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Abstract 

 

With the ever increasing memory and processing power, mobile phones have become the 

latest breed of machines on which web servers reside. These servers cannot be accessed from 

outside a mobile operator's firewall unless there's a gateway that enables clients to connect to 

them. The main objective of the project is to make mobile web servers on 3G (Symbian series 

60) phones both addressable and accessible to internet clients using a local gateway. The 

gateway discussed in this thesis allows for mobile web server registration, account 

management and routes requests for the web clients to the right web servers. This thesis looks 

at the challenges and dynamics involved into building a mobile web server gateway like the 

one set up locally.  
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Chapter 1 

Introduction 

1. 1 Background 
 

Since the launch of the Internet, web servers have been used to serve HTML pages to 

requesting clients over the internet. These web servers, until recently, were mostly located on 

stationary computer systems with large processing capabilities, large executable memory and 

storage space. With increasing processing power and memory, mobile phones have come to 

be the latest breed of machines on which web servers reside. The introduction of mobile web 

servers means that the position of the server now matters. Responses to requests could 

depend on the location of the server and content generated dynamically on the mobile device. 

This has opened doors for new applications and opportunities for users to manage their web 

sites on their mobile devices.    

Nokia initiated research projects which resulted in the development of the Raccoon and the 

Nokia Web Servers. The Raccoon web server is an open source product that is available for 

further development and modification by willing developers. The Nokia web server, on the 

other hand, is a finished product that has ready-to-use content creation applications and has 

grown from the continuous development of the Raccoon server.  

Nokia manages the mobile web server connections with a gateway that facilitates connections 

with clients. The gateway manages domain registration, connections and also provides caches 

for static data to improve latency. It provides a single point of access to the mobile web 

servers. The proposed local gateway will perform all these functions. Additionally, the 

research effort will also focus on improving on them as well as finding and exploring new 

ways of using the gateway.  

 

 



8 1.2 Problem Statement | Rhodes University 

 

 

1.2 Problem Statement 
 

The problem with mobile web servers on mobile phones is that they are not readily accessible 

or addressable from the internet. A gateway that is connected to the internet is needed as the 

intermediate point between the requesting web browsers and the web servers on a network 

run by a mobile operator. For security and efficiency reasons, operators use network address 

retranslation (NAT) and restrict access at their firewalls. The gateway circumvents these 

restrictions in conjunction with the mobile connector on the mobile phone to provide an 

efficient way of serving web resources to internet users.    

1.3 Objective of Research 

 

The objective of this research project is to develop a gateway for mobile web servers locally. 

Mobile devices serving web content cannot be directly accessed without a system that 

manages and updates their connection information. The local gateway, residing on a 

computer system, will perform network functions that will enable the web servers to serve 

their resources to requesting clients.  Once registered on the gateway, the mobile web server‟s 

connection details are stored and updated periodically. This enables the web server to be 

accessed with a URL by clients on the internet. It will mainly handle domain registration, 

connection and access management, request routing and caching. This will afford mobile web 

server users, both local and international, the luxury of having their server information 

managed on the local gateway.  This information can then be used to facilitate the flow of 

HTTP requests and subsequent responses between the mobile server and the client. The 

research effort will also look at Global Positioning System (GPS) to provide web server 

location information on the gateway.        

1.4  Document Structure  

 

This dissertation first discusses the technologies that are closely related to mobile web server 

gateways. These range from web servers to other gateways that are in this computer 
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networking area of study. From the third chapter, the dissertation goes on to discuss the 

gateway in detail. It takes a look at the issues that needed to be considered and properly 

understood before the gateway could be put together. The fourth chapter discusses the 

process of modifying and customizing the gateway before setup. The fourth chapter also 

explains the process of setting and building the gateway. Chapter five focuses on the 

implementation of the location based module. Testing is done in chapter seven to show that 

the gateway delivers web content from mobile web servers on cellular networks. The final 

chapter, seven, concludes the dissertation and discusses ideas that could be implemented in 

the future.      

             

2. Chapter 2 

Related Work 

 

2.1 Introduction  
 

In the early 1970s, The United States Defence Advanced Research Projects Agency (ARPA) 

developed a wide-area computer network known as ARPANET. ARPANET was a packet-

switched interconnection of computers located at various Universities, research agencies in 

the States and a few selected NATO countries. By the end of the millennium, the network 

which had evolved into the Internet had millions of hosts connected to it [2]. This system of 

connected networks had vast amounts of information on just about anything. Social, 

commercial, technological and educational information resources were shared and made 

available to a world-wide audience.  Central to this world-wide phenomenon, were web 

servers and client browsers. They facilitated the process of sharing Hyper-Text Transfer 

Protocol resources over TCP/IP connections. 

 

 Cellular systems have also evolved to using packet-switching technologies instead of the 

usual circuit-switching [13]. Third generation networks, as they have come to be known, have 
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brought along new opportunities of enlarging and growing the Internet. With them has come 

a totally new way of thinking. The fact that mobile phones are starting to have the storage and 

processing capabilities of earlier computers means there‟s no reason why web servers 

shouldn‟t reside on them. The purpose of this paper is to study the internet and web 

technologies that are related to mobile web servers and gateways. This will help in setting up 

and building a mobile web server gateway on the local campus. 

 

 

2.2 Mobile Internet Protocol  
 

Mobile Internet Protocol (IP) allows the use of the Internet on the move. A user with a mobile 

device whose IP address is associated with one network can stay connected when moving to a 

network with a different address. Expressed differently, a user can keep their IP address while 

moving between networks with different addresses. When a user leaves the network with 

which their mobile device is associated and enters the domain of the foreign network, the 

Mobile IP protocol is used to handle the connectivity issues [1]. As is stated in the book 

Telecommunications Essentials [3], the foreign network sends a message to the home 

network address, notifying it of a care-of address as discussed in [15]. The care-of-address is 

the foreign address which a mobile device may have access to if not in the home network.  

This address is where all the user‟s packets are sent [3]. Mobile IP is also the technology used 

for wireless data applications and for mobile networks like 3G and 2.5G for cellular systems. 

It is implemented in the packet equipment for packet-switched cellular networks. It works at 

layer 3 of the OSI stack as shown in the Figure 1. 
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Figure 1: The OSI Stack [1] 

 

According to Communications Essentials [3], layer one and layer two protocols are already 

implemented in mobile devices.  

 

Nokia phones will be used in this project and the MTN and Vodacom networks use Code 

Division Multiplexing Algorithms for sending signals to mobile users. [13] explains that 

mobile operators are increasingly starting to use Wideband Code Division Multiple Access 

(WCDMA for 3G), a faster and newer variant of CDMA.  Going one level up, Mobile IP is 

implemented in the networking equipment of mobile operators. They use this for normal 

Internet access by mobile users. The one problem there is according to [9], however, is the 

fact that the mobile operators have restrictions at this particular layer. 

 

[9] further explains that for security reasons, the mobile operator firewalls allow only 

outbound traffic. Only mobile devices from within the network can initiate requests to the 

internet and not the other way round. According to [7] to be able to access a web server on a 

mobile phone this has to be overcome.  Another problem stated by [9] at this layer is that 

mobile operators have introduced Network address translation (NAT). This is a networking 

technique that involves the circulation of IP addresses between hosts on a network. It is a 
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favourable option for both the operators and the whole computing society at large because 

there are too many mobile phones out there. Giving each of them a 32 bit IP address will 

eventually result in a shortage of these currently-running-out identifiers. It is also not 

economical as some users hardly access the Internet from their phones. Even those who do it 

do not do it consistently. [9] elaborates on the fact that for the solution to this problem to 

succeed it will be cheaper and more practical if it circumvents the current restrictions with 

minimal changes to the infrastructure already in place.           

 

If a system that is both addressable and accessible is put on the Internet, it can solve all the 

problems posed by the operators [9]. On the system will be a reverse proxy that receives 

HTTP requests on behalf of mobile servers and forwards them to requested mobile phones. 

Before this could happen the mobile server on the phone will need to establish and keep-alive 

a connection to the proxy. [10] emphasises the point that mobile devices will need to be 

registered on the proxy or gateway for their access information to be stored and updated. 

When a request enters the reverse-proxy, its header is checked and the access details are used 

to determine the mobile server requested. Prior to this, a mobile phone would need to have 

made a connection to the gateway. [9] says that this should eliminate the need to know about 

the IP address of a phone because the phone is the initiator of the connection. This connection 

is also kept alive until it is voluntarily terminated by the owner of the mobile web server.  

 

2.3 The Wireless Application Protocol (WAP) and the WAP Gateway   
 

In June of 1997, major players in the mobile phone industry gathered to form the Wireless 

Applications Protocol (WAP) forum as stated by [5]. Cellular phone manufacturers, Nokia, 

Ericsson and Motorola were part of this forum. Another organization present was Phone.com 

(Wired Planet), the WAP creators.  The WAP Forum is an industry group responsible for 

managing and extending the WAP standard and facilitating the adoption of WAP. WAP is a 

standard used for the transmission and subsequent presentation of wireless data to mobile 

devices. [5] further emphasises that WAP is based on HTTP and is easily interoperable with 

the Internet. The Wireless Mark-up Language (WML), a tag language based on XML, is used 
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for the presentation. WAP is mainly designed to integrate the Internet with a lightweight, low 

bandwidth system that is suitable for wireless devices. [4] says that for this interoperability to 

be achieved, A WAP gateway should be used. The Wireless Applications Protocol 

architecture (with the gateway) is shown in the Figure 2 .   

 

 

Figure 2: The WAP Gateway [4] 

 

The WAP Gateway and Other WAP Components.  

 

The WAP gateway, like the mobile Web server gateway, sits between the devices on the 

internet and those on a wireless network. It is responsible for encoding, decoding and for 

protocol conversion of the requests and responses that pass through it. A user starts the HTTP 

flow by making requests for web pages. By typing a URL into the browser on a mobile 

phone, the WAP user agent sends a WAP request (WSP) to the gateway. The gateway 

converts it to an HTTP request and does the necessary encoding and decoding operations. 

The origin server is the web server on the Internet containing the requested resources as 
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discussed in [4]. It services the request using scripts or by simply returning a static page. The 

server needs to have WML scripts to service mobile requests dynamically. Once serviced the 

response is sent out in HTTP format back to the gateway.  The gateway then converts the 

response to WSP format and sends it back to the requesting browser [4, 5].  

 

The WAP protocol stack takes care of the transmission of requests from the phone to the 

gateway and back to the phone again in binary format [4, 5]. According to [4, 6] the stack 

consists of three distinct layers: The Wireless Datagram Protocol (WTP), The Wireless 

Transaction Protocol (WTP) and the Wireless Session Protocol (WSP). Figure 3 shows the 

sequence of events involved in servicing a request.   

 

 

Figure 3: The Wap Gateway [6] 

 

[6] explains the steps as follows: 
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1. Phone opens session. The features and HTTP headers to be used in requests gateway 

makes on behalf of the phone are negotiated.  -  WSP 

2. Phone sends URL for the page the user has configured as his home page. 

3. Gateway makes HTTP request, with negotiated headers. 

4. Gateway encodes page in a binary form and sends it to the phone. 

5. User shuts down the browser and the phone terminates the session. 

 

The Wireless Transaction Protocol implements a single request-response pair. The Wireless 

Datagram Protocol is the lowest of the three layers. It implements the actual moving of 

packets from the phone to the gateway and back [6].  

 

This means that the gateway being set up as part of this project needs a module to handle 

connections with another module residing on the phone as suggested in [9]. The two modules 

need to negotiate connections, keep them alive and make sure the two systems interface. The 

WAP gateway also handles user authentication and has some management functions such as 

billing customers as put by [6]. The Gateway to be implemented will also take care of mobile 

access data and will have information on the number of times a server has been visited, 

enable the sending of messages when the mobile web server is offline and possibly also have 

server location information. The next section will discuss the Kannel WAP Gateway which 

could be used as a guide to building the local gateway.    

2.4 The Kannel Gateway 

 

The Kannel WAP gateway is a product developed at Wapit Ltd., a company started in 1998 

to develop products for mobile phones. A year later, as part of its strategy, the company 

started to develop tools and software for the then emerging WAP protocol. The project was 

launched as part of the WAP Forum in July 1999 [5, 4, and 6]. Kannel is widely used as a 

WAP gateway by mobile operators and corporate service providers. The author of this 

dissertation thought they would gain insight from studying this gateway. Next, the paper will 
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discuss the architecture of the gateway with the intention of gaining some insight on how to 

put the local mobile web server gateway together.  

