Analysis of SQL injection

prevention using a filtering

Proxy server

Submitted in partial fulfiiment of the degree of

Bachelor of Science with Honours

RHODES UNIVERSITY

By David Brodie Rowe

Project Supervisor: Barry Irwin
Department of Computer Science
Rhodes University
November 2005

Abstract

This paper details an analysis of SQL injection preention. This work is separated
into two parts. The first highlights methods that $iould be adopted in order to
reduce the risk of an SQL injection attack. The seand details the creation of a
filtering proxy server used to prevent a SQL injecton attack and analyses the
performance impact of the filtering process on webtransactions. The test
implementation focuses on Microsoft SQL Server 2008lthough the guidelines are

applicable to all database management systems. Thisbecause SQL is a standard
used by most databases.

Keywords

SQL injection, fault injection, SQL poisoning, pextion, preventing.

ACM classification categories relevant to this progct
C.2.0 Security and protection (e.qg., firewalls) {R&ED)
D.4.6 Security and Protection

K.4.4 Security

K.4.2 Abuse and crime involving computers

K.6.5 Security and Protection

Acknowledgements

I would like to thank Seven Fountains Digital féreir support. Many thanks go to
Professor Peter Wentworth for his patience, undedshg and guidance.

| thank my supervisor, Mr Barry Irwin for his inwable guidance and support
throughout this project. | would also like to thatile Rhodes University Computer
Science Department lecturers and my peers for tosistructive feedback regarding the
project.

Lastly, | would like to thank my family, honoursblpeers and friends for their constant

encouragement.

Table of Contents

F NS S I\ o T |
ACKNOWLED GEMENTS ...ttt e et e et e et e et e e st e e s saeeasaa e ssanee et eanansns 1l
TABLE OF CON T ENT S .ttt e et e et e e e e e et b e s eat s e sbasee s s sstasssanessatssasanesees v
LIST OF FIGURES. ..ottt et e e e e e e et e e et e e et e e e e b s e saa e e sba s e saba s sbasesbasesansesees VI
LIST OF CODE BOXES ... oottt ettt e et e s e e et e e e e e st s e eea s e eba e saanse st aenbasns VIII
RS T IO L I7AN = 1 I i T VIII
LIST OF TEXT BOXES ... ooi oottt eee et e e e e et e et e e et e et e e eaaeee st e eeaneeeaaseetnseeenneaes IX
CHAPTER 1 - INTRODUGCTION L.eiiitiiiite ettt ettt e et e et et e e e e e e et s e s saeeesaaeesaneeseaseraass 1
1.1 L2001 o3 1T T 1
1.2 EXAMPLE OF SQL INJECTION L.uuiiiiiiiiieeiiitiis e e e et e e e ettt e e e s e veaee e s e eeaaa e e essanneeeeesnnnseeesnnnaaees 3
1.3 PROBLEM STATEMENT .oottiiittiitt ettt e ettt et e e et e e eat e s e s e e et e eea e s eaaeseaseraseeeansesannseenansss 4
14 DOCUMENT STRUCTURE ...ctuiittiiiniiteitetteetettstasstettessssesaessntsentesnestnsrsnsetnsttnresnsernerenns 5
15 INTRODUCTION SUMMARY c1uiitniittittetttettietteettsseaeeanessasssassastan ettt sstestesaessssernessnsrenses 5.
CHAPTER 2 - RESEARCHcce et e e e e e e e e e st e e e e e e s e e enanns 6
2.1 RS I0] 010 o T 6
2.2 LITERATURE REVIEW L.ittiiuiiiiiiitiii it eee et ettt st e e rassan e et s s e s s e et e s b s et e st e et aetresaeeennenns 6
2.3 PREVENTION METHODS ...ituiitiitieieti et eete ettt et e st e st e saasee s st e st e sa s st eanessassansesnestnsrrnns 12
2.3.1 DAtabase PriVIIEOES.uuuuriiiiiiiiiiiiet et et eteee et e e e e e e e e s e e e e s n e e eaae e 12
I L o] G N =V 13
2.3.3 SUPPreSSING ErTOr IMESSA0ESeeiiei ittt ettt ettt e e st e e e s ebaneeee s 14
2.3 SANITISING . .ttt e e e oottt ettt e e e e e e e e e e e e e e e e e e e b nrare et e e e aaaaaaaaaaaaaaan 15
2.3.5 SQL Signatures- Filtering SQL INJECHIONccoooiiiiiiiiiiie e 17
2.4 EXISTING PRODUCT S .ot ittt ittt ettt ettt e et e e ee e et et e e e st e st e st e e st eaneeans st esnsnnnsss 20
2.5 (@0 N[of I U1 0] R 21
2.6 RESEARCH SUMMARY ..eniiiiei it e et ee e et e e e e e e e e e e e e eeeaa e e s s e s et e eeanseennesenneernnnnas 22
CHAPTER 3 — SYSTEM DESIGNeeiiiiiie ettt e e e e e e e et e e e s e s s e e eaa e enanaeees 24

-V -

3.1 INTRODUGCTION 11ituiitniittettetteetesteesteetesnesssteessessstesnessasssnesneetetaestaestsessssnsensasstiesnnns 24

3.3 DESIGN CONCLUSIONS ... iettitet ettt ee et e et e e et e e e et e e seaee st eeeaa e esan s e et e eensessnesenneernnnnas 30
34 SYSTEM DESIGN SUMMARYiitniiieieeeteeeete e e e e s aeesaa e e saaseseta e saseeean e saaseraaeeeaeeraneeernns 31
CHAPTER 4 — SYSTEM IMPLEMENTATION ...ttt e e e e ena e ees 32
4.1 NI I0] 018 o 1 o) 32
4.2 I IMPLEMENTATION 1eutituittetttetn ettt et ett e et s et ssba s s esasssasst e sas st sstesnassssssnsesnsssnsesnnsssnees 32
4.2.1 DESION DECISIONS. ...ttt ettt et e e e e e e e e e e e e e e e bbbttt e e e eeaaaaaaae e e s 33
i Y 1= g To o (o] o |V 2R PEUPERURR 34
4.2.3Testing and Validation..........ccccuuuuiiiiiiiie e eeeee e e e e e e e e e e e e e 34
4.2.5 Problems ENCOUNTEr €0..........cuuiiiiieii e ee e e e s s e e st s e e s eeb s e e s eebaa e eeeenns 47
E R A= R = 1L To (L0 g T (= K 51
S A o g Tt [T= T o] o =T 54
4.3 SYSTEM | MPLEMENTATION SUMMARY 1..ittiitiiiiiiiieiteeiesaeeae st esasstsessnsssssesnessnsssnsesnsssnees 54
CHAPTER 5 - CONGCLUSION ... oottt e e e e et e e e e eea e e st s e et e e eaneeeen 56
LS TR K G0] N [of I 0] PPN 56
LI LU WU Y=Y AY] = N 57
L o] O i ST 59
APPENDIX A —PROJECT POSTER ..ottt e e e e e e e e e e e st eanaas 65
APPENDIX B — CD CONTENT S ..ottt e e e e e e e s et e e st s e e saa e s ebn e sbaeennnaas 67
APPENDIX C — CODE OVERVIEW ...ttt ee e e et e st e e et e s et e e s e e e eanas 69
APPENDIX D — TIMING TES TS ..ottt e e e e e e e e e e et e e e enaa e e s e e ean e eeaneees 74

List

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10
Figure 11

Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:

of Figures

The OSI stack [Davis, 2005].......cccceeeriiiiiiiiieeeeeeee e 7
Major Vulnerabilities in a multi-tier ggsn [Microsoft, 2003a]...................... 8
Example of an error message returnetidygatabase...........ccccccoooeennn. 15
Information flow diagramoooeeeeiii i 25
High level design VIEW............o e e ee e ee e e e e 26
XML file containing the settings of TDORYccceeeeeriiiiiiieeiin, 27
Flowchart of the TDSPIOXY SEIVEN ...ceeeuiiiiiiiiiiiieee e 28
State Change Diagram for Client QUELY...........uuueieeeeiiiiiiieeeaeeeaiaieieines 30
Proxy server connecting NetCat clienta tdetCat server..............ccceeeeeeee. 35
: Proxy server listening on port 4444............ccooooeiiiiiiiiee e 36
: NetCat simulating a server listeningoorn 5555..............cvviiiiiiiiiiieeeeeenn, 36
NetCat simulating one client connectethe proxyccccccceeeeeeenninnnnnns 37
NetCat simulating a second client cotegbto the proxy........cccccevvvvvveneee 37
Proxy server code setting up a view teeéonnecting to the database....... 37
SQL server database view created Vi@they SErvercccooeeeeeeeeeeeeee. 38
Use of OSQL and error message on shutad\proxy server.................... 39
Ethereal packet capture compared toypserver packet analysis.............. 40
Typical Usage sequences for TDS [FreeTDB5]..........covvvvvevvvvniciinneennn. 41
Packet format of all TDS packets [Fre8TBR005]cceeeevvviivverininnnnn. 41
Code showing the extraction of the queasn TDS query packet.............. 42
Successful SQL injection in the database...........cccccccvveiiiiiiiiee e, 43
Dropping a table using SQL iNJECHION............uuuuiiiiiiiiee e eeeeeeeeeeiieeeas 43
Database view of the dropped table.....cc.....cceeeiiiiiiiiiiiiiiieees 45
Login error — not a trusted SQL sen@Imection.............ooevvvvvvvvevnninnnnnn. 47
Packet capture showing a successfin igectly to the database............. 49

-Vi-

Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:

Attempted login from data access phagmugh proxy server..................... 50
The average web transaction processimggon hons08............................ 52
The average web transaction processimegon Netserv..........ccceeeeeeeeeeee. 52
Graph showing the average web througiopihe client or server........... 53

Graph showing the average processimg of TDSProxycccceeeeeen... 54

FIgure A.L: ProjeCt POSIENccco oot e e e 66
Figure B.1: Contents Of Project CD.........ccoeeeeriiiiiiiiiiciie e 68
Figure C.1: TCPSOCK ClaSS.......ccciiiiiiiiiaeceeee ettt e e e e eeeeeesaeeeeeeeeeeeeee 70
Figure C.2: ProxyBackend CIassS..........uuuiueiiieeiiiiiiiiiiiieieee e 71
FIQUrE C.3: LOGQEr ClasS.......uuuuuuuiiiiiicccmreeeeeeeeiaiittses s s e e e e e eeeeeaaeeeesseeeenseesssssnnnes 71
FIGUIE C.4: FIltEr CaSS.....ciieiiieiiiiiiiiiiee ettt e e e e nea e e e e e e e e e e e aeeees 72
Figure C. 5: UDPSEIVEr ClassS........cooiiiiieeee et ee e 73
Figure D.1: Graph showing hons08 select page <€fdioedatabase............cccccccevveeeen. 76
Figure D.2: Graph showing hons08 insert page -€tiicedatabasecccccceeeenn... 77
Figure D.3: Graph showing hons08 select page, TBSPNo filter........................... 78
Figure D.4: Graph showing hons08 select page, TDSPFilter ... 79
Figure D.5: Graph showing hons08 insert page - TDSE no filter.......................... 80
Figure D.6: Graph showing hons08 insert page — TDSRfilterooovvvvvvennnnnnn. 81
Figure D.7: Graph showing netserv select pageeetio database............cccccoeeeee. 83
Figure D.8: Graph showing netserv insert page ectlto database 84
Figure D.9: Graph showing netserv select page, T8RP no filter........................... 85
Figure D.10: Graph showing netserv select page,PrDSgy, filter...........ccccccceeeeenennn. 86
Figure D.11: Graph showing netserv insert page, A0Sy, no filterccc.......... 87
Figure D.12: Graph showing netserv insert page TOSRfilterccccceeeeeeennn. 88

- Vii -

List of code boxes

Code Box 1:
Code Box 2:
Code Box 3:
Code Box 4:
Code Box 5:
Code Box 6:
Code Box 7:
Code Box 8:
Code Box 9:

A typical SQL StatemMeNtuueemcemiiiiiieeeeieccrr e e e eeeeeee e 3
RESUIANT QUETYvieiiiiii e et s e e e e e e e e e e e e e e eeeeeeneeeeeeeeenees 4
Code showing a SQL injection vulnerhil...............ccoovviiiiiinininnee. 4
Code to replace a single quote withgimgle quotes...........ccccccceeeeeeennn. 16
Stored procedure code to produce adehservice attack 18
A stored procedure that is vulnerabI8QL injection................cc........ 18
Code showing a vulnerable stored pra@ed...........cccooeveeeiiiiiiiiiiiiiniinn, 19
The resulting SQL ..o 19
Editing the connection string to stipela trusted connection................. 48

List of tables

Table 1: G0OQIe SEAICNcccee et e e 3
Table 2: TDS Packet Types and their descriptionsdFDS, 2005]ccccovevieeeeeeennn. 41

- viii -

List of text boxes

TeXt BOX 1: USEI INPULeeveiiiiieiiis s immmmme e e e e e eeeeseteteses s s e e e e e e e eseeeeeseeeeeneeeseeessnsnnnns 4
Text Box 2: User input to delete the users tabl@u............cooooiircicicc, 4
Text Box 3: The parameter passed t0 @CUStNAME ccceeeooiiieiiiieeiiiiiiiiiee e 19
Text Box 4: SQL injected queries executed by tHalt#seccceevvvvveeieiiinnnnns 44
LIl =0)t T o To 1 = 1 o] 47

-iX -

CHAPTER1 - INTRODUCTION

Chapter 1 - Introduction

1.1 Introduction

According to [Kline, 2004], in the early 1970s, teeminal work of IBM research
fellow Dr. E. F. Codd led to the development oktational data model product called
SEQUEL, or Structured English Query Language. SEQUIEmMately became SQL, or
Structured Query Language. American National Stadgdlnstitute (ANSI) has released
standards for SQL in 1986, 1989, 1992, 1999, a320

Structured Query Language (SQL) is a textual mhati database language. Its
command set has a basic vocabulary of less thanwi®fs. According to [Anley,

2002a], there are many varieties of SQL; howeves, differences among the various
dialects are minor. Most dialects are loosely baasmlnd SQL-92. According to

[Kline, 2004], some of the popular dialects of Si@tlude:

* PL/SQL, found in Oracle.

» Transact-SQL, used by both Microsoft SQL Server yldase Adaptive Server.
* PL/pgSQL, implemented in PostgreSQL.

e SQLPL (SQLProcedural Language) is the newest diag®B2 .

SQL functions fit into two categories:
» Data definition language (DDL): used to createdatzind define access rights.
» Data manipulation language (DML): SQL commands #ilkiw one to insert,
update, delete, and retrieve data within datakesed [Rob and Coronel, 2002].

1 Page 1 of 88 r

CHAPTER1 - INTRODUCTION

The typical unit of execution of SQL is the quemhich is a collection of statements

that typically return a single result set [Anlep02a].

SQL injection is a method by which users take athgen of dynamic SQL through

which parameters of a web-based application armetidogether to create the query to
the backend database [Finnigan, 2002] [Anley, 2DJZhuvakin and Peikari, 2004]

add that SQL injection is not only an attack on ttegabase but an attack on the
database-driven application. There are many meashia¢ can be taken to prevent SQL
injection including ensuring that database privélegare to a minimum, using input
validation programming techniques, suppressingrenmessages returned to the client,

checking error logs and filtering malicious SQLtstaents [Finnigan, 2003].

Doing a Google search on "sqgl injection flaw vubdaglity" returns over 171 000 hits.

According to [OWASP, 2004] and [WebCohort Inc., 2))0njection flaws has been

sixth in the top ten vulnerabilities for the pastotyears and that 62% of web
applications are vulnerable to SQL injection atladdany web applications have been
developed and deployed with SQL injection vulndités. The problem is that most of

the application owners do not even know that tapplications are vulnerable to SQL
injection. At least 92% of web applications arenarbble to some form of hacker
attacks [WebCohort Inc., 2004].

According to Google and the United States Comphteergency Readiness Team (US-
CERT), there has been an increase in the numbe&Qif injection vulnerabilities
reported over the past five years. The number dherabilities on the US-CERT
website has almost doubled in the last year (se&Ty.

Google Search String Hits
sql injection vulnerability US-CERT 200585,400
sql injection vulnerability US-CERT 2004 38,800
sql injection vulnerability US-CERT 200831,100
sql injection vulnerability US-CERT 2002 16,600
sql injection vulnerability US-CERT 2001 524

1 Page 2 of 88 r

CHAPTER1 - INTRODUCTION

Table 1: Google search

According to [Hoglund and McGraw 2004], fault injien tools can be used to inject
malformed or improperly formatted input to a targeftware process to cause failures.
With the advent of automated tools such as Acun¥éfigb Vulnerability Scanner
[Acunetix Ltd., 2005], Absinthe (which used to beokvn as SQueal) [Nummish and
Xeron, 2005] and Whitehat Sentinel [WhiteHat Segurinc., 2005] the risk of SQL
injection exploits has risen. This was limited e tpast by exploits having to be carried

out manually. This was tedious and time consuming.

In research and commercial products, there is acelg@roving SQL injection can be
prevented using means not so closely related toddtabase and web application
[Ristic, 2005] [Seclutions, 2003]. These methodspproach have been developed to
produce a more generic solution to a problem thatiires a lot of attention to detail at
the root of the problem - the application code aathbase deployment. Traditional
means of protecting against attacks include soootke auditing, protecting dynamic
input and limiting database privileges granted sers. However, auditing all of the
source code and protecting dynamic input is notiaki neither is reducing the
permissions of all applications users in the datahtself [Finnigan, 2003]. Therefore,
developing a filter seems to be the best solutmmpreventing SQL injection. This
project will provide an independent applicationtthdl sit between the web application

and the database in order to provide security ag&QL injection attacks.

