
1 Project Title : Implementing a Local Mobile Web Server Gateway | Rhodes University

Project Write-up

Project Title : Implementing a Local Mobile Web Server

Gateway

Written By : Ndakunda Shange-Ishiwa (605n5057)

Supervisor : Mrs Madeleine Wright

Submitted in partial fulfilment of requirements of the degree

Bachelor of Science (Honours) in Computer Science

At Rhodes University

Diagram By Nokia Corporation - 2007

November 2008

2 Table of Contents | Rhodes University

Table of Contents

Table of Contents

Table of Figures ... 4

Introduction ... 7

1. 1 Background .. 7

1.2 Problem Statement ... 8

1.3 Objective of Research ... 8

1.4 Document Structure .. 8

Related Work .. 9

2.1 Introduction .. 9

2.2 Mobile Internet Protocol ... 10

2.3 The Wireless Application Protocol (WAP) and the WAP Gateway ... 12

2.4 The Kannel Gateway ... 15

2. 5 The Nokia Mobile Web Server .. 20

2.6 Conventional Web Server Technology .. 24

2.7 Chapter Summary ... 26

Understanding the Gateway .. 27

3.1 Overcoming Addressability and Accessibility Problems .. 27

3.2 How the Gateway Will Work.. 28

3.3 Keeping the Connection Alive .. 29

3.4 Mobile Web Browsing Using the Gateway .. 31

3.5 Security ... 32

3.6 The Architecture and Functionality of the gateway ... 34

3.7 The Protocols .. 36

3.8 Chapter Summary ... 37

Building and implementing the gateway .. 38

3 | Rhodes University

4.1 Introduction .. 38

4.2 The Structure of the Package .. 38

Compiling the Package ... 40

4.2 Adding New Data Fields and Setting Up the Database ... 40

Building and implementing the gateway .. 48

4.1 Introduction .. 48

4.2 The Structure of the Package .. 48

Compiling the Package ... 50

4.3 Setting up Tomcat ... 50

4.4 The Web Applications ... 55

4.5 Chapter Summary ... 71

Design and Implementation of the Location Based Services for the gateway 72

5.1 Introduction .. 72

5.2 Application Specifications and Development Considerations .. 72

5.3 Designing and Implementing the Applications ... 74

5.4 The Web Application ... 77

5.5 Chapter Summary ... 82

Testing the Gateway ... 83

6.1 Introduction .. 83

6.2 Testing the Gateway in the WLAN .. 83

6.2 Testing the Gateway on the Internet ... 88

6.3 Chapter Summary ... 90

Conclusion and Future Work .. 91

7.1 Conclusion ... 91

7.2 Future Work .. 92

References: .. 93

4 Table of Figures | Rhodes University

Table of Figures

Figure 1: The OSI Stack [1] ... 11

Figure 2: The WAP Gateway [4] ... 13

Figure 3: The Wap Gateway [6] .. 14

Figure 4: The Kannel Gateway Architecture ... 16

Figure 5: The Wapbox Architechture [6] ... 18

Figure 6:The mobile web server technology [7] .. 21

Figure 7: The ported Apache Server [7] .. 22

Figure 8: The communication streams between the gateway and the client (phone) connector

[11] ... 24

Figure 9: The Request Response Sequence(from source [10]) .. 31

Figure 10: Gateway Security (from source [7]) ... 33

Figure 11: The Mobile web Server Gateway Architecture .. 34

Figure 12: The Mobile Web Server Gateway Protocols .. 37

Figure 13: The Gateway Database and Data Access ... 41

Figure 14: The Gateway Database and Data Access (modified) ... 46

Figure 15: Tomcat Containers and request Flow ... 52

Figure 16: The Valve and the Containers .. 55

Figure 17: Web Applications and Data Access ... 57

Figure 18: The Registration Page .. 59

Figure 19: The Settings Page ... 63

Figure 20: The Offline Page .. 65

Figure 21: The All Users Page ... 69

Figure 22: The Gateway's Positioning Feature .. 74

Figure 23: The Client Application‟s Flow Chart ... 76

Figure 24: The Positions of the Mobile Web Server Users ... 82

Figure 25: The Mobile Web Server's Main Web Application ... 87

Figure 26: The Online Users (Testing) .. 89

Figure 27: The Mobile Web Server Page .. 90

5 Table of Figures | Rhodes University

Acknowledgements

I would like to thank my supervisor, Mrs. Madeleine Wright for all the guidance and support

throughout the year. I would also, like to thank my friends and all my class mates especially,

Curtis Sahd, Takayedwa Gavaza, Ray Musvibe, Flora Panjou-Tasse, Sinini Ncube, Bwini

Mudimba the wonderful support they‟ve given me the whole year support they gave me. I

acknowledge the financial and technical support of this project of Telkom SA, Business

Connexion, Comverse SA, Verso Technologies, Stortech, Tellabs, Amatole, Mars

Technologies, Bright Ideas Projects 39 and THRIP through the Telkom Centre of Excellence

at Rhodes University. Last but not least I would like to thank my parents and my family for

being behind me all the time.

6 Table of Figures | Rhodes University

Abstract

With the ever increasing memory and processing power, mobile phones have become the

latest breed of machines on which web servers reside. These servers cannot be accessed from

outside a mobile operator's firewall unless there's a gateway that enables clients to connect to

them. The main objective of the project is to make mobile web servers on 3G (Symbian series

60) phones both addressable and accessible to internet clients using a local gateway. The

gateway discussed in this thesis allows for mobile web server registration, account

management and routes requests for the web clients to the right web servers. This thesis looks

at the challenges and dynamics involved into building a mobile web server gateway like the

one set up locally.

7 Introduction | Rhodes University

Chapter 1

Introduction

1. 1 Background

Since the launch of the Internet, web servers have been used to serve HTML pages to

requesting clients over the internet. These web servers, until recently, were mostly located on

stationary computer systems with large processing capabilities, large executable memory and

storage space. With increasing processing power and memory, mobile phones have come to

be the latest breed of machines on which web servers reside. The introduction of mobile web

servers means that the position of the server now matters. Responses to requests could

depend on the location of the server and content generated dynamically on the mobile device.

This has opened doors for new applications and opportunities for users to manage their web

sites on their mobile devices.

Nokia initiated research projects which resulted in the development of the Raccoon and the

Nokia Web Servers. The Raccoon web server is an open source product that is available for

further development and modification by willing developers. The Nokia web server, on the

other hand, is a finished product that has ready-to-use content creation applications and has

grown from the continuous development of the Raccoon server.

Nokia manages the mobile web server connections with a gateway that facilitates connections

with clients. The gateway manages domain registration, connections and also provides caches

for static data to improve latency. It provides a single point of access to the mobile web

servers. The proposed local gateway will perform all these functions. Additionally, the

research effort will also focus on improving on them as well as finding and exploring new

ways of using the gateway.

8 1.2 Problem Statement | Rhodes University

1.2 Problem Statement

The problem with mobile web servers on mobile phones is that they are not readily accessible

or addressable from the internet. A gateway that is connected to the internet is needed as the

intermediate point between the requesting web browsers and the web servers on a network

run by a mobile operator. For security and efficiency reasons, operators use network address

retranslation (NAT) and restrict access at their firewalls. The gateway circumvents these

restrictions in conjunction with the mobile connector on the mobile phone to provide an

efficient way of serving web resources to internet users.

1.3 Objective of Research

The objective of this research project is to develop a gateway for mobile web servers locally.

