
Chapter 1 –Introduction

1

Submitted in partial fulfilment of the requirements of the Bachelor of

Science Honours degree in Computer Science

Stuart Thackray

Project Supervisor: Prof. Greg Foster

Project Co-supervisor: Mr. Barry Irwin

Computer Science Department, November 2007

A comparative study of the network traffic generated from

Traditional Internet Applications versus Rich Internet

Applications

Chapter 1 –Introduction

2

Acknowledgements

This project would not have been possible if it were not for the following people:

 Prof. Greg Foster, my supervisor. For his many hours of help with direction and changes

throughout the year.

 Mr. Barry Irwin for his network expertise and the constructive criticism with regard to

how tests were run.

 My parents for my funding and supporting me throughout my Honours year.

 The numerous proof readers, special thanks to Thomas and Matthew.

 Additionally I acknowledge the financial and technical support of this project of Telkom

SA, Business Connexion, Comverse SA, Verso Technologies, Stortech, Tellabs,

Amatole, Mars Technologies, Bright Ideas Projects 39 and THRIP through the Telkom

Centre of Excellence at Rhodes University.

Chapter 1 –Introduction

3

Abstract

The Internet was originally designed to enable sharing of documents as static pages of link text,

as it has grow need for greater functionality has developed. This need has outpaced traditional

Internet applications ability to deliver the functionality required; this has resulted in what are

known as Rich Internet Applications. Rich internet applications are able to offer comparable

features to those of traditional desktop applications.

This project does a study comparing the network utilization of rich Internet applications and that

of tradition Internet applications. To accomplish this two applications each with two versions

were developed. The applications are identical in terms of functionality, but differ in their

implementation platform. . The RIA has been developed using Flex, whilst the traditional

Internet application was developed using a combination of HTML with JavaScript. The reason

for this choice is down to the fact that in a continuum of web technologies they are polar

opposites.

This work compares the applications base on their TTFB and TTLB with varying number of

concurrent users. Additional the quantity of network traffic generated is compared. The results

are then summarized, and relevant conclusion are drawn.

Chapter 1 –Introduction

4

Contents

CHAPTER 1 – INTRODUCTION……………………………………………………………...1

1.1.PROBLEM STATEMENT…………………….……………………………………...……...1

1.2.BACKGROUND………………………………..…………………...……………………......1

1.3.METHODOLOGY………………………………..………………...………………………...2

1.4.DOCUMENT STRUCTURE…………………..……………………………………...……...2

CHAPTER 2 – RELATED WORK……………………………………….……………………3

2.1 ARCHITECTURE OF RIA AND TRADITIONAL WEB APPLIATIONS………………….4

2.2 TRADITIONAL WEB APPLICATIONS…………………………………………………….5

2.3 RICH INTERNET APPLICATIONS…………………………………………………………6

2.3.1 JAVA APPLETS…………………………………………………………………………...7

2.3.2 FLASH AND FLEX………………………………………………………………………..8

2.3.3 AJAX (ASYNCHRONOUS JAVASCRIPT AND XML)………………………………….9

2.4 NETWORK METRICS FOR EVALUATING AND REPRESENTING PERFORMANCE.11

2.4.1 LATENCY………………………………………………………………………………..13

2.4.2 TTFB AND TTLB……………………………………………………………………..…13

2.4.3 AVERAGE QUANTITY OF DATA TRANSFERRED………………………………….14

2.5 RELATED WORK…………………………………………………………………………14

2.6 SUMMARY………………………………………………………………………………..15

CHAPTER 3 – WEB APPLICATION IMPLEMENTATION……………………………..16

3.1 INTRODUCTION………………………………………………………………………….16

3.2 THE APPLICATIONS……………………………………………………………………..16

3.2.1 TRADITIONAL INTERNET APPLICATION…………………………………………..20

3.2.2 RICH INTERNET APPLICAION………………………………………………………..21

3.3 SUMMARY………………………………………………………………………………..24

Chapter 1 –Introduction

5

CHAPTER 4…………………………………………………………………………………..25

4.1 INTRODUCTION………………………………………………………………………….25

4.2 METHOD………………………………………………………………………………….25

4.3 ORGINAL VERSION……………………………………………………………………..26

4.3.1 TIME TO FIRST BYTE AND TIME TO LAST BYTE………………………………...26

4.3.2 QUANTITY OF NETWORK TRAFFIC GENERATED……………………………….29

4.4 VERSION WITH SEARCH FUNCTIONALITY…………………………………………30

4.4.1 TIME TO FIRST BYTE AND TIME TO LAST BYTE………………………………...30

4.4.2 QUANTITY OF NETWORK TRAFFIC GENERATED……………………………….34

4.5 SUMMARY………………………………………………………………………………36

CHAPTER 5 – CONCLUSIONS AND FUTURE WORK ……………………………......37

5.15 CONCLUSIONS…………………………………………………………………………37

5.2 POSSIBLE EXTENSIONS………………………………………………………………..38

REFERENCES……………………………………………………………………………….39

APPENDIX I – GLOSSARY…...…………………………………………………………...43

APPENDIX II – SCREENSHOTS OF THE TEST PROGRESSION …………………...44

APPENDIX III – PROJECT POSTER…………………………………………………….47

Chapter 1 –Introduction

6

Chapter 1 – Introduction

1.1 Problem Statement

The primary objective of this project is to compare network traffic generated from traditional

web applications versus Rich Internet Applications (RIAs). This has been done through

monitoring of TTFB (Time to first byte), TTLB (Time to first byte), and network load with

multiple simultaneous users. The methodology used is centred around the construction and

testing of two versions of two web based applications. These applications are identical in terms

of functionality and workflow but differ in terms of their implementation platform.

1.2 Background

The Internet was originally developed in order to enable sharing of documents as static pages of

linked text [3]. Over time, however, a need for greater functionality developed, which has

resulted in new platforms evolving to meet this need for content. Rich Internet Applications are

just the next step in the evolution, offering similar features and all the functionality of traditional

desktop applications.

Research has been done in this area such as an Adobe study that measured the CPU usage of

servers between RIA and traditional Internet applications [14], as well as comparisons between

RIA. This includes research that has been done by Microsoft in their comparison of an ASP.NET

and AJAX [27]. There has, however, been little research into the comparison of network traffic

of traditional Internet applications and RIAs; as such, this project aims to delve deeper into this

area.

 Research has suggested that RIAs can use less bandwidth than traditional applications [2], of

additional interest is latency of the platforms. This is due to the fact that whole pages don’t need

to be refreshed when updating data using RIAs, this may result in smaller data transfers which

are needed. Additionally, faster data transfers are possible.

Chapter 1 –Introduction

7

1.3 Methodology

For the comparison of network traffic generated, it was necessary to build applications with the

same functionality and workflow using the two web technologies chosen. The RIA has been

developed using Adobe Flex Builder 2, the most recent version of Flex Builder available at the

start of this project. The traditional internet application was built using a combination of HTML

with JavaScript, delivered through the use of a Servlet. The reason for these choices is the fact

that in a continuum of web technologies they are polar opposites.

