5 ;  1 0 , 2 ;  1 2 , 2 ;  1 2 , 4 ;  1 3 , 1 ;  1 3 , 2 ;  1 4 , 5 ;  1 5 , 1 ;  

1 5 , 3

1 4 0 , 2 ;  0 , 4 ;  2 , 2 ;  2 , 4 ;  2 , 5 ;  4 , 5 ;  5 , 4 ;  6 , 2 ;  7 , 4 ;  8 , 3 ;  8 , 4 ;  1 0 , 3 ;  1 0 , 5 ;  1 1 , 2 ;  1 4 , 1 ;  1 4 , 2 ;  1 5 , 5

1 5 0 , 6 ;  1 ,2 ;  1 ,4 ;  2 , 6 ;  3 , 2 ;  3 , 4 ;  3 , 5 ;  5 , 5 ;  6 , 4 ;  7 , 2 ;  8 , 4 ;  8 , 6 ;  9 , 3 ;  9 , 4 ;  1 1 , 3 ;  1 1 , 5 ;  1 2 , 2 ;  

1 3 , 6 ;  1 5 , 1 ;  1 5 , 2

1 6 0 , 2 ;  0 , 3 ;  1 ,6 ;  2 , 3 ;  2 , 4 ;  3 , 6 ;  4 , 2 ;  4 , 4 ;  4 , 5 ;  6 , 5 ;  7 , 4 ;  8 , 3 ;  9 , 4 ;  9 , 6 ;  1 0 , 3 ;  1 0 , 4 ;  1 2 , 3 ;  

1 2 , 5 ;  1 3 , 3 ;  1 4 , 6

180



181

I n d e x T u p l e s

1 7 1 ,2 ;  1 ,3 ;  2 , 6 ;  3 , 3 ;  3 , 4 ;  4 , 6 ;  5 , 2 ;  5 , 4 ;  5 , 5 ;  7 , 5 ;  8 , 4 ;  9 , 3 ;  1 0 , 4 ;  1 0 , 6 ;  1 1 , 3 ;  1 1 , 4 ;  1 3 , 3 ;  

1 3 , 5 ;  1 4 , 3 ;  1 5 , 6

1 8 0 , 7 ;  2 , 2 ;  2 , 3 ;  2 , 7 ;  3 , 6 ;  4 , 3 ;  4 , 4 ;  5 , 6 ;  6 , 2 ;  6 , 4 ;  6 , 5 ;  8 , 5 ;  8 , 7 ;  9 , 4 ;  1 0 , 3 ;  1 1 , 4 ;  1 1 , 6 ;  

1 2 , 3 ;  1 2 , 4 ;  1 3 , 7 ;  1 4 , 3 ;  1 4 , 5 ;  1 5 , 3

1 9 0 , 4 ;  1 ,7 ;  2 , 4 ;  3 , 2 ;  3 , 3 ;  3 , 7 ;  4 , 6 ;  5 , 3 ;  5 , 4 ;  6 , 6 ;  7 , 2 ;  7 , 4 ;  7 , 5 ;  8 , 4 ;  9 , 5 ;  9 , 7 ;  1 0 , 4 ;  1 1 , 3 ;  

1 2 , 4 ;  1 2 , 6 ;  1 3 , 3 ;  1 4 , 7 ;  1 5 , 3 ;  1 5 , 5

2 0 0 , 4 ;  0 , 6 ;  1 ,4 ;  2 , 4 ;  2 , 6 ;  2 , 7 ;  3 , 4 ;  4 , 2 ;  4 , 3 ;  4 , 7 ;  5 , 6 ;  6 , 3 ;  6 , 4 ;  7 , 6 ;  8 , 2 ;  8 , 5 ;  8 , 6 ;  9 , 4 ;  

1 0 , 5 ;  1 0 , 7 ;  1 1 , 4 ;  1 2 , 3 ;  1 4 , 3 ;  1 5 , 7

2 1 0 , 8 ;  1 ,4 ;  1 ,6 ;  2 , 4 ;  2 , 8 ;  3 , 4 ;  3 , 6 ;  3 , 7 ;  4 , 4 ;  5 , 2 ;  5 , 3 ;  5 , 7 ;  6 , 6 ;  7 , 3 ;  7 , 4 ;  8 , 6 ;  8 , 8 ;  9 , 2 ;  

9 , 5 ;  9 , 6 ;  1 0 , 4 ;  1 1 , 5 ;  1 1 , 7 ;  1 2 , 4 ;  1 3 , 3 ;  1 3 , 8 ;  1 5 , 3

2 2 0 , 4 ;  1 ,8 ;  2 , 6 ;  3 , 4 ;  3 , 8 ;  4 , 4 ;  4 , 6 ;  4 , 7 ;  5 , 4 ;  6 , 2 ;  6 , 3 ;  6 , 7 ;  7 , 6 ;  8 , 3 ;  9 , 6 ;  9 , 8 ;  1 0 , 2 ;  1 0 , 5 ;  

1 0 , 6 ;  1 1 , 4 ;  1 2 , 5 ;  1 2 , 7 ;  1 4 , 3 ;  1 4 , 8

2 3 I ,  4 ;  2 , 8 ;  3 , 6 ;  4 , 4 ;  4 , 8 ;  5 , 4 ;  5 , 6 ;  5 , 7 ;  6 , 4 ;  7 , 2 ;  7 , 3 ;  7 , 7 ;  8 , 6 ;  9 , 3 ;  1 0 , 6 ;  1 0 , 8 ;  1 1 , 2 ;

I I ,  5 ;  1 1 , 6 ;  1 2 , 4 ;  1 3 , 5 ;  1 3 , 7 ;  1 5 , 3 ;  1 5 , 8

2 4 0 , 4 ;  0 , 9 ;  2 , 9 ;  3 , 8 ;  4 , 6 ;  5 , 4 ;  5 , 8 ;  6 , 4 ;  6 , 6 ;  6 , 7 ;  7 , 4 ;  8 , 2 ;  8 , 3 ;  8 , 4 ;  8 , 7 ;  8 , 9 ;  9 , 6 ;  1 0 , 3 ;  

1 1 , 6 ;  1 1 , 8 ;  1 2 , 2 ;  1 2 , 5 ;  1 2 , 6 ;  1 3 , 9 ;  1 4 , 5 ;  1 4 , 7

2 5 1 ,4 ;  1 ,9 ;  3 , 9 ;  4 , 8 ;  5 , 6 ;  6 , 4 ;  6 , 8 ;  7 , 4 ;  7 , 6 ;  7 , 7 ;  8 , 4 ;  9 , 2 ;  9 , 3 ;  9 , 4 ;  9 , 7 ;  9 , 9 ;  1 0 , 6 ;  1 1 , 3 ;  

1 2 , 6 ;  1 2 , 8 ;  1 3 , 2 ;  1 3 , 5 ;  1 3 , 6 ;  1 4 , 9 ;  1 5 , 5 ;  1 5 , 7