1.2 Example of SQL Injection

A typical SQL statement is shown in Code Box 1.

select id, forename, surname from authors where for ename = ‘Joe’ and

surname = ‘Bloggs’

Code Box 1: A typical SQL statement

An important point to note is that the string l#tksr are delimited by single quotes. The

user may be able to inject some SQL if the useviges the input shown in Text Box 2.

1 Page 3 of 88 r

CHAPTER1 - INTRODUCTION

Forename{o’e Surnameloggs

Text Box 1: User input

The query string formed from the input shown in ffBgx 1 is shown in Code Box 2.

select id, forename, surname from authors where for ename = ‘Jo’e’ and

surname = ‘Bloggs’

Code Box 2: Resultant query

In this case, the database engine will return &or €lue to incorrect syntax in the SQL

query that it received.

In many web languages, a critical vulnerabilitythe way in which the query string is
created. An example is shown in Code Box 3.

var SQL = "select * from users where username = " + |username | + "

and paSSWOrd =gy password + mu;

Code Box 3: Code showing a SQL injection vulnerabtly

If the user specifies the input shown in Text Boxttie 'users' table will be deleted,

denying access to the application for all userdgpn2002a].

Username}‘; drop table users—

Text Box 2: User input to delete the users table

1.3Problem Statement

The aim of this project is to produce software thalt prevent SQL injection by
filtering SQL query strings through a filtering pxo server. This will be done by
analysing the structure of SQL query commands amestigating common SQL
injection techniques. This will then be followed byilding a filtering proxy server
which will use attack signatures to prevent SQleatipn. This aims to allow protection
of vulnerable applications or complex applicatiotmat are difficult to audit for

vulnerability bugs.

1 Page 4 of 88 r

CHAPTER1 - INTRODUCTION

In an effort to reduce the deployment of vulneradgpglications an extension of this
project is to produce a list of best practicesDatabase Administrators and Software

Developers with respect to preventing SQL injection
1.4Document Structure

« Chapter 1 presents an introduction to the projext autlines the work being
presented in this document.

* Chapter 2 outlines some of the literature that wased to aid the design and
implementation of the project.

e Chapter 3 details the design of the project sofwar

» Chapter 4 runs through the implementation and tesfithe project.

« The final chapter, chapter 5, draws conclusionstten work done and provides

possible project extensions.
1.5Introduction Summary

SQL injection makes use of dynamic SQL. Dynamic $@ppens when parameters are
chained together to create the database query. Wistapplications are vulnerable to
SQL injection or some form of hacker attack. Thare many measures that can be
implemented to reduce the chance of an attack. Memydiltering malicious SQL
statements seems to be the best solution in piegeSQL injection. Therefore, this
project aims to produce a filtering proxy serveptevent SQL injection. In addition, a
list of best practices that will provide a referenpoint to reduce the chance of

deploying vulnerable applications.
The next chapter outlines the literature relevanthe project in an attempt to analyse

the background and seek a direction for the deaighimplementation of the project.

This is then followed by chapters showing the rssaihd conclusion of the project.

1 Page 5 of 88 r

CHAPTERZ2 - RESEARCH

Chapter 2 - Research

2.1Introduction

This chapter will present some of the literaturatesl to this project as well as some
suggested prevention methods. The chapter aimattS@L injection into perspective
by outlining some of the material and research bz already been completed. The
section on suggested methods of mitigating SQLctiga aims to clarify some
misconceptions about SQL injection prevention amdvides some useful tips to
software developers and database administratofstiek review of existing products

concludes the chapter.
2.2 Literature Review

According to David Litchfield [Litchfield, 2005],ree of the first publications revealing
SQL injection was a 1998 Phrack 54 issue [Phra®®5R which was published on
Christmas Day that year. The article by rain fopagipy in that publication did not use
the term SQL injection but contained details oflekp.

SQL injection is a way to attack a database throadinewall by taking advantage of
non-validated SQL vulnerabilities. It is a method which the parameters of a Web-
based application are modified in order to chahgeSQL statements that are passed to
a backend database. An attacker is able to ins=ti@s of SQL statements into a query
by manipulating the data input, for example, by iagda single quote (‘) to the

parameters. It is possible to cause a second qoiéxy executed with the first.

1 Page 6 of 88 r

CHAPTERZ2 - RESEARCH

In his paper entitled Advanced SQL injectidn Chris Anley [Anley, 2002a]
demonstrated that application developers oftennchagether SQL commands with
user-provided parameters, and can therefore emiigid &mmands inside these
parameters. This is known as dynamic SQL. AccordmdPeter Finnigan [Finnigan,
2002], dynamic SQL must be used in the applicattdrerwise SQL injection is not
possible. SQL injection has been described [Ovexst2004] as a “code hole” that is as

serious as any IS hole.

According to Pete Finnigan [Finnigan, 2002], exigtiSQL can be short-circuited to
bring back all data. This technique is often usedgain access via third party-

implemented authentication schemes.

Ivbyradd data encryption -} Application Layer
Defines A5CT, EBCDIC, MIDL MPEG, FICT and GIF (] Fresentation Layer
SCL, HES, RPC, NetBICS are Session layer protocols -] Session Layer
Provides flow control and error e overy [TCF / TUDFP] [j] Transport Layer
logiral addressing , exd-to-end delivery of packets -j] Metworks Layer
Translates data irto fiames and adds a CRC [—-m Diata Link Layer
Enendes and trangmitting data bits ([- Physical Layer

Figure 1: The OSI stack [Davis, 2005]

It must be noted that firewalls, which traditioyatiperate at the network layer or layer
3 or the OSI stack, cannot protect against SQLciige as it takes place at layer 5 or
the session layer of the OSI stgékcomsoft Ltd., 2003]. This can be clearly seen in
the OSI stack diagram in Figure 1 above and is apg@ by [Imperva Inc., 2004].
Figure 2 shows the major points of vulnerabilityansimple multi tier system. SQL

injection takes place at the client.

Because the coding hole has created a direct tdon&IQL injection from the client to
the database, an attack is possible via a web rsevlien the user has legitimate
database access. According to Pete Finnigan [FAnni@002], an attack against a
database using SQL Injection could be motivatethbse primary objectives:

1. To steal data from a database from which the daiald not normally be available.

1 Page 7 of 88 r

CHAPTERZ2 - RESEARCH

2. To obtain system configuration data that wouldallen attack profile to be built.
One example of this would be obtaining all of tleathase password hashes so that
passwords can be brute-forced.

3. To gain access to an organisation’s host compwi@rshe machine hosting the

database.
Unauthorized Disclosure of Mebwaork
Access Schema and Eavesdropping

Connection Details

SOL Injection

Firewall SQL Server

Client —%—o Web App —Ir[]

!

Disclosure of
Disclosure of Configuration Data Sensitive
Configuration Data (Connection Strings) Application
Cata

Figure 2: Major Vulnerabilities in a multi-tier syst em [Microsoft, 2003a]

According to David Litchfield [Litchfield, 2001] ahPete Finnigan [Finnigan, 2002],
the following are some programming languages, A&tsl tools that can access
databases and be part of a Web-based application.

« Java Server Pages (JSP)

» Active Server Pages (ASP)

« XML, XSL and XSQL

» JavaScript and Asynchronous JavaScript and XMLxXAja

* Visual Basic, C sharp, Java and other ODBC-basad tmd APIs

e 3- and 4GL-based languages such as C, PHP and COBOL

* Perl, Python, Ruby and CGI scripts.

None of the above languages implicitly provide wayprotect against SQL injection.

According to Greg Hoglund and Gary McGraw [Hoglusnad McGraw 2004] in their
book entitled “Exploiting software: how to break code’deep operating system

integration leads to a security risk because iatiggn runs counter to the principle of

1 Page 8 of 88 r

CHAPTERZ2 - RESEARCH

compartmentalization. They also mention that onenroon assumption made by
developers is that users of their software will arelbe hostile. Unfortunately this is a

bad assumption to make as there are malicious wersvill try to break software.

[Hoglund and McGraw 2004] also state that accepdimgthing blindly from the client
and trusting it is a bad idea, and yet this isrotiee case with server side design. A
potential hacker should not be implicitly trusteg a software system. Yet, most
software happily accepts raw input from the usempéoform database queries, file
operations and system calls.

According to Maor and Shulman [Maor and Shulmar)30SQL injection attacks
have been on the rise in the last few years. Theyne research that has proved that
suppressing error messages - going back to theurigeddy obscurity” approach
[Finnigan, 2003] - cannot provide a real solutiorapplication level risk but can add a
measurement of protection. This is because nornrdton can be inferred from error

messages sent back to the client by the database.

[Microsoft, 2003b] offers the following tips for @venting SQL injection:

* Validate all user input before transmitting it toetweb or database server.
Authentication on the client side is vulnerableSQL injection. According to
[Hotchkies, 2004], it is possible to bypass thehantication on the client side.
Therefore, the server must validate the input kexkiin order to protect the
database from unauthorised access.

* Permit only minimally privileged accounts to sersg¢uinput to the server.

* Run SQL Server itself with the least necessaryilpges.

Chuvakin and Peikari, in their book entitl&ecurity Warrior” [Chuvakin and Peikari,
2004], state that there are four types of SQL tigec-
* Unauthorised data access permits the attackeridk the application into
returning data that the attacker should not be tbbee.
» Authentication bypass allows unauthorised accesdata-driven applications
without proper authentication credentials. The ckiéa is then allowed to
observe data from the database.

1 Page 9 of 88 r

CHAPTERZ2 - RESEARCH

» Database modification lets the attacker insert, ifgjodr destroy database
content without authorisation.
» Escape from a database allows the attacker to @mge the database host and

possibly even attack other systems.

The novel presentation by Hotchkies [Hotchkies, 0@t a Black Hat USA 2004

convention outlines automated blind SQL injectieahiniques. Because the automation

tools are able to ask the database as many yeséstians as they like, it is possible to

use a binary search, for example, to discover ama&acter long username with 62

requests. Discovering the full database schemadixaile a few days, depending on the

size of the database. Blind holes give the usafsa sense of security. He mentions that
string comparison is suitable for error based S@écition but not blind SQL injection.

He also mentions that there are three kinds of Bqgiction:-

* Redirecting and reshaping a query involves insgr8@L commands into the query
being sent to the database. The commands alloveet dittack on the database.

* Error message based SQL injection makes use ofd#tabase error messages
returned to the client. The messages provide chase$o the database type and
structure as well as the query structure.

e Blind SQL injection which involves a certain amouot guesswork and thus
requires a larger investment in time. The attatkes many combinations of attack
and makes the next attack attempt based on thenphetation of the resulting html
page output received from the target website. They then able to infer the
database type and structure. It should be notddS®4a injection can still occur if
there is no feedback to the client. So, one corddte a new valid user in a database

without receiving errors and then log on.

David Litchfield [Litchfield, D 2005], in his recémaper titled Data-mining with SQL

Injection and Inferencedefines three classes of SQL injection, namelyamd, out of

band and inference. They are outlined below:-

* Inband uses the existing connection to the datatmas®nipulate the database. An
example of this would be to use the data returnea well formed web page or an

error message.

1 Page 10 of 88 r

CHAPTERZ2 - RESEARCH

e Out of band requires a new channel to be openedeket the client and the
application. This usually requires the databasedwonect out to the client using
email, http or a database connection.

* Inference does not require any data transfer dbulluses properties such as web
server response time or web server response cblssallows the attacker to infer
the value of the data they are enquiring abougeréfce can be done at the bit level
and the core of the attack is a simple questiorthéf answer is A, do Y; if the
answer is B, do Z. David Litchfield has termed tsy slow data-mining process
“data chipping”. In the appendix to the paper thare advanced methods to avoid

using single quotes, spaces, angle brackets, thperaand and the equals’ character.

[Microsoft, 2003a] provides a good background itite problem of SQL injection by
providing explanations of the components of SQLleédtipn strings and the syntax
choices. The examples include SQL injection attaoks show the creation of a secure

data access component using Java’s regular expnassi

[Beyond Security Ltd., 2002] provides concise exemf SQL injection and database

error messages as well as methods on how to pré&@ninjection.

[Spett, 2002] of SPI Dynamics presented a papetr describes SQL injection in

general. It goes through some common SQL injectemihniques and proposes data
sanitizing and better coding as some of the saistto the problem. The paper provides
a list of database tables that are useful to S@Hction in MS SQL Server, MS Access
and Oracle. It also provides examples of SQL impactising select, insert, union, stored
procedures. The examples work with a web serviaeréturns information to the user.
The paper deals primarily with the structure of tB@L injection commands and

guidelines to reducing errors returned by the degab

Mr. Grossman, CEO of White Hat Security, Inc., i8 presentation at the Black Hat
Windows Security 2004 convention, outlines the lemges of scanning web
application code for vulnerabilities. He points dbtat the scanner is restricted to
looking for classes of vulnerabilities such as S@kction or cross site scripting. The
reason for this being that the benefit of knowrusigg issues is lost because the remote

scanner does not have access to the source cotteuiMhe source code, knowledge of

1 Page 11 of 88 r

CHAPTERZ2 - RESEARCH

the programming language or even what platform dpplication resides on, it is
virtually impossible for a remote vulnerability sweer to pick up known critical

vulnerabilities. He states that the problem withoawated web application scanning is
in detecting "known security issues in unknown ¢d@rossman, 2004].

[Ke, Keromytis, and Prevelakis, 2003] presentedrtipaper on Countering code-
injection attacks with instruction-set randomizatioin Proceedings of the 10th ACM
conference on Computer and communication securityashington D.C. in 2003. This
intriguing work describes a new, general approactséfeguarding systems agaiasy
type of code-injection attack. This is done by tirep process-specific randomized
instruction sets €.g., machine instructions) of the system executing patin
vulnerable software. An attacker who does not kriber key to the randomization
algorithm will inject code that is invalid for thaandomized processor, causing a
runtime exception. This method of protection canused to protect scripting and

interpreted languages from code injection attacks.
2.3Prevention Methods

There are many preventative measures that can filerimented by the administrator of
the database and web application interfaces. Tinek&le ensuring that the users have
the minimum database privileges possible, usingutinpalidation programming

techniques, suppressing error messages returnin tdient, checking error logs and

filtering malicious SQL statements. These are erplhbelow in more detalil.
2.3.1Database Privileges

According to [Howard and LeBlanc, 2003], when depelrs usésa’ accounts to
ensure that everything works so that no extra gondition is required at the back are
also ensuring that everything works for the atteskeo.

Prevention is better than cure. One should adoptptiinciple of least privilege by
ensuring that the users created for the applicatitave the privileges needed and all
extra privileges (such as PUBLIC ones) are notlalbld. According to [Microsoft,

2003a], this principle can be extended by perngtonly minimally privileged accounts

1 Page 12 of 88 r

CHAPTERZ2 - RESEARCH

to send user input to the server and running thabdse server itself with the least
necessary privileges. The application generallysdu® needdbo’ or ‘sa’ permissions.

By limiting the permission granted to the database is able to limit the vulnerability

of the database. Generally, users should not levedl to delete records from a
database. They should only be granted the minimuwilgges required for the tables
that they need whilst not having any rights to ascebles that they do not require.
Read only access is far safer than read write ac&sh read only and read write are

far safer than full control.

With Microsoft SQL Server, if the database conretstring uses the security context
of ‘dbo’, it is possible to use Data Definition Languag®) SQL commands such as
drop and create If the database connection uses the securityegbrdf ‘sa’, it is
possible to control the entire SQL Server, and urile correct configuration even
create user accounts to take control of the Windeerver hosting the database
[Overstreet, 2004]. [Overstreet, 2004] suggests tirae should consider using a
separate account for each component with data @ccepabilities to isolate
vulnerabilities. For instance, a front-end pubhiterface to one’s Web site needs more

restricted database access than an internal canterdgement system.

[Finnigan, 2003] is an extension of a two-partgrapn investigating the possibilities
for an Oracle database administrator to detect Bfgiction. The paper provides many
scripts on SQL injection and extracting logs andgthrough worked examples of SQL
injection attacks. The paper focuses on detecti@g Bjection by auditing the error
message log files and attempts to highlight thé tfaat during a hacking attempt, the
error messages leave a trail that can help expeseuinerabilities of the database being
attacked. According to [Finnigan, 2003], there asvmay to provide everyone with the
minimum privileges necessary and thus his papeloex® some simple techniques in
extracting the logging and trace data that coulduged for monitoring. This will be
discussed in the next section.

2.3.2Error Trace

Some detection is better than none at all. It siezato detect if SQL injection has

occurred by auditing the errors generated wher#oger is trying to gain access to the

1 Page 13 of 88 r

CHAPTERZ2 - RESEARCH

database as opposed to auditing of the SQL comnex®tsited. These error messages
can be as useful to the hacker as they are to dtabase administrator building up
database queries and stored procedures [Finnig203].2According to [Finnigan,
2003], SQL injection detection is possible but moteal time. One should use the log
files of traced data to scan for irregular SQL estants. A few of the disadvantages of
this are that it requires a large computationalrlozad, a large amount of disk space
may be required to store the logs and by the timehmas found that a table name or a
view has been changed, it is too late - the danmagealready been done. One other
point that [Finnigan, 2003] makes is that an a#ac&an steal the admin account,

making it hard to distinguish normal administratfoom an attack on the database.
2.3.3Suppressing Error Messages

Error messages typically contain information than doe used to make informed
decisions on the next attack method. Security bgcofity tries to reduce the
unnecessary information from being sent back todent. According to [Cerrudo,
2004], [Anley, 2002a] and [Litchfield, 2001] erroressages can be used to determine

information such as the database type and tahletste.