Mobile devices serving web content cannot be directly accessed without a system that

manages and updates their connection information. The local gateway, residing on a

computer system, will perform network functions that will enable the web servers to serve

their resources to requesting clients. Once registered on the gateway, the mobile web server‟s

connection details are stored and updated periodically. This enables the web server to be

accessed with a URL by clients on the internet. It will mainly handle domain registration,

connection and access management, request routing and caching. This will afford mobile web

server users, both local and international, the luxury of having their server information

managed on the local gateway. This information can then be used to facilitate the flow of

HTTP requests and subsequent responses between the mobile server and the client. The

research effort will also look at Global Positioning System (GPS) to provide web server

location information on the gateway.

1.4 Document Structure

This dissertation first discusses the technologies that are closely related to mobile web server

gateways. These range from web servers to other gateways that are in this computer

9 Related Work | Rhodes University

networking area of study. From the third chapter, the dissertation goes on to discuss the

gateway in detail. It takes a look at the issues that needed to be considered and properly

understood before the gateway could be put together. The fourth chapter discusses the

process of modifying and customizing the gateway before setup. The fourth chapter also

explains the process of setting and building the gateway. Chapter five focuses on the

implementation of the location based module. Testing is done in chapter seven to show that

the gateway delivers web content from mobile web servers on cellular networks. The final

chapter, seven, concludes the dissertation and discusses ideas that could be implemented in

the future.

2. Chapter 2

Related Work

2.1 Introduction

In the early 1970s, The United States Defence Advanced Research Projects Agency (ARPA)

developed a wide-area computer network known as ARPANET. ARPANET was a packet-

switched interconnection of computers located at various Universities, research agencies in

the States and a few selected NATO countries. By the end of the millennium, the network

which had evolved into the Internet had millions of hosts connected to it [2]. This system of

connected networks had vast amounts of information on just about anything. Social,

commercial, technological and educational information resources were shared and made

available to a world-wide audience. Central to this world-wide phenomenon, were web

servers and client browsers. They facilitated the process of sharing Hyper-Text Transfer

Protocol resources over TCP/IP connections.

 Cellular systems have also evolved to using packet-switching technologies instead of the

usual circuit-switching [13]. Third generation networks, as they have come to be known, have

10 | Rhodes University

brought along new opportunities of enlarging and growing the Internet. With them has come

a totally new way of thinking. The fact that mobile phones are starting to have the storage and

processing capabilities of earlier computers means there‟s no reason why web servers

shouldn‟t reside on them. The purpose of this paper is to study the internet and web

technologies that are related to mobile web servers and gateways. This will help in setting up

and building a mobile web server gateway on the local campus.

2.2 Mobile Internet Protocol

Mobile Internet Protocol (IP) allows the use of the Internet on the move. A user with a mobile

device whose IP address is associated with one network can stay connected when moving to a

network with a different address. Expressed differently, a user can keep their IP address while

moving between networks with different addresses. When a user leaves the network with

which their mobile device is associated and enters the domain of the foreign network, the

Mobile IP protocol is used to handle the connectivity issues [1]. As is stated in the book

Telecommunications Essentials [3], the foreign network sends a message to the home

network address, notifying it of a care-of address as discussed in [15]. The care-of-address is

the foreign address which a mobile device may have access to if not in the home network.

This address is where all the user‟s packets are sent [3]. Mobile IP is also the technology used

for wireless data applications and for mobile networks like 3G and 2.5G for cellular systems.

It is implemented in the packet equipment for packet-switched cellular networks. It works at

layer 3 of the OSI stack as shown in the Figure 1.

11 Mobile Internet Protocol | Rhodes University

Figure 1: The OSI Stack [1]

According to Communications Essentials [3], layer one and layer two protocols are already

implemented in mobile devices.

Nokia phones will be used in this project and the MTN and Vodacom networks use Code

Division Multiplexing Algorithms for sending signals to mobile users. [13] explains that

mobile operators are increasingly starting to use Wideband Code Division Multiple Access

(WCDMA for 3G), a faster and newer variant of CDMA. Going one level up, Mobile IP is

implemented in the networking equipment of mobile operators. They use this for normal

Internet access by mobile users. The one problem there is according to [9], however, is the

fact that the mobile operators have restrictions at this particular layer.

[9] further explains that for security reasons, the mobile operator firewalls allow only

outbound traffic. Only mobile devices from within the network can initiate requests to the

internet and not the other way round. According to [7] to be able to access a web server on a

mobile phone this has to be overcome. Another problem stated by [9] at this layer is that

mobile operators have introduced Network address translation (NAT). This is a networking

technique that involves the circulation of IP addresses between hosts on a network. It is a

12 | Rhodes University

favourable option for both the operators and the whole computing society at large because

there are too many mobile phones out there. Giving each of them a 32 bit IP address will

eventually result in a shortage of these currently-running-out identifiers. It is also not

economical as some users hardly access the Internet from their phones. Even those who do it

do not do it consistently. [9] elaborates on the fact that for the solution to this problem to

succeed it will be cheaper and more practical if it circumvents the current restrictions with

minimal changes to the infrastructure already in place.

If a system that is both addressable and accessible is put on the Internet, it can solve all the

problems posed by the operators [9]. On the system will be a reverse proxy that receives

HTTP requests on behalf of mobile servers and forwards them to requested mobile phones.

Before this could happen the mobile server on the phone will need to establish and keep-alive

a connection to the proxy. [10] emphasises the point that mobile devices will need to be

registered on the proxy or gateway for their access information to be stored and updated.

When a request enters the reverse-proxy, its header is checked and the access details are used

to determine the mobile server requested. Prior to this, a mobile phone would need to have

made a connection to the gateway. [9] says that this should eliminate the need to know about

the IP address of a phone because the phone is the initiator of the connection. This connection

is also kept alive until it is voluntarily terminated by the owner of the mobile web server.

2.3 The Wireless Application Protocol (WAP) and the WAP Gateway

In June of 1997, major players in the mobile phone industry gathered to form the Wireless

Applications Protocol (WAP) forum as stated by [5]. Cellular phone manufacturers, Nokia,

Ericsson and Motorola were part of this forum. Another organization present was Phone.com

(Wired Planet), the WAP creators. The WAP Forum is an industry group responsible for

managing and extending the WAP standard and facilitating the adoption of WAP. WAP is a

standard used for the transmission and subsequent presentation of wireless data to mobile

devices. [5] further emphasises that WAP is based on HTTP and is easily interoperable with

the Internet. The Wireless Mark-up Language (WML), a tag language based on XML, is used

13 2.3 The Wireless Application Protocol (WAP) and the WAP Gateway | Rhodes University

for the presentation. WAP is mainly designed to integrate the Internet with a lightweight, low

bandwidth system that is suitable for wireless devices. [4] says that for this interoperability to

be achieved, A WAP gateway should be used. The Wireless Applications Protocol

architecture (with the gateway) is shown in the Figure 2 .

Figure 2: The WAP Gateway [4]

The WAP Gateway and Other WAP Components.

The WAP gateway, like the mobile Web server gateway, sits between the devices on the

internet and those on a wireless network. It is responsible for encoding, decoding and for

protocol conversion of the requests and responses that pass through it. A user starts the HTTP

flow by making requests for web pages. By typing a URL into the browser on a mobile

phone, the WAP user agent sends a WAP request (WSP) to the gateway. The gateway

converts it to an HTTP request and does the necessary encoding and decoding operations.

The origin server is the web server on the Internet containing the requested resources as

14 2.3 The Wireless Application Protocol (WAP) and the WAP Gateway | Rhodes University

discussed in [4]. It services the request using scripts or by simply returning a static page. The

server needs to have WML scripts to service mobile requests dynamically. Once serviced the

response is sent out in HTTP format back to the gateway. The gateway then converts the

response to WSP format and sends it back to the requesting browser [4, 5].