2 6 0 , 6 ;  0 , 8 ;  2 , 4 ;  2 , 6 ;  2 , 8 ;  2 , 9 ;  4 , 9 ;  5 , 8 ;  6 , 6 ;  7 , 4 ;  7 , 8 ;  8 , 4 ;  8 , 7 ;  8 , 8 ;  9 , 4 ;  1 0 , 2 ;  1 0 , 3 ;  1 0 , 4 ;  

1 0 , 7 ;  1 0 , 9 ;  1 1 , 6 ;  1 2 , 3 ;  1 4 , 2 ;  1 4 , 5 ;  1 4 , 6 ;  1 5 , 9

2 7 0 , 1 0 ;  1 ,6 ;  1 ,8 ;  2 , 1 0 ;  3 , 4 ;  3 , 6 ;  3 , 8 ;  3 , 9 ;  5 , 9 ;  6 , 8 ;  7 , 6 ;  8 , 4 ;  8 , 8 ;  8 , 1 0 ;  9 , 4 ;  9 , 7 ;  9 , 8 ;  

1 0 , 4 ;  1 1 , 2 ;  1 1 , 3 ;  1 1 , 4 ;  1 1 , 7 ;  1 1 , 9 ;  1 2 , 6 ;  1 3 , 3 ;  1 3 , 1 0 ;  1 5 , 2 ;  1 5 , 5 ;  1 5 , 6

2 8 0 , 3 ;  0 , 6 ;  0 , 7 ;  1 , 1 0 ;  2 , 3 ;  2 , 7 ;  2 , 8 ;  3 , 1 0 ;  4 , 4 ;  4 , 6 ;  4 , 8 ;  4 , 9 ;  6 , 9 ;  7 , 8 ;  8 , 3 ;  8 , 7 ;  9 , 4 ;  9 , 8 ;  

9 , 1 0 ;  1 0 , 4 ;  1 0 , 7 ;  1 0 , 8 ;  1 1 , 4 ;  1 2 , 2 ;  1 2 , 3 ;  1 2 , 4 ;  1 2 , 7 ;  1 2 , 9 ;  1 3 , 3 ;  1 3 , 7 ;  1 4 , 3 ;  1 4 , 1 0

2 9 1 ,3 ;  1 ,6 ;  1 ,7 ;  2 , 1 0 ;  3 , 3 ;  3 , 7 ;  3 , 8 ;  4 , 1 0 ;  5 , 4 ;  5 , 6 ;  5 , 8 ;  5 , 9 ;  7 , 9 ;  8 , 8 ;  9 , 3 ;  9 , 7 ;  1 0 , 4 ;  

1 0 , 8 ;  1 0 , 1 0 ;  1 1 , 4 ;  1 1 , 7 ;  1 1 , 8 ;  1 2 , 4 ;  1 3 , 2 ;  1 3 , 3 ;  1 3 , 4 ;  1 3 , 7 ;  1 3 , 9 ;  1 4 , 3 ;  1 4 , 7 ;  1 5 , 3 ;  

1 5 , 1 0

3 0 0 , 4 ;  0 , 1 1 ;  2 , 3 ;  2 , 4 ;  2 , 6 ;  2 , 7 ;  2 , 1 1 ;  3 , 1 0 ;  4 , 3 ;  4 , 7 ;  4 , 8 ;  5 , 1 0 ;  6 , 4 ;  6 , 6 ;  6 , 8 ;  6 , 9 ;  8 , 4 ;  

8 , 9 ;  8 , 1 1 ;  9 , 8 ;  1 0 , 3 ;  1 0 , 7 ;  1 1 , 4 ;  1 1 , 8 ;  1 1 , 1 0 ;  1 2 , 4 ;  1 2 , 7 ;  1 2 , 8 ;  1 3 , 1 1 ;  1 4 , 2 ;  1 4 , 3 ;  

1 4 , 4 ;  1 4 , 7 ;  1 4 , 9 ;  1 5 , 3 ;  1 5 , 7

3 1 0 , 4 ;  0 , 8 ;  1 ,4 ;  1 , 1 1 ;  2 , 4 ;  2 , 8 ;  3 , 3 ;  3 , 4 ;  3 , 6 ;  3 , 7 ;  3 , 1 1 ;  4 , 1 0 ;  5 , 3 ;  5 , 7 ;  5 , 8 ;  6 , 1 0 ;  7 , 4 ;  

7 , 6 ;  7 , 8 ;  7 , 9 ;  8 , 4 ;  8 , 8 ;  9 , 4 ;  9 , 9 ;  9 , 1 1 ;  1 0 , 8 ;  1 1 , 3 ;  1 1 , 7 ;  1 2 , 4 ;  1 2 , 8 ;  1 2 , 1 0 ;  1 3 , 7 ;  1 4 , 1 1 ;  

1 5 , 2 ;  1 5 , 3 ;  1 5 , 4 ;  1 5 , 7 ;  1 5 , 9
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I n d e x T u p l e s

3 2 0 , 3 ;  0 , 4 ;  0 , 5 ;  0 , 8 ;  0 , 1 0 ;  1 ,4 ;  1 ,8 ;  2 , 3 ;  2 , 5 ;  2 , 8 ;  2 , 1 0 ;  2 , 1 1 ;  3 , 4 ;  3 , 8 ;  4 , 3 ;  4 , 4 ;  4 , 6 ;  4 , 7 ;  

4 , 1 1 ;  5 , 1 0 ;  6 , 3 ;  6 , 7 ;  6 , 8 ;  7 , 1 0 ;  8 , 3 ;  8 , 5 ;  8 , 6 ;  8 , 9 ;  8 , 1 0 ;  9 , 4 ;  9 , 8 ;  1 0 , 4 ;  1 0 , 9 ;  1 0 , 1 1 ;  

1 1 , 8 ;  1 2 , 3 ;  1 2 , 7 ;  1 3 , 3 ;  1 3 , 5 ;  1 4 , 7 ;  1 5 , 1 1

3 3 0 , 1 2 ;  1 ,3 ;  1 ,4 ;  1 ,5 ;  1 ,8 ;  1 , 1 0 ;  2 , 4 ;  2 , 8 ;  2 , 1 2 ;  3 , 3 ;  3 , 5 ;  3 , 8 ;  3 , 1 0 ;  3 , 1 1 ;  4 , 4 ;  4 , 8 ;  5 , 3 ;  

5 , 4 ;  5 , 6 ;  5 , 7 ;  5 , 1 1 ;  6 , 1 0 ;  7 , 3 ;  7 , 7 ;  7 , 8 ;  8 , 1 0 ;  8 , 1 2 ;  9 , 3 ;  9 , 5 ;  9 , 6 ;  9 , 9 ;  9 , 1 0 ;  1 0 , 4 ;  1 0 , 8 ;  

1 1 , 4 ;  1 1 , 9 ;  1 1 , 1 1 ;  1 2 , 8 ;  1 3 , 3 ;  1 3 , 7 ;  1 3 , 1 2 ;  1 4 , 3 ;  1 4 , 5 ;  1 5 , 7