Two version of both the traditional and RIA were developed in order to determine how

processing offloading could affect the network traffic. They are based on a pet store because

there are numerous blue print applications available from software developers. These versions

were then tested based on quantity of network traffic, TTFB and TTLB with varied concurrent

users. The results collected were then compared with each other and the research, relevant

conclusions were then drawn.

1.4 Document Structure

Chapter 2 offers insight into what Internet implementation platforms are available. This chapter

demonstrates the architecture of both tradition and RIA platforms; it goes on to explain the major

traditional and RIA platforms and the advantages and disadvantages of these platforms. Special

attention is given to the major RIA platforms, in order to give an indication of why the

implementation platform was chosen.

Chapter 3 explains how the applications were developed and implemented, and the reasoning

behind creating two versions to be compared. An explanation of which pages are compared and

why they are compared is explained.

Chapter 4 details how the tests run, what metrics were recorded and what they are designed to

measure. Results are displayed in the form of graphs, and patterns are discussed.

Finally, chapter 5 outlines the outcomes of the project and draws relevant conclusions.

Chapter 2 –Related Work

8

Chapter 2 – Related Work

This chapter gives an overview of traditional and Rich Internet Applications, with additional

attention given to the major platforms. The advantages and disadvantages of the different

technologies are also explained. An explanation of what network matrices may be used to

compare technologies and what they are designed to measure will also be covered.

The internet has grown up on the notion of a network of loosely coupled, unintelligent clients

that communicate with increasingly intelligent servers by sending requests for pages [3]. The

Internet was originally intended to help researchers share documents as static pages of linked text

formatted in Hypertext Markup Language (HTML). However web pages quickly evolved to

include complex structures of text and graphics, with plug-in programs to play audio and video

files or to stream multimedia content. Web developers soon supplemented the basic browser

function of rendering HTML by invoking code scripts on the client’s computer. These scripts are

able to create interface elements such as rollover effects, custom pull-down menus, and other

navigation aids. They can also execute UI methods, for example, to validate a user’s input in an

HTML form [9].

The Web is already the platform for doing business efficiently and quickly. As the penetration of

high-speed and broadband Internet access increases, web technologies continue to evolve to

deliver new user experiences and increased application utility. RIAs are just the next step in that

evolutionary process, this is according to Chris Loosley [9].

Chapter 2 –Related Work

9

2.1 Architecture of RIA and traditional web applications

A typical architecture for RIAs is shown in Figure 2.1, XML is generally used as the data

transfer format and is sometimes also used to describe form layouts. In many instances, the client

can stay connected to the data source, so a server can update the client in real time a process

known as server side pushing. Database access is achieved through the use of web service calls

[2].

Figure 2.1 - Typical RIA Architecture. [2]

Figure 2.2 shows an example of traditional web architecture. The client would be a web browser

in this case. It usually consists of HTML traffic being requested by the client and the server

would then return the requested page in this case using another application in order to provide

the dynamic content requested.

Web Browser

Client Side
Rendering

Engine

Application

Controller/

Gateway

XML Data

XML Layout

Web

Services

Calls
J2EE

Application

Server

Database

SQL

Chapter 2 –Related Work

10

Figure 2.2 - A backend CGI program provides services to the WWW server on behalf of

the client. [16]

As the diagram shows the RIA architecture needs a rendering engine on the client side, while in

the traditional application this is not necessary due to the fact that traditional technologies only

require a browser to display the information.

2.2 Traditional web applications

The major traditional web application platform is HTML and it can be used in conjunction with

Cascading Style Sheets (CSS) and JavaScript [12]. CSS allows styling of HTML pages, which

helps to ensure a constant look and feel of a website, as they are all able to use the same style

sheet for every page. HTML can also be delivered with JavaScript [12]. For example, the model

view controller architecture uses JavaScript to generate the presentation layer as well as perform

process-intensive tasks such as validations, handling posting, and report execution [21].

HTML-based web applications have became so popular because of the low cost of deployment,

the simple architecture, and HTML was trivially easy to learn and use [2]. This is because

―elements that can be specified in HTML are familiar to the majority of web users‖ [12]. HTML

Server CGI

Application

Client

HTTP request HTTP request

HTTP header,

 MIME message

MIME request

Chapter 2 –Related Work

11

is also well integrated with the reload, back, history, and book marking as it complies with the

one URL one page rule. HTML also allows search engines to index content easily [12].

HTML has the biggest reach, due to the fact that it may be rendered by any browser; in addition

it can be effectively used by users with slow connections. This is primarily due to it having been

standardized and therefore available to users running all types of software and operating systems.

HTML can delivered through the use of Servlets, ASP, ASP.NET, JavaServer Pages (JSP),

Coldfusion, PHP, and more. Moreover, it is also relatively easy to find people with HTML, and

XHTML, programming skills so development costs are low [12].

HTML however exhibits various limitations as the demand to build applications of increasing

complexity has continued to outpace the ability of traditional Web applications to represent this

complexity [3]. This is due to HTML only being sufficient for relatively static content and trivial

tasks, such as form entry, data display and link navigation. Integration with local resources

(hardware and software) is nearly impossible [12]. Client requests require full reloads of Web

pages in order to update displays this increases download times and server loads. Unfortunately

Hypertext Transfer Protocol (HTTP) requests do not support guaranteed message delivery, or

guaranteed order of message delivery, nor server-initiated communications (push). HTML

components are also limited to those available through HTML markup which is very limited in

comparison with desktop applications. Web page code is exposed and this makes it very easy to

copy [12], this results in their websites user interface being used in illegal activities such as

phishing [22].

2.3 Rich internet applications

Rich internet applications have been implemented in many websites. Some of the more notable

of these are Google AdSense, Flickr, Napster, Wikipedia, blogging, Facebook and upcoming.org

[4]. There are many different RIA platforms, the major ones being AJAX, Flash with Flex [11],

Applets, Windows Presentation Foundation (WPF), OpenLaszio, and NexaWeb [13]. The main

Chapter 2 –Related Work

12

contenders are Adobe’s Flash and Flex suite, Java applets, and the collection of Web

technologies known as AJAX, a term coined in 2005 by Adaptive Path’s Jesse James Garrett [9].

These will be further discussed below.

When evaluating RIA platforms, Ramirez Design [12] suggest that RIAs should be evaluated on

user experience, deployment and reach, processing, interface components and customization,

back-end integrations, unique features, future proofing and staffing and costs [12]. This criteria is

used in the following explanation of the advantages, disadvantages and the problem areas each

technology best deals with.

2.3.1 Java Applets

Java Applets have the advantage of offering a rich set of features for engaging interactions,

including drag and drop, animation, and other User Interface (UI) elements found in traditional

desktop applications. They enable real-time updates and validations as the user completes forms.

Java applets run on a virtual machine; either the Java plug-in or Java Virtual Machine (JVM).

This allows applets to run unchanged on any device that is able to run the JVM. Applets have the

ability to go beyond HTTP for remote data requests and responses. A plug-in only requires one

installation as they can be cached. Applets allow very good, processor-intensive, visualization

rendering which allows for good interactive and dynamically generated graphs, charts, etc.

