Database Query Optimization

Submitted in partial fulfilment
of the requiremenbf the degree

Bachelor of Science (Honours)

of Rhodes University

Molupe Mothepu

6" November

Database Query Optimization Molupe J. Mothepu

First and foremost | would like to acknowledge nawpervisor Mr John Ebden for his

infinite patience, valuable contribution, contingoudeedback, and words of
encouragement. | would also like to thank my peéeithe computer science honours
laboratories for their continual help and opinioAsspecial mention goes to the Dirty
Half Dozen. Last but not least, | would like tonkahe Rhodes University Computer
Science degree for allowing me the opportunitydoycout this research en route to
the fulfilment of my Honours degree.

I would also like to acknowledge the financial d@adhnical support of this project of
Telkom SA, Business Connexion, Comverse SA, Versehmologies, Stortech,

Tellabs and THRIP through the Telkom Centre of Hgoee at Rhodes University.

Database Query Optimization Molupe J. Mothepu

Table of Contents

TabIe Of FIQUIES ... ee e e eae e 5
Y 011 - Vo R PPRPRRRR 1
Chapter 1 — Introduction to Query Optimization.............cceeeeeeiieeeeeeeeeeeeeeeieeniiines 2
1.1 — Statement of the problem ... 2
1.2 — Background on Query Optimization.......cccccceeeeeeeeiieeieeeeiiiiiiiie e 2..
1.3 — Chapter SUMIMATYcooiiiiiiiiii i eeeeeee et e e e e e 5
Chapter 2 — The Lit REVIEW........uuuiiiiie i eeeeeeiieie s 6
2.1 — Components of the Query OpPtiMIZEr........ccceuviiiiiiiiiieiee e 6..
2.2 — The Query OptimiZation PrOCESScieeeeeeeiieeeiiiiiiiiiaaaae e e e e e e e aeeeeeeeeeenes 8
2.2.1 —The SEAICN SPACEuuiiiiiiiiiiieee et ee e e e 8
2.2.1.1 — Representing the queries: QUEry TreeS.cc.....covvvveeevevvvriiiiieeeeeenns 8
2.2.1.2 — Building the Search SPaCe........ e eereereniiiiiieaeeeeeeeeeseeeenannnnns 9.
2.2.2 — Enumerating the Search Space...... oo 1.1
2.2.2.1 — Estimates and StatiStiCS ... eeeeeeeeemmmiinneeeeeeeeeeeeeens 11
2.2.2.2 - Cost assignment and Pruning......ccceeeee.ooeeeeeeeereeeeeeeeemmmmmm.. 12
2.2.2.3 —Interesting Order...........ooiiiiiceeeeee e 14
2.2.2.4 — DynamicC programmingccceeiieeeeemiessseeeeeeeeeeeeeeeeeessssnnnn 16
2.3 - Types Of OPtiMIZALIONueiieie e eeeeeee e 18
2.3.1 - Rule-based optimiSationcooooeiiiiiiiiiiieee e e 18
2.3.2 - Semantic Query OptiMIZationccceeeiuvrrrniiiieeeeeeeeeeeeeeeeeeeeaennnnens 8.1
2.3.3 - Global Query Optimizationceeeeeieeeeieceee e 18
2.3.4 - Parametric/Dynamic Query Optimizationuvvviiiiiinnieeeeeeeennn. 19
2.4 — Chapter SUMMEAIYuuuiueeeiieeeeemmmmeeetierieeeeeeeeeeeeaeaeaea e e s s s aaneeeeeees 19
(O gF=T o] (=T g Bl I T [| PPN 20
I el o =1 (0] 1 10 PSPPI 20
3.1.1 — WINndows Server 2003.........cooo oot 20
3.1.2 — UbUuntu Server DAPPEcccooiiiiniiiiiiiiiiee ettt e e e e e e e e e e e a e nnns 21
3.2 — Database Management SYSteMS........ccccuveveereeeeeeieeieeeeere e 21
3.2.1 — SQL Server 2005.........ccuuuuieeeesmmmmmmneeeeeeesssitreeesesessnrrereeeessasreeeaans 21
3.2.2 = MYSQL 5.0.22 ..ottt e e e e 22
3.3 — Overview of the database............ccceeeeeeiiiiie e 23

3.4 — ldentifying test variables.............ceeeeeniiiiiiii e 24

Database Query Optimization Molupe J. Mothepu

3.4.1 — SyStem Variablescooouii i 24
3.4.2 — Complexity Of QUETIES........coii i 25
3.4.3 —Size Of the reSUIt SeL.....ccoiiiii e 25
3.5 — Chapter SUMMAIYcooiiiiiiieiiiceeeeee e e e e e e e e e e e e e e e saeeeeneees 26
Chapter 4 — MethodOlOgyuuuuiuiieee s 27
4.1 — Objective ONne: The COMPATISONuuurrireiiiieeaaeaaaeeaaaaaaaiiiireereeeeeees 27
4.2 — Objective Two: Server Optimization for quetie............cccceeeeviiiiieeeeeeeeeen, 28
4.2.1 — SQL Server System Variables ..., 29
4.2.2 — MySQL System Variables ... 0.3
4.2.3 — Overview of the queries USEed........cccceeeieiiiiiiieie 33
4.3 — Chapter SUMMANYcevuuuiuiieiseeeeeeeannaaaseeeeeeeeaeeeeeeeeernnnnnnnn———————. 33
Chapter 5 — RESUILS ...uuueiii e e e e e e e e e e eeeeeee e e e eeerannnes 34
5.1 — Objective One: The COMPATISONuiiieirieeeeeeeeeeeeeeeeeeieiiiiia s 34
5.1.1 - AnalysiS Of MYSQLccoiiiiiiiiiiiiiiieie e 34
5.1.1.1 - MYSQL JOINSuuuiiiiieiiiiiiiees s stieeeee e e s assteeeeeeeeassneneeeeessnne 34
5.1.1.2 - MySQL Query Analysis TOOIS.........coummmeeeiiiiieeeeeeeeeeeeeeeeeieiiiinnnns 35
5.1.2 - Analysis Of SQL SEeIVer.....ccoooi oo 38
5.1.2.1 — SQL Server JOINSccuuuuuuuuiaaeaeeeeernnnnnnnnaaaaaeeeaeseasseeeenesnnnn 38
5.1.2.2 - SQL Server Query AnalysiS TOOISo eeeeeiiiiiiiiiiiiiiiiiiieeeee. 38
5.1.3 — Comparison RESUILSuuuiiiiiiiei i ee e 41
5.1.3.1 —QUETY Lo e 41
5.1.3.2 — QUETY 2. ettt e aeeeeneee 43
5.1.3.3 = QUETY B 45
5.1.3:4 —QUETY 4o 47
5.1.3.5 —QUEIY B ———— 48
5.1.3.6 — QUETY Bttt e e e e e e eeeeeneee 51
5.1.3.7 = QUETY 7.ttt e e e 53
5.1.3.8 —QUETY 8o 55
5.1.3.9 — QUETY O.eeeiiiii e 59
5.1.3.10 — QUENY L0, uuuiiiiiiiiiiiiieeee e e e e e e e e s eeeeeeeeanas 62
5.1.3.11 — QUETY LlL..uiuiiieieeeeeeeeeeceememee et en e ennees 63
5.1.3.12 — FINAINGS....ci i e e et e e e e e e e e e e e aeeeeee s 65
5.2 — Objective Two: Server Optimizationsuveveiiiieiiiieeeeeeeeeeeeeeiiiiinnnns 7.6

5.2.1 — Optimizing MYSQLcooiiiiiiiiiiiiieeeee et e e e e e e e e e eeeeeeeeennaees 67

Database Query Optimization Molupe J. Mothepu

5.2.1.1 —Key_bUffer_SIiZe.......ccoouuiiiiiiieieeee 68
5.2.1.2 —table_CaCh@......cccciiii i 69
5.2.1.3 —net_buffer_length.........cccoooieeeeeiii 70
5.2.1.4—joIN_DUfEr_SIZEccoiiiieieiiiit e e 71
5.2.1.5 — optimizer_prune_levelo, 2.7
5.2.1.6 — optimizer_search_depth ..o 73
5.2.0.7 - SUMIMATY ...ttt er et e e e e e s e 74
5.2.2 — Optimizing SQL SEIVENcoovviiiiceeeeeeeeeeieise e e e e e eeeeaaaaees 14
5.2.2.1 — MiNn MEMOIY PEI QUETY ..oieeeeeeeeeieeeeeee e e e eeeeeettet s e e e e e e e e e eees 75
5.2.2.2 — Max degree of paralleliSm ... 76
5.2.2.3 — Cost threshold for paralleliSm.....cccceeoooreeeeeeeiiiccieee e, 77
5.2.2.4 — Query Governor CoSt LiMit.........ccceeeeuumiiiiiiiiiieieeeeeeeeeeeeeeiiiiiiaaens 79
5.2.2.5 — Summary of SQL Server Optimization ccee.......ceeiiiiiereeeeenneee. 79
5.3 — Chapter SUMMEANYuuuiieiiiiiiiimmmmeeiiiiiie e e e e e neeeee s 80
Chapter 6 — DISCUSSIONuuuuiiiiieeeeeee s e e s s e e e e e e e e aaeeeeeeeesenssnnnnnaaannnn s 81
6.1 — Optimization iN MYSQLoiiiiiiii e 81
B.1.1 — SIOW STAI....uuuiiiiiiii e 81
6.1.2 — ANAlyze Table ... 84
6.1.3 — The QUEry CacCheooo oo 85
6.2 — Optimization iN SQL SEIVETuuuiii et e e e e 88
6.2.1 — SQL Server Profiler ...t eenans 88
6.2.2 — Database Engine Tuning AdVISOrcccuuuuuuuiiiuiiiniineeeee e eeeeeeeeeeinneens 88
6.2.3 — SQL Server plan CaChe...........ooo e 92
6.3 — Chapter SUMMAIYcooo e e e e e e e e aeeeeee e 92
Chapter 7 — CONCIUSION.............ccovuueet e e e e s e e e e e e eeaaeeeeeeeeersasa s 93
A R T o 1T 1 T 93
7.1.1 - Objective One: The COMPATISONccoeeeeiiiiiiiiiiieieeeee e 93
7.1.2 — Objective Two: Server optimization.......cc....ueeeeiiiiiieeeeeeeeeeeeeeeeeeiinenns 94
7.1.3 — Overall performance of the database servers.........ccccceeeeveeeeeeeeneee, 94
7.2 — RECOMMENAALIONSciiii e e e e e aeeeeee e 95
7.3 — FULUIE WOTK ...ceviiiiieiieeee e e e e e e e e e e e e e e e e eeeaeeee s snnnnnsesennnnes 95
RETEIENCES ...t ettt ettt e e e e e e e bbb e e 97
Appendix A: T-SQL Statements to create tableS.m..coooeeeeeeiiiiiiiiiiee, 10

Appendix B: T-SQL Statements to create INdeXeS...ccc.vvvviiiiiiiiiiiiiiiiiiiiiiie 109

Database Query Optimization Molupe J. Mothepu

Appendix C: Server Configurationscouuueueiiiiiineeeee e 113
SEIVEIL: MY-YUKON ...ooiiiiiiiiiieie et e e e e e 113
SEIVEIZ: SS ... et enne 113
DAtabase SEIVEIS......ccooiiiiiii it e e e et e e e s st bbb b b e e eeeeaaessaannnes 113
DAtADASE ...ttt e a e e 113

Database Query Optimization Molupe J. Mothepu

Table of Figures

Figure 1.1 — Execution times for various table asa@ders..............ccovvvvvivvciiieeeennn. 4
Figure 2.1 — Example Query EXECULION TIEE ...cceeuuiiirriuiiiiiiie e eeeeeeeeeeeeeieeiiies 9
Figure 3.1 — Names and cardinalities of the taivléke test database....................... 23
Figure 4.1 — Variables identified as key to quergaution in SQL Server 2005 29
Figure 4.2 — Default, minimum, and maximum valugsviariables identified in

FIQUIE 4.1 e+ttt e e e e e e e e e e e e e eeaaeeeeaeeeeeeeernnrannn 30
Figure 4.3 — Variables identified as key to quergaution in MySQL 32
Figure 4.4 — Default values for key variables idfead in Figure 4.2.2.1.................. 32
Figure 5.1 — Example output from an explain commainthe MySQL command line
.. 36
Figure 5.2 — Execution plan derived from the exptaammand.................ccccccooei, 37

Figure 5.3 — Example output from a query. Focumishe execution time, which has
been circled iN MYSQL i e e e e e e e e e 37
Figure 5.4 — Screenshot of SQL Server Managemeidic&tFocus is on the option to
“Display Estimated EXecution Plan”. ... eeeeeeiiiiiiiieeeeeee e 39
Figure 5.5 — Screenshot of the output of choosandjgplay the executed query plan
instead of ruNNING the QUETY.ueeei e e e e e e 39
Figure 5.6 — Screenshot after having zoomed irherekecution plan. Focus is on the
screen tip for the Hash Match join. ... 40

Figure 5.7 — Screenshot from the SQL Server Proflecus is on the number of

reads, WhiCh iS CIFCled.ooi i 41
Figure 5.8 — Query description and Execution tifloeuery 1........ccccccceeeeiiiinnennnn. 42
Figure 5.9 — Graphical representation of Querydcakon times.ccccceeeeeeenns 42
Figure 5.10 — Execution Plan for QUErY 1eeeoeiiiieeeeeeeeieeeeeeeiiiisin e 42
Figure 5.11 — Query description and Execution tifoeQuery 2............cceeevvvvvnnnns 43
Figure 5.12 — Graphical representation of Queryeteation timesccccecnnnnn. 44
Figure 5.13 — Execution Plan for QUETY 1ceeeeeioniineeeeeeeieeeeeeeeiieiii e 44
Figure 5.14 — Query description and Execution tifoefuery 3.........cccccccvvvveeeenn. 45
Figure 5.15 — Graphical representation of Queryeketion times.............ccccvvennnnn. 45
Figure 5.16 — Execution Plan for QUErY 3....eeeoieiiieeeeeeeeeeeeeeee e 46

Figure 5.17 — Screenshot showing the percentagesdbtal cost that the Hash join
TAKES UP (7490). «eeeeieeeeeeee ettt ettt e e e e e e 46

Database Query Optimization Molupe J. Mothepu

Figure 5.18 — Query description and Execution tifoeQuery 4............ccoevvvvvvvnnnne 47
Figure 5.19 — Graphical representation of Queryektation times..............cc..eeeeeeee. a7
Figure 5.20 — Execution Plan for QUEIY 4 ... eeeeeiiiiieeeeeeeeeeeeeeeeii e 48
Figure 5.21 — Query description and Execution tifoeQuery 5............cceevvvvvnnnns 49
Figure 5.22 — Graphical representation of Queryécation times..............cccccennnn. 49
Figure 5.23 — Execution Plan for QUErY 5 ... v 50
Figure 5.24 — Query 5 with and without parallelisnSQL Server...........cccceevvvvneees 51
Figure 5.25 — Query description and Execution tifoeQuery 6.............ccooevvvvvnnnns 51
Figure 5.26 — Graphical representation of Queryegation times...............cccceeennnn. 52
Figure 5.27 — Execution Plan for QUENY 6 ... vieiiiiiiieeiiiiiive e 53
Figure 5.28 — Query description and Execution tifoeQuery 7.........cccceevvvvvvvvnnnns 54
Figure 5.29 — Graphical representation of Queryetetion times.............cccccceenn. 54
Figure 5.30 — Execution Plan for QUEIY 7 ... eeeeoiiiieeeeeeeeeeeeeeeeiiiiii s 55
Figure 5.31 — Query description and Execution tifoefuery 8..........ccccccevvvveeeennn. 56
Figure 5.32 — Graphical representation of Queryegetion times.............ccccvvennnnn. 56
Figure 5.33 — Execution Plan for QUErY 8....eeeieiiiieeeeeeeeieeeeeee e 57

Figure 5.34 — Query description and execution tifneQuery 8 after it has been
rewritten to mimic the table access order of SQLV&.........cccoevvvviiiiiiiiiiiiiiiiiiians 58
Figure 5.35 — Execution Plan for Query 8 afterais lheen rewritten. NB: Both plans

o LS IR (0] 1Y/ YT | R 58
Figure 5.36 — Query description and execution tifoeQuery 9...........ccccceeeeeeeeen... 59
Figure 5.37 — Graphical representation of Queryeration timesccccceevvnnnnn. 60
Figure 5.38 — Execution Plan for QUErY 9 ... 61
Figure 5.39 — Query description and execution tifbeQuery 10...........ccccceeeeeeenn... 62
Figure 5.40— Graphical representation of Queryxexetion times 62
Figure 5.41 — Execution Plan for QUEery 10 ... eeeeeeeeiees 63
Figure 5.42 — Query description and execution tilneQuery 11............ccccccvvveeee. 63
Figure 5.43 — Graphical representation of Quergxdcution times.......................... 64
Figure 5.44 — Execution Plan for QUEery 11 ... oo eeeeeeeeeeeeieees 64

Figure 5.45 — Graphical execution times for querid®). MySQL performs best with
tNE 1ESSEI JOINS ...ttt e e e e e e 65
Figure 5.46 — Graphical execution times for querid®. MySQL performs best with
10 (SR LT ST =T o 1 U 66

Figure 5.47 — Query execution times for varyinguesl of key buffer_size in MySQL

Database Query Optimization Molupe J. Mothepu

.. 68
Figure 5.48 — Graphical representation of querycetien times for varying values of
key buffer_size iIN MySQL.........couuuiiiiiiiieiiiiirss e e e e e e e e e e e e e eeeeeeaeeeennnnnnrannne 68

Figure 5.49 — Query execution times for varyingueal of table_cache in MySQL ..69
Figure 5.50 — Graphical representation of querycetien times for varying values of

table_cache iIN MYSQLuuuiiiiiiee e s 69
Figure 5.51 — Query execution times for varyingueal of net_buffer_length in

1Y Y1 | PP SRPSPRRI 70
Figure 5.52 — Graphical representation of querycetien times for varying values of
net_buffer_length in MYSQL........coooiiiiiiieeeeeeeerrrs e eeenneeeees 71
Figure 5.53 — Query execution times for varyingueal of join_buffer_size in

1Y Y21 | SRR SRPSTPPRI 72
Figure 5.54 — Graphical representation of querycetien times for varying values of
join_buffer_Size iIN MYSQLuuiiiiiiie e e e e e e e e nnannrennne 72
Figure 5.55 — Query execution times with optimizgune_level on and off in

1Y Y1 | PP SRPSUPPRI 73
Figure 5.56 — Query execution times with varioulsi®@a of query_search_depth in
£ T0] OO 74
Figure 5.57 — Query execution times for varyingresl of min memory per query in
RSO] Y =T YT P 75

Figure 5.58 — Graphical representation of querycetien times for varying values of
mMin memory per query in SQL SEIVENcoueeaaaaiiaaeeeeeeeeeeeeeeeiinenennaas 76
Figure 5.59 — Query execution times with and witharallelism in SQL Server....77
Figure 5.60 — Graphical representation of quercetien times with and without
parallelisSm iN SQL SEIVETccoiiiiie e eeeeee e e e e e e e e e e e e eennnneseaaaae 77
Figure 5.61 — Query execution times for varyingueal of cost threshold for
parallelisSm iN SQL SEIVETouiii e 78
Figure 5.62 — Graphical representation of querycetien times for varying values of
cost threshold for parallelism in SQL SEIVEI o ..cccooiiieeeeccie e 78
Figure 5.63 — Decision of the optimizer for variaugeries with Query Governor Cost
Limit set to a value of 100 seconds in SQL SeIVer.......ccccovveiiieeeeiiivieeeieiiiinnnnns 79
Figure 6.1 — Execution time in seconds for firsb twonsecutive executions of queries
I (o T A (Y71) SRR 82
Figure 6.2 — Graphical representation of executiioe in seconds for first two

Database Query Optimization Molupe J. Mothepu

consecutive executions of queries 1 to 7 (MySQL)......coovviiiiiieiiiiiiiniieeeeeeeeeeeee, 2.8
Figure 6.3 — Execution time in seconds for firsb wonsecutive executions of queries
S I (11251 1 PR 83
Figure 6.4 — Graphical representation of execuiime in seconds for first two
consecutive executions of queries 8 to 11 (MySQL)........ccovviiiiiiiiriniiiiiiineeeeeeeeenn 83
Figure 6.5 — Execution Times or Query 11 before a@ter running the analyze
command on its constituent tables (MySQL) ...ccccceeeei e 84

Figure 6.6 — Graphical representation of the efééthe Analyze table command on

QUENY 12 (MYSQL) ittt e e e aa e e e e e e e e e e e 85
Figure 6.7 — The variables that control the quaghe in MySQL...................ccee 86
Figure 6.8 — Variables controlling the query cathBlySQL.........ccccoeveeiieeeeeeennnnee. 86

Figure 6.9 — Query execution times for query 8viarying values of
query_cache_limit (MYSQL)ccooiiiiiiiiiie e eeeeeee e 87
Figure 6.10 — Graphical representation of the qeegcution times for varying

values of query_cache_limit for Query 8 (MYSQL) e .ovvvveveiiiiiiiiiiiiiieeee e, 87
Figure 6.11 — Option in SQL Server Management Sttalanalyze the query in the
Database Engine Tuning AdviSOr in SQL SerVer.......cccoiiiiiiiiieeeiiiiiiinnn 89
Figure 6.12 — The Database Engine Tuning AdvisarddWw. The Start Analysis
button is circled above. The main panel providésrimation on the status of the
AaNalySiS IN SQL SEIVEN.......ciieeeiieei et s e e e e e e e e e e e e e e eeeereernneeeenrannnes 89
Figure 6.13 — Output of the analysis done on Q@eRocus is on the estimated
improvement, in this case 37% (SQL SerVer). oo 90
Figure 6.14 — Script generated by Database Engiméen@ Advisor for recommended
index creation (SQL SEIVED) ... ceeeeee et e e e e e aaeaaaaaa s 91
Figure 6.15 — Screenshot of script generated fricckiog on one of the index

recommendations.(SQL SEIVEI)ccuiuiuiiiiieeiiira e e e eeee b ennanees 91

Database Query Optimization Molupe J. Mothepu

Abstract

The part of the database system responsible fosgked of query execution is the
Query Optimizer. The Optimizer is faced with thekteof accepting a query and
finding the most efficient way of executing it. Shwork investigated the query
optimizers in two commercial database systems, ddmit SQL Server 2005, and
MySQL 5.0.22. The first objective of this investige was to compare the ability of
each query optimizer to find the fastest execupitam. The second objective was to
gauge the effects of various key configurable sevegiables on the speed of query
execution, and thus find the optimal configurationthat database server. A series of
gueries which varied in the number of joins wene on each server two sets of times.
The first test was for the comparison, and the sg@c®t for the server optimization.
The key server variables tested showed little toeffect on the speed of query
execution. It was found that SQL Server had a matobnger ability to choose the
optimal execution plan for queries with more thajoiBs than MySQL did. It was
also found that MySQL could outperform SQL servethwa properly configured
Query cache. The outcome was a recommendationS@Qat Server be favoured in
environments where the tables are subject to mbaehge and queries involve many
joins, and that MySQL be favoured in environmentere the server receives many

requests for identical queries, and where tabletgsdare few.