3 4 0 , 8 ;  1 , 1 2 ;  2 , 3 ;  2 , 4 ;  2 , 5 ;  2 , 1 0 ;  3 , 4 ;  3 , 8 ;  3 , 1 2 ;  4 , 3 ;  4 , 5 ;  4 , 8 ;  4 , 1 0 ;  4 , 1 1 ;  5 , 4 ;  5 , 8 ;  6 , 3 ;  

6 , 4 ;  6 , 6 ;  6 , 7 ;  6 , 1 1 ;  7 , 1 0 ;  8 , 3 ;  8 , 7 ;  9 , 1 0 ;  9 , 1 2 ;  1 0 , 3 ;  1 0 , 5 ;  1 0 , 6 ;  1 0 , 9 ;  1 0 , 1 0 ;  1 1 , 4 ;  

1 1 , 8 ;  1 2 , 4 ;  1 2 , 9 ;  1 2 , 1 1 ;  1 4 , 3 ;  1 4 , 7 ;  1 4 , 1 2 ;  1 5 , 3 ;  1 5 , 5

3 5 0 , 4 ;  0 , 6 ;  1 ,8 ;  2 , 4 ;  2 , 6 ;  2 , 1 2 ;  3 , 3 ;  3 , 4 ;  3 , 5 ;  3 , 1 0 ;  4 , 4 ;  4 , 8 ;  4 , 1 2 ;  5 , 3 ;  5 , 5 ;  5 , 8 ;  5 , 1 0 ;  

5 , 1 1 ;  6 , 4 ;  6 , 8 ;  7 , 3 ;  7 , 4 ;  7 , 6 ;  7 , 7 ;  7 , 1 1 ;  8 , 4 ;  8 , 6 ;  8 , 1 0 ;  9 , 3 ;  9 , 7 ;  1 0 , 1 0 ;  1 0 , 1 2 ;  1 1 , 3 ;  

1 1 , 5 ;  1 1 , 6 ;  1 1 , 9 ;  1 1 , 1 0 ;  1 2 , 4 ;  1 2 , 8 ;  1 3 , 6 ;  1 3 , 9 ;  1 3 , 1 1 ;  1 5 , 3 ;  1 5 , 7 ;  1 5 , 1 2

3 6 0 , 4 ;  0 , 8 ;  0 , 1 3 ;  1 ,4 ;  1 ,6 ;  2 , 4 ;  2 , 1 3 ;  3 , 4 ;  3 , 6 ;  3 , 1 2 ;  4 , 3 ;  4 , 4 ;  4 , 5 ;  4 , 1 0 ;  5 , 4 ;  5 , 8 ;  5 , 1 2 ;  

6 , 3 ;  6 , 5 ;  6 , 8 ;  6 , 1 0 ;  6 , 1 1 ;  7 , 4 ;  7 , 8 ;  8 , 3 ;  8 , 6 ;  8 , 7 ;  8 , 8 ;  8 , 1 1 ;  8 , 1 3 ;  9 , 4 ;  9 , 6 ;  9 , 1 0 ;  1 0 , 3 ;  

1 0 , 7 ;  1 1 , 1 0 ;  1 1 , 1 2 ;  1 2 , 3 ;  1 2 , 5 ;  1 2 , 6 ;  1 2 , 9 ;  1 2 , 1 0 ;  1 3 , 1 3 ;  1 4 , 6 ;  1 4 , 9 ;  1 4 , 1 1

3 7 I ,  4 ;  1 ,8 ;  1 , 1 3 ;  2 , 4 ;  2 , 6 ;  3 , 4 ;  3 , 1 3 ;  4 , 4 ;  4 , 6 ;  4 , 1 2 ;  5 , 3 ;  5 , 4 ;  5 , 5 ;  5 , 1 0 ;  6 , 4 ;  6 , 8 ;  6 , 1 2 ;  

7 , 3 ;  7 , 5 ;  7 , 8 ;  7 , 1 0 ;  7 , 1 1 ;  8 , 4 ;  8 , 8 ;  9 , 3 ;  9 , 6 ;  9 , 7 ;  9 , 8 ;  9 , 1 1 ;  9 , 1 3 ;  1 0 , 4 ;  1 0 , 6 ;  1 0 , 1 0 ;

I I ,  3 ;  1 1 , 7 ;  1 2 , 1 0 ;  1 2 , 1 2 ;  1 3 , 3 ;  1 3 , 5 ;  1 3 , 6 ;  1 3 , 9 ;  1 3 , 1 0 ;  1 4 , 1 3 ;  1 5 , 6 ;  1 5 , 9 ;  1 5 , 1 1

3 8 0 , 7 ;  0 , 1 0 ;  0 , 1 2 ;  2 , 4 ;  2 , 7 ;  2 , 8 ;  2 , 1 0 ;  2 , 1 2 ;  2 , 1 3 ;  3 , 4 ;  3 , 6 ;  4 , 4 ;  4 , 1 3 ;  5 , 4 ;  5 , 6 ;  5 , 1 2 ;  

6 , 3 ;  6 , 4 ;  6 , 5 ;  6 , 1 0 ;  7 , 4 ;  7 , 8 ;  7 , 1 2 ;  8 , 3 ;  8 , 5 ;  8 , 7 ;  8 , 8 ;  8 , 1 1 ;  8 , 1 2 ;  9 , 4 ;  9 , 8 ;  1 0 , 3 ;  1 0 , 6 ;  

1 0 , 7 ;  1 0 , 8 ;  1 0 , 1 1 ;  1 0 , 1 3 ;  1 1 , 4 ;  1 1 , 6 ;  1 1 , 1 0 ;  1 2 , 3 ;  1 2 , 7 ;  1 3 , 7 ;  1 4 , 3 ;  1 4 , 5 ;  1 4 , 6 ;  1 4 , 9 ;  

1 4 , 1 0 ;  1 5 , 1 3

3 9 0 , 1 4 ;  1 ,7 ;  1 , 1 0 ;  1 , 1 2 ;  2 , 1 4 ;  3 , 4 ;  3 , 7 ;  3 , 8 ;  3 , 1 0 ;  3 , 1 2 ;  3 , 1 3 ;  4 , 4 ;  4 , 6 ;  5 , 4 ;  5 , 1 3 ;  6 , 4 ;  

6 , 6 ;  6 , 1 2 ;  7 , 3 ;  7 , 4 ;  7 , 5 ;  7 , 1 0 ;  8 , 4 ;  8 , 8 ;  8 , 1 2 ;  8 , 1 4 ;  9 , 3 ;  9 , 5 ;  9 , 7 ;  9 , 8 ;  9 , 1 1 ;  9 , 1 2 ;  1 0 , 4 ;  

1 0 , 8 ;  1 1 , 3 ;  1 1 , 6 ;  1 1 , 7 ;  1 1 , 8 ;  1 1 , 1 1 ;  1 1 , 1 3 ;  1 2 , 4 ;  1 2 , 6 ;  1 2 , 1 0 ;  1 3 , 3 ;  1 3 , 7 ;  1 3 , 1 4 ;  1 4 , 7 ;  