Applets enable the server to offload processing onto the clients machine, which can save both

CPU overhead and network bandwidth. Staffing is not a problem due to there being many

developers who are familiar with Java [12].

Security is a concern however as applets are able to write to the local disk if they are digitally

signed. However, as applets run in a ―sandbox‖ few other security concerns exist; as there exist

strict rules on how applets are able to interact with your computer and the network. Due to the

size of applets, latency is high due to relevantly large initial download and plug-in launch.

Chapter 2 –Related Work

13

Additionally linking to, saving, and book-marking content can be tricky, and search engines do

not index applet content [12].

2.3.2 Flash and Flex

Flash and Flex offer developers a rich set of features for engaging interactions including drag

and drop, animation, transparency, layering, audio and video streaming. As well as allowing for

real-time updates and validations as user completes form fields [12]. Like applets, the Flash

player is also able to run identically on all the major operating systems. According to Adobe,

Flash Player 8 has broad reach and is installed on over 90% of Internet enabled desktops as of

February 2007 [19]. It also offers near seamless upgrade process for the plug-in, whilst still

supporting previous versions. Through the use of built-in ActionScript dynamic processing can

be achieved without the need for page reloads. It also natively supports vector graphics,

streaming audio and video which makes it popular choice for many websites, and games. There

are also many additional Flash UI toolkits and components available from 3rd parties, [12] these

UI components are often better than the UI applets offer [14]. Reduction of server loads is also

achievable due to processing on the client side and the fact that it only requires pure data

requests after the initial load [12]. Socket connections allow server initiated communications to

client application. Flash can be used as the presentation layer with common server technologies

such as Java Servlets, JSP, PHP, ASP, and many more. Decreased costs of developing and

testing are able to be achieved due to the fact that they are able to be done once for all platforms.

Developers familiar with JavaScript will find learning ActionScript easy [12].

Flex differs in the way applications are developed, as it uses both ActionScript and MXML.

MXML is used mainly to declaratively lay-out the interface of the application, as well as

implement complex business logic and behavior of the RIA [29]. Flex Builder 2 IDE offers

developers an incredibly productive environment for building RIAs [7]. Additionally it allows

for the programming to be improved through the use of ―state-of-the-art coding and debugging

environment; intuitive layout and styling‖ [7]. Through effective use of this development

environment you are able to develop web applications that have the features and functionality of

Chapter 2 –Related Work

14

traditional desktop applications [6]. Flex application are compiled down into byte code (Flash

file) with a HTML wrapper.

Through the use of Adobe Integrated Runtime (AIR) both Flash and Flex programs can be

deployed as desktop applications [33]. This has the added benefit of allowing them to store

information on the client’s machine and reducing latency as there is no need for the Flash file to

be downloaded.

As with applets there is the potential for high initial latency due to relevantly large initial

download and plug-in launch. Unfortunately Flash is not fully integrated with the browser

environment, for example reload, back buttons and bookmarking, although workarounds do

exist. As with applets, Flash content is not indexed by search engines, but workarounds exist to

make this possible. Development time can take longer because everything must be created from

scratch: concept of pages, links, browse history, scale, etc [12].

2.3.3 AJAX (Asynchronous JavaScript and XML)

AJAX is a popular technology used on many websites. The most notable are Google Maps,

Gmail or Microsoft's Outlook Web Access. [13] Compared with classic page-based web

applications, AJAX introduces a new web presentation tier model that is different in three

important ways, namely: use of a client-side engine as an intermediate between the UI and the

server; user activity leads to JavaScript calls to the client-side engine instead of a page request to

the server; XML data transfer between server and engine [10].

AJAX incorporates standards-based presentation using XHTML and CSS which improves the

user interface; as well as providing dynamic display and interaction using the Document Object

Model (DOM); data interchange and manipulation using XML and XSLT. AJAX allows

Chapter 2 –Related Work

15

asynchronous data retrieval through the use of XMLHttpRequest; using JavaScript to bind

everything together [9].

Due to large interest in AJAX there is a lot of community development, therefore are numerous

frameworks to choice from [12]. These range from Grade A to Grade E, Grade A frameworks

implying they have the broadest support of browser compatibility [18]. According to Bict [18]

the following fall into Grade A AJAX frameworks: AJAX Dojo Toolkit, Echo 2, Google Web

Toolkit, JavaScript/Ajax Toolbox [23], jQuery, Moo.fx, Prototype, Rico, Sardalya,

Script.aculo.us, Tacos, TurboWidgets, TwinHelix, Wicket, Yahoo User Interface Library [18].

This is important due to the fact that incompatibilities of the JavaScript object models supported

by various browsers can make coding quite a chore, [13] which leads to higher development

costs due to sophisticated, branching code required to support multiple browsers [12].

A major advantage of AJAX is that it enables backchannel communication in Web applications

so that only small portions of web pages need to be updated in response to user activity [13].

Web developers however ultimately need a complete, robust AJAX focused development stack

that will marry client side and server side programming in a neat package [13].

AJAX applications often break the "one URL equals one resource" model the web has long

employed. This condition can break the semantics of the browser "back" button from the user's

point of view, make book marking problematic, can make caching difficult or impossible, render

log files less useful for user tracking, search bots less effective than with HMTL and makes

disabling access harder to code for [13]. This means that content may be incorrect when users

click reload and back buttons [12].

AJAX Web applications are as insecure as traditional Web applications, as they are far too

trusting of user inputs. SQL injection or other data manipulation attacks are common in poorly

Chapter 2 –Related Work

16

coded AJAX applications, and maybe more so because there is greater reliance on client activity

[13]. A weak security posture is most evident, in that many AJAX applications are delivered

with unobfused and unoptimized JavaScript. This condition allows easy access to intellectual

property by unscrupulous developers and sets no barriers for code inspection by potential

intruders and consequently, can use more bandwidth [13]. Also due to different parts of AJAX

code having to be interpreted, it can be many thousands of times slower at data access [14].

AJAX however enhances user experience with better, faster forms, than are available with

traditional web applications. AJAX enables real-time updates and validations as user moves from

field to field or even after each character entry [12]. AJAX all so reduces server loads due to

processing on the client side and pure data requests after the initial load [12].

Another disadvantage of AJAX is that content requested through XMLHttpRequest objects

cannot be indexed by search engines or read by some screen readers. In addition to this it does

not have a socket connection which means the server can not initiate communications to client

application [12].

2.4 Network metrics for evaluating and representing performance

Measuring the performance of a distributed application is necessary to determine how quickly

users can achieve their goals, and to discover how a system behaves under increasing load. The

first focus is directly on the users’ experience, the second investigates underlying server

behaviors that, in turn will determine what users experience. Network performance of websites

can be determined when you measure server and user side latency [5], TTFB, TTLB, concurrent

users and network utilization, CPU utilization of different web based applications.

The diagram below illustrates the communication models of traditional and rich web application

[9].