Page 1 of 123

Database Query Optimization Molupe J. Mothepu

Chapter 1 — Introduction to Query Optimization

1.1 — Statement of the problem

Increased performance continues to act as theysatar technological advances in
the world of computer science. Although there asnynmeasures of performance,
the one that has proven to be key is latency; pleed at which a given task is carried
out. The significance of the role of the Query @ritier in the retrieval of data in
database systems cannot be overstated. The Quémizyy has the non-trivial task
of identifying the optimal execution plan out ofaaige pool of candidates, to ensure

the highest possible response time.

Commercial Database Management System softwareupeosl each have their own
way of implementing the Query Optimizer, and therefdiffer in their ability to
identify and execute the chosen execution plarafgiven query. The objectives of
this project are twofold, which can be expressethénfollowing statements:
* Objective One: to compare the speed of query execution in twonserial
database management systems.
* Objective Two: to increase the speed of query execution in comialer
database management systems, by identifying anfigonang for optimality

those server settings that affect query execution.

It is with these two objectives in mind, that tlesearch and evaluation that produced

this paper were embarked upon.

1.2 — Background on Query Optimization

When a user enters a query for evaluation, theiegguocess that eventually leads to
the presentation of the requested dataset can #&ukghing between a few
microseconds and a few hours. Query Optimizatidmnckvmakes up the lion's share
of this process, is responsible for determiningolhof the alternative time frames
will be actualised. The optimization of a query d@ndescribed as a complex search
problem [Chaudhuri, 1998]. This complexity arise®ni the associative and

Page 2 of 123

Database Query Optimization Molupe J. Mothepu

commutative nature of joins [Bing Yao, 1979 and M)¢SManual] Using relational

algebra, these two properties can be describdeifotlowing manner;

If Ry, Ry, and R are tables, then the following is true for the owmative
property

RI™M R= RIXIR;

whereP™ is the symbol for a join. For the associative prty the following

is true;

R Ry) X R= R (R, DX Ry)

These two properties have the effect that the arderhich the tables are joined has
no bearing on the final output set of data. Theltesf this is that one query can be
expressed in a large number of equivalent algelraiational) expressions, each
which can be implemented differently. Each impletagan is known as aexecution
plan. Depending on the complexity of the query, thecepaf all possible execution
plans can encompass millions of plans. It is tis& @ the Query Optimizer to search
through this set of plans, assigning a cost to eauth ultimately, choose the plan with

the cheapest cost to execute. An example of tHsafs.

This example is of a simple query that was writierjoin 3 tables on their primary
key attributes. The cardinalities of the tablesaséollows:

» transaction_entry (as te) — 2 352 035 tuples

* meter (as m) — 58 370 tuples

» transaction_type (as tt) — 7 tuples

The query itself is;

select tt.transaction_type, meter_details, transactshift_ number from
transaction_entry te, meter m, transaction_typevltere te.meter_serial_number =
m.meter_serial_number and te.algorithm = m.algarittand te.transaction_type =

tt.transaction_type;

Page 3 of 123

Database Query Optimization Molupe J. Mothepu

The query was executed 6 times with the optimiegng forced each time to use a

different order of accessing the various table#f wie following results:

Table Order Time Taken
te, m, tt 96 seconds

m, te, tt 22 seconds

tt, m, te 113 seconds
tt, te, m 110 seconds
m, tt, te 118 seconds
te, tt, m 107 seconds

Figure 1.1 — Execution times for various tableessorders

The two sets of results that have been emphasbmd and centre) are the best and
worst case scenarios for this particular plan.ahh e seen here that the difference
between the two is substantial, with the worst dakeng more than 5 times longer
than the best case. It is for this reason thatygoetimization is so important, to
ensure that the query optimizer chooses to exdbetdest plan, as opposed to the

Worst one.

The cost of each plan is evaluated by applyingsh swdel to the statistics about the
execution environment that the Query Optimizer hasess to. The cost model
expresses cost as a function of the resources saye® execute the query. These
costs can be summarised as being attributablestfottowing;

e Communication: This is the cost of transmittingad&om the site where it is
stored to the site where it is processed.

e Secondary Storage: The cost of loading pages @af fiatn secondary storage
into main memory. This depends heavily on the sizihe intermediate result
sets in the execution, the clustering of data oysiglal pages, the size of the
available buffers, and the read speed of the stodagice.

e Storage: The cost of occupying secondary storageespnd main memory

buffers over time.

Page 4 of 123

Database Query Optimization Molupe J. Mothepu

e Computation: The cost of using CPU time, which asvhCPU intensive the

query is.

The communication cost is only a concern in distiebl database systems where the
Optimizer needs to access data that resides oardigpmachines and needs to factor
in the network latency. The storage cost is onlgsodered if storage has become a
system bottleneck and affects the execution, wisafenerally not the case. The two
remaining contributors are the cost of computatiod secondary storage access. Of
these, the more generally significant one is treoiséary storage access, with CPU
cost only really becoming an issue with computatilynintensive queries. Florescu et
al. [1999] say it best by describing the procesqjuéry optimization as taking a
guery, which describes the data, and turning d@ art execution plan that accesses the
data where it is physically stored, and then apglya set of physical operators to it,
eventually yielding a desired dataset.

The performance difference between the best armhddoest plan can be significant
in time critical applications and the differencévibeen the best and the worst plan can
be substantial, making the choice of execution,m@agritical and delicate process.

1.3 — Chapter Summary

This chapter introduced the aim of this paper aadega brief description of the
significance of Query Optimization to the performanof database management
systems, with specific focus on the data retriduakttion. It also presented a high
level view of the task of generic query optimizatizithout going into too much
detail on the inner workings of the actual proc8dse next chapter will give an in-

depth view of the process of query optimization aache different approaches to it.

Page 5 of 123

Database Query Optimization Molupe J. Mothepu

Chapter 2 — The Lit Review

This chapter aims to give some insight into the ceptual aspect of query
optimization and also present some of the work ltizest been done on the topic over
the years. Query Optimization as a process is b@ken depth, in order to provide a
foundation for the practical aspect of the procedsich will be looked at in the

chapters that follow.

The bulk of this Chapter is just to give some ihsignd background into the science
of query optimization, but the focus of the papes lin section 2.2 — The Query
Optimization process, with specific focus on theich of execution plan, and the
factors in commercial database systems that infiei¢he speed of this choice and its

execution.

2.1 — Components of the Query Optimizer

According to Chaudhuri [1998] there are two compuseo the query evaluation
system of a DBMS; the query optimizer and the quexrgcution engine. The
execution engine takes a plan supplied to it bydpe#mizer and executes it. This
execution involves the implementation of a setpbfsical operatorgChaudhuri,
1998], which are actual implementations of relatioalgebraic expressions such as
joins and sorts. The set of physical operatorsushes but is not limited to; external
sort, sequential scan, index scan, loop join, amtdreerge join. The query optimizer
takes as an input, a parsed representation of i/,qgenerates a space of possible
execution plans for it and then chooses the mdisierft one. The execution engine
basically takes at least one dataset as input,epses it, and produces an output
dataset. loannidis [1996] on the other hand, dessrifour components of the
optimization system, and breaks them down into na@t@il. A summary of them is
as follows:

* The query parser: Checks the validity of a query and then transldtedo a

relational algebraic expression, or another egaiahternal representation.
e« The query optimizer: Evaluates all the algebraic expressions that are

equivalent to the given query and chooses the stima&ted to be cheapest.

Page 6 of 123

Database Query Optimization Molupe J. Mothepu

« The code generator or Interpreter. converts the plan chosen by the
optimizer into calls to the query processor.

* The query processor.executes calls from the code generator to retiiexa.

The focus of this paper is the one component thabmmon to both of the authors;

the query optimizer.

loannidis [1996] goes on to break down the optimizeto six modules. In
commercial implementations of the optimizer, ndttaé modules are included and
some of them may be integrated but for completereessief description of each is
included:

* Rewriter: Applies transformations to the given query in thepe of
producing more efficient but equivalent plans. Epdea of these
transformations are that nested queries can kerflad out and views replaced
with their definitions.

* Planner. Examines all possible execution plans for each vedgemt
representation produced by the rewriter and sekbetsone with the lowest
cost. Inputs are obtained from tAéggebraic Spacend theMethod-Structure
Space which are described below.

» Algebraic space: Produces a series of actions, normally in an algebr
(relational) form as formulas or as a tree. Thestomas are the execution
orders that are to be considered by the planner.

* Method-Structure Space: Determines the implementation choices of the
plans obtained by the algebraic space. This is riep® on the join types
supported by the DBMS, the building of data struesuand other such DBMS
specific implementations. Complete execution plare produced, complete
with physical operator choices for the algebraierapors.

» Cost Model: Specifies the arithmetic formulas used to estintaecost of the
execution plans.

» Size-Distribution Estimator: Specifies how the sizes of relations, indices and
guery results are estimated. This component detesnivhat statistics will be
kept in the database catalogue.

Page 7 of 123

Database Query Optimization Molupe J. Mothepu

The main modules, that are also common to mosinigeirs, are thalgebraic space,

the planner,and theSize-distribution modules

2.2 — The Query Optimization process

As stated in the first chapter, query optimizateam be viewed as a difficult search
problem. In order to solve this problem, the foliogvare required:
* A search space:The space of all algebraically equivalent quergoexion
plans.
* A cost estimation model:Used by theenumeration algorithnto assign costs
to each plan in the search space.
* An enumeration algorithm: Examines the search space, assigns costs and

chooses plan with lowest cost.

Ideally the search space should include low costetton plans, the costing model
should be accurate and the enumeration algorithmaldhbe efficient [Chaudhuri].
Unfortunately, this ideal setting is not easy tdiage. At this stage it should be
mentioned that all the literature concentrates apecific type of query which is
known as &elect-Project-Join querfalso known as conjunctive queryor a non-
recursive Horn clausé¢loannidis. 1996]). Each of the above problem regmuents

will now be discussed.

2.2.1 — The search space

2.2.1.1 — Representing the queries: Query Trees

This is what is referred to by [loannidis] as tHge#raic space. It contains all the
algebraically equivalent query execution plans. mmber and nature of these plans
is strongly related to the set of physical opesatbat the DBMS supports. Each of
these plans can be represented in a number of budythe most common way is that
of a query tree in which a selection is denoted by projection byt and a join by:«i

. In such a tree, leaves are database relations@mdéeaf nodes are the result of the

application of the corresponding operator to thatiens generated by its child nodes.

Page 8 of 123

Database Query Optimization Molupe J. Mothepu

Each result is sent up the tree through the eddeshwepresent data flow, until they
reach the root node which is the final result & tjuery.Select-Project-Joir(SPJ)
gueries yield operator trees that are charactelised linear sequence of the join

operators in the query.

An example is provided for clarity. The query;
select name, degree

from student, degree

where student.dgrCode = degree.dgrCode

and age > 22

can be represented by the following query tree

™ Name, floor

[=] dgrCode = dgrCode

/ N\

° Age > 22 degree

student

Figure 2.1 — Example Query Execution Tree
2.2.1.2 — Building the Search space

As was mentioned earlier, the algebraic space temde very large because of the
commutative and associative properties of joind,ianreases in size with an increase
in query complexity. In many commercial implemeiaas of optimizers, the search
space is reduced by placing restrictions on thesplaffectively filtering out a portion

of them. loannidis [1996] explains three differemies that are often used to achieve
this restriction. The first rule basically statéstt selections should be processed as
relations are accessed for the first time and pties are processed as results are

generated. This results in a situation where aratons are dealt with as if they were

Page 9 of 123

Database Query Optimization Molupe J. Mothepu

part of the join execution. Processing joins ani@éc®ns in this manner is much
cheaper in terms of time and resources than primceisem separately, so any plan
that does not fit this criterion is suboptimal bfalilt.

Rule One does indeed prune the search space, lwt o means leaves it in a
desirable state. Rule Two is often used to furtieeluce the number of plans. This
rule states that relations will always be combitledugh the joins specified in the
guery. This ensures that cross products are newvarefl, unless they are explicitly
requested of course. Cross products are formedrasudt of joining relations that
have not been specified as joined in the originedrg. The effectiveness of this rule
comes from the fact that cross products tend t®igea large sets of results. Some
implementations go even further than these twosraled add a third rule to restrict

the search space.

Rule Three’s restriction is that the inner operahdach join should be a relation and
never an intermediate result. This restriction ésagnly trees that are known as being
left-deepas opposed toght-deep(trees that have their outer relation being aluzda
relation as opposed to an intermediate)oashy (trees that have at least one join
between two intermediates). It is agreed upon loy af the authors that the third rule
may well eliminate the optimal plan because busbgs may result in a cheaper plan.
In fact, Florescu et al [1999] stipulate that ie firesence of limited access patterns, it
can be shown that in certain cases, left deep teksinclude only plans with
Cartesian products, whereas there will exist a ypuge that doesn’t. In this case, the
space of bushy trees must be searched. The undgrthieory of limited access
patterns is beyond the scope of this paper. lo@[i@98] also states that it is in fact
more efficient to optimize a search space thauihes bushy trees as well as left-deep
than the space that excludes bushy trees. Eveghindf this fact, the bushy variety of
trees tends to be excluded because keeping theis tersubstantially increase the
search space. loannidis [1996] states that therelaims that more often than not, the
cost of the optimal left-deep tree does not surplassof the optimal tree overall by

any significant factor.

There are two main reasons for choosing to usadtp trees. The first is that when

database relations are used as the inner relgiembility of the optimizer to use pre-

Page 10 of 123

Database Query Optimization Molupe J. Mothepu

existing indices increases. The second reasoratsuing intermediates as the outer
relation in the join allows sequences of nestegdotm be executed in a pipelined
fashion [loannidis, 1996]. The resulting combinataf these reasons reduces the cost
of join trees. As an aside, right deep trees fatdi the sequencing of hash joins in
much the same way that left-deep trees facilitatesequencing of nested loops. But
apart from this, there is no real advantage togusight-deep trees over any of the
others. This third rule brings us closer to whatwant, which is a search space that
consists of enough plans for it to contain the ropti plan, but that's also small

enough to keep the optimization effort from becayanbottleneck.

2.2.2 — Enumerating the Search Space

In most of the literature, the cost model is thd p&the optimizer that assigns a cost
estimate to any partial or complete plan. It iDakssponsible for the determination of
the estimated size of the resultant dataset fdn eperator in the plan’s operator tree.
loannidis [1996] goes into a little more detail awdually identifies the module called
the Planner as the module that does such. Tdost modelspecifies the formulas

which should be used, and thize-distribution estimatodoes the output stream size
estimation. The Planner uses information from thies® modules to explore and

evaluate the search space in search of the chgapest

2.2.2.1 — Estimates and statistics

The exploration of the search space is one of thie areas of interest and research in
guery optimization. There are a host of theoriesua the best methods to use and
under what conditions they should be used. Quesluation algorithms tend to

depend heavily on heuristics [Jarke and Koch, 19844 assume an accurate
knowledge of run-time parameters [Cole and Gra&®94]. The runtime parameters
that are implied in this statement consist of, &re not limited to selectivity and

resource availability. To a large extent, the optity of the plan is dependent on the
knowledge of the values in the database, but wniately the exact values are not
always available to the optimizer so it must estendhis is the case even though
statistics are kept about the structure of thebdeta, as well as statistical information

describing the values in it. These statistics aendl in the database’s system

Page 11 of 123

Database Query Optimization Molupe J. Mothepu

catalogue (also known as tHata dictionary. The problem is that these statistics tend
to not be as up-to date as would be desired. Anathae that exists with the statistics
is approximation errors. As the number of tablesainjoin increases, the errors
multiply and can increase exponentially [Kabra d»e Witt, 1998]. The resource
availability mentioned has to do with the statetlud system. Things such as the
amount of available memory and the load on theesysare subject to change for
every execution of a query, and can even changegoedy. This is especially true for
object-oriented databases, which allow users tinéefustom data-types, methods
and operators [Kabra and De Witt, 1998]. Sometlihal needs consideration when
dealing with run-time parameters is that queriesltt®o be cached after execution.
This is to avoid having to re-optimize them if theme or a similar query needs to be
executed soon afterwards. Because these “systéei gtaiable tend to change, the
specific plan in the cache, may no longer be thterg in light of the system’s new

State.

2.2.2.2 - Cost assignment and pruning

There are certain elements that need to be préseahy form of evaluation to take
place during the optimizer's search through theeladgic space [loannidis, 1996].
These are:

* The set of statistics that are maintained in th@a déctionary about relations
and indexes. These include but are not limitedh®;number of pages in each
relation, the number of pages in each index andhtimber of distinct values

in each column.

* Formulas that will be used to estimate the sel#gtof predicates and to give
an estimate of the size of the resultant set f@ryewperator in a query tree.
The aim here is to generate intermediate relatioaisare as small as possible.

* Formulas that estimate the CPU and I/O costs faryewperator. These
formulas must take into account the statisticabrimfation of their input data
streams, existing access methods, and any ordiaa@xists on the data. The
concept ofinteresting ordewill be discussed in more detail in the following

section.

Page 12 of 123

Database Query Optimization Molupe J. Mothepu

At the end of the day, the job of the enumeratilgor@thm is to search through the
algebraic space of alternative trees, assign a twostach plan, pruning them as
required and then choosing the best plan withinsfiece. This is done by taking the
formulas and rules found in the cost model andyapglthem to plans based on the
values that are estimated by what loannidis [1986rs to as theize-distribution
estimator What this essentially does is give an estimatthefsizes of the results of
gueries and sub-queries and the frequency diswimitof their data. As was
mentioned earlier, the statistics that the siz&iblistor uses are only estimates based
on the values that are in the system’s data diatypoand can be inaccurate. It is for
this and reasons such as the increased compléxityen requirements, and the trend
towards object-relational systems, that even thst lmptimizers can experience
degradation in performance by choosing a sub-optpten [Kabra and De Witt,
1998]. | think Chaudhuri [1998] says it well byatihg that an optimizer is only as
good as its cost estimates. Assigning costs tadahgonents of a query plan works in

the following manner:
» Statistics are obtained from the data dictionayualthe data in question

* The statistics are used in combination with an af@erand it's input

streams to produce:
0 An estimate of the statistics of the output dateash
0 An estimate of the cost of executing this operation

The first step is carried out once at the beginmhgptimization and the second step
can be applied iteratively until all the operatorghe query tree have been handled.
Once the cost for each operator is obtained, therativcost for the tree can be
computed by summing up the cost of each operatbe Statistical information
required to carry this out is the number of tupfes data stream and the number of
physical pages that it spans, because this basidalermines the cost of data scans,
joins and memory requirements. Statistics on cokinmthe data stream are also
required because they can be used to estimatectbetigity. A problem that exists
though is that it can be proven [Chaudhuri, 1998} the task of estimating distinct
values is provably error prone, meaning that for @stimation scheme, there exists a

database where the error is significant. Accuratg estimation and the propagation

Page 13 of 123

Database Query Optimization Molupe J. Mothepu

of statistical information through operators inr@etremains one of the most difficult
optimization topics in query optimization. Recergtimizers are calleégxtensible
because they are built in such as way so as tdbleeta incorporate new physical

operators in a modular manneiug and play.

To sum up the actual process of optimization, it ba said that optimization is the
process whereby the query optimizer takes in aygasran input and outputs an
execution plan. The inputs that go into the opteniare; the logically pre-processed
guery (the query as a relational algebra expregsimfiormation about existing
storage structures and access paths, and the call.nAs discussed earlier, the
information about the storage structures and acpesss are kept in the data
dictionary. The optimizer must use these inputgyéoerate all alternative logical
execution plans, which describe alternative seqeeé operations and intermediate
results that lead up to the result of the queresEhplans must then be annotated with
details of the physical representation of datalusiiog sort orders, physical access
paths and other statistical information. The cosideh is then applied to these

augmented plans and the cheapest one chosen ratk&och, 1984].

The System-R optimizer is the foundation for masthmercial optimizers. Most of
the enumeration strategies in the literature asedh@n extending or slightly altering
the System-R optimizer. The enumeration algoritiount in it is characterised by
two techniques that form the basis of query optatian today. These amynamic

programmingandinteresting order$loannidis, 1996].

2.2.2.3 — Interesting Order

In any database system, there are a number ofjgorithms that can potentially be
used, depending on factors such as the size ahphd tables, the number of rows
that match the join condition (selectivity), ane tbperations required by the rest of
the query [Wikipedia, 2006]. A brief explanation thle more commonly occurring

join types, as described by Wikipedia [2006] folkow

* Nested loops:For each tuple in the outer join relation, tharenthner relation
is scanned and any tuples that match the join tiondare retained. If either

of the tables is very large, the efficiency of talgorithm drops substantially

Page 14 of 123

Database Query Optimization Molupe J. Mothepu

because it scans all tuples in all the tables. €ars be highly efficient if the

iteration is performed on indexes [Jarke and Ka&i84].

* Block loops: This is the same as the nested loop but it ordnsdhe entire
inner relations for each block in the outer relatias opposed to for each tuple
in the nested loop. This results in more computattts each tuple in the inner

relation, but requires far less scans of it.

* Hash-Join: A hash function is applied to the join attribute tok smaller
relation, and a hash table is built. The largetetab then scanned and the
relevant rows found by looking into the hash talbleis is done by computing
the same hash value on the hash key (join attjilauteé checks for a match in
the hash table. The advantage of this join is ithet only necessary to read
each table once and no sorting is necessary. yéadl smaller relation should

be able to fit into main memory.

* Merge-Join: If both relations are sorted on the join attributeen execution
of this join is easy. For each tuple in the ou&ation, the current group from
the inner relation is scanned, and each tuple fiteengroup that matches the
join condition is retained. Once all relevant value the group have been
found, both the inner and outer scans can move thietmext group. A group
consist of a set of contiguous tuples with the saaiee in the join attribute. If
the primary key is the join value, then each grauib have one member. If
one or both of the tables are not sorted on thegtribute, then this needs to

be remedied.

If both relations are sorted on the join attributegen theMerge-Joinis the most
efficient. If one of the relations is very largedammdexes are used, nested loops are
preferred. For cases where one of the relationsmall enough to fit into main
memory, block loops or hash joins are favoured.hHams work best when there is a
very large difference in the size of the relatiohise efficiency of theMerge-Joinis
one of the reasons why we’re interested in therood¢he relation that results from a
join. An Interesting orderis existent when having the result of one jointestbron a
particular attribute will reduce the cost of a sedpsent join. This means that there

exists a situation where, if the order in whichatigins (including intermediates) are

Page 15 of 123

Database Query Optimization Molupe J. Mothepu

accessed is ignored, the globally optimal plan ballmissed. As a result of this, when
dynamically pruning query trees, two trees will yorbe compared if they are
representative of the same expressiod have the same interesting order. It is thus
possible for a plan to be more expensive at sonmd pat yield a result that will take

away the need to sort, facilitating the use of agdeJoin at a later stage.

