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Abstract

In this paper two approaches to hierarchical reinforcement learning are applied to a complex

gridworld navigation problem. The first method is an adaption of Feudal Reinforcement Learn-

ing by Dayan and Hinton, and the other is a novel method called the State Variable Combination

approach (SVC), designed for a problem consisting of multiple conflicting sub-problems. Feu-

dal Reinforcement Learning was not easily adaptable to the gridworld navigation problem, and

proved inefficient. SVC proved successful for most cases, but was erratic in its performance.
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Chapter 1

Introduction

Reinforcement learning is an attractive form of machine learning that has been successfully ap-

plied to problems in the past, such as a backgammon playing program, called TD-Gammon

[Tesauro, GJ (1995)]. However, as the complexity of a given problem increases, efficiency de-

creases exponentially. This is the main disadvantage of the method, and research on reinforce-

ment learning tends to be aimed at methods of getting around this.

Any given problem will have associated with it a number of different states which it can be in.

From any one of these states there are a set of actions which can be performed. Reinforcement

learning maps predicted rewards to all state-action pairs, based on previous rewards received.

The set of all possible states is known as the state space. Increasing the complexity of a problem

can cause an explosion of the state space. This causes learning time to decrease, as there are a

vast number of states that need to be experienced in order for learning to occur. This is known as

the curse of dimensionality. This also forces sub-problems to be dependent on each other, even

when they aren’t inherently dependent. Learning to solve sub-problem A, while sub-problem B is

in one state, does not teach the agent anything of how to solve sub-problem A, while sub-problem

B is in another state, even if the solution is the same, which is usually the case.

If a complex problem consisting of multiple conflicting sub-problems could be broken up

into its separate sub-problems, and each sub-problem tackled individually, with a “Divide and

Conquer” approach, this would lead to a much more efficient solution to the problem. This ap-

proach is termed hierarchical reinforcement learning, because of the manner in which the overall

problem is divided up into a hierarchical structure of sub-problems. Many different approaches

to hierarchical reinforcement learning exist, each with different approaches to breaking up the

overall problem into sub-problems, and each with different levels of designer intervention. Some

methods aim at breaking up the actual state space into a hierarchical structure, while others deal
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more with directly breaking up the problem into sub-problems. Some methods try to automati-

cally identify sub-problems within a given problem, while others rely on the designer to explicitly

define sub-problems. These methods will be discussed in the next chapter.

In this project a complex gridworld problem was designed in which a primitive creature had

to navigate the gridworld, keeping health high and thirst and hunger low. These are all conflicting

sub-problems as they are all solved by a completely different series of actions. They all need to

be balanced, as just keeping one of the needs satisfied is not sufficient. All three sub-problems

need to be solved individually, balancing them so that each of them is in an optimally solved state

simultaneously. A hierarchical reinforcement learning approach is therefore well suited to solve

this problem. Two different hierarchical reinforcement learning approaches were implemented

to solve the complex gridworld navigation problem and compared to that of a flat reinforcement

learning approach.

In chapter 2 of this thesis various previous designs and implementations of algorithms of

Hierarchical Reinforcement Learning are discussed, and how applicable they are to the complex

gridworld navigation problem. In chapter 3 the complex gridworld navigation problem is fully

described. Chapter 4 discusses a flat reinforcement learning approach that is used as a benchmark

against further solutions to the problem. In chapter 5 the adaption and implementation of Feudal

Reinforcement Learning by [Dayan and Hinton, 1993] to the complex gridworld problem is

discussed and in chapter 6 an original algorithm called the State Variable Combination approach

(SVC) is described and implemented. Chapter 7 concludes the thesis with a discussion of the

various methods attempted.
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Chapter 2

Hierarchical Reinforcement Learning

Survey

Reinforcement learning is a form of machine learning which learns which action to take for a

given situation in order to maximise a numerical reward. The learner is not told what to do, as

with the majority of other machine learning algorithms, but rather is given a measure of how

good an action is which it performed by means of a reward. A chosen action not only affects the

given reward, but also the resulting state the learner will find itself in after taking the action, and

hence all further rewards. A learner will have to do a fair amount of exploration in order to learn

the solution to a problem. Learning by trial and error, and delayed rewards are the two main

factors which distinguish reinforcement learning from other forms of machine learning [Sutton

and Barto, (1998)].

Reinforcement learning keeps track of predicted rewards for predicted actions for a given

state by means of a table called a Q-table. After every step, the predictions are updated according

to the real reward received by the learner. At any time the learner will have a highest predicted

reward for every action from every state. This set of most optimal actions for every state is known

as the learner’s policy.

In this section I will give a brief overview of some common algorithms of hierarchical re-

inforcement learning, including those in which the hierarchical structure is supplied by the de-

signer, and also those in which the agent attempts to uncover the hierarchical structure for itself.

6



Figure 2.1: Hierarchical breakdown of a maze into sub-mazes from [Dayan and Hinton,
1993]

2.1 Feudal Reinforcement Learning

[Dayan and Hinton, 1993] give an approach to hierarchical reinforcement learning, in which the

hierarchical structure is given by the designer. It is called Feudal reinforcement learning and

in it, they apply their algorithm to a task in which an agent has to navigate a gridworld maze

which contains in it a barrier. The hierarchical structure is designed by the designer to consist of

multiple levels. At each level of the hierarchy the gridworld blocks are grouped into increasingly

large blocks, as in figure 2.1.

Managers are assigned at each level of the hierarchy. Managers are in charge of choosing

which sub-manager to assign next to complete a desired goal. Therefore each manager will have

a super-manager, except for the highest level manager. In the same way, every manager will have

a number of different sub-managers which it will have control over, and only the lowest level

managers are allowed to perform actions inside the gridworld. There are certain rules that need

to be applied when applying this method. Managers must reward sub-managers for achieving

the manager’s desired task, even if this task is not desired by the super-manager. Similarly, sub-

managers do not get rewarded even if they perform the desired task of the super-manager, unless

they satisfy what the manager has told them to do. Therefore rewards are strictly only given

one level down the hierarchy. Managers also only need to know the state of the system at the
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granularity of their own choice of tasks.

In testing the performance of this system, the designers tested it on a given gridworld and

compared the results to that of a flat reinforcement learning agent. For the first few iterations, the

flat reinforcement learning agent outperformed the Feudal reinforcement learning agent, but the

Feudal reinforcement learning agent quickly overtook the performance of the flat reinforcement

learning agent and after about 500 iterations was by far outperforming it.

A method of dealing with a problem with conflicting sub-problems is that of hierarchical rein-

forcement learning. Hierarchical reinforcement learning is an approach to reinforcement learning

which splits a given problem into a number of smaller sub-problems, and then attempts to tackle

each sub-problem separately. By doing this the overall state space is decreased and therefore

the efficiency increased. In [Kaelbling, Littman and Moore, 1996], hierarchical reinforcement

learning is mentioned as a good way of increasing efficiency in reinforcement learning.

In hierarchical reinforcement learning, conventional methods of reinforcement learning are

used for learning at each level of the hierarchy, and therefore hierarchical reinforcement learning

does not lose the desirable qualities of reinforcement learning. Reinforcement learning is very

good at dealing with stochastic errors which might creep into the description of the state. A

hierarchical reinforcement learning approach to navigating a gridworld was used in [Bakker and

Schmidhuber, 2004], and to test its ability to handle stochastic errors, the latter were introduced

into the description of the state. The algorithm dealt with them very well, and was almost as

efficient as the errorless example.

For reinforcement learning, the current choices of actions by an agent for its different states

is known as its policy. In hierarchical reinforcement learning, with the breaking up of an over-

all goal into subgoals, comes the introduction of subpolicies. These subpolicies are a common

aspect in literature on hierarchical reinforcement learning and are given different names by var-

ious researchers, such as actions, options, skills, behaviours and modes [Barto and Mahadevan,

2003].

2.2 A Method of Reducing the State Space in Hierarchical Re-

inforcement Learning

[Asadi and Huber, 2004] give a method for dividing up the global state space of a problem into

smaller state spaces. Their method is an extension of a method calledε-learning. It describes

how a problem’s state space can be divided up into a series of intervals if the states in the same

interval block have the same properties in terms of transitions and rewards. This type of division
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Figure 2.2: Hierarchy of sub-problems for the taxi problem from [Dieterich, 1999]

can be used to reduce the overall state space of the given problem. This method is not directly

related to this thesis. However, the different divisions of the state space could be thought of as

subgoals, and hence this method fits in with the idea of automatically discovering subgoals.