2.4.1 The Gateway Architecture    

 

The Kannel WAP gateway is very similar to the desired mobile web server gateway. 

Studying its architecture and design gives some insight as to how to structure the latter. The 

overall structure of the Kannel gateway is depicted in the Figure 4 below which is taken from 

[6]: 

 

 

 

Figure 4: The Kannel Gateway Architecture 

 

The diagram (figure 4), from [6], illustrates how the gateway has three interfaces on which 

interacting systems can communicate. This suggests that the gateway host has three ports on 

which to listen for requests. Since the Mobile Web Server Gateway will listen to two types of 

services, it will most likely have two ports open: One for HTTP traffic from web browsers 

and the other to communicate with the phone. The text in [6] goes on to clarify that the SMS 

Centre is a server responsible for SMS-related services which are not really part of the WAP 
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standard. The WAP phone is a mobile phone with WAP capabilities and can send and receive 

WAP messages. The HTTP server is a web server residing on the Internet. Inside the gateway 

itself are three modules: the Bearerbox, the Smsbox and the Wapbox. The Bearerbox 

component handles the incoming and outgoing low level Wireless Datagram Protocol (WDP) 

packets. The SMSbox receives SMS messages form the Bearerbox and translates them to 

service requests. It is also responsible for doing the reverse to the responses. The WAPbox 

module implements the WAP protocol stack and WAP Push services. It works with an 

application level protocol [6]. For the purposes of the project, the SMS components of the 

Kannel gateway are going to be ignored. The focus is on the WAP functionality that will 

enlighten us on how to build a gateway between the Internet and a wireless network. For this 

reason, the paper will discuss the Wapbox component next. 

 

 

2.4.2 The Wapbox Module     

 

The gateway documentation [6] deepens the insight by explains that, the Wapbox and all the 

other gateway boxes are internally multithreaded to allow for efficient request and response 

handling. It‟s responsible for fetching messages from the Bearerbox, maintaining state for 

each of the active clients and subsequently making HTTP requests for them. It is also 

responsible for the reverse process of sending responses back to the Bearerbox. According to 

the Kannel documentation [6], things get more complicated depending on the load being dealt 

with.  The protocols implemented in the box are Wireless Transactions Protocol and the 

Wireless Session Protocol. To gain more insight on gateway building we shall concentrate on 

the Pull threading features of the WAPbox component.  
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2.4.3 The Thread Structure 

 

 

Figure 5: The Wapbox Architechture [6] 
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According to the Kannel documentation [6] and to the Figure 5, each WAP protocol stack 

layer has its own thread. This means that for every WAP and HTTP request serviced by the 

gateway a thread is spawned. This fact has some implications for the design of our gateway. 

There has to be a sub-module that services HTTP requests (as shown in the diagram). It also 

has to be threaded. There are many things to be considered at this interface. A request coming 

in from an HTTP browser will be serviced by a servelet or any other script. Its header 

contents can be used to determine which mobile web server needs to be connected to. Web 

servers already have threading capabilities so there woul be guaranteed threading for HTTP 

requests on the one port of the gateway.  

 

Looking at the other end, the interface to the Bearerbox is also multi-threaded. This is 

analogous to the Local Mobile Web Server (MWS) gateway‟s interface to mobile web 

servers. In terms of Implementation this will be a port known to the mobile web servers, as is 

suggested in [9]. It is also threaded to service multiple requests efficiently.  This will be 

implemented in the gateway by using java threading libraries. Each request will have its own 

thread to service it. The WAP gateway is a little more complicated. Apart from the interfaces, 

the required inner-workings of the MWS gateway are about accessing data from a database 

and maintaining connection information as described in [9]. There will be no protocol 

conversion at all. The main lesson learned form this gateway is that the gateways need to be 

multithreaded to handle the load of services being requested. 

 

Although threading provides high request-handling efficiency, it comes with its costs. 

According to WapIT‟s documentation of Kannel [6], threads keep the implementation simple, 

but are expensive in terms of computation resources. According to [6] “If there are ten 

thousand concurrent users each making a new request every fifteen seconds, on average, and 

each request taking one second, on average, there are about 670 concurrent requests at any 

one time. On Linux, each thread uses 8 kilobytes of kernel memory, minimum, so 670 threads 

would use over 5 megabytes of extra memory”. Additionally [6] explains that, starting and 

stopping threads and having lots of threads will cause more context switches, an additional 

CPU cost. As we are using a web server as the HTTP interface we might not need to worry 

about this too much. The Apache Tomcat Web server will be used for implementing the 

mobile web server gateway. Its web container already deals with request threading and will 
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provide access to HTTP requests as is stated in [8]. It will also be the interface through which 

responses will be sent. 

 

2. 5 The Nokia Mobile Web Server 

  

2.5.1 Details     

The Nokia Mobile Web Servers (MWS) are the mobile web servers that will be connected via 

the gateway. Nokia Corporation introduced these web servers that are written in Symbian 

C++ for mobile phones running the Symbian operating system as stated in [7]. The Mobile 

Web Server Book [7] describes the invention as something that will change the way people 

view the Internet. We have come to know it as a network where the servers are stationery 

machines in mysterious locations. The mobile web server, however, makes it possible for 

users to generate their own information and serve it on their mobile phones. This opens up 

opportunities for users and developers to do more creative things. It is in line with the new 

vision of the web where content is generated by the users themselves as described by [12]. 

This includes dynamic-content creation, interactive photography and location-based services 

[7]. It will also facilitate new ways of communication as well as new ways of fulfilling 

mobile phone functions like answering messages. This section of the paper discusses the 

details of the Mobile Web Server Technology that are relevant to the implementation of a 

gateway. 

 

As mentioned earlier and further strengthened by [10], Mobile Web Servers lie behind a 

mobile operator‟s firewall and this makes them impossible to access from the internet. The 

gateway will be the means of communication between the web servers and the requesting 

clients.  This is shown in the Figure 6.  The diagram also shows the main lines of 

communication between the gateway and the web server. In step one the owner of the MWS 

connects to the gateway.  According to [11], this is, of course, after it has been registered. 

The gateway and the phone keep this connection alive. When a user wanting to connect to the 

web server with a web browser comes along in step two, the gateway already has a 

connection to the phone. [7] says that the Domain Name System (DNS) serving the browser 
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host returns the address of the gateway for all the MWS requests. In step three the server 

identifies the web server and checks if it‟s online and sends requests for a channel to 

communicate HTTP traffic. Finally, in step four the HTTP traffic is communicated to the web 

server and the response is relayed through the gateway. The operator firewall is not an issue 

of concern because the requesting connection is initialized from the mobile device through a 

legal port [9].      

            

 

 Figure 6:The mobile web server technology [7] 

 

2.5.2 The MWS Components 

 

The MWS is a ported version of the Apache Web Server. This port may be the Nokia Mobile 

Web Server or PAMP which is a package containing the Apache Web Server, PHP and a 

MySQL database. It also has a connector and user interfaces to facilitate the use of the web 

server. The apache web server was chosen because it is the most popular web server in the 

world and it is free. Implementation-wise, it also turned out to be relatively easier to port as 

stated in [7]. The modular structure of The Apache Web Server makes it easier to port to 

mobile devices as modules can be included and excluded if needed. This, as common sense 

would dictate, decreases the memory footprint. On mobile devices, both space and processing 
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power are limited so the smaller an application the better. In addition the memory used 

decreases with the number of modules loaded.   

As shown in the Figure 7 and explained in [7], The Apache HTTP daemon (HTTPd) runs on 

top of the Apache Runtime (APR) [7, 8]. This is a runtime library that provides a standard 

API to the underlying platform-dependent implementations. According to Nokia, the only 

task required was to port the platform-specific parts of the HTTPd and APR. This were 

translated to work with the underlying Symbian operating system (the operating system on 

Nokia phones). To make the job slightly less difficult, some Unix-specific parts could use the 

Symbian POSIX. The Figure seven shows a graphic version of the ported version.  

      

 

 

Figure 7: The ported Apache Server [7] 

 

The most important component for the purposes of this paper is the connector. This is the 

subsystem that is going to communicate with the gateway. It has an interface to the web 

server described above and to the remote gateway. The connector takes care of all the 

connectivity issues as far as the mobile device is concerned [7]. It establishes and keeps alive 

a connection with the gateway. The channel for establishing and keeping the connection alive 

is known as the control channel, and the one for HTTP traffic is known as the data channel 

[11]. The connector establishes a connection to the gateway by using the required connection 

details: the username, the password and the gateway address. Other things to set include the 
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keep-alive interval, the keep-alive latency, the gateway port the maximum number of 

connections that can be made to the server and the local web server port. The control channel 

is over UDP datagrams. This is favourable because of the overhead. It therefore uses less 

bandwidth and battery power [11]. This channel carries a custom-made protocol that is meant 

to facilitate the formation and maintenance of a connection between the web server and the 

serving gateway. The Data channel goes over TCP and it is the one the carries the actual 

HTTP data when a request or a response is in transit [10]. The gateway (to be implemented in 

this project) needs to interconnect with the web server through this connector. Figure 8 shows 

the messages and protocols between the mobile connector and the gateway.   
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Figure 8: The communication streams between the gateway and the client (phone) connector [11] 

2.6 Conventional Web Server Technology 
 

2. 6.1  Introduction 

 

A web server   is a server process running at a website which sends out web pages responses 

on a particular port to web requests from local or remote web browsers as described in [14].  

A web server resides on a host computer which can be stationery or mobile [41]. A web host 

is a computer that runs a web server and provides web space and bandwidth to those who 

wish to publish web sites. The website owner is given space on a host machine to which they 

can upload static and dynamic HTML pages as well as text and multimedia.  In this section, 

the paper briefly looks at conventional web servers. These web servers are relatively easy to 

access as they are not restricted by operator firewalls or Network address Translation (NAT).   

 

2. 6.2 Conventional Web Servers on Stationery or Wired Hosts 

    

  On a stationery host that has a wired internet connection, web servers are easily accessible 

and addressable as the host has a fixed IP address [14]. Even with network address 

translation, the host with the web server is still accessible on the network through its domain 

name.  The web server daemon runs in the background waiting for requests for web pages 

[14]. Because of the complicated nature of the web servers, they are usually installed and 

administered by people with technical skills and knowledge of operating them . This means 

that website owners may have to upload content to the web space on their host using File 

Transfer Protocol if they happen to be in remote locations.  

 

Web access on these type of hosts usually involves a user typing in a uniform resource 

locator (URL) in a browser to get Hyper Text Transfer Protocol  (HTTP) responses or other 

resources form the server. The domain name system then translates the domain name to an IP 

address which then results in the HTTP request getting routed to the computer hosting the 

web site with the requested resources as stated in [14]. Because the web server and the 
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associated web resources are usually on a host with a predetermined IP address and 

geographical location, it is relatively easy to locate and address web sites hosted on it and to 

request web resources. The web server receives the request on a particular port (usually port 

80 or 8080) and serves it by responding with static or dynamic HTML pages as well as other 

content [14]. According to [14] the server can respond in different ways: by using static 

HTML which is usually just plain HTML with no server side scripts executed; or by using 

dynamic responses which involves the execution of PHP, JSP, ASP or some other scripts that 

could include accessing databases and other resources.  

 

The administration and hosting of web sites on stationery or wired hosts is advantageous 

because it allows for easy and fast access. It is also good because the hosts are usually always 

close to a power source increasing the chances of the server always being on (reliability). 

However, with the emphasis of web 2 technologies of personal or user content creation as 

described in [12], it is useful for web servers to be close to the content creators. This can also 

allow for on- the-move or dynamic content creation. It will also lead to the web becoming 

ubiquitous as pages are served by the users or the web site owners themselves [7]. The 

objective of the project is to build a gateway that will ensure the accessibility and 

addressability of such web servers. This web servers are easy to use and configure for normal 

people and will forward the agenda of Web 2.0 technologies. 

                

According to the Wireless Internet Handbook [13] wireless, systems started back in the 

1970s. These systems went through different generations based on different access 

technologies. The first wireless systems were analogue, circuit-switched networks that were 

used for voice transmissions only. They were based on the Frequency Division Multiplexing 

(FDMA) air interface. Second Generation wireless systems were digital and used different 

and more efficient multiplexing techniques (Time Division Multiplexing (TDMA) and Code 

Division Multiplexing (CDMA)). 2G systems were followed by 2.5G Systems [13]. This 

involved a combination of both packet- and circuit-switched technologies. Circuit switching 

was used for voice and packet switching for data services such as multimedia messages 

(MMS) and Wireless Application Protocol (WAP) Internet access [13]. The third generation 

of mobile systems, however, is entirely packet switched [16]. This means that the traditional 
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Transport Control Protocol and Internet Protocol (TCP/IP) can now be used for mobile 

phones for internet access and also for service provision. 