Chapter 2 –Related Work

17

Figure 2.3 - The communication model of traditional web application (A) and RIA (B) [9]

Reviewing Figure 2.3 (A), we can characterize the response time of a traditional Web application

as the time to complete the synchronous round trip of:

According to Loosley [9], network measurements are surprisingly more accurate when it is done

near or on the server for traditional web applications.

However, as we see in Figure2.3 (B), the client-side engine breaks apart this cycle into two

separate cycles operating asynchronously—a user/client-engine cycle, and a client-engine/server

cycle [9]:

Click(C)=>Engine(E)=>Display(D)

Request(Q)=>Server(S)=>Response(R)

Click(C)=>Browser(B)=>Request(Q)=>Server(S)=>Response(R)=>Display(D)

A B

Chapter 2 –Related Work

18

There being two cycles might be as foreground (C-E-D) and background (Q-S-R), this

complicates how to measure responsiveness [9]. To measure responsiveness therefore it requires

that tools must drive the C-E-D cycle, not the Q-S-R cycle, because RIAs can generate back-end

traffic in response to any user action, and not only when the user clicks [9]. This technique can

also incorporate user think time if required.

2.4.1 Latency

User perceived latency is the time spent by the user waiting for the web page that they have

requested [5]. Impatience with poor performance is the most common reason that visitors

terminate their visit to web sites, [5] this can be attributed to the 8 second rule [6]. The 8 second

rule states the average web customer will wait about eight seconds for a page to download [6].

2.4.2 TTFB and TTLB

The TTFB measurement is the amount of time from when the client sends the request (GET

command) until it sees the first byte back from the server. This is a single round trip across the

Internet [7]. TTFB is important due to the fact it can be used to give an indication of user wait

time, and to discover how a system behaves under increasing load [9]. Time to last byte is the

measurement of time from when the first byte arrives and ends when the last byte of the file

arrives at the client [7].

In [7] it was concluded that, HTTP/1.0 interacts badly with TCP. It incurs frequent round-trip

delays due to connection establishment, performs slow start in both directions for short duration

connections, and may incurs heavy latency penalties due to the mismatch of the typical access

profiles with the single request per transaction model [7]. However this has been solved with

HTTP/1.1 [20]. AJAX provides similar TTFB and TTLB when compared to HTTP, [13]

however platforms such as applets and flash require a larger initial downloads which drastically

reduces on subsequent communication [12].

Chapter 2 –Related Work

19

2.4.3 Average quantity of data transferred

Average quantity of data transferred is important consideration for users that are limited either by

speed and/or quantity of internet traffic they can transfer. RIAs promise that smaller amounts of

data needs to be transferred per session [7]. They do this by only requiring a part of a web page

to be reloaded, for example with AJAX, and after the initial load of Java Applets and Flash

applications [12].

2.5 Related Work

Adobe conducted a study comparing a traditional web application built with JavaServer pages

(JSP) with an identical application built with Adobe Flex. Server CPU utilization was measured

as it is an important indication of the scalability, and number of concurrent users a server can

handle. The study revealed that both server requests and CPU usage were dramatically decreased

in a Flex Application, as shown in figure 2.4. The Flex application used .8% average server CPU

utilization when under heavy load with minimal peaks of 50% while the JSP interface under the

same load used 21.2% server CPU utilization with peaks up to 100% [14].

Chapter 2 –Related Work

20

Figure 2.4 - CPU usage of the Flex RIA (A) with 100 users over one hour and CPU of a JSP

Web Application (B) under the same load [14].

2.6 Summary

 Rich Internet Applications are the next step in a logical progression towards better web

application interfaces. However RIAs are not meant to replace HTML, as it is still the preferred

model for storing and organizing content for the web. However, HTML based web application

interfaces do have many limitations. RIA tools are capable of offering an entirely new paradigm

for modern web application interfaces, and translate into more engaging and effective user

experiences and better customer retention and service [14]. RIAs also allow reduction of network

traffic and the ability to offload processing power to the client which significantly increases the

scalability of the web application. Security can also be improved for example applets and flash

don’t allow copy and paste of code, this reduces the likeliness of SQL injection and other

malicious attacks.

A B

Chapter 3 –Web Application Implementation

21

Chapter 3 – Web Application Implementation

3.1 Introduction

In this chapter will explore the applications that have been developed as a test-bed for evaluation

of the platforms. We will explore the differences in the applications between the two versions,

which have been developed. Advantages and disadvantages of developing a RIA and the

traditional Internet application will also be discussed.

The applications were developed from the start based on a pet store. The pet store was developed

due to blueprint applications being available in many of the rich Internet platforms namely .NET

[26], Flash MX [25] and Java [24]. Additionally there have been tests in order to compare these

applications [26]. It was indicated however that the results were biased based on the use of a test

bed that suited to a specific platform, which affected the results [27].

3.2 The Applications

For the purpose of this project two applications have been built in the traditional and rich Internet

platform, each application has two versions in order to test what effect offloading processing to

the client would have on the network traffic. As mentioned the applications are modeled on a pet

store and have been built from the ground up, using a similar UI to that of the Java pet store [24]

as well as a modified version of the pet store’s database. Some functionality has been omitted,

for example the shopping cart, this decision was taken to ensure both versions were optimized

and the shopping cart is seen as unnecessary for this project.

The traditional page was built using a combination of HTML and JavaScript using the Netbeans

5.5 IDE. The RIA was built using a combination of MXML [29] and ActionScript using Adobe

Flex Builder 2 IDE with database access achieved using XML outputted via a Servlet. HTML

Chapter 3 –Web Application Implementation

22

was predominantly used for the traditional site due to it being suited best for thin clients, with

Flex is being used as it is on the opposite side of the web continuum as it is best suited for

powerful clients.

Two versions were developed and their differences are displayed in Table 3.1. The first version

of the pet store was developed in order to access and display information from a database

containing pet information. The traditional and RIA have been required to include the same

information, and access the same database to ensure consistency of the comparison. Both sites

use the Java database connectivity (JDBC) class, in order to facilitate database access.

A second version of the pet store was developed not only to access and display information but

also to include search capability this added facility was order to compare the ability of each

platform. The same database is used; images are increased between the platforms however.

The architecture of the application is shown in Figure 3.1, bold is used to display the progression

the test will follow, and the black box is a page that is only included in the version with search

functionality. The differences in the versions and platforms for the test progress are show in table

3.1 and screenshot are shown in appendix B.

Chapter 3 –Web Application Implementation

23

Figure 3.1 – Architecture of the two web applications

 Original Version Version with Search functionality

 Traditional RIA Traditional RIA

Page 1 Welcome page

(6.02KB)

Flash file

(232KB) with

HTML wrapper

Welcome page

(same as original)

Flash file

(240KB) with

HTML wrapper

Page 2 HTML Page XML document same as original same as original

Page 3 HTML Page XML Document HTML page with

an added image

same as original

with an added

image

Page 4 HTML page XML document HTML Page No data

transferred

Page 5 N/A N/A same as original’s

page 4

same as original’s

page 4

Database Identical in all versions

Table 3.1 – Differences between versions and platforms

Welcome Page (Page1)

Categories of reptiles (Page2)

List of crawling reptiles (Page3) List of slithering reptiles

Searched list of crawling

reptiles (Page4)

Reptile’s details (Page 4/5)

Categories of dogs Categories of cats

Chapter 3 –Web Application Implementation

24

The architecture of the two web applications do not differ considerably, as can be seen in Figure

3.2. This demonstrates the architecture used to construct the two platforms; as can be seen the

traditional site requires one step less to accomplish its task. The only difference is the RIA

requires that a Flash Player be installed on the client’s machine.