Asadi and Huber describe how the method was tested on a gridworld problem to see its ability

to reduce state space. The algorithm worked well, and reduced the state space to the full extent

which the restrictions of the method allowed.

2.3 MAXQ Value Function Decomposition

Another method of hierarchical reinforcement learning, called MAXQ value function decom-

position, is proposed by [Dieterich, 1999]. It is an algorithm which expects the hierarchical

structure to be supplied by the designer. It suggests breaking the main problem’s value func-

tion up into an additive combination of smaller value functions, each associated with a smaller

problem. As an example the author gives a problem where a taxi agent needs to move around a

gridworld picking up and dropping off passengers at there desired locations. The author breaks

up the problem into a hierarchy of problems, represented by figure 2.2. The MAXQ algorithm is

tested against flat Q-Learning and significantly outperforms it.
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2.4 The HASSLE Algorithm

In [Bakker and Schmidhuber, 2004] the HASSLE algorithm is introduced. It is described in

more rigorous mathematical detail than some of the other algorithms, such as that on Feudal

reinforcement learning [Dayan and Hinton, 1993]. It follows the same general idea as the most of

the other algorithms, but is more advanced and has the ability to automatically discover subgoals

and extract high level observations from the given information, without the intervention of a

designer. For simplification, in the description of the algorithm, only two levels of the control

hierarchy are considered, but in general, the control hierarchy will be the same at all levels.

At the higher level there is a high level policyπH and at the lower level there are a number of

low level policiesπL. The action of a high level policy is to request a low level policy to perform

a specific subgoal. The subgoals are a set of high level observationsoH which is completely

different from and smaller than the low level observationsoL. πH takes as its inputoH
s , the

current observation, and its action is another high level observationoH
g which is the next desired

observation. There are a limited set of low level policiesπL
i , none of them are initially associated

with a specific subgoaloH
g or any of the possibleoH

s , the associations are learned over time. Every

πL
i contains a table of so-called C-values of (oH

s ,oH
g ) pairs each which represents the capability of

πL
i to reach subgoaloH

s from the high level observationoH
s , the input observation. For the current

(oH
s , oH

g ) pair, a low level policy is selected based on its capability, C(oH
s ,oH

g ), to get from the

current observation to the desired observation. If a low level policy gets to the desired observation

oH
g , its capability, C(oH

s ,oH
g ), is increased, otherwise its capability is decreased. The low-level

policy also receives a positive reward if it reaches the subgoal, and zero reward if it doesn’t,

so that it becomes better at reaching it. Hence different low-level policies will have different

capabilities of reaching different observationsoH
g , and therefore different low-level policies learn

to specialise at the tasks that they are the most capable of. To arrive at high level observations, the

HASSLE algorithm is not constrained to any particular method. In the example given, a method

called ARAVQ (Adaptive Resource Allocation Vector Quantization) was used.

Bakker and Schmidhuber tested the HASSLE algorithm against various flat reinforcement

learning agents, some using linear function approximation and others using multilayer feed-

forward neural networks for value function approximation. HASSLE outperformed all the flat

reinforcement learning algorithms.
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2.5 Automatic Discovery of Subgoals

As [Bakker and Schmidhuber, 2004] highlights, most studies on hierarchical reinforcement learn-

ing assume that the actual hierarchical structure is given by the designer, and the agent is allowed

to learn within this concrete structure. For most problems, where the hierarchical structure can

easily be extracted, this is sufficient. However, in some cases, it might be desirable for the agent

itself to be able to identify subgoals, as this minimises the designers role in the system. It also

makes the learning process more flexible, as an agent can automatically learn a new hierarchical

structure, if the hierarchical structure is suddenly changed.

In this thesis, both algorithms of hierarchical reinforcement learning used, the modified Feu-

dal reinforcement learning algorithm and SVC, have built in methods of discovering subgoals,

and hence techniques of automatic discovery of subgoals are not necessary. However, algorithms

which do not have the ability to automatically discover subgoals, could make good use of the fol-

lowing methods. The methods are briefly described to give the reader a general idea of alternative

methods available to a designer of a hierarchical reinforcement learning algorithm, and are not

discussed further, as they are not relevant to methods applied in this thesis.

2.5.1 Automatic Discovery of Subgoals in Hierarchical Reinforcement Learn-

ing Using Diverse Density

[McGovern and Barto, 2001] propose another algorithm for the automatic discovery of subgoals.

Their theory is that subgoals often occur at bottlenecks in the state space. As an example they

describe a gridworld in which there are different rooms and connecting the rooms are doorways.

If an agent starts inside one room, and the goal is in another room, getting through the door to the

other room could be thought of as a subgoal, because it needs to be accomplished before the final

goal is reached. The doorway can also be thought of as a bottleneck in the state space, and hence

the correlation between bottlenecks and subgoals. Bottlenecks are not confined to navigation

tasks though, and the concept of bottlenecks can be applied to a range of different state spaces.

As a general definition of bottlenecks the authors talk about an agents path through the state space

as its trajectory, and say that a bottleneck is a region which the agent experiences somewhere in

the state space on every successful trajectory, but not at all on an unsuccessful trajectory. A

method of finding bottlenecks for general state spaces, and hence for finding subgoals is then

given, which uses the concept of diverse density.

These types of bottleneck subgoals show that the reason hierarchical reinforcement learning

would be more efficient than flat reinforcement learning isn’t only because breaking goals up
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into subgoals significantly decreases the state space, but also because it enables more efficient

exploration. In flat reinforcement learning, if an agent starts in a room, but has to get through a

door to get to the goal, it might spend far too much time exploring the first room, because the

chances of it finding its way through the door while still exploring are quite slim.

The algorithm was tested in a gridworld navigation task, and the agent correctly identified a

doorway as a subgoal, which was the desired behaviour.

2.5.2 Automatic Discovery of Subgoals Using Learned Policies

[Goel and Huber, 2003] offer another method of automatic subgoal discovery. The authors agree

with [McGovern and Barto, 2001] that a good example of a subgoal is that of a doorway in

a gridworld navigation task. They describe a subgoal as a state with the following structural

property: the state space trajectories originating from a significantly larger than expected number

of states lead to the subgoal state while its successor state does not have this property. This

property is due to the fact that states that are not a subgoal have a much higher connectivity

than states that are a subgoal. This can be understood quite easily by considering the gridworld

navigation task. The doorways have much less connectivity with other states than the open spaces

in the rooms, and therefore would be identified as subgoals by this algorithm, which is what is

desired.

This algorithm was also tested on a gridworld navigation task, where there were multiple

doorways, and the algorithm recognised all doorways as subgoals, except one, which it failed to

recognise as a subgoal. The authors explained that the reason for this one failure was that the

size of the room with the undiscovered doorway subgoal was significantly smaller than the other

rooms. Although this did not seem like a significant drawback, it suggests that this algorithm

may have limitations.

2.6 Hierarchical Reinforcement Learning Implementation to

The Settlers of Catan

Hierarchical reinforcement learning has been applied to some complex problems with great suc-

cess. In [Pfeiffer, 2004] a hierarchical reinforcement learning approach was used to create a pro-

gram which plays a board game called The Settlers of Catan, which is a popular modern board

game in the German-speaking area. It is a very complex board game and therefore a flat rein-

forcement learning approach would have been inefficient. In their approach they use hierarchical
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reinforcement learning and model trees for value function approximation. Both Q-learning and

SARSA are used as the conventional reinforcement learning algorithms at different stages of the

learning process. Self-play is used for the actual training process. Self-play is a method where

an agent is played against a copy of itself. Self-play is used for learning strong policies in adver-

sarial domains. The major drawback of self-play though is that without sufficient exploration,

agents only learn to play against a very small set of policies.