An example of a useful error message is shown gurei 3. By enteringgroup by
(username) -- into the input box, the error message returnedsgin®rmation about

the type of database as well as the table and ecohame.

[Microsoft, 2003a] and [Overstreet, 2004] adviseoging any technical information
from client-delivered error messages. [Maor andli@ha, 2003] makes the point that
the absence of error messages makes it hardeobumpossible to use SQL injection if
the application is vulnerable. They also outlingegach that has proved that suppressing
error messages - the “security by obscurity” apgioacannot provide a real solution to
application level risk. Applications have still pen to be vulnerable despite all efforts
to limit information returned to the client. Accamg to [Chuvakin and Peikari, 2004],
the obfuscation method of defence is a poor meéniefence and should be coupled

with good coding.

1 Page 14 of 88 r

CHAPTERZ2 - RESEARCH

/3 The page cannot be displayed - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help

. -l\ --\: _‘-"',_ ; B T
I)Back - _J - Iﬂ IELI | Search M.-_‘,\f:) Favorites €“ - - .;‘

&ddress @ htkp: fflocalhost/projectiprocess_login, asp?username= 27 group+by+%280sername ¥ 29--&password=

GDLngEv j| |G| Search = | @ @31 blocked

5L Check - 4, Autolink

The page cannot be displayed

There is a problem with the page vou are trying to reach and it
cannot be displayed.

Please try the following:

® Click the Refresh button, or try again later,
® Open the localhost home page, and then look for links to the
information you want,

HTTP 500.100 - Internal Server Error - ASP error
Internet Information Services

Technical Information {for support personnel)

® Error Type:
Microsoft OLE DB Provider for SQL Server (0x80040E14)
Column 'users.password' is invalid in the select list because it
s not contained in either an aggregate function or the GROUP
BY clause,
fprojectfprocess_login.asp, line 29

® Browser Type:
Mozilla#4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;
MET CLR 1.1.4322; .MET CLR 2.0,50215; InfoPath.1)

® Page:
GET fproject/process_|ogin.asp

* Time:
03 Maovernber 2005, 01:33:57 AM

More information:
Microsoft Support

Figure 3: Example of an error message returned by #h database
2.3.4Sanitising

[Microsoft, 2003a] says that web applications sHowuélidate all user input before
transmitting it to the server. Programmers shoutlmake use of dynamic SQL that
uses concatenation anywhere in the applicationn[§an, 2002] [Finnigan, 2003]. If
concatenation is necessary then the input shouldhieeked for malicious code, i.e.

unions in the string passed in or meta-charactgb as quotes. Using numeric values

1 Page 15 of 88 r

CHAPTERZ2 - RESEARCH

for the concatenation part is a way to ensure3i@t strings cannot be injected into the

query [Finnigan, 2002].

Fortify Software Inc. [Fortify Software Inc., 2004ims to give companies an
automated way to discover flaws in code that cdeltd to threats such as buffer
overflows, format string errors and SQL injectioplits. When reviewing the source
code for dynamic SQL where concatenation is used,should find the call that parses
the SQL or executes it. Input values must be veddiaquotes must be matched and
meta-characters must be checked [Finnigan, 200&Jalo’s ScanDo web application
scanner [Kavado, 2005] creates a report showing twwliminate web application

vulnerabilities after scanning the entire website.

Web Application Vulnerability and Error Scanner (WBS, an open-source project
available at http://waves.sourceforge.net) is preskby [Huang, Huang, Lin, and Tsali,
2003] at the 12th international conference on Waklitle Web table of contents in
Budapest, Hungary. This security assessment taotheability to learn from previous
experience and build up its injection knowledgeb&$AVES detects SQL injection by
using a black-box “complete crawling” mechanism aaderse engineering the web
application to determine all data entry points ahén applying fault injection
techniques. This intriguing project is presentetheir papetfWeb Application Security
Assessment by Fault Injection and Behavior Momigti [Huang, Huang, Lin, and
Tsai, 2003].

When using Active Server Pages (ASP) technologh wittive Data Objects (ADO),
[Litchfield, 2001] suggests that the fix for the S@jection problem is better coding
which includes theeplace() function for strings is a way to escape singletgsian
SQL. [Overstreet, 2004] reaffirms these sanitizatiechniques, adding that one should
check all input received from any ASP request dbgeg. Request.QueryStringAn
example of this is shown in Code Box 4. Howeveis thill not work on fields that do
not require string inputs or if the user uses a égxivalent of the word [Howard and
LeBlanc, 2003].

Replace(Request.Querystring("foobar"), ™", " ™)

Code Box 4: Code to replace a single quote with twsingle quotes

1 Page 16 of 88 r

CHAPTERZ2 - RESEARCH

[Chuvakin and Peikari, 2004] advise regular petietnatesting and web application
scanning. These tests will provide reports on howpatch vulnerabilities in the

application. A web shield should be used for adddi layered security.
2.3.5SQL Signatures - Filtering SQL Injection

Data Definition Language (DDL) can be injected iDDis used in a dynamic SQL
string. Other databases can be injected throughfitee by using database links
[Finnigan, 2002]. According to [Microsoft, 2005],idfosoft® SQL Server™ 2000 uses
reserved keywords for defining, manipulating andeasing databases. Reserved
keywords are part of the grammar of the Transadt-B@guage used by SQL Server to
parse and understand Transact-SQL statements &iftebaAlthough it is syntactically
possible to use SQL Server reserved keywords astifiées and object names in
Transact-SQL scripts, this can only be done uselgnited identifiers. In addition, the
SQL-92 standard defines a list of reserved keywofd®id using SQL-92 reserved
keywords for object names and identifiers. The ODi&Served keyword list is the
same as the SQL-92 reserved keyword list. The SBlekserved keywords list
sometimes can be more restrictive than SQL Semérad other times less restrictive.
For example, the SQL-92 reserved keywords listaiastINT, which SQL Server does

not need to distinguish as a reserved keyword.

[Microsoft, 2005] also adds that transact-SQL resérkeywords can be used as
identifiers or names of databases or databasetebmach as tables, columns, views,
and so on. Use either quoted identifiers or deéichitdentifiers. The use of reserved
keywords as the names of variables and stored guoeeparameters is not restricted
[Microsoft, 2005]. The effect of this possible olgr with keywords being used is that
filtering out false negatives is more likely. Thieir will not be able to determine if the

words are legitimate or are part of an attack quByythe same token, allowable words
based on the database schema may lead to harndal massing through the filter

undetected.

1 Page 17 of 88 r

CHAPTERZ2 - RESEARCH

Existing SQL can be short-circuited to bring battkdata. This technique is often used
to gain access via third party-implemented autleation schemes. A large selection of
installed packages and procedures are availabMiomsoft SQL Server 2000. These
include packages to read and write O/S files. [BelySecurity Ltd., 2002] suggests that
stored procedures such a®_cmdshell, xp_startmail, xp_sendmail and
sp_makewebtask in the master database should be deleted if theyair going to be

used.

Executing the stored procedure shown in Code Bail4revent the SA account from

logging onto the server, a powerful denial of ses\attack [Lawson, 2005].

XP_REVOKELOGIN{[@LOGINAME=]'SA’}

Code Box 5: Stored procedure code to produce a dethiof service attack

Users should not be able to perform direct CRUDeéBr, Read [Select], Update and
Delete) statements. Erland Sommarskog [SommarsR085], SQL Server MVP
(Microsoft Valued Professional) advises that stgoeatedures should be used because
they increase performance. For example, with a B@igct statement that relies only on
the where clause being changed, using a store@égwoe can limit the amount of data
transferred. Another reason for using stored proeedis because SQL server caches
the first execution of the stored procedure. Counsatjcalls to the procedure will be

executed in less time.

According to [Anley, C 2002b], it is possible faioeed procedures to be vulnerable to

SQL injection. In his example shown in Code Box By default, the

'sp_msdropretry’ system stored procedure is accessible to ‘pubiat'alows SQL
injection.
sp_msdropretry [foo drop table logs select * from s ysobjects], [bar].

Code Box 6: A stored procedure that is vulnerablea SQL injection

Consider the procedure in Code Box 4, as illustrate[Sommarskog, 2005]:

CREATE PROCEDURE search_orders @custname varchar(8Q)LL,

1 Page 18 of 88 r

CHAPTERZ2 - RESEARCH

@prodname var@@y = NULL AS

DECLARE @sql nvarchar(4000)
SELECT @sql ='SELECT * FROM orders WHERE 1 =1"
IF @custname IS NOT NULL

SELECT @sql = @sql + ' AND custname LIKE "' + @oame + "
IF @prodname IS NOT NULL

SELECT @sql = @sql + ' AND prodname LIKE "' + @jmwame + "
EXEC(@sql)

Code Box 7: Code showing a vulnerable stored procate

Assume that the input for the parameters @custreamde@prodname comes directly
from user-input fields. Assume further that a malis user passes the value in Text

Box 3 to @custname, the resulting query is show@dde Box 6.

' DROP TABLE orders --

Text Box 3: The parameter passed to @custname

SELECT * FROM orders WHERE 1 = 1 AND custname LIKE " DROP TABLE
orders --'

Code Box 8: The resulting SQL

According to [Anley, 2002b], the vulnerability isuesed by thexec® statement. Any
stored procedure that uses thec' statement to execute a query string that contains
user - supplied data should be carefully checkedSIQL injection. [Howard and
LeBlanc, 2003] suggest using tlgeotename(¥unction for object names and using

sp_executesqb execute dynamically built SQL statements.

According to Litwin [Litwin, 2005], using parameieed SQL greatly reduces the
hacker's ability to inject SQL into your code. Paitvin is a lead programmer with
Fred Hutchinson Cancer Research Center in Seblles the chair of the Microsoft
ASP.NET Connections conference and the owner ofpD&aining, a .NET training

company. [Howard and LeBlanc, 2003] advise theafsgtrongly typed parameters in

the web application because parameterised queedaster and more secure.

According to [Finnigan, 2002] and [Finnigan, 200&mmon attack techniques include
the use of:

1 Page 19 of 88 r

CHAPTERZ2 - RESEARCH

*« UNIONS that can be added to an existing statemenexecute a second
statement;

* SUBSELECTS which can be added to existing statesnent

* A large selection of installed packages and stgmextedures which include
packages to read and write O/S files;

» Data Definition Language (DDL) can be injected iDDis used in a dynamic
SQL string;

« INSERTS, UPDATES and DELETES; and,

» Other databases can be injected through the firasimg database links.

According to [Chuvakin and Peikari, 2004], there two types of external filtering that
only allow legitimate requests to pass throughahstem. SQL shielding protects the
database and web shielding protects the web afipliciself. Patiently trying various

innovative injection types may result in the atexckypassing this method of defence.
2.4EXxisting Products

Applications have still proven to be vulnerable gitss all efforts to limit information
returned to the client. There are a few applicatidhnat have been developed by
companies in an effort to provide a solution te thioblem. Some have been outlined
below:

» SecureSphere [Imperva Inc., 2005] uses advancednapodetection, event
correlation, and a broad set of signature dicti@satio protect web applications and
databases. It also uses error responses frommie isser to identify an attack.

* ModSecurity is an open source intrusion detectiogiree for web applications,
which may provide helpful tips on how to detect Si@jection. [Ristic, 2005] has
developed ModSecurity for Java which is a Servi8tfiter that stands between a
browser and the application, monitors requestsrasgonses as they are passing by,
and intervenes when appropriate in order to preatatcks.

* AirLock combines secure reverse proxy with intraspyevention, content filtering,
user authentication enforcement, and applicatioati®ad balancing and failover
[Seclutions, 2003]. (Seclutions’ AirLock was awailldbe Swiss Technology Award
2003)

1 Page 20 of 88 r

CHAPTERZ2 - RESEARCH

* McAfee® Entercept® Database Edition [Networks Asates Technology, Inc.,
2005] provides many sophisticated proactive dawlpastection techniques. The
SQL interception engine screens all incoming datalzpueries and blocks any that
would cause malicious activity; database shielditarks both outside penetration
and malicious use

« Amongst many features, Connectra Web Security Gatd@heck Point Software
Technologies Ltd., 2004] can prevent users fromessiag confidential data using
directory traversal or SQL injection attacks whitsviding connectivity at the

same time.
2.5Conclusion

"A true SQL injection tool would involve writing parser or filter to analyse the SQL
statements” [Finnigan, 2003]. The ideal solutioroisouild a filter that checks for all
cases of SQL injection possible. The problem witls tis that a list of all possible
injection strings is not possible to define [Firaaig 2003]. This is suggested by [Maor
and Shulman, 2004] in their paper ‘@QL Injection Sighatures Evasion’'However,
going back to the principle of least privilege, bsing a white list, it is possible to

define what is allowed and thus prevent invalichaigres.

The filtering application should sit as close te tlatabase as possible. Ideally it should
sit on the same machine as the database; howbisemay have a performance impact
due to the filtering process of the filtering prosgrver. If the filtering application and
the database are on different machines, theresiscarity risk as the network traffic
passes from one machine to the other. With therifiig application sitting on the same
machine as the database, there are several adgantag

* There is an additional security as network traffiimited.

* Processing time is reduced as network latency baaddlitional effect on the

transaction round trip time.

» The filtering application provides a last meanslefience for the database.

There are some advantages to using SQL signalieeny as a preventative measure to
SQL injection. These are:

1 Page 21 of 88 r

CHAPTERZ2 - RESEARCH

* Real time analysis does not impact the databasaifan, 2003].
« Any flaws in the configuration of database priviésgor coding of the application
would not affect the database security.

However, there are also several disadvantages.

» False positives may also be filtered out in therfihg process [Imperva Inc., 2004].

» Packet filtering does not show internal dynamic S&kcution [Finnigan, 2003].

* This method will not work if the data is encryptbdcause the strings cannot be
viewed in plain text without decryption [Finnige2002] [Linux Journal, 2004].

» Filtering all incoming http packets may turn outlie resource intensive. A large

amount of traffic may need to be handled at theseeker [Finnigan, 2003].

To be a useful intrusion detection system, therfithould be able to find the attackers.
Finding the user or attacker means logging logformation for inspection. The filter
would need a timestamp as well as the source astindgon IP address [Finnigan,
2003].

Most of the suggestions above apply to future deptpof web applications. The (open
web application security project) OWASP guide with many precautions is now
becoming an accepted standard [OWASP, 2004].

2.6 Research Summary

There are many vulnerable applications whose calll@et be reviewed or patched and
it is common knowledge that programmers will coméinto produce vulnerable

applications. According to [Finnigan, 2003], thare no commercial solutions to SQL
injection. However, several post 2003 softwarekpges have been found that claim to

prevent SQL injection attacks.

Auditing all of the source code and protecting dyrm@input is not trivial, neither is
reducing the permissions of all applications userghe database itself. Checking
through log files and relying on the least privésgprinciple does not seem sufficient.

Passively detecting SQL injection is not as usafupreventing it in real time. The use

1 Page 22 of 88 r

CHAPTERZ2 - RESEARCH

of packet sniffers does not allow for the SQL iti@e prevention as the removal of

malicious SQL query statements from the packet®igpossible.

This chapter has introduced SQL and SQL injectautined background research,
discussed methods of protecting against SQL irgaciind presented existing software
on the market today. Given the fact that there ifinde set of words in the SQL

vocabulary, it seems possible to develop a filbgurevent SQL injection.

The following chapter outlines the design of aefilhg proxy server. The design process
makes use of unified modelling language (UML) in iterative process with the
implementation of the design. Following the desighapter are chapters on

implementation, the results and conclusions of phiagect.

1 Page 23 of 88 r

CHAPTER3 — SYSTEM DESIGN

Chapter 3 — System Design

3.1Introduction

This chapter outlines the design of the filteringpqy server. The project aims to
eliminate the possibility of SQL injection by theeuof a filtering proxy server, which
will be placed in between the two communicatingides, hamely the web application
or client and the database. This added layer deption will allow for the filtering of
possible SQL injection attempts and provide thala$e with a last means of defence.
Protecting the database can be best achieved Ipynkethe proxy server and database
close together. This is achieved by having themamthe same machine. It is possible
for the filtering proxy server to run as a standel@pplication on a separate machine
sitting between the two communicating devicess Hlso possible to run the application
on the web server or database server. The intematedme is to set up an environment
that provides protection against SQL injection Bierfing bad SQL queries and only

allowing good queries to be executed by the da&abas
3.2Design

The information flow diagram in Figure 4 shows fit@v of information between a
TDSProxy server within the domain of this projeatdathe other entities and
abstractions with which it communicates. The diagtzelps to discover the scope of
the system and identify the system boundaries. 3$y&em under investigation
(TDSProxy) is represented as a single processactiag with various data and resource

flow entities via an interface. As can be seen friblm diagram, the web application

1 Page 24 of 88 r

CHAPTER3 — SYSTEM DESIGN

provides the query to TDSProxy which in turn pr@sdafe queries to the database and
attack reports to the Database Administrator. Hsponse from the database is routed
back to the web application through TDSProxy. Stidbke need arise, log files in the
database application provide information for andjtpurposes at a later stage.