The introduction of 2.5G saw the introduction of Internet web browsing on Mobile phones. 

The circuit switched nature of the data services for 2.5G systems was made to cater for this.  

Network connectivity for mobile devices like mobile phones is provided by an operator.  The 

mobile operators had to introduce Wireless Access Protocol Gateways to enable this kind of 

web browsing as is discussed in [5]. An Internet request was made from inside the operators 

firewall to a website hosted on a stationery or mobile host. It would then passes through a 

WAP gateway to negotiate the differences between the protocol used for WAP browsing and 

the protocol used for the normal internet. Apart from the client or the web browser being 

located on the phone, the architecture of this kind of system was the same as that of ordinary 

wired internet browsing. Third Generation wireless Systems, however, opened new doors. 

Web servers can now be hosted and accessed from mobile phones. 

 

2.7 Chapter Summary 
 

In conclusion, the author has discussed the technologies that are related to the project 

involving the implementation of a mobile web server gateway. The gateway facilitates the 

connections between mobile web servers and client-web browsers. The WAP gateway 

technology has a number of similarities with the desired MWS gateway and has been 

discussed in this paper. The Mobile Web Server which is the endpoint to the gateway 

connections is also discussed.  Last but not least, conventional web servers are also discussed 

because the gateway itself will use the Tomcat Web Server to fulfil its functions. These 

related technologies will give some insight on the issues involved in putting a mobile web 

server gateway together.            
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Chapter 3 

Understanding the Gateway 

3.1 Overcoming Addressability and Accessibility Problems 
 

 [9] states that two important solutions have been suggested to solve the problem posed by 

operator‟s firewalls and NAT. One of the solutions involves the use of a firewall control 

protocol (FCP), which works by allowing a trusted third party to dynamically control the 

operators firewall.  The third party decides on what firewall ports to open at what time and 

how to use them. These ports will be open for a short period of time and should also have a 

way of choosing the users allowed to use the specified ports. The problem with this approach 

is that a great deal of investment by operators will be needed to get it off the ground. Making 

firewalls dynamically configurable might also necessitate new web browsers that work with 

them. It will also need a way of keeping track of the temporary Internet protocol addresses as 

they change over time. Additionally operators need to route requests from other devices from 

within the firewall, a functionality, according to [9], most of them do not offer. A better 

solution is one that does not need much of the operator‟s involvement and needs no change to 

the existing infrastructure.  

 

The most viable solution involves setting up a gateway somewhere on the internet. This 

gateway will allow for users to register their web servers and allows surfers to address and 

access these servers. Having this gateway will ensure that the mobile phones or other devices 

inside the operators firewall always have a connection to a device on the internet. The HTTP 

server on the mobile phone initiates the connection from within the firewall to the gateway 

when it is started. This connection is then kept open for as long as the mobile server 

administrator wishes. At that time the HTTP daemon can serve requests. The gateway 

computer with a gateway server installed, acts as a device in the middle that is connected to 

the running servers. The gateway runs a daemon of its own waiting for connections from web 

servers. As soon as a connection request comes in, the gateway program checks if the 

requested web server is running as explained in [7]. If it is, the HTTP request is sent to the 
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right Mobile Web Server (MWS) through the connection established by the server (MWS) 

when it started running. Since it‟s the mobile server that initiates the connection to the 

operator‟s firewall this is normal (because it‟s an outbound connection as explained in [9]). 

The web server on the mobile phone then gets the request from the gateway and responds to 

it accordingly. After the server has put together its response, its response is relayed to the 

originating web browser through the gateway. The HTTP requests and responses pass 

through the operator‟s firewall as if they were legitimate third Generation services (3G) 

requests and responses (which they are). This means they could go through a special port, if 

the operator reserves one, or through the normal Third Generation services port [7] used for 

Internet access for example. This solution works harmoniously with the existing 

infrastructure and needs little operator involvement, if any at all.                

3.2 How the Gateway Will Work  
 

The gateway host has the gateway server installed on it. The gateway server opens up two 

ports on the host. One port is for incoming connections from requesting web browsers; the 

other is for the connecting to web servers. The web surfing port should be a well known port 

(e.g. port 80) for HTTP requests to be mapped to it. The host should also be registered on the 

Domain Name Server to allow all the requests with URLs ending with a particular name to be 

directed to it, resulting in its IP address being returned. The second port should be a special 

port on which mobile devices establish connections to the gateway. The web server (MWS) 

on the mobile phone listens on port 80 like a normal web server. Even thought, the server 

waits for HTTP requests on this port it cannot be addressed or accessed by any other device 

without going through the gateway [7]. The connections between the server and the gateway 

are established and managed by software programs know as connectors. Both the gateway 

and the mobile web server will have their own connectors through which connections will be 

managed and kept alive [8].  

 

The connector on the gateway host opens up a port to receive and maintain connections with 

the mobile web server. When the connector on the mobile phones opens a connection it gives 

the identity of the hosting phone and the gateway connector authenticates the request before 

negotiating the connection. This is one of the reasons why the mobile web server has to be 



29 3.3 Keeping the Connection Alive | Rhodes University 

 

registered on the gateway before connections from it can be accepted. As in most other 

communication protocols, there are two types of interchange between the connector on the 

gateway and the peer connector on the mobile phone: One for controlling and managing the 

connection and the other for the actual transmission of traffic, in this case, HTTP data as 

mentioned in [10]. These are respectively known as the control channel and the data channel. 

Initially, when the mobile connector opens a connection to the port reserved for connections 

on the gateway, it establishes a Transport Control Protocol (TCP) connection [10]. This 

happens in the control channel because it just opens a line that can be used to relay HTTP 

requests later on. When the need arises, the gateway connector asks the mobile connector to 

initiate data channels in addition to the control channel that keeps the connection alive when 

there are no other activities. Conceptually, the two channels then co-exist as two separate 

TCP connections on the same port. The problems associated with Network Address 

Translation do not matter any more as the gateway connector maintains a connection with the 

mobile connector. This means that whenever the IP address of the mobile host changes the 

connector sends control data through the firewall using the new address. The gateway 

connector, therefore, just needs to access the control open control channel and associate any 

subsequent requests with it [8].                   

 

3.3 Keeping the Connection Alive 

 

Once a connection is established by the mobile host, it has to be kept alive to ensure that it is 

accessible from the other side of the firewall. The mobile and the gateway connector, 

therefore have to exchange control data for as long as the web server is running. If this 

connection dies, only the mobile host can initiate it again because the gateway does not have 

the authority to re-establish it through the firewall as mentioned earlier. During this period 

(when the connection is idle) only the control channel is kept alive. In implementing this 

technique, one needs to consider seriously the most efficient way to keep the connection 

alive. This includes sending as little data as possible (to keep the network and bandwidth 

costs low) and making sure the process does not overuse the mobile host‟s power resources 

(batteries) as discussed in [11]. For this reason, the two connectors negotiate a certain time 

period that should elapse between two keep-alive messages. If the period expires before a 
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signal is received from the other side, the connectors just assume that the other host has given 

up the connection. Otherwise, the connection is kept alive and the mobile web server may be 

accessed from the internet. The gateway connector is assigned the task of sending regular 

keep-alive messages to the mobile connector over a “stale connection” (when there‟s no other 

HTTP traffic to be exchanged). In the author‟s opinion it would have been much more 

reasonable to give this responsibility to the mobile connector because it would then readily 

reflect the state of the connection. However, research has shown that this would have resulted 

in a more complex state machine for both end points as indicated by the literature in [11]. 

After the initial handshake, the gateway connector is the only one that sends keep-alive 

messages over the control channel. If a request from a web browser comes in from the 

“popular port,” a data channel is requested. If the mobile connector fails to respond to the 

keep-alive message within the negotiated time period, the gateway connector assumes the 

host has stopped running and it is rendered offline. 

 

A decision the timing and regularity of the keep-alive messages have to be sent also has to be 

made. The gateway connector has to figure out an optimal time period after which keep-alive 

messages are to be sent to the peer connector [11]. For this reason, the keep-alive messages 

are not empty packets; they also specify parameters such as when the next control packet will 

be sent. If the mobile connector does not receive this packet by the specified time period it 

assumes that the connection is broken and it tries to fix it. It establishes a new control channel 

and tries to get a “handshake” for it. The gateway discovers the favourable keep-alive period 

by simple trial-and-error. It sends the control messages at increasing time intervals until it 

gets a complaint from the mobile connector indicating that a due packet was not received. 

After this, the connector reverts to the last keep-alive period that was favourable. 

Determining the keep-alive period dynamically is important because different operators have 

different infrastructures and different qualities of service. The geographical location of the 

two negotiating entities can also play a role. This is because the connection has to go through 

different media (with different bandwidth), network devices such as routers and firewalls that 

implement different technologies. If any changes are to be made to how the keep-alive 

massages are sent, they affect only the gateway connector. This makes the system easier to 

maintain. 
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3.4 Mobile Web Browsing Using the Gateway 

 

Figure 9 shows an example of a browsing session. A web surfer types in the domain name of 

the desired server, in this example John.doe.raccoon.net. The request is then sent to the 

Domain name server where every name ending with “raccoon.net” returns the IP address of 

the gateway host. The browser then sends the HTTP request to the returned IP address. Upon 

receiving the request on the “popular port”- port 80- the gateway analyses the request header 

to determine which server to send it to. If the server is running, and a connection has been 

kept alive between the two peer connectors, the gateway searches for it from the pool of 

connections.       

 

 
      

Figure 9: The Request Response Sequence(from source [10]) 
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After analysing the identity of the mobile devices by looking at the opened control channels, 

the required mobile connector is identified. The mobile connector for the requested mobile 

host is instructed to open up a data channel for relaying the HTTP requests. Once it‟s up and 

running, the gateway connector sends the HTTP request to the mobile connector over the 

TCP channel. The mobile connector then passes the HTTP message to the local web server. 

After the server has processed the request, the response is forwarded to the connector and 

goes to the gateway through the data channel used for the request. The data channel is kept 

open for future HTTP traffic. Since data channels are not kept-alive, if the keep-alive time 

period elapses the channel is killed [11]. However, if the channel is still active, it is revived to 

keep the data flowing.  

 

3.5 Security            

 

The fact that every connection to the mobile web server has to be made through the gateway 

provides a single point of access and control. At the gateway, users can be authenticated and 

servers can be accessed based on a quota system. This eliminates the threat of denial of 

service and other kinds of attacks that conventional web hosts suffer [7]. Gateways may also 

block or alert users to update their servers to more recent versions if they happen to be out 

dated. Figure 10 shows a general idea of how security is inherently easy to implement in the 

system.  
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Figure 10: Gateway Security (from source [7]) 
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3.6 The Architecture and Functionality of the gateway 

 

 

 

Figure 11:  The Mobile web Server Gateway Architecture 
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The gateway was implemented using the Apache Tomcat Web Server. When the Tomcat 

server is started, the web server daemon starts running and waits for incoming web requests 

directed to the server. Upon receipt of a request (on the popular port), the server forwards it 

to the dispatcher or valve. As shown by the Figure 11, the dispatcher runs as part of the 

tomcat server. The gateway‟s internal interface to the Tomcat server is called the „valve‟, the 

reason for that being that it is the entity that can capture and redirect HTTP requests. The 

valve or the dispatcher captures all the incoming requests as they are received on port 80 by 

the tomcat daemon. It (the valve) is implemented using a Java HTTPServlet that looks at the 

request headers to determine where to forward the requests. After this is done the valve (or 

dispatcher) is also responsible for checking if the connector of the requested mobile host is 

registered (by querying a MySQL database). If it is registered the HTTP request is forwarded 

to the gateway connector (described in the previous section). If the requested server does not 

correspond to any of the registered servers, it is forwarded to the „webapps‟ and web services 

components. This components deal with the request accordingly by returning an error page 

that indicates that the host is not registered with the gateway. 

 

The MySQL database tables are accessed using a custom persistence module namely „gwdb.‟ 

It is basically an abbreviation for „gateway database‟. The module is responsible for ensuring 

database connectivity; access to the tables at runtime; enforcement of constraints for database 

queries and transactions; logging and exception handling. Within the modules are objects that 

have methods to enable persistent database transaction execution at run-time. The objects 

should be available to all the other gateway components that access the database. It is 

basically the single point of access to the database for the web applications, the valve and the 

connector.  