2.7 Navigating Continuous Spaces using Hierarchical Rein-

forcement Learning

[Borga, 1993] describes his algorithm for hierarchical reinforcement learning in which two dif-

ferent hierarchical levels are given by the designer. The lower level is made up of certain actions,

and the higher level is a set of strategies, each strategy consisting of a series of actions. The

algorithm he describes is specifically for navigating continuous environments and hence the pos-

sible actions are a set of vectors, specifying in which direction to move. He gives an example

problem, to which his algorithm could be applied, of trying to walk around an obstacle. In this

case, an action would be a step in a certain direction and two different strategies would be to

either choose a path to the left of the obstacle, or a path to the right of the obstacle.

2.8 Conclusion

Many different approaches to hierarchical reinforcement learning exist. For this thesis Feudal re-

inforcement learning was chosen as an appropriate algorithm to modify and implement, because

it was also implemented on a gridworld navigation problem. MAXQ value function decompo-

sition could also have been implemented, but one drawback of this algorithm is that sub-goals

must be explicitly defined by the designer, and rewards for completing different sub-problems

must be clearly distinguishable from each other, as sub-agents must only be rewarded for com-

pleting their designated sub-goals. This is an undesirable attribute if designer intervention is to

be minimised, and algorithm extensibility is important, and therefore is not discussed further in

this thesis. MAXQ value function decomposition in conjunction with some form of automatic

sub-goal discovery such as sub-goal discovery using diverse density or learned policies, would be

an extensible method with minimal designer intervention, and implementing this method could

be a possible extension to this project, but is beyond the scope of this thesis. The HASSLE al-
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gorithm and Asadi and Huber’s reduction of state space methods also seem feasible for solving

a gridworld navigation problem, and in designing SVC, ideas such as capabilities of sub-agents

and division of state space were taken from these algorithms. In the next chapter the task to be

solved is clearly defined.
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Chapter 3

The Complex Gridworld Navigation

Problem

In this chapter a complex gridworld navigation problem is presented. The rules of navigating the

world are discussed, and sub-problems identified. A suitable reward function is decided upon to

enable learning within a reinforcement learning solution.

3.1 Rules of the Gridworld

The complex gridworld navigation problem is made up of a 6x6 gridworld in which a creature

can move around. It has 5 possible primitive actions; move left, move right, move up, move

down and rest. There are 5 designated blocks on the maze with special properties. These are

food, drink, shelter, a hazard, and wood and are represented by appropriate pictures as in figure

3.1. The creature is also represented by an appropriate picture.

The creature’s overall goal is to keep health high, and to keep its thirst and hunger low.

To keep all of these attributes standard, from now on these will be referred to as nourishment

and hydration instead of hunger and thirst, and the overall goal is to keep all of nourishment,

hydration and health high. This overall goal, can be divided into a set of sub-goals or sub-

problems. These are keep nourishment high, keep hydration high, repair the shelter, rest in a

repaired shelter, and finally avoid the hazard. Each sub-problem is solved in the following way:

• Keep nourishment high: The creature needs to navigate onto the food block as often as

possible to keep nourishment as high as possible. The relevant state variables for this

sub-problem are x, y and nourishment.
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Figure 3.1: Complex Gridworld Navigation Problem Screenshot

• Keep hydration high: The creature needs to navigate onto the drink block as often as

possible to keep hydration as high as possible. The relevant state variables for this sub-

problem are x, y and hydration.

• Repair the shelter: The creature needs to first navigate onto the wood block to collect wood,

and then navigate onto the shelter. After wood has been collected, there is no time limit for

repairing the shelter, and the creature can carry wood for as long as it likes before repairing

the shelter. There is no special action needed to repair the shelter, the creature just has to

navigate onto it while carrying wood. The relevant state variables for this sub-problem are

x, y, carrying wood and shelter condition.

• Rest in a repaired shelter: The creature needs to navigate onto the shelter block, when

shelter is in as good a condition as possible, and then perform the rest action. Because this

sub-problem requires the shelter to be in a good condition, this sub-problem requires the

previous sub-problem to first be completed, before it can be completed. The relevant state

variables for this sub-problem are x,y, shelter condition and health.

• Avoiding the hazard: Wherever the creature moves, it must avoid the hazard by not landing
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on the hazard block. The relevant state variables for this sub-problem are just x and y.

At any point in time the creature’s overall state can be represented by 7 different attributes.

These are x position, y position, health, nourishment, hydration, shelter condition and whether it

is carrying wood. X and y positions can range from 0 to 5, as it is a 6x6 gridworld. Nourishment,

hydration, health and shelter condition each range from 0 to 20. Carrying wood is either true or

false at any time.

After every 4 moves nourishment, hydration and shelter condition are decreased by 1. After

every 10 moves health is decreased by 1. A move is either a step in a direction or a rest.

If the creature navigates onto a designated food block or drink block, its respective food or

drink level is increased to its maximum of 20. If it navigates onto the designated hazardous

block, its health is decreased to 0. It also receives an immediate punishment as described in

the next section. If it navigates onto the wood block, it will be carrying wood from then on. If

it navigates onto the shelter location while carrying wood, its shelter will be fully repaired i.e.

shelter condition increased to its maximum of 20 and it will no longer be carrying wood. And

finally, if it navigates onto the shelter, and thenalsorests on that block, health will be replenished

by the level of shelter condition (if shelter condition is zero, health will not be replenished).

Hence the better the shelter condition, the more health will be replenished per rest.

The problem isn’t terminal, and there is no ’perfect’ goal state to be in. The creature just car-

ries on wandering the gridworld keeping nourishment, hydration and health as high as possible,

and avoiding the hazard.

The sub-problems are conflicting, since the agent can’t try to solve one sub-problem without

risking that it fails to solve another and each sub-problem is solved with a completely differ-

ent series of actions. The sub-problems cannot be solved simultaneously, but rather be solved

separately, in a balanced fashion, so that the overall task is optimally satisfied.

With 7 different state variables, the state space is large. There are 6 possible values for x

and y, 20 possible values for health, nourishment, hydration and shelter condition and 2 different

values for carrying wood, and 5 possible actions making the overall q-table size6 × 6 × 20 ×
20 × 20 × 20 × 2 × 5 = 57 600 000. This is a vast table size, and with a flat reinforcement

learning approach each of these state-action pairs would have to be experienced at least a few

times to get a good idea of the associated reward for taking any action from any state. Hence flat

reinforcement learning would prove inefficient.
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3.2 The Reward Function

A reward function was chosen so as to mimic how a real creature living in a primitive world

would receive rewards and punishments, such as contentment and pain.

The basic reward function was calculated as(N + W + H × 2)2, where N is nourishment,

W is hydration, and H is health. Health was multiplied by 2 because keeping health high is a

more complex task than keeping hydration and nourishment high, and it also takes more steps to

complete. The whole function was squared in order to make it much more favourable to have all

of nourishment, hydration and health high rather than just having one of them high. This reward

is only issued at certain points in the problem, when certain events occur, as described in the next

paragraph.

For food and drink, a reward is only given immediately after the creature lands on a food or

drink block, and are not given ifN > 15 or if W > 15. This prevents the creature from staying

on a food and drink block, continuously receiving a reward for it. This also closely mimics

reality, as a creature in real life would not want to eat or drink immediately after it has just eaten

or drunk, but rather only when it is sufficiently thirsty or hungry.

For health, a reward is also only given immediately after the creature rests. To solve the

problem of continuously resting on the block and collecting rewards, a similar approach to that

of food or drink could not be taken, since health is not always increased to maximum after a rest

has just been made, but rather only increased proportionally to how good the shelter condition is.

Instead, the creature cannot receive a reward for resting for ten steps after it has just rested. This

again closely mimics reality, since a creature would not want to rest if it had just rested, and was

not tired.

When the creature lands on the hazardous location, the reward function is ignored, and the

creature receives a punishment of 1000, in other words a reward of -1000.

If the creature makes any other arbitrary move which does not result in one of the above

situations occurring, a reward of 0 is given. The maximum of N, W and H are all 20, and

therefore the maximum reward is given by(20 + 20 + 20 × 2)2 = 6400 (although not actually

possible, because of spatial constraints), and the minimum reward is -1000. The creature can

therefore get a reward from−1000→ 6400 for any action.