Figure 3.2 – Architecture of the traditional (A) and rich (B) internet applications

Servlets have been used to answer client requests; a Servlet is a module of Java code that runs in

a server application [30]. They are typically used to include processing and/or storing of

submitted data, providing dynamic content (returning results of a database query) and providing

state information [30]. Servlets have been chosen over CGI as they offer numerous advantages

namely, Servlets run in a single process which stays in memory between requests, there is always

a single instance to answer all requests, this instance is threaded, and lastly they can be run in a

sandbox [30]. For the traditional Internet application the servlet was used in order to process

requests, generate the page’s source code as well as constructing the Structured Query Language

(SQL) statements. For the RIA the servlet is just required in order to process the requests and

create SQL statements.

Server

Servlet

Data Access

Database

Servlet

Server

Flash Player

Data Access

Client’s Browser

Client’s Browser

A
B

Chapter 3 –Web Application Implementation

25

The data access layer is used to control the access to the database; it does this by accepting SQL

statements, controlling the opening and closing of the database (which in this case is a Microsoft

Access database) and queries the database. The data access class varies for the traditional and

rich Internet applications, but performs the same functions, that is formatting and outputting the

results of the SQL query. For the traditional Internet application this is in the form of a HMTL

table, whilst the RIA this is in the form of an XML document.

3.2.1 Traditional Internet Application

The Traditional Site was built using HTML and JavaScript, with requests and responses being

controlled by a Servlet and was developed using the NetBeans IDE. JavaScript is used to

facilitate the roll over buttons for the different categories of animals; additionally in the second

version it is used to facilitate the searching capability (Figure 3.3). This is accomplished by the

user filling in the text boxes corresponding to the price range they are interested in viewing,

these values are then passed as parameters and a new page displaying the animals that fall into

this category are displayed.

Figure 3.3 - Traditional Site’s filter functionality

During development of the sites it was found coding HTML was nominally easy to code,

however adding dynamic content does become more complex. Ensuring cross compatibility of

HMTL code can be without difficulty through the use of any of the numerous tools and IDEs that

provide this functionality. Due to both HTML and JavaScript being mature technologies there is

a lot of code examples, explanations and demonstrations freely available. There are few tags

Chapter 3 –Web Application Implementation

26

available which makes code easy to write as well as reducing the complexity. However the

powers of the tags are limited therefore workarounds are often required.

JavaScript allowing dynamic, visual features to be added but comes at the cost of having to

debug the code which can only been done at runtime. This is a consequence of JavaScript being

an interpreted, loosely typed, object-oriented programming language that is mainly used on web

pages and runs in the browser [18]. However JavaScript has a number of disadvantages namely it

has been implemented in browsers differently and can be disabled in the browser which results in

pages not being displayed as expected. Graphical users interface although of limited importance

in this project do not have the broad range of features that are offered by RIAs platforms.

3.2.2 Rich Internet Application

The Rich Internet Application was built using ActionScript and MXML in Adobe Flex Builder 2

IDE, database access is achieved using a Servlet to output XML. MXML was used mainly to

declaratively lay-out the interface of the application, as well as implement some business logic

and behavior. The RIA works differently from the traditional site due to the fact that the majority

of the site’s components are delivered in the Flash file. After the Flash file is transferred the only

interactions required with the server are requests for images and XML.

For all but the first and last page DataGrids (Figure 3.4) are used to display the data received

from the server, which is in the form of XML (Listing 3.1). XML is a widely used method of

data transfer by RIAs, Flex is no different and offers powerful functions that allow XML

manipulation. A power default feature that Flex’s DataGrid is that sorting of rows can be done

by simply clicking either title bar. The power of DataGrids has further been improved in Adobe

Flex Builder 3 Beta [28], which supports hierarchical data, and basic pivot table functionality.

Chapter 3 –Web Application Implementation

27

Listing 3.1 – extract of XML produced to fill DataGrid

Figure 3.4 - DataGrid

The RIA’s last page works differently from the traditional site, as the full address of the image is

not delivered to the client. It however computes the address, for example if the name is ―foo.jpg‖

then the image URL requested would be ―images/foo.jpg‖ in this case seven bytes can be saved

but with considerably longer URLs and more images greater bandwidth would potentially be

saved.

The version of the RIA with search capabilities (Figure 3. 5) has been achieved using a slider bar

which filters the XML. This is done through the slider bar calling an ActionScript method when

either of them are moved. The ActionScript method filters the XML, thus removing the need for

a page reload and updates in real time.

…
<animal>

 <ProductID>reptile01</ProductID>

 <ProductName>Slithering Reptile</ProductName>

</animal>

…

Chapter 3 –Web Application Implementation

28

Figure 3.5 – RIA’s filter functionality

There are numerous advantages of developing RIAs using Adobe Flex Builder 2 IDE; one being

the graphical manipulation of objects; accomplished through the preview capability. The preview

capability allows for the positioning of components through the use of graphical manipulation.

ActionScript libraries are another advantage as they are powerful and extensible and may be used

to improve both presentation and performance of a web site. States and their transitions are also

important features which allow separation of concern to be addressed; allowing each page to be

changed with little to no effect on other pages. Numerous layout, chart, data and control objects

are available and are easily changeable and extensible, these components are comparable with

those of desktop application. The client processing power for tasks such as filtering, and

validation of inputs both reduces the load on the server and network traffic. This results in the

ability to increase the number of concurrent users.

Flash does not handle any database access which is positive in terms of division of responsibility,

although developing the complete application this has been a drawback. This is due to the lack of

help and examples in order to retrieval and display of dynamic information for an intermediate

user, for what is a common task. However this problem easily solved after consultation with

other reference material [31] and has been addressed in Adobe Flex Builder 3 Beta [28].

Chapter 3 –Web Application Implementation

29

3.3 Summary

Two identical applications in terms of functionality have been built. Neither the traditional

technologies nor Flex are perfect and are not able to offer what traditional desktop applications

can. Flex does however offer significant improvements and easy of design especially with the

user interface, changes to the site are also a lot easier to accomplish. There are also libraries of

common task such as validation of fields, for example email addresses validation which

simplifies the development of sites.

 Traditional sites do however have the advantage of being simple therefore easy to program and

are familiar to the greater number of web users. Addition or removal of code has a larger effect

on the traditional site than on the Flex IDE. The testing of JavaScript and HTML browser

compatibility testing is another drawback, which is not a problem for Flash it is browser and

operating system independent as the Flash player can be run on all operating systems.