2.2.2.4 — Dynamic programming

The dynamic programming algorithm is a dynamicagllyining exhaustive search
algorithm. It is based on the assumption that tst model adheres to tpenciple of
optimality which states that “the components of a globallyinogl solution are
themselves globally optimal” [National Institute $fandards and Technology, 2004].
This basically means that all the decisions madeoate to the optimal decision are
themselves optimal. It therefore follows that todfithe optimal solution of a query
consisting ofn joins, only the optimal plans for sub-expressionghe query that
consist ofn-1 joins need to be considered and then extendedasitadditional join.
An SPJ gquery is viewed as a set of relations tined and the trees are created by
inspecting the number of relations that have beamef@ so far while pruning trees
that are known to be suboptimal. A nice exampléhf given by loannidis [1996] is
that the optimal plan for a query with a set ohjaelations {R, R, Rs, R4} is a result
of picking the cheapest plan from the optimal plafgoining the relations in the

following orders:

Join ({Ry, Re, Ra}, Ry) [Join ({R, Rx, Ra}, Rs) | Join ({R, Re, Ra}, Ry) | Join ({R,, R, Ra}, Ry)

It is assumed that the result of the 3-relationi¢iwver combination) join is the
optimal one and is being extended by joining tlesult to the last relation. All other
plans can be ignored. It therefore follows thataigic programming takes a bottom
up approach, increasing the number of relationsepbias it goes up the tree until
eventually all that is left is a pool of trees tlaaé the most optimal in the group of
trees with similar join sequences, and then chgo#iie most optimal from among
them. So basically, only the optimal plan from egobup is chosen and then only the
most optimal plan from this set of optimal plansl®sen as the global optimal. It can
afford to be exhaustive because it prunes sub-aptirees along the way, it does not

need to fully evaluate the next plan if at any pdiproves to be less optimal than the

Page 16 of 123

Database Query Optimization Molupe J. Mothepu

last one evaluated. It in fact usepibbt pass,whereby a complete plan is computed
and then all sub-plans that are more expensive tthetnparticular one are discarded
[Reddy and Haritsa, 2005L.are must be taken when pruning trees which méysat

appear to be suboptimal because of the concepediteresting order

Dynamic algorithms exist to counter the productadri'static” plans, which as was
mentioned earlier, tend to assume accurate knowledgthe run-time parameters
during optimization. The idea is for the optimizattito “react” to the actual values of
run-time parameters as the query is being optimj@cudhuri, 1998]. The problem
that arises from this is that memory requiremems aunning time increases
exponentially with the number of joins [loannidiE998]. It is said by [Cole and
Graefe, 1994] that the additional overhead is sWwadoby the advantages of using
this type of algorithm. Advantages include thatytlaee as robust as brute force run-
time optimizers. Robustness in this instance mehasthey retain their optimality
even when parameters change between compile ticheusmtime. The algorithm is
therefore superior to the static plans generateccdiypile-time optimization and
algorithms which implement full run-time optimizati, which tend to have much
more overhead. Cole and Graefe [1994] suggest\angia balance by doing the bulk
of the optimization at compile-time and then hotdioff some decisions until run-
time. This is achieved by usingchoose-plan operatowhich postpones the choice
between two or more plans until start-up time, wiles actual values of required
parameters become known. Through time though, theree been a number of
alternatives to the dynamic programming approach. eékample is Viglas and
Norton’s [200] rate-basedas opposed teost-basedoptimization that is used for
streaming information sources. The claim is thatrtalgorithm takes a constant time
to find the first viable solution with an increasedarch space, as opposed to
traditional dynamic programming, which as we diseasearlier, degrades with the
number of relations involved in the join. Even tgbuthere are more efficient
algorithms out there, it is important to have knedge of dynamic programming
because it is the yardstick to which all other &tbms are compared [Florescu at al.,
1999], and because it is the most widely used istmommercial database systems
[loannidis, 1996].

Page 17 of 123

Database Query Optimization Molupe J. Mothepu

2.3 - Types of Optimization

Although the focus of this paper is on cost-basgtilrozation because it is the most

widely used type, it is worth giving the other aixig types a brief mention.

2.3.1 - Rule-based optimisation

This type of optimization has been phased out kmxanf its inefficiency. The
optimizer chooses the best plan based on a sghtddical rules and rankings of the
various access paths. Statistical information moigd. Certain types of access paths
take precedence over others in certain situatioegardless of the context of
execution. This means that suboptimal choices neaghtmsen because of the rigidity

of the rules.

2.3.2 - Semantic Query Optimization

This has to do with using integrity constraintsiaed in the database to rewrite one
guery into semantically equivalent ones [loanni@i®96]. This is not the same as just
using transformations to rewrite a query into agebfaically equivalent one. In

semantic optimization, the query is turned iatmtherquery, which means the same
thing but is going to be easier to optimize (foample, one that uses indexes, if the
original one did not). The semantically equivalgoeries are then optimized in the
regular manner and the most efficient plan foundetsined. Heurist must be used
with this type of optimization to establish rules when it would be beneficial to

rewrite a query in this manner and when it sho@deft in its original form.

2.3.3 - Global Query Optimization

There often arises the need to run and/or optirmpee than one query at a time,
whether it is because of the presence of a unionguwrrent requests from users or
gueries requested by an application. In this dasebetter to have a globally optimal
plan. This plan may be suboptimal for each indigidguery but is optimal for their
execution as a group [loannidis, 1996]. The existitiorage structures and access

paths in a database system can not be optimized feingle query, but can be

Page 18 of 123

Database Query Optimization Molupe J. Mothepu

optimized globally, for all plans [Jarke and Kod®84]. This particular topic is the
focus ofmultiple query optimizers

2.3.4 - Parametric/Dynamic Query Optimization

This particular type deals with embedded queriekichv are optimized once at
compile time and use the same execution plan eawh they are run at run-time.
Parameter values may change significantly in time tbetween compile time and run-
time and a plan which was optimal at compile tinam ©e severely sub-optimal at
run-time. There are a number of ways of combatimg. tAs was mentioned earlier,
Cole and Graefe [1994] suggest putting off somesatats until run-time, where there
is a more accurate knowledge of parameter valuabr&kand De Witt [1998] in turn
put forward the idea of dynamically monitoring tblganges in estimated and actual
parameter values and changing (re-optimizing) tkecetion plan during run-time,
according to the actual values. Another technigqu®ioptimize queries at compile
time in a brute-force manner, whereby all possidkies of crucial parameters are
taken into account when building the search spatetun-time, the plan which
matches the actual parameters is chosen. This thé little overhead at run-time
as the bulk of the work is done at compile timeafinidis, 1996]. The next section

deals with some implementations of commercial ojzens.

2.4 — Chapter Summary

The aim of this chapter was to provide some fouonddor understanding the inner
workings of the query optimization process. Thisyiles some preparation for the
ensuing discussions. These discussions are bastw amalysis of query optimizer
performance in the commercial database systems. Age Chapter gives a

description of the design of the evaluation thatf®the basis of this paper.

Page 19 of 123

Database Query Optimization Molupe J. Mothepu

Chapter 3 — Design

This Chapter aims to provide a description and axgtion of the design choices
made and considerations taken, in the evaluati@cgss. It will explain which
platforms were used, which database managememinsystere used, and give a brief
explanation of why each was selected. A descriptibrihe test bed will also be
included, which will encompass the structure of da¢abase used for testing and the
choice of test variables.

3.1 — Platforms

Two platforms were used in this evaluation. Theséfgems are Microsoft Windows
Server 2003 and Ubuntu Linux 6.06 Dapper. Botthete platforms were run on the
same machine, using a dual booting configuratiognisure that each is operating on
the same hardware platform. The hardware spedditatof the machine that these
operating systems run on are as follows:

e Dual 3.40 GHz Intel(R) Pentium(R) 4 CPU

e 3.5GBRAM

e 2x112 GB SCSI Hard Disks (1 HDD per operatingtsgn)

A brief explanation of the reasons for choosingheat the operating and database

management systems ensues.

3.1.1 — Windows Server 2003

Windows Server 2003 was chosen because it is thenturecommended server
operating system by Microsoft. Windows Server 20@% a very prolific operating
system and Server 2003 has promised to be even poaverful and robust than its
predecessor [Microsoft, 2006]. Windows owns a lashare of the server operating
system market [Shankland, 2006], and most of thersu®f Server 2000 will
eventually migrate to Server 2003 and so it wasgichl choice to choose this as a
platform. Service Pack 1 was also installed todtime operating system up-to-date.

Service Pack 2 is still in its Beta stage and se m@t installed for stability reasons, in

Page 20 of 123

Database Query Optimization Molupe J. Mothepu

that it might cause unexpected behaviour.

3.1.2 — Ubuntu Server Dapper

Ubuntu Linux was the second operating system oicehd his choice was largely due
to the fact that one of the database managemetansyshosen for the evaluation is
open source. Ubuntu was chosen specifically becaluiee wide support that exists
for it, its ease of use, and availability. Anotleason is that Ubuntu is growing in
popularity in South Africa because of it being deped in South Africa [Ubuntu

website, 2006]. It was therefore found to be aviahé test bed in the South African
context. The version that was used is the mostntedistribution, which is 6.06

Dapper. It was installed as a server, which is @hmmore compact installation than
the desktop installation, and does not come withlHd. The Secure Shell Daemon

(sshd) runs on the server, enabling remote acia$aAal Ty or any other sSklient.

3.2 — Database Management Systems

3.2.1 — SQL Server 2005

Like the Windows Operating system, Microsoft's S&&rver enjoys a large share of
the industry in its use as a database managemstensyPettey, 2005]. SQL Server
2000 was a large success and SQL Server 2005 baildbe strengths that SQL
Server 2000 brought forward. SQL Server 2005 wéhvise pack 1 was installed,
which as of the writing of this paper was the nresent update.

The choice for this was based on the popularitythes product, coupled with its
availability and impressive amount of documentationd support that it has. It also
sports a rich set of tools that can be used to toothie database server's performance
and the queries in particular. Being one of Micfosdgolden products”, SQL Server
is one product that Microsoft put a lot of effanta, and it has been known to pay off.

It is the DBMS of choice to a wide range of companiproviding an easy to use,

! ssh stands for Secure Shell and is a means ofedg@ccessing a remote machine via a command
line interface, or “shell”.

Page 21 of 123

Database Query Optimization Molupe J. Mothepu

readily configured database solution. It has pratezif robust, reliable and efficient
in data retrieval, as well as sporting much supfarprogramming constructs. SQL
Server 2005 is supposed to be the most programmnesdly database system that

Microsoft has released to date [Microsoft, 2006].

The above reasons are why SQL Server was choséimdaguery analysis evaluation.

Next is a brief description of the second DBMS tlvas chosen for the evaluation.

3.2.2 - MySQL 5.0.22

MySQL is an open source database management sygtéch has gained great
popularity over the years [MySQL, 2006]. Becauseth® nature of open source
software, there are many versions or releases @Qly each attempting to address
the weaknesses identified in the last. As of theetbf the writing of this paper, the
most current version was version 5.0.22. MySQLesywvell documented and has a
vast community of users and developers globally wdmtribute with bug reports and
fixes, which adds greatly to its support. It is thmst widely used open source
database management system, rivalled only by R&@Qr and Firefox [Sullivan,

2005]. One of the aims of this project is to coneptire performance of proprietary
and open source database systems, so it came aowrchoice between the two

biggest players in the open source database wehid¢h are those mentioned above.

There have been many debates, which are beyorsttipe of this paper, as to which
of the two rival open source databases, MySQL aostgPeSQL are “better”, and

still, like in most debates, there is no clear @uswer. MySQL is more widely used
and so support for it in the application world igler than for PostgreSQL, and the
larger community of developers that MySQL sportangethat technical support for it
is also greater. Both systems are able to handlevolumes and both perform well in
terms of speed, but it has been said that MySQLWSKM tables are more

lightweight and hence faster than PostgreSQL'di[lan, 2003].

It is for the speed, compactness, ease of accesapjort, and market share, that
MySQL was the choice as the second database sy$§tesmext section gives a brief

Page 22 of 123

Database Query Optimization Molupe J. Mothepu

description of the tables in the database thatusad as the test bed.

3.3 — Overview of the database

The database is currently made up of 14 tableshwiwe the following cardinality:

Table Name Cardinality
consumer 53 990
consumer__classification 4
consumer_details 39 352
consumer_connections 60566
meter 58 370
meter_connections 70 427
payment_method 9

poc 55 898
poc_details 41 658
token 2 374 388
transaction_entry 2 352 035
transaction_financial_item 7 051 139
transaction_item_type 115
transaction_type 7

Figure 3.1 — Names and cardinalities of the talwethe test database

For a more accurate description of the column nameta-types and relationships
between tables, refer to Appendix A. This appermovides the T-SQL statements
that generated the tables and indexes in SQL Sdivanould suffice at this time to

mention that each table is indexed on at leagptimeary key.

It is worth noting that MySQL has two main databas@age engines; InnoDB and

Page 23 of 123

Database Query Optimization Molupe J. Mothepu

MyISAM. The difference is that InnoDB is transact@ and MyISAM is not.
MyISAM is claimed to be much faster than InnoDB &®L Server tables are
transactional so the InnoDB tables would be thee$hicomparison with the SQL
Server tables. Though this is the case, MylSAMe&default storage engine, and the
one recommended on a general basis, it will beetiggne of choice for the MySQL

testing.

The next section outlines the choice in variabthes will be tested for the evaluation.

3.4 — Identifying test variables

The focus of this paper was the effect of varicastdrs on the performance of the
Query Optimizers in terms of query execution tilkenumber of these factors were
identified and a brief discussion of each is pres#gnThese are the factors that were

variables in the testing phase of the project.

3.4.1 — System variables

These are the variables that determine the queecuton environment. These
variables generally encompass items such as thbhesaavailable, the buffers
available, and any other server parameter thabésimented to have an effect on the
speed of query execution in the database systerh EBMS that was chosen
enables the administrator to have access to, artifyniie values for a number of
server parameters. SQL server providessiheconfigurecommand and MySQL has
the set command. Both DBMSes store the parameters in dalte SQL Server, a
normal select query on tlsys.configurationsable will display the parameters, and in
MySQL they can be viewed by using thleow|[variables | statuscommand. There
are a large number of parameters that are configjrand only a handful that will
directly affect the speed of query execution. Téasons for the choice of toggling

server variables for optimality are presented next.

One of the reasons for choosing to tackle the apation effort by focusing on the

environmental variables is that optimizing the guem-time environment will have

Page 24 of 123

Database Query Optimization Molupe J. Mothepu

the effect of optimizing every query. This is camjr to the task of finding optimal
ways for writing SQL statements, which would beyveruch dependant on the nature
of the data required. It is a method of globallcreasing the speed of query
execution. Another reason is that it takes the tafsguery optimization out of the
hands of the writer. By this it is meant that thietev of a particular statement needs
to concern themselves less on building optimalitio ithe statement because the
server will be configured for global optimality. Atiner reason is that it is of interest
to venture into whether or not the default settinged in the database systems are
also the most optimal ones, that is to say, ifdbevers are configured for optimality
straight out of the box. whatis.com [1999] statest & default setting is a setting that
is used by a program when no user specified valisebleen given. It is predefined as
a value that represents the value that most userddwbe likely to choose, not

necessarily the optimal value.

The key variables for each server have been idedtiénd will be presented in

Chapter 4 - Methodology.

3.4.2 — Complexity of queries

Complexity in this context will be defined in terra$ the number of joins. The aim
with this is to check how the various databaseesgsthandle various levels of
complexity in queries. The effect of the complexaty the choice of query execution
plan will also be analysed. This stems from the flaat a complex query can often be
written in a simplified manner, or vice versa, and of interest to view the effect

that the complexity will have on the choice of extsan plan.

3.4.3 — Size of the result set

Investigation will be carried out to determine wiestthe size of the final result set
has an impact on the execution of the query. Htdsumented that the sizes of the
intermediate datasets generated during query erechave a large impact on the
choice of physical operator and thus execution.pldre result set for all execution

plans, should be identical, but it is of interestsee whether having a query that

Page 25 of 123

Database Query Optimization Molupe J. Mothepu

accesses the same tables, using the same joircateslibut requiring fewer records
from the table, will have an impact on the exeaqufiban, as opposed to the time of

execution, which it will definitely have an impamt.

3.5 — Chapter Summary

This chapter provided some insight into the designsiderations for the evaluation.
It was presented that the main reasons for choo#lirgvarious platforms were
popularity, support and documentation, and perfoceadebates between their
supporters. The reasons for choosing server cawtfigmn as a goal were also
presented. The next Chapter will provide detailstloé implementation of the

evaluation.

Page 26 of 123

Database Query Optimization Molupe J. Mothepu

Chapter 4 — Methodology

The process that was used to carry out the evaluédr this paper uses a “standard”
scientific approach. By this it is meant that it svabservation based. For the
comparison section, the same query was run on Hathbase servers and the
execution plan and time were observed, documerted,compared. For the actual
server optimization part, a number of variablesiidied as key to each DBMS were
altered and the effects of this observed and dootede To reiterate, the aim of the
server optimization (objective two of the proje)to identify those variables that
cause a performance increase within the databager swith the goal of finding the
best configuration. A more in-depth descriptioreath testing process ensues.

4.1 — Objective One: The comparison

The process for running the tests for this objectook the following form:

For each DBMS
For each query
Get Execution Plan
Run Query and record result

Compare results for DBMSes

For the comparison between the two database ser8€k Server was tested on
Microsoft Server 2003, its native operating systeml MySQL was tested on both
Windows Server 2003 and Ubuntu Server. In SQL Sdehequeries were run via the
SQL Server Management Studio, which provides a ®Bcap User Interface much
like the Query Analyzer in SQL Server 2000. With 8QL the queries were entered
via the command line and using the MySQL Query BrenwBoth Database Servers
were tested using their default installations, #r same queries were run on each,
using standard ANSI SQL statements. For the fiesta$ the tests, the buffers and
cache were cleared before each execution, so fasce the optimizer to re-evaluate
the query from scratch, each time it was run. Is\abso done to ensure that similar

gueries did not have their plans or speed of eimtumfluenced by the cache. This

Page 27 of 123

Database Query Optimization Molupe J. Mothepu

was just to test each database system’s abilinatalle queries that it executes for the
first time. It must be emphasised though, that ipraduction environment, this
clearing of buffers and cache is not only unusudlundesirable, as this takes away
the advantage of having a cache, which is to hasgquéntly used data, readily
accessible. A similar timing test was carried osing the same queries, without
clearing the buffers. Each server only had thelsingnnection that was used to carry
out the testing open, so the environment was singge, although it had been setup as
multi-user on both servers. Fourteen queries whésly in the number of joins run on

each server.

4.2 — Objective Two: Server Optimization for queries

For this section, the focus was more on the indi@icperformance of each database
Server. The literature on both servers was searchad endeavour to identify those
variables that are critical to the performance adreserver. These claims were then
tested by evaluating the actual effect of changimg said variables on the query
execution times. For each server, two queries wbeldested for each variable, one
that runs below one minute and one that runs fogdo than one minute. The process

followed for each of the queries is as follows:

For each DBMS
Identify server variables which are potentially rdevant
For each query
For each variable
For each value between min and max values for riable

Get Execution Plan
Run Query and record result
Increment value of variable by chosen incremerfactor

Tabulate and identify optimal values per variable
After this process has been carried out for eaclabie, the optimal value of each

variable will be known. The next section providesdescription of each of the

variables that were claimed by experts in the waridatabase systems to be of most

Page 28 of 123

Database Query Optimization Molupe J. Mothepu

relevance to the speed of execution.

4.2.1 — SQL Server System Variables

All the server system variables in SQL Server dogesl in thesys.configurations

table, which can be queried like any other taldedisplay their values. This table has
9 columns which are;configuration_id, name, value, minimum, maximum,
value_in_use, description, is_dynamaodis_advancedit has a cardinality of 62 and

belongs to the master database. $peconfigurecommand is used to change any of
the values of the records in this table. Some efuhiriables need a server restart to
take effect, but most of them take immediate effédtthe 62 possible variables, the

following were identified and

tested for their eff@n query execution:

Variable

Description

min memory per query

This is the minimum amount of memory in kilobytéstt will be
allocated to each query for execution. The quergnstled to a

least this much.

query governor cost limit

The upper limit for the time period in seconds Wdrich a query
may run before being abandoned. If a query lodkes ili will run

for longer than this, it will not be allowed to exge.

cost threshold for parallelisn

N The upper limit fbe time perid in seconds for which a query

estimated to run before SQL server creates andparadlel plans
Shorter queries will run serial plans and longeesowill run
parallel plans.This is only valid in the presence of multi

processors.

Max degree of parallelism

The maximum number of processors on the machinectra be

used for processing a query.

Figure 4.1 — Variables identified as key to quexgaution in SQL Server 2005

Page 29 of 123

Database Query Optimization

Molupe J. Mothepu

Some relevant information for the above variabtededault is as follows:

Variable Name Value Minimum Maximum | Value_in_use
cost threshold for parallelism| 5 0 32767 5

min memory per query (KB) | 1024 512 2147483647 1024

query governor cost limit 0 0 2147483647 O

Max degree or parallelism 0 0 0

Figure 4.2 — Default, minimum, and maximum valuas Variables identified in

Figure 4.1

The difference betweewmalue andvalue_in_uses that for variables that require a

server restart, thealue column, will hold the value of the variable asvitl be at the

next restart. For dynamic variables (which do remjuire a restart) the two columns

will always hold the same value after running tieeonfigure or reconfigure with

overridecommand, the latter enabling a rollback if thendes cause any instability

in the server.

It is worth mentioning that the amounts of memapgdfied inmin server memory

and min memory per querwill only be reserved once SQL Server has found an

instance where it requires the amount specifiedit iever actually needs these

amounts, it will never actually reserve them, ariéiren on less memory. It must also

be stated that in all the literature encounteré@nging any of the variables in the

sys.configurationsable was advised against. This is due to thetfattSQL Server is

supposed to dynamically optimize itself for quergeution. It is for this reason why

there is so little control offered over the exeontenvironment, as revealed by the

small number of configurable variables overall, aespecially ones that deal

specifically with query execution.

4.2.2 — MySQL System Variables

The server variables in MySQL can be accessedhéahow variablescommand.

This command gives a tabular representation othall variables and their values.

Unlike the sys.configurationgable in SQL Server, which has a large number of

Page 30 of 123

Database Query Optimization Molupe J. Mothepu

columns, the table resulting from tlsbow variablecommand has only two fields,
Variable NameandValue This resultant table has a cardinality of 2168dspvhen
MySQL is on Ubuntu and 211 tuples when in Windows.