  

The web applications, labelled the „webapps‟ in the diagram, are Java web applications. They 

allow the administrator to manage the gateway, for users to register their accounts and 

manage them. Additionally, the also allow for users to see other people who are registered. 

Moreover, he or she could check who is online and who isn‟t. This also facilitates messaging 

amongst users. Through these web applications, the administrator can create, view and delete 
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user accounts. They can also play around with the settings; send emails and list online and 

offline web servers. As the web applications are online, administrators can carry their 

gateway management duties whenever they have an internet connection. Mobile users can 

also register their accounts on the gateway from anywhere. They fill in their user names, 

passwords, names, e-mail addresses, the preferred domain name and other important details. 

Once registered, a user can play around with account properties and can change their log in 

details if need be. Users also have access to other web applications such as the number of 

times their servers were visited, the names of the servers online and others registered with the 

gateway. Users can also send messages to each other. This is implemented on a store-and-

forward basis so that mail is always delivered. The MySQL database stores the data used by 

the gateway. This includes the user account information that is queried to provide information 

needed for the proper functioning of the gateway [11].  

3.7 The Protocols 

  

As shown in the Figure 12, the protocol between the web client and the gateway (which is a 

web server in its own right) is HTTP over TCP. The requests between these two entities go 

through the internet (it is normal web browsing). The protocol between the two peer 

connectors is a proprietary protocol invented for the purpose of opening and maintaining 

connections. It is an XML-based protocol that is used to communicate the state of the 

connection on either side. For the data channel, however, the protocol is still HTTP over 

TCP. This is possible because Third Generation (3G) cellular systems entirely use TCP/IP 

and packet switching. This channel is used for sending HTTP data between the mobile web 

server and the gateway. It still goes through the connectors. 
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Figure 12: The Mobile Web Server Gateway Protocols 

 

3.8 Chapter Summary 
 

In conclusion, the author has discussed the basic functionality of the gateway, its architecture 

and the protocols used to communicate with web browsers and mobile connectors. The 

gateway has a connector component that runs as part of the Tomcat web server and it handles 

connection issues with the mobile connectors. Another component known as the „valve‟ 

looks at the headers of incoming requests and decides where to forward them. The gateway‟s 

database in a MySQL database server is accessed and transacted with using a data persistence 

module, „gwdb.‟  For the interface, web applications are used for gateway registration, 

account management and social networking.  
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Chapter 4 

 

Building and implementing the gateway 
 

4.1 Introduction 
 

The gateway for the project is implemented by building on the basic open-source gateway 

connection management modules made available by Nokia. These modules are responsible 

for accepting and maintaining connections with the mobile phone connector (control channel) 

and provide objects that contain information about connection states. They are also 

responsible for opening up data channels when a request is to be serviced. Another part of the 

package is a database persistence module, gwdb, that manages run-time transactions and 

queries as mentioned in chapter three. Provided are also skeleton web applications that show 

how information can be accessed from the gwdb module at run time. This chapter discusses 

the customization and the building of the package to make a unique functional gateway. 

 

4.2 The Structure of the Package  
 

The gateway package is organized into eight modules namely connector, db, gwdb,  iapi, util, 

webutil,  valve, and webapps. All these modules perform tasks that collectively add up to a 

system that is capable of receiving and servicing mobile web server requests.  The connector 

module handles the functions of the gateway connector as mentioned in chapter three. It is the 

part of the gateway that is responsible for receiving connection requests from the mobile web 

servers. It keeps these connections alive by using the XML protocol that is custom-made for 

this purpose (through the control channels). When requests for a connected mobile connector 

come in the gateway connector opens up a data channel as mentioned in the previous chapter. 
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All this is performed through the Tomcat web server and the details will be shared in the 

Tomcat section. The db and gwdb modules are collectively responsible for database setup and 

run time transaction management. The gwdb module is where the tables are defined and the 

objects to access them reside. The „db‟ module is specifically responsible for creating the 

database and for creating the configuration file (with passwords and user accounts) that is 

used to make connections at run time. It is also the module that is responsible for runtime 

transactions. The gwdb module on the other hand has table specifications and methods of 

accessing or querying them. Setting up these two modules, however, was no walk in the park 

as expected. This will be explained in the next section. 

 

Next is the iapi module. It is responsible for functions related to web requests such as 

showing the offline page when the requested mobile web server is not online. It also has 

interfaces that are related to. The other package is util which basically has classes that 

perform utility functions for the other packages. These include functions like opening 

streams, converting from xml to strings and vice versa (for the connector module) and 

generating random identifiers. For the db and gwdb modules, util has classes that assemble 

the requests into final SQL statements and executes them after making a connection to the 

database.  

 

The valve module is a collection of classes that define objects for serving requests as they 

come in form web browsers. As mentioned in chapter three, the valve captures all the 

requests incoming on port 80 of the Tomcat server. The headers of the requests are then 

analysed by the request analyser to determine where to forward the request and the response 

objects. If the request URL for the request matches one of the musers‟ chosen web server 

URLs it is forwarded to the connector module. The connector checks if the requested server 

is online and forwards the request to it. If the requested server is not online then the server 

offline page is shown. The webapps module has web applications that present the gateway 

data to the visiting users. The web applications take care of account management and to view 

gateway connections. The web applications are discussed in later sections. The valve runs as 

part of the Tomcat server and this is discussed in the section 4.3 of this chapter      
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Compiling the Package 

 

Each of the modules in the package are compiled and built using the Ant build tool. By 

issuing the command „ant‟ in the main directory of the module the files are compiled and a 

jar file is produced as a product of the compilation when the „ant jar‟ command was issued in 

the main directory of the modules. The util, db, aipi, connector, and valve, modules were 

built and compiled at this point since no changes were focused.  The gwdb and the webutil 

modules on the other hand needed changes to accommodate new data for pictures messages 

and GPS updates. The web Applications also needed changes as discussed later.   

 

4.2 Adding New Data Fields and Setting Up the Database 
 

4.2.1 The gwdb Module 

 

 The gwdb and the db modules as mentioned earlier manage the connections and transactions 

to the database. To add new features to the package, new fields were added to the tables and 

necessary changes were made to ensure that they were accessible through the gwdb module. 

The module has table definitions and schemas to facilitate access.  The changes were made to 

the classes and interfaces that provided access to the tables in the gwdb database. New 

features introduced include pictures that are seen in the web applications and location-based 

services that show the location of the mobile web servers on a map.  

 

The gwdb module has ten classes in its mysq‟ package (path:\gw-

GW_0_6_1\gwdb\src\com\nokia\mws\gwdb\mysql). This package is used for accessing the 

MySQL database of five tables namely gwdb. It has interfaces and classes that are used for 

installing and accessing the admin, musers, musernames, muserpropr‟ and the „scopes‟ 

tables. The classes in the package are MuserImpl that has the table definition for the „musers‟ 

table and the methods to access and change the data in it. „AdminsImpl‟ for the „admins, 

table; MuserNamesImpl for the musername table; ScopesImp‟ for the scopes table and 

MuserPropsImp for the muserprops table. All these classes also have interfaces that are in the 
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module‟s main directory,‟ \gw-GW_0_6_1\gwdb\src\com\nokia\mws\gwdb\.‟ Adding new 

fields to the musers tables necessitated the changes to the MuserImpl class the Musers 

interface and the other classes that have objects that use the MuserImpl class. This includes 

classes in the webutil package which are used by the web applications to query table objects. 

The diagram below shows the important classes in this package and their relationships with 

the database tables. 

 

 

 

 

 

Figure 13: The Gateway Database and Data Access 



42 4.2 Adding New Data Fields and Setting Up the Database | Rhodes University 

 

 

As shown in figure 13, the db, util, classes have objects that are called by the objects in the 

gwdb module. These objects perform the actual transactions by connecting to the database 

through the MySQL connector.  

 

The musers table stores data related to the mobile web-server users. It stores the identifier, 

the name, the password and the email address of the user. The musernames table stores 

information that is used to construct the URL that is used to identify the users‟ mobile web 

servers. The musername field holds the name that will be used to identify a user in a URL 

and the suffix stores the part that suffixes the musername such as mobile.ict.ru.ac.za. As it 

will be explained in the testing chapter however the functionality of addressing a user with a 

URL starting with the musername was not implemented. This is because the Domain Name 

Server was configured to only recognize URLs starting with http://mobile.ict.ru.ac.za. 

Instead the system used was that of adding the username at the end of the URL like 

http://mobile.ict.ru.ac.za/~alex, where alex is the musername. The defAddr field basically 

holds the address that should be used as a default.    

 

Moving on to the next table in the diagram, the muserprops table stores properties for the 

mobile users. The properties stored in this table are those defined in the MuserPropetyTags 

class which is also located in the gwdb module. The properties stored include background 

pictures and messages for offline pages and the number of hits the page was paid. The values 

are stored in a field of type „blob‟ namely propval. The scopes table stores the domains that 

are used for constructing URLs. It is used for synthesising the URLs that are stored in the 

suffix field of the musernames table. The admins table is used to store the details of the 

administrators, their names and passwords.      

 

 

4.2.2 Changing ‘gwdb’ to add New Features. 
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The fields needed for the new features are those that hold GPS data, the message displayed 

on the maps, and for the profile pictures. The GPS data only needs three fields to keep the 

longitude and the latitude coordinates as well as the message from the last GPS update.  The 

pictures are not stored in the database as „blobs‟. They were rather stored in a designated 

directory on the hard drive. The path of the picture is the one stored in the database. All these 

features are unique to every mobile user and every user will only have one at a time. This 

suggests a one-to-one relationship between the user and these data values. The most suitable 

table for this is the musers table which has four fields namely ID, REALNAME, PASSWD and 

EMAILADDR. The four fields to be added are PICTURE, LATITUDE, LONGITUDE and 

MAPMESSAGE in that order. 

 

To accomplish this in the gwdb package, the interface for the musers table (Musers) was 

changed. The five methods added where: 

 

String getPicturePath(String muserId) throws DbExc; 

String getLongitude(String muserId) throws DbExc; 

 String getLatitude(String muserId) throws DbExc; 

void getMapMessage(String muserID) throws DbExc;      

void changePicturePath(String muserId, 

                      String newPicturePath) throws DbExc;   

 

 

These methods are implemented in the muserImpl class which implements the musers 

interface. The sample code for getting data used to implement the „get‟ methods in the 

MuserImpl table is as follows: 
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public String getLongitude(String muserId) throws DbExc { 

        try { 

   String noData =  "not"; 

            String[] 

                longitude = parent_.selectRow(TABLE, 

                                              new String[]{LONGITUDE_COL}, 

                                              new String[]{ID_COL}, 

                                              new String[]{muserId}); 

            return (longitude == null) ? noData : longitude[0]; 

        } catch (SQLException sqlExc) { 

            throw new DbExc("Could not query muser " 

                            + muserId 

                            + ": " 

                            + sqlExc.getMessage(), 

                            sqlExc); 

        } 

    } //   

 

Evidently the code is for the getting the longitude coordinates from the musers table. The 

method used is the db.TableBase.selectRow method which is located in the „db‟ package or 

module. It basically takes care of selecting the fields from a given table. The parameters that 

it takes in are arrays for the column(s) to be returned, the column(s) to be matched and the 

values to be matched. In this case the variable table holds the value musers; the column to be 

returned is the longitude column and the column to be matched (the „where‟ clause) is the id 
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column. It returns the longitude value for the column that match the given muserId 

(identifier). All the other get methods follow this basic format. The web applications and 

other modules access this information by calling these methods from the objects of this 

package (gwdb). The fields also needed to be added to the table definition in MuserImpl.java. 

The column names, their types, lengths, default values and whether they are null-able or not 

was specified in the table specification in the muserImpl class. An example code is as 

follows: 

 

ColumnSpec musersLongitude =  

                new ColumnSpec(musers_, 

                               LONGITUDE_COL, 

                              "VARCHAR(" + 16 + ')', 

                               true,  // non nullable 

                               ‘not’),  // no default value     

 

The db.ColumnSpec class is located in the db package and it hold column specifications that 

were supposed to be used for setting up the database and for accessing it. The setting-up part 

however did not go so well. Figure 14 shows the edited database and the relationships 

between tables. The tables where related to ensure data integrity. If a user removes their 

account the deletion is to be cascaded to the musernames and muserprops tables to make sure 

all the user‟s data is deleted from the database. 
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Figure 14: The Gateway Database and Data Access (modified) 

 

4.2.3 Putting the Database Together 

 

The package is set up in such a way that the person wishing to install it issues commands to 

install all the tables. The commands involved execute Bash shell scripts. The Bash scripts are 

also supposed to add the necessary references to the classpath, to set up the database and to 

generate a configuration file that is used to configure connection variables used for run-time 

connections.  