The WAP protocol stack takes care of the transmission of requests from the phone to the

gateway and back to the phone again in binary format [4, 5]. According to [4, 6] the stack

consists of three distinct layers: The Wireless Datagram Protocol (WTP), The Wireless

Transaction Protocol (WTP) and the Wireless Session Protocol (WSP). Figure 3 shows the

sequence of events involved in servicing a request.

Figure 3: The Wap Gateway [6]

[6] explains the steps as follows:

15 2.4 The Kannel Gateway | Rhodes University

1. Phone opens session. The features and HTTP headers to be used in requests gateway

makes on behalf of the phone are negotiated. - WSP

2. Phone sends URL for the page the user has configured as his home page.

3. Gateway makes HTTP request, with negotiated headers.

4. Gateway encodes page in a binary form and sends it to the phone.

5. User shuts down the browser and the phone terminates the session.

The Wireless Transaction Protocol implements a single request-response pair. The Wireless

Datagram Protocol is the lowest of the three layers. It implements the actual moving of

packets from the phone to the gateway and back [6].

This means that the gateway being set up as part of this project needs a module to handle

connections with another module residing on the phone as suggested in [9]. The two modules

need to negotiate connections, keep them alive and make sure the two systems interface. The

WAP gateway also handles user authentication and has some management functions such as

billing customers as put by [6]. The Gateway to be implemented will also take care of mobile

access data and will have information on the number of times a server has been visited,

enable the sending of messages when the mobile web server is offline and possibly also have

server location information. The next section will discuss the Kannel WAP Gateway which

could be used as a guide to building the local gateway.

2.4 The Kannel Gateway

The Kannel WAP gateway is a product developed at Wapit Ltd., a company started in 1998

to develop products for mobile phones. A year later, as part of its strategy, the company

started to develop tools and software for the then emerging WAP protocol. The project was

launched as part of the WAP Forum in July 1999 [5, 4, and 6]. Kannel is widely used as a

WAP gateway by mobile operators and corporate service providers. The author of this

dissertation thought they would gain insight from studying this gateway. Next, the paper will

16 2.4 The Kannel Gateway | Rhodes University

discuss the architecture of the gateway with the intention of gaining some insight on how to

put the local mobile web server gateway together.

2.4.1 The Gateway Architecture

The Kannel WAP gateway is very similar to the desired mobile web server gateway.

Studying its architecture and design gives some insight as to how to structure the latter. The

overall structure of the Kannel gateway is depicted in the Figure 4 below which is taken from

[6]:

Figure 4: The Kannel Gateway Architecture

The diagram (figure 4), from [6], illustrates how the gateway has three interfaces on which

interacting systems can communicate. This suggests that the gateway host has three ports on

which to listen for requests. Since the Mobile Web Server Gateway will listen to two types of

services, it will most likely have two ports open: One for HTTP traffic from web browsers

and the other to communicate with the phone. The text in [6] goes on to clarify that the SMS

Centre is a server responsible for SMS-related services which are not really part of the WAP

17 2.4 The Kannel Gateway | Rhodes University

standard. The WAP phone is a mobile phone with WAP capabilities and can send and receive

WAP messages. The HTTP server is a web server residing on the Internet. Inside the gateway

itself are three modules: the Bearerbox, the Smsbox and the Wapbox. The Bearerbox

component handles the incoming and outgoing low level Wireless Datagram Protocol (WDP)

packets. The SMSbox receives SMS messages form the Bearerbox and translates them to

service requests. It is also responsible for doing the reverse to the responses. The WAPbox

module implements the WAP protocol stack and WAP Push services. It works with an

application level protocol [6]. For the purposes of the project, the SMS components of the

Kannel gateway are going to be ignored. The focus is on the WAP functionality that will

enlighten us on how to build a gateway between the Internet and a wireless network. For this

reason, the paper will discuss the Wapbox component next.

2.4.2 The Wapbox Module

The gateway documentation [6] deepens the insight by explains that, the Wapbox and all the

other gateway boxes are internally multithreaded to allow for efficient request and response

handling. It‟s responsible for fetching messages from the Bearerbox, maintaining state for

each of the active clients and subsequently making HTTP requests for them. It is also

responsible for the reverse process of sending responses back to the Bearerbox. According to

the Kannel documentation [6], things get more complicated depending on the load being dealt

with. The protocols implemented in the box are Wireless Transactions Protocol and the

Wireless Session Protocol. To gain more insight on gateway building we shall concentrate on

the Pull threading features of the WAPbox component.

18 2.4 The Kannel Gateway | Rhodes University

2.4.3 The Thread Structure

Figure 5: The Wapbox Architechture [6]

19 2.4 The Kannel Gateway | Rhodes University

According to the Kannel documentation [6] and to the Figure 5, each WAP protocol stack

layer has its own thread. This means that for every WAP and HTTP request serviced by the

gateway a thread is spawned. This fact has some implications for the design of our gateway.

There has to be a sub-module that services HTTP requests (as shown in the diagram). It also

has to be threaded. There are many things to be considered at this interface. A request coming

in from an HTTP browser will be serviced by a servelet or any other script. Its header

contents can be used to determine which mobile web server needs to be connected to. Web

servers already have threading capabilities so there woul be guaranteed threading for HTTP

requests on the one port of the gateway.

Looking at the other end, the interface to the Bearerbox is also multi-threaded. This is

analogous to the Local Mobile Web Server (MWS) gateway‟s interface to mobile web

servers. In terms of Implementation this will be a port known to the mobile web servers, as is

suggested in [9]. It is also threaded to service multiple requests efficiently. This will be

implemented in the gateway by using java threading libraries. Each request will have its own

thread to service it. The WAP gateway is a little more complicated. Apart from the interfaces,

the required inner-workings of the MWS gateway are about accessing data from a database

and maintaining connection information as described in [9]. There will be no protocol

conversion at all. The main lesson learned form this gateway is that the gateways need to be

multithreaded to handle the load of services being requested.

Although threading provides high request-handling efficiency, it comes with its costs.

According to WapIT‟s documentation of Kannel [6], threads keep the implementation simple,

but are expensive in terms of computation resources. According to [6] “If there are ten

thousand concurrent users each making a new request every fifteen seconds, on average, and

each request taking one second, on average, there are about 670 concurrent requests at any

one time. On Linux, each thread uses 8 kilobytes of kernel memory, minimum, so 670 threads

would use over 5 megabytes of extra memory”. Additionally [6] explains that, starting and

stopping threads and having lots of threads will cause more context switches, an additional

CPU cost. As we are using a web server as the HTTP interface we might not need to worry

about this too much. The Apache Tomcat Web server will be used for implementing the

mobile web server gateway. Its web container already deals with request threading and will

20 2. 5 The Nokia Mobile Web Server | Rhodes University

provide access to HTTP requests as is stated in [8]. It will also be the interface through which

responses will be sent.

2. 5 The Nokia Mobile Web Server

2.5.1 Details

The Nokia Mobile Web Servers (MWS) are the mobile web servers that will be connected via

the gateway. Nokia Corporation introduced these web servers that are written in Symbian

C++ for mobile phones running the Symbian operating system as stated in [7]. The Mobile

Web Server Book [7] describes the invention as something that will change the way people

view the Internet. We have come to know it as a network where the servers are stationery

machines in mysterious locations. The mobile web server, however, makes it possible for

users to generate their own information and serve it on their mobile phones. This opens up

opportunities for users and developers to do more creative things. It is in line with the new

vision of the web where content is generated by the users themselves as described by [12].

