
An Investigation into General Purpose
Computation on Graphics Processing

Units (GPGPU)

Submitted in partial fulfilment
of the requirements of the degree of

Bachelor of Science (Honours)

of Rhodes University

Nicholas Charles Victor Pilkington

Grahamstown, South Africa
November 2007

Abstract

General Purpose Computing on Graphics Processing Units is an infant field of computer
science, and exposes exciting areas in which the power of graphics processing units can
be harnessed to solve problems that are either otherwise too computationally expensive
on conventional central processing units, or to gain increased performance. A number of
classic computing problems were implemented on the GPU, and bench marked against
CPU implementations. Results from this testing have shown GPGPU to be viable across
a number of different areas. An analysis model was also developed in order to give better
insight into the expected performance of a GPGPU implementation of a problem on the
outset without having to make a comparative implementation.

Acknowledgements

The author would like to thank the Department of Computer Science at Rhodes Univer-
sity, and especially his supervisor for their continued assitance and interest in this work.
The author would also like to thank his mother without whose support this work would
not have been possible.

The author acknowledges the support of the Telkom Centre for Excellence at Rhodes
University as well as the National Research Foundation.

Contents

1 Introduction 9

1.1 Intentions of Research . 9

1.2 Structure of Investigation . 9

2 Introduction to Graphics Processing 11

2.1 Evolution of Graphics Hardware . 11

2.2 The Graphics Pipeline . 13

2.2.1 The Fixed Function Pipeline . 13

2.2.2 Stages of the Graphics Pipeline . 14

2.2.3 The Programmable Graphics Pipeline 15

2.2.4 Shaders . 15

2.2.5 Different Types of Shaders . 16

2.2.5.1 Vertex Shaders . 16

2.2.5.2 Fragment Shaders . 16

2.2.5.3 Geometry Shaders . 16

2.3 Summary . 17

3 Introduction to General Computation on Graphics Processing Units 18

3.1 Technology Trends . 18

3.1.1 Computation versus Communication 19

3.1.2 Latency versus Bandwidth . 20

3.1.3 Smaller Power Consumption . 20

1

CONTENTS 2

3.1.4 High-Performance Computing . 20

3.2 The GPGPU Programming Model . 20

3.3 Stream Programming Model . 21

3.4 Mapping Computational Concepts onto GPUs 22

3.5 GPGPU Analogies . 22

3.5.1 GPU Textures - Arrays . 23

3.5.2 GPU Fragment and Vertex Programs – Loop Bodies 23

3.5.3 Render to Texture – Feedback Mechanism 23

3.5.4 Geometry Rasterization – Computation Invocation 23

3.5.5 Texture Coordinates – Computational Domain 23

3.5.6 Vertex Coordinates – Computational Range 24

3.6 Related Work in field of GPGPU . 24

3.6.1 PUG . 24

3.6.2 Compute Unified Device Architecture (CUDA) 24

3.6.3 Close-to-Metal (CTM) . 25

3.7 Summary . 25

4 Methodology 26

4.1 Performance Analysis Preliminaries . 26

4.1.1 Speed up . 26

4.1.2 Overhead . 27

4.2 Timing Considerations . 27

4.3 Testing Configuration . 27

4.4 Language Selection . 28

4.4.1 Programming Language . 28

4.4.2 Shader Language . 29

4.4.3 Graphics API . 29

4.4.4 Windowing API . 29

4.5 Summary . 29

CONTENTS 3

5 Implementations 30

5.1 Matrix Addition . 31

5.1.1 Implementation . 31

5.1.2 Difficulties Encountered . 32

5.1.3 Results . 32

5.1.4 Performance Analysis . 34

5.1.5 Discussion . 34

5.1.6 Optimizations . 35

5.2 Matrix Multiplication . 36

5.2.1 Approach . 36

5.2.2 Difficulties Encountered . 37

5.2.3 Results . 38

5.2.4 Performance Analysis . 38

5.2.5 Discussion . 42

5.2.6 Optimizations . 42

5.3 Sorting . 42

5.3.1 Methodology . 43

5.3.2 CPU Implementations . 43

5.3.3 GPU Implementations . 44

5.3.4 Difficulties Encountered . 47

5.3.5 Render to texture . 47

5.3.6 Coordinate Wrapping . 48

5.3.7 Uniform Parameters . 48

5.3.8 Results . 48

5.3.9 Performance Analysis . 49

5.3.10 Optimizations . 52

5.3.10.1 Feedback Mechanism . 53

5.3.10.2 Data Encoding . 53

CONTENTS 4

5.4 Searching . 53

5.4.1 Approach . 54

5.4.2 Difficulties Encountered . 55

5.4.3 Results . 56

5.4.4 Performance Analysis . 56

5.4.5 Optimizations . 58

5.5 AES Encryption . 59

5.5.1 Approach . 60

5.5.1.1 Encryption Operations . 60

5.5.2 Difficulties Encountered . 62

5.5.3 Results . 63

5.5.4 Performance Analysis . 65

5.6 Rendering Fractal Images . 67

5.6.1 Approach . 67

5.6.2 Difficulties Encountered . 68

5.6.3 Results . 68

5.6.4 Performance Analysis . 68

5.7 Cellular Automata Simulation on a Grid 69

5.7.1 Approach . 70

5.7.2 Difficulties Encountered . 70

5.7.2.1 Boundary Conditions . 70

5.7.3 Results . 70

5.7.4 Performance Analysis . 71

5.8 Summary . 71

6 Discussion and Analysis 73

6.1 GPGPU Viability Analysis Model . 74

6.2 Future Work . 75

CONTENTS 5

7 Conclusion 77

Bibliography 78

A Code Listings 80

A.1 Matrix Addition . 80

A.1.1 Matrix Addition Routine . 80

A.2 Matrix Multiplication . 80

A.2.1 Matrix Multiplication Routine . 80

A.3 Searching . 81

A.3.1 Linear Search Routine . 81

A.3.2 Binary Search Routine . 82

A.4 Sorting . 83

A.4.1 Odd Even Transition Sort Routine 83

A.4.2 Bitonic Merge Sort Routine . 85

A.5 AES Encryption . 86

A.5.1 SubBytes Routine . 86

A.5.2 ShiftLeft Routine . 86

A.5.3 MixColumns Routine . 87

A.5.4 AddRoundkey . 88

A.6 Logical Operation Routine . 88

A.7 Rendering Fractal Images . 89

A.7.1 Mandelbrot Fractal Routine . 89

A.8 Cellular Automata . 89

A.8.1 Grid Simulation Routine . 89

List of Figures

2.1 The Graphics Pipeline . 13

5.1 Matrix Addition Execution Times . 33

5.2 Execution Time with Different Numbers of Shaders Cores 35

5.3 Matrix Multiplication Execution Times . 39

5.4 Relative speedup of GPU Implementation 41

5.5 Execution Time with Different Numbers of Shader Cores 42

5.6 Odd Even Transition Sort . 46

5.7 Bitonic Merge Sort . 47

5.8 Render to Texture Feedback Loop . 48

5.9 Sorting Algorithm Execution Times . 49

5.10 Transition Sort Asymptotic Complexity . 51

5.11 Bitonic Merge Sort Asymptotic Complexity 51

5.12 Mean Execution Time with Different Numbers of Cores 52

5.13 Mean Execution Time of Searching Algorithms 57

5.14 XOR Look up Field . 63

5.15 AND Look up Field . 64

5.16 OR Look up Field . 64

5.17 AES Multi-Block Encryption Rate . 66

5.18 Mandelbrot Fractal Images . 69

5.19 Cellular Automata Simulation . 71

6

List of Tables

4.1 Test Platform Configuration . 28

4.2 Graphics Cards Used . 28

5.1 Matrix Addition Execution Times . 33

5.2 Execution Time with Different Numbers of Shader Cores 34

5.3 Matrix Multiplication Execution Times . 38

5.4 Relative Speedup of GPU . 40

5.5 Execution Time with Different Numbers of Shader Cores 41

5.6 Sorting Algorithms . 43

5.7 Mean Execution Times of Sorting Algorithms (µs) 49

5.8 Relative Speedup of GPU Sorting Algorithms to Quick Sort 50

5.9 Bitonic Merge Sort with Varying Numbers of Shader Cores 52

5.10 Searching Algorithms . 54

5.11 Mean Search Execution Times . 56

5.12 Relative Speedup of CPU to GPU Binary Searches 57

5.13 Mean Performance on Shader Cores . 58

5.14 Key-Block-Round Combinations . 59

5.15 AES Encryption Single Block . 63

5.16 AES Encryption Multi Block . 63

5.17 Mean Encryption Rate . 66

5.18 Maximum Encryption Rate . 67

5.19 Fractal Rendering Speeds . 68

7

LIST OF TABLES 8

5.20 Mandelbrot Fractal Computation Rate (points/s) 68

5.21 John Conway Rule Set . 69

5.22 Cellular Automata Execution Time . 70

Chapter 1

Introduction

General Purpose Computation on Graphics Processing Units (GPGPU) refers to the
processing where by general computation is achieved on a specialized graphics processor.
This type of processing opens up many new paths to computation in general. This
paper will initially describe the intentions of this research and the evolution of graphics
processing hardware that have led to the inception of general processing on graphics
processing units [22].

1.1 Intentions of Research

The intention of this research is to gain a deeper understanding of general computation
on graphics processing units in a general sense. More specifically information about
performance, viability and ease of implementation are sought. Ultimately information is
needed to be able to construction a test of conditions for the analysis of a problem on
the outset that will assist in deciding whether it is would be beneficial to process it on a
GPU rather than a CPU. With the presentation of technology trends and development
in hardware 2.1 it can be seen that graphics processing hardware is only going to become
more powerful. Thus it becomes important to understand on the outset how applicable
this power is in solving certain tasks. These are the issues that this research seeks to find
solutions to.

1.2 Structure of Investigation

Section 2.2 will introduce graphics processing in general as well as graphics processing
concepts that are critical to understanding GPGPU. Section 3 will lead into a discussion

9

1.2. STRUCTURE OF INVESTIGATION 10

of the types of architecture and fundamentals which make GPGPU possible in particular
the Stream Processing Model. Section 3.6 will give a brief outline of the existing GPGPU
frameworks available. Chapter 4 will give details about how the investigation was under-
taken in order to resolve the intentions of the research described in 1.1. Chapter 5 will
give detailed information on how the implementations where carried out as well as present
and discuss any results obtained. A detailed discussion of these results will be provided
in chapter 6 with conclusive statements given in the final chapter.

Chapter 2

Introduction to Graphics Processing

Graphics processing is the underlying foundation that supports GPGPU. It is important
to understand the technological developements that have taken place of the last 20 years
and what impact they have had on graphics processing in general.

2.1 Evolution of Graphics Hardware

Computer hardware capabilities are advancing very fast and the discussion of this will be
thoroughly dealt with in section 3.1. This section will detail the evolution of computer
graphics hardware and what the major changes have been over the last 20 years as op-
posed to how these changes are occurring. NVIDIA introduced the term “GPU’ in the
late 1990s to replace the archaic term “VGA controller”. The Video Graphics Controller
released by IBM in 1987 functioned as a frame buffer. The CPU was still fully responsible
for updating and accessing this frame buffer. Today the CPU rarely manipulates graphics
related information as all this processing is done on the GPU. There have been four major
generations of GPU evolution. Each successive evolution has built on the previous one to
produce faster and more capable hardware. Each generation has also had influences on
the functionality of the two major 3D programming interfaces, OpenGL [7] and DirectX
[4]. OpenGL is an open source standard with cross-platform functionality on Windows,
Linux and Macintosh computers. DirectX is an evolving set of Microsoft multimedia pro-
gramming interfaces, including Direct3D for 3D programming on Windows based systems
only [13].

11

2.1. EVOLUTION OF GRAPHICS HARDWARE 12

Pre-GPU Graphics Acceleration

Prior to the inception of GPUs, graphics systems were developed privately by companies
like Silicon Graphics (SGI) and Evan & Sutherland [13]. These systems were far too
expensive for personal computer users and thus did not achieve any mass market success.
Normal users were limited to using their CPUs for all types of graphics processing [13].

First-Generation GPUs

The first generation of GPUs – up to 1998 – includes NVIDIA’s TNT2, ATI’s Rage, and
3dfx’s Voodoo 3. These GPUs could rasterize triangles and apply one or two textures.
They also implemented the DirectX 6 feature set. These graphics cards relieved the CPU
of updating individual pixels. However these GPUs suffered from two major limitations.
Firstly, they were not able to transform the vertices and all the transformation had to
be done by the CPU. Secondly they were relatively limited in the maths operations for
combining textures to compute the final colour of rasterizer pixels [13].

Second-Generation GPUs

The second generation of GPUs (1999-2000) included NVIDIA’s GeForce 256 and Geforce2,
ATI’s Radeon 7500, and S3’s Savage3D. These GPUs can offload 3D vertex transforma-
tion and lighting onto the CPU. They are also able to perform more complicated vertex
transformation. Both OpenGL and DirectX 7 support hardware vertex transformation.
More complicated maths operations like cube mapping were introduced making the GPUs
more configurable but still not programmable [13].

Third-Generation GPUs

The third generation of GPUs (2001) includes NVIDIA’s GeForce 3 and GeForce 4 Ti, Mi-
crosoft’s Xbox, and ATI’s Radeon 8500. This generation offered programmability instead
of just more configurability. It let the application specify the sequence of instructions for
processing vertices instead of using pre-programmed transformation and lighting func-
tionality. The pixel operations were also more configurable but not truly programmable,
as the generation was transitional [13].

2.2. THE GRAPHICS PIPELINE 13

Figure 2.1: The Graphics Pipeline

V e r t e x T r a n s f o r m a t i o n
P r i m i t i v e A s s m b l y
a n d R a s t e r a t i o n

F r a g m e n t T e x t u r i n g
a n d C o l o u r i n g

R a s t e r O p e r a t i o n s

Fourth-Generation GPUs

The fourth generation of GPUs (2001 – 2006) included NVIDIA’s GeForce FX family,
ATI’s Radeon 9700. These GPUs boasted fully programmable vertex as well as pixel
shaders. DirectX 9 and OpenGL both exposed the programmability of these shaders [13].

Fifth-Generation GPUs

The fifth generation of GPUs are only just emerging now in 2007 and include NVIDIA’s
GeForce 8 family and ATI’s Radeon R600. The ATI Radeon R600 is still to be released
and as such details are scarce. NVIDIA’s GeForce 8 includes a unified shader model where
vertex and pixel shaders execute on generic shader cores instead of specialized ones [13].