 

Because the gateway is being setup on the Windows operating system, bash commands as 

well as scripts did not execute as expected. The tool used was „bash‟. The bash tool is an 
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emulation tool for the Bash shell on windows. Instead of producing the above-mentioned 

deliverables the bash script execution returns class-not-found errors. Attempts to correct the 

errors proved futile. The tasks had to be performed manually by studying the code and the 

scripts. This was also desirable as the code for setting up the database did not have any table 

relationship information at all. Since the table definitions were given from the code that is 

supposed to set the gwdb database up, the mission was not difficult at all. The relationships 

were also setup on the MySQL database in addition to what was in the code. The database 

name was set to gwdb, there are two user accounts gwusr and „root.‟ The usernames 

passwords for logging onto the MySQL server where provided to the gateway application by 

putting them into the gw.build.properties file.     

 

4.2.4 The Database Configurations File 

 

The database configurations file, namely mws-gw-db.cfg, is a file that is used to configure the 

database whenever the access details change. It is used to keep the database connection 

details current.  The file was supposed to be a product of the bash-script execution mentioned 

earlier. It had to be put together (by studying the code that was supposed to set it up in the db 

package) to ensure database connections.  The information contained in this package is the 

name of the database; the name of the database user that the package will use to access the 

database and the corresponding password. Also in the file was the URL to accessing the 

database. The configurations were as follows: 

 

db.name = gwdb 

db.url = jdbc:mysql://localhost:3306/gwdb 

db.user = gwusr 

db.passwd = 673367 
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The file is located in the „db‟ package of the in the „bin‟ folder. This file is used by the db 

package to establish connections with the gwdb database.      

 

   

Chapter 4 

 

Building and implementing the gateway 
 

4.1 Introduction 
 

The gateway for the project is implemented by building on the basic, open-source, gateway 

connection-management modules made available by Nokia. These modules are responsible 

for accepting and maintaining connections with the mobile phone connector (through a 

control channel) and provide objects that contain information about connection states. They 

are also responsible for opening up data channels when a request is to be serviced. Another 

part of the package is a database persistence module, gwdb, that manages run-time 

transactions and queries as mentioned in chapter three. Provided also are skeleton web 

applications that show how information can be accessed from the gwdb module at run time. 

This chapter discusses the customization and the building of the package to make a unique 

functional gateway. 

 

4.2 The Structure of the Package  
 

The gateway package is organized into eight modules, namely: connector, db, gwdb,  iapi, 

util, webutil,  valve, and webapps. All these modules perform tasks that collectively add up to 

a system that is capable of receiving and servicing mobile web-server requests.  The 
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connector module handles the functions of the gateway connector as mentioned in chapter 

three. It is the part of the gateway that is responsible for receiving connection requests from 

mobile web servers. It keeps these connections alive by using an XML protocol that is 

custom-made for this purpose (through the control channels). When requests for a connected 

mobile connector come in the gateway, connector opens up a data channel as mentioned in 

the previous chapter. (All this is performed through the Tomcat web server and more details 

will be given in the Tomcat section.) The db and gwdb modules are collectively responsible 

for database setup and run-time transaction management. The gwdb module is where the 

tables are defined and the objects to access them reside. The „db‟ module is specifically 

responsible for creating the database and for creating the configuration file (with passwords 

and user accounts) that is used to make connections at run time. It is also the module that is 

responsible for runtime transactions. The gwdb module on the other hand has table 

specifications and methods of accessing or querying them. Setting up these two modules, 

however, was not as easy as had been expected. This will be explained in the next section. 

 

Next is the ‟iapi‟ module. It is responsible for functions related to web requests such as 

showing the offline page when the requested mobile web server is not online. It also has 

interfaces that are related to. The other package is util which has classes that perform utilty 

functions for the other packages. These include functions like opening streams, converting 

from XML to strings and vice versa (for the connector module) and generating random 

identifiers. For the db and gwdb modules, util has classes that assemble the requests into final 

SQL statements and executes them after making a connection to the database.  

 

The „valve‟ module is a collection of classes that define objects for serving requests as they 

come in from web browsers. As mentioned in Chapter 3, the valve captures all the requests 

incoming on port 80 of the Tomcat server. The headers of the requests are then analysed by 

the request analyser to determine where to forward the request and the response objects. If the 

request URL matches one of the musers‟ chosen web server URLs, it is forwarded to the 

connector module. The connector checks if the requested server is online and forwards the 

request to it. If the requested server is not online, then the server offline page is shown. The 

„webapps‟ module has web applications that present gateway data to visiting users. The web 

applications take care of account management and enable the viewing of gateway 



50 Compiling the Package | Rhodes University 

 

connections. The web applications are discussed in later sections. The valve runs as part of 

the Tomcat server and this is discussed in the section 4.3 of this chapter      

Compiling the Package 

 

Each of the modules in the package was compiled and built using the Ant build tool. When 

the command ant was issued in the main directory of the module, the files were compiled. A 

jar file was produced as a product of the compilation when the ant jar command was issued 

in the main directory of the modules. The util, db, aipi, connector, and valve, modules were 

built and compiled at this point since no changes were focused.  The gwdb and the webutil 

modules on the other hand needed changes to accommodate new data for pictures messages 

and GPS updates. The web applications also needed changes as discussed later.   

 

   

4.3 Setting up Tomcat 
 

4.3.1 Setting up the Containers 

 

The container for the mobile web server gateway is the Tomcat web server. For this project 

the version used is tomcat 5.5. Tomcat can be broken down into a set of containers, each with 

their own purpose [17]. These containers are configured by using the „server.xml‟ file. The 

hierarchy for the containers is shown below as it appears in the „server.xml‟ file format: 

 

  <Service> 

    <Connector /> 

    <Engine> 

      <Host> 
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        <Context /> 

      </Host> 

    </Engine> 

  </Service> 

</Server> 

 

The service tags for each container are contained within the server tags. The tags have 

attributes that describe the behaviour of the container when servicing requests.  The Tomcat 

server is the interface for receiving all web requests for the gateway. It also has the 

responsibility for receiving and sending requests, as well as responses on behalf of the 

gateway connector. This is where the containers come in. The web requests are serviced by 

the Tomcat‟s Catalina container as explained in [19]. (The service name for this container is 

„Catalina'). The connector used for this project is the non-SSL HTTP/1.1connector. The port 

reserved for this connector for the purposes of the project is port 80, as mentioned in 

preceding Chapter 3. The Catalina service is always configured by default when installing the 

Tomcat package. It is therefore not hard to set it up at all as it is the main Tomcat service. 

Below is the configuration of the connector from the „server.xml‟ file: 

 

<Connector  port="80"   maxHttpHeaderSize="8192" 

               maxThreads="150" minSpareThreads="25" maxSpareThreads="75" 

               enableLookups="false" redirectPort="8443" acceptCount="100" 

               connectionTimeout="20000" disableUploadTimeout="true" /> 

 

 For Tomcat to service requests and other traffic for the gateway connector, a new container 

should be created. The service for this container should listen on the gateway host‟s port 

15001. When the requests come in from the mobile web servers for connection establishment, 

the container needs to parse the stream coming in using a protocol. After this is done, the 
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requests need to be processed. The Tomcat container must know where to forward incoming 

data. This is shown in the figure 15 which is from Alex Hanik‟s presentation entitled Hacking 

Tomcat [18].   

 

 

 

Figure 15: Tomcat Containers and request Flow 

 

The endpoint is the receiver and sender of traffic. According to Alex Hanik all java.io, 

java.nio/apr and socket logic form part of the endpoint illustrated in Figure [18]. For the 

desired connector the important thing to do here is just to give the port, which is 15001. This 

is the port on which the gateway will communicate with mobile web servers. The protocol 

and the processor components should contain logic for parsing the data that comes in. The 

Processor component is responsible for setting up buffers for passing streams and for parsing 

the actual stream against the „Protocol‟ component.  For the gateway this is the 

MuserProtocolHandler which is an object from a class in the server package of the connector 

module. This package contains classes that parse incoming and outgoing XML data. For the 

control channel the UDP data could be for connection establishment, connection keep-alives 

and data channel requests (when the gateway requests a data channel from the mobile web 

server).  
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The Adapter component, according to Hanik, handles passing on the requests and responses, 

once parsed, to the container‟s engine. According to Apache‟s documentation of Tomcat, the 

container's engine ” receives and processes all requests from one or more Connectors, and 

returns the completed response to the Connector for ultimate transmission back to the client”.  

The configuration of the mobile web server connector container in Tomcat is as shown below 

(partially from [22]): 

 

 

<Service name="Mws"> 

    <Connector    protocol="com.nokia.mws.connector.server.MuserProtocolHandler”    

processorChainSpec="com.nokia.mws.connector.server.RequestStreamer:com.nokia.mws.co

nnector.server.HitCounterResponseStreamer"  logLevel="INFO"   

muserObservers="com.nokia.mws.connector.server.observer.Messenger:com.nokia.mws.con

nector.server.observer.EverOnline" 

port="15001"/> 

    <Engine name="Mws" defaultHost="MwsHost"/> 

  </Service> 

   

The processorChainSpec attribute shows the container the objects that use the container. The 

Requestreamer (in the connector module‟s server package) receives information about which 

mobile web servers are requested and serves content depending on whether the requested 

server is online or not. The hitcounterResponseStreamer is responsible for updating and 

incrementing the „hits‟ property of the muserprops table every time a mobile web server is 

accessed successfully. The muserObservers attribute has references to the observer objects. 

These are the Messenger and the EverOnline classes or instances. Both are part of the 

„observer‟ package. The EverOnline observer updates the everOnline property of mobile web 

servers (also in the muserprops table). This property indicates whether the user (mobile web 

server) has ever been online. The „Messenger‟ observer on the other hand handles the 
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messaging. It sets the msg property in the muserprops database table. The observer handles 

the sending and reading of messages by the mobile users depending on the connection state, 

online or offline.     

 

 

4.3.3 Setting up the Valve  

 

According to the Apache Tomcat documentation [21] A Valve element represents a 

component that will be inserted into the request processing pipeline for the associated 

Catalina container (Engine, Host, or Context). As mentioned in chapter three, the valve or 

dispatcher for the gateway is the part that determines where to forward the web requests as 

they come into the gateway. It either forwards the requests to the web applications (the 

Catalina HTTP 1.1 container) or to the gateway (Mws) connector, which is also a part of 

Tomcat (as explained in the previous section). There needs to be a reference in Tomcat 

pointing at the class that implements the valve. This is accomplished by placing the line 

below in „server.xml‟ outside all the containers: 

 

<Valve className="com.nokia.mws.valve.MuserValve"/> 

   

It‟s outside all the connectors because it is the one that directs incoming requests to either the 

web applications or the web servers. Phrased differently, it determines which container to 

forward a request to as shown in the diagram below. If the incoming request is for a mobile 

web server that happens to be offline, an offline page is generated and the „out of site‟ web 

application is invoked. This is shown in Figure 16 with the line from the mobile web server 

container to the web applications.      

 

http://tomcat.apache.org/tomcat-6.0-doc/config/engine.html
http://tomcat.apache.org/tomcat-6.0-doc/config/host.html
http://tomcat.apache.org/tomcat-6.0-doc/config/context.html
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Figure 16: The Valve and the Containers 

 

 

4.4 The Web Applications  
 

The gateway would not be complete without the web applications. The web applications 

handle, amongst other things, user registration and user account management. For registration 
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a user only really needs to create an account with log-on details. The user should then be able 

to manage (change details, delete their accounts) when they so wish. The web applications 

also enable the administrator to manage mobile web server accounts by adding new users or 

deleting on editing details of existing ones. They also enable the web visitors to see the 

mobile users registered on the gateway and see whether they are online or not. The web 

visitors also get the benefit of seeing the number of hits web visitors have paid to a particular 

account. The web applications are the face of the gateway, they are all visitors really ever see 

and the presentation as well as the user-friendliness will determine the visitors‟ impression of 

the service. The web applications that come with the Nokia gateway package are far from 

complete and are minimal. The next section describes the process of customizing, adding 

functionality and setting them up.  