In order to be able to make sensible comparisons between the different methods presented

in this thesis, the various items in the navigation problem, i.e. food, drink, etc., are given set

positions within the gridworld in remote locations from each other. Figure 3.1 shows these set

positions.
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3.3 Conclusion

In this chapter the complex gridworld navigation was fully described, sub-problems were identi-

fied and a suitable reward function was established. With a suitable gridworld navigation problem

established, it can now be solved by various algorithms of reinforcement learning. In the chapters

that follow, the attempts will be made at solving the algorithm with a flat reinforcement learning

approach and with 2 different hierarchical reinforcement learning approaches, one an adaption of

Feudal reinforcement learning by [Dayan and Hinton, 1993] and the other a novel method called

SVC which intelligently breaks up the state space into a set of smaller state spaces, each with a

different combination of state variables.
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Chapter 4

Flat Reinforcement Learning

Implementation

In order to have a benchmark with which to compare different methods of solving the com-

plex gridworld navigation problem, a flat reinforcement learning solution was implemented. To

present fair results, the flat reinforcement learning algorithm was extensively optimised.

4.1 The Flat Reinforcement Learning Algorithm

Sarsa was chosen as the flat reinforcement learning approach, and used eligibility traces in order

to speed up learning. This method of reinforcement learning is given the abbreviationSarsa(λ)

from [Sutton and Barto, 1998], and will be referred to as such from now on. TheSarsa(λ)

update rule is given as follows:
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InitialiseQ(s, a) arbitrarily ande(s, a) = 0, for all s, a

Repeat (for each episode):

Initialize s, a

Repeat (for each step of episode):

Take actiona, observer, s′

Choosea′ from s′ using policy derived fromQ (e.g.ε-greedy)

δ ← r + γQ(s′, a′)−Q(s, a)

e(s, a)← 1

For all s, a:

Q(s, a)← Q(s, a) + αδe(s, a)

e(s, a)← γλe(s, a)

s← s′; a← a′

until s is terminal

The state and action are given by s and a respectively. The next state and next action are given

by s′ anda′ respectively. Q is the q-table which holds the reward predictions for the state-action

pairs (s,a), and e is the eligibility trace table, which holds eligibility of each state-action pair (s,a)

for the given reward, represented by r.

A possible alternative toSarsa(λ) would be Q-learning, butSarsa(λ) proved sufficient for

the problem at hand, and known drawbacks ofSarsa(λ) such as irrational fear of punishments,

did not have any unwanted effects.

The parametersλ, γ andα each have a mathematical function within the Sarsa(λ) algorithm,

but also have an intuitive meaning associated with each of them.λ is the decay constant of

the eligibility trace, and therefore represents in what proportion action leading up to a favourable

state get rewarded.γ is the degree to which the predicted reward for the next state and next action

affect the updating of the current prediction of the state and action. It is a “Look ahead” constant

which determines how important future rewards are in the problem.α is the degree to which the

previous predicted reward is updated with the new received reward. It is the extent to which we

trust current reward signals over the prediction obtained from all past rewards. The parameters

were given values which seemed to be intuitive for the given problem, and were then adjusted

until they worked well for the gridworld navigation problem. The values given areλ = 0.9,

γ = 0.9 andα = 0.2.

Since the task is not terminal, the eligibility trace is never cleared. However, as the traces

gradually decay, states and actions far enough into the past will have little or no effect on the

updates to the Q-table.
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4.2 Reducing the State Space

To make it feasible to solve the problem with a flat reinforcement learning algorithm, the state

space had to be reduced. Each of nourishment, hydration, health and shelter condition were

minimised to have just 5 levels each. The following table shows the manner in which state levels

were divided.

State Variable Value Minimised State Variable Value

0 0

1→ 5 1

6→ 10 2

11→ 15 3

16→ 20 4

This was achieved through

Minimised State V ariable V alue = b(State V ariable V alue + 4)/5c

With x position and y position each having 6 possible states, nourishment, hydration, health

and shelter condition, 5 possible states, and carrying wood, 2 possible states, and with 5 actions,

gives the overall q-table size as6× 6× 5× 5× 5× 5× 2× 5 = 225 000. This is still quite large,

but far more manageable than the alternative of6× 6× 20× 20× 20× 20× 2× 5 = 57 600 000

state-action pairs.

4.3 Efficient Exploration

The task at hand inherently needs a significant amount of exploration in order to find the best

solution. Therefore just implementing a simple exploration algorithm such as anε - Greedy

proved inefficient. Instead, the agent was set to initially totally explore, i.e. taking random

moves every time, gradually decreasing the amount of exploration done, until finally the agent

was exploiting fully, i.e. by following the policy of the Q-table every move. The exploration

was linearly decayed from total exploration in the beginning to no exploration after a specified

number of steps. This specified number of steps is calledΩ, and will be referred to as such from

now on in this thesis.

In order to encourage efficient exploration, optimistic initialisation of the Q-Tables was used,

by initially setting all values in the table to 6400, the maximum possible reward. This forces the
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Figure 4.1: Flat reinforcement learning results for 3 trials

agent to try out all possible actions, as it will cause actions that have not been tried out before to

have higher predicted rewards, and therefore choose them whenever the policy is followed. As

actions which do not yield high rewards are attempted, the agent will learn that the high initial

predictions were false, and the predictions will slowly decrease to their true values.

4.4 Results

Results were obtained by averaging the received reward over every 1000 steps. Because the

number of steps taken to learn are large, learning times were long, often> 12 hours.

Figure 4.1 shows the flat reinforcement learning agent run for three different trials withΩ

values of500 000, 1 000 000 and2 000 000. For each trial the agent started off totally exploring,

gradually starting to exploit, until finally it was totally exploiting, as explained previously. As can

be seen, the more exploration the agent is allowed to do, the better the final solution it reaches.

This emphasizes the need for a large amount of exploration in the gridworld navigation task.

The graphs may appear misleading, as it seems that the agents that explore more, learn slower,

because the graphs increase less steeply. This is only because with a higherΩ value, the agent is
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forced to explore more, which will often lead to the agent getting punished or missing out on a

reward.

Although there is a clear difference in the final average reward reached at the end of each

trial, just by visually watching the creature perform, it can be seen that for all three a very

sensible policy has been adopted. The creature tends to continually move between food and

drink, satisfying both thirst and hunger, until health reaches a low enough value. The creature

will then collect wood, repair its shelter, and immediately rest. It will then return to alternating

between eating and drinking, then just before the shelter has completely deteriorated, quickly

return for one more rest, and then head back to its food and drink, and starts the loop once again.

Its policy is therefore, eat, drink and be merry, until it’s just too tired, and needs rest.

4.5 Conclusion

A flat reinforcement learning solution which shows successful learning has now been imple-

mented to solve the complex gridworld navigation problem. The hierarchical reinforcement

learning implementations in the chapters that follow are compared against this learning.
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Chapter 5

Feudal Reinforcement Learning Approach

The first hierarchical reinforcement learning approach that was attempted to solve the gridworld

navigation problem, was that of Feudal reinforcement learning, as described in [Dayan and Hin-

ton, 1993]. This method seemed well suited, since it was also applied to a gridworld navigation

problem, although a much simpler one.

Since the complex gridworld navigation problem is continual, as opposed to periodic like the

simple maze problem in [Dayan and Hinton, 1993], and because the state variables can change

simultaneously, Feudal reinforcement learning needed to be adapted.

In this chapter all adaptions to the algorithm are discussed, and the amount of performance

impact associated with each adaption. Implementation of the modified algorithm is then dis-

cussed. The results are then presented, and the poor performance of the algorithm is then dis-

cussed.

5.1 Division of the State Space

Dayan and Hinton applied their Feudal reinforcement learning a simple maze problem, where

a creature had to navigate the gridworld in order to find a designated goal block. The task is

episodic, and once the goal block is found, an episode is over, and the creature is restarted in

a new position. At each level of the hierarchy, each state variable, x and y in this case, were

divided into 2 equal groups, and sub-agents or sub-managers as they are referred to, are each

assigned a different permutation of the divisions. Each sub-manager is then divided in the same

way. Hence, at each level of the hierarchy, a manager is divided into22 = 4 sub-managers.