This includes dynamic-content creation, interactive photography and location-based services

[7]. It will also facilitate new ways of communication as well as new ways of fulfilling

mobile phone functions like answering messages. This section of the paper discusses the

details of the Mobile Web Server Technology that are relevant to the implementation of a

gateway.

As mentioned earlier and further strengthened by [10], Mobile Web Servers lie behind a

mobile operator‟s firewall and this makes them impossible to access from the internet. The

gateway will be the means of communication between the web servers and the requesting

clients. This is shown in the Figure 6. The diagram also shows the main lines of

communication between the gateway and the web server. In step one the owner of the MWS

connects to the gateway. According to [11], this is, of course, after it has been registered.

The gateway and the phone keep this connection alive. When a user wanting to connect to the

web server with a web browser comes along in step two, the gateway already has a

connection to the phone. [7] says that the Domain Name System (DNS) serving the browser

21 2. 5 The Nokia Mobile Web Server | Rhodes University

host returns the address of the gateway for all the MWS requests. In step three the server

identifies the web server and checks if it‟s online and sends requests for a channel to

communicate HTTP traffic. Finally, in step four the HTTP traffic is communicated to the web

server and the response is relayed through the gateway. The operator firewall is not an issue

of concern because the requesting connection is initialized from the mobile device through a

legal port [9].

 Figure 6:The mobile web server technology [7]

2.5.2 The MWS Components

The MWS is a ported version of the Apache Web Server. This port may be the Nokia Mobile

Web Server or PAMP which is a package containing the Apache Web Server, PHP and a

MySQL database. It also has a connector and user interfaces to facilitate the use of the web

server. The apache web server was chosen because it is the most popular web server in the

world and it is free. Implementation-wise, it also turned out to be relatively easier to port as

stated in [7]. The modular structure of The Apache Web Server makes it easier to port to

mobile devices as modules can be included and excluded if needed. This, as common sense

would dictate, decreases the memory footprint. On mobile devices, both space and processing

22 2. 5 The Nokia Mobile Web Server | Rhodes University

power are limited so the smaller an application the better. In addition the memory used

decreases with the number of modules loaded.

As shown in the Figure 7 and explained in [7], The Apache HTTP daemon (HTTPd) runs on

top of the Apache Runtime (APR) [7, 8]. This is a runtime library that provides a standard

API to the underlying platform-dependent implementations. According to Nokia, the only

task required was to port the platform-specific parts of the HTTPd and APR. This were

translated to work with the underlying Symbian operating system (the operating system on

Nokia phones). To make the job slightly less difficult, some Unix-specific parts could use the

Symbian POSIX. The Figure seven shows a graphic version of the ported version.

Figure 7: The ported Apache Server [7]

The most important component for the purposes of this paper is the connector. This is the

subsystem that is going to communicate with the gateway. It has an interface to the web

server described above and to the remote gateway. The connector takes care of all the

connectivity issues as far as the mobile device is concerned [7]. It establishes and keeps alive

a connection with the gateway. The channel for establishing and keeping the connection alive

is known as the control channel, and the one for HTTP traffic is known as the data channel

[11]. The connector establishes a connection to the gateway by using the required connection

details: the username, the password and the gateway address. Other things to set include the

23 2. 5 The Nokia Mobile Web Server | Rhodes University

keep-alive interval, the keep-alive latency, the gateway port the maximum number of

connections that can be made to the server and the local web server port. The control channel

is over UDP datagrams. This is favourable because of the overhead. It therefore uses less

bandwidth and battery power [11]. This channel carries a custom-made protocol that is meant

to facilitate the formation and maintenance of a connection between the web server and the

serving gateway. The Data channel goes over TCP and it is the one the carries the actual

HTTP data when a request or a response is in transit [10]. The gateway (to be implemented in

this project) needs to interconnect with the web server through this connector. Figure 8 shows

the messages and protocols between the mobile connector and the gateway.

24 2.6 Conventional Web Server Technology | Rhodes University

Figure 8: The communication streams between the gateway and the client (phone) connector [11]

2.6 Conventional Web Server Technology

2. 6.1 Introduction

A web server is a server process running at a website which sends out web pages responses

on a particular port to web requests from local or remote web browsers as described in [14].

A web server resides on a host computer which can be stationery or mobile [41]. A web host

is a computer that runs a web server and provides web space and bandwidth to those who

wish to publish web sites. The website owner is given space on a host machine to which they

can upload static and dynamic HTML pages as well as text and multimedia. In this section,

the paper briefly looks at conventional web servers. These web servers are relatively easy to

access as they are not restricted by operator firewalls or Network address Translation (NAT).

2. 6.2 Conventional Web Servers on Stationery or Wired Hosts

 On a stationery host that has a wired internet connection, web servers are easily accessible

and addressable as the host has a fixed IP address [14]. Even with network address

translation, the host with the web server is still accessible on the network through its domain

name. The web server daemon runs in the background waiting for requests for web pages

[14]. Because of the complicated nature of the web servers, they are usually installed and

administered by people with technical skills and knowledge of operating them . This means

that website owners may have to upload content to the web space on their host using File

Transfer Protocol if they happen to be in remote locations.

Web access on these type of hosts usually involves a user typing in a uniform resource

locator (URL) in a browser to get Hyper Text Transfer Protocol (HTTP) responses or other

resources form the server. The domain name system then translates the domain name to an IP

address which then results in the HTTP request getting routed to the computer hosting the

web site with the requested resources as stated in [14]. Because the web server and the

25 2.6 Conventional Web Server Technology | Rhodes University

associated web resources are usually on a host with a predetermined IP address and

geographical location, it is relatively easy to locate and address web sites hosted on it and to

request web resources. The web server receives the request on a particular port (usually port

80 or 8080) and serves it by responding with static or dynamic HTML pages as well as other

content [14]. According to [14] the server can respond in different ways: by using static

HTML which is usually just plain HTML with no server side scripts executed; or by using

dynamic responses which involves the execution of PHP, JSP, ASP or some other scripts that

could include accessing databases and other resources.

The administration and hosting of web sites on stationery or wired hosts is advantageous

because it allows for easy and fast access. It is also good because the hosts are usually always

close to a power source increasing the chances of the server always being on (reliability).

However, with the emphasis of web 2 technologies of personal or user content creation as

described in [12], it is useful for web servers to be close to the content creators. This can also

allow for on- the-move or dynamic content creation. It will also lead to the web becoming

ubiquitous as pages are served by the users or the web site owners themselves [7]. The

objective of the project is to build a gateway that will ensure the accessibility and

addressability of such web servers. This web servers are easy to use and configure for normal

people and will forward the agenda of Web 2.0 technologies.

According to the Wireless Internet Handbook [13] wireless, systems started back in the

1970s. These systems went through different generations based on different access

technologies. The first wireless systems were analogue, circuit-switched networks that were

used for voice transmissions only. They were based on the Frequency Division Multiplexing

(FDMA) air interface. Second Generation wireless systems were digital and used different

and more efficient multiplexing techniques (Time Division Multiplexing (TDMA) and Code

Division Multiplexing (CDMA)). 2G systems were followed by 2.5G Systems [13]. This

involved a combination of both packet- and circuit-switched technologies. Circuit switching

was used for voice and packet switching for data services such as multimedia messages

(MMS) and Wireless Application Protocol (WAP) Internet access [13]. The third generation

of mobile systems, however, is entirely packet switched [16]. This means that the traditional

26 Chapter Summary | Rhodes University

Transport Control Protocol and Internet Protocol (TCP/IP) can now be used for mobile

phones for internet access and also for service provision.