1 5 , 3 ;  1 5 , 5 ;  1 5 , 6 ;  1 5 , 9 ;  1 5 , 1 0

4 0 0 , 4 ;  0 , 6 ;  0 , 7 ;  0 , 1 0 ;  0 , 1 1 ;  1 , 1 4 ;  2 , 4 ;  2 , 6 ;  2 , 1 1 ;  2 , 1 2 ;  3 , 1 4 ;  4 , 4 ;  4 , 7 ;  4 , 8 ;  4 , 1 0 ;  4 , 1 2 ;  

4 , 1 3 ;  5 , 4 ;  5 , 6 ;  6 , 4 ;  6 , 1 3 ;  7 , 4 ;  7 , 6 ;  7 , 1 2 ;  8 , 3 ;  8 , 5 ;  8 , 6 ;  8 , 7 ;  8 , 1 1 ;  9 , 4 ;  9 , 8 ;  9 , 1 2 ;  9 , 1 4 ;  

1 0 , 3 ;  1 0 , 5 ;  1 0 , 7 ;  1 0 , 8 ;  1 0 , 1 1 ;  1 0 , 1 2 ;  1 1 , 4 ;  1 1 , 8 ;  1 2 , 3 ;  1 2 , 6 ;  1 2 , 7 ;  1 2 , 8 ;  1 2 , 1 1 ;  1 2 , 1 3 ;  

1 3 , 7 ;  1 3 , 1 1 ;  1 4 , 3 ;  1 4 , 7 ;  1 4 , 1 4 ;  1 5 , 7

4 1 0 , 8 ;  1 ,4 ;  1 ,6 ;  1 ,7 ;  1 , 1 0 ;  1 , 1 1 ;  2 , 8 ;  2 , 1 4 ;  3 , 4 ;  3 , 6 ;  3 , 1 1 ;  3 , 1 2 ;  4 , 1 4 ;  5 , 4 ;  5 , 7 ;  5 , 8 ;  

5 , 1 0 ;  5 , 1 2 ;  5 , 1 3 ;  6 , 4 ;  6 , 6 ;  7 , 4 ;  7 , 1 3 ;  8 , 4 ;  8 , 6 ;  8 , 8 ;  8 , 1 2 ;  9 , 3 ;  9 , 5 ;  9 , 6 ;  9 , 7 ;  9 , 1 1 ;  1 0 , 4 ;  

1 0 , 8 ;  1 0 , 1 2 ;  1 0 , 1 4 ;  1 1 , 3 ;  1 1 , 5 ;  1 1 , 7 ;  1 1 , 8 ;  1 1 , 1 1 ;  1 1 , 1 2 ;  1 2 , 4 ;  1 2 , 8 ;  1 3 , 3 ;  1 3 , 6 ;  1 3 , 7 ;  

1 3 , 1 1 ;  1 3 , 1 3 ;  1 4 , 7 ;  1 4 , 1 1 ;  1 5 , 3 ;  1 5 , 7 ;  1 5 , 1 4
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I n d e x T u p l e s

4 2 0 , 4 ;  0 , 8 ;  0 , 1 5 ;  1 ,8 ;  2 , 6 ;  2 , 7 ;  2 , 8 ;  2 , 1 0 ;  2 , 1 1 ;  2 , 1 5 ;  3 , 8 ;  3 , 1 4 ;  4 , 4 ;  4 , 6 ;  4 , 1 1 ;  4 , 1 2 ;  

5 , 1 4 ;  6 , 4 ;  6 , 7 ;  6 , 8 ;  6 , 1 0 ;  6 , 1 2 ;  6 , 1 3 ;  7 , 4 ;  7 , 6 ;  8 , 8 ;  8 , 1 3 ;  8 , 1 5 ;  9 , 4 ;  9 , 6 ;  9 , 8 ;  9 , 1 2 ;  

1 0 , 3 ;  1 0 , 5 ;  1 0 , 6 ;  1 0 , 7 ;  1 0 , 1 1 ;  1 1 , 4 ;  1 1 , 8 ;  1 1 , 1 2 ;  1 1 , 1 4 ;  1 2 , 3 ;  1 2 , 5 ;  1 2 , 7 ;  1 2 , 8 ;  1 2 , 1 1 ;  

1 2 , 1 2 ;  1 3 , 1 5 ;  1 4 , 3 ;  1 4 , 6 ;  1 4 , 7 ;  1 4 , 1 1 ;  1 4 , 1 3 ;  1 5 , 7 ;  1 5 , 1 1

4 3 0 , 8 ;  0 , 1 2 ;  1 ,4 ;  1 ,8 ;  1 , 1 5 ;  2 , 1 2 ;  3 , 6 ;  3 , 7 ;  3 , 8 ;  3 , 1 0 ;  3 , 1 1 ;  3 , 1 5 ;  4 , 8 ;  4 , 1 4 ;  5 , 4 ;  5 , 6 ;  

5 , 1 1 ;  5 , 1 2 ;  6 , 1 4 ;  7 , 4 ;  7 , 7 ;  7 , 8 ;  7 , 1 0 ;  7 , 1 2 ;  7 , 1 3 ;  8 , 4 ;  8 , 6 ;  8 , 8 ;  8 , 1 2 ;  9 , 8 ;  9 , 1 3 ;  9 , 1 5 ;  

1 0 , 4 ;  1 0 , 6 ;  1 0 , 8 ;  1 0 , 1 2 ;  1 1 , 3 ;  1 1 , 5 ;  1 1 , 6 ;  1 1 , 7 ;  1 1 , 1 1 ;  1 2 , 4 ;  1 2 , 8 ;  1 2 , 1 2 ;  1 2 , 1 4 ;  1 3 , 3 ;  

1 3 , 5 ;  1 3 , 7 ;  1 3 , 1 1 ;  1 4 , 1 5 ;  1 5 , 3 ;  1 5 , 6 ;  1 5 , 7 ;  1 5 , 1 1 ;  1 5 , 1 3

4 4 0 , 4 ;  0 , 7 ;  0 , 8 ;  0 , 1 2 ;  0 , 1 4 ;  1 ,8 ;  1 , 1 2 ;  2 , 7 ;  2 , 1 2 ;  2 , 1 4 ;  2 , 1 5 ;  3 , 1 2 ;  4 , 6 ;  4 , 7 ;  4 , 8 ;  4 , 1 0 ;  

4 , 1 1 ;  4 , 1 5 ;  5 , 8 ;  5 , 1 4 ;  6 , 4 ;  6 , 6 ;  6 , 1 1 ;  6 , 1 2 ;  7 , 1 4 ;  8 , 1 0 ;  8 , 1 3 ;  8 , 1 4 ;  9 , 4 ;  9 , 6 ;  9 , 8 ;  9 , 1 2 ;  

1 0 , 8 ;  1 0 , 1 3 ;  1 0 , 1 5 ;  1 1 , 4 ;  1 1 , 6 ;  1 1 , 8 ;  1 1 , 1 2 ;  1 2 , 3 ;  1 2 , 5 ;  1 2 , 6 ;  1 2 , 7 ;  1 2 , 1 1 ;  1 3 , 7 ;  1 4 , 3 ;  