Database
Serve

Provide safe

query Provide response

Provide querx:l
o TDS Proxy

Provide responsg ----1----------

Web
Application

N e’

Provide attack reports

Figure 4: Information flow diagram

The reason for naming the application TDSProxy esdose Microsoft SQL Server
2000 uses the Tabular Data Stream (TDS) protocobtomunicate with its clients. The
application being developed is a proxy server fhtrs queries being carried by the
TDS protocol. Therefore, the name came about bgnabmation of the acronym TDS

and the word Proxy to form TDSProxy.

The design and implementation steps of the prajeetl the Rational Unified Process
(RUP) with the aid of UML (Unified Modelling Langga). The process was iterative,
started off with a simple application and develgpinto a more complex system in
subsequent iterations. This methodology was chdgeovercome problem areas in

segments.

One of the problems was not being able to creatmaection from a client application
— a Microsoft Access data access page - througlpriney server to the database. The
approach to solving this problem was to break wilinto its components, making sure

that the proxy server could create a connectiothéodatabase, ensuring that the data

1 Page 25 of 88 r

CHAPTER3 — SYSTEM DESIGN

access page was connecting to the proxy servefimaity ensuring that the data was
passed through the transparent proxy server witheuig changed. Once the basic
concept was conceived and implemented, more adudieetures were added to flesh

out the software used for this proof of concepjqub

The web application is where the queries are forfneth the input parameters. These
queries are sent to the database through TDSPTdwey bulk of the system operations
take place at the TDSProxy. When the TDSProxy thiasefd the query, the clean query
Is sent to the database server. Incoming requestsltered and only clean queries are
passed on to the database for processing (FigurEdB)security reasons, the proxy

server will sit on the same machine as the database

TDSProxy Server
Send Receive
— —>
=
: :
Client Database
Receive Send

Figure 5: High level design view

The diagram in Figure 5 shows all the componentkerhigh level view of the system.
The web interface is the tool used by the cliensead requests to the database. The
web application is pointing to TDSProxy so that r@fuests and responses must go
through TDSProxy.

The client’'s web application request triggers thiefation of the SQL statement which
uses the input parameters of the web form to criegtecorrect SQL statement. This
SQL statement is then sent to TDSProxy. When thie 8§tement is received, it is first
filtered. Only clean SQL statements are then senthe database. The database

processes the request and sends its response hhid@Proxy. TDSProxy in turn

1 Page 26 of 88 r

CHAPTER3 — SYSTEM DESIGN

sends the response to the web application for psieg to produce the correct view for

the client.

At start-up, TDSProxy loads a configuration fil&og/n in Figure 6, by extracting the
parameters. This is an xml file that containsgfilsettings and options as well as the
settings required for the passing of data to threecb destination. The filter signatures

are also loaded from text files. These text fileseasily updatable.

< ?xml wversion="1.0" encoding="utf-S" 7=
“eonfigurations

<applettingss
<!—— external config file to control some of the settings —-»
<!—— For this proxy =Zerwver datsbase port was 2222 for M33QL-->
< !—— Faor this proxy =Zerwver datsbase port was 35306 for mysgl-->

<add key="ListeningPort"™ wvalus="4444" />
<add key="DatabhasePort™ value="Zzzz"™ />

<add key="LogFile" walue="30L Injection Z00S5.txt"™ />

<!=—= For the udp server sending halted 30L injection strings to DBEL —->
<add key="UDPListenerPort" <walus="3030" />

<add key="UDP3enderPort" wvalus="35030" />

<add key="MulticastGroupliddress" wvalue="224.0.0.1" />

<!—— For the =gl filter -->

<add key="hlack" valus="Trus" />
<add key="white™ wvalus="Trus" />
<add key="gray" wvaluse="Trus™ />
<add key="regex™ wvalus="Trus" />

<add key="IearchOrderl™ valus="regex™ />
<add key="3earchOrderi®™ valus="white™ />
<add key="3earchOrderi™ valus="black"™ />
<add key="3earchOrder4" wvalus="gravy" /=

</appSettings>
</configuration:

Figure 6: XML file containing the settings of TDSProy

The flowchart in Figure 7 focuses on the internallyven processes as opposed to
external events, capturing the actions performeslyatem start-up and run time. The
action states in the diagram represent the desisama behaviour of the processing.
TDSProxy is not a passive application but analybesTCP payload for TDS query
packets. For simplicity of testing and real timealgsis, one client application can

connect TDSProxy.

1 Page 27 of 88 r

CHAPTER3—

SYSTEM DESIGN

Analyse the
TDS packet

Y

Log the query

to the

Send the data

database

Start-up]
Load
onfiguratiol

¥

from client

Receive input |

database bindings,
SQL signatures to
filter, filter options,
UDP server and proxy
server port settings

4

Analyse the
payload

¥

Filter the
query using
the SQL
signatures

Log the attack

—

Drop the query

Send the
query to the
database

¥

L

Receive

v

Send UDP
alert to DBA

!

Send a false
query to the
database

F Y

Database
response

¥

Send Data to

client

Figure 7: Flowchart of the TDSProxy server

Page 28 of 88

By following the flowchart in Figure 7, once thessym has started, it is able to start
receiving data from the client. When data is reeéifrom the client, the TCP payload is
analysed for a TDS query packet. If the payloadtaios a SQL query, the query is
extracted, logged and then filtered for any bad S@mmands. If the filter process
finds that there is a potential attack, the att@clogged. After logging the attack, the
attack information is sent via UDP to the DBA. Tdrgginal query is discarded and a

CHAPTER3 — SYSTEM DESIGN

false query is sent to the database. The respoosethe database is then returned to
the client through TDSProxy.

If the filter process did not pick up an attacke tuery is sent to the database and the
database response is returned to the client. Ipéyéoad does not contain a TDS query
packet, for example, it contains a login packeg thata is simply passed on to the

database. The responses are then forwarded ttig¢he c

The operations and methods of the system transteemquery from one state to another
depending on what route the information is flowimgese changes are shown in Figure
8. The various states depend on the route takdhlustsated in the flowchart in Figure
7.

The raw string becomes part of the query stringpubh processing at the client
interface. This happens when the input parametersedected from the client interface
and inserted into the hard coded query. The quexry be formed at the client side or
the parameters may be passed to the web applicsgimer. Once the SQL query has
been formed, it is sent to TDSProxy where it islgs®d for SQL injection. The query is
logged and then filtered for SQL injection. If tky@ery contains SQL injection, the
attack is logged, the dangerous SQL is discardedPDBA is notified via a UDP alert
and a false query is sent to the database. Théatgaesponse is then relayed to the
client. If the filtered query does not contain SQ@ijection, the query becomes a
database query and is sent to the database. Thbadat response is then relayed the

client interface through TDSProxy.

1 Page 29 of 88 r

CHAPTER3— SYSTEM DESIGN

Figure 8: State Change Diagram for Client Query
3.3Design conclusions

There are several advantages and disadvantagesdacing TDSProxy.
» The advantages are:
® It is a standalone application independent of flaimsthe client
application coding and database privileges.
® TDSProxy can be deployed on a separate servedatadase server or
web application server.
® TDSProxy adds an extra layer of protection withl teme analysis and
prevention against SQL injection.
» Disadvantages include:
® False positives may be passed on to the databasexézution if a
hacker enters a valid malicious query that is mbécted by the filter.
® False negatives may be filtered out when words faovalid clean query
match words that are in the signature lists thatlbSQL injection.

1 Page 30 of 88 r

CHAPTER3 — SYSTEM DESIGN

® TDSProxy will not work if the data is encrypted.ilis because of the
use of a matching method with plain text signatuféss method checks
if the query sent by the client matches signaturdise signature files.

® As the signature files increase, the filtering @sx may turn out to be

resource intensive.
3.4 System Design Summary

When a TDS query packet is received, the querpgsig analysed for possible a SQL
injection attack. This is done by regular exprassichecking for matches with SQL
injection signatures. Bad queries are logged andalant is sent to the Database
Administrator. Only when the query has successfpdigsed through the filter is it sent
to the database for processing. This means the¢ Hre no words in the query that are

in the list of blocking signatures.

1 Page 31 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

Chapter 4 — System

Implementation

4.1 Introduction

This chapter presents the implementation of TDSPrby outlining the design
decisions and methodology used. An important plath@implementation was the TDS
protocol analysis which lead to the developmenthef filter used in TDSProxy. This
part of the implementation is outlined in the satton testing and validation. The end
of the chapter highlights a few of the problemscemtered. After the development of
the filter and creation of the signature lists ubgdhe filter, some testing was done on
the impact of the filtering process on web transast The results are presented in the
form of graphs showing the average processing temesaverage throughput available
during the transaction processing. The detailed @atavailable in Appendix D. The
chapter concludes with conclusions regarding th@ementation stage are drawn at the
end of the chapter.

4.2 Implementation

The development languages were initially Java agrdt Bava is platform independent

and Perl has powerful regular expressions capalsilit

In accordance with the guidelines by [Spolsky, 308 development language was
changed to C# to allow for better code managemadtiategration with Microsoft

1 Page 32 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

Visual Source Safe and to link in with other Miastisoroducts; Microsoft SQL server

2000 and Microsoft Windows XP professional.

The operating system, development language andaksaplatforms are all Microsoft
based in order to prevent compatibility issues.sTWindows XP Professional Edition,
SQL Server 2000 Developer Edition and Visual Stutl&T 2003 along with Visual

Source Safe version 6d [Spolsky, 2000] were usethéndesign and implementation

phase. UML modelling made use of Visual ParadigmJML 5.0 Enterprise Edition.
4.2.1Design Decisions

The server will listen on the specified port numbed the proxy server can be set to
send the TDS packets to that port. According tortbeon assigned numbers [Postel,
2004], port numbers ranging from 0 - 1023 becauserastricted for well-known
services such as HTTP and FTP. Therefore, the parhbers chosen for the
development were 2222, 4444 and 5555.

Packets are not encrypted by default, but encrgptan be enforced by the database. If
secure socket layer (SSL) is used, the filteringcpss on TDSProxy will not work as
SSL ensures that the data is encrypted. Filteridigwork on plain text at this stage.
Since SQL injection cannot be stopped using firesyahtrusion detection systems or
intrusion prevention systems, one should searchih@rfollowing in all strings inputs
from users in order to prevent SQL injection:
« ““[\; Strings in many programming languages dedimited by the double
guote whilst in SQL, strings are delimited withiagée quote.
» extended characters like NULL, carry return, nave/i
* UNIONS which can be added to an existing statentenéxecute a second
statement;
* SUBSELECTS which can be added to existing statesnent
* INSERTS, UPDATES and DELETES

* Public system stored procedures

1 Page 33 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

Since Microsoft SQL Server 2000 uses the TabulaaC&iream (TDS) protocol to

communicate with its clients and TDS is carriedTgyP, TDSProxy needs to handle
TCP sockets and connections. This allows the psetyer to analyse the payload of
TCP packets.

4.2.2Methodology

The implementation was done iteratively, startiffgnoth an application that piped text
(the TCP payload) through a proxy server. This teated using a powerful networking
tool called NetCat [Giacobbi, 2004]. This testingape was aimed at creating the proxy
server and ensuring it was transparent to thetdipplication and database. After being
able to pipe text, plain text queries were senth® database from a NetCat client
through the proxy server. This was followed by #erapt at using a data access page
as a client. This was abandoned when a tool caDIO%as able to connect to the
database through the proxy server. Once the premyeswas able to route information

effectively, TDS query extraction and filtering wiagplemented.
4.2.3Testing and validation

Creating an echo client-server setup would aicctleation of a proxy server that would
sit between the client and server. The initial agapion consisted of a knock-knock
client-server that sent automated responses toahehbased on the reply. This idea is
an implementation of a common verbal game playesichyol children. Next, the client
was extended to become the beginning of a proxyesdhat connected to a NetCat
server. The server responses were typed in manaradlythe client application returned

automated responses.

The next enabled a NetCat client to connect tptbay server and send requests to the
NetCat server through the proxy server. One Netiat instance sent plain text to the
port that the proxy server was listening on. Thexprserver then rerouted the text to
the port that the NetCat server it had connectedhe NetCat server was listening on.

This is illustrated in Figure 9 below.

1 Page 34 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

Netcat Proxy Server
Client

\ Port 4444
/

Netcat Port Netcat
Client 5555 | Server

Figure 9: Proxy server connecting NetCat clients to aletCat server

The purpose of this was to learn about the workioga proxy server. One NetCat
instance was set up as the client sending the daghe database whilst another NetCat
instance simulated the database server receiviugests and sending responses to the
client. The proxy server was placed between theCBketlient and server. All TCP
traffic was logged to a text file. The payload bétTCP packets was plain text ASCII
characters. This was a good exercise in learniogtaorts, TCP routing and the basic

client server architecture.

Figure 10 to Figure 13 are screenshots of the psexyer connected to a NetCat server.
The proxy server has two clients connected to dt e server is sending responses to
each client. The order of start-up of the applaatiis important. The order should be
database server, proxy server and finally the dogrglient. Once there is a link from
the client to the server, transmission can begire Value of this exercise was being
able to create a proxy server that routed inforomefiom one port to another.

Figure 10 shows the proxy server connecting td\itCat server. The proxy server was
set to try and connect to port 5555. Port 555%eés fort that the NetCat client was
going to listen on. Figure 10 also shows the cotiokecof Client 0. Client O then
transmits a message and receives a response. Cligorinects, sends a message and

receives a response. Both clients then discon@éient 1 first and then Client 0.

1 Page 35 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

Connecting

Connected to server

hons@?: listening to port 4444
Client B connected.

Transmitting
Recediving
Client 1 connected.

Client B disconnected.

Figure 10: Proxy server listening on port 4444

Figure 11 shows the NetCat server being creatditéins on port 5555 and waits for
connections. The proxy server connects once th€Edeterver is ready. Once the proxy
server is connected to the NetCat server, it Isstamport 4444 for clients to connect to
it. The NetCat server receiving a connection frdma proxy server is also shown in
Figure 11. Once connected to the proxy serverptbry server routes messages sent to
it from clients that have connected to it. Respensethe messages from the clients,
received from the proxy server, are sent by typiegponses in the NetCat server

console. The responses are sent back to the ttientgh the proxy server.

o | CWYIN DOWS\System32iemnd.exe - nc-v -L -p 5555

Microsoft Windows XP [Werszion 5.1.26801]
(C» Copyright 1985-20081 Microsoft Corp.

Z:w>»nc —v —L —p G555
listening on [any]l 5555 ...

connect to [146.231.123.731 from honsB?.ict.ru.ac.za [146.231.123.731 1219
hi from client 1

hello clientl

thiz is another client

hello another client

Figure 11: NetCat simulating a server listening on prt 5555

Figures 12 and 13 show clients connecting to tlexypiserver. On connection they
receive an automatic welcome message. The proxgisernow waiting for a response
from the client that has just connected to it. Qlidetails are kept in an ArrayList to
keep track of which client sent which message. Titfisrmation is used when sending
replies to the client. The client sends a messag@d proxy server. The message is

routed to the NetCat server. A message is typedsamd in response to the client

through the proxy server.

1 Page 36 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

Microsoft Windows XP [Uersion 5.1.26881
C(C» Copyright 1985-2801 Microszoft Corp.

Liwonc —vw hons@9 4444

honz®@?.ict.ru.ac.za [146.231.123.731 4444 (7> open
e lcome .

hi from qlient 1

Figure 12: NetCat simulating one client connected tthe proxy

Microzoft Windows HP [Uersion 5.1.26081
CC» Copyright 1785-2801 Microsoft Corp.

Z:wnc —v hons@%9 4444

honsB? . ict.ru.ac.za [146.231.123.731 4444 <73 open
Welcome .

thiz iz another client

hello another client

Figure 13: NetCat simulating a second client connésd to the proxy

The proxy server was then improved to connect & dhtabase using a connection
string. There was a problem at this stage of theldpment. Initially the problem was

thought to be in the code, however on further itigason it was found that a database
setting had been causing the problems. With theecobusername, password and rights,

the database was manipulated by entering the SQIlotea NetCat client instance.

% = =]
File Edit “iew WVéAssisf< Project Buld DOebug Tools Window Help
EEHE 3B a- Debug T @ date <GB
I m o Hex G- v FE AR
3B || Start Page | ProxyBackend.cs | TepSockec: Sqllnjectionlog. bt 4 X || Solution Explorer-TepS.. & X
E‘ 1; 2005/08/26 09:11:37 AM I— =
g—r 2 CREATE WIEW wyView A5 select # frow db keys ﬂa Solution 'ProsyServer (3 project

=-a=0 TepSock
w1 (3] References

<+ D:\project work\proxyServerQ1\TcpSockV1\bin\Debug\TecpSockV1.exe a[%) Logaer.cs
Connecting a[*] ProsyBackend.cs
Connected to server a2 SalinjectionLog s
the database connection is open.
the query: CREATE UTEM nyliew AS select = from db_keys was excecuted successfull at] TepSack.cs
=8zl TepSockvl
honsB9: listening to port 4444 - (2] References

alt] Logger.cs

%[ProxyBackend.cs

al] TepSack.cs
Azl TepSockyz

Y
the datahase connection is closed.