Like in SQL Server, some of these variables areadyn, meaning that their values
can be changed while the server is running, ancesafithem require a server restart.
Apart from dividing them by this characteristiceth areglobal variables andgession
variables. There are those variables that areglolyal or only session but a lot of the
variables are both global and session, which méaatsthe value can be altered for
the session or globally. Variables that are glatdllonly affect new connections to

the system, whereas session variables affect cbangthat are currently in place.

The variables identified by experts as being retewaMySQL can, for the most part,
be separated into two groups. These groups areattteesand thebuffers Caches are
shared between all threads and are allocated oheesas buffers are not shared and
are allocated to each thread on demand. The oaésuth of interest in this case are
the buffers. As was said earlier, the cache willehgaome effect on the speed of
execution by virtue of being cache (the purposeawhe being to store frequently /
recently accessed data for faster access on sudasecgplls), and so of most interest
is the effect of changing the values of the varibuffers. A few variables that are
neither caches nor buffers have also been idettgebeing interesting. A summary

of all the variables is given in the figure below:

Page 31 of 123

Database Query Optimization

Molupe J. Mothepu

Variable

Description

join_buffer_size

Size of the buffer for joins thdd not use indexes i.e. vahi do full

table scans.

net_buffer_length

Minimum size for the connectiow aesult buffer

optimizer_prune_level

Controls the heuristics applied while pruning latisactive executio

plans during optimization.

optimizer_search_depth

The maximum depththe search. More depth results in a n
optimal plan, but found slower. Less depth resualta quick find of &
sub-optimal plan.

key buffer_size

Controls the size of the key cache (which cachesrbst frequentl

used indexes).

table_cache

Numbef tables that MySQL can accommodate in cache. ishper
thread, not global.

Figure 4.3 — Variables identified as key to quexgaution in MySQL

The values at default for the above variables arfelows;

Name Default Value

Windows Linux
join_buffer_size 131072 131072
net_buffer_length 16384 16384
optimizer_prune_level 1 1
optimizer_search_depth 62 62
key buffer_size 333447168 16777216
table_cache 256 64

Figure 4.4 — Default values for key variables idied in Figure 4.3

The global variables will not have any effect oty @essions that were open before

the change and so would require a server restidome globally applicable. It was

Page 32 of 123

Database Query Optimization Molupe J. Mothepu

found that the easiest way to carry out the tests t@ change the valuesniy.cnffile
which allows user specified values to be used tesestart-up, and then restart the

server with the new values.

4.2.3 — Overview of the queries used.

The queries in the testing differed mainly in terofighe number of joins and size of
the resultant set. For the comparative test, al doeries were run on both the
database systems. For the server optimization w#tga select few of the 14 queries
were used. Results for all the queries will notilguded in this test due to time
constraints, especially with some of the querigmtaseveral minutes to run. A full

description of the queries is presented with tlsilte of their executions in Chapter
5.

4.3 — Chapter Summary

This chapter provided some insight into the methagio used for the various tests
that were carried out. It also presented the sigegdriables of interest in the various

database systems. The next chapter presents thes ifes the tests.

Page 33 of 123

Database Query Optimization Molupe J. Mothepu

Chapter 5 — Results

The following section will give the results that meobtained for the testing carried
out for each project objective. The first sectionll wdetail the results of the
comparison of the ability of the two database systéo execute various queries in a
timely fashion. The second section will then prégba results of the tests that were
run in the attempt to optimize the environment that queries run in, by identifying
optimal values for each server setting that has bdentified as key to query

execution.

5.1 — Objective One: The Comparison

This section will describe the results of how feath database system could execute a
series of increasingly large queries. It is retiedlahat both systems are working on a
default configuration, with no system variables ihngvbeen altered. A series of
gueries was run on each system, and the time toutxealong with the query
execution plan were analyzed. The format that $leistion will take is that a brief
introduction into the join types that were encouediefor each database server will be
given, along with the tools that were found usefuthe evaluation. After this, each
qguery will be introduced, followed by the time tharious servers took to execute it,

in both tabular and graphical format. The execugitam will then be analysed.

5.1.1 - Analysis of MySQL

This section provides some insight into how MySQlexry execution was analysed.
First a description of the types of joins that wereountered in the tests will be
given, and then a description of how the querystreere then built from the

information that MySQL supplies about query exemuiti
5.1.1.1 - MySQL Joins

According to the manual, MySQL uses what is knownsiagle-sweep multi-join

method. This means that it accesses the first,téd® finds a matching row in the

Page 34 of 123

Database Query Optimization Molupe J. Mothepu

second table, then in the third, and so on, uhgéld row in the last table has been
found, whereby it starts again. To illustrate hiéite are 4 tables, R1, R2, R3, and R4,
they are joined in the following manner ((P R2) P4 R3) X R4) but on a row-

by-row basis.

There are a number of ways that MySQL accessedataein a table to perform joins,
but those that were seen in the testing for thogept are the following:

* All - According to the MySQL manual, this is theokst type of join because
it implies that a full table scan will be performexh the table for each
combination of rows from the table or intermediegsult that is being joined
to.

* Ref — Similar to the All in theory except that orthe values with matching
index values are read for each combination. Thigliea that the key (join
attribute(s)) that is used does not uniquely idgrgach row in the table, but
still does not match too many of them.

* Eq_ref — A refinement of the ref type, whereby oohe row is read in this
table for each combination of rows in the previones. Here, the key used

will be a primary key or unique index.
5.1.1.2 - MySQL Query Analysis Tools

MySQL provides a command that takes the fexplain <query>where uery>is

the actual query itself, without angular brackdtsis command is immensely useful
as a query analysis tool. Its output is the quagceation plan, in tabular form, for the
specified query. MySQL does not actually execute dhery but rather just lists the
tables in the order in which they will be accessaldng with some other useful

information.
The fields that are of most interest are:

select_type The type of select it is, for this particular labExample

values aresimple, unionandsub-query

Page 35 of 123

Database Query Optimization Molupe J. Mothepu

Table The name (or alias) of the table.

Type The type of join performed on the table, with thst table or with
the result of the last join. Example values system, consandeq_ref

Rows The number of rows that MySQL thinks it will hate examine to
execute the query.

Extra. Any additional information goes here. Exampleuesl areUsing
Index and Using where These are the two that can be seen in the
results from theexplaincommands that were run for this project. The
using wheremeans that the rows in the table were restrictesgd on
some condition. Thasing Indexmeans that column information from
the table is retrieved completely by using inforimatfrom the index

tree, and not actually doing any disk seeks to teadow.

So in the example below:

PEuLmn LU R s MMM Y Le gue W gussnr e tap mesn o

Database changed
mysql> explain Select consumer_surname, consumer_first names, consumer_active, consumer_connect_date from consumer ¢, consumer_details cd, consumer_connections cc where c.consumer_id = cd.consumer

S S ———— C— — [S —— (—— S C— [— +
| 1d | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
S S ——— C— — S S — (—— S C— [— +
1	SIMPLE ¢	ALL	PRIMARY	NULL	NULL	NULL	53990	
1	SIMPLE	cd	eq_ref	PRIMARY	PRIMARY	8	test_dbo.C.CONSUMER_ID,test_dbO.C.CONSUMER_UNIT	1]
1	SIMPLE	cc	ref	FK2_CONSUMER_CONSUMER_CONNECTIONS	FK2_CONSUMER_CONSUMER_CONNECTIONS	8	test_dbo.Cd.CONSUMER_ID,teSt_dbO.C.CONSUMER_UNIT	1] Using where
S S ——— C— — [(S —— (—— S C— [— +

3 rows 1n set (0.00 sec)

nysql> ||

Figure 5.1 — Example output from an explain commainthie MySQL command line

It can be seen that in order to execute the querypeed to do a full table scan of the
consumer tabldreferred to in the figure above asin thetable column) and has to
look at an estimated 53 990 rows from it. A _ref is carried out on the
consumer_detailsable (referred to aed) to join each row in the consumer table,
using the primary key as the join attribute, andeatimated 1 row will be accessed
from this table for each row in the consumer talllbe consumer_connections
(referred to axc) table is then accessed usingeétype join and using theshere
clause, as can be seen in Era column. It can also be seen that only one row from
this table is expected to be returned for eachirothe intermediate data stream that

results from joining the previous two tables. Thigtput, in conjunction with our

Page 36 of 123

Database Query Optimization Molupe J. Mothepu

knowledge of the way MySQL performs joins allows tas build the following
execution plan for the query:

Select consumer_surname, consumer_first namesuroensactive, consumer_connect date from
consumer ¢, consumer_details cd, consumer_connectio where c.consumer_id = cd.consumer _id
and c.consumer_unit = cd.consumer_unit and c.coesuith = cc.consumer_id and c.consumer_unit

= cc.consumer_unit

Result

N ref
ref .
€q CDI’IEUITIET_CDDI’IEG"OT'IS

Consumer consumer_details

Figure 5.2 — Execution plan derived from the expleommand

The time taken for the query to execute is alswidex after the results for the query

have been provided, along with the number of tupésned as follows:

1 Ly I low I Uy 1

| 44178 | h6H? | KALI i MAMATHE i MRS i NULL i F.0. BOR
i NULL i 358 i NULL g

! : ; \ !
27 rous in set (.13 sec)

nysqly o
Figure 5.3 — Example output from a query. Focusrighe execution time, which has
been circled in MySQL

The number of reads that the query required cam lasobtained from MySQL by
using theshow statugommand, which gives a tabular representatioh@ttatus of a
number of system variables, which exhibit the sy&estate. The variables that are of
interest in this scenario are tkey read_requestshich are the number of requests to

read a key block from memory, angy readswhich are the actual number of

Page 37 of 123

Database Query Optimization Molupe J. Mothepu

physical reads of a key block from disk. Tlast _query_costs also an interesting
variable as it shows how much the calculated cogtenlast query executed is.

5.1.2 - Analysis of SQL Server

This section is the equivalent of the previous tmreMySQL. It describes how the
SQL Server query execution was analysed. The typmins encountered in the

evaluation will first be presented, followed by toels that were used in the analysis.

5.1.2.1 — SQL Server Joins

SQL Server uses a different method of joining filglySQL. The two types that were

seen in evaluation are thderge Joinand theHash Match.These are implemented in
the manner that was mentioned in Section 2.2.2r8eresting order. All the rows in

the tables were accessed using a clustered indextsaead them. A clustered index
is an index that is based on the same key thatdteeis ordered on, in effect ordering
the indexes in the same order as the data in lite ta

5.1.2.2 - SQL Server Query Analysis Tools

SQL Server provides the option to show a graphiegresentation of the query
execution plan instead of executing the query. rAlévely, the option exists to
actually execute the query and have the executian mcluded in the output. It
augments this by providing information includingtinot limited to the physical
operator that will be implemented, the number afgestimated, and the estimated
I/O cost, in the form of a screen tips. The optivat allows this is shown iiigure 5.4

on the following page.

Page 38 of 123

Database Query Optimization Molupe J. Mothepu

: Tools Window Community Help

o

- | ¥ Exeate v AT = E T

alb | Table view - | 55 i"j 1% Display Estimated Execution Plan R ER -

YUKON.test - SQLQuerylsql*] sommay—————

Jelect Cconsumer Surname, consumer first names, consuwmer active, Cconsumsr connect date

]

from conswwer o, consumer_details cd, consuwer connections co
where o.consumer id = cd.consumer id

and o.zonsumer unit = cd.consumer unit

and o.consumer id = co.consweer id

AnC ©.ConsSumer unit = co.consumer unit

Figure 5.4 — Screenshot of SQL Server Managemedidst-ocus is on the option to

“Display Estimated Execution Plan”.

And a sample output from having this option orgsdollows:

SETES]

il

GRPET OGP G e

8

oo 00607 [orome
E

n oo s
| =0 Cenriments an. . | 81 Chanter sdae <m | @) ey an e mys rsQLS. | | MLk G

Figure 5.5 — Screenshot of the output of choosindisplay the executed query plan

instead of running the query.
A closer look at the query execution plan sectiewerls the true power of the tool,

which is the descriptive screen-tips, an examplelath can be seen in the figure on

the following page.

Page 39 of 123

Database Query Optimization Molupe J. Mothepu

Window Community Help

alb | Table VYiew - % B - = gl

Query3.sqlplana }/Summary]
uery 1: Query cost (relative to the batch): 100%
Select consumer_sSurname, consumer first_namwes, consuwer_active, consSuwer_connect_date from consun

= =3 ES k%

SELECT Hash Match Join Clustered Index Scan
[tesc]. [dbo]. [CONSUMER DETATLE] . [PK..

i

. (Irmer Join)
Gost: 0 % Cost: 3 %

Cost: 74
(57

= Clustered Index Scan
[test] . [dbo]. [CONSUMER] . [PE__CONSTIM
Cost: & %

Hash Match
& each row From the top input to build a hash
able, and each raw From the bottam input to probe
into the hash table, outputting all matching rows,

Physical Operation Hash Makch
Logical Operation Inner Join

Estimated I/0 Cost [u]
Estimated CPU Cost 3.02088
Estimated Operator Cost 3.020893 (74%)
Estimated Subtree Cost 4.09745
Estimated Number of Rows 60566
Estimated Row Size 876
Node ID o
DOutput List

[test].[dbo]. [COMSUMER], COMSUMER _ACTIVE,
[test].[dbo].

[CONSUMER_DETAILS], COMSUMER_SURMAME,
[kest].[dbo].

[CONSUMER_DETAILS]. COMSUMER_FIRST_MAMES,
[test].[dbo].

[COMSUMER _COMMECTIONS] COMSUMER_COMNMEC
T_DATE

Probe Residual

[test].[dbo]. [COMSUMER_DETAILS].
[COMSUMER._ID] as [cd]. [COMSUMER _ID]=[test],
[dbo].[COMSUMER _COMMECTIONS],
[COMSUMER_ID] as [oc], [COMSUMER_ID] AMND
[test].[dbo]. [COMSUMER_DETAILS].

[CONSUMER _UNIT] as [cd].[CONSUMER_UNIT]=
[test].[dbo]. [COMSUMER _COMMECTIONS].
[COMSUMER_UNIT] as [cc]. [CONSUMER_UNIT]
Hash Keys Probe

test]. [dba].

OMSUMER _COMNMECTIONS]. COMSUMER_ID,
[tegt].[dba].

[COMGUMER _COMMECTIONS], COMSUMER_LI

~_ _~

Figure 5.6 — Screenshot after having zoomed irherekecution plan. Focus is on the

screen tip for the Hash Match join.

The above shows that the physical operation i4aah Matchand that the logical
operation is amnner Join It also displays the estimated 1/0 cost, whiclthis case is
0 (because I/O cost is assigned to the table snah#he operators) and the CPU cost.
The sum of the I/0O and CPU cost are then givemasaost of the operator. The total
cost of the query can be gained from placing thesamver theelecticon, which is
the left-most item in the tree, which displays eeea tip. The cost of the sub-trees is
also given, and the estimated number of rows thatjain will yield. The size, in
bytes, of each row is estimated. This tool givesila@ady graphical representation of

the execution tree and therefore there is no reéditd it.
SQL Server also has a facility to show the actumle of the number of reads

required by the query. This value can be seen entthce produced by the Server

Profiler, as in below.

Page 40 of 123

Database Query Optimization Molupe J. Mothepu

ﬁ SQL Server Profiler - [C:\Documents and Settings',dupes’My Documents'traces'\uncached\query3_tracetrc]

fle Edt View Replay Tooks Window Help

=laix|
=laix|

ANEzfad|e v |EE0AAMREE D

ITexlDala | Applicationame | NTUserName | Loginame | CPU | Reads |Wriles | Durgtion ClientProcessiD | SPID | StartTime EndTime

2006-10-11 20:18:33...

SET STATISTICS ML OFF Microsoft SQ... dupes YUKONY. . 1} 0 1} 0 228 1

Y

2006-10-11 20:13:07...

Figure 5.7 — Screenshot from the SQL Server Proffecus is on the number of

reads, which is circled.

The columns of interest here arextData which provides an indication of the event
that occurred, theCPU, Reads, Writes, StartTmand EndTime These are the
variables which are useful in following the perf@amae of the query. The time taken
to execute each query was derived by subtractiegathery StartTime from the

EndTime, as in the columns in figure 5.7 above.

5.1.3 — Comparison Results

This section details the results that were obtaimedhe comparison of the two
database servers. The testing process is as alilin€hapter 4. This section will
present for each query tested; a description ofjtiegy run, the time taken to execute
in tabular format, the time taken to execute inpgreal format, and a graphical
representation of the execution plan proposed bys#rver, and brief discussion of
the results. For ease of reading, each query wilréated as a sub-section in its own
right.

5.1.3.1 - Query 1

Query 1 is a simple select query that involves t@ade and no join operations at all.

The results for this query are presented in therégn the next page.

Page 41 of 123

SET STATISTICS XML ON wicrosoft sQ... dupes YUKONY. . 228 54 2006-10-11 20:18:44...
SET STATISTICS XML ON Microsoft S... dupes YUKONY 4o o 0 o 0 228 54 2006-10-11 20:18:44... 2006-10-11 20:18:44,
Select consumer_surname, consumer_f... Microsoft 5q... dupes YUKONY. .. 238 t4 z006-10-11 20:18:44...
Select consumer_surname, consumer_f... Microsoft 5q... dupes YUKONY,. . . 250] 1880 228 T4 2006-10-11 20:18:44... 2006-10-11 20:18:46,
SET STATISTICS XML OFF wicrosoft sQ... dupes YUKONA. . 228 54 2006-10-11 20:18146...

2006-10-11 20:18:46... 2006-10-11 20:18:46.

Database Query Optimization

Molupe J. Mothepu

Query 1 ASselect * from consumer_deta#s39 352tuples

SQL Server 2005

Windows MySQL

Ubuntu MySQL

1.64

0.21

0.21

Figure 5.8 — Query description and Execution tifeeQuery 1

Execution Times for Query 1

1.64

1.80

1.60

1.40

1.20+

1.00+

0.80

0.60+

Time in seconds

0.40+

0.20

Yukon

WMySQL

UMySQL

Figure 5.9 — Graphical representation of Query £@xtion times.

For this test, SQL Server was much slower than My® a factor of nearly 8,

which performed equally well on each of the platisrthat it was run on. The Query

execution plans for the two systems are presengmib It should be noted that in

this case, as in all other cases, the executiarsgl@ MySQL were identical for both

platforms.

Result

consumer_details

Figure 5.10 — Execution Plan for Query 1

Page 42 of 123

Database Query Optimization Molupe J. Mothepu

For this particular query, the execution plan flottee servers was identical as there is
only one table and no join, therefore the varioxecation plan can only differ in the
method used to access the data in this table. S¥pkeBSuses a clustered index scan
whereas MySQL uses an ALL (full table scan) to ascthe data in the table. It

appears that in this case, it was better to ddl éafole scan than to use indexes.

5.1.3.2 — Query 2

Query 2 is a single join between two tabtemisumerwhich contains 53990 records

andconsumer_detaila/hich contains 39 352. The results are as follows:

Query 2 ASselect consumer_surname, consumer_first_namesym@nsactive fron
consumer_details cd, consumer ¢ where c.consumer _idd.consumer_id and

c.consumer_unit = cd.consumer_uAiB9 352tuples

SQL Server 2005 Windows MySQL Ubuntu MySQL

1.20 0.66 0.21

Figure 5.11 — Query description and Execution tifeeQuery 2

Page 43 of 123

Database Query Optimization Molupe J. Mothepu

Query 2 Execution Times

Time in seconds

Yukon WMySQL UMySQL

Figure 5.12 — Graphical representation of Queryx2eution times

Once again, MySQL outperforms SQL Server, althomgihows down on windows.
An interesting observation is that MySQL on windoissthe only server to have
slowed down between this query and the first ongS®L on Ubuntu stayed the
same, and SQL Server actually sped up. The Queesg for this plan are as follows:

SQL Server 2005 MySQL

Result Result

N Merge Join
N eq_ref

consumer consumer_details / \

Consumer consumer_details

Figure 5.13 — Execution Plan for Query 1

Page 44 of 123

Database Query Optimization Molupe J. Mothepu

These execution plans are once again identical.ofhevisible difference is the fact

that SQL Server used a merge join, whereas MyS@H aseq_reftype join.

5.1.3.3 - Query 3

Query 3 builds on Query 2 with the addition of drewsttable consumer_connections

which has a cardinality of 60 566 records. Theltesas follows:

Query 3 AS Select consumer_surname, consumer_first_ namesuro@nsactive
consumer_connect_date from consumer C, consumaeailsdet cd,
consumer_connections cc where c.consumer_id = gdwuoer_id ang
c.consumer_unit = cd.consumer_unit and c.consurder icc.consumer_id angd

c.consumer_unit = cc.consumer_uiS 476tuples

SQL Server 2005 Windows MySQL Ubuntu MySQL

1.583 1.47 0.89

Figure 5.14 — Query description and Execution tifeeQuery 3

Query 3 Execution Times

1.53

1.47

Time in seconds

Yukon WMySQL UMySQL

Figure 5.15 — Graphical representation of Queryx@eution times

Page 45 of 123

Database Query Optimization Molupe J. Mothepu

The performance advantage that MySQL had over S@tves starts to show
significant decrease at this stage, especialljherwindows platform. But MySQL on
Ubuntu remains significantly faster than any of seevers on the windows platform.

The execution tree looks like below:

SQL Server 2005 MySQL

Result Result

/Nish Join >q
N Merge / \

consumer_connections .
eq_re N consumer__conne,
consumer CONsuMmer_| consumer consumer_details

Figure 5.16 — Execution Plan for Query 3

In this case, SQL Server chose a right-deep queeyand then used a hash join as its
final join operator. The shape of the tree is osngprise because as it was mentioned
earlier in the literature that right-deep treedlitate hash joins. It can be seen from
the figure below that the expensive nature of thshhjoin (generating hash tables)
may be a major contributor of the time differene¢ween the two joins.

window Community Help

b | Tleven- | % (BB @R[2@ A& .

Uuery3.sq|plan.ﬁ}/ YUKOMN. kest - SOLQueryl, sgl* }/Summary]
Query 1: Query cost (relatiwve to the bhatch): 100%
Select conSumer SUrnamecORSWeR Tirst_names, conSumer_active, consumer _cohnect_date from consumer ©, cohSume

Hash Match Hergz Join Clustered Index Scan
{(Trmer Join) i{Trmer Join) [test]. [dbo]l. [CONSUMER DETATLS]. [FE.
Cost: 74 % Cost: 5 % Cost: 9 %

Clustered Index Scan
[test]. [dbol. [CONSUMER] . [FE__CONSTRI.
Cost: & %

I

= Clustered Index Scan
[test]. [dbo] . [CONSUMER, CONNECTIONS]..
Cost: 7 %

Figure 5.17 — Screenshot showing the percentagkeofotal cost that the Hash join
takes up (74%).