The introduction of 2.5G saw the introduction of Internet web browsing on Mobile phones.

The circuit switched nature of the data services for 2.5G systems was made to cater for this.

Network connectivity for mobile devices like mobile phones is provided by an operator. The

mobile operators had to introduce Wireless Access Protocol Gateways to enable this kind of

web browsing as is discussed in [5]. An Internet request was made from inside the operators

firewall to a website hosted on a stationery or mobile host. It would then passes through a

WAP gateway to negotiate the differences between the protocol used for WAP browsing and

the protocol used for the normal internet. Apart from the client or the web browser being

located on the phone, the architecture of this kind of system was the same as that of ordinary

wired internet browsing. Third Generation wireless Systems, however, opened new doors.

Web servers can now be hosted and accessed from mobile phones.

2.7 Chapter Summary

In conclusion, the author has discussed the technologies that are related to the project

involving the implementation of a mobile web server gateway. The gateway facilitates the

connections between mobile web servers and client-web browsers. The WAP gateway

technology has a number of similarities with the desired MWS gateway and has been

discussed in this paper. The Mobile Web Server which is the endpoint to the gateway

connections is also discussed. Last but not least, conventional web servers are also discussed

because the gateway itself will use the Tomcat Web Server to fulfil its functions. These

related technologies will give some insight on the issues involved in putting a mobile web

server gateway together.

27 Understanding the Gateway | Rhodes University

Chapter 3

Understanding the Gateway

3.1 Overcoming Addressability and Accessibility Problems

 [9] states that two important solutions have been suggested to solve the problem posed by

operator‟s firewalls and NAT. One of the solutions involves the use of a firewall control

protocol (FCP), which works by allowing a trusted third party to dynamically control the

operators firewall. The third party decides on what firewall ports to open at what time and

how to use them. These ports will be open for a short period of time and should also have a

way of choosing the users allowed to use the specified ports. The problem with this approach

is that a great deal of investment by operators will be needed to get it off the ground. Making

firewalls dynamically configurable might also necessitate new web browsers that work with

them. It will also need a way of keeping track of the temporary Internet protocol addresses as

they change over time. Additionally operators need to route requests from other devices from

within the firewall, a functionality, according to [9], most of them do not offer. A better

solution is one that does not need much of the operator‟s involvement and needs no change to

the existing infrastructure.

The most viable solution involves setting up a gateway somewhere on the internet. This

gateway will allow for users to register their web servers and allows surfers to address and

access these servers. Having this gateway will ensure that the mobile phones or other devices

inside the operators firewall always have a connection to a device on the internet. The HTTP

server on the mobile phone initiates the connection from within the firewall to the gateway

when it is started. This connection is then kept open for as long as the mobile server

administrator wishes. At that time the HTTP daemon can serve requests. The gateway

computer with a gateway server installed, acts as a device in the middle that is connected to

the running servers. The gateway runs a daemon of its own waiting for connections from web

servers. As soon as a connection request comes in, the gateway program checks if the

requested web server is running as explained in [7]. If it is, the HTTP request is sent to the

28 3.2 How the Gateway Will Work | Rhodes University

right Mobile Web Server (MWS) through the connection established by the server (MWS)

when it started running. Since it‟s the mobile server that initiates the connection to the

operator‟s firewall this is normal (because it‟s an outbound connection as explained in [9]).

The web server on the mobile phone then gets the request from the gateway and responds to

it accordingly. After the server has put together its response, its response is relayed to the

originating web browser through the gateway. The HTTP requests and responses pass

through the operator‟s firewall as if they were legitimate third Generation services (3G)

requests and responses (which they are). This means they could go through a special port, if

the operator reserves one, or through the normal Third Generation services port [7] used for

Internet access for example. This solution works harmoniously with the existing

infrastructure and needs little operator involvement, if any at all.

3.2 How the Gateway Will Work

The gateway host has the gateway server installed on it. The gateway server opens up two

ports on the host. One port is for incoming connections from requesting web browsers; the

other is for the connecting to web servers. The web surfing port should be a well known port

(e.g. port 80) for HTTP requests to be mapped to it. The host should also be registered on the

Domain Name Server to allow all the requests with URLs ending with a particular name to be

directed to it, resulting in its IP address being returned. The second port should be a special

port on which mobile devices establish connections to the gateway. The web server (MWS)

on the mobile phone listens on port 80 like a normal web server. Even thought, the server

waits for HTTP requests on this port it cannot be addressed or accessed by any other device

without going through the gateway [7]. The connections between the server and the gateway

are established and managed by software programs know as connectors. Both the gateway

and the mobile web server will have their own connectors through which connections will be

managed and kept alive [8].

The connector on the gateway host opens up a port to receive and maintain connections with

the mobile web server. When the connector on the mobile phones opens a connection it gives

the identity of the hosting phone and the gateway connector authenticates the request before

negotiating the connection. This is one of the reasons why the mobile web server has to be

29 3.3 Keeping the Connection Alive | Rhodes University

registered on the gateway before connections from it can be accepted. As in most other

communication protocols, there are two types of interchange between the connector on the

gateway and the peer connector on the mobile phone: One for controlling and managing the

connection and the other for the actual transmission of traffic, in this case, HTTP data as

mentioned in [10]. These are respectively known as the control channel and the data channel.

Initially, when the mobile connector opens a connection to the port reserved for connections

on the gateway, it establishes a Transport Control Protocol (TCP) connection [10]. This

happens in the control channel because it just opens a line that can be used to relay HTTP

requests later on. When the need arises, the gateway connector asks the mobile connector to

initiate data channels in addition to the control channel that keeps the connection alive when

there are no other activities. Conceptually, the two channels then co-exist as two separate

TCP connections on the same port. The problems associated with Network Address

Translation do not matter any more as the gateway connector maintains a connection with the

mobile connector. This means that whenever the IP address of the mobile host changes the

connector sends control data through the firewall using the new address. The gateway

connector, therefore, just needs to access the control open control channel and associate any

subsequent requests with it [8].

3.3 Keeping the Connection Alive

Once a connection is established by the mobile host, it has to be kept alive to ensure that it is

accessible from the other side of the firewall. The mobile and the gateway connector,

therefore have to exchange control data for as long as the web server is running. If this

connection dies, only the mobile host can initiate it again because the gateway does not have

the authority to re-establish it through the firewall as mentioned earlier. During this period

(when the connection is idle) only the control channel is kept alive. In implementing this

technique, one needs to consider seriously the most efficient way to keep the connection

alive. This includes sending as little data as possible (to keep the network and bandwidth

costs low) and making sure the process does not overuse the mobile host‟s power resources

(batteries) as discussed in [11]. For this reason, the two connectors negotiate a certain time

period that should elapse between two keep-alive messages. If the period expires before a

30 | Rhodes University

signal is received from the other side, the connectors just assume that the other host has given

up the connection. Otherwise, the connection is kept alive and the mobile web server may be

accessed from the internet. The gateway connector is assigned the task of sending regular

keep-alive messages to the mobile connector over a “stale connection” (when there‟s no other

HTTP traffic to be exchanged). In the author‟s opinion it would have been much more

reasonable to give this responsibility to the mobile connector because it would then readily

reflect the state of the connection. However, research has shown that this would have resulted

in a more complex state machine for both end points as indicated by the literature in [11].

After the initial handshake, the gateway connector is the only one that sends keep-alive

messages over the control channel. If a request from a web browser comes in from the

“popular port,” a data channel is requested. If the mobile connector fails to respond to the

keep-alive message within the negotiated time period, the gateway connector assumes the

host has stopped running and it is rendered offline.