1 4 , 5 ;  1 4 , 7 ;  1 4 , 1 1 ;  1 5 , 1 5

4 5 0 , 1 6 ;  1 ,4 ;  1 ,7 ;  1 ,8 ;  1 , 1 2 ;  1 , 1 4 ;  2 , 8 ;  2 , 1 2 ;  2 , 1 6 ;  3 , 7 ;  3 , 1 2 ;  3 , 1 4 ;  3 , 1 5 ;  4 , 1 2 ;  5 , 6 ;  5 , 7 ;  

5 , 8 ;  5 , 1 0 ;  5 , 1 1 ;  5 , 1 5 ;  6 , 8 ;  6 , 1 4 ;  7 , 4 ;  7 , 6 ;  7 , 1 1 ;  7 , 1 2 ;  8 , 1 4 ;  8 , 1 6 ;  9 , 1 0 ;  9 , 1 3 ;  9 , 1 4 ;  

1 0 , 4 ;  1 0 , 6 ;  1 0 , 8 ;  1 0 , 1 2 ;  1 1 , 8 ;  1 1 , 1 3 ;  1 1 , 1 5 ;  1 2 , 4 ;  1 2 , 6 ;  1 2 , 8 ;  1 2 , 1 2 ;  1 3 , 3 ;  1 3 , 5 ;  1 3 , 6 ;  

1 3 , 7 ;  1 3 , 1 1 ;  1 3 , 1 6 ;  1 4 , 7 ;  1 5 , 3 ;  1 5 , 5 ;  1 5 , 7 ;  1 5 , 1 1

4 6 0 , 4 ;  0 , 6 ;  0 , 8 ;  0 , 1 2 ;  1 , 1 6 ;  2 , 6 ;  2 , 7 ;  2 , 1 4 ;  3 , 8 ;  3 , 1 2 ;  3 , 1 6 ;  4 , 7 ;  4 , 1 2 ;  4 , 1 4 ;  4 , 1 5 ;  5 , 1 2 ;  

6 , 6 ;  6 , 7 ;  6 , 8 ;  6 , 1 0 ;  6 , 1 1 ;  6 , 1 5 ;  7 , 8 ;  7 , 1 4 ;  8 , 8 ;  8 , 1 1 ;  9 , 1 4 ;  9 , 1 6 ;  1 0 , 1 0 ;  1 0 , 1 3 ;  1 0 , 1 4 ;  

1 1 , 4 ;  1 1 , 6 ;  1 1 , 8 ;  1 1 , 1 2 ;  1 2 , 8 ;  1 2 , 1 3 ;  1 2 , 1 5 ;  1 4 , 3 ;  1 4 , 5 ;  1 4 , 6 ;  1 4 , 7 ;  1 4 , 1 1 ;  1 4 , 1 6 ;  1 5 , 7

4 7 0 , 8 ;  1 ,4 ;  1 ,6 ;  1 ,8 ;  1 , 1 2 ;  2 , 8 ;  2 , 1 6 ;  3 , 6 ;  3 , 7 ;  3 , 1 4 ;  4 , 8 ;  4 , 1 2 ;  4 , 1 6 ;  5 , 7 ;  5 , 1 2 ;  5 , 1 4 ;  

5 , 1 5 ;  6 , 1 2 ;  7 , 6 ;  7 , 7 ;  7 , 8 ;  7 , 1 0 ;  7 , 1 1 ;  7 , 1 5 ;  8 , 1 4 ;  9 , 8 ;  9 , 1 1 ;  1 0 , 1 4 ;  1 0 , 1 6 ;  1 1 , 1 0 ;  1 1 , 1 3 ;  

1 1 , 1 4 ;  1 2 , 4 ;  1 2 , 6 ;  1 2 , 8 ;  1 2 , 1 2 ;  1 3 , 1 3 ;  1 3 , 1 5 ;  1 5 , 3 ;  1 5 , 5 ;  1 5 , 6 ;  1 5 , 7 ;  1 5 , 1 1 ;  1 5 , 1 6

4 8 0 , 4 ;  0 , 6 ;  0 , 7 ;  0 , 8 ;  0 , 1 2 ;  0 , 1 7 ;  1 ,8 ;  2 , 7 ;  2 , 1 7 ;  3 , 8 ;  3 , 1 6 ;  4 , 6 ;  4 , 7 ;  4 , 1 4 ;  5 , 8 ;  5 , 1 2 ;  

5 , 1 6 ;  6 , 7 ;  6 , 1 2 ;  6 , 1 4 ;  6 , 1 5 ;  7 , 1 2 ;  8 , 4 ;  8 , 1 0 ;  8 , 1 1 ;  8 , 1 2 ;  8 , 1 5 ;  8 , 1 7 ;  9 , 1 4 ;  1 0 , 8 ;  1 0 , 1 1 ;  

1 1 , 1 4 ;  1 1 , 1 6 ;  1 2 , 1 0 ;  1 2 , 1 3 ;  1 2 , 1 4 ;  1 3 , 7 ;  1 3 , 1 7 ;  1 4 , 1 3 ;  1 4 , 1 5

4 9 1 ,4 ;  1 ,6 ;  1 ,7 ;  1 ,8 ;  1 , 1 2 ;  1 , 1 7 ;  2 , 8 ;  3 , 7 ;  3 , 1 7 ;  4 , 8 ;  4 , 1 6 ;  5 , 6 ;  5 , 7 ;  5 , 1 4 ;  6 , 8 ;  6 , 1 2 ;  6 , 1 6 ;  

7 , 7 ;  7 , 1 2 ;  7 , 1 4 ;  7 , 1 5 ;  8 , 1 2 ;  9 , 4 ;  9 , 1 0 ;  9 , 1 1 ;  9 , 1 2 ;  9 , 1 5 ;  9 , 1 7 ;  1 0 , 1 4 ;  1 1 , 8 ;  1 1 , 1 1 ;  

1 2 , 1 4 ;  1 2 , 1 6 ;  1 3 , 1 0 ;  1 3 , 1 3 ;  1 3 , 1 4 ;  1 4 , 7 ;  1 4 , 1 7 ;  1 5 , 1 3 ;  1 5 , 1 5

5 0 0 , 1 4 ;  0 , 1 6 ;  2 , 4 ;  2 , 6 ;  2 , 7 ;  2 , 8 ;  2 , 1 2 ;  2 , 1 4 ;  2 , 1 6 ;  2 , 1 7 ;  3 , 8 ;  4 , 7 ;  4 , 1 7 ;  5 , 8 ;  5 , 1 6 ;  6 , 6 ;  

6 , 7 ;  6 , 1 4 ;  7 , 8 ;  7 , 1 2 ;  7 , 1 6 ;  8 , 7 ;  8 , 1 2 ;  8 , 1 5 ;  8 , 1 6 ;  9 , 1 2 ;  1 0 , 4 ;  1 0 , 1 0 ;  1 0 , 1 1 ;  1 0 , 1 2 ;  

1 0 , 1 5 ;  1 0 , 1 7 ;  1 1 , 1 4 ;  1 2 , 8 ;  1 2 , 1 1 ;  1 4 , 1 0 ;  1 4 , 1 3 ;  1 4 , 1 4 ;  1 5 , 7 ;  1 5 , 1 7