Page 46 of 123

Database Query Optimization Molupe J. Mothepu

5.1.3.4 — Query 4

This query builds on the last one, again adding mee tablepoc which contains

55898 rows of data. The results for the query are:

Query 4 ASselect consumer_surname, consumer_active, consoamerect date,
poc_type
from consumer_details cd, consumer c, consumer embioms cc, poc p where

c.consumer_id = cd.consumer_id and c.consumer_gnitd.consumer_unit angd

c.consumer_id = cc.consumer_id and c.consumer_gnitc.consumer_unit angd

cc.poc_id = p.poc_id and cc.poc_unit = p.poc_udib 476tuples

SQL Server 2005 Windows MySQL Ubuntu MySQL

1.62 1.95 1.18

Figure 5.18 — Query description and Execution tifeeQuery 4

Query 4 Execution Times

1.95

Time in seconds

Yukon WMySQL UMySQL

Figure 5.19 — Graphical representation of Queryxéeution times

In the above query, MySQL on Ubuntu continued tovslbetter form than both SQL
Server and MySQL on Windows. MySQL on windows toaklarge drop in

Page 47 of 123

Database Query Optimization

Molupe J. Mothepu

performance, falling even to the previously sloB€L Server. The execution plans

are as follows:

SQL Server 2005

My SQL

Result

Hash Match M
Hash Match N

consumer

Result

eq ref

/\
/\

Merge Join

/ N\

consumer_connections

/N
X

consumer_details

eq_ref

/N

consumer_connections

Consumer_connections

Consumer

Figure 5.20 — Execution Plan for Query 4

These execution plans are completely identicalh witly the join implementations

being different. It would appear in this case ttis difference in execution times

would be attributable to the physical operatorg(jgpes).

5.1.3.5-Query 5

Query 5 extends Query 4 by adding theter_connectiontable which has 70 427

records. The results are presentefigare 5.21on the following page.

Page 48 of 123

Database Query Optimization Molupe J. Mothepu

Query 5 ASselect consumer_surname, consumer_active, consoamerect_date,

poc_type, mc.meter_serial number from consumerilsletad, consumer @,

consumer_connections cc, poc p, meter_connectiomsvhere c.consumer_id

cd.consumer_id and c.consumer_unit = cd.consumér amd c.consumer_id 3
cc.consumer_id and c.consumer_unit = cc.consumer ama cc.poc_id = p.poc_id
and cc.poc_unit = p.poc_unit and p.poc_id = mc.pdc and p.poc_unit 3
mc.poc_uni 51 505tuples

SQL Server 2005 Windows MySQL Ubuntu MySQL

2.18 2.59 2.92

Figure 5.21 — Query description and Execution tifeeQuery 5

Query 5 Execution Times

2.92

Time in seconds

Yukon WMySQL UMySQL

Figure 5.22 — Graphical representation of Queryxgeution times
At this point, there is a total reversal of speeih SQL Server being the fastest, and

MySQL on Ubuntu having experienced a drastic dmogérformance. MySQL on

windows remains in between the other two. The etxacylan is presented below:

Page 49 of 123

Database Query Optimization

Molupe J. Mothepu

SQL Server 2005

MySQL

Result

Parallelism
(gather streams)

Hash Match N

Hash Malch M Parallelism

(Repartition streams)
Parallelism

(Repartition streams)

consumer_details

Parallelism
(Repartition streams)

‘ consumer

Hash Match N

.

Parallelism
{Repartition streams)

/ \

Parallelism Parallelism
(Repartition streams) (Repartition streams)

consumer_connections

meter_connections poc

Result

eq_ref

7\
7\

eq_ref meter_connections

/\

ref
Consumer

/\

Consumer_details Consumer_connections

Figure 5.23 — Execution Plan for Query 5

The execution plan that SQL Server chose is muchenoomplex than that of

MySQL, using a concept known as parallelism. Paliath is where the processing of

sub-plans occurs in parallel on different CPUs. Triee is also of a bushy nature as

opposed to the left-deep strategy that MySQL uasghe previous tests showed that

the joins in SQL Server carry greater overheads assumed that the difference in

execution time lies in the differing plans and SQérver’'s use of parallelism. The

guery was then run again on SQL Server, once vathllelism and once without. The

results are presented on the following page.

Page 50 of 123

Database Query Optimization Molupe J. Mothepu

Query 5 with parallelism (SQL Server) Query 5 withparallelism (SQL Server)

2.18 seconds 2.24 seconds

Figure 5.24 — Query 5 with and without parallelismSQL Server

The above shows that the effect of the paralleliss not enough to explain the time

difference, meaning that the time difference waa assult of the choice of plan used

by SQL Server.

5.1.3.6 — Query 6

This query builds on the previous one by bringinghe meter table with its 58 378

rows. The query executed as follows:

Query 6 ASselect consumer_surname, consumer_active, consoomerect date

poc_type, mc.meter_serial_number, meter_active fraonsumer_details cd,

consumer C, Consumer_connections CC, pocC p, me!ramgctions mc, meter m whe

c.consumer_id = cd.consumer_id and c.consumer_gnitd.consumer_unit and

c.consumer_id = cc.consumer_id and c.consumer_gnitc.consumer_unit an
cc.poc_id = p.poc_id and cc.poc_unit = p.poc_uniidgp.poc_id = mc.poc_id an
p.poc_unit = mc.poc_unit and mc.algorithrm = m.aligom and

mc.meter_serial_number = m.meter_serial_numldgt 505tuples

SQL Server 2005 Windows MySQL Ubuntu MySQL

2.49 4.05 5.10

Figure 5.25 — Query description and Execution tifeeQuery 6

Page 51 of 123

o

Database Query Optimization

Molupe J. Mothepu

Time in seconds

Yukon

Query 6 Execution Times

WMySQL

UMySQL

Figure 5.26 — Graphical representation of Queryx@e@ution times

The difference between the performances of theouarservers continues to increase

at this point, with SQL Server outperforming thdess. It is worthy of note that

MySQL on windows also continued to outperform MySQiUbuntu. The execution

plans are in the figure below:

Page 52 of 123

Database Query Optimization

Molupe J. Mothepu

SQL Server 2005

MySQL

Result

Parallelism
(gather streams)

Hash Match N
Hash Match N (

Parallelism

Repartition streams)
Parallelism

(Repartition streams)

consumer_details

Parallelism
(Repartition streams)

Hash Match N
N Hash Match

Parallelism Parallelism
(Repartition streams) (Repartition streams)

Hash Match N

Parallelism Parallelism
(Repartition streams) (Repartition streams)

consumer

Parallelism
(Repartition streams)

consumer_connections

poc

meter_connections meter

Result

o
VAR

aq_ref meter

VAN
N\

= Meter_connections

/\

Consumer_connections
eq_ref

7\

Consumer_details consumer

Figure 5.27 — Execution Plan for Query 6

Similar to the last query, it would seem that tifeedence in execution efficiency lies

in the choice of query plan, with SQL Server ongaia making the better choice

with the bushy tree.

5.1.3.7 — Query 7

The addition of thg@oc_detailstable, containing 41658 records to Query 6 forms t

guery. The performance of the systems is presdeienv:

Page 53

of 123

Database Query Optimization Molupe J. Mothepu

Query 7 ASselect consumer_surname, consumer_active, consuomerect date,
poc_type, mc.meter_serial_number, meter_active, tpas from consumer_details

cd, consumer c, consumer_connections cc, poc [erneeinnections mc, meter m,

poc_details pd where c.consumer_id cd.consumeand c.consumer_unit

cd.consumer_unit and c.consumer_id = cc.consumeand c.consumer_unit
cc.consumer_unit and cc.poc_id = p.poc_id and cc.pait = p.poc_unit and
p.poc_id = mc.poc_id and p.poc_unit = mc.poc_umitl anc.meter_serial_number |=

o

m.meter_serial_number and mc.algorithm = m.algantand p.poc_id = pd.poc _i

and p.poc_unit = pd.poc_unit51 132tuples

SQL Server 2005 Windows MySQL Ubuntu MySQL

2.73 4.66 4.9

Figure 5.28 — Query description and Execution tifeeQuery 7

Query 7 Execution Times

Time in seconds

Yukon WMySQL UMySQL

Figure 5.29 — Graphical representation of Quergxécution times

MySQL on windows experiences a slow down at thagestand is quite close to

Page 54 of 123

Database Query Optimization

Molupe J. Mothepu

executing at the speed of MySQL on Ubuntu. SQL &er2005 continues to

outperform both of the others. The execution pkespresented below:

SQL Server 2005

MySQL

result

Parallelism

(gather streams)

Parallelism
(Repartition streams)

I
H%hMﬂd1DKﬂ

7N\

Parallelism Parallelism
(Repartition streams)

consumer_connections N

AN

Parallelism
(Repartition streams)

meter

Parallelism
(Repartition streams)

meter_connections
Pa
(Repart

Parallelism
(Repartition streams)

>
/

|
>

Hash Match

Parallelism
(Repartition streams)

‘ consumer_details

consumer

(Repartition streams)

Hash Match

Parallelism
(Repartition streams)

Merge Join

\|><] Merge Join
N

rallelism Parallelism
ition streams) (Repartition streams)

poc poc_details

Result

y
eq_ref N
/N

N

meter_connections

eq_ref N poc_details
ref
poc

eq_ref

/N

consumer_details

X

consumer_connections

consumer

Figure 5.30 — Execution Plan for Query 7

Once again the bushy plan of SQL Server is a betwr than the one chosen by

MySQL.

5.1.3.8 — Query 8

This query was formulated by extending Query 7ndude thetransaction_entry

table which boasts 2 352 035 rows. Results of ei@tare as follows:

Page 55 of 123

Database Query Optimization Molupe J. Mothepu

Query 8 ASselect consumer_surname, consumer_active, consoamerect date,
poc_type, mc.meter_serial_ number, meter_active, tpas, transaction_date from
consumer_details c¢d, consumer ¢, consumer_conmsctiocc, poc p

meter_connections mc, meter m, poc_details pd, saéeton_entry te wher

c.consumer_id = cd.consumer_id and c.consumer_gnitd.consumer_unit an

e
d
c.consumer_id = cc.consumer_id and c.consumer_gnitc.consumer_unit angd
cc.poc_id = p.poc_id and cc.poc_unit = p.poc_umidgp.poc_id = mc.poc_id and
p.poc_unit = mc.poc_unit and mc.meter_serial_numbem.meter_serial_number
and mc.algorithm = m.algorithm and p.poc_id = pdcpa and p.poc_unit =

pd.poc_unit and pd.poc_id = te.poc_id and pd.pod ente.poc_unit-2 060 965

tuples
SQL Server 2005 Windows MySQL Ubuntu MySQL
66 131 149

Figure 5.31 — Query description and Execution tifeeQuery 8

Query 8 Execution Times

149

160+

140+

120

100

Time in seconds

Yukon WMySQL UMySQL

Figure 5.32 — Graphical representation of Queryx@eution times

This was an interesting plan because it took mbas ta minute on both servers.

MySQL continued to experience degradation in penorce with execution times of

Page 56 of 123

Database Query Optimization

Molupe J. Mothepu

nearly twice that of SQL Server, in windows, andrenthan twice than that of SQL

Server, in Ubuntu. The execution plans are preddmgéow:

SQL Server 2005

Consumer_connections

MySQL
Result
|
M Hash Match
RN
transaction_entry N Hash Match
S
Hash Match N meter
~7 '\
Meter_connections N Merge Join
7N
sort poc
I><| Merge Join
N

>
N

consumer_details

Merge join

sort

consumer

ref

y
e X

/N

consumer_details

N Merge Join
VRN

poc_details

RN
X

eq_ref

X
VRN

/ N\

poc_details

transaction_entry

meter

ref N

meter_connections

\

consumer_connections

consumer

Figure 5.33 — Execution Plan for Query 8

Of note here is that even though the query had noame and took longer to process

by a factor of 24, SQL Server chose not to uselledisan to

being the case, it was sought to see how MySQL avtare

execute this query. This

if accessing the tables in

the same order as that used by SQL Server, buttheless in a left-deep manner.

Therefore MySQL was forced to access the tablésanmanner specified in the SQL

statement using thstraight_join option in MySQL. The results of this test are as

follows:

Page 57 of 123

Database Query Optimization Molupe J. Mothepu

Query 8 As select

consumer_connect_date, poc_type, mc.meter_seriabery meter_active, poc_town,

straight_join consumer_surnamepnsamer_active,

transaction_date from poc_details pd, poc p, cor@ugDnNnections ca,
meter_connections mc, consumer_details cd, meteonsumer c, transaction_entry
te where c.consumer_id = cd.consumer_id and c.coesuunit = cd.consumer_unit
and c.consumer_id = cc.consumer_id and c.consunmér =ucc.consumer_unit and
cc.poc_id = p.poc_id and cc.poc_unit = p.poc_umidagp.poc_id = mc.poc_id and

p.poc_unit = mc.poc_unit and mc.meter_serial_numbem.meter_serial_number

and mc.algorithm = m.algorithm and p.poc_id = pdpa and p.poc_unit =
pd.poc_unit and pd.poc_id = te.poc_id and pd.podt #te.poc_unit

Original Execution Time

Execution Time after forgeth

149 seconds

23 seconds

Figure 5.34 — Query description and execution tirf@sQuery 8 after it has been

rewritten to mimic the table access order of SQlv&e

MySQL Original

MySQL Forced (Rewritten)

Result

ref N

eq_ref N transaction_entry

eq_ref N consumer

/N
qu meter

ref
M consumer_details

meter_connections

e X
/N

poc_details poc

consumer_connections

Result

ref N
eq_ref N transaction_entry
eq_ref M poc

poc_details

ref
meter

meter_connections

consumer_connections

/N

consumer_details consumer

Figure 5.35 — Execution Plan for Query 8 after dishbeen rewritten. NB: Both plans

are for MySQL

Page 58 of 123

Database Query Optimization Molupe J. Mothepu

It is evident from the above that MySQL was indeed accessing the tables in the
most efficient manner. If MySQL had chosen thedatrider that SQL Server chose it

would have experienced a performance increase ef 6vtimes the speed, while

maintaining its left-deep structure. In fact, itwid even go nearly 3 times faster th
SQL Server did.

5.1.3.9 — Query 9

an

This query is a refinement of Query 8, wherebyausé is added to limit the records

to those that have @ansaction_entry.transaction_datgter the 1% May 2006 and

thedistinctkeyword is included to further limit the numberrofvs this will return.

Query 9 AS select distinct consumer_surname, consumer_ag

consumer_connect_date, poc_type, mc.meter_serimbay meter_active

poc_town, transaction_date from consumer_details , cdonsumer (|

consumer_connections cc, poc p, meter_connectiansnmater m, poc_details p
transaction_entry te where c.consumer_id = cd.camsuid and c.consumer_unit

cd.consumer_unit and c.consumer_id = cc.consumeand c.consumer_unit

cc.consumer_unit and cc.poc_id = p.poc_id and cc.pait = p.poc_unit and

p.poc_id = mc.poc_id and p.poc_unit = mc.poc_umitl anc.meter_serial_number
m.meter_serial_number and mc.algorithm = m.algonthnd p.poc_id = pd.poc_i

and p.poc_unit = pd.poc_unit and p.poc_id = te.adcand p.poc_unit = te.poc_un

and c.consumer_id = te.consumer_id and c.consunmér =ute.consumer_unit angd

m.meter_serial_number = te.meter_serial_number amdlgorithm = te.algorithm
and te.transaction_date > '2006-05-13 00:00:01.00@8 373tuples

SQL Server 2005 Windows MySQL Ubuntu MySQL

4.94 52.95 43.9

Figure 5.36 — Query description and execution tifieeQuery 9.

Page 59 of 123

tive,

o

it

Database Query Optimization Molupe J. Mothepu

Query 9 Execution Times

Time in seconds

Yukon WMySQL UMySQL

Figure 5.37 — Graphical representation of QuergxX&cution times

In this case, the performance difference betweentwo database systems is at its
largest so far. SQL Server seems to have “benéfiteimost from thedistinct and
date conditions. MySQL in windows had the weakestggmance for this query. The
execution plans are in the figure presented oridif@ving page.

Page 60 of 123

Database Query Optimization

Molupe J. Mothepu

SQL Server 2005

MySQL

Result

Parallelism
(gather streams)

sort

Parallelism
(Repartition streams)

|
>
N

Parallelism Parallelism
(Repartition streams) (Repartition streams)

transaction_entry D-q Hash Match
/N

Create Bitmap

Hash Match

Parallelism
(Repartition streams)

|
| Parallelism
N (Repartition streams)
N Merge
Join

5 v

| Join poc

Hash Match

Parallelism
(Repartition streams)

meter_connections

meler

.

Parallelism
(Repartition streams)

poc_details

sort

Parallelism
(Repartition streams)

Hash Match

X<

i

Parallelism
| (Repartition streams)
| |

consumer Consumer_details

Merge
Join
Parallelism /!

(Repartition streams) Parallelism

(Repartition streams)

Consumer_connections

Result

ref N

/ N\
X

/N
eq_ref N poc

/ N\

poc_details

eq_ref transaction_entry

meter

meter_connections

consumer_connections

e X
/ N\

consumer_details consumer

Figure 5.38 — Execution Plan for Query 9

Of note here is that SQL Server reverted back togugarallelism. It was sought to

find out what would most likely be the cause of thiference in execution time.

Query 9 was run in SQL Server twice more, once ilallelism and once without,

with the difference in execution times coming dowrust over one second. Query 9

was then rewritten, in the same manner as Quety 8etermine if the choice SQL

Server made would improve the performance of MyS@LQuery 9. It was found

that this was indeed the case. MySQL took 33 sexomden using the forced

execution plan, as opposed to 43 seconds wheneadltevchoose its own table access

Page 61 of 123

Database Query Optimization Molupe J. Mothepu

sequence. This was not nearly as impressive agettiermance gain found in Query
8. It was therefore concluded the performance wiffee can only be attributed to
SQL Server having a better ability to deal withtidist records or operations

including dates. Further testing would be requtcedscertain this.

5.1.3.10 — Query 10

Query 10 is a simple join between 2 tables, tramsacentry (2 352 035 rows) and

transaction_financial_item (7 051 139 rows). Tiheets are as follows:

Query 10 ASselect transaction_item_amount, transaction_itemmetyuser_name,
transaction_date from transaction_entry te, trargac financial_item tfi where
te.transaction_id = tfi.transaction_id and te.ink#ion_id = tfi.installation_id and
te.unit_id = tfi.unit_id and transaction_item_typed -2 341 174tuples

SQL Server 2005 Windows MySQL Ubuntu MySQL

69.00 59.56 37.31

Figure 5.39 — Query description and execution tifieeQuery 10

Query 10 Execution Times

Time in seconds

Yukon WMySQL UMySQL

Figure 5.40— Graphical representation of Queryek@cution times

Page 62 of 123

Database Query Optimization Molupe J. Mothepu

This query has a larger output dataset than Quenydzhas a similar execution Tree.
Once again, MySQL on Ubuntu is significantly fadtean the other two servers, even

with a larger dataset. The execution plans arelasnfs:

SQL Server 2005 MySQL

Result Result

N Merge Join N
eq_ref

transaction_entry / \

transaction_financial_item

transaction_financital_item transation_entry

Figure 5.41 — Execution Plan for Query 10

As in Query 2, it appears that the join implemeaatats responsible for the difference

in execution time between the various servers.

5.1.3.11 — Query 11
Query 11 builds in Query 10 by introducing the tokable, which has 2 374 388
records in it. The performance of the systems ®limwvs:

Query 12 ASselect token, transaction_date, user_name, trarmadtem_amount

14

from token t, transaction_entry te, transactionafinial_item tfe where

t.transaction_id = te.transaction_id and t.unit_fdte.unit_id and t.installation_id 3

te.installation_id and te.transaction_id = tfe.trsaction_id and te.installation_id
tfe.installation_id and te.unit_id = tfe.unit_id@-105 030tuples

SQL Server 2005 Windows MySQL Ubuntu MySQL

229 188 126

Figure 5.42 — Query description and execution tifieeQuery 11

Page 63 of 123

Database Query Optimization Molupe J. Mothepu

Query 11 Execution Times

Time in seconds

Yukon WMySQL UMySQL

Figure 5.43 — Graphical representation of Queryekkcution times

As in Query 3, MySQL on Ubuntu is once again outpening the other two servers,
even with an increased output dataset. The execptans look as follows:

SQL Server 2005 MySQL

Result Result

N Hash Join
RN

ref N
token N Merge Join / \
/ \ eq_ref

transaction_financial_item transaction_entry / \

token transaction_entry

transaction_financial_item

Figure 5.44 — Execution Plan for Query 11

Page 64 of 123

Database Query Optimization Molupe J. Mothepu

Once again the difference in plans is attributedht use of the Hash Join in SQL

Server’s execution plan.

5.1.3.12 — Findings

From the above results, a conclusion can be drénanh MySQL outperforms SQL
Server in execution time when the query includgsrg or less, as can be seen in the

graphs below:

Execution Times for Queries 1-7

Time in Seconds
w

uery 1 Query 3 Query Query 5 Query 6 Query 7

@ Yukon mWAYSQL 0 UMySQL \

Query1l Query2 i Query3; Query4 Queryb5 Query6 rQue

Query 2

0 joins 1join 2 joins 3 joins 4 joins 5 joins ane

Figure 5.45 — Graphical execution times for quefie$0. MySQL performs best with

the lesser joins

Page 65 of 123

Database Query Optimization Molupe J. Mothepu

Execution Times for Queries 8 - 11
250
200+
S 150+
© 100-
£
'_
50
0,
Query 8 Query 9 Query 10 Query 11
7 joins 7 joins + condition 2 joins 3 joins

Figure 5.46 — Graphical execution times for quefie$0. MySQL performs best with
the lesser joins

With queries that are more than 3 joins, MySQL seémnot find the best choice in
execution plan, with plans that have been portechfSQL Server with respect to the
order of table access, producing faster accessti@eery 8 showed that if MySQL
had chosen the table access order that SQL Seragr that it would have

outperformed SQL Server by 3 times. This leadsh® ¢onclusion that the SQL
Server join implementations are more costly togbery than those implemented by
MySQL, but SQL Server is able to choose better yjutecution strategies than
MySQL is. This can not be attributed to the limat of MySQL to left-deep

strategies, as was shown in queries 8 and 9, wihictiain left-deep but are faster to
execute. The conclusion is that the answer lig=ach optimizer’s ability to build the

search space, enumerate it, choose the least ptestlyand execute it.

Page 66 of 123

Database Query Optimization Molupe J. Mothepu

5.2 — Objective Two: Server Optimizations

This section presents the results for the endeawooptimize the database servers by
means of altering the values of server variablé®sé are variables that have been
identified by experts as having an effect on theeslpof query execution. Testing of
the effect that various values of each variable badjuery execution follows the
process outlined in Chapter 4. Each Server wiltrbated as a separate section, and
each variable within the server will be a sub-gectMySQL will be presented first,
then SQL Server, and finally a brief comparisontied optimization effort in each
DBMS.