Figure 14: Proxy server code setting up a view beforeonnecting to the database

The next step involved sending hard coded SQL gsdon the database at start-up of
the application. This confirmed that the usernamassword and privileges were

correct. This is illustrated in Figure 14 whereiaw was created in the database by

1 Page 37 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

sendingCREATE VIEW myView AS select * from db_keys as the query string to the
database. The proxy server is shown in the foregtand the background shows the

log file that was generated. Figure 15 shows tlsellteof the query as shown in the
database.

Ti/SQL Server Enterprise Manager - [Con
% File Action “iew Tools Window Help
e Bm4eXEB 2 NLIBG
[:I Console Root Yiews 3 lems
E‘"' Microsoft SOL Servers MName / Owner Type | Create Date
£ SOL Server Group G myiew dho User 2005/08/26 09:11:37 A
=& (LOCAL) (Windows NT) g syscanstraints dho System 2000/08/06 01:23:12 AM
=+ Databases 6" yssegments dba System 2000/08/06 01:29:12 A
= HelpDesk
- Diagrams Wl view Properties - myYiew H=1F3
flicbi=s General |
" Wiews
- Z Stored Procedures Ei! I-'n Name: —y o |
1 e Permissions...
- Users
!ﬁ Foles Owner: dbo
[Rules Date created: 2005/08/26 03:11:37 &AM
-[= Defaults Test
B, User Defined Data Types . - -
ﬁﬁ User Defined Functions CREATE WIEW mytiew 45 select * from db_keys -
- E master
-8 rmodel
- msdb
-k MNarthwind
=B pubs _I;I
& temp l | v
-k tempdb Check Spntax | 1,272
-1 Data Transformation Services
-1 Management OFK. I Cancel | Apply | Help |
-3 Replication

Figure 15: SQL server database view created via th@oxy server

4.2.4Protocol Analysis

The querying client made use of OSQL, a tool tlwmhes with MS SQL Server 2000.
Figure 13 shows the use of OSQL to query the dataltarough the proxy server
listening on port 4444. OSQL is able to connectthte database by specifying the
machine name, port number, username and password.

OSQL was used to successfully query the test degahad select all information from
the users table. When the proxy server was shungdthere was no link to the database
and a network error was returned as shown in FigGrerhe proxy server, OSQL tool
and the database are all sitting on the same machire result of Figure 13 shows that
the connection to the database on the local maskisemade through the database. It

should be noted that without specifyirg hons08, 4444’ , OSQL would connect to

Page 38 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

the local database directly using the default pdris is undesirable as the queries must

be sent through the proxy server in order for thergs to be filtered.

The use of OSQL, along with packet sniffers Ethiejetnereal, 2005a] and Packetyser
[Network Chemistry, 2005] allowed for the developrnef the SQL extracting method.
This was done by analysis of the TDS protocol [FE28, 2005] and lead to the
extraction of the query in the query packet sernhédatabase after the login challenge
[Bruns, Wheeler, Schaal, Ziglio et al., 2005]. Fgd6 shows the use of OSQL to query
the database through TDSProxy. After the secondydues been sent, TDSProxy was
stopped. With the third query attempt using OSQiereé are two errors (shown in
Figure 16) due to no connectivity between OSQL thieddatabase.

WINDDWS' system32' cmd.exe - osql -S| =l

Documents and Settings\gBlrB8E6 [honsB8 . 4444 —Utest —Ppasswordl23 u
use tests
select = from users;
go
password

hardcorep
paszzword
de bryun

5 vrows affectedd

1> zselect * from users;
2% go

username passuword

shaun hardcorep
Peter password
David de bryun

5 vous affectedd
13> select ® from users;

22 9o
[DBNETLIBIConnectionWrite <sendd{>>.
[DBMETLIB1General network error. Check vour network documentation.

Figure 16: Use of OSQL and error message on shutdovai proxy server

Figure 17 shows a comparison of the extracted Téx&et data using TDSProxy and a
packet capture using Ethereal. The packet sizethareame and so are the source and
destination names (Figure 17). The captured daievsla connection from hons09 to a
database sitting on Netserv. Netserv’'s IP addse$46.231.131.136 and the database is
listening on the default port 1433. The logon rejusmes from hons09.ict.ru.ac.za
port 2222 and this is shown in the packet captutie Bthereal and TDSProxy. There is
no difference between the packet capture informatio both Ethereal and TDSProxy,

showing that TDSProxy is capturing all the dataetiiely.

1 Page 39 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

@ (Untitled) - Ethereal =181 x]

FEile Edit Miew Go Capiure Analyze Statistics Help

PER*x@E Re» 72/ QAAQ POEXB |

[0 Fitter: | (1p actr eq 146.231.123.75 and Ip.addr 2g 146.231.121 .15;] 4 Expression Ibgem

L4 Applyl |

Mo, - ITime | Sourcs |Destinatinn |3rntm:n|! Info l
199 2.508229 hons09.1ct.ru.ac.za netserv.ict.ru.ac.za TCP 2473 » ms-sgl-s [SYN] Seg=0 Ack=0 Win=64240 Len=0 M55=1460
200 2.908470 netserv.ict.ru.ac.za hons09.ict.ru.ac.za TCP ms-sgl-s > 24?3 [s¥M, ACK] Seg=0 Ack=1 Win=17520 Len=0 Ms5=1460
honsO 1ct ru.ac.za wct ru.ac.za TCP 47 Ack=1 Win=64240 Len=0
LPU.ac.za TE 2 2 IE‘JI lTI—TE

12 ac., i P s NTLMSSP_X
216 3.0B82433 hon509 ict.ru.ac.za netserv.ict.ru.ac.za TCP 2473 » ms-sql-s [ACK] Seq=264 Ack 206 Win=64035 Len=0

= Ethernet II, Src: 00:10:dc:cc:61:38, Dst: 00:c0:df:08:7a:a6
= Internet Protocal, Src Addr: hons09.ict.ru.ac.za (146.231.123.73), Dst Addr: netserv.ict.ru.ac.za (146.231.121.136)
@ Transmission Contral Protocol, Src Port: 2473 (2473), Dst Port: ms-sgl-s (1433), Seqg: 1, Ack: 1, Len: 263
= Tabular Data Stream
Type: TDS7/8 Login Packet (0x10)
Status: Last buffer in request or response (1)

[

Size: 263
Channel: 0
S?EEEE-NEMH 2 + D:\project workiproxyServer01\ProxyServeiTCPSockV3ibin\Dell
£ TDS7 IjOG'.m Packet g:xuel 1n1§zﬁ:;23egn il
= Legin Packet Header
R e N N Socket connected to 146.231.121.136:1433
0000 00 O df 0B 7e ab 00 10 dc cc 61 38 08 00 45 00 ~ Epppa e cc L ing data -

0010 01 2f 36 68 40 00 BO 06 ah <0 92 eF 7hb 49 92 e7
0020 79 88 0% a9 05 99 Ob Se bS Ze 4d dS BB hc 50 18
0030 5d ff 00 10 01 00

sent 41 to 8QL server.
41 bhytes sent to server.

gggg 41 total bytes received.
060 Sending data ... Received 37 from SQL server
0070 bhytes sent hack to client.
0080
0050 Socket connected to 146.231.121.136:1433
00a0 Receiving data ...
00b0 263 hytes received.
00c0 i

login packet here
oodo type in hex = 18
0zl lastpack in hex = 81
00f0 length = 263
0100 totalPacketSize = 255
0110 clientNameOffset = 86
0120 clientNameLength = 6

0 N s89

ﬂeluexNameLength = 24

serverMame =hons B9 .ict.ru.ac.za,2222
sent 263 to 8QL sewver.

263 hytes sent to server.

[Pr34ED:BM D

gista] B @ @ @S 0@ |wier | AMe.|wry. |3 Uni.| &m0

WD 05:02 PM

Sl

Figure 17: Ethereal packet capture compared to proxyerver packet analysis

Ethereal does not support packet capture on thp ek on Windows [Ethereal,
2005b]. Since the Microsoft loop back adaptor omdéws XP is not very effective in
capturing the data sent between OSQL and MS SQies&000 for example, the
request was sent to Netserv, a remote machine,ngakn Ethereal packet capture
possible. By sending the data to another machigengarison could be made between
an Ethereal packet capture and the payload exttrédgtd DSProxy. This is illustrated in
Figure 18 which shows the packet capture usingre#h@as well as the payload capture
using TDSProxy. This was helpful during the creatad the SQL extraction methods.
The proxy server logs the traffic and is able tonipalate the packets sent to the

database as well as capture the SQL statementsséreldatabase.
Figure 18 shows the typical usage sequences forf fif protocol as used by Sybase

SQL Server and Microsoft SQL Server. Figure 19 @able 2 show the structure of
TDS packets.

1 Page 40 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

--> Login
<-- Login acknowledgement

--> INSERT SQL statement
<-- Result Set Done

--> SELECT SQL statement
<-- Column Names

<-- Column Info

<-- Row Result

<-- Row Result

<-- Result Set Done

Figure 18: Typical Usage sequences for TDS [FreeTD3&)05]

Packet type Description

0x01 TDS 4.2 or 7.0 query

0x02 TDS 4.2 or 5.0 login packet
0x03 RPC

0x04 responses from server
0x06 Cancels

0x07 Used in Bulk

OxOF TDS 5.0 query

0x10 TDS 7.0 login packet

Table 2: TDS Packet Types and their descriptions [F&ETDS, 2005]

INT8 INT8 INT16 4 Bytes
Packet type| Last packet | Packet size Unknown
indicator

Figure 19: Packet format of all TDS packets [FreeTDS2005]

During the development stages, TDSProxy made us®mk of the code by [Kocak,
2004] in his application called Pacanal. Pacanah i€ sharp attempt at producing
Ethereal-like capabilities and currently suppopsta fifteen protocols. TheacketSQL
code in Pacanal [Kocak, 2004] and the capture shiawkigure 19 proved to be very
useful in understanding the TDS protocol and howxwact the query string from the
TDS query packet. Figure 20 shows code used taeine query string from the TDS
query packet. The variabiesg is a byte array containing the TCP payload. Ifgheket

1 Page 41 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

being captured is a TDS query packet as indicayethé first byte of the packet being
0x01.

15”.-‘|f—] firegion if (query packet), filter first

158 if (FILTER && msg[0]==1)1

159

160iF firegion extract the =gl from the packet

161 int index = &;//the =gl starts at msg[3]

162 ffthere are spaces in between each character representation
163 fizo we need to move alony to skip that out.

164 sql3tring = "/ prevent concatenation to previous query
165 for(int i = 0; 1 < (size - 8172 ; i++)

1aeg {

167 sqglitring += (char) wsg[index++]

185 index++:

1a9 H

170

171 fiendregion extract the sgl from the packet

Figure 20: Code showing the extraction of the querfrom TDS query packet

The white paper by [Anley, 2002a] covers reseantb BQL injection as it applies to

Microsoft Internet Information Server/Active Senkaiges/ MS SQL Server platform. It
addresses some of the data validation and datébesdown issues that are related to
SQL injection into applicationsThe paper provides examples of SQL injection agack
and gives some insight into .asp login code andygagor messages used to exploit

databases.

With TDSProxy now able to capture the query senttha TDS query packet, a
vulnerable ASP application was developed [Anley)Z4]. It comprises of an asp login
page that does a comparison of username and paksvitbr rows in the database. If
there is a match, the user is taken to an “Acceastéd” page. Otherwise, the user is
taken to an “Access Denied” page. The ASP pagehweated on a remote machine and
connection to the database came through the prexyes by manipulating the
connection string to connect to the machine and that the proxy server was listening
on. This ASP application allows the user to ent®LSnjection text into the input

parameters and manipulate the database.

1 Page 42 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

AJhttp:/ /netserv.ict.ru.ac.za/projectDBR /process_login.asp?username =fred&password=otten - Microsaft Internet b

File Edit ‘Miew Favorites Tools Help

@Ba(k -)~ .x‘] ,’.,"‘I ;\}!/-iﬁaarth \;'.:'\(Favuntes &?ﬂ| 3 e v ﬁa by

Adisss [] hitpnetser.ict ru.ac. za/projectDBR fprocess_login. asplusername=fredspassward=otten
Gougle - fosal commands]| o searchweb - | g | Ehsblocked

2
4l

Fdoptions % | [osal (& commands

sql: select * from users where username = 'fred' and password = 'otten'

Figure 21: Successful SQL injection in the database

Entering the correct parameters present the ushrami “Access granted” page (Figure

21). The query sent to the databases is showreadbfhof the page aslect * from

users where username = ‘<username parameter>" and p assword =
‘<password parameter>’ . There is a row in the database where the userigmtfred”

and the password is “otten”.

'3 http:/ /localhost/process_login.asp?username="; +drop+table+users--&password= - Microsoft Internet E

Fle Edit View Favorites Tools Help

4 | et [A N Y e . y 7

QB&EK - s XJ | =] ¥y !/ Search) Favorites 6-“ T Wi - ilai ‘4‘3
Address !é] http: fflocalhostfprocess_login, aspfusername="%27%3E+drop+table-+users--&password=
(EoRgel] B o nl el i SRl

| ®doptions 2

sql: select * from users where username ="; drop table users--'

Figure 22: Dropping a table using SQL injection

Figure 22 shows the result of enteringrop table users--" as an input parameter

for username. The user is presented with an “Acdessed” page because there is no

1 Page 43 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

matching usernamedrop table users--" in the database. In this example, the two

SQL queries formed are shown in Text Box 4.

1. select * from users where username = ”;

2. drop table users--

Text Box 4: SQL injected queries executed by the dabase

The first statement looks for a row in the tableevehthe username is a double quote (*).
This statement is terminated by a semi colon. T 8QL query drops the users table.
The double dash (--) indicates that the rest ofsla¢ement is a comment and can be
ignored by the database. The problems with thisazoe are:
e There is no input validation and so SQL injectignpossible with the use of
dynamic SQL.
» The user being used to connect to the databas®tasany privileges because
they are allowed to executaleop statement. A user who owns the object or has

database administrator (DBA) access can executepastatement.

Figure 23 shows the result of this SQL injection seen from the database. The
database has executed the drop command and tlsetalsker has been dropped from the
database. This action was performed while Enteggvlanager was open. On trying to
access the dropped table, the database returnegrribreshown in Figure 19Upon

refreshing the database, the view did not contarusers table.

1 Page 44 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

A
{1 Console Rook Tables Items
l:jlcrosoFt S0L Servers Marme / | cvarier Type | creats Date:
dtj Gk erverarod =l dtproperties dbo System ZO0S{04/03 07;17:33 AM
E& (local) fwindows NT) =
51453 Databasss :—j syscolumns dbo System 2000/08/06 01:29:12 AM
1 .iﬁ--@ i C— syscomments dbo System 2000003106 01:29;12 AM
szg = Bl sysdepends dbo System 200000806 01:29:12 AR
fﬂi@ b [sysfilegroups dba System 200070806 01:23:12 &AM
r+j @ Pk Ehind ﬁ sysfiles dbo Swstem 200000806 01:29:12 AM
rg @ pubs (== sysfilesi dbo System 2000003106 01:29,12 AM
r+J ig tempdb ==| sysforeignkeys dbio System 2000003106 01:29;12 AM
§§ Test = swsfullkextcatalogs dhba System 2000/08/06 01:29:12 AM
: uﬁé‘ Diagrams (Z5] swsfulltextnotify dbo System 200070306 01:29:12 AM
2] Tables [Elsysindexes dbo System 20000806 01:25:12 AM
" Viewss = sysindexkeys dbo System 2000/08/06 01:29:12 &AM
! Stored Pracedurs |=2] cysmembers dbo Syskem 2000/08/06 01:29:12 AM
Users svsohjects dbo St 200000806 01 :29:12 AR
4 Roles 5] syspermissions dbao System 00070806 01125112 AM
j b [‘f——] syspropetties dbio Swstem 200000806 01:29:12 AM
e Ee aL[')tSF el E svspratects dba System 2000/08/06 01:29:12 AM
%‘ Uz:: DZF::Z d Fjr tﬁ sysreferences dbia Syskem 2000/03/06 01:29: 12 AM
..... Ful-Test Cataloc C- swstypes dba System 20000806 01:29:12 AM
L Trareb b ation Sar E SYSLSErS dbo System Z000/03/06 01:29:12 AM
:_} Management ._-‘ USErS dbo Llser ZO05/04/03 O7: 827 AM
eplication S0L Server Enterprise Manager il N ﬂl
Security i - E ¥
Support Services L3N : ; .
Meliz I \;{’) The:selected object has been dropped from Ehe database. Select Refresh to see the curvent objects.
I

Figure 23: Database view of the dropped table

A regular expression is an expression that concisielscribes a set of characters
without having to list the whole set they descridewever, there are multiple patterns
that can describe a single set of characters. Re@xpressions are used in pattern
matching thus the next step involved creating ttierfby making use of powerful

regular expressions.

The filter method made use of black, white, grag aattern matching signatures. A

black list contains lists of strings that are bldisked. These strings are the signatures
that are considered bad. When the filter comessacqueries containing strings that

match those in the black list, they are filtered ou

White lists, on the other hand are the exact oppadi black lists. White lists show
strings that are allowed. In between white listsl dntack lists are gray lists. They
contain strings that have the potential to be badnfey also be good. Thus the action

taken when a gray list is matched is alerting ti®ADThe query is not halted but is

1 Page 45 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

allowed to pass through. This option can be changedpessimistic mode where gray

lists act as black lists.