5 1 0 , 8 ;  0 , 1 8 ;  1 , 1 4 ;  1 , 1 6 ;  2 , 8 ;  2 , 1 8 ;  3 , 4 ;  3 , 6 ;  3 , 7 ;  3 , 8 ;  3 , 1 2 ;  3 , 1 4 ;  3 , 1 6 ;  3 , 1 7 ;  4 , 8 ;  5 , 7 ;  

5 , 1 7 ;  6 , 8 ;  6 , 1 6 ;  7 , 6 ;  7 , 7 ;  7 , 1 4 ;  8 , 1 2 ;  8 , 1 6 ;  8 , 1 8 ;  9 , 7 ;  9 , 1 2 ;  9 , 1 5 ;  9 , 1 6 ;  1 0 , 1 2 ;  1 1 , 4 ;  

1 1 , 1 0 ;  1 1 , 1 1 ;  1 1 , 1 2 ;  1 1 , 1 5 ;  1 1 , 1 7 ;  1 2 , 1 4 ;  1 3 , 1 1 ;  1 3 , 1 8 ;  1 5 , 1 0 ;  1 5 , 1 3 ;  1 5 , 1 4
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I n d e x T u p l e s

5 2 0 , 1 1 ;  0 , 1 4 ;  0 , 1 5 ;  1 ,8 ;  1 , 1 8 ;  2 , 1 1 ;  2 , 1 5 ;  2 , 1 6 ;  3 , 8 ;  3 , 1 8 ;  4 , 4 ;  4 , 6 ;  4 , 7 ;  4 , 8 ;  4 , 1 2 ;  4 , 1 4 ;  

4 , 1 6 ;  4 , 1 7 ;  5 , 8 ;  6 , 7 ;  6 , 1 7 ;  7 , 8 ;  7 , 1 6 ;  8 , 6 ;  8 , 7 ;  8 , 1 1 ;  8 , 1 5 ;  9 , 1 2 ;  9 , 1 6 ;  9 , 1 8 ;  1 0 , 7 ;  

1 0 , 1 2 ;  1 0 , 1 5 ;  1 0 , 1 6 ;  1 1 , 1 2 ;  1 2 , 4 ;  1 2 , 1 0 ;  1 2 , 1 1 ;  1 2 , 1 2 ;  1 2 , 1 5 ;  1 2 , 1 7 ;  1 3 , 1 1 ;  1 3 , 1 5 ;  

1 4 , 1 1 ;  1 4 , 1 8

5 3 I ,  1 1 ;  1 , 1 4 ;  1 , 1 5 ;  2 , 8 ;  2 , 1 8 ;  3 , 1 1 ;  3 , 1 5 ;  3 , 1 6 ;  4 , 8 ;  4 , 1 8 ;  5 , 4 ;  5 , 6 ;  5 , 7 ;  5 , 8 ;  5 , 1 2 ;  5 , 1 4 ;  

5 , 1 6 ;  5 , 1 7 ;  6 , 8 ;  7 , 7 ;  7 , 1 7 ;  8 , 8 ;  8 , 1 6 ;  9 , 6 ;  9 , 7 ;  9 , 1 1 ;  9 , 1 5 ;  1 0 , 1 2 ;  1 0 , 1 6 ;  1 0 , 1 8 ;  1 1 , 7 ;

I I ,  1 2 ;  1 1 , 1 5 ;  1 1 , 1 6 ;  1 2 , 1 2 ;  1 3 , 4 ;  1 3 , 1 0 ;  1 3 , 1 1 ;  1 3 , 1 2 ;  1 3 , 1 5 ;  1 3 , 1 7 ;  1 4 , 1 1 ;  1 4 , 1 5 ;  

1 5 , 1 1 ;  1 5 , 1 8

5 4 0 , 1 2 ;  0 , 1 9 ;  2 , 1 1 ;  2 , 1 2 ;  2 , 1 4 ;  2 , 1 5 ;  2 , 1 9 ;  3 , 8 ;  3 , 1 8 ;  4 , 1 1 ;  4 , 1 5 ;  4 , 1 6 ;  5 , 8 ;  5 , 1 8 ;  6 , 4 ;  

6 , 6 ;  6 , 7 ;  6 , 8 ;  6 , 1 2 ;  6 , 1 4 ;  6 , 1 6 ;  6 , 1 7 ;  7 , 8 ;  8 , 7 ;  8 , 1 2 ;  8 , 1 7 ;  8 , 1 9 ;  9 , 8 ;  9 , 1 6 ;  1 0 , 6 ;  1 0 , 7 ;  

1 0 , 1 1 ;  1 0 , 1 5 ;  1 1 , 1 2 ;  1 1 , 1 6 ;  1 1 , 1 8 ;  1 2 , 7 ;  1 2 , 1 2 ;  1 2 , 1 5 ;  1 2 , 1 6 ;  1 3 , 1 9 ;  1 4 , 4 ;  1 4 , 1 0 ;  

1 4 , 1 1 ;  1 4 , 1 2 ;  1 4 , 1 5 ;  1 4 , 1 7 ;  1 5 , 1 1 ;  1 5 , 1 5

5 5 0 , 1 2 ;  0 , 1 6 ;  1 , 1 2 ;  1 , 1 9 ;  2 , 1 2 ;  2 , 1 6 ;  3 , 1 1 ;  3 , 1 2 ;  3 , 1 4 ;  3 , 1 5 ;  3 , 1 9 ;  4 , 8 ;  4 , 1 8 ;  5 , 1 1 ;  5 , 1 5 ;  

5 , 1 6 ;  6 , 8 ;  6 , 1 8 ;  7 , 4 ;  7 , 6 ;  7 , 7 ;  7 , 8 ;  7 , 1 2 ;  7 , 1 4 ;  7 , 1 6 ;  7 , 1 7 ;  8 , 8 ;  8 , 1 2 ;  8 , 1 6 ;  9 , 7 ;  9 , 1 2 ;  

9 , 1 7 ;  9 , 1 9 ;  1 0 , 8 ;  1 0 , 1 6 ;  1 1 , 6 ;  1 1 , 7 ;  1 1 , 1 1 ;  1 1 , 1 5 ;  1 2 , 1 2 ;  1 2 , 1 6 ;  1 2 , 1 8 ;  1 3 , 7 ;  1 3 , 1 5 ;  

1 4 , 1 9 ;  1 5 , 4 ;  1 5 , 1 0 ;  1 5 , 1 1 ;  1 5 , 1 2 ;  1 5 , 1 5 ;  1 5 , 1 7

5 6 0 , 5 ;  0 , 1 1 ;  0 , 1 2 ;  0 , 1 3 ;  0 , 1 6 ;  0 , 1 8 ;  1 , 1 2 ;  1 , 1 6 ;  2 , 5 ;  2 , 1 1 ;  2 , 1 3 ;  2 , 1 6 ;  2 , 1 8 ;  2 , 1 9 ;  3 , 1 2 ;  