 

The web applications for this project are implemented using JavaServer Faces and in some 

cases JavaServer Pages and Servlets. This enables applications to access other backend Java 

code to access databases and other runtime information such as the connection state of the 

mobile web servers. JavaServer Faces applications use the Ant build tool and have their 

directory structure organized in standard Ant application structure. The main web application 

folders contain the subfolders: build, dist, docs, src and web. In the main directories are also 

ant build files. Ant build files (build.xml) perform functions such as importing all the needed 

library jar files, for dynamically constructing the classpath for the project, compiling as well 

as installing the web applications into Tomcat using the Catalina-Ant.jar file. The first thing 

to do for any web application is therefore to set up this file. The logical flow of data in the 

web applications for this project is depicted in the Figure 17: 
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Figure 17: Web Applications and Data Access 

 

The JavaServer pages capture information and display it to the user. They forward or get the 

data from the backing beans by using the beans' getter and setter methods. The flow and 

navigation of the JavaServer Pages is guided by the „faces-config.xml‟ file. The backing 

beans have libraries and import the database persistence module objects and packages. If data 

from the database is to be queried, these objects are used to access it by calling their methods. 

The beans also process the data and perform functions like sending email messages. The 

webutil, util and the connector packages help in accessing connection information for mobile 

users. By instantiating objects and calling their methods, the JavaBeans can obtain 

information on which mobile web server users are online and which ones are offline. The 

next sections will concentrate on the challenges faced while setting up and customizing the 

web applications.  

    

4.4.1 The User Registration Web Application   
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The gateway package did not come with a user registration web application and one had to be 

put together to allow web users with mobile web servers to register for the service. The 

application captures user information that is crucial to successful web-server-gateway 

communication. It also sends an email to the registrant confirming the registration event to 

them. The application should also have error handling to make sure that the details entered 

are valid for successful user registration.  

 

The only data that is important to the functionality of the gateway is that for the user account: 

a user name and a password; and that for the access URL (that is the URL with which the 

web server will be identified). With this a user can connect their mobile web server to the 

gateway by putting their log-in details into the mobile PAMP connector. PAMP is combined 

Apache, PHP and MySQL on a mobile phone (running a Symbian operating system). 

However, there is other information that is needed for the web application presentation and 

user management. This data includes pictures for display and an email address to contact user 

when necessary.  All this information should be solicited from the user with a clean, user-

friendly interface. 

 

 JSP Pages  

The web application first produces a user registration page that has a form with fields to be 

completed. Upon successful submission, the application flows to the success page after 

sending an email. If, however, the form was not completed successfully the application 

displays the error at the top of the page (if it is an internal error such as database access) or 

next to the field involved. If a cancel button is pressed, another page thanking the user for 

trying, is displayed. This flow logic is all implemented in the „config.xml‟ file in the 

„/web/web-inf‟ folder. Also declared in this file are references to the backing beans which do 

the processing for the application. The main JSP Page and the final fields for user registration 

are shown in Figure 18: 
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Figure 18: The Registration Page 

 

There are tags from the JavaServer faces library for text, password and file upload fields. The 

file uploading tag had to take in images only. An attribute named accept which specifies the 

MIME type of the file had to be added to ensure this. The code extract from the JSP page for 

accomplishing this operation is shown below: 

 

<h:outputText value="Picture:"/>    

        <t:inputFileUpload id="myUploadedFile" accept= "image/*" 

         value="#{muserCreator.myUploadedFile}"/>    
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The string accept= "image/*" ensures that only image files are uploaded as part of this 

operation. 

 

 

The Backing Beans 

 

The main aim for JavaServer Faces was to separate presentation from processing logic and 

styling code. The backing beans handle the processing for a java web application and the JSP 

pages handle the presentation. The backing beans are the MuserCreator.java and the 

NameScopepair.java classes. The MuserCreator.java class has getters and setters for the 

fields obtained from or displayed on the main registration form. It accesses the database 

calling methods from the gwdb module. The bean ensures that the user identifier is unique 

and registers the user after making sure everything is perfectly fine. After that, it sends an 

email message affirming the registration by sending the user the details they had registered 

with. The NameScopepair.java class is responsible for getting information about the domain 

names used for constructing the mobile web server users‟ URLS. The gwdb objects used for 

the registration are those for accessing the musers, musernames and the scopes tables.   

  

The challenge encountered during the implementation of this application was the uploading 

of files. The „muser‟ table in the database had no field for pictures. At first a „blob‟ field was 

added to it for this purpose. However, storing picture in databases requires expensive 

operations and memory. A lighter approach was taken that stores the picture on a directory on 

the disk. The file path was then stored in the database. The pictures are all loaded in the same 

folder with the user identifier as their names. This ensures that the pictures have unique 

names and paths and can be overwritten easily.  

 

The pictures are delivered from the interface using the 

org.apache.myfaces.custom.fileupload.UploadedFile class. The object holding the picture 

that is obtained from the interface is instantiated from this class. The picture is then stored in 
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a directory on the hard drive by using the operation below shown in the following code 

extract from the MuserCreator.java bean: 

 

public void sendFile(){ 

try{ 

//first create dir for file - not needed ofcourse 

 File fileOnServer = null; 

      

//create empty file with specified name and path 

        filePath = "e:/pictures/" + muserId_ + ".jpg"; 

        fileOnServer = new File(filePath); 

     filePath = muserId_ + ".jpg"; 

  

// save uploaded file into new one 

 BufferedOutputStream os = new BufferedOutputStream(new 
FileOutputStream(fileOnServer)); 

 BufferedInputStream is = new 
BufferedInputStream(myUploadedFile_.getInputStream()); 

 byte[] buffer = new byte[1024]; 

 int count = 0; 

 while ((count = is.read(buffer)) != -1) { 

                os.write(buffer, 0, count); 

 } 

 fis = new FileInputStream(fileOnServer); 

 os.close(); 

 is.close(); 

}catch(Exception e){ 

  e.printStackTrace(); 

} 
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}      

The filePath variable is then stored in the database. It is guaranteed to be unique since it is 

named after the user identifier. After all the input variables have taken in data from the input 

form, the createMuser() method of the bean is called. It invokes all the operations for 

creating a user. 

 

4.4.2 The User Account Web Application and Offline Properties  

 

The user account web application was set up but what the mobile users could manage on their 

accounts was very limited. The application allowed the users to change the identifiers 

(usernames), passwords and real names. However there was a lot in the application that the 

user could change. Additional data fields and forms were needed for changing pictures and 

messages shown when a user is offline. A user also need to set if they wanted to be visible to 

others on the „all-users‟ or online-users page. The gwdb objects used in the beans are for 

accessing user information from the musers tables. However, the three fields for offline data 

and visibility are part of the muserprops table which stores properties for users. Also, session 

tracking and password recovery functionality had to be added, but this is fairly standard and 

the code is shown in the extracts at the end. The main final form for this application is shown 

in the Figure 19: 
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Figure 19: The Settings Page 

 

A success.jsp page was also added to confirm the event of successful account data changing. 

Necessary changes had to be made to the faces-config.xml file to add the page to the overall 

application-flow logic.  

 

Allowing Users to Change Offline Message and Picture (in the Backing Bean) 

  

In the main backing bean (Settings.java), the methods used to change the offline fields are 

those of the MuserProps interface in the gwdb module. The properties have codes. To set 

these properties, the define method from the MuserProps interface was called. And the value 
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of the properties set to those input from the form in the JSP page. An extract of the most 

important code for accomplishing this (from the Settings.java bean) is shown below: 

 

MuserPropTag  mpt = MuserPropTagMgr.getMuserPropTag("oos-text"); 

  muserProps().define(muserId_, "oos-text", msgProp_);   

 

oos-text is the code for the offline message, muserId_ is the user that is currently logged on 

and msgProp_ is the input data from the form. The muserProps() method returns the 

muserprops table from the database for writing and querying. The offline picture is stored as 

a „blob‟ in the database (muserprops table). An overridden method of the define method takes 

in InputStream types instead of strings. This method is called for uploading the offline picture 

as shown in the code extract below (from the Settings.java bean):  

 

MuserPropTag  mpt = MuserPropTagMgr.getMuserPropTag("oos-fg"); 

  muserProps().define(muserId_, "oos-fg", fis); 

 

oos-fg is the offline picture tag code in the muserprops table; fis is the FileInputStream object 

that contains the image uploaded from the input form. The file, however, does not come here 

directly it has to be put in a FileInputStream object first. Simply taking the file object from 

the interface and converting it to a FileInputStream object directly does not work. The 

uploaded file was in the form of the org.apache.myfaces.custom.fileupload.UploadedFile 

object and calling the getInputStream() method  used for this was not rendering the desired 

results. To get around this, the file had to be stored on the disk (as done in the sendFile() 

operation for  registration ) and converted to a FileInputStream object (fis in the code 

extract). This worked as expected. An example of an offline page is shown in Figure 20 with 

a picture and message left by the user. 
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Figure 20: The Offline Page 

 

Allowing users to set   their visibility 

 

Another feature added is that of allowing users to set if they want their status to be shown 

online. They could set the combo-box on the screen to either true or false. If the user chooses 

„true‟ their status are made „public‟ and everyone could see when they are online and when 

they are not. If it is set to false their status is not set to false. This is set in part by using the 

extract of code below: 

 

MuserPropTag 

                mpt = MuserPropTagMgr.getMuserPropTag("show-on-portal"); 
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            muserProps().define(muserId_, 

                                "show-on-portal", 

                                visibleProp_); 

 

 

 

Allowing Users to Change Profile Picture 

 

 Another issue was uploading another picture (for the main profile picture). A JavaServer 

Faces error about the clashing of variable names of the uploaded files when they were 

different in both the forms and the beans was being displayed. To overcome this, the picture 

had to be put on another JSP page (changePic.jsp) using a separate backing bean 

(ChangeFile.java) to clear out these errors. Necessary changes had to be made to the faces-

config.xml file to reference the bean and to add the page to the overall application-flow logic.  

  

Session tracking and Password Recovery 

Session tracking using cookies was added to the application. This was done by adding the 

cookies to a javax.faces.context.FacesContext object (facesContext). The following is an 

extract of the main code used to add the cookies: 

 

((HttpServletResponse)facesContext.getExternalContext().getResponse()).addCookie(userna

me); 

((HttpServletResponse)facesContext.getExternalContext().getResponse()).addCookie(passwo

rd); 
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 This is a standard way of adding cookies to JavaServer Faces web applications.  

For the password recovery feature, a user just needs to enter their user identifier in a textbox. 

Their email address is obtained from the musers table and the corresponding password is sent 

to their mailbox. Necessary changes had to be made to the faces-config.xml file to add the 

password-recovery page to the overall application-flow logic. 

 

4.4.4 The Admin Web Application 

 

The administrator web application allows the administrator to manage the gateway from the 

web. The functions that an administrator can perform are adding new users, deleting existing 

ones and changing their details. The application also has a page for showing all the registered 

users. Another page also shows the users that have their web servers online. The registered 

users‟ page may be seen by the administrator only. For social networking purposes however 

this is not favourable and the application was modified to be seen by all the web visitors. The 

online users‟ page was also made visible to the public so that they might network with them.  

 

The application was edited to display pictures uploaded by the users. This meant using the 

methods of the „gwdb‟ objects to get the picture name of the mobile user. The task, however, 

was not as simple as initially anticipated. The pictures were stored on the hard disk on a 

folder that was outside the web application‟s context path. If the images were put in the 

context path of the „admin‟ web application it would have deprived other applications access 

rights. A solution had to be found to make sure the pictures were visible from outside the web 

applications‟ context paths. The solution was using a third party servlet 

(com.jsos.image.ImageServlet) that was in form of a jar file. The jar file was placed in the 

library folder of the web application. In the web.xml file a servlet and its mapping was added. 