The regex list contains a list of pattern matchiagular expressions. They are more
generic and can be used as input validations #ayv anly ASCII alpha characters to
pass. Some of the strings contained in the regéxviere built using a tool called regex
coach [Weitz, E 2005].

According to [Hoglund and McGraw, 2004], the problevith black lists being used as
a filter method to remove bad input is the creaiad maintenance. An exhaustive list
is difficult to produce at best and mistakes in ltieck listing make the attacker’s job
easier. Therefore a much better approach is toausdite list approach, specifying
which input patterns should be allowed. This iseaswon of the principle of least
privilege which gives your program only as much pows it needs and no more. In
light of this, a decision was made to use a comianaof lists. The filter uses SQL
injection signatures which are made up of a blastk White list, gray list and pattern
matching list. The filter is able to report whethlee SQL query text matches any of the

given signatures.

At all stages of development, there is extensiggilag of the queries captured. This
helps with the debugging. SQL injection attackslagged along with the signature that
caught the attack. With the aid of the log filesgmted by TDSProxy and the database
log files, the DBA can ascertain which databasbkeimg attacked. The DBA can also
determine which web server or web page the attaskesing. The value of this is that
the security holes can be patched and the datgbateeted from further attacks.

Alerts are sent via UDP to the database admingstrsith the SQL injection query, the
name of the machine hosting the web applicationatichestamp. This will allow the
DBA to block further injection attacks from a pattiar user by checking the database
log file which should contain the IP address of pffegson who sent the query at that

time.

1 Page 46 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

4.2 5Problems Encountered

The default setup configuration of MS SQL
authentication only. This needs to be changed

ServerO@0allows Windows
tonddivs and SQL Server

authentication; otherwise it will result in an er(®@extBox5).

Login failed for ‘helpdesk’. Reason: not associated
server connection.

with a trusted SQL

Text Box 5: Login error

During the testing stages, getting the proxy setgejust route information was not
enough. There has to be some changing of the pdekatvariables. There seems to be

a need to change things like the destination maglpiart numbers and the like in order

for the applications to accept the Transmission tf@brProtocol (TCP) and Tabular

Data Sream (TDS) packets.

iConnecting
&= [Connected to n
Login fFailed for user 'helpdesk’. Reason: Not associated with a trusted SQL Seru.
ler connection.

server

Wthe database connection is closed.
Error at System.Data.SglClient.SglCommand.UalidateCommand(String method,

tabase Access

Boolean executing)

at System.Data.SglClient.SgqlCommand.ExecuteNonQueryl>

at TepSock.ProxyBackend.sendToDatabase(? in d:\project work\proxyserver@lstcp)
Isocksproxybackend.cs:line

at TcpSock.ProxyBackend..ctor{} in d:\project work\proxyserverBi“tcpsock\prox
lvbackend.cs:line 38

rrmit
rmit
rrmit
rmit

thonsB?: listening to port 4444

& CAWINDOWS\System32icmd.exe - nc -v -L -p 5555

Microsoft Windows EP [Uersion 5.1.2688]
(C> Copyright 1985-288@1 Microsoft Corp.

5555
listening on [anyl 5555 ...
connect to [146.231.123.73]1 from hons@7.
listening on [146.231.123.73] 555
connect to [146.231.123.73]1 from
listening on [146.231.123.73] 555
connect to [146.231.123.73]1 from
listening on [146.231.123.73]1 555
connect to [146.231.123.731

Z:x>ne —v -L —p
ict.ru.ac.za [146.231.123.731 4482

ict.ru.ac.za [146.231.123.731 4433

- ict.ru.ac.za [146.231.123.73] 4445
=- 1 master
=i model
®- ki msdhb
=i Morthwind
w1 pubs
#- 1 tempdh
+-1 Data Transformation Services
+-1 Management
+-1 Replication
#-I_1 Security

sict.ru.ac.za [146.231.123.73]1 4462

Figure 24: Login error — not a trusted SQL server canection

An attempt at using a Microsoft Access 2003 dateese page as the client was
unsuccessful and produced many login errors. Wiettmg up the data access page,
Access 2003 only accepted the use of an actualineactame and not its IP address.
For testing purposes, a direct connection to thabdse was set up and querying the
database through the data access page was possible.

1 Page 47 of 88

CHAPTER4 — SYSTEM IMPLEMENTATION

The next step was to be able to route the logioulin TDSProxy so that the database
would ‘think’ it was talking to an Access data assgage. However, when trying to
connect to the database from the data access Ipagmyh the proxy server, there was a
problem with the connection string. The databasgt keturning an error message
saying that the connection was refused becausest mot associated with a trusted
database. This problem, shown in Figure 20, wasrcomee by hard coding
“trusted_server = true” into the data access page’s connection strindgnerntin

page. This was done by editing tha file in a text editor as shown in Code Box 9.

The login errors continued and the database kejolirsg back reset packets. There was
no apparent reason for it not being able to logfber the data was being routed. The
packet data was altered so that the source anohakésh ports and IP addresses made
TDSProxy seem totally transparent. The first thiegn packets were forged from a
successful login without TDSProxy. However, this dmano difference and an
alternative client tool was sought. The possibitifyport or IP number mismatching was

eliminated by continuing the development on theesamachine.

<a:ConnectionString>

Provider=SQLOLEDB.1; trusted_server = true ;Password=password123;Persist
Security Info=True;User ID=test;Initial Catalog=Tes t;Data
Source=hons08.ict.ru.ac.za,4444;Use Procedure for P repare=1;Auto
Translate=True;Packet Size=4096;Workstation ID=HONS 08;Use Encryption
for Data=False;Tag with column collation when possi ble=False
</a:ConnectionString>

Code Box 9: Editing the connection string to stipudte a trusted connection

With the proxy server still in place and routing tthata to the SQL database, there was a
problem with logging into the database. The datab@&pt sending back reset packets.
There was no apparent reason for it not being tbleg on after the data was being
routed. Figure 25 shows an Ethereal packet capfuaesuccessful login without using
the proxy server, there are two packets sent beftwgin packet is sent to the database.

These are part of the TCP three-way handshake.

1 Page 48 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

No. - Time: Source Destination | Protocol ‘ Info

199 2.908220 146.231.123.73 146.231.121.136 TCP 2473 > ms-sgl-s [S¥N] Seq=0 Ack=0 win=64240 Len=0 M35=1460

200 2.908470 146.231,121.136 146.231.123.73 TCP ms-sgl-s » 2473 [s¥M, aCK] Seq=0 Ack=1 win=17320 Len=0 M55=1460
201 8 144 .73 146.231.121.136 TCP 2473 » ms-sgl-s [Ack] Seg=1 ack=1 win=64240 Len=0

202 146 73 5 TDS7/8 Login Packet, NTLMSSP_NEGOTIATE

203 2.927603 146.231.121.136 146.231.123.73 TDS Response Packer, NTLMSSP_CHALLENGE
216 3.082433 146.231.123.73 146.231.121.136 TcP 2473 » ms-sql-s [ACK] Seg-264 Ack=206 win=64035 Len=0

Figure 25: Packet capture showing a successful lagdlirectly to the database

The first three packets were forged to look like triginal TDS packets that were sent
when there was a successful logon with no proxyesem place. However, reset

packets were sent back to the Access data accgsesapavhat would have ordinarily

been the logon stage. Figure 26 shows the firgtetlrackets being sent to the SQL
server after which, there seems to be no appa@minunication between the data
access page and the SQL Server. The first two anteop the synchronisation between
the server and data access page. The third pac&elDS7/8 login packet.

After extensive research into the TDS packet stinecalong with analysis of Ethereal
packet captures, it was concluded that there may fm®blem with the port numbers or
source and destination mismatches. These problesre wliminated by running
everything on the same machine. Thus there wasged to alter the machine address.
This left only the port as the problem. The proeyver was modified to be able to
change the port numbers. The source packet’s déistinwas changed from the proxy
server port to the port that the Microsoft SQL ®emwas listening on. This made it look
like the packet was sent from Microsoft Access alyeto the Microsoft SQL Server.
The process was reversed on receiving a respomsetiie server. However, this did not

have the desired effect and the login packet wascaepted.

1 Page 49 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

honsB%?: listening to port 1433
Server is connected.

Receiving data ... Socket connected to 146.231.121.136:1433
41 bhytes received.

zent 41 to 5QL server.
41 hytes sent to server.

41 total bytes received.

Sending data ... Received 37 from SQL server
37 bytes sent back to client.

Receiving data ... Socket connected to 146.231.121.136:1433
1676 bytes received. 3 d third
nt. to the

sent 1676 to 5QL server.
1676 bytes sent to server.

1717 total bytes received.

Sending data ... Received 156 from S5QL server
1%6 bytes sent back to client.

Receiving data ... Socket connected to 146.231.121.136:1433
B hytes received.

sent B to SQL server.
B hytes szent to seruver.

1717 total bytes received.

Sending data ... SocketException : System.Met_Sockets.SocketException: An existi
ng connection was forcibly closed by the remote host

at System.Met_Sockets . Socket.Receive(Bytel]l buffer, Int3d2 offset, Int32 size.

SocketFlags socketFlags)

at System.Met.Z3ockets.Bocket.Receive{Bytel]l bufferd>

at TCPSockU3.ProxyBackend.receivel{Int3dZ& size? in d:“project work“proxyserver|
A1 sproxyserverstepsockeIsproxyhackend.cs:1line 68
B hytes sent back to client.

Receiving data ... Socket connected to 146.231.121.136:1433
B hytes received.

zent B to SQL server.
B hytes sent to server.

1717 total bytes received.

Sending data ... SocketException : System.Net.Sockets.SocketException: An existi
ng connection was forcibly closed by the remote host

at Suystem.Met.Sockets.Socket.Receive(Bytel]l buffer, Int32 offset, Int32 =zize.

SocketFlags socketFlags>

at System.Met_.Sockets.Socket.ReceivedBytel]l bufferd

at TCPSockU3 . ProxyBackend.receivet{Int32& size) in d:wproject work“proxyseruver
BlsproxyserverstcpsockuIsproxyhackend.cs:1line 68
B hytes sent back to client.

Receiving data ... Socket connected to 146.231.121.136:1433
B hytes received.

sent B to SQL server.
B hytes szent to seruver.

Figure 26: Attempted login from data access page thugh proxy server

These problems were solved by using a MS SQL cersal called OSQL. Using this
tool, one is able to log into and query the renadéabase via the proxy server. The
query was routed through the proxy server to theabdese and this allowed for the
capturing of the SQL query. All the query infornaetifrom logon to finish can be

captured, logged and manipulated.

1 Page 50 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

Later on in the development stage, the error wasddo be the size of the buffer being
used. As can be seen from Code Box 9, the sizheobuffer should be at least 4096
bytes. The buffer being used was not big enoughotd all the data being sent to the
database and so it kept sending reset packetsdauak client.

4.2 .6Web transaction tests

Web transaction tests were carried out and theltsesti these indicate the effect of
TDSProxy on web transactions. The tests were choig on the local host (hons08)
where the database and TDSProxy were running. €bes twere then repeated on
Netserv, a remote machine with TDSProxy and thaldete sitting on the hons08. A
summary of the results available in appendix Dstw@vn below in the graphs below.

There is no substantial increase in web transagiionessing time when comparing a
direct connection from the web application to tleatbase and a connection from the
web application through TDSProxy without filteringhis is true for the cases of the
web application tests being done on both Netsedvheoms08. Figure 27 and Figure 28

both show the first two scenarios’ average timaraaind 5 ms per query.

There is a jump in the average web applicationgssinig time when the filter is turned
on. The increase of about 20 ms per query in bahr€é 27 and Figure 28 indicate that
the increase in the average web application prowgdsme is due to the filtering

process. The slight increase in average web apiplicprocessing time when doing the
tests on Netserv is attributed to the decreashroughput due to network traffic. This

can be seen in Figure 29.

1 Page 51 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

Average web transaction processing time

- HonsO08 -
30
25
20
@ Select
| Insert

Time (ms)/query
= [
o [¢;]

&)

o

Direct Proxy - No filter Proxy - Filter

Query Scenario

Figure 27: The average web transaction processirggon hons08

Average web transaction processing time
- Netserv -

@ Select
| Insert

Time (ms)/query

Direct Proxy - No filter Proxy - Filter

Query scenario

Figure 28: The average web transaction processirggon Netserv

Figure 29 shows a decrease in the throughput wirenest is done on a remote server
as opposed to doing the tests on the local hostavkrage INSERT statement seems to

1 Page 52 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

take longer to execute than selecting 100 recaais the database. This accounts for
the decrease in throughput from selects to insdotsgy the same route — directly to the

database, through TDSProxy without filtering olotigh TDSProxy and its filter.

The effect of the decrease in throughput betwedrESH and INSERT statements was
reduced by the network communication as the temta@ changed from hons08 to
Netserv. This is because the traffic spent moréhennetwork whilst travelling to and
from the database. The effect described is higtdmjtby Figure 30 which shows that
there is an increase in the average processing fom@DSProxy. This is because

TDSProxy may still be waiting for all the traffio tarrive before it can process the

query.

Average throughput for client or server

1200

1000 ~ _‘
800 ~ _‘

O Hons08
600 -
m Netserv

400

:
) iﬂﬂ

T T T

Throughput (kb/sec)

select direct insert direct select no insert no select filter insert filter
filter filter

Query Scenario

Figure 29: Graph showing the average web througiopuhe client or server

Another test scenario made use of the OSQL toddiBtyato run scripts from files.
When filtering was turned off, the average progegdime of TDSProxy was reduced
from 0.256845 milliseconds to 0.002469 millisecofatsa set of 5000 queries of varied
length and structure. Thus the filter process ald$o increase in average processing

time per query for a total signature set is 190.

1 Page 53 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

Timing the latency of TDSProxy was done by subingcthe time that the database
spends processing the query from the roundtrip fionea client query and response.
The roundtrip time was calculated as the queryrsrard leaves the proxy sever on the
client side only. The database processing time caé=ulated by timing the query and

response time on the database side.

TDSProxy average processing times

0.035

0.03

0.025

.02
0.0 O Hons08
m Netserv

0.015

Time (ms)/query

0.01

0.005 -

select no filter insert no filter select filter insert filter

Query Scenario

Figure 30: Graph showing the average processimg &f TDSProxy
4.2.7Conclusions

The time taken to process queries seems to begitggligiven the default MS SQL
Server 2000 login timeout time is 4 seconds anddifault query timeout time is 0
seconds. However, it is predictable that as the 8fction signature set grows, there

may be an effect due to the filtering process.
4.3 System Implementation Summary

In this chapter, we provided an explanation of ithplementation and discussed the

problems encountered. The solution to the problems developed iteratively. The final

1 Page 54 of 88 r

CHAPTER4 — SYSTEM IMPLEMENTATION

solution was developed in a fully Microsoft envinsent. Microsoft SQL Server 2000
was configured to listen on port 5555. TDSProxyteduTCP data from port 4444 to
port 5555. Thus, any application making use of TR to connect to the database
had to connect to port 4444. The port and addreings are maintained in the

configuration file as are the filter settings.

The filter makes use of SQL signatures that arentagied in separate files. There are
black, white, gray and pattern matching lists ameisé lists may be updated as more
matching signatures are identified. The lists aseduby the filter method when
analysing the TDS payload for a SQL injection d&ta@nly clean queries are sent to the
database. If an attack is detected, an alert is@érvia UDP to the Administrators and

the attack time and query is logged.
The resulting software filters out SQL injectioaak queries. The filter process is fast

enough to make TDSProxy seem invisible with the imar processing time being

about one fortieth of a millisecond per query.

1 Page 55 of 88 r

CHAPTERS - CONCLUSION

Chapter 5 - Conclusion

5.1 Conclusion

SQL injection takes advantage of application flawsxecute additional queries on a
database when parameters are chained togethezai® ¢he database query and there is
no parameter input validation. Most web applicatiane vulnerable to SQL injection or
some form of hacker attack and it is common knogéethat many more vulnerable
applications will be developed. There are many messthat can be implemented to
reduce the chance of an attack. For instance, ppssible to ensure input validation,
check database error log files and reduce the geioms of all application users in the
database itself. However this is tedious and igroftot put into practice by many

developers who may need to produce software i .hu

With the increase in awareness of SQL injectiows$land the availability of automated
vulnerability scanners, filtering malicious SQLtstments seems to be the best solution
in preventing SQL injection. Therefore, the projpodduced a filtering proxy server to
prevent SQL injection. Ideally, the filtering apgdiion should sit on the same machine
as the database. However, the filtering process naay a performance impact such

that the filtering application and the databasearteée on different machines.

Using SQL signature filtering as a preventative soea to SQL injection provides real
time protection against SQL injection. TDSProxy as autonomous application
independent of flaws in the vulnerable applicatiand independent of database
configuration flaws. However, false positives may dlowed through the filter and
false negatives may be blocked by the filter. T&idue to the difficulty in creating and
maintaining an exhaustive list of SQL injectionrsgures despite there being a finite

1 Page 56 of 88 r

CHAPTERS - CONCLUSION

set of words in the SQL vocabulary. Black, whiteaygand pattern matching lists are
maintained in separate files and are used by He fnethod when analysing the TDS
packet for a SQL injection attack. However, goingclb to the principle of least

privilege, by using a white list, it is possibledefine what is allowed and thus prevent

invalid signatures.

The design methodology made use of UML in an iteeaprocess along with the
implementation. Thus the development was done agest, allowing problems to be
tackled in manageable pieces. The final solutios waveloped iteratively in a fully

Microsoft environment.