2.2 The Graphics Pipeline

The graphics pipeline is the central core of graphics processing. It can be thought of as a
sequence of stages operating in parallel in a fixed order. Each stage of the pipeline receives
information from the previous stage, performs some operation on it and then passes it on
to the next stage in the pipeline. The graphics pipeline in analogous to an assembly line
in a factory, where each stages builds upon the previous one. It is important to have a
good grasp of what each stage receives and produces as well as a detailed understanding
of what operations are performed and in what order they occur.

2.2.1 The Fixed Function Pipeline

The fixed function pipeline was limited in what could be performed at each stage. This
was not initially a problem as the performance gained from some graphics processing
being offloaded from the CPU was enough to justify the process. Figure 2.1 presents a
simple graphics pipeline architecture.

2.2. THE GRAPHICS PIPELINE 14

2.2.2 Stages of the Graphics Pipeline

The graphics pipeline is broken up into various stages that each perform a specific purpose.

Vertex Transformation

This is the first stage of the pipeline and receives a list of vertices. Vertex transformation
performs various mathematical operations on each vertex. Examples of this are changing
the colour associated with a vertex, changing its position or altering texture coordinate
sets. Many operations are possible especially due to the programmable nature of the
vertex shader which allows programmers to write their own programs that execute in
the vertex transformation stage. The transformed vertices are passed on to the primitive
assembly and rasterization stage [13, 14].

Primitive Assembly and Rasterization

This stage of the pipeline receives a list of transformed vertices and is responsible for
assembling them into their composing primitives. Batches of vertices paired with their
geometric batching information are assembled into primitives like triangles and quads.
Some of these primitives may be clipped to the view frustum. This process is called
culling. The surviving polygons are rasterized. This is the process whereby each primitive
is deconstructed into the set of pixels and fragments. Pixels correspond to the contents
of a frame buffer element where as fragments are the information necessary to generate
an actual pixel. The resulting fragments are passed onto the fragments texturing and
colouring stage [13, 14].

Fragment Texturing and Colouring

The fragments passed into this stage are interpolated and various mathematical operations
are executed on the interpolated values. This stage of the pipeline is concerned with
determining the final colour of the pixel that should be written to the frame buffer.
The fragment may be discarded at this stage based on specified criteria like depth. The
resulting fragments, if any, are passed to the raster operations stage [13, 14].

Raster Operations

This stage performs various operations on the fragment received to determine whether or
not it should be discarded. These operations can include hidden surface removal, scissor

2.2. THE GRAPHICS PIPELINE 15

tests, depth tests and alpha tests. The fragment may need to be combined with the
current pixel in the frame buffer. This operation is called blending. This stage finally
updates the frame buffer with the correct value [13, 14].

2.2.3 The Programmable Graphics Pipeline

With the advent of the fourth generation of GPUs discussed in sub-section 2.1, stages
of the graphics pipeline have become fully programmable. These stages are the Vertex
Transformations stage and the Fragment Texturing and Colouring stage as depicted in
figure 2.1. Programs known as shaders can be written which are executed at these stages
of the pipeline and control the operations performed. Herein lies the power of GPGPU as
a previously inaccessible piece of hardware in the fixed function graphics pipeline is now
programmable [9, 16, 13].

2.2.4 Shaders

Prior to the inception of GPUs, CPUs did all the graphics processing required by a
program. GPUs are a specialized type of CPU that is capable of performing graphics
specific computations much faster than a CPU can. The first of these GPUs were highly
specialized and there was no way to program the graphics pipeline. As advances were
made in the field of computer graphics there was more of a need to make the pipeline
became more programmable. The need for the development of a language to program
graphics hardware was evident and the spawned three different shader languages GLSL
[6], HLSL [3]and Cg [13, 9].

OpenGL Shading Language (GLSL)

GLSL is an acronym for OpenGL Shading Language and is also known as GLslang. GLSL
is a high level shading language based on the C programming language. It was created
by the OpenGL Architecture Review Board to give developers more direct control of the
graphics pipeline without having to use assembly language or hardware-specific languages.
GLSL has cross platform compatibility on multiple operating systems, including Macin-
tosh, Windows and Linux. GLSL also has the ability to write shaders that can be used
on any hardware vendor’s graphics card that supports the OpenGL Shading Language.
Each hardware vendor includes the GLSL compiler in their OpenGL driver, thus allow-
ing each vendor to create code optimized for their particular graphics card’s architecture
[13, 27, 6].

2.2. THE GRAPHICS PIPELINE 16

High Level Shading Language (HLSL)

The High Level Shader Language or High Level Shading Language (HLSL) is a proprietary
shading language developed by Microsoft for use with the Microsoft Direct3D API. It is
in competition with GLSL shading language, but is not compatible with the OpenGL
standard. It is very similar to the NVIDIA Cg shading language [9, 3].

C for Graphics (Cg)

Cg or C for Graphics is a high-level shading language created by NVIDIA for programming
vertex and pixel shaders. Cg is based on the C programming language and although they
share the same syntax, some features of C were modified and new data types were added
to make Cg more suitable for programming graphics processing units [13].

2.2.5 Different Types of Shaders

There are three different types of shaders each with a different specific purpose and form
of operation.

2.2.5.1 Vertex Shaders

Vertex shaders Vertex shaders operate on vertices in the stream. They can be used
to change and manipulate information like texture coordinates and positions or other
attributes associated with a vertex.

2.2.5.2 Fragment Shaders

Fragment shaders are also called pixel shaders. They operate on pixels in the stream and
can be used to change and manipulate information like colour and lighting values. They
take fragments as their input fragments and then perform various operations and output
the augmented fragment.

2.2.5.3 Geometry Shaders

Geometry shaders are a new type of shader that allows vertices to be created and de-
stroyed. This allows for generation of geometry in the pipeline which is something that
was previously impossible with just vertex and fragment shaders. Geometry shaders were
only supported in hardware with the advent of DirectX 10.

2.3. SUMMARY 17

2.3 Summary

Graphics processing has evolved vastly over the past twenty year and these advanced-
ments, among other features, have allowed for more programmabiliy. The fixed function
graphics pipeline has been replaced by the more robust progammable graphics pipeline.
This is the foundation for general computation on graphics hardware. Programming
graphics hardware would not be possible unless hardware developers exposed this to pro-
grammers. The advent of shaders technology paired with the programmable pipeline
allows programmers to write fragment and pixel shaders that execute on the GPU and
use its resources.

Chapter 3

Introduction to General Computation
on Graphics Processing Units

As discussed in the introduction, general-purpose computing on graphics processing units
(GPGPU) refers to programming where operations are performed on the GPU rather
than on the CPU. The advantage of such processing is that the GPU is able to perform
operations in parallel where as a single core CPU cannot. Since the GPU is able to process
in parallel, problems of a parallel or streaming nature could benefit from being processed
on the GPU. This processing offload has previously not been possible because of the
limited accessibility of the fixed function graphics pipeline discussed in sub-section 2.2.1.
The advent of programmable graphics pipelines (sub-section 2.2.3) allows non-graphics
related processing to take place on the GPU. This is done by means of the shaders.
Instead of processing graphics information specific for rendering we may choose to have
the information we are processing represent something different. This interpretation of
data is still transparent to the GPU as it processes the data in the same way that it would
graphical information [17, 15].

3.1 Technology Trends

This section will describe the evolution of CPU power and give insight into the way GPU
processing power and functionality will tend towards in the future. Every year the power
of conventional CPUs increases and advances in the underlying technologies allow for
more processing power to be crammed onto the chip. Each successive generation of CPUs
is faster, has more processing power and is sometimes even cheaper. A lot can be gained
by considering the trends in this development. Processors are constructed from millions

18

3.1. TECHNOLOGY TRENDS 19

of electronic switching devices called transistors and the number of these transistors on
a processor is quite an accurate metric for its processing power. In 1965, Gordon Moore
predicted that the power of CPUs would continually double each year. This prediction is
known as Moore’s Law [5]. Each new generation of CPUs increase the number of these
transistors and also decreases their individual size. Smaller transistors can operate faster
than larger ones as they require less current. This increase in transistor speed results
in an increased clock speed, which is the speed of the global chip clock which is used to
synchronize processor operation. This exponential increase in computing power looks to
continue at the current pace for at least another decade.

Semiconductor computer memory also benefits from these technology advances. The
ITRS predicts than Dynamic Random Access Memory (DRAM) will continue to double
in capacity every three years. The metric for measuring DRAM is not the same as that
of CPUs. Instead they are measured in terms of bandwidth, which is the total amount of
data they can transfer each second, or latency which is the amount of time that elapses
between data being requested and returned. Though both latency and bandwidth continue
to increase annually they are by no means increasing at the same rate as CPU speeds
[17, 10, 8, 13].

Overall the trends of both processor and memory speed and capabilities are scheduled to
continue to increase in the coming years. We have seen that there are two separate metric
for comparing both CPUs and DRAM. For CPUs they can be graded by this clock speed,
a factor that is driven by decreasing the size of the individual transistor. CPUs can also
be graded by transistor count which is the number of transistors on the actual chip, where
more transistors yield more advanced processing capabilities. However with an increased
number of transistors comes increased chip size. The most important consequence of
these technology trends is the difference between them. When one of the metric increases
faster than the other it starts to create a specialization shift. The following section will
describe how this gap will help drive the GPU architecture of the future. There are three
major issues to consider in this regard: computation versus communication, latency versus
bandwidth, and power [17, 10, 8, 13].

3.1.1 Computation versus Communication

As chips’ physical size increases as manufacturers put more and more transistors on them,
the amount of time required for the electrical signal to travel across the chip increases.
This amount of time is measured in clock cycles in current processors. Moore’s Law
can characterize the trend in the amount of transistors growing faster than the rate at

3.2. THE GPGPU PROGRAMMING MODEL 20

which their size is decreasing as an increase in communication when compared to cost of
computation [17, 10, 8].

3.1.2 Latency versus Bandwidth

The gap between memory bandwidth and latency is another factor that could drive the
architectural trend in GPUs. Latency will improve more slowly than bandwidth designers
should seek to implement solutions that are able to do more processing while the data is
waiting to be returned [17, 10, 8].

3.1.3 Smaller Power Consumption

Smaller transistors require less power; however the number of transistors being placed
onto chips in increasing faster than the amount at which the power per transistor is
decreasing. This leads to each successive generation of processor needing more power to
operate [17, 10, 8].

3.1.4 High-Performance Computing

Simply providing large amount of computation is not sufficient. Efficient management of
communication is necessary to feed the computation resources on the chip [17, 10, 8].

Building a high performance processor requires that the computation as well as the com-
munication are efficient. The reason why CPUs perform poorly in high performance ap-
plications is their serial programming model. The von Neumann architecture is inherently
sequential, and does not expose parallelism and communication patterns in application.
There is an alternative way of structuring programs that allows for very high efficiency
in both computation and communication. This programming model is the basis for pro-
gramming GPUs today and is known as the Stream Programming Model [10].

3.2 The GPGPU Programming Model

Programming for GPUs is not like programming a different type of CPU. The biggest
difference is that a GPU is not a serial processor like a CPU. CPUs are based on the
von Neumann architecture. Simply speaking this means that they implement a Universal

3.3. STREAM PROGRAMMING MODEL 21

Turing Machine and operate in a purely sequential way, executing instructions in a serial
nature and updating program memory as they go [18].

A GPU is a stream processor and instead executes on elements of an input stream and
processing the corresponding elements of the output stream. The stream programming
model will be discussed in more detail in 3.3. The important difference here is that the
function is invariant of the element of the input stream and is not dependent on any
of the other elements. Thus the order of this function executing is not important and
there are no dependencies between elements. This permits the entire input stream to be
processed in parallel. Another way to think about this model of execution is that it is the
application of a function to an array of data [22, 26, 10, 19, 29].

3.3 Stream Programming Model

In the stream processing model all data is represented as a stream. These streams can be
thought of as an ordered set of data of the same type. The type of data in the stream can
be very simple (a stream of integers or floating-point number) or it could be more complex
(a stream of points or matrices). These streams can be of any length however efficiency
is higher on longer streams with uniform data. There are a number of functions that
can be executed on streams and they include; copying them, deriving sub-streams from
them, indexing into them with a spate index stream and finally performing computation
on them with kernels .

Kernels operate on an input stream and produce a corresponding stream of output el-
ements. The defining characteristic of kernel is that they do not operate on individual
elements. Kernels can be thought of as the evaluation of a function on each element
of an input stream. This is in many ways similar to the ‘map’ operation of functional
programming. The kernel could perform one of several operations like expansion, where
more than one element is produced from a single input, reductions, where more than one
input element is combined into a single output element, or filters, where only a subset of
input elements are output[17, 10, 8, 13].

Computation on a single stream element does not depend on any of the other elements
of the stream and as a result is purely a function of the input element. This restriction
is very favorable as it means that the input stream type is completely known at the time
of compilation and can be optimized as such, but even more favorable is the fact that
this independence implies that the order of computation of the mapping is unimportant
which ultimately means that what appears to be a serial kernel operation can actually be

3.4. MAPPING COMPUTATIONAL CONCEPTS ONTO GPUS 22

executed in parallel [17, 10, 8, 13].

While applications can be constructed by chaining together the inputs and output of
various streams, whereby the output of one stream becomes the input of the next one,
the graphics pipeline is traditionally structured as stages each depending on the result
of the immediate previous stage. This makes the graphics pipeline a good match for the
stream programming model as it is analogous to the stream and kernel abstraction just
described [17, 10, 8, 13].

3.4 Mapping Computational Concepts onto GPUs

The previous sections have described the stream programming model in detail however
it is still necessary to have a good understanding of what types of computations are
more effectively performed on a GPU using the stream programming model and how
these computations can be mapped to GPU programming. In order to attain maximum
performance a highly detailed understanding of the underlying architecture is required.
This is also true with traditional CPU programming. The previous sections have provided
an understanding of the stream programming model as well as the graphics pipeline
and shaders. They have also provided information pertaining to the types of trends
that will drive development in this area in the future. This information is necessary in
understanding how concepts are mapped to GPUs. The design of a GPU is very important
to keep in mind when programming one. This is the same with CPUs although because
of their more generic nature it is possibly not as important unless you are seeking highly
specialized fast computation. We know that a GPU exploits high data parallelism and
independence in the graphics pipeline in order to gain performance [23, 17].