Chapter 4 – Network Traffic Comparison

30

Chapter 4 - Network Traffic Comparison

4.1 Introduction

This Chapter covers the results of measuring the TTFB, TTLB and the quantity of network

traffic generated of the sites built. The TTFB and TTLB are measured in order to give an

impression of a user’s wait time; this is non-trivial as user experience improves as these figures

drop [5]. Quantity of network traffic is measured as it is important to many users that have limits

on bandwidth and/or speed of traffic. TTFB and TTLB have been measured using Microsoft web

application stress testing tool [34], it is able to calculate the average TTFB and TTLB as well as

simulate concurrent users. Quantity of network traffic was measured using Wget [32] in

conjunction with Wireshark [35]. These tests were run using a client and server both with Core 2

duo processors on a 100Mbs network; neither of these components was taken near their limits as

this could produce inaccurate results, due to additional processor usage and other network traffic.

4.2 Method

The Microsoft web application stress testing tool was used for the measurement of the TTFB and

TTLB with varying numbers of concurrent users. TTFB and TTLB are important metrics as they

are used to give an indication of user wait time, and to discover how a system behaves under

increasing load [9]. A traversal of the websites (for both versions and both platforms) was

recorded, without capturing any cookies or headers, as the testing did not require authentication,

tracking, maintenance of specific information about users or simulation of any particular

browser. For the measurement, each of the scripts generated was given a 200ms delay between

request for a pages resources and the following page. This was found to give enough time for the

page to be delivered to the client, and therefore the server was only working to generate and

deliver the resources for one page at a time. The tests were run for a duration of five minutes

resulting in an adequate number of requests for each resource. These tests were run for 1, 2, 3. 5,

10, 15, 20 concurrent users, however it was discovered that the server was unable to handle up to

20 concurrent users without crashing or producing an error.

Chapter 4 – Network Traffic Comparison

31

Quantity of network traffic tests were conduced in order to prove or disprove the research that

suggests RIAs requires reduced amounts of network traffic [7]. This was tested using Wget to

retrieve a page’s resources which was accomplished page by page, based on the script recorded

by the Microsoft web application stress testing tool. Page by page basis was used in order for the

transmission control protocol (TCP) as well as other protocol’s over head to be taken into

account as this ensures realistic results. Wireshark was used in order to capture the network

traffic and filter it to give the number of bytes the page required to load. This repeated numerous

times in order to ensure that the results are accurate.

4.3 Original version

4.3.1 Time to first byte and time to last byte

The TTFB and TTLB for the original versions of both HTML and Flex, which does not include

search functionality, this is displayed in figures 4.1 through 4.4 for the four pages tested using a

maximum of 15 simulated users. This is due to the fact that the server is only capable to handle a

maximum of 15 simultaneous users for the traditional internet application without errors or the

server crashing. The reason for this is that the traditional internet application requires greater

server processing.

As shown for the first page (figure 4.1), the RIA and the TTFB is comparable with the traditional

site, but the TTLB is far larger in this version. This is a result of the Flash file size which is

considerably larger (226 KB larger excluding headers) than the traditional Internet application

requires.

Chapter 4 – Network Traffic Comparison

32

Figure 4.1 – TTFB and TTLB Comparison of the original versions of the sites for page 1

 Page 2 (figure 4.2) of the original site displays the different sub categories that pets can fall into.

As shown the page’s weight is not large enough to show any discernable difference between

TTFB and TTLB, and is just shown for completeness. Due to the lack of page weight a large

variance in the traditional application measurements can be seen.

Figure 4.2 – TTFB and TTLB Comparison of the original version of the sites for page 2

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TTFB
Traditional

TTLB
Traditional

TTFB RIA

TTLB RIA

Page 1

Ti
m

e
 (

m
s)

Concurent Requests

40

45

50

55

60

65

70

75

80

85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti
m

e
(m

s)

Page 2

TTFB
Traditional
TTLB
Traditional
TTFB RIA

TTLB RIA

Chapter 4 – Network Traffic Comparison

33

 Page 3 (Figure 4.3) is a navigation page and displays information regarding a specific sub

category of pets available. As shown, the metrics stay relatively flat for the RIA but increase for

the traditional site as concurrent users increase; this is largely due processing required by the

server. The RIA is transferred faster due to it being computationally simpler and less bandwidth

intensive. It is computationally simpler as not a whole page needs to be deliver instead an XML

document is all that is required.

Figure 4.3 – TTFB and TTLB Comparison of the original version of the sites for page 3

Page 4 (Figure 4.4) is a details page which gives the details and explanations of a specific pet.

Although there is a large difference between the TTFB and TTLB of the RIA still gets delivered

faster than the traditional internet application. Additionally the traditional internet application

exhibits a faster escalation in these times suggesting that with more users the response time

would deteriorate.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TTFB
Traditional

TTLB
Traditional

TTFB RIA

TTLB RIA

Page 3

Chapter 4 – Network Traffic Comparison

34

Figure 4.4 – TTFB and TTLB Comparison of the original versions of the sites for page 4

4.3.2 Quantity of network traffic generated

The quantity of network traffic can be seen in figure 4.5, this displays the difference in network

utilization of the traditional sites in comparison to the RIA for the original version. As can be

seen in figure 4.5, the RIA requires that considerably greater traffic is transferred for page 1 and

this is due to the fact that the Flash file is noticeably larger than the traditional site. However as

shown, the subsequent page request’s traffic is minimized. This results in the RIA requiring that

327.8% more traffic be transferred on the first page, however subsequent pages average traffic

quantity is reduced by 25.8%. Overall after the loading of four pages, total network traffic for the

traditional internet application is 132.6 KB whilst the RIA required 361.6 KB. This results in

approximately 12 pages having to be viewed in order for traffic to be equal after the load of the

Flash file.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Page 4

TTFB
Traditional

TTLB
Traditional

TTFB RIA

TTLB RIA

Chapter 4 – Network Traffic Comparison

35

Figure 4.5 - Network Utilization of the original version traffic comparison.

4.4 Version with search functionality

4.4.1 Time to first byte and time to last byte

This version contains search functionality, and the TTFB and TTLB are shown in figures 4.6

through to figure 4.10, and the five pages were tested due to the search capability having been

added.

This version’s page 1 (figure 4.6) corresponds to the graph in the original version; however the

RIA’s TTLB escalates faster due to the extra load put on the server as a result of the larger Flash

file size. Again, the Flash file’s size results in the difference between the TTFB and TTLB being

considerable.

0

50000

100000

150000

200000

250000

300000

350000

1 2 3 4

Original version : Network Utilization

Traditional

RIA

Page Numbers

Tr
af

fi
c

(b
yt

e
s)

Chapter 4 – Network Traffic Comparison

36

Figure 4.6 – TTFB and TTLB comparison for the versions with search functionality for

page 1

Figure 4.7 show this version’s Page 2 , as with the same graph for the original version the weight

on this page is too small to show any discernable difference between the TTFB and TTLB. This

again results in the graph showing no disenable pattern, and is shown for completeness.