To adapt this method of dividing the state space to a problem with n state variables, we need

to divide each of the n state variables into equal groups, and put a sub-manager in charge of
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each of permutations of divisions. In [Dayan and Hinton, 1993], the state variables are each

divided into 2 equal groups at each level of the hierarchy, and this was left unchanged in the

adapted algorithm. This results in2n divisions of managers at each level of the hierarchy. For

the complex gridworld navigation problem, which consists of 7 state variables, this gives the

number of divisions at each level as27 = 128 divisions. If this division is to occur at each level

of the hierarchy, the number of sub-agents at the bottom of the hierarchy is going to be very large

(128(L−1), where L is the number of levels of the hierarchy), and ultimately unmanageable. The

number of levels was therefore limited to 2 for this implementation, with one super-manager at

the top level and 128 sub-managers at the bottom level. This causes the granularity of sub-states

controlled by sub-managers to be very coarse, having just two divisions per state variable, which

could very easily cause major inefficiencies, but this was unavoidable due to the way in which

the algorithm is designed.

5.2 Determining Abstract High Level Actions

The division of the overall state space into sub-state spaces, introduces the concept of high level

states and high level actions. A high level state is made up of all states that are incorporated

within any sub-manager. A high level action is a move between high level states, i.e. a switch of

control amongst sub-managers.

In the simple maze problem, because the state space is defined by just two variables x and y,

which by definition of the primitive actions cannot increment or decrement simultaneously, high

level actions can be, and are defined as being exactly the same as the four primitive actions i.e.

move left, right, up or down. A high level move would just be a directional transition from one

high level grid of blocks to another.

In the complex problem, state variables can change simultaneously, i.e. shelter can deteriorate

to a different level and hunger can be satisfied all in one move. For this reason, high level actions

are harder to define. As a result, high level actions are defined as being the desired high level

state that the agent is trying to get into at any time. In this way all possible high level actions

are included, but because not all high level states are reachable from a given high level state, this

causes there to be a number of meaningless high level actions for every high level state, which is

undesirable, but unavoidable.

With this definition of high level actions, there are as many actions as states for the super-

agent. Therefore the table size of the super-agent is128 × 128 = 16384. This table only gets

updated when a change of high-level state occurs, or the time-out threshold is reached, so it can
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take up to the time-out number steps to occur before one update is made to the table.

There is one sub-agent in charge of every high level state-action pair, therefore16384 sub-

agents in this case. Each sub-agent has a slightly different number of states associated with it,

because some state variables contain an odd number of states, and therefore a division into 2

equal groups sometimes results in a difference of 1 in the number of states of the 2 resulting state

groups. However, on average, the size of a sub-agent table is,State−Action Pairs
High Level States

states associated

with them, i.e. 225 000
128

= 1757.8, for the complex gridworld navigation problem. This would

be cause a large increase in efficiency if sub-agents learnt in parallel, but in this method sub-

agents can only learn sequentially, with no two sub-agents able to learn at the same time. This

causes there to be 1757.8 state-action pairs to learn for 16384 sub-agents, sequentially. This is

a total of1757.8 × 16384 = 28 799 795 state-action pairs that need to be learnt sequentially.

This is a vast number of states, and could cause there to be no increase in efficiency over flat

reinforcement learning. However, this may seem misleading, as some of these state-action pairs

are incorporated within sub-agents that describe an impossible transition between 2 high level

states, and would therefore never have to learn if these high level state-action pairs are never

chosen by the super-agent, as explained in section 5.4. Nevertheless, a large number of the sub-

agents will need to learn and the vast number of state-action pairs still may result in inoptimal

performance.

5.3 Terminal and Non-Terminal Managers and Timeouts

In the simple maze problem, the task was terminal, and when the agent found the goal block,

the task was completed. The complex gridworld problem however, is not terminal, which again

causes problems with extending Dayan and Hinton’s method.

Although the complex gridworld problem is not terminal, sub-managers are, because of the

fact that they are called on to perform an action until completion, and then a different sub-

manager is called upon. If the high level manager is already in a very desirable state, it may wish

to stay in that state, and hence a high level action of the current state being the desired state was

included.

Timeouts were implemented in order to give the sub-agent the appropriate reward when it

has been trying to stay in the same state and hence no change of high level state has occurred. If

the agent is in the same state as before after the timeout is finished, the sub-manager is rewarded

if staying in the same state was the desired action, and if not gets a reward of 0. If the high level

state changes before the timeout is reached, the timeout is reset, and the sub-manager is rewarded
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if being in the resulting high level state was the desired action, otherwise it is given a reward of

0.

A timeout of 5 steps was initially implemented. This seemed like a reasonable value, consid-

ering that the low level state variables, x and y, describe 4 3x3 grids within the gridworld when

subdivided, and 5 steps seems like a sufficient number of steps for the creature to be expected to

make a transition between any of these 3x3 grids. Any of the other state variables, which change

more slowly, could also change at any time, possibly causing a sooner high level state transition,

which again makes a timeout of 5 seem reasonable. A timeout of 50 was also implemented in a

trial to see if it made significant difference to the results, as described in section 5.6.

5.4 Real and Pseudo Rewards

In [Dayan and Hinton, 1993] it is described how the highest level manager is rewarded according

to the “real” low level rewards, while the low level agents are given pseudo rewards according

to whether or not they satisfy what the high level managers tell them to do. The pseudo rewards

were quite easily implemented as a reward of 1 if the sub-manager performs the task required by

the super-manager, and a reward of 0 if it doesn’t.

Rewarding the super-manager according to the “real” rewards in the non terminal complex

gridworld problem proved to be much less trivial than what it was for the simple terminal maze

problem. For one, because the problem is not terminal, and because high level states often

don’t change for multiple steps, it is not clear when to issue these rewards. The moment a

transition between high level states occurs, the predicted reward for being in the resulting high

level state can not be determined. The predicted reward for being in this high level state can only

be determined after the creature has spent time in the high level state collecting low level rewards.

To solve this problem, an accumulated reward per step (Accumulated Reward
Steps Taken

) is kept track of until

a high level state transition occurs, or the time-out occurs. A value table is then updated to hold

the predicted reward for being in any of the high level states. The update occurs as follows:

V (s) = (1− α)V (s) + α(Accumulated Reward per Step)

An alternative method would be to keep track of not only the previous state and action, but

also the state and action before them, and feed the accumulated reward per step for being in a

state back to the previous state and action pair, and use this reward value to update the q-tables.

This would be an equally valid method.
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A boolean table is kept of all possible high level transitions as they occur in order to later

determine which high level transitions are possible. When issuing a reward to the super-manager

for choosing an action from a given state, the predicted accumulated reward as held by the value

table for the chosen action (or desired state, as actions defined) is issued to the super-manager,

but only if this transition was previously possible. We therefore don’t reward the super-manager

for choosing an impossible action. This prevents a sub-agent which has been associated with

an impossible transition between high-level states from being called, and hence prevents useless

learning. However, this may cause inefficiency, as some possible transitions may only rarely oc-

cur, and a reward can only ever be given for a choosing a desired transition once it has previously

occurred.

This method of reinforcement learning at the super-manager level is different from any tried

and trusted method of reinforcement learning, and could fail horribly, but this was unavoidable,

as a simple tried and trusted method could not be implemented.

5.5 The Modified Feudal Reinforcement Learning Algorithm

When implementing the feudal reinforcement learning algorithm, because of the adjustments

made to high level actions, and because of the complexity of the problem, memory started be-

coming a problem. Therefore the algorithm was limited to just two levels i.e. a super-manager

with multiple sub-managers. The levels of hunger, thirst, health, and shelter condition were also

divided into fewer discrete levels, in order to decrease the total number of possible states.

The following is a summary of the steps of the adapted algorithm:

• nextState = The current state from Maze object, for both levels

• nextAction = The action for nextState, for both levels

• Loop:

1. state = nextState, for both levels

2. action = nextAction, for both levels

3. get low level action from super-manager

4. perform low level action

5. give super-manager low level reward
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Figure 5.1: Feudal reinforcement learning results for the simplified problem

6. call learn for super-manager, which will appropriately reward and call learn for sub-

managers

• Goto top of loop

Sarsa(λ) was used as the reinforcement learning algorithm at the sub-manager level.

5.6 Results of the Feudal Implementation

In order to make sure the Feudal reinforcement learning implementation was working, it was first

applied to a very simplified problem, in which very high rewards were given for keeping both

nourishment and hydration high. A flat reinforcement solution, with the same method as in the

previous chapter was applied to the same problem. Rewards were averaged over every 100 steps.