3.5 GPGPU Analogies

Even knowing what resources are available on the GPU and what they can do, it can
still be difficult for someone not well versed in graphics programming to understand how
the GPU can be used for ordinary programming. This section will present a number of
metaphors that will allow for a better grasp of the possibilities and concepts of GPGPU
and how they can be mapped to the stream processing model and in turn the graphics
pipeline [23, 17].

3.5. GPGPU ANALOGIES 23

3.5.1 GPU Textures - Arrays

GPUs have no concept of primitive arrays. However they do support textures and vertex
arrays. These are the natural choice for the representation of array based data. Any
information that we would ordinarily store in an array can be stored in texture. The way
that the information is stored is up to the programmer [23, 17].

3.5.2 GPU Fragment and Vertex Programs – Loop Bodies

The shader programs operate on each element of the input stream. They can be thought of
as a loop over the stream and executing a kernel program on each element. For this reason
shaders can be thought of as the loop bodies in terms of conventional CPU programming,
where the loop is over the elements of the stream [23, 17].

3.5.3 Render to Texture – Feedback Mechanism

As mentioned earlier the render to texture mechanism can be used to pass the output
of on iteration into the input of the next. For this reason it can be used as a feedback
mechanism – something that is trivial to implement on a CPU because of the unified
memory model of the von Neumann architecture. Render to texture can be used to write
the output of a fragment program to memory and use it in the next execution of the
fragment program. This concept will be describe more fully when used later on [23, 17].

3.5.4 Geometry Rasterization – Computation Invocation

It is all very well to have methods in place for memory, processing and feedback but there
needs to be a mechanism to control the overall execution. In other words there needs to
be a start condition that will initialize execution. This is achieved by some initial input
stream data. This is actually very simple as it just means generating some geometry. In
GPGPU processing is generally on every element of a rectangular stream representing a
grid. Therefore the most common invocation is to simply render a quadrilateral [23, 17].

3.5.5 Texture Coordinates – Computational Domain

The range of the computation is based on the texture coordinates associated with the
vertices of the primitive. The rasterizer linearly interpolates between the texture coordi-

3.6. RELATED WORK IN FIELD OF GPGPU 24

nates specified, four in the case of a quadrilateral, in order to generate the coordinates
for each fragment which are then passed to the fragment program [23, 17].

3.5.6 Vertex Coordinates – Computational Range

As discussed before the computational domain is generated depending on which vertices
are passed into the pipeline. These vertices are the values interpolated between to generate
the texture coordinate input (domain) of the fragment program. Therefore the initially
generated vertices dictate the range of the resulting outputs of the fragment shader [23, 17].

3.6 Related Work in field of GPGPU

This section will briefly present two different frameworks for computation on the GPU.

3.6.1 PUG

Is a simplistic framework for GPGPU written in C++ and is effectively an abstraction
of the OpenGL calls necessary to facilitate the execution of a program on the GPU. Is
does not provide any abstraction for the programming of the actual vertex and fragment
shaders. It implements general reductions and provides abstractions for domain and range
binding as well as the render to texture mechanism outlined in sub-section 3.5.3 [10, 17].

3.6.2 Compute Unified Device Architecture (CUDA)

CUDA is an acronym for Compute Unified Device Architecture. The CUDA Toolkit is
a complete software development solution for programming CUDA-enabled GPUs. It
provides build in functionality for complex operations like Fast Fourier Transforms and
various numerical algorithms. CUDA uses C to create the kernel programs that are
otherwise written in some shader language. CUDA also facilitates direct implementation
of parallel computations in the C language using an API designed for general-purpose
computation instead of having to write transformed code in a graphics API like OpenGL
or DirectX [10, 17].

3.7. SUMMARY 25

3.6.3 Close-to-Metal (CTM)

CTM is an acronym for Close-to-Metal which is a hardware interface developed by ATI
to allow programmers to interface directly with the hardware. It exposes access to the
instruction set and operations of the GPU and facilitates GPGPU [1].

3.7 Summary

The trend in processor speeds is still exponential growth however, GPU and CPU memory
trends differ. CPU memory speeds are increasing very slowly but the density is still
increasing fast. Graphics card memory density is increasing but so is the bandwidth.
This allows for a very width bandwidth channel for communication between the GPU and
video memory. this massive bandwidth is not available on standard processing platform
and is an important characteristic that can facilitate very high performance on the GPU.
GPGPU is a difficult concept to understand as the problem needs to be formulated in
a graphics related way. The analogies provided assist in this regard making it easier to
think of a problem in terms of graphics processing capabilities. Finally NVIDIA and ATI
both have framework and interfaces available for direct GPGPU on their cards. These
frameworks, namely CUDA and CTM expose programmability of the graphics hardware
to programmers allowing for general purpose computation.

Chapter 4

Methodology

On the outset, it was sought to investigate GPGPU in a general sense. In order to do
this, a comparison needs to be drawn between GPU and some thoroughly understood
technology. The logical choice to compare GPU processing to would be conventional
processing on a CPU. For this reason in order to investigate GPGPU thoroughly a number
of test programs were created to be executed on the GPU. These programs are each very
specific in themselves but together cover a broad area of different problem domains. For
each program developed for the GPU, a CPU control version was developed to give a
comparison. This gives a solid foundation from which to launch more detailed statistical
analysis of the GPU and CPU implementations and be able to draw accurate conclusions
about performance and viability.

4.1 Performance Analysis Preliminaries

As detailed in the 3.2, a GPU is inherently a parallel processor. The analysis of parallel
processing performance differs from that of sequential processing and it is important to
understand the ways in which performance can not only be measured, but also compared.

4.1.1 Speed up

Speed up refers to how much faster one algorithm is than another one. This will be a
useful metric to use in the comparison of an GPGPU algorithm and a standard CPU one.
Speed up is defined by the following formula:

S =
T1

T2

26

4.2. TIMING CONSIDERATIONS 27

where:

S is the speed up factor

T1is the execution time of the slower algorithm

T2is the execution time of the faster algorithm

4.1.2 Overhead

Overhead is the term given to parts of a program that are not directly related to the core
algorithm to be executed. Overhead may include code to initialize data or free memory
after use.

4.2 Timing Considerations

In order to gain a better understanding GPGPU performance and to seek solutions to
the research intentions in sub-section 1.1, a high resolution (microsecond) timer was nec-
essary to time fragments of code in order to generate the data for statistical analysis. In
timing code there are a number of factors that can either be included or excluded and
consideration is required in order to set a uniform way which to time the code and thus
gain the most accurate results possible. A micro-second timer was used in the code to
time the execution length of the addition process. For this exact purpose the following
were adhered to in timing all code.

The initialization of the matrices and timing mechanisms were not timed as these con-
tribute to overhead (see sub-section 4.1.2) rather than the actual algorithm being exe-
cuted. Where time was not the standard performance metric, for example in the data
related implementations, data throughput was measured instead.

4.3 Testing Configuration

In timing the implementations each different implementation was run on each different
sized data set 500 times. The average of these run times was then used as the time for that
specific implementation and data set size. This average was computed as the standard
arithmetic mean. More formally if xi are timing results for a specific implementation and
data set size, then the average time x is computed as:

4.4. LANGUAGE SELECTION 28

Table 4.1: Test Platform Configuration

Category Details
Processor Intel Core 2 Duo (1.86Ghz)
Memory 2048MB DDR2 (400Mhz)
Graphics NVIDIA GeForce 7900 GT (256MB), Driver Version: 91.47

Mainboard Intel Corporation Q965
Hard drive 80GB SATA

Operating System Windows XP Service Pack 2

Table 4.2: Graphics Cards Used
Graphics Card Shader Cores

NVIDIA Geforce 5200 FX 4
NVIDIA Geforce 6600 LE 8
NVIDIA Geforce 7900 GT 24

x̄ = 1
500

· ∑500
i=1 xi

All runs were executed on the machine specification detailed in table 4.1. All statistic
graphs were produced using the statistical language R [28].

Where shader core performance was investigated within some implementations the fol-
lowing graphics cards listed in table 4.2 were used.

4.4 Language Selection

There is a lot of choice available for selecting APIs and language for implementing
GPGPU.

4.4.1 Programming Language

C++ was used as the programming language for the implementations. C++ is the de
facto in graphics applications and is well established and powerful enough to support the
features required.

4.5. SUMMARY 29

4.4.2 Shader Language

Cg was selected as the shading language of choice. The reasn for this is that Cg is not
aligned with a specific graphics API like HLSL and GLSlang.

4.4.3 Graphics API

The OpenGL API was used for the graphics processing. OpenGL was chosen over DirectX
for simplicity. The work done was not an excercise primarily in graphics processing and
a simple API was needed for geometry generation and shader bindings but little else was
required of it.

4.4.4 Windowing API

The Windows API was used for all windowing. The reason for this is that the GLUT
library supports Windows effectively and makes the generation of windows and OpenGL
graphics context simple.

4.5 Summary

The methodology is intended to facilitate performance analysis of GPGPU. Choices of
programming language, shader language, windowing API and graphics API were all kept
constant throughout to ensure accurate statistical results. The information generated
from this testing methodology formed the basis of the investigation.

Chapter 5

Implementations

This chapter provides detailed information on the program suite implemented to perfor-
mance test the GPU. The programs were selected to cover a broad range of computational
tasks including, floating point processing, searching, sorting as well as data intensive op-
erations. Each section is presented with information about how the implementation was
performed on both the CPU and GPU as well as detailed results and performance analysis.
Source code listings of fragments of all the GPU programs are given in Appendix A and
specific references to them are given in each implementation’s section. The programs were
implemented with simplicity in mind, this means that no specific optimizations or early
outs for special cases were accommodated for. The reason for this was the description
of the research intents in section 1.1. A general investigation into GPGPU was sought
and as a result canonical implementations provided the most accurate numerical data
that was then used to gain better insight into performance in general. This simplification
made the programs more general both from a software and a hardware point of view.
Where assumptions and simplification have been made they have also been described and
motivated in detail with reasons. The remainder of the chapter is dedicated to the actual
implementations as just described.

Seven different problem domains were tackled namely: matrix addition, matrix multipli-
cation, sorting, searching, AES encryption, rendering fractal images and finally cellular
automata simulations. A section is dedicated to each of the implementations and gives
information about the implementation, results, optimizations and performance analysis.
All code is also in the accompanying CD.

30

5.1. MATRIX ADDITION 31

Algorithm 1 Matrix Addition

def matrixAdd(int A[][], int B[][], int C[][])
for i := 1 to n do
for j := 1 to n do
C[i][j] = A[i][j] + B[i][j]

end
end

end

5.1 Matrix Addition

Adding matrices is a common operation in linear algebra and forms the foundation for
more complex mathematical operations in linear algebra. Addition of two matrices is
achieved by summing the matrices on a per element basis. For example: 1 2

3 4

 +

 2 4

6 8

 =

 3 6

9 12


For this reason only matrices of the same size may be added together. This implementation
will only be dealing will matrices which are both, square and have a dimension that
is a power of two. The reasons for these choices is discussed further in section 5.2.2.
Sequentially this operation takes n2 operations where n is the dimension of the matrix.

5.1.1 Implementation

The source code for the GPU implementation of matrix addition can be found in Appendix
A.1.1. What follows is a brief discussion of how the solution was implemented on both
the CPU and the GPU.

CPU Implementation

The CPU matrix addition program initialized two square matrices of dimension 32, 64,
128, 256, 512 and 1024 and added them together. The elements of the matrix were
randomly generated integers in the range [0..255]. This was done using a simple nested
loop. The matrices were represented and stored in two dimensional arrays.

GPU Implementation

The matrix addition program was implemented for the GPU using a single fragment
shader. Two square textures where first created. The red channels of the texture elements

5.1. MATRIX ADDITION 32

were then initialized to the values of the matrices that were to be added together. These
were random numbers in the range [0..255]. A fragment shader was then created which
simply made a texture look up to each of the two texture units and set the red channel of
the current pixel to the sum of the red channels in the two textures. In order to perform
the actual addition operation there needed to be geometry on which the fragment shader
could operate. This was achieved by rendering a screen sized quad with the two textures
bound to it.

5.1.2 Difficulties Encountered

A number of issues come to the surface even from implementing such seeming simple
programs on the GPU. These difficulties serve an important purpose as they add insight
into the holistic investigation of general computation on graphics processing units.

Non-power of two matrices

Earlier it was stated without reason that the problem domain would be limited to power
of two sized square matrices only. The reason for has to do with graphics processing in
general. Textures are much more easily dealt with when they are powers of two, and
expose various speed and space optimizations that graphics cards can take advantage
of to squeeze the maximum amount of performance out of the hardware. Although this
restriction has been relaxed in modern graphics processing and most hard can easily handle
non-power of two texture sizes it is sometimes done through various non standardized
extensions. Since it was initially stated in sub-section 5.5.1.1 that implementation were
made to be be canonical and general wherever possible. It is for this reason that textures
were constrained to be powers of two only.

5.1.3 Results

Below is table showing the execution time (in microseconds) of both the CPU and the
GPU implementations; of the matrix addition test program.

The same results are presented in figure 5.1 to illustrate the performance of the programs
relative to each other. It should be noted that the vertical axis is plotted on a logarithmic
scale.

5.1. MATRIX ADDITION 33

Table 5.1: Matrix Addition Execution Times
Size CPU (µs) GPU (µs) Relative Speedup on GPU
32 15,265.47 6,571.05 2.32
64 62,533.16 6,476.21 9.66
128 228,699.98 7,867.24 29.07
256 866,427.22 6,720.12 128.93
512 3,430,212.74 6,698.01 512.12
1024 13,551,552.88 6,722.94 2,015.72

Figure 5.1: Matrix Addition Execution Times

32x32 64x64 128x128 256x256 512x512 1024x1024

Data set size

Lo
g

M
ea

n
E

xe
cu

tio
n

T
im

e
(m

ic
ro

se
co

nd
s)

0
5

10
15

CPU Matrix Addition
GPU Matrix Addition
CPU Matrix Addition
GPU Matrix Addition

5.1. MATRIX ADDITION 34

Table 5.2: Execution Time with Different Numbers of Shader Cores
Number of Shader Cores Mean Execution Time (µs)

4 7,851.54
8 6,711.06
24 5,225.04

5.1.4 Performance Analysis

The quadratic growth of the sequential matrix addition on the CPU can clearly been seen
from the execution time. This is behavior that is expected as when the input size doubles,
the numbers of elements in the matrix increases by a factor of four. Since the algorithm
is being executed sequentially on a single core this inherently decreases the speed of the
algorithm executing by a factor of four. The execution times of the GPU version exhibits
very different behavior. The time to add two matrix appears totally independent of the
data size and varies very little with the input size. Even large matrices were added
seamlessly with speed differences of the various data size differencing by no more that a
500th of a second. The mean execution time of the GPU program across all input sizes
was: µGPU = 6, 843 where as the mean execution time of the CPU version across all input
sizes is µCPU = 3, 025, 782. The relative speedup of the GPU implementation to the CPU
implementation is therefore:

S = µCPU

µGPU
= 442.17

This shows that the GPU implementation executed approximately 442 times faster than
the CPU across all input sizes or in other words exhibited a speed increase of 44, 200%.