A decision the timing and regularity of the keep-alive messages have to be sent also has to be

made. The gateway connector has to figure out an optimal time period after which keep-alive

messages are to be sent to the peer connector [11]. For this reason, the keep-alive messages

are not empty packets; they also specify parameters such as when the next control packet will

be sent. If the mobile connector does not receive this packet by the specified time period it

assumes that the connection is broken and it tries to fix it. It establishes a new control channel

and tries to get a “handshake” for it. The gateway discovers the favourable keep-alive period

by simple trial-and-error. It sends the control messages at increasing time intervals until it

gets a complaint from the mobile connector indicating that a due packet was not received.

After this, the connector reverts to the last keep-alive period that was favourable.

Determining the keep-alive period dynamically is important because different operators have

different infrastructures and different qualities of service. The geographical location of the

two negotiating entities can also play a role. This is because the connection has to go through

different media (with different bandwidth), network devices such as routers and firewalls that

implement different technologies. If any changes are to be made to how the keep-alive

massages are sent, they affect only the gateway connector. This makes the system easier to

maintain.

31 3.4 Mobile Web Browsing Using the Gateway | Rhodes University

3.4 Mobile Web Browsing Using the Gateway

Figure 9 shows an example of a browsing session. A web surfer types in the domain name of

the desired server, in this example John.doe.raccoon.net. The request is then sent to the

Domain name server where every name ending with “raccoon.net” returns the IP address of

the gateway host. The browser then sends the HTTP request to the returned IP address. Upon

receiving the request on the “popular port”- port 80- the gateway analyses the request header

to determine which server to send it to. If the server is running, and a connection has been

kept alive between the two peer connectors, the gateway searches for it from the pool of

connections.

Figure 9: The Request Response Sequence(from source [10])

32 3.5 Security | Rhodes University

After analysing the identity of the mobile devices by looking at the opened control channels,

the required mobile connector is identified. The mobile connector for the requested mobile

host is instructed to open up a data channel for relaying the HTTP requests. Once it‟s up and

running, the gateway connector sends the HTTP request to the mobile connector over the

TCP channel. The mobile connector then passes the HTTP message to the local web server.

After the server has processed the request, the response is forwarded to the connector and

goes to the gateway through the data channel used for the request. The data channel is kept

open for future HTTP traffic. Since data channels are not kept-alive, if the keep-alive time

period elapses the channel is killed [11]. However, if the channel is still active, it is revived to

keep the data flowing.

3.5 Security

The fact that every connection to the mobile web server has to be made through the gateway

provides a single point of access and control. At the gateway, users can be authenticated and

servers can be accessed based on a quota system. This eliminates the threat of denial of

service and other kinds of attacks that conventional web hosts suffer [7]. Gateways may also

block or alert users to update their servers to more recent versions if they happen to be out

dated. Figure 10 shows a general idea of how security is inherently easy to implement in the

system.

33 3.5 Security | Rhodes University

Figure 10: Gateway Security (from source [7])

34 3.6 The Architecture and Functionality of the gateway | Rhodes University

3.6 The Architecture and Functionality of the gateway

Figure 11: The Mobile web Server Gateway Architecture

35 | Rhodes University

The gateway was implemented using the Apache Tomcat Web Server. When the Tomcat

server is started, the web server daemon starts running and waits for incoming web requests

directed to the server. Upon receipt of a request (on the popular port), the server forwards it

to the dispatcher or valve. As shown by the Figure 11, the dispatcher runs as part of the

tomcat server. The gateway‟s internal interface to the Tomcat server is called the „valve‟, the

reason for that being that it is the entity that can capture and redirect HTTP requests. The

valve or the dispatcher captures all the incoming requests as they are received on port 80 by

the tomcat daemon. It (the valve) is implemented using a Java HTTPServlet that looks at the

request headers to determine where to forward the requests. After this is done the valve (or

dispatcher) is also responsible for checking if the connector of the requested mobile host is

registered (by querying a MySQL database). If it is registered the HTTP request is forwarded

to the gateway connector (described in the previous section). If the requested server does not

correspond to any of the registered servers, it is forwarded to the „webapps‟ and web services

components. This components deal with the request accordingly by returning an error page

that indicates that the host is not registered with the gateway.

The MySQL database tables are accessed using a custom persistence module namely „gwdb.‟

It is basically an abbreviation for „gateway database‟. The module is responsible for ensuring

database connectivity; access to the tables at runtime; enforcement of constraints for database

queries and transactions; logging and exception handling. Within the modules are objects that

have methods to enable persistent database transaction execution at run-time. The objects

should be available to all the other gateway components that access the database. It is

basically the single point of access to the database for the web applications, the valve and the

connector.

The web applications, labelled the „webapps‟ in the diagram, are Java web applications. They

allow the administrator to manage the gateway, for users to register their accounts and

manage them. Additionally, the also allow for users to see other people who are registered.

Moreover, he or she could check who is online and who isn‟t. This also facilitates messaging

amongst users. Through these web applications, the administrator can create, view and delete

36 3.7 The Protocols | Rhodes University

user accounts. They can also play around with the settings; send emails and list online and

offline web servers. As the web applications are online, administrators can carry their

gateway management duties whenever they have an internet connection. Mobile users can

also register their accounts on the gateway from anywhere. They fill in their user names,

passwords, names, e-mail addresses, the preferred domain name and other important details.

Once registered, a user can play around with account properties and can change their log in

details if need be. Users also have access to other web applications such as the number of

times their servers were visited, the names of the servers online and others registered with the

gateway. Users can also send messages to each other. This is implemented on a store-and-

forward basis so that mail is always delivered. The MySQL database stores the data used by

the gateway. This includes the user account information that is queried to provide information

needed for the proper functioning of the gateway [11].

3.7 The Protocols

As shown in the Figure 12, the protocol between the web client and the gateway (which is a

web server in its own right) is HTTP over TCP. The requests between these two entities go

through the internet (it is normal web browsing). The protocol between the two peer

connectors is a proprietary protocol invented for the purpose of opening and maintaining

connections. It is an XML-based protocol that is used to communicate the state of the

connection on either side. For the data channel, however, the protocol is still HTTP over

TCP. This is possible because Third Generation (3G) cellular systems entirely use TCP/IP

and packet switching. This channel is used for sending HTTP data between the mobile web

server and the gateway. It still goes through the connectors.

37 Chapter Summary | Rhodes University

Figure 12: The Mobile Web Server Gateway Protocols

3.8 Chapter Summary

In conclusion, the author has discussed the basic functionality of the gateway, its architecture

and the protocols used to communicate with web browsers and mobile connectors. The

gateway has a connector component that runs as part of the Tomcat web server and it handles

connection issues with the mobile connectors. Another component known as the „valve‟

looks at the headers of incoming requests and decides where to forward them. The gateway‟s

database in a MySQL database server is accessed and transacted with using a data persistence

module, „gwdb.‟ For the interface, web applications are used for gateway registration,

account management and social networking.

38 Building and implementing the gateway | Rhodes University

Chapter 4

Building and implementing the gateway

4.1 Introduction

The gateway for the project is implemented by building on the basic open-source gateway

connection management modules made available by Nokia. These modules are responsible

for accepting and maintaining connections with the mobile phone connector (control channel)

and provide objects that contain information about connection states. They are also

responsible for opening up data channels when a request is to be serviced. Another part of the

package is a database persistence module, gwdb, that manages run-time transactions and

queries as mentioned in chapter three. Provided are also skeleton web applications that show

how information can be accessed from the gwdb module at run time. This chapter discusses

the customization and the building of the package to make a unique functional gateway.