Timing the web transaction processing time per yyeovided useful information on
the impact of the TDSProxy on web interface usage. filter process is fast enough to
make TDSProxy seem invisible. However, it is prahte that as the SQL injection

signature set grows, there may be an effect dtteetéiltering process.

SQL injection will be around for a long time ancetimethods of defence other than
correct input validation coding will only hinderehchances of an attack. Ways to

overcome the obstacles are left up to the creatieker to discover.

The project poster is available in Appendix A givesgyood visual summary of the
project. A code overview is available in AppendixA&ll project code, documentation,
references and software used are available on GBeirRhodes University Computer

Science Department. The CD contents are descnibAgpendix B.
5.2 Future Work

The system only implemented a skeleton of the ptessfunctionality for this
application. In order to be used commercially, saivadditions can be made to this

proof of concept project. Some of the additionsariined below:

e The timing of the filtering process and web tratisec processing provided
some interesting results. The order of filteringynh@ve a performance impact

too. This can be investigated by changing the aiteigrfilter uses the signatures.

1 Page 57 of 88 r

CHAPTERS - CONCLUSION

The project could be extended to handle other datbsuch as MySQL, Oracle

and Postgres as well as other operating systems.

A further extension of the project could involve awvestigation into the
performance impact of the proxy server on datasfean One question worth
asking is: “What is the maximum number of connewior number of queries
possible?” [Beynon, Sussman and Saltz, 1999]. This be investigated by

allowing multiple client to connect to TDSProxy bging threads

The project could also be extended to work for S8id allow for secure

connection to the proxy server.

Another useful implementation could be to filtertadl@oming back from the
database, checking for column names and data tigpéshe user should not be

allowed to see.

To be a useful intrusion detection system, therfithould be able to find the
attackers. Finding the user or attacker means thggdpgin information for
inspection. The filter would need a timestamp adl vas the source and
destination IP address [Finnigan, 2003].

Page 58 of 88 r

REFERENCES

References

[Acunetix Ltd. 2005]

[Anley, C 2002a]

[Anley, C 2002b]

[Beynon, M D,
Sussman, A,

and Saltz, J

1999]

[Beyond Security Ltd.
2002]

[Bruns B, Wheeler B,
Schaal M, Ziglio F et
al. 2005]

[Cerrudo, C 2004]

[Check Point Software
Technologies Ltd.
2004]

[Chuvakin, A and
Peikari, C 2004]
[Davis, L 2005]

Acunetix Web Vulnerability Scanner — Featu@sline].
http://www.acunetix.com/wvs/wvs2manual.pdf

[Last accessed: 07/11/05]

Advanced SQL injectigi©nline]. Available:
http://www.nextgenss.com/papers/advanced_sql_injegtdf
[Last accessed: 07/11/05]

(more) Advanced SQL Injecti¢@nline]. Available:
http://lwww.nextgenss.com/papers/more_advanced rgetti
on.pdf

[Last accessed: 07/11/05]

Performance impact of proxies in data intensiverdliserver
applications ACM Journal: Proceedings of the 13th
international conference on Supercomputing, Rha@esece.
ACM Press, New York. pp: 383 — 390. ISBN:1-58113-26
SQL Injection WalkthrougfOnline]. Available:
http://www.securiteam.com/securityreviews/5DPON1P.1H6
ml [Last accessed: 07/11/05]

TDS Protocol Documentation

[Online]. Available: http://www.freetds.org/tds.htm

[Last accessed: 07/11/05]

Manipulating Microsoft SQL Server Using SQL Injenti
[Online]. Available:
http://lwww.appsecinc.com/presentations/Manipulat®QL_
Server_Using_SQL_Injection.pdf [Last accessed: DY0A4]
Connectra Web Security Gatew@nline]. Available:
http://www.securehqg.com/images/checkpoint/connedtatas
heet.pdf [Last accessed: 02/10/05]

Security Warrior, O'Reilly Media Inc., Sebastogap. 374-
390

OSI Stack: OSI Protocol Descripti¢g@nline]. Available:
http://www.interfacebus.com/Design_OSI_Stack.html

Page 59 of 88 r

REFERENCES

[Last accessed: 07/11/05]

[Ethereal 2005a] Ethereal[Online]. Available:
http://www.ethereal.com/download.html
[Last accessed: 07/11/05]

[Ethereal 2005b] Supported Capture Med[®nline]. Available:
http://www.ethereal.com/media.html
[Last accessed: 07/11/05]

[Finnigan, P 2002] SQL Injection and Oracle, Part Ori®nline]. Available:
http://www.securityfocus.com/infocus/1644
[Last accessed: 07/11/05]

[Finnigan, P 2003] Detecting SQL Injection in Orac[®nline]. Available:
http://securityfocus.com/infocus/1714
[Last accessed: 07/11/05]

[Fortify Software Inc. Fortify product overvieWOnline]. Available:

2004] http://www.fortifysoftware.com/products/overviewpjs
[Last accessed: 07/11/05]
[FreeTDS 2005] TDS Protocol Documentatid@nline]. Available:

http://www.freetds.org/tds.html [Last accessed1Q105]
[Giacobbi, G 2004] The GNU Netcat proje¢Online]. Available:
http://netcat.sourceforge.net/ [Last accessed:100%]
[Grossman, J 2004] The Challenges of Automated Web Application Scgnnin
[Online]. Available:
http://www.blackhat.com/presentations/win-usa-04/bh-
04-grossman/bh-win-04-grossman-up.pdf
[Last accessed: 07/11/05]
[Hoglund G and Exploiting software: how to break code.
McGraw G, 2004] Addison —Wesley, pp 24, 41, 49, 56, 78 and 149
[Hotchkies, C 2004] Blind SQL Injection Automation Technigyésline].
Avalilable: http://www.blackhat.com/html/bh-media-
archives/bh-archives-2004.html#USA-2004
[Last accessed: 07/11/05]

[Howard, M and Writing secure code: Practical strategies and taqgaes for

1 Page 60 of 88 r

REFERENCES

LeBlanc, D 2003]
[Huang, Y, Huang, S,

Lin, T, and Tsai, C
2003]

[Imperva Inc. 2004]

[Imperva Inc. 2005]

[Kavado Inc. 2005]

[Kc, G S, Keromytis, A
D, and Prevelakis V
2003]

[Kline, K E 2004]

[Kocak, F 2004]

[Lawson, L 2005]

[Linux Journal 2004]

[Litchfield, D 2001]

secure application coding in a networking wor®i® Edition,
Microsoft Press, Redmond, Washington, pp 400-411
Web application security assessment by fault ilgecand
behavior monitoringn Proceedings of the 12th international
conference on World Wide Web, Budapest, Hungary.
SESSION: Data integrity. ACM Press, New York. pg81
159. ISBN:1-58113-680-3

SQL injection - glossary [Online]. Available:
http://www.imperva.com/application_defense_centesgary
/sql_injection.html [Last accessed: 07/11/05]
SecureSphere™: Dynamic Profiling Firewall™

[Online]. Available:
http://www.imperva.com/products/securesphere/ressiasp
?show=datasheet [Last accessed: 07/11/05]
Kavado[Online]. Available:
http://www.kavado.com/pdf/ScanDo_Datasheet.pdf

[Last accessed: 07/11/05]

Countering code-injection attacks with instructiset
randomizationn Proceedings of the 10th ACM conference on
Computer and communication securllyashington D.C.,
USA. ACM Press, New Yorkpp. 272 - 280

SQL in a Nutshell, 2nd Edition;Rilly Media Inc.,
Sebastopol

Packet Capture and AnalayZ@nline]. Available:
http://www.codeproject.com/csharp/pacanal.asp

[Last accessed: 07/11/05]

Introduction to SQL InjectioAvailable:
http://www.securitydocs.com/pdf/3348.PDF

[Last accessed: 07/11/05]

Real-world PHP securityol. 2004, Issue 120 (April 2004)
pp. 1

Web Application Disassembly with ODBC Error Message
[Online]. Available:

Page 61 of 88 r

REFERENCES

[Litchfield, D 2005]

[Litwin, P 2005]

http://www.blackhat.com/presentations/win-usa-
01/Litchfield/BHWinO1Litchfield.doc

[Last accessed: 07/11/05]

Data-mining with SQL Injection and Inferen&nline].
Available:
http://www.ngssoftware.com/papers/sqlinference.pdf
[Last accessed: 07/11/05]

Stop SQL Injection Attacks Before They Stop[@aline].
Available:
http://msdn.microsoft.com/msdnmag/issues/04/09/fgkti
on/default.aspx [Last accessed: 07/11/05]

[Maor, O and Shulman, Blind SQL InjectiorfOnline]. Available:

A 2003]

http://www.imperva.com/application_defense_centhitev p
apers/blind_SQL_server_injection.htm|
[Last accessed: 07/11/05]

[Maor, O and Shulman, SQL Injection Signatures Evasif@nline]. Available:

A 2004]

[Microsoft 2003a]

[Microsoft 2003b]

[Microsoft 2005]

[Network Chemistry
2005]

http://www.imperva.com/application_defense_centhitev p
apers/sql_injection_signatures_evasion.html

[Last accessed: 07/11/05]

Secure Multi-tier Deploymef©nline]. Available:
http://www.microsoft.com/technet/prodtechnol/SQLGRMMa
intain/sp3sec03.mspx [Last accessed: 07/11/05]
Checklist: Security best practicf3nline]. Available:
http://www.microsoft.com/technet/prodtechnol/SQLGRMMa
intain/sp3sec04.mspx [Last accessed: 07/11/05]
Reserved Keyword®nline]. Available:
http://msdn.microsoft.com/library/default.asp?uibrary/en-
us/tsqlref/ts_ra-rz_90j7.asp [Last accessed: 00511/
Packetyzer - Packet Analyzer for Windd®sline].
Available:
http://www.networkchemistry.com/products/packetyzer
[Last accessed: 07/11/05]

Page 62 of 88 r

REFERENCES

[Networks Associates McAfee System Protection: McAfee® Entercept® Databa

Technology, Inc. 2005] Edition [Online]. Available:
http://www.mcafee.com/us/local_content/datashegst&dterc
ept_dt_edition.pdf [Last accessed: 07/11/05]

[Nummish and Xeron, AbsinthgOnline]. Available

2005] http://mww.0x90.org/releases/absinthe/
[Last accessed: 07/11/05]

[Overstreet, R 2004] Protecting Yourself from SQL Injection Atta¢sline].
Available: http://www.4guysfromrolla.com/webtechA®2-
1.shtml [Last accessed: 07/11/05]

[OWASP (The Open Top Vulnerabilities in Web Applicatiof®nline]. Available:

Web Application http://umn.dl.sourceforge.net/sourceforge/owasp/CBNA0pP
Security Project) 2004] Ten2004.pdf [Last accessed: 07/11/05]
[Phrack 2005] Phrack[Online]. Available:

http://www.phrack.org/show.php?p=54
[Last accessed: 07/11/05]

[Postel, J 2004] RFC 1700 - Assigned Numbé@nline]. Available
http://lwww.faqgs.org/ftp/rfc/pdf/rfc1700.txt.pdf
[Last accessed: 07/11/05]

[Ristic, 1 2005] ModSecurity for JavfOnline]. Available:
http://www.modsecurity.org/projects/modsecurity§av
[Last accessed: 07/11/05]

[Rob, P and Coronel, C Database Systems: Design, Implementation, & Manageém

2002] Fifth Edition. Course Technology. Boston Massacttase
02210

[Seclutions, A G 2003] AirLock - application security gatewg@nline]. Available:
http://www.seclutions.com/en/downloads/AirLock_Oviewv
_Nov_2003.pdf [Last accessed: 07/11/05]

[SoftLogica LLC. Web Application testing (WAPT) VersiofChline].

2005] Avalilable: http://www.loadtestingtool.com/
[Last accessed: 07/11/05]

[Sommarskog, E 2005] The Curse and Blessings of Dynamic §Qxbline].Available:
http://www.sommarskog.se/dynamic_sql.html

1 Page 63 of 88 r

REFERENCES

[Spett, K 2002]

[Spolsky, J 2000]

[Vicomsoft Ltd. 2003]

[WebCohort, Inc.

2004]

[Weitz, E 2005]

[WhiteHat Security,
Inc. 2005]

[Last accessed: 07/11/05]

SQL Injection Are Your Web Applications Vulnerable?
[Online].Available:
http://www.spidynamics.com/whitepapers/WhitepaperB§)
ection.pdf [Last accessed: 07/11/05]

The Joel Test: 12 Steps to Better C{idrline]. Available:
http://www.joelonsoftware.com/articles/fog00000080#ml
[Last accessed: 07/11/05]

Firewall White Paper: What is the best firewall foe, and
how can it improve Internet securitf®@nline]. Available:
http://www.firewall-
software.com/firewall_fags/firewall_network_modéatsnl
[Last accessed: 07/11/05]

Only 10% of Web Applications are Secured Againsh@on
Hacking Techniquef©Online]. Available:
http://www.imperva.com/company/news/2004-feb-02Ihtm
[Last accessed: 07/11/05]

The Regex Coach - interactive regular expressjGmine].
Available: http://www.weitz.de/regex-coach/

[Last accessed: 07/11/05]

WhiteHat SentindlOnline]. Available:
http://www.whitehatsec.com/services.shtml

[Last accessed: 07/11/05]

Page 64 of 88 r

Appendix A — Project Poster

1 Page 65 of 88

APPENDIXA —PROJECTPOSTER

RHODES LINIVERSITY
Whetr fadirey Tt

QL Injection Prevention

using a Filtering Proxy

b~

VT COMMERSE

bl

Internet

Filtering

Proxy
Server

Filter

Example
select * from authors where
surname = "0'NHeil’

The database engine will retum an error;
Line 1: Incerrect syntax near
‘Neil®.

» WUsemame *;drop table users--

The 'users' table will be delated, denying
access to the application for all users

What is SQL injection?
+ Non-validated SQL from web applications
* Insert a series of SOL statements into a
query by manipulating the data input that is
passed as parameiers

» |t is possible to cause 8 second guery to be
exaculed with the first

The need for prevention

» SOL injection flaws has baen 6 in the top
10 vulnerabilities for the past 2 years

Prevention
Input validation programming techniques

» 62% of web appiications are vulnerable to + Filtering maiicious SQL statemens:
SOL Injestion iy
= '\ rand NULL extended characiers like
» At least 92% of web applications are MNULL, camy return and new line in all strings

vulnerable to some form of hacker aftacks: ||\ crpre 1PDATES, DELETES, UNIONS.
SUBSELECTS

Mitigation

- Usin%the minimum database privileges
possd

le (user and database)

Suppressing emor mes retuirned 1o the
client (secunty by ohscurity)

Checking error logs
Project goals

Analyse the strcture of SOL query
commands.

Build & parser that will check allowable
pattems of SGL statements

Create a y server that will filker SQL
commands

Prove that SQL. injection can be prevented
using the fiter developed to work on the
praxy semver

Figure A.1: Project Poster

Page 66 of 88

Appendix B — CD Contents

1 Page 67 of 88

APPENDIXB —CD CONTENTS

SRS Froiect cO
=l L3 Code and binaries
I Development code
I Final code
I5 Other code used
I=) TDSProzey Development Code
Ic=) Wisual Source Safe Database
|51 Yulnerable webpage
=l 153 Final project documentation
I Final presentation
I Final write up
[ﬁ Literature Rewview
|E| Poster
|51 Project proposal
|51 Project Wehbsite
IC=) short Paper
=l L3 Project Data
E] Data access pages
I Images
|53 packet captures
E] Scripks
I3 timing resulks
=50 uml
=l L3 Project software
I Absinthe
I acunetix
I3 blackhat bools
I freetds
|51 Microsoft Best Practices Analyser
E] netcat
I netstatus
I Packet Sniffers
|1 Regex Coach
I 505H
I Wisual Paradigm
I WAPT +3
=l 15 References
IC=1 Blog
I Final write up references
I short Paper References

Figure B.1: Contents of project CD

Page 68 of 88

Appendix C — Code overview

1 Page 69 of 88

APPENDIXC — CODE OVERVIEW

£ u=sing
using
using
using
using
using
using

Iystem:

Zystem.Net:
Gystem.Net.2ockets;
Zystem. Text}

System. Configuration;
System. Tindows . Forms;?
System. Threading:

- hatnespace TDS

{
é £ <swmarys

i

J47 this program allows access to connect to my machine and then forward the packet to
/47 the port that the database on my machine is listening on.
£
/¢4 Wersion 6 will aim at extending the code to be able to:
/47 alextract the sgl from the packets
/44 hiconfig file for port settings
A4 eifilter the sgl extracted from the packets
£
/#/ This class handles the declarations
/// reads the config file
/// ewreates the logger
/47 initialises the front end sockets
/// initialises the proxy backend
/44 receives connection from the client
/44 =send the recquests to the backend
/4 forwards responses from the backend
r /47 </ sunmar y>
= public class TepSock

|Timing for statistical purposes.

priwvate static wvold OpenfSocket (ref Socket server3ocket, IPEndFoint ipEndPointHost][:]

public static wvoid Main()
{

|debug options for log file and console printouts)

software title

|declarations and reading config £ile

|creating the logger, filter and proxy back enﬂ

|setting the IP end points of the host and datsbase machine.