Figure 5.1 shows the performance of the Feudal reinforcement learning implementation in com-

parison to the flat reinforcement learning implementation. Even with this simplified problem, it

can be seen that the Feudal reinforcement learning implementation could not perform nearly as

well as flat reinforcement learning.
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Figure 5.2: Feudal reinforcement learning results for the complex gridworld navigation task

The Feudal reinforcement learning implementation was then applied to the full complex grid-

world navigation problem, with aΩ value of2 000 000, for 2 different trials with the timeout

threshold equal to 5 steps for one, and to 50 steps for the other. These are compared to the flat

reinforcement learning implementation withΩ of 2 000 000, as in figure 5.2 and figure 5.3. For

both trials the algorithm performed even worse than for the simple problem, and never reached

an average reward higher than 50. The trial with a timeout of 5 showed slightly better results

than the trial with a timeout of 50, as expected, as 5 seems like a high enough value, although

there was no significant difference, and both trials showed poor results.

5.7 Failure of Feudal Reinforcement Learning

The main reason for the inefficient performance is mainly due to the fact that high level actions

are not easy to define, resulting in there being far too many high level actions. With high level

actions being defined as the high level state which it is desirable to get into, results in there being

128 high level actions, for each of the 128 high level states, each of which initially having an

equal probability of being chosen, even though some of them are not even possible. This results
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Figure 5.3: Feudal reinforcement learning results for the complex gridworld navigation task

in a lot of time being wasted in trying to do what is not even possible, and only very slowly

learning which actions are possible. A direct application of Feudal reinforcement learning is

only possible in a problem where high level actions are very clearly defined.

5.8 Conclusion

Dayan and Hinton’s Feudal reinforcement learning was not easily adaptable to a the complex

gridworld navigation problem, which although more complex, is not significantly different from

the simple maze problem the algorithm was originally applied to, and is therefore not a very

robust method. High level actions were difficult to define, which ultimately led to major inef-

ficiencies in the algorithm. In the next chapter an alternative method is presented, called SVC,

in which the state space is divided in a more intelligent manner, enabling sub-agents to learn in

parallel, rather than sequentially.
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Chapter 6

The State Variable Combination Approach

The Feudal reinforcement learning approach to solving the problem performed poorly, with no

obvious direction for improvement. An altogether new approach was therefore designed and

implemented. This time, instead of taking a very literal interpretation of a method which was de-

signed to solve a very specific problem, an hierarchical approach inspired by all the methods on

hierarchical reinforcement learning, but not direct clones of them, was attempted. This method

was named the State Variable Combination approach (SVC), and consists of a super-agent which

sets up sub-agents, each in charge of a possible combination of a given number of state vari-

ables. The super-agent is responsible for extracting useful information out of each sub-agent to

determine which action is the best to perform. This chapter provides a description of this novel

method and discusses its effectiveness.

6.1 Description of the Method

In a problem that consists of multiple conflicting sub-problems, the state of each sub-problem

can usually be described by a limited set of all the given state variables. In this method, the

overall state space is broken up into a set of smaller state spaces, each with a limited set of

state variables associated with them. By including all combinations of state variables, certain

sub-agents will automatically be equipped to tell the best action to perform for the given state

of a certain sub-problem. Also, by including all combinations of state variables, the amount of

intervention needed by the designer is minimised, which is a favourable attribute of any machine

learning algorithm. If the sub-problems should suddenly be changed, and suddenly incorporate

a different set of state variables, sub-agents need not be changed, as all possible combinations of

state variables are already included.
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Learning of sub-agents occurs in parallel, each one getting its tables updated after every

action taken. There is therefore no penalty for having many sub-agents, and the smaller tables

within each sub-agent should enable faster learning.

Since sub-problems need to be balanced, and solved at the correct time and in the correct

order within the full problem, sub-agents need to be intelligently chosen between at each point in

time within the full problem. Also, sufficient state variables need to be assigned per sub-agent in

order to fully describe any of the sub-problems. Therefore, if there is a sub-problem that takes,

say, 5 state variables to fully describe its state, no combination of only 4 state variables would

ever be able to fully describe its state.

Given a problem with n state variables, with a minimum of k state variables required to

describe any given sub-problem, there are

 n

k

 different combinations of state variables that

can be assigned to any sub-agent, and are therefore

 n

k

 sub-agents necessary.

For example, for a problem with 8 state variables, with sub-problems needing a maximum

of 5 state-variables to describe them, each state variable consisting of 10 different states, and 5

actions, we would have

 8

5

 = 56 sub-agents, each having a q-table of105×5 = 50000 state-

action pairs each. The 56 sub-agents learn in parallel, each with a table of 50000 state-action

pairs, so there are effectively just 50000 different state-action pairs which can be experienced. A

Flat Reinforcement Learning approach to this problem would consist of108 × 5 = 500 000 000

state-action pairs which can be experienced. This is a significant size difference factor of103 =

1000.

6.2 Choosing Between Sub-agents

Each sub-agent will contain a table consisting of all the combinations of values for the k state

variables that describe the sub-agent’s state, and predicted rewards for the different actions. If

the problem has progressed to a point in which one of the sub-problems is the most advantageous

to solve at that point in time, the sub-agent which has been assigned the state variables pertinent

to that sub-problem should predict the highest reward for one of its actions. Therefore if the

super-agent searches through all of the sub-agent tables at the current state of the state variables

assigned to them, searching for the one which predicts the highest reward for one of its actions,

it should find the sub-agent which is the best to obey, and the action with the highest predicted

reward should be the best action to take.
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One problem with this method of choosing the best action to take, is that some sub-agents

which do not describe any given sub-problem, might falsely predict a high reward for a given

action, and would incorrectly be chosen by the above method. Therefore the reliability of a sub-

agents prediction also needs to be taken into account when choosing between sub-agents. An

agent with a higher reliability could be thought of as having a highercapability, as described in

the HASSLE algorithm [Bakker and Schmidhuber, 2004], to successfully complete the current

necessary sub-task. Whether or not a sub-agent predicts a high reward, if the sub-agent is reliable

in its predictions, the prediction will remain relatively constant, i.e. it will have a low variance.

Therefore by keeping track of the variance of every prediction of every sub-agent, it is possible

to tell whether or not the prediction is reliable or not, using the variance. In other fields, variance

and standard deviation are used in a similar way to determine reliability. In Econometrics the

standard deviation of a market performance is used to determine the risk of investing in that

market. This method of determining reliability therefore seems feasible.

The above method seems to be reasonable for most cases, but there may be some cases where

a sub-agent with a really high variance is still the best sub-agent to obey for a given situation.

This may come about in a situation where, for a given sub-problem, rewards are very erratic, but

nevertheless very high. In a case like this the above method would not work well since, although

a sub-agent describing this sub-problem will predict a very high reward, it will not be trusted, as

it has a high variance and is labelled as being “unreliable” by the main agent. Therefore, some

care needs to be taken in choosing the correct sub-agent to obey in different situations. A method

of choosing between sub-agents may need to be tailor-made for a given problem, and there may

be trade-offs involved in choosing between high predicted rewards and reliability of sub-agents.

This lead to a investigation into a slightly different approach at choosing between sub-agents,

which involved using the weighted average of predicted rewards, according to their reliability, as

discussed in section 6.5.2.

6.3 Applying SVC to the Complex Gridworld Navigation Prob-

lem

For the complex gridworld navigation problem, the sub-problems can be identified as eating,

drinking, repairing shelter, resting and avoiding the hazard. Each of these sub-problems can be

described by a limited set of state variables. Eating can be fully described by x, y and nour-

ishment. Drinking can be fully described by x, y and hydration. Repairing shelter can by fully

described by x, y, carrying wood, and shelter condition. Resting can be fully described by x, y,
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shelter condition and health. Avoiding the hazard can be described by just x and y. Hence, the

maximum number of states required to define any sub-problem is 4.

Therefore, for the complex gridworld navigation problem, k = 4 and n = 7. The number of

sub-agents is given by

 n

k

 =

 7

4

 = 35.

All sub-agents are in charge of a combination of 4 different state variables. Some sub-agents

will have a completely meaningless combination of states associated with them, for example an

agent that is in charge of x, carrying wood, nourishment and hydration is not equipped to solve

any of the 4 identified sub-problems, and would therefore never be of much use, but this is not a

problem if sub-agents are intelligently chosen.