5.2.1 — Optimizing MySQL

MySQL boasts a mammoth 216 configurable variableghvcontrol the behaviour of
various aspects of the server. Of these, the dradseéemed to be agreed upon by the
experts are the ones identified in Chapter 3 /(#he explanations given of each
variable from http://dev.mysql.com/doc/refman/5iiserver-system-variables.html)
The results presented are those obtained usiny Quenless otherwise stated. As a
reminder, the statement for Query 9 reads:

select distinct consumer_surname, consumer_actigensumer_connect_date,
poc_type, mc.meter_serial_number, meter_active, (oo, transaction_date from
consumer_details cd, consumer ¢, consumer_conmectiocc, poc p,

meter_connections mc, meter m, poc_details pd, séetion_entry te where

c.consumer_id = cd.consumer_id and c.consumer_gnitd.consumer_unit and

c.consumer_id = cc.consumer_id and c.consumer_gnitc.consumer_unit and
cc.poc_id = p.poc_id and cc.poc_unit = p.poc_uniidgp.poc_id = mc.poc_id and
p.poc_unit = mc.poc_unit and mc.meter_serial_ numbem.meter_serial_number
and mc.algorithm = m.algorithm and p.poc_id = pdcpa and p.poc_unit =
pd.poc_unit and p.poc_id = te.poc_id and p.poc_umit te.poc_unit and
c.consumer_id = te.consumer_id and c.consumer_gnite.consumer_unit and
m.meter_serial_number = te.meter_serial_number amdlgorithm = te.algorithm
and te.transaction_date > '2006-05-13 00:00:01.000'

Page 67 of 123

Database Query Optimization Molupe J. Mothepu

5.2.1.1 — key_buffer_size

The key_buffer_size determines the size of the Beifer, otherwise known as the
key cachewhich determines how large a portion of memorysés aside to hold
frequently used indexes. This memory is sharedldr@ads running in the server.
The results for the experimentation with the keyfdyusize are as follows:

key buffer_size

Value Time

16M 48 seconds
32M 48 seconds
64M 48 seconds
128M 48 seconds
256M 48 seconds
512M 48 seconds
1G 48 seconds
1.5G 48 seconds

Figure 5.47 — Query execution times for varyingueal of key buffer_size in MySQL

Effect of key_buffer_size
60
48 48 48 48 48 48 48 48

50 A

L 4 < < < < L 4 L 4)
40
30
20 1
10
[0} T T T T

16M 32M 64M 128M 256M 512M 1G 1.5G

key_buffer_size

Figure 5.48 — Graphical representation of query@xen times for varying values of
key buffer_size in MySQL

Page 68 of 123

Database Query Optimization Molupe J. Mothepu

These results show that the differing values of keyfer_size had no impact on the

execution time for this query.

5.2.1.2 — table_cache

The table cache determines how many tables candmrenodated in the cache. This
is not a global value but is per thread. If two rigee access the same table, it will be
open as two tables in the table cache.

The results for the tests on the table _cache wefellaws:

table _cache

Value Time

32M 48 seconds
64M 48 seconds
128M 48 seconds
256M 48 seconds
512M 48 seconds
1000M 48 seconds

Figure 5.49 — Query execution times for varyingueal of table_cache in MySQL

Effect of table_cache
60
0 48 48 48 48 48 48
& L = < < < <&
40
30
20
10
0 ‘ ‘ ‘ : ‘
32M 64M 128M 256M 512M 1000M
table_cache

Figure 5.50 — Graphical representation of query@xen times for varying values of
table_cache in MySQL

Page 69 of 123

Database Query Optimization Molupe J. Mothepu

The variation of the value of the table_cache seteniave had no effect on the time
it took to execute this query.

5.2.1.3 — net_buffer_length

This is the minimum size for the buffer used fogating connections and storing the
results of queries. Each thread will start withbargection and result buffer of the size
determined by the net_buffer_length, which will bdgnamically increased to a

maximum value specified by max_allowed_packets.

net_buffer_length

Value Time

1M 48 seconds
8M 48 seconds
16M 48 seconds
32M 48 seconds
64M 48 seconds
128M 48 seconds
256M 48 seconds
512M 48 seconds
1G 48 seconds

Figure 5.51 — Query execution times for varyingueal of net_buffer_length in
MySQL

Page 70 of 123

Database Query Optimization

Molupe J. Mothepu

Effect of net_buffer_length

60
48 48 48

48 48 48

48

0T e . .

40 A

30 A

20

10

M 8M 16M

32M 64M 128M

net_buffer_length

1G

Figure 5.52 — Graphical representation of query@xen times for varying values of

net_buffer_length in MySQL

Like the previous two variables tested, increagimg value seems to have had no

effect on the time taken to execute this query.

5.2.1.4—join_buffer_size

This variable determines the size of the bufferdusg joins that do not use indexes

(and hence do not use the key buffer). These jilisdo full scans on the tables

involved. It is always advised that indexes be useithicrease the speed of joins, but

this buffer exists for those cases where an ingda&ot available.

The results are presentedfigure 5.53on the next page.

Page 71 of 123

Database Query Optimization

key buffer_size

Value Time

16M 48 seconds
32M 48 seconds
64M 48 seconds
128M 48 seconds
256M 48 seconds
512M 48 seconds
1G 48 seconds
1.5G 48 seconds

Molupe J. Mothepu

Figure 5.53 — Query execution times for varyingusesl of join_buffer_size in MySQL

60

Effect of join buffer size

50

40

30

48— 48— 48— 48— 48— 48— 48— 48

20

Time taken in seconds

10

16M

32M 64M 128M 256M

512M 1G 1.5G

Figure 5.54 — Graphical representation of query@xen times for varying values of

join_buffer_size in MySQL

This variable also exhibits no effect on the tirakein to execute this query.

5.2.1.5 — optimizer_prune_level

This toggles between on and off, the setting theteminines whether or not the

optimizer will use a heuristic that will prune leggomising partial plans from the

Page 72 of 123

Database Query Optimization Molupe J. Mothepu

search space. This has the effect of decreasingizbenf the search space. This level
of “promise” is determined by looking at the numlmdrrows that the optimizer
estimates will be accessed for each table. Wharogtion is turned off, the optimizer

will carry out an exhaustive search.

Times for various queries with the optimizer_pruegel on and off are presented

below:

Query Optimizer_prune_level on Optimizer_pruneeleff
8 149 seconds 152 seconds

9 43.9 seconds 41.3 seconds

10 37.31 seconds 38.1 seconds

Figure 5.55 — Query execution times with optimipeune_level on and off in MySQL

The MySQL Developer Zone claims that the optimizarely misses the most
efficient execution plan. This is true to the extdrat the times to execute a query do
not change significantly with the optimizer_prurevdl on or off. It is untrue in that
as was shown in the results for Objective One teebtable access order can be found
than the one that MySQL uses. This either meartisnidaed optimal plans are being
missed, or that the search space generated by My®®@k not in fact contain the
optimal plan. This is said because when the opgmmune level is off, the search is

exhaustive.

5.2.1.6 — optimizer_search_depth

This variable determines how far into each plaa,dptimizer looks before deeming a
plan as sup-optimal. Smaller values are said ttolya@ execution plan faster, but it
may not be the optimal one. Larger values may yeter execution plans, but the
optimizer will take longer to find it. The literat states that if the number is greater
than the number of tables in the query, then abetan will be found, but will take
longer to find. The reverse is true for the valeeg less than the number of relations
in the query. This is on a per-query basis, andas ideally suited for global
optimality as there are times when the most optiphath is needed, and times when a

Page 73 of 123

Database Query Optimization Molupe J. Mothepu

sub-optimal plan is preferred, as long as it isfbiaster.

The test database contains 14 tables and thert@forealues below 14 and two values

above 14 were tested to see the effect this woaNe.h

query_search_depth
Value Time
1 48 seconds
5 48 seconds
20 48 seconds
50 48 seconds

Figure 5.56 — Query execution times with varioutu@a of query_search_depth in
MySQL.

This variable was also found to have almost naceffe the time to execute a query.

5.2.1.7 - Summary

It appears from the above that most of the settihgswere identified as key have no
real effect on the speed of the execution of aygueontrary to what the experts
express in the literature. The optimizer_prune llse=ms to have only a limited
effect on the execution time of the query, but thias expected, as stated the

documentation.

5.2.2 — Optimizing SQL Server

SQL Server has far less configurable options thag$®L does, and all the literature
that was researched advised against changing amtlyesé variables unless it was
absolutely necessary and a deep knowledge of teet eff the change was possessed.
The reason given for this is that SQL Server dywaity fulfils all memory
requirements and configures the environment fomwdtexecution. The effects of

changing the variables are presented.

Page 74 of 123

Database Query Optimization Molupe J. Mothepu

5.2.2.1 — Min memory per query

This variable determines the minimum amount of mgntlbat each query is entitled
to. It is important to note that this amount wililp be reserved for each query once
there has been a query that has required that @amouwmore. If such a query has not
run, all the queries will continue to run with thmount of memory they require, even
if it is less than this minimum amount.

The results of this test are as follows:

Min Memory per Query

Value Time

1MB 226 seconds
10MB 216 seconds
100MB 209 seconds
500MB 209 seconds
1GB 674 seconds
2GB 673 seconds

Figure 5.57 — Query execution times for varyingueal of min memory per query in
SQL Server

Page 75 of 123

Database Query Optimization Molupe J. Mothepu

Min Memory per query Execution Times

800

700 +

600 -

500 +

400 +

300 +

Time in Seconds

*
<

200 + -

100 -

1MB 10MB 100MB 500MB 1GB 2GB

Figure 5.58 — Graphical representation of query@xen times for varying values of

min memory per query in SQL Server

Great care must be taken with this variable becéusealues greater than 512MB,
the execution times takes significantly longer,reviea query is running by itself,
meaning that it is the only query requiring thatoamt of memory.

5.2.2.2 — Max degree of parallelism

This is only applicable on machines with more th@me processor. The value
determines how many processors can be used tosadduery execution. It is for
systems where it may be desired to have certaicegsnrs reserved to do other work,

and not be involved in query execution.

The machine that the testing was performed on hado2essors and so the max
degree of parallelism could only take the valuewlfich enables all processors to be
used, and 1, which limits query execution to oreessor. As mentioned previously,
it appears that the time difference when executingquery with parallelism and

without parallelism is not significant. This candeen in the following results:

Page 76 of 123

Database Query Optimization

Molupe J. Mothepu

With parallelism

Without parallelism

Query 14 239 seconds 214 seconds
Query 15 269 seconds 250 seconds
Query 7 2 seconds 3 seconds

Figure 5.59 — Query execution times with and withgarallelism in SQL Server

300+

250+

200+

150

Time in seconds

100+

504

Effect of parallelism

269

Query 14 Query 15

O With
B Without

Query 7

Figure 5.60 — Graphical representation of query @xen times with and without

parallelism in SQL Server

In Query 7, Parallelism did result in an increas@erformance, though it was only a

slight one.

5.2.2.3 — Cost threshold for parallelism

This determines the upper limit after which patete will be used to execute a

query. It is expressed in seconds and represem@ntiount of time that a query needs

to be estimated to exceed, in order for paralletisime employed in its execution.

The results for this test are as follows:

Page 77 of 123

Database Query Optimization Molupe J. Mothepu

Cost Threshold for Parallelism

Value Time

Os 257 seconds
5s 261 seconds
50s 260 seconds
100s 259 seconds
500s 243 seconds
1000s 241 seconds
5000s 238 seconds
10000s 232 seconds
20000s 236 seconds
30000s 233 seconds

Figure 5.61 — Query execution times for varyingueal of cost threshold for
parallelism in SQL Server

Cost threshold for parallelism

265

260 A
/ 261 260 259

257

255

250 A

243
245 4

241
240

238
236
235 A

N5, e 233

Time in seconds

230

225 4

220 A

215 T T T T T
0Os 5s 50s 100s 500s 1000s 5000s 10000s 20000s 30000s

Threshold in seconds

Figure 5.62 — Graphical representation of query@xen times for varying values of
cost threshold for parallelism in SQL Server

It can be seen ifigure 5.62above, that the higher the cost threshold, thetshthe

Page 78 of 123

Database Query Optimization Molupe J. Mothepu

guery execution time for the query. This means thatlonger parallelism is put off,
the better it is for query execution.

5.2.2.4 — Query Governor Cost Limit

This is a threshold, in seconds, that determinesrtAximum time a query is allowed
to be estimated to run for, before its executiodasied. If a query is estimated to

take a longer time to execute than this valuejlitnet be executed.

The effect of this query is not something that barshown graphically. According to
the SQL Server documentation, if a query is esthabd run for longer than the value
specified by the variable, it will not be allowedl tun. This promised functionality
was found wanting as the results below can show. Qbery Governor Cost Limit
was set to 60, which means any query that runbfger than 60 seconds should not

be allowed to run.

Query name Time taken to run Decision of optimizer
Query 8 69 seconds Wrong
Query 14 212 seconds Wrong
Query 15 270 seconds Wrong

Figure 5.63 — Decision of the optimizer for variogseries with Query Governor

Cost Limit set to a value of 100 seconds in SQkeSer

As can be seen from the above, the optimizer'sseatito run the queries was wrong.
The conclusion here is that it is unable to esenm@bperly how long each query is

going to run for and therefore there are many fatsstives.

5.2.2.5 — Summary of SQL Server Optimization

From the above results, it follows that SQL Serigemnot very responsive to the
optimization effort. The Query Governor Cost Linseems to fail at its job of

disallowing long-running queries to be executece ftin memory per query does not
exhibit any drastic effect on query execution andcimcare must be taken when

Page 79 of 123

Database Query Optimization Molupe J. Mothepu

increasing it as values that are too high can fealhuge performance decrease. The
effect of having parallelism off, on this particuteardware platform, was almost non-
existent; with the time taken to execute queries varying too much with and
without parallelism. The cost threshold for pad@lm seemed to increase the

performance of the queries tested, as it increased.

It seems like the experts are correct when thetg dteat the settings should not be
changed and that the optimizer dynamically configutself for what it views as the

optimal performance values.

5.3 — Chapter Summary

This chapter has presented the results from téstswere conducted en route to
achieving objectives One and Two. Some of the tgmkled results that were
contrary to the statements made by experts in iteeature, and some of them
confirmed these results. A summary of each objeatiith respect to the results is as

follows:

* Objective One: It is evident in the results that MySQL outperfer8QL
Server when dealing with queries with 3 joins @sleafter which, it chooses
plans that are less optimal than SQL Server doesulting in lower
performance than SQL Server.

* Objective Two: Very few of the variables that were tested hadrect effect
on the speed of execution of a query. This is eafwedrue for MySQL,
whereas the SQL Server variables had an existihgnmimal effect. The one
that had the greatest effect in SQL Server i<dbst Threshold for parallelism
and in MySQL, none had any effect.

The next chapter is an extension of this chaptdr@esents some observations and
interesting phenomena that were encountered whrgiag out the tests that lead to
the results presented in this chapter. This induahkethods of optimizing MySQL

without the use of configuration variables but gsserver administration tips.

Page 80 of 123

Database Query Optimization Molupe J. Mothepu

Chapter 6 — Discussion

The aim of this chapter is just to give some insiglo some of the issues that were
encountered and observations that were made dilmngpsting and evaluation phases
of the project. It will present some of the gengmioblems, that are non-specific to a
particular test, that were encountered, and wilb grovide a brief discussion of the
usability of each database system in terms of fadtmat include but are not limited

to; administration, configuration, and documentatio

6.1 — Optimization in MySQL

6.1.1 — Slow Start

MySQL requires a warm-up before stabilizing on #ipalar time for a query, if the
guery introduces a table that has not been usprkinous queries. To explain further,
on average, after a server restart flush tablescommand, Query 8 may take up to
492 seconds to run for the first time. Each subsegtime after that it will execute at
almost exactly the same speed as the previous xectihis is in the absence of the
use of the query cache. Byars [2006] talks abopee&ncing the same behaviour on
his server. Further on in the thread, one of theeds explains that this is a known
behaviour of MySQL. The fix round this problem esgreload all of the indexes for
the various tables into memory. This is done byniig a query on all the tables in
the database. This seems like quite a timely exerout the query does not have to

return any results. A query to the effect of;
Select * from transaction_financial_item where saction_id = ‘foo’

is sufficient because it reads all the data in thigle into memory, even if the
condition is never met. The catch here is thasistem should have enough memory
to preload all the indexes that are required tontmu this “slow-start”. The
key_ buffer_size comes in handy here in that ithis variable that holds all these
indexes, and the larger it is, the more indexesheaioaded into it. This means that

even though the key buffer_size does not diredflycathe speed of execution of a

Page 81 of 123

Database Query Optimization

single query, it does help to eliminate the sloartstg nature of future queries that
need the tables that are stored in the key caslsengally nullifying the requirement
of these queries of carrying out a disk seek. ltherefore advised that when the
server is started, a batch file be run that loddsuarious indexes into memory by

executing queries that access all the desiredgableg without necessarily returning

any values.

Some evidence of this behaviour is as follows:

1st execution 2nd execution

Query 1 0.21 0.12
Query 2 0.41 0.21
Query 3 1.3 0.89
Query 4 1.93 1.18
Query 5 4.33 2.92
Query 6 5.43 5.1

Query 7 491 4.9

Figure 6.1 — Execution time in seconds for firsh wonsecutive executions of queries

1to 7 (MySQL)

Molupe J. Mothepu

Time in seconds

Consecutive Query Execution Times for Queries 1 -7

Query 1

Query 2

Query 3 Query 4 Query 5

‘EI 1st execution m 2nd execution ‘

Query 6

Query 7

Figure 6.2 — Graphical representation of executiime in seconds for first two

consecutive executions of queries 1 to 7 (MySQL)

Page 82 of 123

Database Query Optimization Molupe J. Mothepu

1st execution | 2nd execution
Query 8 492 149
Query 9 45.99 43.9
Query 10 59.29 37.31
Query 11 173 126

Figure 6.3 — Execution time in seconds for firsh wonsecutive executions of queries
8 — 11 (MySQL)

Consecutive Query Execution for Queries 8- 11

500+

450+

400+

350+

300+

250+

200+

Time in seconds

150

100+

Query 8 Query 9 Query 10 Query 11

‘El 1st execution m2nd execution ‘

Figure 6.4 — Graphical representation of executiime in seconds for first two

consecutive executions of queries 8 to 11 (MySQL)

But it was found that if for example, Query 9 was before Query 8, Query 8 would
experience no “slow start”. This is due to the fdwt both queries use the same
tables, and the execution of Query 9 caused thexaglin those tables to be loaded
into the key_cache. [Gilfillan,2004] and [MySQL Dsweper Zone, 2006] advise
setting this value to about 25% of the availableMRAn the machine. Setting this
value too large can cause performance degrad&wmoarding to Gilfillan [2004], the
key buffer_size should ideally be large enough @at&in all the indexes in the
database. This is a value that is equal to theigdlysize of all the .MY] files for the

Page 83 of 123

Database Query Optimization Molupe J. Mothepu

database. These are the files which hold the tabldsxes.

The .MYI files in the database used for this evafimtotalled 461M and so the
key buffer_size was made 500M. A series of selatemsents that returned O records
were then carried out on all the tables. Queriaadb8 were then run, and experienced
no “slow start” phenomenon. This therefore showat tthere is an increase in
MySQL'’s ability to handle queries that are run tloe first time.

6.1.2 — Analyze Table

According to the MySQL manual, thanalyze table <table namexommand

analyzes and stores the key distribution for actaBs was mentioned in Chapter 2,
the query optimizer generally has to work with resties, effectively using a “best
guess” approach to the query execution effort. Thimmand makes the information
that the optimizer uses more accurate, particubaitis respect to the indexes in the

table. An example of this command in action isa®Wws.

Query 11 was run without running the analyze talolmmand and the time taken to
execute was noted. Each of the 3 tables involvedhé query had the analyze
command run on them, and then the query was rum,agéth the execution time

being noted.

Execution Time before analyzing table | Execution tira after analyzing tables

217 seconds 157 seconds

Figure 6.5 — Execution Times or Query 11 before aftér running the analyze

command on its constituent tables (MySQL)

Page 84 of 123

Database Query Optimization Molupe J. Mothepu

Effect of Analyze table on execution time

217

250

157

200

150

100 N

Time in seconds

50

Before After

Figure 6.6 — Graphical representation of the effetthe Analyze table command on
Query 12 (MySQL)

As can be seen from above, it had a substantiattedin the performance of the query
optimizer. It is advised that this command be reniqaically, especially if the table
undergoes frequent modification. The effect of ingrananalyzecommand on all of
the tables in all the databases on a server cargbeated by using thenysglcheck
command with the-a option, which has been packaged into thgsglanalyze

command.

6.1.3 — The Query Cache

It was found that this was possibly the most ustdal for speeding up consecutive
executions of a query. The query cache is sharezhgrall the threads and so care
must be taken that it should be large enough toranwdate all the threads, but not
so large as to become a system bottleneck on tiversgardware. It must be taken
into consideration that MySQL also has other mentequirements and the query
cache should not take up all available memory Ifzet been allocated to the server.

When a table that is involved in any of the quetiett are in the cache is modified,

Page 85 of 123

Database Query Optimization

Molupe J. Mothepu

all the queries that reference it are removed foache. For a query’s result to be

retrieved from cache, it must be identical to argukat has already been cached. The

guery cache is controlled by a number of variabkes the figure below:

wysSgl> show variables like 'guery cache!':
e - +

| Variahle name

o o +

| query cache limit

| query cache min rez unit
| query cache =size

| query_cache_ type

| guery cache

5 rowz in set (0.00 sec)

sl I

|

|

|

|
wlock invalidate | OFF

+

1045576
4094

Figure 6.7 — The variables that control the queagite in MySQL

Variable name

Description

qguery_cache_limit

The threshold for determining thiee or not tg

cache a query. Queries with results larger tham

will not be cached.

thi

guery_cache_min_res_unit

The minimum size for kddokthe query cache.

query_cache_size

The total size of the query cathe.default value

is 0, which disables the cache.

query_cache_type

Allowable types are: 0 which s bfwhich is on
demand i.e. a query is only cached if Hgg_cache

command is present in the statement, and 2, which

turns the cache completely on

query_cache_wlock_invalidaf

eBy default, when one client is writing to a takday

other client may execute a query that referencas| th

table, if the results for the query are in the ea
Turning this option on, disallows any queries t
require data from the table being written to
executed, even if the results are in the cache.

ch
hat
be

Figure 6.8 — Variables controlling the query cacheVlySQL

The values that have been identified as key herdharse for the&uery cache_size

Page 86 of 123

Database Query Optimization Molupe J. Mothepu

and for thequery _cache_limitA test was conducted to see the effect of thierlat
variable on the execution times of Query 8, with fibllowing results:

Value Time

8M 149 seconds

16M 149 seconds

32M 149 seconds

64M 149 seconds

128M 149 seconds

256M 1.93 seconds
512M 1.93 seconds
1000M 1.93 seconds

Figure 6.9 — Query execution times for query 8 fearying values of

query_cache_limit (MySQL)

Effect of Increase in query_cache_limit

160

140 ‘

\

\

. \
. \
) \
. \

8M 16M 32M 64M 128M 256M 512M 1024M

Time in Seconds

Figure 6.10 — Graphical representation of the quemwecution times for varying
values of query_cache_limit for Query 8 (MySQL)

Page 87 of 123

Database Query Optimization Molupe J. Mothepu

The performance boost given by the query cacheplvesomenal. When the plan was
being cached, the execution time went from 149 rséedefore caching, to 1.93
seconds when the plan was in the cache, an impmvieot just over 77 times the

speed. The query cache improved the performancallahe queries to varying

degrees, but proving itself valuable each timeermironments where there are few
table updates and the server receives many idegtigaies, such as in applications
where the queries come from a restricted numbeoss$ible choices, the query cache

can be the greatest performance booster on therserv

6.2 — Optimization in SQL Server

SQL Server definitely had the tools for easy adstiation. The SQL Server
management studio environment made for easy asabyghe query execution plan
and provided a very intuitive interface for runniggeries. Tools that were useful

were the SQL Server Profiler, and the Databasertenguning Advisor.