|initialising the front end serverSocket and accepting a connectiod

|Sending and receiving data in a while loop
v/ dwoid main

- v /olass
}/ /namespace

Figure C.1: TCPSock Class

Page 70 of 88

APPENDIXC — CODE OVERVIEW

1liFusing System:
2| using System.Net;
3| using System.Net.Sockets;
4| using Jystem.Text;
5| using 3vystem.I0;
6| uging Systewm. Threading:
7
SiE namespace TDI
QJ]{
10 A cswmmwarys
11 S4¢ This elass is used to:
12 J/4 interface with the front end socket,
13 J/4 receive the client guery and filter it,
14 J/¢ take appropriate action should an attack he noted and the database datshase
15 F44 send the clean query to the database
16 J/¢ handle the database response
17 J/¢ recurn this response to the proxy front end
1a A suraryr
19 -
209 public class ProxyBackend
21 {
22i4 |debug options for log file and console printouts
27
283
=13
s
75
TaiH |connect Lo database given ipep
104
105 |send the message to the database afrer filrtering it
288
259iH |receive frow the datasbase
346
a7
361
383 }
384i|)
I3g5 -
Figure C.2: ProxyBackend Class
1l using System:;
2 Lusing Swyatem. I0;
]
4iF] namespace TDS
S 4
sé Ji4 <swmmarys
7 /// This eclass is used to log things.
-] /44 It appends the data to the end of the file specified
=] //¢ This approach was taken to prevent many files with date stamwps and the like being produced.
10 /74 8o, there is one huge file with all the logs in it
11 e
1z 444 ***This can later be extended to log things directly into the datshaserrr
13 i
14 Ji4 </ sumar v
154 public olass Logoger
1a {
17 private string fileMawe = "3glInjectionlLog.txt™;
15
19t
33
34 |log and dunplog methods)
65 - }//olass Logger
66| }//namespace
6L

Figure C.3: Logger Class

Page 71 of 88

APPENDIXC — CODE OVERVIEW

Fusing System:?

using System.Collections:

using System.Configuration;

using System. IO;

using System.Text.RegularExpressions;

[natnespace TDI

I

{

i
i
i
i
i
i

< SUNTHAY i

this class will allow us to interpret what is in the tds packet.
this should he loaded at the beginning so that the data is read

into the array before any gqueries are made to the database

logging - [guery typedf (hlack,white,grey) timestamp ruleThatCaughtIt]
</ surmar v

public class Filter

i

declarations

public Filter [JEI

|getting and setting a cquery flag - used for timinq

A4 esummarys

A4 Search: Zearches theQuery for matches in the order given in the configuration file.
LA 2 sumary>

A <param nemwe="theQuer v/ parsm>

/id <returnsr</returns:

public bool Zearchi{string theQuery][:]

A Csumary>

Jf4 Searchouery: search for matches using regex

Jf7 </ sunmary>

A44 <param name="oguery's </ param

A4 <param name="myAL"></ param>

/f¢ <returnsr</returnss

private bool JearchQuery(string query, ArravList myAL][:]

A4 <swmwarys

//¢ BeadFilelInfo: Read the text file and put the walues into an Arraylistc
A </ swnmar v

A4 <param namwe="filename":r</parsm:>

A4 <param namwe="myAL"></params

private woid ReadFileInfo(String filename, ArravyList mykL][::

A <swmwarys

/44 print method used to print the walues in the Arraylist
A </ sunmar v

A4 <param nawe="myList"™»</param>

private woid PrintValues|(IEnumerable mylList][:]

}Y//olass Filter}
+ S namespace

Figure C.4: Filter Cass

Page 72 of 88 r

APPENDIXC — CODE OVERVIEW

[l using System;

1
2i| using 3Iystem.MNet;
3| using 3ystem.Net.Sockets:
4i| using 3ystem.Threading;
5| using 3ystem.Text:
[
7 namespace TDI
i1
j=Fi AAF <swmmarys
10 ff¢ This class is a UDP server which broadcasts the 30L injection attack gquery that has been filtered
11i A </ swmmar v
129 public class UdpSerwver
13 {
14iR |variable declarations|
31
32iH |c:0nst,ruct,0r which sets the ports and calls Initialise|) which starts the udpserver|
46
47 |initialise the UDP serwver
87
oot
117
118y
127
128 Y iolass

1zl)/ nawespace

Figure C. 5: UDPServer Class

1 Page 73 of 88 r

Appendix D — Timing tests

1 Page 74 of 88

APPENDIXD —TIMING TESTS

D.1 Local host tests

The following tests were done using a tool calleebwapplication testing (WAPT)
version 3 [SoftLogica LLC., 2005]. The local hossts were done on hons08 where

TDSProxy and the database were being hosted.

D.1.1 Select statement, direct to the database

--- Basic statistics ---

Page name: hons08 select page — direct to database

Min web transaction (without images): 3.56
Avg web transaction (without images): 4.05
Max web transaction (without images): 10.41

--- Network traffic details ---

Total bytes sent: 384891

Total bytes received: 601067

Average server bandwidth (Kbits/sec): 1076.37
Average user bandwidth (Kbits/sec): 1076.37

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P
1 1000 7328 136.46 7.33

Total work time: 7328
Total pages made: 1000

Total average pages per second: 136.46
--- HTTP response codes details ---

Code Count
200 1000

1 Page 75 of 88 r

APPENDIXD —TIMING TESTS

Mumber of virtual users = 1

11.00

10.00

9.00

6.00

7.00
6.00

B Max
- . 1 |

W Ay
4.00 @ Min

3.00

Weh transaction (without images) (ms)

200

1.00

0.00

o 100 200 300 400 500 600 700 600 o0 1000

lteration

Figure D.1: Graph showinghons08 select page — direct to database

D.1.2 Insert statement, direct to the database

--- Basic statistics ---
Page name: hons08 insert page — direct to database

Min web transaction (without images): 4.03
Avg web transaction (without images): 4.85
Max web transaction (without images): 10.33

--- Network traffic details ---

Total bytes sent: 429891

Total bytes received: 628067

Average server bandwidth (Kbits/sec): 1014.46
Average user bandwidth (Kbits/sec): 1014.46

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P
1 1000 8343 119.86 8.34

Total work time: 8343

Total pages made: 1000

Total average pages per second: 119.86

1 Page 76 of 88

APPENDIXD —TIMING TESTS

--- HTTP response codes details ---
Code Count
200 1000

Murnber of virtual users = 1

11.00

10.00

9.00

8.00

7.00
5.00 (] 7 b 1 T

B Max
W A
4.00 B Min

£.00 4+ T z

3.00

Weh transaction fwithout images) (ms)

200

1.00

0.00

o 00 200 300 400 &S00 ®OO YOO 8O0 500 1000

Iteration

Figure D.2: Graph showing hons08 insert page — diréto database

D.1.3 Select statement, through TDSProxy without filterirg

--- Basic statistics ---

Page name: hons08 select page, TDSProxy, no filte

Min web transaction (without images): 4.05
Avg web transaction (without images): 4.42
Max web transaction (without images): 42.74

--- Network traffic details ---

Total bytes sent: 384891

Total bytes received: 601067

Average server bandwidth (Kbits/sec): 963.32
Average user bandwidth (Kbits/sec): 963.32

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P
1 1000 8188 122.138.19

1 Page 77 of 88

APPENDIXD —TIMING TESTS

Total work time: 8188
Total pages made: 1000
Total average pages per second: 122.13

--- HTTP response codes details ---
Code Count
200 1000

Mumber of vitual users = 1

50.00

40.00

30.00

W Max
W Ay

20.00 B Min

Weh transaction (without images) (ms)

10.00

rﬂ (IR I IR uv%% 20l .1
.o ! :

o 100 200 300 400 &00 GO0 700 800 o0 1000

lteration

Figure D.3: Graph showing hons08 select page, TDSPrgxno filter

D.1.4 Select statement, through TDSProxy with filtering

--- Basic statistics ---

Page name: hons08 select page, TDSProxy, filter

Min web transaction (without images): 24.33
Avg web transaction (without images): 25.33
Max web transaction (without images): 88.51

--- Network traffic details ---

Total bytes sent: 384891

Total bytes received: 601067

Average server bandwidth (Kbits/sec): 271.41
Average user bandwidth (Kbits/sec): 271.41

--- Summary times ---

1 Page 78 of 88

APPENDIXD —TIMING TESTS

Virtual Users statistics:
User Pages Time AP/S AT/P
1 1000 29062 34.41 29.06

Total work time: 29062
Total pages made: 1000

Total average pages per second: 34.41

--- HTTP response codes details ---
Code Count
200 1000

Mumber of virtual users = 1

90.00

80.00

70.00

60.00

50.00 W Max
W Ay
@ Min

40.00

30.00 -

Web transaction (without images) (ms)

20.00

10.00

0.00
o 100 200 300 400 500 600 700 600 o0 1000

Iteration

Figure D.4: Graph showing hons08 select page, TDSPpXilter

D.1.5 Insert statement, through TDSProxy without filtering

--- Basic statistics ---

Page name: hons08 insert page - TDSProxy, no filter

Min web transaction (without images): 4.57
Avg web transaction (without images): 5.29
Max web transaction (without images): 41.86

--- Network traffic details ---
Total bytes sent: 429891
Total bytes received: 628067

1 Page 79 of 88

APPENDIXD —TIMING TESTS

Average server bandwidth (Kbits/sec): 908.90
Average user bandwidth (Kbits/sec): 908.90

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P
1 1000 9312 107.399.31

Total work time: 9312
Total pages made: 1000

Total average pages per second: 107.39

--- HTTP response codes details ---
Code Count
200 1000

Murniber of vitual users =1

50.00

40.00

30.00

W Max
W Ay

20.00 B Min

10.00 s
'“'"r“ “ﬂ”ﬂniﬂ“ﬂ- P 2 ol ol
0.00 b .

T
o 00 200 300 400 &S00 ®OO YOO 8O0 500 1000

Weh transaction (without images) (ms)

Iteration

Figure D.5: Graph showing hons08 insert page - TDSPxg, no filter

D.1.6 Insert statement, through TDSProxy with filtering

--- Basic statistics ---

Page name: hons08 insert page — TDSProxy, filter

Min web transaction (without images): 24.84
Avg web transaction (without images): 26.30
Max web transaction (without images): 89.76

1 Page 80 of 88

APPENDIXD —TIMING TESTS

--- Network traffic details ---

Total bytes sent: 429891

Total bytes received: 628067

Average server bandwidth (Kbits/sec): 281.53
Average user bandwidth (Kbits/sec): 281.53

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P
1 1000 30063 33.26 30.06

Total work time: 30063
Total pages made: 1000

Total average pages per second: 33.26

--- HTTP response codes details ---
Code Count
200 1000

Murmnber of virtual users = 1

90.00

80.00

70.00

60.00

50.00 B Max
W Ay
@ Min

—o

40.00

30.00 a1 ey 1,

Wyeh transaction fwithout images) (ms)

20.00

10.00

0.00

o 100 200 300 400 &00 GO0 700 800 o0 1000

Iteration

Figure D.6: Graph showing hons08 insert page — TDSPxy, filter

D.2 Netserv tests

1 Page 81 of 88

APPENDIXD —TIMING TESTS

Netserv is the computor on which the following $estere run. TDSProxy and the

database were on hons08, a remote machine.

D.21 Select statement, direct to the database

--- Basic statistics ---

Page name: netserv select page — direct to database

Min web transaction (without images): 4.20
Avg web transaction (without images): 6.42
Max web transaction (without images): 17.57

--- Network traffic details ---

Total bytes sent: 402881

Total bytes received: 601067

Average server bandwidth (Kbits/sec): 553.90
Average user bandwidth (Kbits/sec): 553.90

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P
1 1000 14500 68.97 14.50

Total work time: 14500
Total pages made: 1000
Total average pages per second: 68.97

--- HTTP response codes details ---

Code Count
200 1000

1 Page 82 of 88 r

APPENDIXD —TIMING TESTS

Mumber of virtual users = 1

18.00

16.00

14.00

12.00

WDDD_ A
i 2
]

W Ay
B3 Min

6.00

6.00

Weh transaction (without images) (ms)

4.00

200

0.00
o 100 200 300 400 500 600 700 800 o0 1000

lteration

Figure D.7: Graph showing netserv select page — diceto database

D.2.2 Insert statement, direct to the database

--- Basic statistics ---

Page name: netserv insert page — direct to database

Min web transaction (without images): 4.61
Avg web transaction (without images): 7.24
Max web transaction (without images): 11.36

--- Network traffic details ---

Total bytes sent: 459881

Total bytes received: 636067

Average server bandwidth (Kbits/sec): 572.56
Average user bandwidth (Kbits/sec): 572.56

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P
1 1000 15313 65.30 15.31

Total work time: 15313

Total pages made: 1000
Total average pages per second: 65.30

1 Page 83 of 88

APPENDIXD —TIMING TESTS

--- HTTP response codes details ---
Code Count
200 1000

Murmnber of virtual users = 1

12.00

11.00
10.00

- I o pe il

6.00

7.00
6.00

pa

] .

B Min

-
o
_—
r—
el
o]
—
o
L
b

5.00 y 98
4.00

3.00

Wb transaction (without images) {ms)

200

1.00
0.00

o 100 200 300 400 500 600 700 800 o0 1000

Iteration

Figure D.8: Graph showing netserv insert page — dii to database

D.2.3 Select statement, through TDSProxy without filterirg

--- Basic statistics ---

Page name: netserv select page, TDSProxy, no filter

Min web transaction (without images): 4.79
Avg web transaction (without images): 6.70
Max web transaction (without images): 37.60

--- Network traffic details ---

Total bytes sent: 402881

Total bytes received: 601067

Average server bandwidth (Kbits/sec): 553.33
Average user bandwidth (Kbits/sec): 553.33

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P
1 1000 14515 68.89 14.52

1 Page 84 of 88

APPENDIXD —TIMING TESTS

Total work time: 14515
Total pages made: 1000

Total average pages per second: 68.89

--- HTTP response codes details ---
Code Count
200 1000

Mumber of vitual users = 1

40.00

30.00

B Max

2000 B A
B Min

Wyeh transaction (without images) (ms)

10.00

0.00+ T T T T T T T T T 1
o 00 200 300 400 SO0 BOO YOO GO0 900 1000

Iteratian

Figure D.9: Graph showing netserv select page, TDSPxg, no filter

D.2.4 Select statement, through TDSProxy with filtering

--- Basic statistics ---

Page name: netserv select page, TDSProxy, filter

Min web transaction (without images): 24.75
Avg web transaction (without images): 27.46
Max web transaction (without images): 100.62

--- Network traffic details ---

Total bytes sent: 402881

Total bytes received: 601067

Average server bandwidth (Kbits/sec): 227.14
Average user bandwidth (Kbits/sec): 227.14

--- Summary times ---

Virtual Users statistics:

1 Page 85 of 88

APPENDIXD —TIMING TESTS

User Pages Time AP/S AT/P
1 1000 35360 28.28 35.36

Total work time: 35360
Total pages made: 1000

Total average pages per second:

--- HTTP response codes details ---

Code Count
200 1000

28.28

Murnber of vitual users =1

110.00

100.00

90.00

80.00

7000

B0.00

50.00

B Max

I

|]

40.00 @ Min
EU-DD%W

Wyeh transaction (without images) (ms)

20.00

10.00

0.0o

o 100 200 300 400 500 600 700 8O0 900 1000

lteration

Figure D.10: Graph showing netserv select page, TDS@xy, filter

D.2.5 Insert statement, through TDSProxy without filtering

--- Basic statistics ---

Page name: netserv insert page, TDSProxy, no filter

Min web transaction (without images):

Avg web transaction (without images):

Max web transaction (without images):

--- Network traffic details ---

Total bytes sent: 459881
Total bytes received: 636067

Average server bandwidth (Kbits/sec):

-

5.96
8.02
39.14

547.43

Page 86 of 88

APPENDIXD —TIMING TESTS

Average user bandwidth (Kbits/sec): 547.43

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P
1 1000 16016 62.44 16.02

Total work time: 16016
Total pages made: 1000

Total average pages per second: 62.44

--- HTTP response codes details ---
Code Count
200 1000

Murmnber of virtual users = 1

40.00

30.00

B Max
W Ay
B Min

20.00

Weh transaction (without images) (ms)

10.00
i

0.00+ T T T
o 100 200 300 400 500 600 700 800 o0 1000

Iteration

Figure D.11: Graph showing netserv insert page, TDSBxy, no filter

D.2.6 Insert statement, through TDSProxy with filtering

--- Basic statistics ---
Page name: netserv insert page TDSProxy, filter

Min web transaction (without images): 25.52
Avg web transaction (without images): 28.43
Max web transaction (without images): 88.65

1 Page 87 of 88

--- Network traffic details ---

Total bytes sent: 459881

Total bytes received: 636067

Average server bandwidth (Kbits/sec): 241.35
Average user bandwidth (Kbits/sec): 241.35

--- Summary times ---

Virtual Users statistics:

User Pages Time AP/S AT/P
1 1000 36328 27.53 36.33

Total work time: 36328
Total pages made: 1000

Total average pages per second: 27.53

--- HTTP response codes details ---
Code Count
200 1000

Murmber of virtual users = 1

90.00

80.00

70.00

B0.00

50.00 W Max
W Ay
B3 Min

40.00

30.00

Weh transaction (without images) (ms)

20.00

10.00

0.00
o 100 200 300 400 500 600 700 800 o0 1000

Iteration

Figure D.12: Graph showing netserv insert page TDSPKYy, filter

1 Page 88 of 88