5.1.5 Discussion

The GPU implementation shows impressive speedups and it is important to understand
why this is the case. As discussed in section 5.5.1.1 the matrix addition is self contained
within a single shader. This means that the results of the addition operation is computed
in a single pass and there is not need for a feedback mechanism. Another factor to consider
is that the operation of matrix addition is very parallelizable. Since the result of each
cells computation is independent of all other that can be performed on separate cores. It
would be logical to assume that the number of shaders cores on the graphics would have
an impact on the performance.

5.1. MATRIX ADDITION 35

Figure 5.2: Execution Time with Different Numbers of Shaders Cores

4 8 24

Number of Shader Cores

M
ea

n
E

xe
cu

tio
n

T
im

e
(m

ic
ro

se
co

nd
s)

0
20

00
40

00
60

00

It can be seen from figure 5.2 that this is indeed the case and as the number of shader
cores on the graphics card is increased, so the load density across the cores decreases and
the therefore so does the execution time.

5.1.6 Optimizations

Although the GPU implementation is considerably faster than the CPU one there is room
for improvement. As mentioned in 5.5.1.1 the elements of the matrix were only encoded
into the red channel of the texture. This left the green, blue and alpha channels unused.
A better approach to the problem, which could yield even better results, would be to use
a single texture and store the two matrices in its red and green channel then compute
the sum and write it to the blue channel. This would require only a single texture look
up compared to two texture look ups in the previous methods. Similarly since only
one texture is being used the amount of memory required would be halved. Using this
same principle four matrices could be encoded in a single texture allowing for even more
additions to be performed with little extra overhead.

5.2. MATRIX MULTIPLICATION 36

5.2 Matrix Multiplication

Given the large speed up of matrix addition on the GPU that was discovered in section
5.2.4 a logical progression was to attempt a more complicated and expensive operation
in linear algebra. Matrix multiplication is a very computationally intensive operation. In
order to multiply two matrices together we require first that the number of columns of the
first matrix is equal to the number of columns in the second. It is assumed that we will
be dealing with square matrices of the same size for the same reasons as were discussed
in section 5.1.2. Multiplication of two matrices results in a third matrix which has the
same number of rows as the first matrix and the same number of columns as the second.
In order to multiply two matrices together the elements of each row of the first matrix
are pairwise multiplied with the elements of each column in the second matrix and added
together in place. More formally if A is an m-by-n matrix and B is an n-by-p matrix, then
their product is an m-by-p matrix denoted by AB (or sometimes A · B). The product is
given by

(AB)ij =
∑n

r=1 airbrj = ai1b1j + ai2b2j + · · · + ainbnj.

For example:  1 2

3 4

 .

 2 4

6 8

 =

 21 30

45 64


A sequential implementation of three nested loops to perform the operation would have
a complexity of O(n3) where n is the dimension of the matrices being multiplied. This
value was one of 32, 64, 128, 256, 512 or 1024. It can be seen that this may become
infeasible to attempt to run a sequential algorithm of this order for even relatively small
values of n.

5.2.1 Approach

The source code for both the CPU and GPU implementation is listed in Appendix A.2.1.
The problem of matrix multiplication is not as easily implemented on the GPU as matrix
addition and the following section details exactly how it was achieved.

CPU Implementation

The CPU implementation of a matrix multiplication is simple and can achieved using
three nested loops. The pseudo code to achieve this is listed in algorithm 2.

5.2. MATRIX MULTIPLICATION 37

Algorithm 2 Matrix Multiplication

def matrixMultiply(int A[][], int B[][], int C[][])
for i := 1 to n do
for j := 1 to n do
for k := 1 to n do
C[i][j] = C[i][j] + A[i][k]*B[k][j];

end
end

end
end

GPU Implementation

The matrix multiplication program was implemented for the GPU using a single fragment
shader in a similar fashion to the matrix addition. The red colour channels of two textures
were used to store the values of the two matrices to be multiplied. A fragment shader
was then created which represented the operation to be performed on each element of the
product matrix C. The function of the shader is then to compute the final value of the
resulting element in a single pass. This now introduces an interesting problem of having
to read information from another element in the matrix. The solution to this problem
will be discussed further in section 5.2.2. The simplest approach is to reformulate matrix
addition as a series of dot product computations. An arbitrary element in the product
matrix C, say cij is the dot product of the row i of A and the column j of B. The resulting
values is then outputted into the red channel of the render target.

5.2.2 Difficulties Encountered

Implementing Gather

As mentioned earlier matrix multiplication showed the need to read from resources not
bound to the fragment shader. When the fragment shader was called is had two texture
coordinates bound to it, one corresponding to the matrix A and the other to matrix B.
The problem is that this is not enough information to compute the total value of the
current matrix element. This is a technique called gather as values need to be gathered
from other cells in order to compute the dot product detailed from sub-section 5.5.1.1.
This is achieved my performing texture look up on other computed texture coordinate
aside from the ones that have been bound to the shader.

5.2. MATRIX MULTIPLICATION 38

Table 5.3: Matrix Multiplication Execution Times
Size CPU (µs) GPU (µs)
32 254,796.50 1,506,393.00
64 1,078,855.60 1,796,663.51
128 2,667,896.60 2,096,210.25
256 4,649,369.10 2,964,808.15
512 9,166,531.70 3,335,495.85
1024 28,849,882.15 5,408,215.54

5.2.3 Results

Table ?? shows the timing results of running the two different implementations of the
matrix multiplication program on varying sized data sets. These same results are graphed
in figure 5.3.

5.2.4 Performance Analysis

Regarding the CPU implementation, figure 5.3 clearly shows the cubic growth that was
expected. Also looking at the corresponding values for the CPU implementation it can be
seen that the problem of multiplying matrices together on a single core processor in this
way becomes infeasible very quickly as it requires approximately 28 seconds to multiply
two 1024x1024 matrices.

There are a number of interesting factors to notice when comparing the CPU imple-
mentation to the GPU one. Upon initial inspection of table ?? it can be seen the the
CPU implementation indeed executes faster than the GPU implementation. The actual
speedup of the GPU is calculated as

S32 =
µCPU32

µGPU32
= 254,796.5

1,506,393.0
= 0.17

S64 =
µCPU64

µGPU64
= 1,078,855.6

1,796,663
= 0.60

Or in other words the CPU executed 5.88 and 1.67 times faster than the GPU on the 32
and 64 sized data sets respectively. The actual speed up is much smaller than the types

5.2. MATRIX MULTIPLICATION 39

Figure 5.3: Matrix Multiplication Execution Times

5.2. MATRIX MULTIPLICATION 40

Table 5.4: Relative Speedup of GPU

Data set size Relative Speedup of GPU
32 0.17
64 0.60
128 1.27
256 1.57
512 2.75
1024 5.33

of results seen in table 5.1. The reason for this is that the size of the data set it not big
enough to expose enough parallelism for the GPU to take advantage of. Also the gather
operation is not as fast as a standard loop on the CPU. The gather operations requires
a number of floating point operations as well as dependent texture look ups. Sequential
CPUs are extremely fast at this kind of looping operation. Looking at the relative speedup
of the GPU at larger data set sizes it can be seen that the GPU convincingly outperforms
the CPU once again. The relative speedup values are given in table 5.4.

As discussed earlier the reason for this is that as the size of the input set increases so
the complexity of the standard sequential algorithm increases in cubic time and quickly
becomes infeasible. Also the large data independence of the inner most loop allows the
operation to be largely paralleled yields much faster running times as this parallelism
benefits the GPU. It is interesting to consider the graph of the relative speed up of the
GPU implementation seen in figure 5.4.

It must be remembered that where the CPU implementation is executing three nested
loops and GPU implementation only needs to execute the inner most loop. Further-
more the executing of this innermost loop is an independent operation and can thus be
performed in any or and indeed in parallel. Therefore where the CPU implementations
complexity is cubic the GPU’s in actually linear. The two orders of complexity differ by a
factor of n2. Thus it could be expected that the relative speed up of the GPU implemen-
tation over the CPU one increases quadratically. Figure 5.4 shows that this is indeed the
case. Similarly given the parallel nature of GPU and the fact that matrix multiplication
can be perform on a per element basis it could also be expected that the execution time
is faster with increasing numbers of shader cores. Table 5.5 and figure 5.5 show that this
is indeed the case.

5.2. MATRIX MULTIPLICATION 41

Figure 5.4: Relative speedup of GPU Implementation

32 64 128 256 512 1024

Data set size

R
el

at
iv

e
S

pe
ed

up
 F

ac
to

r

0
1

2
3

4
5

Table 5.5: Execution Time with Different Numbers of Shader Cores
Cores Mean Execution Time (µs)

4 3,452,783
8 2,851,297
24 2,147,395

5.3. SORTING 42

Figure 5.5: Execution Time with Different Numbers of Shader Cores

4 8 24

Number of Shader Cores

M
ea

n
E

xe
cu

tio
n

T
im

e
(m

ic
ro

se
co

nd
s)

0
50

00
00

15
00

00
0

25
00

00
0

5.2.5 Discussion

This test shows that although gather is a slow operation and computationally expensive,
the parallelism exposed compensates for this easily.

5.2.6 Optimizations

Once again there is room for optimization in the same areas as in sub-section 5.1.5 in how
the actual matrix is stored in the texture.

5.3 Sorting

Sorting is a field of computer science that has been thoroughly researched and inves-
tigated. Canonically stated sorting is the process by which a list of randomly ordered
elements is transformed into a list ordered by some criteria. There are a number of
sorting algorithms that can achieve this with different speeds. Interestingly attempting

5.3. SORTING 43

Table 5.6: Sorting Algorithms

Algorithm Complexity Type
Bubble Sort O(n2) Sequential
Quick Sort O(n log2(n)) Sequential

Transition Sort O(log2
2(n)) Parallel

Bitonic Merge Sort O(log2(n
2)) Parallel

sorting on the GPU opens up possibilities for using parallel sorting algorithms, commonly
called sorting networks [21]. These are formulations of sorting algorithms that are not
possible on sequential processors because of the limits of processor design.

5.3.1 Methodology

In order to investigate the performance of sorting on the GPU a number of sorting algo-
rithms for both sequential and parallel processors were selected. The sorting algorithms
were chosen to span a various number of complexities, and types in order to get a broad
range of results. The algorithms selected for performance testings along with their Big-O
complexities and whether they are sequential or parallel are detailed in table 5.6.

5.3.2 CPU Implementations

Bubble Sort

The bubble sort is one of the simplest sorting algorithm and also one of the slowest. It
operates by comparing every pair of elements and swapping them as necessary [21]. Pseudo
code for the bubble sort is shown in Algorithm 3. The bubble sort was implemented
programmatically in the same way.

Quick Sort

The quick sort is significantly faster than the bubble sort, and is a more frequent choice
in real life sorting applications. The quick sort employs a divide and conquer approach to
divide a list in two and then sort each list recursively. The lists are divided by selecting

5.3. SORTING 44

Algorithm 3 Bubble Sort

def bubbleSort(A)
{
for i = 1 to length(A) do
for j = i+1 to length(A) do
if(A[j] > A[i])
swap(A[i], A[j])

endif
end

end
}

Algorithm 4 Quick Sort Pseudo code

def quickSort(A)
{
var less , equal , greater
if length(A) <= 1 return array
select a pivot value pivot from A
for i := 1 to length(A)
x = A[i];
if
x <= pivot then add x to less
endif
if
x > pivot then add x to greater
endif
return concatenate(quicksort(less), quicksort(greater))
endfor
}

a pivot element within the list and moving all elements that are less than the pivot into
the first sub-list and all elements that are greater than the pivot to the second list (equal
elements can fall into either list). These two sub lists are then sorted in the same way.
Pseudo code for the quick sort is shown in Algorithm 4. The implementation was done
in the same way that the pseudo code shows.

5.3.3 GPU Implementations

As discussed in section 5.3 parallel sorting algorithms are different to sequential sorting
algorithms as they are designed to be distributed across more than one processor. The
following section with detail how the odd even transition and the bitonic merge sorts
operate as well as how they were implemented on the GPU.

5.3. SORTING 45

Algorithm 5 Odd Even Transition Sort

def transitionSort ()
{
repeat n times
do in parallel
if(element[n] > element[n+1])
swap(element[n], element[n+1)
endif
end parallel
end
}

Odd Even Transition Sort

The odd even transition sort is based on the operation of the bubble sort described in 5.3.2
[20]. The operation of the sort considers every element to the left of itself and compares
and swaps them as necessary. As this is a parallel sorting algorithm there is no explicit
loop. In fact the algorithm is best thought of as a network where the nodes in the network
perform the compare-swap operation on the elements in question and data moves with in
the network until it is sorted. The parallel pseudo code for the odd even transition sort
is presented in Algorithm 5.

The odd even transition sort was implemented in a single fragment shader using the render
to texture feedback loop mechanism describe in sub-section 5.3.5. The compare and
exchange operations were performed within a fragment shader. This shader’s execution
represented one pass of the algorithm. The actual data values were encoded into the red
colour channel of a texture with the same dimensions as the data set size. In order to
invoke the shader to execute on the data a screen sized quad was rendered to the screen.
The resulting image in the frame buffer was then read back in the texture and re-rendered
invoking another pass of the algorithm. This procedure was repeated n times resulting in
the data being fully sorted. The images in figure 5.6 shows the data being sorted at various
stages during the execution of the algorithm. It should be notes that the data, although
depicted in a two dimensional sense is actually representative of a linear sequence.

5.3. SORTING 46

Figure 5.6: Odd Even Transition Sort

Bitonic Merge Sort

A bitonic merge sort is another sorting network. It operates on the principal of bitonic
sequences.