6.2.1 — SQL Server Profiler

The power of the Query profiler is that it is pdésito start a trace, and then keep a
log of every single event that takes place on #rees until the trace is stopped. The
trace can then be saved and referred to at astaige. This trace can either be viewed
static, or replayed if desired, making it a veryvpdul diagnostic tool. This tool was
introduced in Chapter 5 and so no further depthlvéilgone into at this stage. Suffice
it to say that it provides a graphical means byciwHogging and diagnostics can be
carried out on the server. All the query analysis this investigation was profiled

using this tool and the SQL Server Management 8tudi
6.2.2 — Database Engine Tuning Advisor
This tool allows a query to be supplied, analyzed then a recommendation given

on what can be done to improve its execution. & igery useful tool for identifying
where indexes should be used in tables, muchhi&explaincommand in MySQL.

Page 88 of 123

Database Query Optimization Molupe J. Mothepu

An example of the use of the Tuning advisor is Qaery 9 was entered as a query in
the SQL Server Management Studio. Instead of ekegtlie query, there is an option
on the toolbar tAAnalyze Query in Database Engine Tuning Adve®in the figure

below:

.- Microsoft SOL Seryer Management Studio

File: Edt ‘Miew Query Project Tools ‘Window Community Help
0 40 00| et v| 1 Execite o/ W 613‘5 AL 37 iy 15 gﬂm =

TR o alb | Table view= | %= | T

iE iE

0

(B Tiie]

o
i 1]
d - nal\,fze Query in Database Engine Tuning Advisar 1 =173

~YUKDN.test - SQLQueryl.sql*f?Ummary |
select distinet consuwer surname, consuwer active, consuwer connect date, p

Obisct Explarer

Connect | &0 m)

El |4 YUKON (5QL Sarver 9.0.;
[l [Databases

Figure 6.11 — Option in SQL Server Management $ttalianalyze the query in the

transaction date
from consuwer details cd, consuwer o, consumer connections oo, poc p, WEter

Database Engine Tuning Advisor in SQL Server.

This will then bring up the Database Engine Tunidyisor program, which will
await your instruction to start the analysis. Thegoam will then proceed to analyze

the SQL Statement as in the following figure:

M- Database Engine Tuning Advisor = =154
Fle Edt Wew Actions Tools Window Help x
il | 3 5= SEart ANy o a3 H s | P
of i YUKOH - dupes 0471172006 224923)
F¥ Connect £y
= 13 vOrkon General | Turing Options Fragress |
5] dupes 0441172006 22452 | | ¢ uning Progress e
= dupes 05/10/2008 14:21:21
F . 5 Total 0 Eror
L 3 Remainin g 2 Success 0 ‘Waming
Details:
| Astion [Status | Message |
& Submitting Configuration Information Success
@ Consuming “workload Success
(&) Performing Analpsis E stimated improvement: D
Generating R eports
Generating R ecommendations
Tuning Log ¥
CategolD | Event | Statement. | Freguency [Reason |
gl |
Bl | =
El General
>
Harne dupes 04/11/2006 23
Bl Status
Cieation time | 04/11/2005 10:49 P
Statuz Fiunning
Analyzing workload. Connections: 3 .

Figure 6.12 — The Database Engine Tuning Advisond®iv. The Start Analysis

button is circled above. The main panel providgsrmation on the status of the

analysis in SQL Server.

Page 89 of 123

Database Query Optimization Molupe J. Mothepu

When the analysis of the query has been completeedmmendations are made for
how this query can be made to run faster, with eespo indexes and partitions.

Sample output from a completed analysis is initheré below:

=
Fle Edt Wew Actions Tools indow Help x
g =3 8 Start Analysis 3 4 P
A YUKON - dupes 0471172006 224323 |
4d Connect | 2 9]
=l VOKON Egress | Recommendatiohs Reports |
i dupes 04/11/2005 22431 ‘ Estimated improvement: 372/
4 dupes 05/10/2008 14:21: 217
Partition Recommendations ¥
Index Recommendations Y
¥| Database Mame ~ I Object Mame ~ I Fecommendation | Target of Recommendation
F_J test 7 [dbo].[CONSUMER] create: ih _dta index CONSUMER_B_B21577965_K1_t
¥ | test =1 [dbo][CONSUMER_CONNECTIONS] = create G _dea stat 117357921951 2 3
I J test 3 [dbol[CONSUMER_COMMECTIONS] | create (] _dr_stat_1173579219.2.3 4
¥ [test = [dbol[CONSUMER_COMMECTIONS] = create Th _dta_index_COMSUMER_CONMECTIOMS_G 1
2 _J test = [dbo][CONSUMER_DETAILS] create h _dta_index CONSUMER_DETAILS_E_BE3578
¥ | test 3 [dbo][METER] create Uh _dta index METER_B 1301579675 K2 K1_|
¥ | test = [dbo] [METER_COMMECTIONS] create (an] _dra_stat 1525530473 4 3 1
¥ | test = [dbo][METER_COMMECTIONS] create W _dta_index METER_COMMECTIOMS_B_1525%
™ | test = [dbol[FOC] create (] _dts_stat_517578307_2_1_4
¥ [test = [dbol[POLC] create Th _dta_indes_POC_6_9M757A307__K1_K2 K4
v _j best 3 [dbo][POC_DETAILS] create uh _dta index POC_DETAILS B 1685581043 K
¥ | test 2 [dbol[TRAMSACTION_EMTRY] create (aE] _dra_stat 1797531442 6. 7.4 59 8
2 _J test 2 [dbol[TRAMSACTION_ENTRY] create li] _dta_stat 1797551442 5 26 6.7
W | test 3 [dbol[TRANSACTION_ENTRY] create (iE] _drs_stat 17975014429 8
1] |l ¥ | test 1 [dbol [TRANSACTION_ENTRY] create (im] _da stat 1797591442 7 25 6
|'__A1 ¥ [test = [dbol[TRAMSACTION_EMTRY] create (iE] _dra_stat 1797591442 26 4 6 7 5.9 8
s | ¥ | test 3 [dbol[TRAMSACTION_EMTRY] create th _dta index TRAMSACTION_EMTRY_B_17975
B General ¥ [test 1 [dbol[TRANSACTION_ENTRY] create (] _dts_stat 1797551442 26 9 5 5_7_4
1D 2 =
(o lupes 0771 /2005 21 ¥ | test 3 [dbol[TRANSACTION_ENTRY] create (] _dhs_stat 179750144226 5
B Status
Cieation time |1 2006 10:45 P
Statusg Firi 4 | | .LI
I~ Show existing objects: @ See Reports for sizes of existing objects
Tuning session completed successfully, Connections: 2 .t

Figure 6.13 — Output of the analysis done on Qu&ryocus is on the estimated
improvement, in this case 37% (SQL Server).

Not only is the recommendation given, but scrolliogthe right reveals the actual
indexes that can be created. If an index is cliakedhe Tuning Advisor will actually
generate the SQL statement to create the indexhwdan then be copied and pasted
to the Query input screen of the SQL Server ManagerStudio for execution. This

script generation is shown below:

Page 90 of 123

Database Query Optimization Molupe J. Mothepu

SOL Script Preview #

CREATE NONCLUSTERELD INDE= -
[dta_index COMSUMER_B 821577365 K1_KZ K5 0OM
[dba] [COMSUMER]

[

[COMSUMER_ID] ASLC,
[COMSUMER_MIT] ASC,
[COMSUMER_ACTIWE] ASC
[/ITH [SORT_IN_TEMPDE = OFF, DROP_EXISTING = OFF, —
IGNORE_DUP_KEY = OFF, OMLIME = OFF] OM [PRIMAR'Y] ll

Copy ta Clipboard Cloze

Figure 6.14 — Script generated by Database Enguneiig Advisor for recommended

index creation (SQL Server)

The above dialogue box is put into context in igare below:

_(Bixi
Bl Edt Yiew Actions Tooks Window Help x
il | = Start Analysis = A=
el YUKON - dupes04/11/2006 224373 |
A comnect | Bd 14
W Gereral | TumingOptions | Progiess ‘ R 1 Reports |
ligi dupes 04/11/2006 22432 | | Me G S improvement. 37%
L dupes 05/10/2008 14:21:21
Partition Recommendalions v
Index Recommendations v

| Detals | Partiion Scheme _~ | Sz (KB] | Definition
752 CONSUMER ID] soc, [CONSUMER UNIT] ase, [CONSUMER ACTIVE] sec]
CONSUMER COMNECT DATELIPOC IDL[POC UNITL [CONSUMER 1D

POC UNIT], [CONSUMER ID], [CONSUMER LINIT

2 2072 | (CONSUMER ID]asc, [CONSUMER U k|

LICONSUMER 1D] asc. [CONSUMER U

9% CONSUMER 1D] asc, [CONSUMER U | e e e T PR TR -

1584 [METER SERIAL NUMBER]asc I8LG |[_cha indes COMSUIMER_B_BZ1677965 K1_K2 K5 ON
METER SERIAL NUMEBERL [4 GOR {dbullCUNSUMEHI

3680 FOC ID] ssc. [POC UNIT] sse, METE [CONSUMER_ID]ASE,
POC UMNITLIPOC IDL[POC TYPE {Egmgﬂmgg,:gmé\]ﬂéc

1040 1[POC D] ase. [POC UMIT asc. [POC ° (41TH (SORT_IN_TEMPDB = OFF. DROP_EXISTING = OFF,

532 POC D] ssc. [POC UMIT] ssc [POC - |[IGNORE_DUP_KEY = OFF, ONLINE = OFF] ON [PRIMARY] LI
CONSUMER IDLICONSUMER UNIT =
[IPOC_UNITL [TRANSACTION DATE], Copy to Clipboard &I

METER SERIAL NUMBER] [41 GOR| T
CONSUMER UNITL [TRANSACTION DATE] [CONSUMER D
THANSACTION DATE]L[POC DL [CONSUMER IDL[CONSUMER UNIT], [POC UMIT].IMETER SERIAL NUMBERL [ALGORITHM
4 K9 K8 133816 [[TRANSACTION DATE] asc, [POC_UNIT] asc, [CONSUMER |D] asc, [CONSUMER UNIT] asc, [POC (D] asc, [METER SERIAL NUMBER] asc, [ALGORIT
TRANSACTION DATE] METER SERISL MUMBER] [ALGORITHM] [CONSUMER 1D] [CONSUMER UNIT] [POC 1D
TRANSACTION DATE] [COMSUMER 1D

[L
|
B General

[} 2

Name dupes 04./11/2006 2.
B Status
s ation

ime | 04./11/2006 1043 PN
Finished

Kl il

[~ Showesisting obiects & See Renatts far sizes of esisting obiscts

Turing session complated successfuly. Connections: 2

distart| |2 @ @ @ @ o] % | @ Ukrakdt-32 - [Ciipocum... | 45 Microsoft 5L Server Ms... | [i) Database Engine Tuni.. BB A 2o

Figure 6.15 — Screenshot of script generated frditking on one of the index

recommendations.(SQL Server)

Page 91 of 123

Database Query Optimization Molupe J. Mothepu

The ability of the Database Engine Tuning Advisodb this is incredibly helpful to
the database administrator, removing the need®inidexes to be created manually.

6.2.3 — SQL Server plan cache

Unlike MySQL, SQL Server does not cache the resfligueries, but rather just the
execution plan. Instead, SQL Server leaves reaghiog to the client programme via
the SqglCacheDependency Class. The cache, likeothySQL also requires that the
guery requesting a cached plan be identical (noivatent) to the query that is in the
cache. The main aim of the plan cache is for executmes to be reduced by not

having to recompile the execution plan for freqleissued queries.

6.3 — Chapter Summary

SQL Server was found to be much easier to manadeesinact information from.
The Database Tuning Advisor provides informationpossible index usage, as does
the explaincommand in MySQL, but in a much more helpful, ithe and easy to
use manner, especially with the index code gener&uoery execution plans were
also presented in a much more user friendly andramdtion rich manner in SQL
Server than they are in MySQL, resulting in a meeisier manner in which query
analysis could be carried out. For user experiear server administration, SQL
Server is definitely the preferred choice, as vesllbecause of its innate ability to
choose better execution plans than MySQL for largeeries. In terms of
configurability, MySQL is definitely more configupke than SQL Server, having 216
configurable variables as opposed to the 62 that S€ver has. The query cache that
MySQL implements is also definitely a huge advaatager SQL Server in that SQL
Server will run query in 66 seconds consistently,weshen cached, MySQL will run it
in 149 seconds (without having run the analyzeetatammand) the first time, and
then after that will fetch it in 1.93 seconds, whis 34 times faster than in SQL

Server.

Page 92 of 123

Database Query Optimization Molupe J. Mothepu

Chapter 7 — Conclusion

Before providing a final conclusion to this projetite objectives that it set out to
achieve are revisited. This chapter provides a samynof the findings that were
discovered en route to the fulfilment of these ofies, and possible extensions for

future work. A recap of the objectives is as folfow

* Objective One was the comparison of the performance of SQL 32085
and MySQL 5.0.22 in terms of the speed at whicly there able to execute a
series of queries.

» Objective Two was the identification and configuration, for opal query
execution performance, of various key server végmlior SQL Server 2005
and MySQL 5.0.22.

7.1 — Findings

The findings pertaining to objective one will filsé presented, followed by those of

objective two, and then an overall evaluation af tatabase management systems.

7.1.1 - Objective One: The comparison

With both database servers being at default irgtad, MySQL outperformed SQL
Server for queries with less than 4 joins, afteiclwhSQL Server proceeded to
outperform MySQL. It was found that SQL Server igmpknted slower join types
than MySQL but made much better decisions regarthegchoice in execution plan
than MySQL did, especially with regards to planshwi joins or more. By default,
MySQL does not do an exhaustive search of the Bespace, but this does not
explain this phenomenon because after it has bemsfigored to carry out an
exhaustive search, it still does not find the optiplan, with regards to the order in
which tables are accessed, as SQL Server doesmidasas that either the search is
not truly exhaustive as claimed, the search speated does not contain the optimal

plan, or the enumeration algorithm used by thenauggr to find the optimal plan is

Page 93 of 123

Database Query Optimization Molupe J. Mothepu

inferior to that of SQL Server. Further investigatiwvould be necessary to determine

which of these reasons is most applicable.

7.1.2 — Objective Two: Server optimization

The variables that were identified as being keythte performance of the query
optimizer were found to have much less effect thaad been anticipated. The
variables investigated in MySQL produced no chaimgthe time to execute for the
gueries that were tested. The SQL Server varididelsmore effect on the time of
execution for the queries tested, but the effecd thardly significant. These results
lead to the conclusion that either the server béggmare not designed to speed up the
time it takes for a specific query to run, or ieyhare, they are not working as they
should be.

7.1.3 — Overall performance of the database servers

SQL Server had a considerably more intuitive argy @a use interface. This allowed
for easy query execution and analysis, as welldasirastration. The MySQLAdmin

GUI tool was tested but did not have nearly as nfunbtionality as the user interface
that SQL Server provides. The SQL Server Profiled ®atabase Engine Tuning
Advisor tools allow for easy and useful diagnosticsthe server and queries, and

prove themselves to be powerful tools in the adsiiation of the server.

MySQL'’s interface was less forgiving than SQL Selw@nd the learning curve for
the analysis and administration tools available wagh steeper than that of SQL
Server. The configurability of the server is muakajer than SQL Server’'s and can
lead to configurations that overshadow the supgulan choosing ability of SQL
Server. An example of such a configuration is therg cache, the use of which is
discussed in the next paragraph. BEmalyze tablee.ommand was found to be a very

useful tool in the overall optimization of the dadse.

With the introduction of the query cache, MySQL m@aged to significantly increase
the speed of consecutive executions of the samg.qdactor of 77 times faster was

Page 94 of 123

Database Query Optimization Molupe J. Mothepu

obtained for one of the queries tested. The “sltavt’seffect of MySQL was also
remedied by using one of the variables that hagqutoneffective in increasing the
speed of the execution of a query, which was amxpewted development. SQL
Server does not exhibit this “slow start” charaster but also does not cache results,
which means that consecutive executions of the sgueey execute at exactly the
same speed, with no need to recompile the quetyalba without any improvement

in performance.

7.2 — Recommendations

For a very large database which needs to meetetpgirements of queries with a
large number of joins, and frequently changingdapB5QL Server is recommended. It
has an impressive ability to choose an optimal etxec plan in the presence of more
complex queries, than MySQL does. MySQL is bedieguivhere the requirement is
to respond to a large number of requests for idahtjueries with tables that do not
change frequently. The reason for this is thatginery cache is a very powerful tool
and requires identical queries, and changing @ tedshoves all referencing queries

from cache.

7.3 — Future Work

There are a number of possible extensions thabeamade to this project to give a
more comprehensive understanding of the workingsheftwo database systems

evaluated in this project. A few of them are préseérpelow:

* MySQL performed better in Ubuntu than in Windowshen evaluating
gueries with 3 or less joins, but the reverseus for a larger number of joins.
The default settings of MySQL are different in wanwes than in Ubuntu, so
the settings in Ubuntu were changed to mimic thos&/indows, but this did
not change this behaviour. It would be of intetes¢valuate the effect of the
underlying file system that the database residesarh that the operating

system uses, on the speed of query execution inQMyS

Page 95 of 123

Database Query Optimization Molupe J. Mothepu

* A number of the settings seemed not to have awtdfidhe single user/single
thread environment that was used to carry outdbtst Further investigation
to view the effect that these variables would hiawa multi-user/multi-thread
environment would be useful as this mimics the -liéal production
environment that they are deployed in.

* The reason for MySQL not choosing the optimal ekeawplan, or at least not
as optimal as that of SQL Server, could also bkddanto in more depth.

* The last item to be further researched is the qanoé parallelism in SQL
Server. The results produced by the testing cawigidfor this project were
counter-intuitive (Ebden J, 2006). It would be oferest to investigate the
effects of parallelism on different databases, pagt and CPU intensive

gueries.

Page 96 of 123

Database Query Optimization Molupe J. Mothepu

References:

1.

.NET Framework Class Librar$aglCacheDependency Class

http://msdn2.microsoft.com/en-

us/library/system.web.caching.sqglcachedependenc8Q)aspx [accessed
12-10-05]

Bing Yao, S.Optimization of query evaluation algorithmsCM Press, New
York, USA. 1979.

Binstock, Andrew. Microsoft SQL Server 2005: ShoDieivelopers Care?
http://www.devx.com/MicrosoftiISV/Article/224692004. [accessed 23-09-
05].

Byars, TomMySQL takes time to warm upnline Posting. 26 March 2006
MySQL Forums. [20-09-06]
http://forums.mysqgl.com/read.php?24,78554,78554# &b 4

Chaudhuri, SurajitAn Overview f Query Optimization in Relational Syss
New York, USA. 1998.

Cole, Richard L. and Graefe, GoeBptimization of Dynamic Query
Evaluation PlansACM Press, New York, USA. 1994

Cotter, Hilary.Optimizing SQL Server 2000 settings
http://searchsqlserver.techtarget.com/tip/1,28%1837 gci1118085 tax3013
34,00.html?adg=301324&bucket=ET2005. [accessed 24-05-06]

Dyess, RandyHow to Interact with SQL Server's Data and ProcedGache.

http://www.sql-server-performance.com/rd_data cadppe2002. [accessed
23-09-06].

Florescu, Daniela, Levy, Alon, Manolescu, loanal &aciu, DanQuery

Optimization in the Presence of Limited AccessdPast ACM Press, New
York, USA. 1999.

10. Gilfillan, lan. MySQL'’s Query Cache.

http://www.databasejournal.com/features/mysql/detighp/10897 3110171
2. 2003. [accessed 22-09-06]

11. Gilfillan, lan. Optimizing MySQL: Queries and Indexes.

http://www.databasejournal.com/features/mysql/éetighp/1382791 2001.
[accessed 28-04-06]

Page 97 of 123

Database Query Optimization Molupe J. Mothepu

12. Gilfillan, lan. Optimizing the mysqld variables.
http://www.databasejournal.com/features/mysql/Erihp/33678712004.
[accessed 02-05-06]

13. Gilfillan, lan. PostgreSQL vs MySQL: Which is better?
http://www.databasejournal.com/features/mysql/krjhp/3288951. 2003.
[accessed 13-04-06]

14.Gilmorem W. JOptimizing MySQL
http://www.devshed.com/c/a/MySQL/Optimizing-MySQRO0O01.[accessed
13-04-06]

15.How to profile a query in MySQL

http://www.xaprb.com/blog/2006/10/12/how-to-profdequery-in-mysql/
2006. [accessed 24-10-06]
16.loannidis, Yannis E. and Cha Kang, Younkyubeft-deep vs bushy trees: an

analysis of strategy spaces and its implicatiomgyjteery optimizationACM
Press, New York, USA. 1991.

17.loannidis, Yannis EQuery OptimizationACM Press, New York, USA. 1996.

18.Jarke, Matthias. and Koch, Jurg€uery Optimization in Database Systems
ACM Press, New York, USA. 1984.

19.Kabra, Navin. and DeWitt, David. Bfficient mid-query re-optimization of
sub-optimal query execution pla#sCM Press, New York, USA. 1998.

20.Marathe, ArunBatch Compilation, Recompilation, and Plan Cachisgues
in SQL Server 2005
http://www.microsoft.com/technet/prodtechnol/sqli8recomp.mspx2004.
[accessed 17-09-06].

21.McGhee, Brad MHow to Perform a SQL Server Performance Audit.
http://www.sql-server-performance.com/sql_serverfggmance_audit.asp.
2005. [accessed 12-09-06].

22.Microsoft. Windows Server 2003 R2 Now Available.
http://www.microsoft.com/windowsserver2003/defaukpx [accessed 16-
03-06].