This was done with this XML extract: 

 

<servlet>  

     <servlet-name>Image</servlet-name>  
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     <servlet-class>com.jsos.image.ImageServlet</servlet-class>  

    </servlet>  

 

 <servlet-mapping>  

      <servlet-name>Image</servlet-name>  

      <url-pattern>/servlet/Image</url-pattern>  

</servlet-mapping>         

 

In the backing bean (MuserInfo.java) the picture path is obtained from the „gwdb‟ objects 

using the musers.getPicturepath method. The picture path is then rendered to the JSP using a 

getter method. On the page the graphicImage tag of the http://myfaces.apache.org/tomahawk 

library was used. The image‟s path is referenced in the url attribute of this tag. The URL is 

basically that of the com.jsos.image.ImageServlet servlet as specified in the web.xml 

(/servlet/Image). The parameter taken by the servlet (through the URL)  is the file path and 

that is e:\pictures\#{muserInfo.picturePath}. #{muserInfo.picturePath} is expression 

language to access the picturePath property of the muserInfo.java bean. The code extract is 

as follows: 

 

<t:graphicImage url="/servlet/Image?e:\pictures\#{muserInfo.picturePath}" 

                       border="1" 

                       alt="image not available." 

                       width = "90" height = "120"  

                       /> 
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This successfully displays the picture from outside the context path of the application, that is 

in the folder located on the hard disk (e:\) in the pictures folder. Figure 21 is a screenshot of 

the mobile web server gateway users‟ page. 

 

 

 

 

 Figure 21: The All Users Page 
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4.4.5 The main Page and Styling of the Web Applications 

 

The web applications needed to be connected to other pages and to a main page (the initial 

page that connects all the others). Styling also needed to be changed for the application to 

look more attractive and consistent. The implementation had to be simple and minimal to 

allow for easy editing. A Cascading Style Sheet (css) file was used to style the web 

applications (basic.css). Each application has its own „basic.css‟ file in the web folder. The 

styles are applied using four files because of they are needed in different places in the JSP 

file. <@include> tags are used to include the files into the pages at compile time. The three 

files contain content to format the header, the body and the footer. The file extracts fro the 

four ‘.inc’ are shown in the appendix, but just for clarity‟s sake the files contain links and 

<div> tags that are included at four distinct places in the main file were they styles are 

needed. Including the four files required the tags following tags (in the JSP files).   

 

<%@include file="inc/head.inc" %> 

<%@include file="inc/subBody.inc" %>  

%@include file="inc/subBodyFin.inc" % 

<%@include file="inc/footer.inc" %> 

        

The „head.inc‟ file contains the header information and the reference to the „basic.css‟ file. 

The other „.inc‟ files have „<div>’ style tags for the different parts of the JSP files such as the 

navigation list the body, and the footer. After application the results is the styling for the 

pages shown in the preceding sections with the links to all the web applications and a 

highlighted link (orange) link for the current one. The Main page basically has the link to all 

the web applications; software downloads of the web-server and other supporting software 

that works with the gateway. 

 

 

mailto:%25@include%20file=%22inc/subBodyFin.inc%22%20%25
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4.4.6 Setting up the Web Applications 

 

After everything is edited and finalized for the web applications an Ant command is issued in 

the main directory of the web application to compile it (the default action in the „build.xml‟ 

file). Once this is done, Tomcat is started and the „Ant install‟ command is used to install or 

deploy the application. This uses the Catalina-ant.jar file which is used by „Ant‟ to deploy 

applications. Once this is done the web applications can be visited using their context URLs 

or by going to the index.html page (the main page) that has all the links to all the other web 

applications.    

 

 

4.5 Chapter Summary 
 

In conclusion, the author has discussed the relevant issues encountered during the process of 

building and setting up the gateway. The chapter explain how the gateway was set up using 

the open source Nokia gateway. It describes how the database was installed and how Tomcat 

was configured. The chapter also explains how the web applications where modified to add 

new functionality and to make them more attractive  
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Chapter 5 

 

Design and Implementation of the Location 

Based Services for the gateway 
 

5.1 Introduction 
 

One of the project objectives was to design and build a new feature that works harmoniously 

with the other parts of the gateway.  The new feature implemented is the gateway location 

based service that gets GPS information from the mobile phone serving mobile content and 

shows the location of the web servers on a map. Since location is a sensitive issue, the mobile 

user would need explicitly to log on to upload their coordinates to the server. They should 

also be able to delete the coordinates if they so wish. This chapter will discuss the design and 

the main points of implementation encountered during this phase of the project.  

5.2 Application Specifications and Development Considerations  
 

The application residing on the mobile phone needed to be capable of soliciting 

authentication information and for obtaining GPS data from the GPS device on the phone. 

The application was designed to communicate its information with the server and receive a 

reply stating whether the GPS coordinates were to be updated at a certain interval. The 

information was meant to be sent be sent over a TCP connection which is terminated after the 

updates to make sure power use on the mobile phones was minimal. Contrary to expectations, 

however, the implementation of TCP connections using streams was not so simple. The 

approach taken was that of establishing a TCP connection to the server and opening streams 

to communicate through this connection. The program worked very well on the emulator and 

on the Local Area Network. On GPRS networks it was a totally different story. The TCP 

connections were being established but the streams were not being established.  Instead the 
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program hung at that point until it was stopped. The simplest solution to the problem was to 

use UDP connections instead of the originally proposed TCP. This is discussed in the 

implementation section of this chapter.   

 

 The GPS application was designed to be invoked explicitly by the user of the mobile phone, 

separately from the use of the web server and its connector. This application can in future be 

easily modified and used for other features if implemented separately from the mobile web 

server code. Another reason why the application was implemented separately is that it was 

much easier to implement it using the Java Mobile environment (JME) rather than Symbian 

C++ or Python for Symbian. Both these languages are currently very inconvenient for 

implementing applications in as they need to be Symbian-signed before they can do anything 

useful like accessing the GPS data. For signing one can either apply for a publishers' key 

(given only to publishers!) or upload the application to Symbian Signed which enables one 

individual to run the application on only one phone
1
. Both approaches are relatively 

inconvenient compared to the use of Java applications on the mobile phone. 

 

There is a server application on the gateway that receives information from the mobile 

phones and updates the location information in the gwdb database. This application was 

implemented in Java and it listens on a specific port for any incoming connections. Its 

operations are simple: for each incoming request (thread), it reads the message and divides it 

into tokens; checks if the user exists and updates their GPS coordinates and map message (the 

message that will show on the map). If a user does not exist or their logon details do not 

match, they are ignored. The GPS coordinates and the map message are accessed later by a 

JavaServer Pages web application through the gwdb module. The web application then 

displays the most recent updates at the given coordinates on a Google map. The service is 

delivered as shown in Figure 22. 

 

 

                                                           
1
 Nokia's recent purchase of Symbian Signed may change this situation, which has caused much concern and 

anger in the mobile development community. 
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Figure 22: The Gateway's Positioning Feature 

 

5.3 Designing and Implementing the Applications    
 

As shown in the diagram in section 5.2, the application should have a client-server 

architecture, with the gateway hosting a server that awaits requests from mobile clients. The 

application on the server has to be multi-threaded and has to access the database through a 

single connection. This is much more efficient than creating new objects and database 

connections as connections come in from the clients. Since the client application would be 

behind the operator firewall it would need to make the connection to the server. It does not 

matter if the connection is unreliable because the messages are resent after a number of 

milliseconds. Therefore employing UDP for the job is the best option because packet loss is 

not a major problem in this instance.  
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5.3.1 The Mobile Phone Application 

 

The application on the mobile phone has a form that takes in three values: the username, the 

password and the message to be displayed on the map. In the background, it opens a UDP 

connection to the server on a known port.  The GPS coordinates are obtained from the 

phone‟s GPS device by a class that implements the 

javax.microedition.location.LocationListener interface. This interface requires that the 

classes implementing it subscribe to three methods: the locationUpdated, 

locationStateChanged and the run methods. In the run method preferred GPS accuracy, and 

battery usage are specified. This method is responsible for obtaining the GPs coordinates 

from the GPS device. It calls the javax.microedition.location.LocationProvider.getLocation()  

method that gets the coordinates from the GPS device. Also set in this method is the interval 

between which the application prefers to get the GPS coordinates.  

 

The other method that classes should subscribe to is the locationUpdated method. This 

method contains all the tasks that are to be carried out after a successful GPS update, such as. 

sending the coordinates to the server. The message is constructed using a special string 

delimiter, !; (an exclamation mark and a semicolon) to separate the tokens. The components 

of the message are (as previously mentioned) the username, password, latitude and longitude 

coordinates and the message to be displayed on the map. The message is then converted to 

bytes and inserted into a datagram. It is then sent to the server on port 55555 using the 

connection established earlier.  This is repeated after every ten thousand milliseconds until 

the user terminates the connection.  The actions are illustrated in the Figure 23: 

 

 

 



76 5.3 Designing and Implementing the Applications | Rhodes University 

 

 

 

Figure 23: The Client Application’s Flow Chart 
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While the application is updating the server, it displays a form that tells the user that the 

updates are currently being made every ten thousand milliseconds. If the user presses the 

back button on the server, the locationUpdated  method is stoped. 

 

5.3.2 The Server Application 

 

The application that resides on the gateway server sits and waits for incoming connections 

and messages. When started, it establishes a connection to the gwdb database and waits for 

datagrams to come in on port 55555. When a connection comes, it is serviced by a thread. 

The thread reads in the datagram and converts the contents to a string. The string is parsed 

through a tokenizer to get the separate parts of the message into variables. The username and 

the password parts of the message are then matched against those in the database. If the user 

exists the updates are made to the gwdb database‟s muser table. The fields overwritten are the 

latitude, longitude and the mapmessage. The connection thread runs a while loop that listens 

for incoming connections on the designated port. The loop is terminated when the server is 

stopped. 

 

5.4 The Web Application 
 

5.4.1 Introduction 

 

The GPS service would not have been complete without the front end, the web application. 

The web application‟s functions are simple. It takes the coordinates and the message from the 

database through the objects provided by the gwdb module and displays the markers of those 

that have GPS coordinates at their location on a Google map. When a marker is clicked, the 

an information window should pop up showing the profile picture of the mobile user, the 

username, their real name, their message and a link to their mobile web servers. The gwdb 

methods used for obtaining the data from the database are those of the musers table added to 

the database in section 4.2.1.  
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5.4.3 Server-Side and Client-Side Value Exchange  

 

Google maps can be used by getting a key from „maps.google.com.‟ Once a key is given it 

can be used for maps in a particular Domain or sites using the registered URL. The maps can 

be manipulated by using JavaScript code that can call Google maps-specific objects and 

methods. The methods and objects can be used to draw maps on a page, to put markers at 

specific coordinates and to put information windows. The information windows can also be 

displayed after clicking a marker (known as an overlay) after adding an action listener to the 

marker. This application needed to be displaying markers at positions determined from the 

coordinates stored in the gwdb database.  Also, the markers are displayed only when there are 

values for them in the database. All the users that have coordinates in the database need to 

have their markers displayed at their positions.  Moreover, when the markers are clicked they 

display the picture of the user, their names, their map-message and a link to their mobile web 

server.  Before this was done one crucial thing had to be understood, the server-side and 

client-side values exchange. 

 

 

5.4.3 Server-Side and Client-Side Value Exchange  

 

The web application was implemented using a servlet that constructs a new page through a 

java.io.PrintWriter object. The reason why this approach was taken was that it is much easier 

to integrate with Google maps JavaScript code and to iterate over it in a manner that yields 

the desired points on the map. The challenge involved in rendering the Google maps to the 

client for this application is that it should be a combination of server-side and client side 

code. The two sets of code are executed on the server and the browser respectively. Although 

the aspect of Google maps using server-side Java values is not well documented, what was 

noted was that if the values (from server-side variables) are rendered to the browser as part of 

JavaScript code they are executed anyway. An example doing this is as follows: 

 

pw.println("point = new GLatLng(" + lat + ", " + lon + "); 

map.addOverlay(createMarker(point, " + count + "," + capt + ")); ");         
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The bold variables are server-side variables that („lat‟ for latitude coordinates from the 

database, lon for longitude coordinates) are used by client-side Google maps JavaScript code 

(in italics). On the server the variables are resolved to their current values and are executed at 

the client as if the were normal client side values.  

 

By writing the values of the variables on the server to be executed in JavaScript code, a 

technique to add markers, information windows and listeners to the maps was realized 

successfully.   