A bitonic sequence is composed of two sub-sequences, one monotonically non-decreasing
and the other monotonically non-increasing. Bitonic sequences have two properties that
are of importance in a bitonic merge sort. The first is that a bitonic sequence can be
divided in half and produce two sequences such that both are bitonic. The second is
that either every element in the first sequence is less than or equal to every element in
the second sequence or every element in the first sequence is greater than or equal to
every element in the second sequence. A sorted sequence is a bitonic sequence where
one of the comprising sequences is empty. In order to perform this division, elements in
corresponding positions in each sequence are compared and exchanged as necessary. This
operation is sometimes called a bitonic merge [24, 21]. In order to perform a full bitonic
merge sort the initial sequence is assumed to have length a power of two. This ensures
than it can be continually divided in half. The first half of the sequence is sorted into
ascending order while the second half is sorted into descending order. This operation
results in a bitonic sequence. A bitonic merge is performed on this sequence to yield two
bitonic sequences each of which is sorted recursively until all the elements in the sequence
are sorted. The pseudo code in Algorithm 6 presents the recursive algorithm for a bitonic
merge sort.

The implementation of the bitonic merge sort was significantly more complex than the odd
even transition sort. The shaders represented the bitonic merge operation while the sort
merge function was performed implicitly by passing a uniform parameter to the shader

5.3. SORTING 47

Algorithm 6 Bitonic Merge Sort

def bitonicMergeSort(int [] A, int n)
{
perform_bitonic_merge ()
sort_bitonic(A,n/2)
sort_bitonic(A+n/2,n/2)

}

Figure 5.7: Bitonic Merge Sort

indicating the current recursive depth. As with the odd even transition sort described
in sub-section 5.3.3 the data values of the list were encoded into the red channel of a
texture and the same render to text mechanism was used to perform the log2n iterations
necessary to sort the data fully. The images in figure 5.11 show the data being sorted at
various stages during the execution of the algorithm. Once again it should be notes that
the data is actually a one dimensional sequence, not two dimensional.

5.3.4 Difficulties Encountered

There were a number of difficulties encountered in implementing sorting on the GPU.
This sections details various salient difficulties that presented themselves during the im-
plementation, some of which were referenced to earlier. It also provides caveats and ways
in which the problems could be solved and circumvented.

5.3.5 Render to texture

Sorting is a multiphase operation and can only be accomplished through a number of
iterations. Therefore there is a need for a feedback loop where data that has been operated

5.3. SORTING 48

Figure 5.8: Render to Texture Feedback Loop

T e x t u r e V e r t e x S h a d e r F r a g m e n t S h a d e r O f f s c r e e n B u f f e r

R e a d - b a c k t o T e x t u r e

on is passed back to the beginning of the sorting operations and used in the next iteration.
This need extends beyond sorting and applying to graphics processing in a general sense.
The simplest approach to creating this feedback loop is rendering to a texture. This is
achieved by rendering normally to the the off screen frame buffer, but then instead of
swapping the buffers to display the rendered data result, the contents of the off screen
frame buffer are read out, and copied directly back into the source texture and the buffer
cleared. This means that the operation of all the shaders takes place on the texture data,
and the resulting data is stored in the texture again ready for another iteration. Which
can be initiated by rendering more geometry. Figure 5.8 illustrates this process.

5.3.6 Coordinate Wrapping

This is the same problem that manefested itself in the searching algorithms in sub-section
5.4.2 where the entire grid need to be considered as a single list.

5.3.7 Uniform Parameters

Sorting requires information to be passed into the kernel programs. In the bitonic merge
sort, the step size and current recursive depth needed to be known within the execution
environment of the fragment shader in performing the bitonic merge operation. These
parameters are bound to the kernel program from the housing C++ program and they
appear and are accessible as standard parameters in the shader.

5.3.8 Results

Table 5.7 presents the mean execution times of the four different sorting operations across
the different data set sizes.

5.3. SORTING 49

Table 5.7: Mean Execution Times of Sorting Algorithms (µs)

Size Bubble Quick Transition Bitonic Merge
32 1,245.34 119.29 7824.04 2418.93
64 94,456.92 508.88 10544.65 2886.15
128 1,656,493.37 2179.00 11345.21 2998.27
256 21,266,453.67 9419.59 15452.44 3156.21
512 2,988,593,594.34 40954.87 18546.23 5360.47
1024 48,651,723,523.47 178791.31 23681.59 6022.12

Figure 5.9: Sorting Algorithm Execution Times

Bubble.Sort Quick.Sort Transition.Sort Bitonic.Merge.Sort

32x32
64x64
128x128
256x256
512x512
1024x1024

Sorting Algorithms

Lo
g

E
xe

cu
tio

n
T

im
e

in
 M

ic
ro

se
co

nd
s

(m
s)

0
5

10
15

20
25

These execution times are presented visually in figure 5.9. It should be noted that the
times are presented on a log scale.

5.3.9 Performance Analysis

The execution times depicted in figure 5.9 conform accurately to the predicted complex-
ities in table 5.6. There are several salient points to notice in comparing sorting on the
GPU and sorting on the CPU. The CPU sorts out perform the GPU’s for the smaller test
cases in general. The reason for this is the structure of the feedback loop. As discussed
in sub-section 5.3.5 the feedback loop is constructed by copying the contents of the frame

5.3. SORTING 50

Table 5.8: Relative Speedup of GPU Sorting Algorithms to Quick Sort
Size Relative Speedup Factor

Transition Sort Bitonic Merge Sort
32 0.02 0.05
64 0.05 0.18
128 0.18 0.75
256 0.61 2.98
512 2.21 7.64
1024 7.55 29.69

buffer back into the texture. This an expensive operation and the GPU implementations
pay the price on the smaller data set. However as the data set size increases the parallel
nature of the GPU based algorithms offset the cost of the render to texture operation
and outperform the CPU sorts. This is illustrated in table 5.8 where the speedup of the
transition and merge sorts in computed against the faster of the CPU sorts, the quick sort.
The bubble sort is excluded from this comparison as is it infeasible for large data sets and
generally only considered in sorting because of its simplicity and not it’s efficiency. The
actual speedups of the odd even transition sort and bitonic merge sorts were computed
as:

STransitionSort =
µQuicSort

µTransitionSort

SMergeSort =
µQuicSort

µMergeSort

Considering sorting performance as a whole. The average execution time for the CPU
quick sort and GPU bitonic merge sorts across all data set sizes are µQuickSort = 38, 662.16

and µMergeSort = 3, 788.34 respectively. These values can be used to compute an average
relative speedup of GPU sorting to CPU sorting as:

S =
µQuickSort

µMergeSort
= 10.23

This shows than on average the GPU performed the sorting operation 10.23 times faster
than the CPU or in other words exhibited a speed up of 1, 023%. It is also interesting
to investigate the performance of the two GPU sorting algorithms independently of the
CPU ones. The transition sort has a complexity of O(log2n) where are the bitonic merge
sort has a complexity of O(log(n2)). The graphs of these two complexities is shown in
figure 5.10 and figure 5.11. It can be seen that these two sorting algorithms both have
the same asymptotic behavior.

5.3. SORTING 51

Figure 5.10: Transition Sort Asymptotic Complexity

0 200 400 600 800 1000

0
10

20
30

40

Input Size

C
om

pl
ex

ity

Figure 5.11: Bitonic Merge Sort Asymptotic Complexity

0 200 400 600 800 1000

0
2

4
6

8
10

12
14

Input Size

C
om

pl
ex

ity

5.3. SORTING 52

Table 5.9: Bitonic Merge Sort with Varying Numbers of Shader Cores

Cores Mean Execution Time (µs)
4 28644.76
8 10863.39
24 3788.34

Figure 5.12: Mean Execution Time with Different Numbers of Cores

4 8 24

Shader Cores

M
ea

n
E

xe
cu

tio
n

T
im

e
(m

ic
ro

se
co

nd
)

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Since the GPU is a parallel processor and the algorithms being analyzed are parallel in
nature it is important to consider the effect that the number of shaders cores has on the
performance. It is expected that where a GPU has more shader cores the performance of
the sorting algorithm distributed better and executes faster. Table 5.7 shows that this is
indeed the case as with a higher number of shaders cores the performance increases, this
information is presented graphically in figure 5.13.

5.3.10 Optimizations

As stated in section 5.3.1 the implementations where constructed to be canonical and
general in nature. With no specific optimizations made. This section will detail what

5.4. SEARCHING 53

types of optimization could be made to the GPU based sorts to increase performance
even further.

5.3.10.1 Feedback Mechanism

As mentioned in 5.3.5 the feedback loop structure introduces a large performance bot-
tleneck as moving data back from the CPU to texture memory is slow. A number of
mechanisms have been developed to remove this bottleneck. A possibly optimal way of
rendering directly into a texture without the need to copy data between memory loca-
tions. This method is not standardized in OpenGL 1.3 however ARB extensions makes
it possible [30].

5.3.10.2 Data Encoding

The implementation section detailed that the data to be sorted was encoded in the red
channel of the texture. This leaves the blue, green and alpha channels of the texture totally
unused. If data was encoded in these channels as well, the GPU sorting algorithms could
sort four times more data concurrently with little extra computation incurred.

5.4 Searching

Searching is a well understood area of computer science and involves determining whether
a certain element is contained within a list. There are a number of different searching
algorithms with different speeds. The binary search is one of the the fastest standard
searching algorithms and also the most common in practice if the data being searched is
sorted. Conversely the linear search is very simple to implement but is slower than the
binary search. The binary and linear searches are the two searching algorithms that will
be investigated in this section. Table 5.10 shows the complexity of these two searching
algorithms. Thus this section is different from the others as is allow parallel sorting
algorithms to be implemented directly instead of emulating sequential ones on the GPU
like in the searching section.

5.4. SEARCHING 54

Table 5.10: Searching Algorithms

Algorithm Complexity
Linear Search O(n)
Binary Search O(log n)

Algorithm 7 Linear Search Pseudo Code

def linearSearch(int [] A, int n, int e)
{
int p = -1;
for i := 1 to length(A)
if(A[i] == e)
p = i
return p;

}

5.4.1 Approach

In order to analyze the performance of searching using GPGPU both the linear and binary
searches were implemented on the CPU and the GPU. The following section explains the
implementations.

CPU Implementation

A linear search is achieved by iterating through the list and comparing each element to
one being searched for. The list was initialized with random data in the range [0..255].
Pseudo code to achieve this is shown in algorithm 7.

The binary search algorithm operates by dividing the search space in half each time to
isolate the element being searched for. For this reason the binary search operates on a
list of already sorted elements. Pseudo code is shown in algorithm 8.

GPU Implementation

The linear search was implemented in exactly the same way as for the CPU except that it
was contained within a shader. The code listing for the shader is presented in Appendix
A.3.1.

5.4. SEARCHING 55

Algorithm 8 Binary Search Pseudo Code

def binarySearch(int [] A, int e, int low , int high)
{
while(low < high)
{
int mid = low + (high - low) / 2;
if(A[mid] > e)
{
high = mid
}
if(A[mid] < e)
{
low = mid
}
if(A[mid] == e)
return mid;
}
return -1;

}

The binary search was implemented in a similar way to the CPU implemented except that
once again it was housed entirely in a fragment shader. The source code for the binary
search is presented in Appendix A.3.2.

For both searching algorithms the elements representing the list were random numbers
in the range [0.255] encoded in the red channel of the texture in non-decreasing order.
In order to invoke the execution of the binary search a 1-by-1 simple quad was rendered.
The reason for rendering a 1-by-1 quad was that the fragment shader should only be
called once for the search. Since it is called for every fragment it needs to be ensured
that there is just a single fragment. A 1-by-1 quad ensures that there is only one call
to the fragment shader to perform the search. Ultimately the number of pixels drawn
determines the number of searches executed [20].

5.4.2 Difficulties Encountered

Implementing Gather

Once again the problem appeared of reading data from other texture coordinates other
than the ones bound. The solution to this problem was to implement gather. This was
discussed in sub-section 5.2.2.

5.4. SEARCHING 56

Table 5.11: Mean Search Execution Times
Size Linear Search CPU Binary Search CPU Binary Search GPU Linear Search GPU
32 6.34 53.13 349.05 65.58
64 16.18 59.26 351.03 172.70
128 68.18 66.92 373.34 841.70
256 260.15 93.81 383.69 3471.77
512 1036.37 160.11 521.59 11061.36
1024 4184.22 224.51 625.96 32043.02

Single List

Although the data is single list of elements it was stored in a two dimensional repre-
sentation in a texture. Thus care needed to be taken when addressing other elements
as they could lie on a different row of the texture. The problem was circumvented by
implementing boundary checks on all non-local comparisons.

5.4.3 Results

The run times for the various searches on the different data sets is shown in table 5.11.

These results are also graphed in figure 5.13.

5.4.4 Performance Analysis

It can be seen that the GPU searches, although comparable to the CPU searches is not
faster. The reason for this is the fact that is is only being executed once in one instance
of a fragment shader. As mentioned in sub-section 5.5.1.1 in order to invoke one search
one fragment shaders needs to be executed which in turn requires a single pixel. This
means that the benefits of the parallel processing architecture are wasted and there is
no potential speedup available as the clock speed of a CPU a lot higher than that of a
GPU. From this it is expected that the performance of the search stay relatively constant
with differing numbers of shader cores. Table shows that this is indeed the case and the
mean execution time varies too a smaller degree than seen in previous implementations
like sections 5.1 and 5.2. Also the variance that does occur is mostly attributed to the
speed of the cores rather than the number.

5.4. SEARCHING 57

Figure 5.13: Mean Execution Time of Searching Algorithms

CPU Linear CPU Binary GPU Binary GPU Linear

Data set size

Lo
g

M
ea

n
E

xe
cu

tio
n

tim
e

(m
ic

ro
se

co
nd

s)

0
2

4
6

8
10

Table 5.12: Relative Speedup of CPU to GPU Binary Searches

Size CPU Binary Search GPU Binary Search Relative Speedup
32 53.13078 349.049 0.15
64 59.25634 351.030 0.17
128 66.92092 373.343 0.18
256 93.80865 383.698 0.24
512 160.10641 521.592 0.31
1024 224.51239 625.962 0.36

5.4. SEARCHING 58

Table 5.13: Mean Performance on Shader Cores
Core Mean Execution Time

4 4689.49
8 4604.14
24 3872.71

Table 5.12 gives the relative speedup of the CPU to GPU implementations for increasing
data set sizes, computed as:

S = µCPU

µGPU

It can be seen from these results that the CPU outperforms the GPU by increasingly larger
margins as the data set increases. Once again the reason for this can be attributed to the
fact that the GPU cannot utilize its parallel architecture and thus is on an architectural
par with the CPU and, because of the CPU’s optimization for elementary sequential
processing constructs, like loops, can perform the calculations much faster than the GPU
can.