23.MySQL Developer Zone.2.3. System Variables.
http://dev.mysal.com/doc/refman/5.0/en/server-systariables.html
[accessed 14-05-06]

Page 98 of 123

Database Query Optimization Molupe J. Mothepu

24.MySQL Developer Zoner.5.3. Controlling Query Optimizer Performance
http://dev.mysal.com/doc/refman/5.0/en/controllioptimizer.html[accessed
17-09-06]

25.MySQL Developer ZoneMlySQL Presentations: Optimizing MySQL.
http://dev.mysqgl.com/tech-resources/presentatioasgmtation-oscon2000-
20000719/index.htnflaccessed 04-05-06]

26.MySQL Manual.

27.MySQL website Market Sharehttp://www.mysqal.com/why-
mysql/marketshare?005. [accessed 14-05-06]

28.National Institute of Standards and Technold@ynciple of Optimality
http://www.nist.gov/dads/HTML/principle.htmP004. [accessed 17-04-06].
29.Pettey, ChristyGartner Says Worldwide Relational Database Market

Increased 8 Percent in 2005.
http://www.gartner.com/press_releases/asset 152@18ml 2006.
[accessed 14-05-06].

30.Reddy, Naveen and Haritsa, JayanfRalyzing plan diagrams of database
guery optimizersVLDB Endowment, USA. 2005.

31. Shankland, StepheiVindows bumps Unix as top server OS.
http://news.com.com/2100-1016_3-6041804.h20I06. [accessed 03-09-06].

32.SQL Optimizationhttp://www.basis.com/support/tips/sgloptimizatidmh
[accessed 18-03-06]

33.SQL Server 2005 Books Onlingffects of min and max server memory

http://msdn2.microsoft.com/en-us/library/ms18079@xalaccessed].
34.SQL Server Manual
35. Sullivan, Tom.Open Source Database Market Share Breakdown
http://weblog.infoworld.com/techwatch/archives/00&html 2005.
[accessed 13-09-06]

36.Tips for Performance Tuning SQL Server’s ConfigmraSettings

http://www.sql-server-performance.com/sql_servenfiguration_settings.asp
[accessed 25-04-06]

37. Transact-SQL Optimization Tips.
http://www.mssalcity.com/Tips/tipTSQL.htfiaccessed 18-03-06]

38. Ubuntu website http://www.ubuntu.com/Welcom&006. [accessed].

Page 99 of 123

Database Query Optimization Molupe J. Mothepu

39.vDerivatives Limited Useful SQL Server DBCC Commantsp://www.sql-
server-performance.com/dbcc_commands.2806. [accessed 12-09-06]

40.Viglas, Stratis D. and Naughton, JeffreyRate-Based Query Optimization for
Streaming Information Source&CM Press, New York, USA. 2002.

41.whatis.comdefault
http://whatis.techtarget.com/definition/0,289898%igci211923,00.html
1999. [accessed 17-09-06].

42.Wikipedia, The Free Encyclopedidin (SQL)
http://en.wikipedia.org/wiki/Join_algorithnfaccessed 02-03-06].

43.Wikipedia, The Free Encyclopedi@uery Optimizer
http://en.wikipedia.org/wiki/Query_ optimiz¢accessed 02-03-06].

44.Woody, Buck.SQL Server Configuration: Part 1
http://www.informit.com/guides/content.asp?g=salse&seqNum=152&rl=1
. 2006. [accessed 02-11-06].

45. Woody, Buck. SQL Server Configuration: Part 2
http://www.informit.com/guides/content.asp?g=sqlse&seqNum=153&ri=1
. 2006. [accessed 02-11-06].

Page 100 of 123

Database Query Optimization

Appendix A: T-SQL Statements to create tables

Payment Method

set ansi_nulls on

go

set quoted_identifier on

go

if not exists (select * from sys.objects where obje =

object_id(n'[dbo].[payment_method]') and type itu{()

begin

create table [dbo].[payment_method](
[payment_method] [int] not null,

primary key clustered

(
[payment_method] asc
)with (pad_index = off, ignore_dup_key = off) qarimary]
) on [primary]
end

go

transaction_type

set ansi_nulls on

go

set quoted_identifier on

go

if not exists (select * from sys.objects where objed =

object_id(n'[dbo].[transaction_type]) and typ€iiru’))

begin

create table [dbo].[transaction_type](
[transaction_type] [int] not null,

primary key clustered

(
[transaction_type] asc
)with (pad_index = off, ignore_dup_key = off) qarimary]
) on [primary]
end

go

Consumer_classification

set ansi_nulls on

go

set quoted_identifier on

go

if not exists (select * from sys.objects where obje =

object_id(n'[dbo].[consumer_classification]’) agge in (n'u’))

begin

create table [dbo].[consumer_classification](
[consumer_class_id] [int] not null,

Page 101 of 123

Molupe J. Mothepu

Database Query Optimization Molupe J. Mothepu

primary key clustered

(
[consumer_class_id] asc
)with (pad_index = off, ignore_dup_key = off) qarimary]
) on [primary]
end

go

poc
set ansi_nulls on
go
set quoted_identifier on
go
if not exists (select * from sys.objects where objed = object_id(n'[dbo].[poc]’) and
type in (n'u’))
begin
create table [dbo].[poc](
[poc_id] [int] identity(1,1) not null,
[poc_unit] [int] not null,
[poc_name] [varchar](64) not null,
[poc_type] [smallint] not null,
primary key clustered
(
[poc_id] asc,
[poc_unit] asc
)with (pad_index = off, ignore_dup_key = off) qerimary]
) on [primary]
end
go

meter

set ansi_nulls on

go

set quoted_identifier on

go

if not exists (select * from sys.objects where obje = object_id(n'[dbo].[meter])

and type in (n'u’))

begin

create table [dbo].[meter](
[algorithm] [int] not null,
[meter_serial_number] [varchar](32) not null,
[meter_type_id] [int] not null,
[meter_active] [smallint] not null,
[meter_details] [varchar](254) null,
[meter_registered_date_time] [varchar](50) null,
[pending_connection_on] [varchar](50) null,
[meter_transferred_out] [smallint] not null,

constraint [pk__meter__4ab81af0] primary key desd

(

[algorithm] asc,

Page 102 of 123

Database Query Optimization

[meter_serial_number] asc
)with (pad_index = off, ignore_dup_key = off) qarimary]
) on [primary]
end

go

transaction_item_type

set ansi_nulls on

go

set quoted_identifier on

go

if not exists (select * from sys.objects where objed =

object_id(n'[dbo].[transaction_item_type]) andéyip (n'u’))

begin

create table [dbo].[transaction_item_type](
[transaction_item_type] [int] not null,

primary key clustered

(
[transaction_item_type] asc
)with (pad_index = off, ignore_dup_key = off) qarimary]
) on [primary]
end

go

consumer
set ansi_nulls on
go
set quoted_identifier on
go
if not exists (select * from sys.objects where obje =
object_id(n'[dbo].[consumer]’) and type in (n'u’))
begin
create table [dbo].[consumer](
[consumer _id] [int] identity(1,1) not null,
[consumer_unit] [int] not null,
[language_id] [int] null,
[consumer_class_id] [int] null,
[consumer_active] [smallint] not null,
[consumer_comments] [varchar](254) null,
[consumer_show_comments] [smallint] not null,
primary key clustered
(
[consumer_id] asc,
[consumer_unit] asc
)with (pad_index = off, ignore_dup_key = off) gerimary]
) on [primary]
end
go

Page 103 of 123

Molupe J. Mothepu

Database Query Optimization

consumer_details

set ansi_nulls on

go

set quoted_identifier on

go

if not exists (select * from sys.objects where objed =

object_id(n'[dbo].[consumer_details]) and typdniu"))

begin

create table [dbo].[consumer_details](
[consumer_id] [int] not null,
[consumer_unit] [int] not null,
[consumer_surname] [varchar](64) not null,
[consumer _first_names] [varchar](64) null,
[consumer _title] [varchar](16) null,
[consumer_identity _number] [varchar](64) null,
[consumer_address_1] [varchar](64) null,
[consumer_address_2] [varchar](64) null,
[consumer_address_3] [varchar](64) null,
[consumer_town] [varchar](64) null,
[consumer_post_zip_code] [varchar](16) null,
[account_number] [varchar](64) null,

primary key clustered

(
[consumer_id] asc,
[consumer_unit] asc

)with (pad_index = off, ignore_dup_key = off) gerimary]

) on [primary]

end

go

consumer_connections
set ansi_nulls on
go
set quoted_identifier on
go
if not exists (select * from sys.objects where obje =
object_id(n'[dbo].[consumer_connections]’) and typé'u’))
begin
create table [dbo].[consumer_connections](
[poc_id] [int] not null,
[poc_unit] [int] not null,
[consumer_id] [int] not null,
[consumer_unit] [int] not null,
[consumer_connect_date] [datetime] not null,
[consumer_disconnect_date] [varchar](50) null,
constraint [pk_consumer_connections] primary Kegtered
(
[poc_id] asc,
[poc_unit] asc,
[consumer_id] asc,

Page 104 of 123

Molupe J. Mothepu

Database Query Optimization

[consumer_unit] asc,
[consumer_connect_date] asc
)with (pad_index = off, ignore_dup_key = off) qarimary]
) on [primary]
end
go

transaction_entry

set ansi_nulls on

go

set quoted_identifier on

go

if not exists (select * from sys.objects where obje =

object_id(n'[dbo].[transaction_entry]’) and typg(iru’))

begin

create table [dbo].[transaction_entry](
[installation_id] [int] not null,
[unit_id] [int] not null,
[transaction_id] [int] identity(1,1) not null,
[poc_id] [int] null,
[poc_unit] [int] null,
[consumer_id] [int] null,
[consumer_unit] [int] null,
[algorithm] [int] null,
[meter_serial_number] [varchar](32) null,
[payment_method] [int] not null,
[transaction_type] [int] not null,
[cons_identification_method] [int] not null,
[shi_installation_id] [int] not null,
[shi_unit_id] [int] not null,
[transaction_shift_number] [int] not null,
[user_name] [varchar](32) not null,
[ban_installation_id] [int] null,
[ban_unit_id] [int] null,
[bank_batch_number] [int] null,
[dum_installation_id] [int] not null,
[dum_unit_id] [int] not null,
[transaction_dump_number] [int] not null,
[service_category_id] [int] null,
[receipt_number] [int] null,
[cheque_or_credit_card_num] [varchar](64) null,
[transaction_date] [datetime] not null,
[transaction_comments] [varchar](128) null,
[transaction_reversed] [smallint] not null,

primary key clustered

(
[installation_id] asc,
[unit_id] asc,
[transaction_id] asc

)with (pad_index = off, ignore_dup_key = off) qarimary]

Page 105 of 123

Molupe J. Mothepu

Database Query Optimization Molupe J. Mothepu

) on [primary]
end

go

meter_connections
set ansi_nulls on
go
set quoted_identifier on
go
if not exists (select * from sys.objects where obje =
object_id(n'[dbo].[meter_connections]’) and typéniu'))
begin
create table [dbo].[meter_connections](
[poc_id] [int] not null,
[poc_unit] [int] not null,
[algorithm] [int] not null,
[meter_serial_number] [varchar](32) not null,
[meter_connect_date] [varchar](50) not null,
[disconnect_reason_id] [varchar](50) null,
[installed_meter_phases] [varchar](50) null,
[installed_meter_voltage] [varchar](50) null,
[installed_meter_amperage] [varchar](50) null,
[meter_disconnect_date] [varchar](50) null,
[auto_limit_token] [smallint] not null,
[movement_comments] [varchar](254) null,
constraint [pk__meter_connection__5070f446] prymaay clustered
(
[poc_id] asc,
[poc_unit] asc,
[algorithm] asc,
[meter_serial_number] asc,
[meter_connect_date] asc
)with (pad_index = off, ignore_dup_key = off) gerimary]
) on [primary]
end
go

poc_details
set ansi_nulls on
go
set quoted_identifier on
go
if not exists (select * from sys.objects where obje =
object_id(n'[dbo].[poc_details]’) and type in (lWu'
begin
create table [dbo].[poc_details](
[poc_id] [int] not null,
[poc_unit] [int] not null,
[node_id] [varchar](50) null,

Page 106 of 123

Database Query Optimization Molupe J. Mothepu

[supply_phase_id] [varchar](50) null,
[stand_number] [varchar](64) null,
[poc_address 1] [varchar](64) not null,
[poc_address_2] [varchar](64) null,
[poc_address_3] [varchar](64) null,
[poc_town] [varchar](64) null,
[vending_district] [varchar](128) null,
[account_no] [varchar](64) null,
[average consumption] [varchar](50) null,
[poc_location] [varchar](128) null,
constraint [pk__poc_details__ 5fb337d6] primary kaystered
(
[poc_id] asc,
[poc_unit] asc
)with (pad_index = off, ignore_dup_key = off) qerimary]
) on [primary]
end

go

token

set ansi_nulls on

go

set quoted_identifier on

go

if not exists (select * from sys.objects where obj& = object_id(n'[dbo].[token]")

and type in (n'u’))

begin

create table [dbo].[token](
[installation_id] [int] not null,
[unit_id] [int] not null,
[transaction_id] [int] not null,
[token_id] [int] not null,
[token_type] [int] not null,
[algorithm] [int] not null,
[token] [varchar](20) not null,

primary key clustered

(
[installation_id] asc,
[unit_id] asc,
[transaction_id] asc,
[token_id] asc

)with (pad_index = off, ignore_dup_key = off) qarimary]

) on [primary]

end

go

transaction_financial_item
set ansi_nulls on

go
set quoted_identifier on

Page 107 of 123

Database Query Optimization

go
if not exists (select * from sys.objects where obje =
object_id(n'[dbo].[transaction_financial_item]')datype in (n'u’))
begin
create table [dbo].[transaction_financial_item](
[installation_id] [int] not null,
[unit_id] [int] not null,
[transaction_id] [int] not null,
[transaction_item_id] [int] not null,
[transaction_item_type] [int] not null,
[transaction_item_amount] [numeric](15, 2) notlnul
[transaction_sequence] [int] null,
primary key clustered
(
[installation_id] asc,
[unit_id] asc,
[transaction_id] asc,
[transaction_item_id] asc
)with (pad_index = off, ignore_dup_key = off) qarimary]
) on [primary]
end

go

Page 108 of 123

Molupe J. Mothepu

Database Query Optimization Molupe J. Mothepu

Appendix B: T-SQL Statements to create Indexes

if not exists (select * from sys.foreign_keys whelgect _id =
object_id(n'[dbo].[fk2_consumer_classification_comer]) and parent_object_id =
object_id(n'[dbo].[consumer]))

alter table [dbo].[consumer] with check add coaist
[fk2_consumer_classification_consumer] foreign keyfisumer_class_id])
references [dbo].[consumer_classification] ([consuralass_id])

go

alter table [dbo].[consumer] check constraint
[fk2_consumer_classification_consumer]

go

if not exists (select * from sys.foreign_keys whelgect _id =
object_id(n'[dbo].[fk1_consumer_consumer_detaibsi)l parent_object_id =
object_id(n'[dbo].[consumer_details]'))

alter table [dbo].[consumer_details] with check atbnstraint
[fk1_consumer_consumer_details] foreign key([consund], [consumer_unit])
references [dbo].[consumer] ([consumer_id], [consumanit])

on delete cascade

go

alter table [dbo].[consumer_details] check constrai
[fkl_consumer_consumer_details]

go

if not exists (select * from sys.foreign_keys whelgect id =
object_id(n'[dbo].[fk1_poc_consumer_connectiorsfiyl parent_object_id =
object_id(n'[dbo].[consumer_connections]’))

alter table [dbo].[consumer_connections] with ¢hadd constraint
[fk1l_poc_consumer_connections] foreign key([poc, [iddc_unit])
references [dbo].[poc] ([poc_id], [poc_unit])

on delete cascade

go

alter table [dbo].[consumer_connections] check taird
[fk1l_poc_consumer_connections]

go

if not exists (select * from sys.foreign_keys whelgect _id =
object_id(n'[dbo].[fk2_consumer_consumer_connesfipand parent_object _id =
object_id(n'[dbo].[consumer_connections]’))

alter table [dbo].[consumer_connections] with ¢hadd constraint
[fk2_consumer_consumer_connections] foreign key($coner_id], [consumer_unit])
references [dbo].[consumer] ([consumer_id], [consumanit])

on delete cascade

go

alter table [dbo].[consumer_connections] check tamg
[fk2_consumer_consumer_connections]

go

if not exists (select * from sys.foreign_keys whelgect _id =
object_id(n'[dbo].[fk1_poc_transaction_entry]’) goatent _object id =
object_id(n'[dbo].[transaction_entry]))

alter table [dbo].[transaction_entry] with che@daconstraint

Page 109 of 123

Database Query Optimization Molupe J. Mothepu

[fk1_poc_transaction_entry] foreign key([poc_id}pE_unit])

references [dbo].[poc] ([poc_id], [poc_unit])

go

alter table [dbo].[transaction_entry] check coristrfkl_poc_transaction_entry]
go

if not exists (select * from sys.foreign_keys whelgect _id =
object_id(n'[dbo].[fk2_consumer_transaction_en}rgifid parent_object_id =
object_id(n'[dbo].[transaction_entry]))

alter table [dbo].[transaction_entry] with che@daconstraint
[fk2_consumer_transaction_entry] foreign key([cansu _id], [consumer_unit])
references [dbo].[consumer] ([consumer _id], [consuranit])

go

alter table [dbo].[transaction_entry] check coristra
[fk2_consumer_transaction_entry]

go

if not exists (select * from sys.foreign_keys whelgect _id =
object_id(n'[dbo].[fk3_meter_transaction_entryj\dgparent_object_id =
object_id(n'[dbo].[transaction_entry]))

alter table [dbo].[transaction_entry] with che@daconstraint
[fk3_meter_transaction_entry] foreign key([algonith [meter_serial _number])
references [dbo].[meter] ([algorithm], [meter_skmaumber])

go

alter table [dbo].[transaction_entry] check constrfk3_meter_transaction_entry]
go

if not exists (select * from sys.foreign_keys whelgect_id =
object_id(n'[dbo].[fk4_payment_method_transactiaring’) and parent_object_id =
object_id(n'[dbo].[transaction_entry]))

alter table [dbo].[transaction_entry] with che@daconstraint
[fk4_payment_method_transaction_entry] foreign kggyment_method])
references [dbo].[payment_method] ([payment_method]

go

alter table [dbo].[transaction_entry] check coristra

[fk4 _payment_method_transaction_entry]

go

if not exists (select * from sys.foreign_keys whebgect_id =
object_id(n'[dbo].[fk5_transaction_type_transactientry]’) and parent_object_id =
object_id(n'[dbo].[transaction_entry]))

alter table [dbo].[transaction_entry] with cheddaconstraint
[fk5_transaction_type_transaction_entry] foreigg(kansaction_type])
references [dbo].[transaction_type] ([transactigpet)

go

alter table [dbo].[transaction_entry] check coristra
[fk5_transaction_type_transaction_entry]

go

if not exists (select * from sys.foreign_keys whebgect_id =
object_id(n'[dbo].[fk2_poc_meter_connections]’) quadent_object_id =
object_id(n'[dbo].[meter_connections]’))

alter table [dbo].[meter_connections] with chedkl aconstraint
[fk2_poc_meter_connections] foreign key([poc_iglp¢ unit])

references [dbo].[poc] ([poc_id], [poc_unit])

Page 110 of 123

Database Query Optimization Molupe J. Mothepu

on delete cascade

go

alter table [dbo].[meter_connections] check comsti#?2 poc_meter_connections]
go

if not exists (select * from sys.foreign_keys whelgect_id =
object_id(n'[dbo].[fk3_meter_meter_connectionsiijl gparent_object_id =
object_id(n'[dbo].[meter_connections]'))

alter table [dbo].[meter_connections] with chedkl aconstraint
[fk3_meter_meter_connections] foreign key([alganih[meter_serial_number])
references [dbo].[meter] ([algorithm], [meter_sEmaumber])

on delete cascade

go

alter table [dbo].[meter_connections] check comstra
[fk3_meter_meter_connections]

go

if not exists (select * from sys.foreign_keys whelgect _id =
object_id(n'[dbo].[fk1_poc_poc_details]’) and pdreject id =
object_id(n'[dbo].[poc_details]’))

alter table [dbo].[poc_details] with check addnsaint [fk1_poc_poc_details]
foreign key([poc_id], [poc_unit])

references [dbo].[poc] ([poc_id], [poc_unit])

on delete cascade

go

alter table [dbo].[poc_details] check constraikil[fpoc_poc_details]

go

if not exists (select * from sys.foreign_keys whelgect _id =
object_id(n'[dbo].[fk1_transaction_entry token})daparent_object id =
object_id(n'[dbo].[token]))

alter table [dbo].[token] with check add consitdfkl transaction_entry token]
foreign key([installation_id], [unit_id], [transaot_id])

references [dbo].[transaction_entry] ([installatial], [unit_id], [transaction_id])
go

alter table [dbo].[token] check constraint [fk1 nsaction_entry token]

go

if not exists (select * from sys.foreign_keys whelgect id =
object_id(n'[dbo].[fk1_transaction_entry transactibnancial_item]’) and
parent_object_id = object_id(n'[dbo].[transactianahcial_item]"))

alter table [dbo].[transaction_financial_item] witheck add constraint
[fk1_transaction_entry transaction_financial_itdorkeign key([installation_id],
[unit_id], [transaction_id])

references [dbo].[transaction_entry] ([installatial], [unit_id], [transaction_id])
go

alter table [dbo].[transaction_financial_item] ch@onstraint
[fk1_transaction_entry_ transaction_financial_item]

go

if not exists (select * from sys.foreign_keys whelgect _id =
object_id(n'[dbo].[fk2_transaction_item_type_tractgan_financial_item]) and
parent_object_id = object_id(n'[dbo].[transactianahcial_item]"))

alter table [dbo].[transaction_financial_item] kwitheck add constraint
[fk2_transaction_item_type_transaction_financianit foreign

Page 111 of 123

Database Query Optimization

key([transaction_item_type])

references [dbo].[transaction_item_type] ([trangarctitem_type])
on delete cascade

go

alter table [dbo].[transaction_financial_item] ch@onstraint
[fk2_transaction_item_type_transaction_financiani

Page 112 of 123

Molupe J. Mothepu

Database Query Optimization Molupe J. Mothepu

Appendix C: Server Configurations

Serverl: My-Yukon
This machine is running Windows Server 2003 andritibiDapper 6.06 Server on the

two separate hard disks.

The Administrator password for the Windows instadia is UberDataBox. The
password for the usernardapeswhich was used to carry out all testing is
FullControl . Ubuntu installation does not have a root passwaodtithe usedupes

was used for all logins, with a passwordibiegamel12

Server2: SS1

This user is running Ubuntu Dapper 6.06 Server. dderdupeswas used for all
testing on this machine, with a password bégamel12

Database Servers
The root password for all MySQL installations oe tharious servers is

ServerAdmin, which is also the password for th@&account in SQL Server.

All servers were returned to default installatiggoa completion of the paper.

Database

In SQL Server, the test database is known simptgsisin MySQL on Windows, the
test database is known t@st_myisam On all the MySQL installations on Ubuntu,
the database is known &st_dba

Page 113 of 123