 

5.4.4 The Implementation 

 

The gwdb package was imported to access the coordinates, pictures and messages. The 

application was first coded separately (JavaScript and Java) and then merged to produce a 

map from the database. The program basically has a Java loop that iterates over all the users 

and checks if they have left any GPS coordinates and messages. If they have, the values for 

the current user are put into variables that are then put into JavaScript code to form markers 

and information windows. The code for obtaining the values is shown below:  

 

while (musers.hasMoreElements()) { 

                String muserId = (String)musers.nextElement(); 

                String realName = gwTables().getMusers().getRealName(muserId); 

                String pic = gwTables().getMusers().getPicturePath(muserId); 

                String lat = gwTables().getMusers().getLatitude(muserId); 

                String lon = gwTables().getMusers().getLongitude(muserId); 

 String message = gwTables().getMusers().getMapMessage(muserId);      
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Once the values were put into the variables they had to be put into JavaScript code in such a 

way that the coordinates determined the position of the markers or overlays and the other 

information was put in the information window.   This was done with the following code: 

For the information window (put in a string variable first): 

  

 String capt = " \" <img src='http://mobile.ict.ru.ac.za/mws-musers/servlet/Image?" + pic + "' 

" + "width='200' height='200'/> <br/>\" + \"<h2> Name: </h2> " + realName + "<h2> User: 

</h2>" + muserId + "<h2> Message: </h2>" + message + " <br/>\" + \"<a href=’'> goto 

</a>\" "; 

 

For the image, the approach was different from that used in the admin web application: 

instead of specifying the directory and the file path in the code, this information was put in 

the „build.xml‟ file as shown in the following code extract: 

<servlet>  

     <servlet-name>Image</servlet-name>  

     <servlet-class>com.jsos.image.ImageServlet</servlet-class>  

     <init-param>  

      <param-name>dir</param-name>  

      <param-value>e:/pictures</param-value>  

     </init-param>  

    </servlet> 

 

To place the overlay in the position determined from the coordinates the GlatLng javascript 

method was called.  To create a marker with an overlay, a custom JavaScript function 

(„createMarker’) had to be called: 
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pw.println("point = new GLatLng(" + lat + ", " + lon + "); 

map.addOverlay(createMarker(point, " + count + "," + capt + ")); "); 

 

The variable count holds the number of iterations the loop has suffered. It is passed to the 

createMarker method for uniquely identifying the marker. The capt variable is that shown in 

the earlier code extract and has information that will be shown in the information window. 

 

The createMarker method was defined using this code: 

 

pw.println(" function createMarker(point, number, toSay)"); 

pw.println(" {var marker = new GMarker(point); marker.value = number; 

GEvent.addListener(marker, \"click\", function() {var holder = '';  "); 

 pw.println("holder = toSay"); 

  pw.println("map.openInfoWindowHtml(point, holder);  });return marker;}" );   

 

As is evident in the code, the method creates a marker at the coordinates given using the 

Google GMarker method.  The marker is then given the value that was input as the value in 

the count variable when the method was called. The GEvent.addListener method then adds a 

listener for clicking actions to be picked up when a user wants to see information about a 

particular marker. 

 

The results of the application are best shown in Figure 24 which is showing a screenshot of 

the requested map getting the values from a database: 
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Figure 24: The Positions of the Mobile Web Server Users 

 

5.5 Chapter Summary 
 

In conclusion, the author has discussed the relevant issues encountered during the process of 

adding the positioning feature to the gateway. It discusses the client and the server 

applications and how they communicate to deliver location on a web application. A google 

map is used to display the location of the mobile web servers and the offline messages left by 

the mobile web server users. 
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Chapter 6 

Testing the Gateway 

 

6.1 Introduction 
 

Now that the gateway was set-up the last thing to do is to test that it is working properly. The 

gateway as introduced in chapter one should be an intermediate point between the mobile 

web servers on phones on a cellular network and HTTP clients on the internet. With the 

gateway the mobile web servers can be addressed and accessed whenever they are online. 

The problems related to the mobile operator firewall are solved by the gateway without any 

harm or help from the operators themselves. The primary focus of this chapter is on testing 

the gateway. Although for the gateway to server its main purpose it had to be visible on the 

internet, it was first tested in the Local Area Network. This was done using a Nokia N95 

phone with the web servers installed on it. After these tests were completed successfully the 

gateway was finally put on the internet with the help of the Information Technology 

Department. Further tests were performed to make sure that the gateway was providing 

access by having the mobile web servers addressed through it. The tests where performed 

using the Nokia N95and  the Nokia N82  mobile phones with web servers installed on them. 

The three phones laid on the MTN and the Cell-C networks.  

 

6.2 Testing the Gateway in the WLAN 
 

6.2.1 The Tools 

 

The tools used for this test were: 

1. The Nokia N95 that was registered on the local wireless network  
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The software that was installed on the phone was the PAMP mobile web server 

(specifically PAMP_with_htdocs_on_c.sis ). PAMP is a mobile web server which is a 

combination of  mod_PHP, mod_ Apache and mod_MySQL. The mod prefix means 

that they are the ported versions of the originals (ported to work on the Symbian 

operating System). The version of PAMP used for the tests 

(PAMP_with_htdocs_on_c) comes with a mobile connector that can be configured to 

connect to a particular gateway on a specified port. The software required for PAMP 

to work were the openc_ssl.sis and the pips_s60.sis    

 

 

Also installed on the phone was the Nokia Mobile Web Server (version 122). The 

Nokia mobile web server is a ported Apache web server as explained in chapter 2. 

The server-side scripting for web applications of this web server are done in Python 

for S60. Therefore the supporting python runtime was installed using the 

PythonFor60.sis file.      

 

2. The Hamilton Lab wireless access point 

 

3. A virtual host on an Intel Xeon 2.4 GHz processor with 512MB of RAM. The 

gateway was assembled on this host. 

 

 

4. Web browsers installed on the Hamilton labs‟ computers (these were used to browse 

to the connected mobile web server). 

 

 

  

6.2.1 Configurations 

 

Before testing commenced the tools and the software installed on them needed to be 

configured. The Mobile connector which was part of the PAMP installation had to be 

configured to work with the gateway. By going to the menu and selecting the settings, the 

were set as follows: 

- The identifier (the identifier of an account on the gateway): was set to test 
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- The password (the password of the gateway account being used for the test): was set 

to ptest 

- The access point: was set to the local Hamilton labs access point. 

- The Gateway address: was set to the IP address of mobile.ict.ru.ac.za 

(146.231.121.211) 

- The gateway port: was set to 15001(the port where the gateway listens for the data 

and control data) 

- Max connections (the maximum number of incoming connections that could 

communicate with the web server): 5  

- Keep-alive interval (the time that should pass before the web server is considered 

orphaned if it does not receive a keep-alive message from the gateway): set to 0 which 

means it will be adjusted by the gateway connector dynamically. 

- Keep-alive max latency (the time that should pass after a web server is orphaned and 

the when the mobile connector should stop waiting for the gateway to start sending 

keep-alive messages again): was set to 10 seconds (however this is ignored because 

the keep-alive interval was set to 0) 

 

- Reconnect Interval (if the connection is broken and cannot be re-established 

immediately, the value settings specifies how many seconds the terminal should wait 

before attempting to re-connection): was set to 20. 

 

- Server (the mobile web server host to which the connector should forward incoming 

data channels ): set to 127.0.0.1 (since the mobile web server was on the local phone) 

 

- Server port (the server port to which the connector should forward incoming data 

channels): was set to 80 (the port on which local mobile web servers listen for 

requests). 

 

- On the Nokia Mobile Web Server, the password was set to testwb and the password to 

testwbp. This was the password used for logging onto the default web applications 

that come with the Nokia Mobile Web Server.  
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6.2.1 Tests and Results 

 

The gateway was started by starting the Tomcat web server. The two connectors (containers 

in Tomcat) were started and they were waiting for connections. At this point, the mobile 

connector was started with the configurations explained in the configurations section. When 

this was done, the connector went into discovering state then it exchanged a handshake with 

the server. It was then declared online after this sequence of events. When the netstat 

command was run at the command prompt, the connection showed the results as shown in the 

extract below: 

 

Proto          Local Address                    Foreign Address                                 State  

TCP             mobile:3389                     hons04.ict.ru.ac.za:3526                     ESTABLISHED 

TCP             mobile:15001                 ict-coeph05.wlan.ru.ac.za:51422           ESTABLISHED 

TCP             mobile:5555                 ict-coeph05.wlan.ru.ac.za:4572           ESTABLISHED 

 

 

The Mobile Web Server was then started on port eighty of the mobile phone. The settings 

were set to run the web server on the local phone without any network connections. In this 

case the daemon (HTTPd) runs locally on port eighty and the mobile connector forwards the 

incoming HTTP requests to the mobile web server. To see the contents of the mobile web 

server the URL http://mobile.ict.ru.ac.za/~test was used by the five testing web browsers. 

This, in about five seconds and a half, displayed the web contents (hosted applications) 

served by the mobile web server. Going a level deeper the web application hosted on the 

phone required the visitors to log on to gain access to the features provided by the web 

application. The password  testwbp was used with the username testwb to log into the web 

application and the results are shown in the Figure 25: 
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Figure 25: The Mobile Web Server's Main Web Application 

 

Next the test efforts went to the account web application in an attempt to change the message 

and the picture for the offline message. The mobile web server and the connector were put 

offline and browsing to the URL again resulted in the offline page being displayed with the 

offline message and the picture that was setup for the user in the account web application. 
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6.2 Testing the Gateway on the Internet 

 

6.2.1 The Tools 

 

The gateway was made visible on the internet through the Rhodes university firewall. The 

only two ports permitted were the standard HTTP port eighty and the port for control and 

data channels (port 15001 for communication with mobile web servers).  The tools used were 

the same as those used for the WLAN test except that the mobile phones were connected to 

the gateway from a GPRS network. This was the main purpose of the gateway. The MTN 

phone was using the MTN GPRS access point, the Cell-C phone on the Cell-C GPRS 

network. The account used was the test account mentioned earlier an a new test account with 

the name „test2‟ an password „ptest2‟. The following extract shows the results of the netstat 

command that shows the hosts that are connected to the mobile host: 

 

 Proto          Local Address                    Foreign Address                          State  

TCP             mobile:15001                     41.157.10.20:4569                      ESTABLISHED 

TCP             mobile:15001                      41-208-11-176.mtnns.net           ESTABLISHED 

 

At he very bottom there are two TCP connections. The first TCP connection , 41.157.10.20, 

was from the Cell-C network. The bottom most one was from 41-208-11-176.mtnns.net on 

port 15001 this is the connection from the MTN GPRS network. By browsing to the 

http://mobile.ict.ru.ac.za/mws-admin/onliners.jsf the online users are shown as expected. This 

were „test‟ and „test2‟ as expected. This is shown in Figure 26.  
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Figure 26: The Online Users (Testing) 

 

By going to the URL http://mobile.ict.ru.c.za/~test2 the web application in the diagram below 

was shown. The web applications on the two phones were identical and one could see the 

general outcome in Figure 27:   
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Figure 27: The Mobile Web Server Page 

6.3 Chapter Summary 
 

In conclusion, the author has discussed the process of testing the core functionality of the 

gateway. The gateway is tested with mobile web servers, first, within the local area network 

and later on the internet. The phones are accessed from the MTN and The Cell-C GPRS 

networks. The results prove that the gateway works as expected and the responses are 

acceptable. 
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Chapter 7 

Conclusion and Future Work 
 

This chapter concludes the project and discusses, briefly, extensions that could be added to 

the project in future.  

 

7.1 Conclusion 
    

Having web servers on mobile phones is a very exciting idea. Its implementation, however, is 

not so easy because of the firewalls that mobile operators use to protect their cellular 

networks. Also, the mobile phones do not have unique internet addresses with which to 

access them. A gateway host needs to service the people wishing to request services from the 

mobile web servers. The gateway host allows access to the web servers and gives them a 

means of being addressed by the clients wanting to use their services.       

 

The aim of the project was to put together a gateway that provided a way for addressing and 

accessing Nokia Mobile Web Servers. The solution to the problem used other provided 

programs from Nokia (The Nokia Open Source Gateway) to achieve the most optimal results 

in the time frame given. The implementation of the project has shown that it is feasible to set 

up one‟s own gateway and it is highly recommended as it familiarizes one with the 

technology involved in implementing mobile web servers.  
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The gateway performs the same functions as those performed by the Nokia Mobile Web 

Server Gateway and with imagination one can make it even more attractive. To make it more 

social, the registered mobile users‟ access details were made public. Also an application for 

seeing other users on the map and displaying the messages they have left gives the gateway a 

unique dimension.  

 

The gateway worked as expected and the objectives set initially have been met. Overall it was 

an exciting challenge to work with the concepts and ideas in this domain.  

 

7.2 Future Work 
 

The project should be extended to include more social networking into the world of mobile 

web servers and gateways. The users need to find out more about others and have access to 

information based on relationships established between users. Adding functionality that 

enables people to add others as friends and to see their profiles as web applications hosted on 

their phones will be a self –propagating idea. This will make the gateway more unique and 

more popular than the Nokia Gateway.  
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