3 , 1 6 ;  4 , 1 1 ;  4 , 1 2 ;  4 , 1 4 ;  4 , 1 5 ;  4 , 1 9 ;  5 , 8 ;  5 , 1 8 ;  6 , 1 1 ;  6 , 1 5 ;  6 , 1 6 ;  7 , 8 ;  7 , 1 8 ;  8 , 4 ;  8 , 5 ;  

8 , 6 ;  8 , 7 ;  8 , 8 ;  8 , 1 1 ;  8 , 1 3 ;  8 , 1 4 ;  8 , 1 7 ;  8 , 1 8 ;  9 , 8 ;  9 , 1 2 ;  9 , 1 6 ;  1 0 , 7 ;  1 0 , 1 2 ;  1 0 , 1 7 ;  1 0 , 1 9 ;  

1 1 , 8 ;  1 1 , 1 6 ;  1 2 , 6 ;  1 2 , 7 ;  1 2 , 1 1 ;  1 2 , 1 5 ;  1 3 , 5 ;  1 3 , 1 1 ;  1 3 , 1 3 ;  1 4 , 7 ;  1 4 , 1 5 ;  1 5 , 1 9

5 7 0 , 2 0 ;  1 ,5 ;  1 , 1 1 ;  1 , 1 2 ;  1 , 1 3 ;  1 , 1 6 ;  1 , 1 8 ;  2 , 1 2 ;  2 , 1 6 ;  2 , 2 0 ;  3 , 5 ;  3 , 1 1 ;  3 , 1 3 ;  3 , 1 6 ;  3 , 1 8 ;  

3 , 1 9 ;  4 , 1 2 ;  4 , 1 6 ;  5 , 1 1 ;  5 , 1 2 ;  5 , 1 4 ;  5 , 1 5 ;  5 , 1 9 ;  6 , 8 ;  6 , 1 8 ;  7 , 1 1 ;  7 , 1 5 ;  7 , 1 6 ;  8 , 8 ;  8 , 1 8 ;  

8 , 2 0 ;  9 , 4 ;  9 , 5 ;  9 , 6 ;  9 , 7 ;  9 , 8 ;  9 , 1 1 ;  9 , 1 3 ;  9 , 1 4 ;  9 , 1 7 ;  9 , 1 8 ;  1 0 , 8 ;  1 0 , 1 2 ;  1 0 , 1 6 ;  1 1 , 7 ;  

1 1 , 1 2 ;  1 1 , 1 7 ;  1 1 , 1 9 ;  1 2 , 8 ;  1 2 , 1 6 ;  1 3 , 6 ;  1 3 , 7 ;  1 3 , 1 1 ;  1 3 , 1 5 ;  1 3 , 2 0 ;  1 4 , 5 ;  1 4 , 1 1 ;  1 4 , 1 3 ;  

1 5 , 7 ;  1 5 , 1 5

5 8 0 , 8 ;  0 , 1 6 ;  1 , 2 0 ;  2 , 5 ;  2 , 8 ;  2 , 1 1 ;  2 , 1 2 ;  2 , 1 3 ;  2 , 1 8 ;  3 , 1 2 ;  3 , 1 6 ;  3 , 2 0 ;  4 , 5 ;  4 , 1 1 ;  4 , 1 3 ;  

4 , 1 6 ;  4 , 1 8 ;  4 , 1 9 ;  5 , 1 2 ;  5 , 1 6 ;  6 , 1 1 ;  6 , 1 2 ;  6 , 1 4 ;  6 , 1 5 ;  6 , 1 9 ;  7 , 8 ;  7 , 1 8 ;  8 , 8 ;  8 , 1 1 ;  8 , 1 5 ;  

9 , 8 ;  9 , 1 8 ;  9 , 2 0 ;  1 0 , 4 ;  1 0 , 5 ;  1 0 , 6 ;  1 0 , 7 ;  1 0 , 8 ;  1 0 , 1 1 ;  1 0 , 1 3 ;  1 0 , 1 4 ;  1 0 , 1 7 ;  1 0 , 1 8 ;  1 1 , 8 ;  

1 1 , 1 2 ;  1 1 , 1 6 ;  1 2 , 7 ;  1 2 , 1 2 ;  1 2 , 1 7 ;  1 2 , 1 9 ;  1 4 , 6 ;  1 4 , 7 ;  1 4 , 1 1 ;  1 4 , 1 5 ;  1 4 , 2 0 ;  1 5 , 5 ;  1 5 , 1 1 ;  

1 5 , 1 3

5 9 0 , 6 ;  0 , 1 2 ;  0 , 1 4 ;  1 ,8 ;  1 , 1 6 ;  2 , 6 ;  2 , 1 2 ;  2 , 1 4 ;  2 , 2 0 ;  3 , 5 ;  3 , 8 ;  3 , 1 1 ;  3 , 1 2 ;  3 , 1 3 ;  3 , 1 8 ;  4 , 1 2 ;  

4 , 1 6 ;  4 , 2 0 ;  5 , 5 ;  5 , 1 1 ;  5 , 1 3 ;  5 , 1 6 ;  5 , 1 8 ;  5 , 1 9 ;  6 , 1 2 ;  6 , 1 6 ;  7 , 1 1 ;  7 , 1 2 ;  7 , 1 4 ;  7 , 1 5 ;  7 , 1 9 ;  

8 , 6 ;  8 , 8 ;  8 , 1 2 ;  8 , 1 4 ;  8 , 1 8 ;  9 , 8 ;  9 , 1 1 ;  9 , 1 5 ;  1 0 , 8 ;  1 0 , 1 8 ;  1 0 , 2 0 ;  1 1 , 4 ;  1 1 , 5 ;  1 1 , 6 ;  1 1 , 7 ;  

1 1 , 8 ;  1 1 , 1 1 ;  1 1 , 1 3 ;  1 1 , 1 4 ;  1 1 , 1 7 ;  1 1 , 1 8 ;  1 2 , 8 ;  1 2 , 1 2 ;  1 2 , 1 6 ;  1 3 , 6 ;  1 3 , 7 ;  1 3 , 1 4 ;  1 3 , 1 7 ;  

1 3 , 1 9 ;  1 5 , 6 ;  1 5 , 7 ;  1 5 , 1 1 ;  1 5 , 1 5 ;  1 5 , 2 0
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6 0 0 , 7 ;  0 , 8 ;  0 , 1 2 ;  0 , 1 6 ;  0 , 2 1 ;  1 ,6 ;  1 , 1 2 ;  1 , 1 4 ;  2 , 7 ;  2 , 1 2 ;  2 , 2 1 ;  3 , 6 ;  3 , 1 2 ;  3 , 1 4 ;  3 , 2 0 ;  4 , 5 ;  

4 , 8 ;  4 , 1 1 ;  4 , 1 2 ;  4 , 1 3 ;  4 , 1 8 ;  5 , 1 2 ;  5 , 1 6 ;  5 , 2 0 ;  6 , 5 ;  6 , 1 1 ;  6 , 1 3 ;  6 , 1 6 ;  6 , 1 8 ;  6 , 1 9 ;  7 , 1 2 ;  