Every sub-agent is in charge of a predicted reward table, or Q-table, for every permutation

of the 4 state variables, for each of the 5 low level actions. Each sub-agent is also in charge of

an eligibility trace, andSarsa(λ) is used as the reinforcement learning algorithm. Initial reward

predicted are again set optimistically to 6400, the maximum possible reward.

The variance of each reward prediction for taking any action in any state, was kept track

of for every sub-agent. An extra table, the same size as the Q-table, was kept for every sub-

agent which held the corresponding variance for every action for every state. Variance was also

initialised optimistically, that is, all variances were initialised to zero, assuming that all initial

predictions are reliable. The variance at each step was updated as follows:

σ(s, a)← (1− α)σ(s, a) + α(Q(s, a)− (r + γQ(s′, a′)))2

Q, s, a, s′, a′, r, α, γ have the same meaning as detailed in section 4.1.

To choose between sub-agents, for the current state, for each possible action in turn, the

variance of each of the 35 sub-agents is checked, and the predicted reward is recorded for the

sub-agent with the lowest variance. Out of each of the 5 recorded predicted rewards, the highest

is chosen, and this is taken as the chosen action.

In the same way as for the flat reinforcement learning implementation, to ensure sufficient

and efficient exploration, the agent initially takes only random actions, and gradually increases

the amount of exploitation by starting to take the chosen actions.

Values in the tables are also initialised optimistically, to 6400, the highest possible reward,

to help with efficient exploration. Although this does improve exploration efficiency, it does not

to the same level as it does with flat reinforcement learning. In flat reinforcement learning, with

optimistic initialisation of tables, forces all possible states to be experienced at least once. In

SVC, because state variables are broken up into different sets, all possible states are not forced,
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Figure 6.1: State Variable Combination Approach,Ω = 500 000

but rather just all combinations of each group of 4 state variables forced. Optimistic initialisation

of tables is therefore not as advantageous in this situation as for flat reinforcement learning, but

nevertheless still implemented.

6.4 Initial Results

Three different trials were run to test SVC, withΩ values of500 000, 1 000 000 and2 000 000.

Rewards are averaged over every 1000 steps and plotted against their flat reinforcement learning

counterparts.

Figure 6.1 shows the trial withΩ = 500 000 and figure 6.2 shows the trial withΩ = 2 000 000.

Both trials show that SVC learns slower at first, but as it reaches theΩ threshold, learning happens

very rapidly, when the curve makes an almost vertical climb. This is due to the fact that random

actions, although necessary for exploration, might confuse the agent as to which sub-problem is

the best to solve at the current point in time. As theΩ threshold is reached, and random actions

stopped, the agent is able to put together all previous collected knowledge learned together to

solve the problem as a whole.
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Figure 6.2: State Variable Combination Approach,Ω = 2 000 000

For both trials the curves for SVC seem to level off, after theΩ value, to a much more erratic

state than for the flat reinforcement learning. This is an interesting characteristic of this method,

and will be dealt with later in this chapter.

For the trial withΩ = 2 000 000 in figure 6.2, the final solution reached by the agent seems to

be as good as that of the flat reinforcement learning agent, although it is difficult to tell because

of the erratic nature of the final solution. For the trial withΩ = 500 000 in figure 6.1, the final

solution of the SVC method, although erratic, is clearly better than that obtained by the flat

reinforcement learning agent. This shows that SVC is capable of finding an optimal solution to

the gridworld navigation problem with less exploration necessary than that of flat reinforcement

learning, and therefore has the ability to learn more quickly. SVC therefore outperforms flat

reinforcement learning.

However, the final trial run on of SVC, withΩ = 1 000 000, figure 6.3, displayed some rather

unexpected results. The curve followed a similar trend to its predecessors up until the point

where it reached theΩ value, and levelled off at an average reward of 0. The trial was run again,

with little change in the results. This behaviour suggests that SVC is not guaranteed to converge

to an optimal solution with insufficient exploration.
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Figure 6.3: State Variable Combination Approach,Ω = 1 000 000

6.5 Attempts at Improving SVC

Further investigation into the reason for the sudden drop of the average reward to 0 revealed that

the agent was getting stuck in a loop of uncertainty of which sub-problem to try solve for a given

state. For example, it would decide that for a certain state, the best sub-problem to solve was that

of getting food. Then in moving towards food, it would find itself in a state where getting drink

would seem like the best sub-problem to attempt, and so the loop continued. Sub-problems were

conflicting to such an extent, that they were causing the learner to get totally caught up between

which sub-problem to solve, and causing it to fail altogether.

Some possible solutions to this problem are suggested as follows:

1. Never exploit fully, rather always keep a small percentage exploration to stop the agent

from getting stuck in a loop

2. Have an alternative, more efficient method of choosing between sub-agents
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Figure 6.4: State Variable Combination Approach, Stay Exploring1%, Ω = 1 000 000

6.5.1 Keeping a Small Amount of Exploration

The trial withΩ = 1 000 000 was rerun, this time, exploration was again linearly decreased from

full exploration until it reached theΩ threshold, but never decreased it below1%, keeping on

average 1 random action in every 100 performed. It can be seen (figure 6.4) that this time, the

agent did not lose track of the optimal solution, and performed well. The forced extra exploration

after theΩ threshold prevented the agent from getting stuck in a loop of confusion between sub-

problems. It can be seen that there are sudden drops in the curve, which may indicate that at

times, the agent almost got stuck in a loop, but was then kept on track by an exploratory action.

There is also an upward trend after theΩ value, which shows that the agent continued learning

during this period because of the1% exploration.

6.5.2 An Alternative Method For Choosing Between Sub-Agents

The previous method suggested for choosing between sub-agents involved the following steps:

for each action choose the predicted reward with the lowest variance out of all sub-agents, and

then out of all the lowest variance predictions, choose the action with the highest predicted
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reward. This method is reasonable for most cases but has a few downfalls, which is a factor

that may well be contributing to the erratic nature of the previous results, and perhaps also to the

methods failure for the trial withΩ = 1 000 000. The main reason for the downfall of the this

method is due to the following: if a sub-agent constantly predicts a low reward, and hence has a

low variance i.e. high reliability, it will be chosen instead of sub-agents with a higher variance

i.e. lower reliability, even those with a much higher predicted reward. This is because the method

takes preference to higher reliability, over higher predicted reward.

An alternative method is therefore suggested for choosing between sub-agents, which instead

of taking preference to either reliability or to predicted rewards, attempts to balance the two. It

takes a normalised average of each of the predicted rewards for the different sub-agents, weighted

in proportion to the reliability of the predictions, i.e. the variance. Mathematically, for each

action, j:

Weighted Predictionj =

 q1j

σ1j
+ q2j

σ2j
+ . . . + qnj

σnj

1
σ1j

+ 1
σ2j

+ . . . + 1
σnj


Where q is the predicted reward for each sub-agent,σ is the variance and n is the number of

sub-agents.

This alternative method of choosing between sub-agents was implemented and yielded the

results in figure 6.5. The curve shows that with this method of choosing between sub-agents,

learning is much less erratic than with the previous method, however learning occurs a lot slower

than with the previous method. Unlike with the previous method, learning starts off quickly,

even quicker than for flat reinforcement learning. The curve then has a very rounded tip, where

it peaks at a far from optimal solution. This is a rather puzzling result, since the algorithm that

gave preference to reliability over predicted reward learnt a lot quicker.

This is due to the fact that for the above method, the moment the agent learns a good action

for a given situation, it’s prediction for taking this action will increase, but the variance will

also increase, hence decreasing the overall predicted reward for taking this action. Therefore

we effectively throw away anything new that we have just learnt. In time, after a sub-agent

starts correctly predicting a high reward, the variance will eventually decrease, allowing the

overall predicted reward to increase, but unfortunately this is a slow process, and this slows

down learning.