The weak performance of the GPU searches lie in the fact that it is the algorithms are
atomic in the sense that they are not being paralleled and distributed across more than
one processor. For this reason the execution of the algorithm is contained entirely within a
single shaders and executes in one go as on a sequential processing architecture. Although
the GPU performs quite comparably to the CPU it is still slower for this reason.

5.4.5 Optimizations

This implementation has room for extension to perform parallel searches. Since rendering
a single pixel equates to performing a search, a number of pixels could instead be rendered
and although this would not increase the speed of the seaches it would allow a number of
searches to be executed in parallel.

5.5. AES ENCRYPTION 59

Table 5.14: Key-Block-Round Combinations

Type Key Length (words) Block Size (word) Number of Rounds
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

Algorithm 9 AES Encryption Pseudo Code

KeyExpansion
Initial Round
AddRoundKey
for(i = 1 to Rounds -1)
{
SubBytes
ShiftRows
MixColumns
AddRoundKey
}
SubBytes
ShiftRows
AddRoundKey

5.5 AES Encryption

Advanced Encryption Standard (AES) [11] is a symmetric key cryptographic algorithm
also known as Rijndael. The AES algorithm is a symmetric block cipher that can encrypt
(encipher) and decrypt (decipher) information. Encryption converts data to an unintel-
ligible form called cipher text; decrypting the cipher text converts the data back into its
original form, called plain text [2]. Most of AES calculations are done in a special mathe-
matical finite field [12]. AES takes as input the block of plain text to encrypt along with
a specified key. The encryption algorithm takes the form of a variable number of rounds,
each comprised of a number of operates that takes place in sequence to encrypt the data.
Decryption is performed in a similar way. AES can operate in a number of forms, varying
the data block size, key size and number of rounds. Table 5.14 shows the different types
of AES [2]. AES-128 was used because it is the most canonical form of the algorithm as
well as the fact that it is simplified by the restriction of a power of 2 block size.

5.5. AES ENCRYPTION 60

5.5.1 Approach

The basis for the AES encryption algorithm is rooted deeply in abstract algebra . This
section will presents a high level over view of the algorithm 9 then deal with each sub-
operation in turn. For each of the operations following the explanation will be a descrip-
tion of how the corresponding operations were achieved on the GPU.

5.5.1.1 Encryption Operations

Key Expansion

The first routine in the AES encryption process is to expand the key to a length where
there is a key for each round of the algorithm. This process is detailed in [25, 2, 11] and
since this operation was performed on the CPU it will not be discussed here.

Sub Bytes

The SubBytes step of the algorithm replaces each byte in the current state with a cor-
responding byte using an 8-bit substitution box (S-box) [2, 11]. The Sbox represents a
non-linear transformation that is constructed by two transformations. The first is tak-
ing the multiplicative inverse of the element in the finite field GF(28) then applying the
following transformation over the field GF(2) presented in matrix form [2, 11].

b1

b2

b3

b4

b5

b6

b7

b8



=



1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1





b1

b2

b3

b4

b5

b6

b7

b8



+



1

1

0

0

0

1

1

0



GPU Implementation

The actual transformations to generate the Sbox do not need to be computed at all by the
GPU. As the values are constant for a given initial b vector. Thus the resulting look up
values for all 28 initial b vectors can be computed and stored in a 16x16 texture texture.
Then the SubBytes operation reduces to a single texture look up. Fragment shader code
for the SubBytes operation is shown in Appendix A.5.1.

5.5. AES ENCRYPTION 61

ShiftRows

The shift rows operation cycles the bytes in each row a variable amount. The first row is
not shifted, then second row is shifted cyclically left one position, the third row two and
finally the forth row three positions.

GPU Implementation

The shift operation is simple to perform on the GPU. It can be achieved by offsetting the
current fragment shaders texture coordinates based it row (y-position) and performing a
single texture look up on it’s own texture. Code for achieving this if given in Appendix
A.5.2.

MixColumns

The MixColumns operation operates on each of the four columns of the state. Each column
of the state is representative of a four-term polynomial over GF(28), this polynomial is
multiplied modulo x4 + 1 with the fixed polynomial a(x), given by:

a(x) = {03}x3 + {01}x2 + {01}x1 + {02}

GPU Implementation

Unfortunately this operate cannot be performed using a look up table as in 5.5.1.1. As
the state is large so the actual multiplication needs to be performed. The multiplication
is simple to perform and uses a number of the bitwise logical operations like AND, OR,
and XOR. The problem is that shader languages like Cg do not have support for logical
operations [13]. Although reservation has been made for the corresponding symbols &, |
and ^ [13], they have not been implemented yet. This introduced a large problem as to
how a seemingly simple bitwise operations like AND, OR and XOR could be performed.
Section 5.5.2 deals thoroughly with how this problem was solved and once implementation
the multiplication can be performed as is would be on a sequential processor, the fragment
shader code for the MixColumns operation is given in Appendix A.5.3.

AddRoundKey

The AddRoundKey operation simply XORs the current RoundKey with the state.

5.5. AES ENCRYPTION 62

GPU Implementation

As seen in sub-section what should be a trivial operation turns out to be quite complex
without the functionality of logical bitwise operators in the shader language. Sub-section
5.5.2 shows how the XOR operation was implemented. Once achieved the AddRoundKey
operation can be performed by XORing elements of the state with the corresponding ele-
ments of the current key. Appendix A.5.4 gives the code for the AddRoundKey operation.

With each of the operations of AES implemented, the whole encryption process can be
achieved by encoding the initial state and expanded round key (see sub-section 5.5.1.1)
into textures. A 4-by-4 pixel quad was then rendered to the screen with the initial
SubBytes fragment shader bound. This produced the output for the first stage of the
AES encryption. The content of the frame buffer were then copied back into the texture
using the render to texture feedback mechanism that was described in sub-section 5.3.5
after which the ShiftRows fragment shader was loaded and another 4-by-4 pixel quad
rendered. This process was repeated for the MixColumns and AddRoundKey operations
to yield an iteration of the AES encryption. Since ten iterations were required the whole
process is preformed 10 times giving the encrypted state. Care was taken to treat the
final iteration correctly, since the AddRoundKey operation does not take place here.

5.5.2 Difficulties Encountered

Implementing Bitwise Operations on the GPU

As mentioned in sub-sections 5.5.1.1 and 5.5.1.1 the Cg language does not currently
implement bitwise operators. This makes a seemingly trivial task like a logical XOR
impossible to perform without some other mechanism in place. In order to provide this
functionality, which was needed to perform the AES Encryption, a look up table of values
was precomputed and stored in a texture. The texture was 256 x 256 and its red, green
and glue colour channels corresponded to the XOR, OR and AND operations. These are
all binary operators and the x and y indices into the texture correspond to the operands
and the values stored in each channel to the resulting binary operations value. In order
to use this mechanism to perform logical binary operations the texture was bound to the
fragment shaders that required this functionality. Then when an operation needed to be
performed the two operands were scaled to the texture coordinate range of [0.0..1.0] and
a dependent texture look up was performed on the texture. The resulting colour channel
could then be read to give the XOR, OR or AND or the operands respectively. Figures
5.14, 5.16 and 5.15 depict visually the red, green and blue channels respectively. The

5.5. AES ENCRYPTION 63

Figure 5.14: XOR Look up Field

Table 5.15: AES Encryption Single Block
Type Average Number of Encryptions per Second
CPU 3125.76
GPU 626.24

limitation of this implementation is the range of values of the operands. Since a 256 x 256
textures was used only values within this ranges could be computed. Since AES operates
in this ranges of value, these constraints are not a problem.

5.5.3 Results

Tables 5.15 and 5.16 show the average number of complete AES encryptions that could
be performed on both the CPU and GPU when encrypting one and many blocks per cycle
respectively.

Table 5.16: AES Encryption Multi Block
Type Average Number of Encryptions per Second
CPU 7254.25
GPU 25449.65

5.5. AES ENCRYPTION 64

Figure 5.15: AND Look up Field

Figure 5.16: OR Look up Field

5.5. AES ENCRYPTION 65

5.5.4 Performance Analysis

The results in table 5.15 show that the CPU out-performs the GPU by a factor of 4.99
on the single block encryption test. This value was computed as:

S = µCPU

µCPU
= 3125.76

626.24
= 4.99

This result is not surprising as no parallelism is being taken advantage of in the GPU
implementation and since the CPU is optimized for this type of sequential processing, it
is hard to beat.

Rendering 16 pixels each render cycle is a waste of graphics processing power. It was
detailed in section 3.3 that the stream processing models is effective with contiguous
streams of similar data. By increasing the size of the view port to a larger size and
rendering more than one state in a render cycle parallelism is exposed that yield the
encryption rates shown in table 5.16.

Figure 5.17 shows the results of the CPU and GPU implementations of AES Encryption
with increasing number of states being encrypted per cycle. The red plot is the GPU
implementation where as the blue plot is the CPU one. There is a lot of interesting
information contained in this result. Firstly it can be seen that the GPU AES Encryption
implementation out-performs the CPU implantation by a large margin. The reason for this
is the fact the where as in the single block test only a single 16 byte state was encrypted
per cycle. Now using a view port of 256 x 256 the 4 x 4 states are tilled across it and
processed in parallel. This allowed for 4096 times more data to be encrypted per cycle.
The CPU encryption rate plot showed expected results. Since it is a sequential processor,
it cannot be expected to gain large speedup from processor more data per cycle. As a
result processing more data per cycle results in a slower cycle time which balances out,
yielding almost constant encryption rates across block size. Table 5.17 shows the mean
encryption rate using all block sizes. This result clearly shows the effect of concurrently
processing blocks, and when compared to table 5.15 it can be seen that where the CPU
once outperformed the GPU by a factor of 4.99, the GPU now outperforms the CPU by
2.87 times. Considering the fastest results of both the CPU and GPU implementations
in table 5.18 the GPU performs even better now outperforming the CPU by 5.17 times.
Figure 5.17 seems to imply that more block with yield even higher encryption rates.
Unfortunately there is a limit to the size of the renderable surface while maintaining a 1
to 1 aspect ratio. This is a common platform limitation of screen resolution in operating
systems. This problem can be circumvented in a number of ways by these methods are
not general.

5.5. AES ENCRYPTION 66

Figure 5.17: AES Multi-Block Encryption Rate

0 20 40 60 80 100 120

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Encryptions per Cycle

E
nc

ry
pt

io
n

R
at

e
(K

b/
s)

Table 5.17: Mean Encryption Rate

Type Mean Encryption Rate (Mb/s)
CPU 1.553
GPU 4.457

5.6. RENDERING FRACTAL IMAGES 67

Table 5.18: Maximum Encryption Rate

Type Encryption Rate (Mb/s)
CPU 2.32
GPU 12.00

By packing more that one state to be encrypted into one single rendering cycle the GPU is
able to take advantage of the per-routine parallelism and gain large performance increases
over the CPU.

5.6 Rendering Fractal Images

A fractal is a self referential image. Fractals exist in a number of forms. This implemen-
tation is concerned with the generation of fractal images in regions of the complex plane.
More specifically the Mandelbrot fractal of the Julia fractal set. Rendering a fractal im-
age involves determining, within a region of the complex plane, which set of point in that
region are contained in the fractal set and which are not. Unfortunately to determine
this accurately requires infinite sequence arithmetic and for this reason approximations
are usually used. Mathematically the Mandelbrot set is defined as the set of all points
whose magnitude is bounded by |2| under the recurrence relation:

Zn = Z2
n−1 + C

where Z0 = 0, and all numbers are complex.

5.6.1 Approach

In order to investigate GPGPU’s applications to fractal rendering the processing of the
recurrence relation was offloaded into a fragment shader instead of being done on the
CPU. A screen sized quad was then rendered which resulted in the fragments of the quad
that were contained in the mandelbrot set being coloured, while the remainer were left
blank. The code for achieving this is given in Appendix A.7.1. This same code was
implemented for the CPU in order to make performance comparisons.

Testing was conducted and a 512-by-512 area of the complex plane, with the magnitude
of the recurrence relation tested for escape over 2048 iterations.

5.6. RENDERING FRACTAL IMAGES 68

Table 5.19: Fractal Rendering Speeds
Type Average Frames Per Second
CPU 2.12
GPU 7.83

Table 5.20: Mandelbrot Fractal Computation Rate (points/s)
Type Rate
CPU 555,745.28
GPU 2,052,587.52

5.6.2 Difficulties Encountered

Numerical Precision

As the view is zoomed in the area of the complex plane being displayed becomes smaller
and smaller. In order to accurately render the complex plane at higher magnifications
small point intervals need to be used. This becomes inaccurate at very high magnification
and precision is lost yielding pixelated images. This problem could be overcome with the
use of a high precision floating point division strategy. However Cg currently does not
have support for this.

5.6.3 Results

Table 5.19 shows the average number of complete renders per second on the GPU and
CPU implementations. Table 5.20 gives the average number of points in the complex
plane processed per second. The image set in figure 5.18 set shows a collection of various
regionr of the Mandelbrot fractal.

5.6.4 Performance Analysis

Computing the relative speedup of the GPU implementation as

S = µCPU

µGPU
= 7.83

2.12
= 3.69

This shows that the GPU outperforms the CPU implementation by a factor of 3.69, or in
other words executes 369.00% faster. This speed is not surprising after previous results

5.7. CELLULAR AUTOMATA SIMULATION ON A GRID 69

Figure 5.18: Mandelbrot Fractal Images

Table 5.21: John Conway Rule Set
Condition Consequence

Occupied cell has 0, 1, 4, 5, 6, 7, or 8 neighbors Organism dies.
Occupied cell has 2 or 3 neighbors Organism survives to the next generation.
Unoccupied cell has 3 neighbors The cell becomes occupied

that have been seen. Since the contents of the fragment shader operate only on a single
point in the complex plane and base computation solely on the point in question the
fractal generation processing parallelized well yielding speed ups.