7 , 1 6 ;  8 , 7 ;  8 , 8 ;  8 , 1 1 ;  8 , 1 4 ;  8 , 1 5 ;  8 , 1 6 ;  8 , 1 9 ;  8 , 2 1 ;  9 , 6 ;  9 , 8 ;  9 , 1 2 ;  9 , 1 4 ;  9 , 1 8 ;  1 0 , 8 ;  

1 0 , 1 1 ;  1 0 , 1 5 ;  1 1 , 8 ;  1 1 , 1 8 ;  1 1 , 2 0 ;  1 2 , 4 ;  1 2 , 5 ;  1 2 , 6 ;  1 2 , 7 ;  1 2 , 8 ;  1 2 , 1 1 ;  1 2 , 1 3 ;  1 2 , 1 4 ;  

1 2 , 1 7 ;  1 2 , 1 8 ;  1 3 , 7 ;  1 3 , 2 1 ;  1 4 , 6 ;  1 4 , 7 ;  1 4 , 1 4 ;  1 4 , 1 7 ;  1 4 , 1 9

6 1 I ,  7 ;  1 ,8 ;  1 , 1 2 ;  1 , 1 6 ;  1 , 2 1 ;  2 , 6 ;  2 , 1 2 ;  2 , 1 4 ;  3 , 7 ;  3 , 1 2 ;  3 , 2 1 ;  4 , 6 ;  4 , 1 2 ;  4 , 1 4 ;  4 , 2 0 ;  5 , 5 ;  

5 , 8 ;  5 , 1 1 ;  5 , 1 2 ;  5 , 1 3 ;  5 , 1 8 ;  6 , 1 2 ;  6 , 1 6 ;  6 , 2 0 ;  7 , 5 ;  7 , 1 1 ;  7 , 1 3 ;  7 , 1 6 ;  7 , 1 8 ;  7 , 1 9 ;  8 , 1 2 ;  

8 , 1 6 ;  9 , 7 ;  9 , 8 ;  9 , 1 1 ;  9 , 1 4 ;  9 , 1 5 ;  9 , 1 6 ;  9 , 1 9 ;  9 , 2 1 ;  1 0 , 6 ;  1 0 , 8 ;  1 0 , 1 2 ;  1 0 , 1 4 ;  1 0 , 1 8 ;

I I ,  8 ;  1 1 , 1 1 ;  1 1 , 1 5 ;  1 2 , 8 ;  1 2 , 1 8 ;  1 2 , 2 0 ;  1 3 , 4 ;  1 3 , 5 ;  1 3 , 6 ;  1 3 , 7 ;  1 3 , 8 ;  1 3 , 1 1 ;  1 3 , 1 3 ;  

1 3 , 1 4 ;  1 3 , 1 7 ;  1 3 , 1 8 ;  1 4 , 7 ;  1 4 , 2 1 ;  1 5 , 6 ;  1 5 , 7 ;  1 5 , 1 4 ;  1 5 , 1 7 ;  1 5 , 1 9

6 2 0 , 7 ;  0 , 8 ;  0 , 1 5 ;  0 , 1 8 ;  0 , 2 0 ;  2 , 1 2 ;  2 , 1 5 ;  2 , 1 6 ;  2 , 1 8 ;  2 , 2 0 ;  2 , 2 1 ;  3 , 6 ;  3 , 1 2 ;  3 , 1 4 ;  4 , 7 ;  

4 , 1 2 ;  4 , 2 1 ;  5 , 6 ;  5 , 1 2 ;  5 , 1 4 ;  5 , 2 0 ;  6 , 5 ;  6 , 8 ;  6 , 1 1 ;  6 , 1 2 ;  6 , 1 3 ;  6 , 1 8 ;  7 , 1 2 ;  7 , 1 6 ;  7 , 2 0 ;  

8 , 5 ;  8 , 7 ;  8 , 8 ;  8 , 1 1 ;  8 , 1 3 ;  8 , 1 5 ;  8 , 1 6 ;  8 , 1 9 ;  8 , 2 0 ;  9 , 1 2 ;  9 , 1 6 ;  1 0 , 7 ;  1 0 , 8 ;  1 0 , 1 1 ;  1 0 , 1 4 ;  

1 0 , 1 5 ;  1 0 , 1 6 ;  1 0 , 1 9 ;  1 0 , 2 1 ;  1 1 , 6 ;  1 1 , 8 ;  1 1 , 1 2 ;  1 1 , 1 4 ;  1 1 , 1 8 ;  1 2 , 8 ;  1 2 , 1 1 ;  1 2 , 1 5 ;  1 3 , 7 ;  

1 3 , 1 5 ;  1 4 , 4 ;  1 4 , 5 ;  1 4 , 6 ;  1 4 , 7 ;  1 4 , 8 ;  1 4 , 1 1 ;  1 4 , 1 3 ;  1 4 , 1 4 ;  1 4 , 1 7 ;  1 4 , 1 8 ;  1 5 , 7 ;  1 5 , 2 1

6 3 0 , 8 ;  0 , 2 2 ;  1 ,7 ;  1 ,8 ;  1 , 1 5 ;  1 , 1 8 ;  1 , 2 0 ;  2 , 8 ;  2 , 2 2 ;  3 , 1 2 ;  3 , 1 5 ;  3 , 1 6 ;  3 , 1 8 ;  3 , 2 0 ;  3 , 2 1 ;  4 , 6 ;  

4 , 1 2 ;  4 , 1 4 ;  5 , 7 ;  5 , 1 2 ;  5 , 2 1 ;  6 , 6 ;  6 , 1 2 ;  6 , 1 4 ;  6 , 2 0 ;  7 , 5 ;  7 , 8 ;  7 , 1 1 ;  7 , 1 2 ;  7 , 1 3 ;  7 , 1 8 ;  

8 , 8 ;  8 , 1 2 ;  8 , 1 6 ;  8 , 2 0 ;  8 , 2 2 ;  9 , 5 ;  9 , 7 ;  9 , 8 ;  9 , 1 1 ;  9 , 1 3 ;  9 , 1 5 ;  9 , 1 6 ;  9 , 1 9 ;  9 , 2 0 ;  1 0 , 1 2 ;  

1 0 , 1 6 ;  1 1 , 7 ;  1 1 , 8 ;  1 1 , 1 1 ;  1 1 , 1 4 ;  1 1 , 1 5 ;  1 1 , 1 6 ;  1 1 , 1 9 ;  1 1 , 2 1 ;  1 2 , 6 ;  1 2 , 8 ;  1 2 , 1 2 ;  1 2 , 1 4 ;  

1 2 , 1 8 ;  1 3 , 1 1 ;  1 3 , 1 5 ;  1 3 , 2 2 ;  1 4 , 7 ;  1 4 , 1 5 ;  1 5 , 4 ;  1 5 , 5 ;  1 5 , 6 ;  1 5 , 7 ;  1 5 , 8 ;  1 5 , 1 1 ;  1 5 , 1 3 ;  

1 5 , 1 4 ;  1 5 , 1 7 ;  1 5 , 1 8