To solve this problem, an attempt was made to favour predicted rewards over predicted vari-

ance, by takingq × |q|, (effectivelyq2, but keeping the + or - sign), instead of q. The weighted

prediction formula then comes out as follows:
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Figure 6.5: State Variable Combination Approach with Weighted Average Selection of Sub-
Agents,Ω = 500 000
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Figure 6.6: State Variable Combination Approach with Weighted Average (with Q squared)
Selection of Sub-Agents,Ω = 500 000
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Weighted Predictionj =

 q1j×|q1j |
σ1j

+ q2j×|q2j |
σ2j

+ . . . + qnj×|qnj |
σnj

1
σ1j

+ 1
σ2j

+ . . . + 1
σnj


This method was implemented, and yielded the results as seen in figure 6.6. The results

followed a very similar trend to the previous implementation, and the attempt to favour rewards

over variance did not solve the problem of slow learning.

6.6 Discussion of SVC

SVC outperformed flat reinforcement learning in most trials. This is due to its efficient approach

to intelligently distributing the state space between sub-agents. Specific sub-agents automati-

cally emerge as being more equipped to solve individual sub-problems, which incorporates the

favourable attribute of automatic discovery of sub-goals into the approach. This minimises de-

signer intervention and enables easy adaptability of the method to different problems.

SVC however did not settle to a stable solution, and for some cases got stuck in a loop

when confused between which sub-problem to tackle. This instability is due to the super-agent

choosing an action from the incorrect sub-agent at certain times. Since sub-agents are chosen

based on the how low the variance is in their predictions, the variance predictions may not always

correlate with reliability. A sub-agent may have a sudden correct increase in the prediction of a

reward, which will cause the variance to increase and label the sub-agent as unreliable, even if it

isn’t. Also, some correct predictions of sub-agents, although reliable, may have fluctuations in

values. This will also label them as unreliable, even when they aren’t. Possible solutions to this

might be to take into account more long term fluctuations in variance.

Another possible reason for the instability in the method may be because, as the variance

predictions are updated, they are overshooting the correct predictions. This may be preventing

variance from converging to a relatively constant value, constantly changing the predicted relia-

bility of sub-agents. A possible solution to this would be to decrease theα value, especially after

Ω is reached, to allow more gradual updates of the variance tables, as discussed in section 6.7.

Overall, slight changes in SVC resulted in quite drastic changes in the behaviour of the

learner. An alternative method of choosing between sub-agents increased the stability of the

algorithm, but slowed down learning time.
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6.7 Possible Extensions to SVC

The main challenge of SVC seemed to be how to decide on which sub-agent to obey at any time.

Extracting useful information from the sub-agents was hard at times. Some possible extensions

to the algorithm could be to research some alternative methods of choosing between sub-agents.

SVC also did not settle down to a stable solution, and this may have been due to variance

values not converging to relatively constant values, and also may be due to variance not corre-

lating with the reliability of sub-agents. Decreasing theα value, especially after theΩ threshold

would be an interesting investigation into the effect of rate of variance update on the stability of

SVC. An alternative method for calculating variance which takes into account a more long term

variance would be interesting. The effect of adjusting other parameters such asγ andλ, and also

initialising q-tables and variance tables differently would also be interesting.

SVC has a built in method of identifying sub-goals automatically, and should be easily trans-

ferred to an altogether different problem, given that the problem consists of multiple conflicting

sub-problems and a set of state variables. It would therefore be a logical extension to this project

to apply the method to another problem.

It would be interesting to explicitly identify sub-goals for SVC, and explicitly assign sub-

agents capable of solving the given sub-problems, and see how well this approach performs.

This will identify the overhead of incorporating automatic discovery of sub-goals into SVC. If

performance is very negatively affected by automatic discovery of sub-goals, perhaps the effort

of designer intervention is worth the increase in overall performance. Otherwise, if there is little

change in performance, then the incorporation of automatic discovery of sub-goals is a very

useful aspect of SVC.

It would also be interesting to extend the gridworld navigation to a larger gridworld, with

more levels for each of the state variables. This will have a very negative impact on the perfor-

mance on flat reinforcement learning implementation, because of the curse of dimensionality, but

should not have as much of a negative impact on the performance of SVC, due to its approach to

dealing with the curse of dimensionality.

Another possible extension to this project would be to apply a different algorithm to the

complex gridworld navigation problem, such as MAXQ value function approximation from [Di-

etterich, 1999] in conjunction with some form of automatic discovery of sub-goals, such as

methods like using diverse density from [McGovern and Barto, 2001] or learned policies from

[Goel and Huber, 2003] to identify sub-goals.
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6.8 Conclusion

SVC performed well as a hierarchical reinforcement learning algorithm, dealing with the curse

of dimensionality effectively. However, the algorithm did not settle on a stable solution and in

some cases failed to find an optimal solution. By forcing a small amount of exploration after the

Ω value was reached, the problem of not finding an optimal solution was solved, however the

final solution was still erratic. This is a result of reliable sub-agents being hard to identify. If

sub-agents could correctly be identified as reliable, SVC would be a promising method.
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Chapter 7

Conclusion

Reinforcement learning suffers from the curse of dimensionality, and increasing the complexity

of a problem can cause learning times to slow significantly, because the number of state-action

pairs to be learnt gets too large. Hierarchical reinforcement learning deals with the curse of

dimensionality by breaking the main problem up into a hierarchical structure of sub-problems.

In SVC, for example, as described in this thesis, each sub-problem has a limited state space

associated with it, so if sub-agents in charge of these smaller state spaces can learn how to solve

the sub-problems, and a super-agent can decide which sub-problem should be solved at any time,

learning times will decrease.

In this thesis, a complex gridworld navigation problem was constructed, and sub-problems

were identified within the main problem. A flat reinforcement learning approach was imple-

mented to solve the problem, and with sufficient exploration, a satisfactory solution was found.

Two methods of hierarchical reinforcement learning were implemented to solve the complex

gridworld navigation problem.

One method is an adaption of Feudal reinforcement learning from [Dayan and Hinton, 1993].

Dayan and Hinton’s method was not easily adaptable to the complex gridworld navigation prob-

lem, as high level actions were hard to define.

The next method of hierarchical reinforcement learning is SVC, a novel method which breaks

up the state space according to different combinations of state variables. SVC worked well,

and outperformed flat reinforcement learning in most trials. It also had a built in ability to

automatically discover sub-goals, which is a favourable ability for a hierarchical reinforcement

learning algorithm. Choosing which sub-agent to obey for a given situation proved quite difficult,

and the resulting learner did not settle to a stable solution, sometimes not finding a satisfactory

solution at all. Keeping a small amount of exploration in the algorithm solved the problem of
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not finding a satisfactory solution, but the final solution was still erratic. The reason for the

erratic behaviour is due to the incorrect sub-agent being chosen as the most reliable by the super-

agent. Further attempts to increase stability, by choosing actions based on a combined prediction

obtained from the predicted variance and from the predicted reward, resulted in slower learning.

There therefore seems to be a trade off between stability and performance of the algorithm and

small changes in the initial conditions result in drastic changes in the final performance of the

agent.

Applying a method of hierarchical reinforcement learning proved to be a challenging task,

and at times seemed to be more of an art than a science. Methods of hierarchical reinforcement

learning which successfully solve a problem may not always be adaptable to problems of a

different nature, and methods may need to be tailor-made, which is a time consuming task.

Possible extensions to this project would be to investigate different methods of choosing

between sub-agents within SVC, and also experimenting with the initial conditions of tables

and parameters. Increasing the state space of the complex gridworld navigation problem by

increasing the size of the gridworld and making the granularity of state variables finer, should

not have such negative effects on SVC, as it should not significantly suffer from the curse of

dimensionality, and investigating this would be another possible extension. Explicitly assigning

sub-agents to combinations of state variables which are known to describe given sub-problems

would be an interesting investigation into the overhead of incorporating automatic discovery of

sub-goals into SVC. Also, it would be interesting to test the portability of the SVC approach by

testing its performance on a completely different problem. Another possible extension would

be to solve the complex gridworld navigation problem with a different approach such as that of

MAXQ value function decomposition from [Dietterich, 1999], in conjunction with techniques

of automatically discovering sub-goals, by using diverse density as described in [McGovern and

Barto, 2001], or by using learned policies as described in [Goal and Huber, 2003].

Hierarchical reinforcement learning has shown potential to overcome the curse of dimension-

ality if applied correctly. This has improved the outlook of reinforcement learning as a machine

learning algorithm for the future. If the curse of dimensionality within reinforcement learning

could be completely overcome, reinforcement learning could be implemented to teach machines

how to solve complex real world problems.
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