4.2 The Structure of the Package

The gateway package is organized into eight modules namely connector, db, gwdb, iapi, util,

webutil, valve, and webapps. All these modules perform tasks that collectively add up to a

system that is capable of receiving and servicing mobile web server requests. The connector

module handles the functions of the gateway connector as mentioned in chapter three. It is the

part of the gateway that is responsible for receiving connection requests from the mobile web

servers. It keeps these connections alive by using the XML protocol that is custom-made for

this purpose (through the control channels). When requests for a connected mobile connector

come in the gateway connector opens up a data channel as mentioned in the previous chapter.

39 4.2 The Structure of the Package | Rhodes University

All this is performed through the Tomcat web server and the details will be shared in the

Tomcat section. The db and gwdb modules are collectively responsible for database setup and

run time transaction management. The gwdb module is where the tables are defined and the

objects to access them reside. The „db‟ module is specifically responsible for creating the

database and for creating the configuration file (with passwords and user accounts) that is

used to make connections at run time. It is also the module that is responsible for runtime

transactions. The gwdb module on the other hand has table specifications and methods of

accessing or querying them. Setting up these two modules, however, was no walk in the park

as expected. This will be explained in the next section.

Next is the iapi module. It is responsible for functions related to web requests such as

showing the offline page when the requested mobile web server is not online. It also has

interfaces that are related to. The other package is util which basically has classes that

perform utility functions for the other packages. These include functions like opening

streams, converting from xml to strings and vice versa (for the connector module) and

generating random identifiers. For the db and gwdb modules, util has classes that assemble

the requests into final SQL statements and executes them after making a connection to the

database.

The valve module is a collection of classes that define objects for serving requests as they

come in form web browsers. As mentioned in chapter three, the valve captures all the

requests incoming on port 80 of the Tomcat server. The headers of the requests are then

analysed by the request analyser to determine where to forward the request and the response

objects. If the request URL for the request matches one of the musers‟ chosen web server

URLs it is forwarded to the connector module. The connector checks if the requested server

is online and forwards the request to it. If the requested server is not online then the server

offline page is shown. The webapps module has web applications that present the gateway

data to the visiting users. The web applications take care of account management and to view

gateway connections. The web applications are discussed in later sections. The valve runs as

part of the Tomcat server and this is discussed in the section 4.3 of this chapter

40 Compiling the Package | Rhodes University

Compiling the Package

Each of the modules in the package are compiled and built using the Ant build tool. By

issuing the command „ant‟ in the main directory of the module the files are compiled and a

jar file is produced as a product of the compilation when the „ant jar‟ command was issued in

the main directory of the modules. The util, db, aipi, connector, and valve, modules were

built and compiled at this point since no changes were focused. The gwdb and the webutil

modules on the other hand needed changes to accommodate new data for pictures messages

and GPS updates. The web Applications also needed changes as discussed later.

4.2 Adding New Data Fields and Setting Up the Database

4.2.1 The gwdb Module

 The gwdb and the db modules as mentioned earlier manage the connections and transactions

to the database. To add new features to the package, new fields were added to the tables and

necessary changes were made to ensure that they were accessible through the gwdb module.

The module has table definitions and schemas to facilitate access. The changes were made to

the classes and interfaces that provided access to the tables in the gwdb database. New

features introduced include pictures that are seen in the web applications and location-based

services that show the location of the mobile web servers on a map.

The gwdb module has ten classes in its mysq‟ package (path:\gw-

GW_0_6_1\gwdb\src\com\nokia\mws\gwdb\mysql). This package is used for accessing the

MySQL database of five tables namely gwdb. It has interfaces and classes that are used for

installing and accessing the admin, musers, musernames, muserpropr‟ and the „scopes‟

tables. The classes in the package are MuserImpl that has the table definition for the „musers‟

table and the methods to access and change the data in it. „AdminsImpl‟ for the „admins,

table; MuserNamesImpl for the musername table; ScopesImp‟ for the scopes table and

MuserPropsImp for the muserprops table. All these classes also have interfaces that are in the

41 4.2 Adding New Data Fields and Setting Up the Database | Rhodes University

module‟s main directory,‟ \gw-GW_0_6_1\gwdb\src\com\nokia\mws\gwdb\.‟ Adding new

fields to the musers tables necessitated the changes to the MuserImpl class the Musers

interface and the other classes that have objects that use the MuserImpl class. This includes

classes in the webutil package which are used by the web applications to query table objects.

The diagram below shows the important classes in this package and their relationships with

the database tables.

Figure 13: The Gateway Database and Data Access

42 4.2 Adding New Data Fields and Setting Up the Database | Rhodes University

As shown in figure 13, the db, util, classes have objects that are called by the objects in the

gwdb module. These objects perform the actual transactions by connecting to the database

through the MySQL connector.

The musers table stores data related to the mobile web-server users. It stores the identifier,

the name, the password and the email address of the user. The musernames table stores

information that is used to construct the URL that is used to identify the users‟ mobile web

servers. The musername field holds the name that will be used to identify a user in a URL

and the suffix stores the part that suffixes the musername such as mobile.ict.ru.ac.za. As it

will be explained in the testing chapter however the functionality of addressing a user with a

URL starting with the musername was not implemented. This is because the Domain Name

Server was configured to only recognize URLs starting with http://mobile.ict.ru.ac.za.

Instead the system used was that of adding the username at the end of the URL like

http://mobile.ict.ru.ac.za/~alex, where alex is the musername. The defAddr field basically

holds the address that should be used as a default.

Moving on to the next table in the diagram, the muserprops table stores properties for the

mobile users. The properties stored in this table are those defined in the MuserPropetyTags

class which is also located in the gwdb module. The properties stored include background

pictures and messages for offline pages and the number of hits the page was paid. The values

are stored in a field of type „blob‟ namely propval. The scopes table stores the domains that

are used for constructing URLs. It is used for synthesising the URLs that are stored in the

suffix field of the musernames table. The admins table is used to store the details of the

administrators, their names and passwords.

4.2.2 Changing ‘gwdb’ to add New Features.

43 4.2 Adding New Data Fields and Setting Up the Database | Rhodes University

The fields needed for the new features are those that hold GPS data, the message displayed

on the maps, and for the profile pictures. The GPS data only needs three fields to keep the

longitude and the latitude coordinates as well as the message from the last GPS update. The

pictures are not stored in the database as „blobs‟. They were rather stored in a designated

directory on the hard drive. The path of the picture is the one stored in the database. All these

features are unique to every mobile user and every user will only have one at a time. This

suggests a one-to-one relationship between the user and these data values. The most suitable

table for this is the musers table which has four fields namely ID, REALNAME, PASSWD and

EMAILADDR. The four fields to be added are PICTURE, LATITUDE, LONGITUDE and

MAPMESSAGE in that order.