Figure 4.7 – TTFB and TTLB Comparison of the versions with search functionality for

page 2

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 1011121314151617181920

Ti
m

e
(m

s)

Page 1

TTFB
Traditional

TTLB
Traditional

TTFB RIA

TTLB RIA

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e
(m

s)

Page 2

TTFB
Traditional
TTLB
Traditional
TTFB RIA

TTLB RIA

Chapter 4 – Network Traffic Comparison

37

Page 3 (figure 4.8) demonstrates a relatively linear line for both platforms. However the

traditional internet application shows an inconsistency at 10 concurrent users for the TTLB and

TTFB. This inconsistency was a result of one of the images taking considerable longer to be

transferred than it did on other pages, as only average time was available it is unclear if every

request it took as long. As is also shown the TTFB of the RIA is considerably faster than the

traditional internet application however the TTLB is still comparable.

Figure 4.8 – TTFB and TTLB comparison of the versions with search functionality for

page 3

Page 4 (figure 4.9) takes advantage of the search capability, it shows similar results for the

traditional site compared to that of page 3; though through the use of ActionScript the RIA is

able to bypasses any data transfer. This addition results in processing being passed to the client

machine and data may be filtered repeatedly without generating any data requests.

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Page 3

TTFB Traditional

TTLB Traditional

TTFB RIA

TTLB RIA

Ti
m

e
(m

s)

Chapter 4 – Network Traffic Comparison

38

Figure 4.9 – TTFB and TTLB comparison of the versions with search functionality for

page 4

Page 5 (figure 4.10) is the same page as is seen in the original version’s page 4 and therefore

exhibits the same trend; that is, the traditional site’s TTLB and TTFB escalates rapidly whilst the

RIA shows little variation with the increasing number of concurrent users.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e
(m

s)

Page 4

TTFB Traditional

TTLB Traditional

TTFB RIA

TTLB RIA

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e
(m

s)

Page 5

TTFB
Traditional
TTLB
Traditional
TTFB RIA

TTLB RIA

Chapter 4 – Network Traffic Comparison

39

Figure 4.10 – TTFB and TTLB Comparison of the versions with search functionality for

page 5

Overall the TTFB of both platforms shows that the RIA’s requests for data are able to be

delivered faster due to the reduced processing the server requires. Additionally the RIA is faster

in terms of TTLB, except for the first page, when compared to the traditional internet

application. This can be attributed Flash file size in the first page being significantly larger.

When playing Flash files the user is in fact informed of the loading of the file and its

progression, which reduces the risk of them abandoning their session due to the extra load time

required. Through the running of these tests it was discovered the server could handle at least

five more concurrent users for the RIA in both of the versions. This is the result of the traditional

site processing having to be done solely by the server, whilst with the RIA this processing is

offloaded to the client. This suggests that RIAs are significantly more scalable for the hosting of

dynamic sites than otherwise maybe be possible with traditional technology.

4.4.2 Quantity of network traffic generated

For page one (figure 4.11) of this version, the RIA is 3.6% (11682 bytes) larger than the original

version this is a result of the Flash file being delivered with search functionality. The search

(page 4) using Flex results in no requests for data being necessary which saves considerable

bandwidth. In this case on the first page the RIA requires 342.7% more data due to the Flash file

being larger; however the saving is increased significantly with the subsequent pages requiring

42.9% less traffic. Overall for the five pages loaded the total traffic transferred for the traditional

internet application is 149.2 KB, whilst the RIA required 384.4 KB. This results in

approximately 8 pages needing to be loaded for the network traffic quantity to be equal.

Chapter 4 – Network Traffic Comparison

40

Figure 4.11 Network Utilization of the two version 2 sites

Comparing the two versions suggests the more processing of data on the client side offered by

Flash would allow considerable greater saving of network traffic than shown here. Another

aspect that would reduce bandwidth is caching; dynamic requests can not be cached, but the

Flash file, which is the biggest contributor to the RIA traffic, can be stored in cache. Dynamic

requests for the RIA include all data requests for the information regarding the pets, whilst the

traditional internet application all requests for pages excluding the welcome (first) page are

dynamic requests.

0

50000

100000

150000

200000

250000

300000

350000

1 2 3 4 5

Traditional

RIATr
af

fi
c

(b
yt

e
s)

Version with search functionality: Network Utilization

Page Numbers

Chapter 4 – Network Traffic Comparison

41

4.5 Summary

This chapter showed that the Flex implementation required significantly greater bandwidth to

load, although subsequent requests required less bandwidth. It was shown that after the initial

load, faster interaction was possible for the RIA, therefore making it ideal for any site where user

interaction is prolonged. Additionally caching can improve this as the Flash file is not dynamic

itself even though the data it requests may be. As the Flash file is large it takes considerable time

to load especially with numerous concurrent users however the Flash player displays the

progression of this loading time, which can minimize user annoyance. Once this load is

completed lower TTFB and TTLB are obtained and this gives the user faster interaction. This

results in greater scalability of web applications owing to them offering offloading of processing

to the client.

Chapter 5 – Conclusions and Possible Extensions

42

Chapter 5 – Conlusions and Possible Extensions

5.1 Conclusions

This work compared the network traffic of a RIA pet store written using ActionScript and

MXML and a tradtional internet application written using HTML and JavaScript. A pet store was

developed due to blueprint applications being available in .NET, Java and Flash MX. Two

versions were developed in order to test how offloading processing to the client would affect the

network traffic. The table (5.1) summarises the findings in terms of a comparisons between the

two.

 HTML with JavaScript FLEX

Scalabity Inferior Superior

TTFB Inferior Superior

TTLB Superior for first page

Inferior for other pages

Intially Inferior due to Flash file

 Subsequently superior

Quantity of

network traffic

Generally superior Inferior for non dynamic data

Generally superior for dynamic data

Result of

caching

Superior for caching static data but

not dynamic data

Superior as largest contributor is the

Flash file whih is static

Table 5.1 – Summary of findings

Research [12] (chapter 2) suggested TTFB and TTLB would be significantly larger for the RIA

for the intial loading of the Flash file compared to the traditional internet appliation, this was

proved to be correct. Additionaly it was suggested that subsequent requests this figure drops

would significantly drop and the RIA was found to faster than the traditional application.

 Research [7] suggest that the quantity of network traffic generated should be smaller for the RIA

than the tradtional internet applicataion. However in testing this was found not to be true, with

the RIA requiring approximately 12 pages to be viewed for network traffic to be equal in the

Chapter 5 – Conclusions and Possible Extensions

43

orginal version of the applications. For the version with search functionality this droped to 8

pages requiring to be loaded for network traffic to be equal this is due to the data manipulation

that can be offloaded to the client. This suggests the more processing that can be offloaded to

the client the more network traffic can be saved.

 RIAs scalabity is improved, this was shown by the fact that the server was able to handle at least

five more concurrent users without crashing or producing errors than was possible with the

traditional internet application. This is attributed to the load on the server being reduced as less

processing is required from it.

5.2 Possible Extensions

Possible extenstions to this project may include

 Comparing other RIA platforms such as AJAX and/or applets, based on network traffic in

order to deteremine if any of the other platforms are able to produce less network traffic

for 4 or 5 pages of the pet store.