5.7 Cellular Automata Simulation on a Grid

Grid simulations involve iterative processing on an array of elements under some rule set
to generate a successive population on the grid. This process is continued to create a
simulation. This implementation simulates John Conway’s game of life. Where by the
grid population is initialized randomly. Thereafter at each iteration the rule set in table
5.21 is applied.

5.7. CELLULAR AUTOMATA SIMULATION ON A GRID 70

Table 5.22: Cellular Automata Execution Time
Type Frames per Second
CPU 42.85
GPU 158.45

5.7.1 Approach

The rule set was coded into a shader. A screen sized quad was then rendered for each
iteration of the simulation and the fragment shader was used to process the rule set.
the resulting image was then copied back into the initial texture using the Render to
texture feedback mechanism from sub-section 5.3.5. The process continued as long as the
simulation was needed to run. Whether a cell was dead or alive was encoded into the red
colour channel where an intensity of 1.0 indicated an alive cell and 0.0 a dead one. A
512x512 texture was used creating a simulation grid of the same size.

5.7.2 Difficulties Encountered

5.7.2.1 Boundary Conditions

The only difficulty encountered was with activity at the boundary of the gird. There
were two approaches to solving this. The first is to wrap the texture coordinates meaning
that neighbors of cell on the boundary of the simulation grid were on the opposite side
of the grid. A second approach was to use the boundary pixel of the grid as a null
computation zone where no processing takes place at all. The latter approach was used
in this implementation.

5.7.3 Results

Table 5.22 shows the number of frames per second rendered on the CPU and GPU im-
plementations of the cellular automata program.

The image set in figure 5.19 shows the grid simulation in progress.

5.8. SUMMARY 71

Figure 5.19: Cellular Automata Simulation

5.7.4 Performance Analysis

Computing the relative speedup of the GPU implementation as

S = µGPU

µCPU
= 158.45

42.85
= 3.70

This shows a performance increase of 370%. Also it is a very similar performance ratio to
that seen in the Fractal rendering implementation in section 5.6. This is not surprising
as both problem domain are similar in many regards. The reason for this is because it
involves the rendering of grid with its composite cells either being displayed or not based
on some function. In the case of the Mandelbrot fractal the function was whether the
recurrence relation at the point was bounded. In the case of cellular automata it was
based on the number of neighbours the cell had and its current state. Effectively the
programs reduce to the constant mapping of a function to a list - something that GPUs
perform very well because of the consistency of the operation.

5.8 Summary

Given the results from the implementations it can be seen that there is a board spectrum
of speed ups that can be achieved from processing on the GPU. Some specific problems

5.8. SUMMARY 72

exhibit massive speed ups even for small data set sizes like the matrix operations in
sections 5.1 and 5.2. This is due to the parallel nature of the problem and it formulation
on the GPU as independant subroutines that when all performed result in the completed
action. This type of formulation lends itself to a GPU implementation because of this
parallel nature.

Some problems exhibit good performance speed ups but more importantly good asymtotic
performance. This was shown in section 5.3 where CPU implementations outperformed
the GPU for smaller data sets. However as the data set size increased so did the execution
time for the GPU implementation where as the growth of the GPU implementation was
much better. This makes GPU a prefereable option for processing depending on the input
size.

Some problems performed worse on the whole like the searching algorithms in section 5.4.
The reason for this was once again the nature of the problem. An atomic problem like
a binary search cannot be distributed across multiple processors as easily and effectively
as the parallel sorting networks in section 5.3. This ultimately lead to a solution where
the GPU was performing the operations for the searches in exactly the same way as the
CPU was. This is an example of an implementation where not exposing some kind of
data parallelism caused slower execution time.

Excellent performance was gained from the AES implementation in section 5.5. This
was not the case initially however as the initial implementation was outperformed by the
CPU. Only once the parallelism of the states was identified and taken advantage of did the
implementation start to outperform the CPU. This once again illustrates the importance
of some type of concurrency or parallelism that can be the difference between a poor and
effective GPU implementation.

Finally the graphical simulation in sections 5.6 and 5.7, although more an excercise in
offloading processing from the CPU to the GPU, again showed how performance could be
gain from taking advantage of GPU resources.

On the whole a lot of information can be gleamed from the implementations and it is open
to analysis on a number of depths. The next chapter will use the information that has
been presented here in drawning to a conclusion the answers to the research intentions
put forward in section 1.1.

Chapter 6

Discussion and Analysis

This section will drawn on the information gained in the discussion sections of chapter
5. Where these sections have dealt independently with the current implementation, this
section will cross correlate results in order to gain a deeper understanding of general
computation on graphics processing units. More specifically a plethora of results and
caveats of GPGPU have been brought to the surface and this information can now be used
in answering the questions posed in the intentions of research section 1.1. Furthermore
this section will be concerned with using the information gained to design a model for
deciding plausibility of a GPGPU implementation on the outset of the problem, instead of
having to go through the trouble of implementation before seeing if the results are better
than processing on a CPU.

Viability

GPGPU certainly is a viable option for processing. Technology trends indicate that
graphics processing power will increase steadily and rapidly in the future. GPGPU will
obviously benefit from these advancements

Difficulty

GPGPU is not as simple as constructing a program to execute on the CPU. Instead
it requires experience in a number of languages and APIs. Though there is a lot of
choice in each, it is still required that the programmer have a good grasp of a high level
programming language, graphics API, windowing API and shader language. This adds to
the complexities of the programming as care must be taken to implement things correctly
and accurately across all areas.

73

6.1. GPGPU VIABILITY ANALYSIS MODEL 74

Performance

Performance on the GPU varies with the problems being tackled. Some problems exhibit
phenomenal speed ups like the matrix operations where the GPU outperforms and CPU
by hundreds of times. Others enjoy speed up to a lesser degree. The searching imple-
mentations did not exhibit a speedup and it is important to consider why. The searches
were implemented atomically in the sense that the were not distributed across more than
one shader core when they were executed. This means that the CPU and GPU imple-
mentation were executing in exactly the same way conversely to the matrix operation
implementation for example where the problem could be easily divided into elementary
independent routines. This result is important and it will serve as a criteria in the analysis
model presented in section 6.1.

6.1 GPGPU Viability Analysis Model

As mentioned earlier it was sought to construct a model by which problems could be
evaluated to determine the viability of processing them on the GPU. It is proposed that
three criteria of the proposed problem be considered:

Arithmetic Intensity

Arithmetic intensity refers to the raw amount of mathematical operations to be performed.
GPUs excel at this type of computation and gain performance over the CPU.

Parallelizability

Parallelizability refers to the extent to which the program can be divided into, identical,
routines that can be executed concurrently. This then implies that there can be no
dependence on the results of another routine’s computation nor the order in which the
are computed.

Isolation

Isolation refers to extent that parts of the program need to read or write to other routines
in the program. Communication is achieved through scatter and gather which are inher-
ently expensive and where possible should be avoided. A low amount of communication
implies a high degree of isolation.

6.2. FUTURE WORK 75

Evaluating these three criteria of the problem domain can give a good deep sense of
understanding of the viability of using GPGPU to solve the problem instead of having to
resolve the issue by trial and error.

6.2 Future Work

Optimization

There is a lot of scope for future work in the field of GPGPU. The implementations
in chapter 5 were designed to be simple and general in nature. This approach is good
for initial analysis but when performance is needed optimization is important. Most of
the implementations contained optimization sections where information was presented as
to how the problems could be approached to yield better performance. Future work in-
cludes implementing these optimizations. With the analysis model in section 6.1 problems
can now be evaluated better on the outset to determine whether they will benefit from
processing on the GPU. This allows for more complicated, time consuming and larger
scale problems to be tackled without the hit-and-miss strategy of having to implement
the problem on both the CPU and GPU to see which performs best.

SLI Investigation

There is room for more performance analysis using SLI technologies to see what effect
it has on performance. This would introduce interesting complexities about distribution
and communication and the results would give further insight into the power of GPGPU.

GPGPU Meta-Language

GPGPU requires experience in a number of disciplines of computer science including Com-
plexity Theory, Distributed and Parallel Processing, Architecture and Graphics. This can
put GPGPU out of reach of the casual programmer as on top of these they require ex-
perience in not only a high level language, but also a shader language and knowledge of
a Windowing and Graphics API. Future work could include the design and construction
of a meta-language that will abstract all this from the programmer. The language could
be used to write a program which a translator could them parse and split into a pro-
gram to create and graphical window, the necessary fragment and vertex shaders for the
computation as well as initializing graphics object like textures to store the information.

6.2. FUTURE WORK 76

Algorithm 10 GPGPU Meta Language

int nums [4]

function mul_two(element i)
{
return i * 2
}

<start_gpu_process >

map(mul_two , array)

<end_gpu_process >

display(array)

Consider an example fragment of the meta-language presented in Algorithm 10 which
could then be parsed to produce an OpenGL program that creates and 2x2 windows
with a 1-to-1 view port aspect ratio. It would also create 2x2 texture called ’nums’. A
fragment shader would then also be generated that simply multiplied the colour received
by two. The OpenGL program would then include code to render a single screen sized
quad to start the computation after which the frame buffer contents were read to display
the results.

Chapter 7

Conclusion

GPGPU is a powerful resource that has become available to programmers and although
quite complex to get to grips with, it is a very viable solution to certain computationally
expensive problems. More specifically problems that exhibit data independance, arith-
metic intensity and isolation can gain large performance increases. The implementations
earlier illustrated this well, where some displayed large performance increases of their
CPU counterparts but others were slower.

Graphics developers are well aware of the processing power within their graphics cards
are making this available to programmers both NVIDIAs CUDA framework and ATIs
Close-to-Metal interfaces makes general computation available to programmers.

Also the the potential speed up gained is very large if care and thought it put into the
implementation. Graphics processing hardware will continue to become more and more
powerful and a good understanding of how general computation is performed on graphics
processing units is key to being able to classify problems that will enjoy faster execution
times on the GPU. There is a multitude of research that can be done into the field
of GPGPU and although only an infant field in computer science now is fast growing
popularity and support in industry applications. There is also a lot of scope to take the
information presented in this paper and go further with it.

77

Bibliography

[1] Amd "close to metal" technology unleashes the power of stream computing.

[2] Federal Information Processing Standards Publication 197.

[3] High level shading language for directx.

[4] Microsoft official website. Online (http://www.microsoft.com).

[5] Moore’s law, the future - technology & research at intel.

[6] Opengl shading language.

[7] Opengl, the industry’s foundation for high performance graphics. Online
(http://www.opengl.org).

[8] John Owens Aaron Lefohn, Joe Kniss. Implementing efficient praallel data structures
on gpus. In GPU Gems 2, page 521, One Lake Stree, Upper Saddle River, NJ, 2004.
Addison Wesley.

[9] Fabio Policarpo Alan H. Watt. Advanced Game Development With Programmable
Graphics Hardware. A K Leters, Ltd, 2005.

[10] Ian Buck. Taking the plunge into gpu computing. In GPU Gems 2, page 509, One
Lake Stree, Upper Saddle River, NJ, 2004. Addison Wesley.

[11] J. Daemen and V. Rijmen, editors. The Design of Rijndael: AES- Advanced Encryp-
tion Standard. Springer-Verlag, 2001.

[12] John Durbin. Modern Algebra, An Introduction. Wiley, 1992.

[13] Randima Fernando and Mark Kilgard. The Cg Tutorial. Addison-Wesley Profes-
sional, 2003.

[14] James D. Foley. Computer Graphics. Addison-Wesley Professional, 1995.

78

BIBLIOGRAPHY 79

[15] Dominik Göddeke. Gpgpu: Basic math tutorial. 2006.

[16] Kris Gray. DirectX 9 Programmable Graphics Pipeline. Microsoft Press, 2003.

[17] Mark Harris. Mapping conputational concepts to gpus. In GPU Gems 2, page 493,
One Lake Stree, Upper Saddle River, NJ, 2004. Addison Wesley.

[18] Rolf Herken. The Universal Turing Machine: A Half-Century Survey. Springer, 1995.

[19] Daniel Horn. Stream reduction operations for gpgpu applications. In GPU Gems 2,
page 557, One Lake Stree, Upper Saddle River, NJ, 2004. Addison Wesley.

[20] Peter Kipfer and Rudiger Westermann. GPU Gems 2, chapter 46, pages 733 – 746.
Addison Wesley Professional, 2005.

[21] Donal Knuth. The Art of Computer Programming. Addison-Wesley Professional,
1998.

[22] David Luebke, Mark Harris, Jens Krager, Tim Purcell, Naga Govindaraju, Ian Buck,
Cliff Woolley, and Aaron Lefohn. Gpgpu: general purpose computation on graphics
hardware. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Course Notes, page 33, New
York, NY, USA, 2004. ACM Press.

[23] Ian Buck Mark Harris. Gpu flow-control idioms. In GPU Gems 2, page 547, One
Lake Stree, Upper Saddle River, NJ, 2004. Addison Wesley.

[24] Norman Matloff. Introduction to parallel sorting [unpublished]. Department of Com-
puter Science University of California at Davis, 2006.

[25] Richard Schroeppel Niels Ferguson and Doug Whiting. A simple algebraic represen-
tation of rijndael. In Selected Areas in Cryptography, Proc. SAC 2001, 2001.

[26] John Owens. Streaming architechture and technology trends. In GPU Gems 2, page
457, One Lake Stree, Upper Saddle River, NJ, 2004. Addison Wesley.

[27] Randi J. Rost. OpenGL Shading Language. Addison-Wesley Professional, 2006.

[28] R Development Core Team. R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria, 2005.

[29] Tarmo Uustalu Varmo. Vene. Advanced Functional Programming: 5th International
School. Springer, 2005.

[30] Chris Wynn. Opengl render-to-texture. Technical report, NVIDIA Corporation.

Appendix A

Code Listings

A.1 Matrix Addition

A.1.1 Matrix Addition Routine

struct RET
{
float4 color : COLOR;
};

RET main(float2 n : WPOS , float2 texCoord : TEXCOORD0 , uniform sampler2D aField ,
uniform sampler2D bField)
{
RET OUT;
float4 S = tex2D(aField , texCoord);
float4 T = tex2D(bField , texCoord);
OUT.color = S + T;
return OUT;

}

A.2 Matrix Multiplication

A.2.1 Matrix Multiplication Routine

struct RET
{
float4 color : COLOR;
};

80

A.3. SEARCHING 81

int toInteger(float num)
{
return floor(num * 256.0);
}

RET main(float2 n : WPOS , float2 texCoord : TEXCOORD0 , uniform sampler2D aField ,
uniform sampler2D bField)
{
RET OUT;
int A[(int)SIZE];
int B[(int)SIZE];
for(int i = 0; i < (int)SIZE; i++)
{
A[i] = toInteger(tex2D(aField , float2 ((float)i/SIZE , texCoord.y)).x);
B[i] = toInteger(tex2D(aField , float2(texCoord.x, (float)i/SIZE)).x);
}
int T = 0;
for(int i = 0; i < (int)SIZE; i++)
T += A[i]*B[i];
OUT.color.x = float(T) / 256.0;
return OUT;

}

A.3 Searching

A.3.1 Linear Search Routine

RET main(float2 texCoord : TEXCOORD0 , uniform sampler2D array1 ,
uniform float key)
{
RET OUT;
OUT.color = tex2D(array1 , texCoord);
for(int i = 0; i < N*N; i++)
{
float4 T = tex2D(convert(i));
if(abs(OUT.color.x - key) < 0.005)

{
OUT.color = float4 (0.0, 1.0, 0.0, 0.0);
}

}
return OUT;
}

A.3. SEARCHING 82

if(floor(OUT.color.x * 256) == floor(key * 256.0))
OUT.color = float4 (0.0, 1.0, 0.0, 0.0);

return OUT;
}

A.3.2 Binary Search Routine

#define SIZE 32
#define LOGN (13)
struct RET
{
float4 color : COLOR;
};
float flatten(float2 v, float s)
{
return floor(v.x * s) + floor(v.y * s) * s;
}
float2 puff(float v, float s)
{
float a = v / s;
float b = fmod(v, s);
return float2(b / s, a / s);
}
float Search(float curpos , float stride , float key , uniform sampler2D data)
{
float2 adr2d = puff(curpos , SIZE);
float4 s = tex2D(data , adr2d);
float dir = (key <= s.x) ? 1.0 : -1.0;
return dir * stride + curpos;
}
float FinalSearch(float curpos , float stride , float key , uniform sampler2D data)
{
float2 adr2d = puff(curpos , SIZE);
float4 s = tex2D(data , adr2d);
float dir = (key <= s.x) ? 0.0 : 1.0;
return dir * stride + curpos;
}
RET main(float2 texCoord : TEXCOORD0 , uniform sampler2D array1 ,
uniform float stride , uniform float key)
{
RET OUT;
OUT.color = tex2D(array1 , texCoord);

A.4. SORTING 83

float curpos = stride;
for(int i = 0; i < LOGN -1; i++)
{
stride = floor(stride * 0.5);
curpos = Search(curpos , stride , key , array1);
}
curpos = Search(curpos , 1.0, key , array1);
curpos = FinalSearch(curpos , 1.0, key , array1);
float2 n = puff(curpos , SIZE);
float4 t = tex2D(array1 , n);
if(abs(OUT.color.x - key) < 0.005)
{
OUT.color = float4 (0.0, 1.0, 0.0, 0.0);
}
return OUT;
}

A.4 Sorting

A.4.1 Odd Even Transition Sort Routine

#define EPSI 0.001
#define SIZE 512.0
#define DELTA (1.0 / SIZE)
#define LBND (0.0)
#define HBND (1.0)
struct RET
{
float4 color : COLOR;
};
bool left(float2 v)
{
return (abs(v.x - LBND) < EPSI);
}
bool right(float2 v)
{
return (abs(v.x - HBND) < EPSI);
}
bool top(float2 v)
{
return (abs(v.y - HBND) < EPSI);
}
bool bot(float2 v)

A.4. SORTING 84

{
return (abs(v.y - LBND) < EPSI);
}
bool topRight(float2 v)
{
if(top(v))
if(right(v))
return true;
return false;
}
bool botLeft(float2 v)
{
if(bot(v))
if(left(v)) return true;
return false;
}
float2 nextRight(float2 v)
{
if(topRight(v)) return v;
if(right(v))
{
v.x = LBND;
v.y = v.y + DELTA;
}
else
{
v.x = v.x + DELTA;
}
return v;
}
float2 nextLeft(float2 v)
{
if(botLeft(v)) return v;
if(left(v))
{
v.x = HBND;
v.y = v.y - DELTA;
}
else
{
v.x = v.x - DELTA;
}
return v;
}

A.4. SORTING 85

RET main(float2 texCoord : TEXCOORD0 , uniform sampler2D array1 ,
uniform float oddPass)
{
RET OUT;
float4 s = tex2D(array1 , texCoord);
int actual = int(texCoord.x * SIZE); // [actual = {0..512}]
bool oddRow = (actual % 2 == 0);
float occi;
if(oddRow) occi = 1.0;
else occi = -1.0;
OUT.color = s;
//if(right(texCoord)) // OUT.color = float4 (0.0, 1.0, 0.0, 0.0);
// return OUT; //
if(occi * oddPass > 0.0)
{
float4 t = tex2D(array1 , nextRight(texCoord));
if(s.x < t.x) OUT.color = s;
else
OUT.color = t;
}
else
{
float4 t = tex2D(array1 , nextLeft(texCoord));
if(s.x >= t.x) OUT.color = s;
else OUT.color = t;
}
return OUT;
}

A.4.2 Bitonic Merge Sort Routine

#include "defines.h"
struct RET
{
float4 color : COLOR;
};
float flatten(float2 v, float s)
{
return floor(v.x * s) + floor(v.y * s) * s;
}
float2 puff(float v, float s)
{
float a = v / s; float b = fmod(v, s);
return float2(b / s, a / s);

A.5. AES ENCRYPTION 86

}
RET main(float2 texCoord : TEXCOORD0 , uniform sampler2D array1 ,
uniform float stage , uniform float stepno , uniform float offset)
{
RET OUT;
float4 s = tex2D(array1 , texCoord);
float actual = flatten(texCoord , SIZE);
half csign = (fmod(actual , stage) < offset) ? 1 : -1;
half cdir = (fmod(floor(actual/stepno), 2) == 0) ? 1 : -1;
float gamma = (actual + csign*offset);
float2 next = puff(gamma , SIZE);
float4 t = tex2D(array1 , next);
float4 cmin = (s.x < t.x) ? s : t;
float4 cmax = (s.x > t.x) ? s : t;
if (csign == cdir) OUT.color = cmin;
else
OUT.color = cmax;
return OUT;
}

A.5 AES Encryption

A.5.1 SubBytes Routine

float Sbox(int A, sampler1D sboxField)
{
float Af = (float)A / 256.0;
float4 Sf = tex1D(sboxField , Af);
return Sf.x;
}
RET main(float2 n : WPOS , float2 texCoord : TEXCOORD0 ,
uniform sampler2D aField , uniform sampler1D sboxField)
{
RET OUT;
int value = floor(tex2D(aField , texCoord).x * 256.0 - 1.0/256.0);
OUT.color.x = Sbox(value , sboxField);
return OUT;
}

A.5.2 ShiftLeft Routine

float shiftLeft(float2 P, sampler2D aField)
{

A.5. AES ENCRYPTION 87

int Y = floor(P.y * 4.0);
int X = floor(P.x * 4.0);
Y = (Y + X) % 4;
float Re = (float)X/4.0;
float Ce = (float)Y/4.0;
return tex2D(aField , float2(Re, Ce)).x;
}

A.5.3 MixColumns Routine

float4 mixColumns(float4 R, uniform sampler2D andField ,
suniform sampler2D xorField)
{
float4 B, K, H, A = R;

H.x = AND(toInteger(R.x), 128, andField);
H.y = AND(toInteger(R.y), 128, andField);
H.z = AND(toInteger(R.z), 128, andField);
H.w = AND(toInteger(R.w), 128, andField);

B.x = subProcess(R.x, (toInteger(H.x) == 128));
B.y = subProcess(R.y, (toInteger(H.y) == 128));
B.z = subProcess(R.z, (toInteger(H.z) == 128));
B.w = subProcess(R.w, (toInteger(H.w) == 128));

if(toInteger(H.x) == 128)
B.x = XOR(toInteger(B.x), 27, xorField);

if(toInteger(H.y) == 128)
B.y = XOR(toInteger(B.y), 27, xorField);

if(toInteger(H.z) == 128)
B.z = XOR(toInteger(B.z), 27, xorField);

if(toInteger(H.w) == 128)
B.w = XOR(toInteger(B.w), 27, xorField);

float4 Ta, Tb, Tc;

Ta.x = XOR(toInteger(B.x), toInteger(A.w), xorField);
Ta.y = XOR(toInteger(B.y), toInteger(A.x), xorField);
Ta.z = XOR(toInteger(B.z), toInteger(A.y), xorField);
Ta.w = XOR(toInteger(B.w), toInteger(A.z), xorField);

A.6. LOGICAL OPERATION ROUTINE 88

Tb.x = XOR(toInteger(B.y), toInteger(A.z), xorField);
Tb.y = XOR(toInteger(B.z), toInteger(A.w), xorField);
Tb.z = XOR(toInteger(B.w), toInteger(A.x), xorField);
Tb.w = XOR(toInteger(B.x), toInteger(A.y), xorField);

Tc.x = XOR(toInteger(Ta.x), toInteger(Tb.x), xorField);
Tc.y = XOR(toInteger(Ta.y), toInteger(Tb.y), xorField);
Tc.z = XOR(toInteger(Ta.z), toInteger(Tb.z), xorField);
Tc.w = XOR(toInteger(Ta.w), toInteger(Tb.w), xorField);

K.x = XOR(toInteger(Tc.x), toInteger(A.y), xorField);
K.y = XOR(toInteger(Tc.y), toInteger(A.z), xorField);
K.z = XOR(toInteger(Tc.z), toInteger(A.w), xorField);
K.w = XOR(toInteger(Tc.w), toInteger(A.x), xorField);

return K;
}

A.5.4 AddRoundkey

float addRoundKey(float2 P, sampler2D aField , sampler1D keyField ,
sampler2D xorField , float offset)
{
float base = (offset + floor(P.y * 4.0) * 4.0 + floor(P.x * 4.0)) / 256.0;
int H = (floor)(tex1D(keyField , base).x * 256.0);
int K = (floor)(tex2D(aField , P).x * 256.0);
return XOR(K, H, xorField);
}

A.6 Logical Operation Routine

float4 logicalOperation(int A, int B, sampler2D logicalField)
{
float Af = (float)A / 256.0;
float Bf = (float)B / 256.0;
float4 Sf = tex2D(xorField , float2(Af, Bf));
return Sf;
//Sf.x == A & B
//SF.y == A | B
//Sf.z == A ^ B
}

A.7. RENDERING FRACTAL IMAGES 89

A.7 Rendering Fractal Images

A.7.1 Mandelbrot Fractal Routine

struct RET { float4 color : COLOR; };
RET main(float2 texCoord : TEXCOORD0 , uniform sampler2D decal ,
uniform float xpos , uniform float ypos , uniform float zoom)
{
RET OUT;
float2 n;
float2 c;
c.x = xpos - 0.5* zoom + texCoord.x*zoom;
c.y = ypos - 0.5* zoom + texCoord.y*zoom;
n.x = c.x;
n.y = c.y;
int i = 0; for(i = 0; i < 2048; i++)
{
float tmp = n.x*n.x - n.y*n.y + c.x; n.y = 2.0*n.x*n.y + c.y;
n.x = tmp;
if(n.x*n.x + n.y*n.y > 4.0) break;
}
float k = n.x*n.x + n.y*n.y;
if(k < 4.0)
OUT.color = float4 (0.0, 0.0, 0.0, 0.0);
else OUT.color = float4(1.0 - (float)i/200.0/2.0 , (float)i/200.0 , 0.0, 0.0);
return OUT;
}

A.8 Cellular Automata

A.8.1 Grid Simulation Routine

struct RET
{
float4 color : COLOR;
};
RET main(float2 texCoord : TEXCOORD0 , uniform sampler2D decal)
{
RET OUT;
half4 ns;
half4 ds;
half2 uv = texCoord.xy;
float4 centre = tex2D(decal , texCoord);

A.8. CELLULAR AUTOMATA 90

uv.x = texCoord.x;
uv.y = texCoord.y - 1.0/512.0;
ns.x = tex2D(decal , uv).y;
uv.x = texCoord.x;
uv.y = texCoord.y + 1.0/512.0;
ns.y = tex2D(decal , uv).y;
uv.x = texCoord.x - 1.0/512.0;
uv.y = texCoord.y;
ns.z = tex2D(decal , uv).y;
uv.x = texCoord.x + 1.0/512.0;
uv.y = texCoord.y;
ns.w = tex2D(decal , uv).y;
uv.x = texCoord.x - 1.0/512.0;
uv.y = texCoord.y - 1.0/512.0;
ds.x = tex2D(decal , uv).y;
uv.x = texCoord.x - 1.0/512.0;
uv.y = texCoord.y + 1.0/512.0;
ds.y = tex2D(decal , uv).y;
uv.x = texCoord.x + 1.0/512.0;
uv.y = texCoord.y - 1.0/512.0;
ds.z = tex2D(decal , uv).y;
uv.x = texCoord.x + 1.0/512.0
; uv.y = texCoord.y + 1.0/512.0;
ds.w = tex2D(decal , uv).y;
float cnt = 0.0f; bool valid;
valid = (ns.x == 1.0f);
if(valid) cnt += 1.0f;
valid = (ns.y == 1.0f);
if(valid) cnt += 1.0f;
valid = (ns.z == 1.0f);
if(valid) cnt += 1.0f;
valid = (ns.w == 1.0f);
if(valid) cnt += 1.0f;
valid = (ds.x == 1.0f);
if(valid) cnt += 1.0f;
valid = (ds.y == 1.0f);
if(valid) cnt += 1.0f;
valid = (ds.z == 1.0f);
if(valid) cnt += 1.0f;
valid = (ds.w == 1.0f);
if(valid) cnt += 1.0f;
OUT.color = centre;
if(centre.y == 0.0h)
{

A.8. CELLULAR AUTOMATA 91

if(cnt == 3.0f)
OUT.color = float4 (0.0, 1.0, 0.0, 0.0); }
else
{
if (cnt < 2.0f) OUT.color = float4 (0.0, 0.0, 0.0, 0.0);
if (cnt > 3.0f) OUT.color = float4 (0.0, 0.0, 0.0, 0.0);
if (cnt == 2.0f) OUT.color = float4 (0.0, 1.0, 0.0, 0.0);
if (cnt == 3.0f) OUT.color = float4 (0.0, 1.0, 0.0, 0.0);
}
return OUT;
}