 Addition of a shopping cart for the pet store in order to monitor the user interactions. This

would allow the platforms to be compared based on their user interface and this would

determine which platform would therefore be best for an online retailer.

 Comparison of a dedicated server’s CPU usage between different platforms and the effect

the number of concurrent users has on this. This would give an idea of how many users a

server would comfortably handle without error.

 Comparisons of the platforms support for multi media content such as video and audio

content, and how this support is achieved that is through plug-in or natively through built

in classes.

References

44

References

Note: As a result of this project covered relatively new technologies there are a high proportion of web references.

Additionally a broad amount of web technologies and history were covered which has resulted in a large number of

references being required.

[1] Macromedia Inc. Developing Rich Internet Applications with Macromedia MX 2004. August

2003.

[2] O’Roule, Cameron. A look at Rich Internet Applications. July 2004.

[3] Duhl, Joshua. Rich Internet Applications. November 2003.

[4] O’Reilly, Tim. What is Web 2.0, 30 September-2005.

[5] Marshak, Marik and Levy, Hanoch. Evaluating web user perceived latency using service side

measurements. 7 August 2002.

[6] Zone Research. Need for speed II. June 2001.

[7] Md Habib, Aham and Adams, Marc. Analysis of Sources of Latency in downloading web

pages.

[8] West, Peter; Foster, Greg and Clayton, Peter et al,.Content Exposure of Slide Show

Presentations for selective downloads and annotations via Mobile Devices.

[9] Loosley, Chris. Rich Internet Applications: Design, Measurement, and Management

Challenges. 2006. http://www.keynote.com/docs/whitepapers/RichInternet_5.pdf. [Accessed: 27

June 2007]

[10] Backbase. Rich Internet Applications ―AJAX and beyond‖. 2006.

http://www.backbase.com/#home/essays/001_ajax_and_beyond.xml. [Accessed: 20 June 2007]

[11] Webster, Steven and McLead, Allistar. Developing rich clients with macromdia Flex. April

2004.

References

45

[12] Ramirez Design. Web Application Solutions: A designers guide. February 2004.

[13] Powell, Tomas. AJAX is the future of Web Application development. 17 Jully 2006.

[14] Benjamin Wigton. Rich Internet Applications for Revolutionary Interface Design. July

2004.

[15] Webster, Stevens and McLeod, Alistar. Actionscript Design Patterns for Rich Internet

Applications Development. 14 October 2003.

[16] Thompson, Craig and Hansen, Gil. Current Web Architecture. 1996.

http://www.objs.com/survey/WebArch.htm. [Accessed: 5 April 2007]

[17] Fain, Yakov. Rich Internet Applications – State of the Union. 13 February 2007.

[18] Rood’t, Bict. The effect of Ajax on performance and usability in web environments. 31

August 2006.

[19] Patrick, Ted. Rich with Reach. 17 March 2007. http://www.onflex.org/ted/2007/03/rich-

with-reach.php. [Accessed: 5 June 2007]

[20] IETF Technical Report. Hypertext Transfer Protocol. http://tools.ietf.org/html/rfc2616.

[Accessed: 2 June 2007]

[21] Sage Software. Sage Accpac 500 ERP - Process Server.

http://www.2020software.com/products/Sage_Accpac_500_ERP_Process_Server.asp.

[Accessed: 27 July 2007]

[22] Anti-Phishing Working Group. What is Phishing and

Pharming?http://www.antiphishing.org/. [Accessed: 26 July 2007]

[23] RHAPTOS: Connections’ Software and Documentation Site. AJAX DHTML JavaScript

Toolkits http://rhaptos.org/devblog/bnwest/AJAX%20DHTML%20JavaScript%20Toolkits.

[Accessed 27 July 2007]

References

46

[24] Sun Microsystems. Java Pet Store Blueprint. https://blueprints.dev.java.net/petstore/

[Accessed 11 October 2007]

[25] Adobe. Pet Market Blueprint Application. http://www.adobe.com/devnet/blueprint/

[Accessed 11 October 2007]

[26] Microsoft. Pet Store. Using .NET to Implement Sun Microsystems' Java Pet Store J2EE

BluePrint Application. http://msdn2.microsoft.com/en-us/library/ms954626.aspx

[27] Wampler, Dean. Cat Fight in a Pet Store: J2EE vs. .NET. 28 November 2001.

http://www.onjava.com/pub/a/onjava/2001/11/28/catfight.html [Accessed 11 October 2007]

[28] Adobe Labs. Adobe Flex Builder 3 Public Beta 2.

http://labs.adobe.com/technologies/flex/flexbuilder3/ [Accessed 12 October 2007]

[29] Coenraets, Christophe. An overview of MXML: The Flex markup language. 29 March

2004. http://www.adobe.com/devnet/flex/articles/paradigm.html [Accessed 12 October 2007]

[30] Zeiger, Stefan. Servlet Essentials. 4 November 1999.

http://www.novocode.com/doc/servlet-essentials/ [Accessed 1 November 2007]

[31] Lott, Joey; Schall, Darron and Peters, Keith. ActionScript 3.0 Cookbook. October 2006.

[32] GNU. Wget. http://www.gnu.org/software/wget/ [Accessed 4 November 2007]

References

47

[33] Chambers, Mike. Introducing Adobe AIR beta 2. 30 September 2007.

http://www.adobe.com/devnet/logged_in/mchambers_air_beta.html [Accessed 3 November

2007]

References

48

[34] Microsoft. Web Application Stress Tool. 26 December 2002.

http://www.microsoft.com/downloads/details.aspx?familyid=e2c0585a-062a-439e-a67d-

75a89aa36495&displaylang=en [Accessed 4 November 2007]

[35] SourceForge. Wireshark. http://www.wireshark.org/ [Accessed 4 November 2007]

Appendix

49

Appendix A – Glossary

AIR Adobe Integrated Runtime

AJAX Asynchronous JavaScript and XML

CCS Cascading Style Sheets

CGI Common Gateway Interface

DOM Document Object Model

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JVM Java Virtual Machine

JDBC Java Database Connectivity

JSP Java Server Pages

RIA Rich Internet Application

SQL Structured Query Language

TCP Transmission Control Protocol

TTFB Time To First Byte

TTLB Time To Last Byte

UI User Interface

XML Extensible Markup Language

Appendix

50

Appendix B – Screenshots of the test progression

Figure A.1 – An example of page1 for both versions of the Traditional (A) and RIA (B)

Figure A.2 – An example of page 2 for both versions of the Traditional (A) and RIA (B)

A B

A B

Appendix

51

Figure A.3 – An example of original version page 3 for the Traditional (A) and RIA (B)

Figure A.4 – An example of the version with search functionality page 3 and page 4 for the

Traditional (A) and RIA (B)

A B

A B

Appendix

52

Figure A5 – An example of original version’s page 4, and the second version’s page 5 for

the Traditional (A) and RIA (B)

A B

Appendix

53

Appendix C – Project Poster

Appendix

54