To accomplish this in the gwdb package, the interface for the musers table (Musers) was

changed. The five methods added where:

String getPicturePath(String muserId) throws DbExc;

String getLongitude(String muserId) throws DbExc;

 String getLatitude(String muserId) throws DbExc;

void getMapMessage(String muserID) throws DbExc;

void changePicturePath(String muserId,

 String newPicturePath) throws DbExc;

These methods are implemented in the muserImpl class which implements the musers

interface. The sample code for getting data used to implement the „get‟ methods in the

MuserImpl table is as follows:

44 4.2 Adding New Data Fields and Setting Up the Database | Rhodes University

public String getLongitude(String muserId) throws DbExc {

 try {

 String noData = "not";

 String[]

 longitude = parent_.selectRow(TABLE,

 new String[]{LONGITUDE_COL},

 new String[]{ID_COL},

 new String[]{muserId});

 return (longitude == null) ? noData : longitude[0];

 } catch (SQLException sqlExc) {

 throw new DbExc("Could not query muser "

 + muserId

 + ": "

 + sqlExc.getMessage(),

 sqlExc);

 }

 } //

Evidently the code is for the getting the longitude coordinates from the musers table. The

method used is the db.TableBase.selectRow method which is located in the „db‟ package or

module. It basically takes care of selecting the fields from a given table. The parameters that

it takes in are arrays for the column(s) to be returned, the column(s) to be matched and the

values to be matched. In this case the variable table holds the value musers; the column to be

returned is the longitude column and the column to be matched (the „where‟ clause) is the id

45 4.2 Adding New Data Fields and Setting Up the Database | Rhodes University

column. It returns the longitude value for the column that match the given muserId

(identifier). All the other get methods follow this basic format. The web applications and

other modules access this information by calling these methods from the objects of this

package (gwdb). The fields also needed to be added to the table definition in MuserImpl.java.

The column names, their types, lengths, default values and whether they are null-able or not

was specified in the table specification in the muserImpl class. An example code is as

follows:

ColumnSpec musersLongitude =

 new ColumnSpec(musers_,

 LONGITUDE_COL,

 "VARCHAR(" + 16 + ')',

 true, // non nullable

 ‘not’), // no default value

The db.ColumnSpec class is located in the db package and it hold column specifications that

were supposed to be used for setting up the database and for accessing it. The setting-up part

however did not go so well. Figure 14 shows the edited database and the relationships

between tables. The tables where related to ensure data integrity. If a user removes their

account the deletion is to be cascaded to the musernames and muserprops tables to make sure

all the user‟s data is deleted from the database.

46 4.2 Adding New Data Fields and Setting Up the Database | Rhodes University

Figure 14: The Gateway Database and Data Access (modified)

4.2.3 Putting the Database Together

The package is set up in such a way that the person wishing to install it issues commands to

install all the tables. The commands involved execute Bash shell scripts. The Bash scripts are

also supposed to add the necessary references to the classpath, to set up the database and to

generate a configuration file that is used to configure connection variables used for run-time

connections.

Because the gateway is being setup on the Windows operating system, bash commands as

well as scripts did not execute as expected. The tool used was „bash‟. The bash tool is an

47 4.2 Adding New Data Fields and Setting Up the Database | Rhodes University

emulation tool for the Bash shell on windows. Instead of producing the above-mentioned

deliverables the bash script execution returns class-not-found errors. Attempts to correct the

errors proved futile. The tasks had to be performed manually by studying the code and the

scripts. This was also desirable as the code for setting up the database did not have any table

relationship information at all. Since the table definitions were given from the code that is

supposed to set the gwdb database up, the mission was not difficult at all. The relationships

were also setup on the MySQL database in addition to what was in the code. The database

name was set to gwdb, there are two user accounts gwusr and „root.‟ The usernames

passwords for logging onto the MySQL server where provided to the gateway application by

putting them into the gw.build.properties file.

4.2.4 The Database Configurations File

The database configurations file, namely mws-gw-db.cfg, is a file that is used to configure the

database whenever the access details change. It is used to keep the database connection

details current. The file was supposed to be a product of the bash-script execution mentioned

earlier. It had to be put together (by studying the code that was supposed to set it up in the db

package) to ensure database connections. The information contained in this package is the

name of the database; the name of the database user that the package will use to access the

database and the corresponding password. Also in the file was the URL to accessing the

database. The configurations were as follows:

db.name = gwdb

db.url = jdbc:mysql://localhost:3306/gwdb

db.user = gwusr

db.passwd = 673367

48 Building and implementing the gateway | Rhodes University

The file is located in the „db‟ package of the in the „bin‟ folder. This file is used by the db

package to establish connections with the gwdb database.

Chapter 4

Building and implementing the gateway

4.1 Introduction

The gateway for the project is implemented by building on the basic, open-source, gateway

connection-management modules made available by Nokia. These modules are responsible

for accepting and maintaining connections with the mobile phone connector (through a

control channel) and provide objects that contain information about connection states. They

are also responsible for opening up data channels when a request is to be serviced. Another

part of the package is a database persistence module, gwdb, that manages run-time

transactions and queries as mentioned in chapter three. Provided also are skeleton web

applications that show how information can be accessed from the gwdb module at run time.

This chapter discusses the customization and the building of the package to make a unique

functional gateway.

4.2 The Structure of the Package

The gateway package is organized into eight modules, namely: connector, db, gwdb, iapi,

util, webutil, valve, and webapps. All these modules perform tasks that collectively add up to

a system that is capable of receiving and servicing mobile web-server requests. The

49 4.2 The Structure of the Package | Rhodes University

connector module handles the functions of the gateway connector as mentioned in chapter

three. It is the part of the gateway that is responsible for receiving connection requests from

mobile web servers. It keeps these connections alive by using an XML protocol that is

custom-made for this purpose (through the control channels). When requests for a connected

mobile connector come in the gateway, connector opens up a data channel as mentioned in

the previous chapter. (All this is performed through the Tomcat web server and more details

will be given in the Tomcat section.) The db and gwdb modules are collectively responsible

for database setup and run-time transaction management. The gwdb module is where the

tables are defined and the objects to access them reside. The „db‟ module is specifically

responsible for creating the database and for creating the configuration file (with passwords

and user accounts) that is used to make connections at run time. It is also the module that is

responsible for runtime transactions. The gwdb module on the other hand has table

specifications and methods of accessing or querying them. Setting up these two modules,

however, was not as easy as had been expected. This will be explained in the next section.

Next is the ‟iapi‟ module. It is responsible for functions related to web requests such as

showing the offline page when the requested mobile web server is not online. It also has

interfaces that are related to. The other package is util which has classes that perform utilty

functions for the other packages. These include functions like opening streams, converting

from XML to strings and vice versa (for the connector module) and generating random

identifiers. For the db and gwdb modules, util has classes that assemble the requests into final

SQL statements and executes them after making a connection to the database.

The „valve‟ module is a collection of classes that define objects for serving requests as they

come in from web browsers. As mentioned in Chapter 3, the valve captures all the requests

incoming on port 80 of the Tomcat server. The headers of the requests are then analysed by

the request analyser to determine where to forward the request and the response objects. If the

request URL matches one of the musers‟ chosen web server URLs, it is forwarded to the

connector module. The connector checks if the requested server is online and forwards the

request to it. If the requested server is not online, then the server offline page is shown. The

„webapps‟ module has web applications that present gateway data to visiting users. The web

applications take care of account management and enable the viewing of gateway

50 Compiling the Package | Rhodes University

connections. The web applications are discussed in later sections. The valve runs as part of

the Tomcat server and this is discussed in the section 4.3 of this chapter

Compiling the Package

Each of the modules in the package was compiled and built using the Ant build tool. When

the command ant was issued in the main directory of the module, the files were compiled. A

jar file was produced as a product of the compilation when the ant jar command was issued

in the main directory of the modules. The util, db, aipi, connector, and valve, modules were

built and compiled at this point since no changes were focused. The gwdb and the webutil

modules on the other hand needed changes to accommodate new data for pictures messages

and GPS updates. The web applications also needed changes as discussed later.

4.3 Setting up Tomcat

4.3.1 Setting up the Containers

The container for the mobile web server gateway is the Tomcat web server. For this project

the version used is tomcat 5.5. Tomcat can be broken down into a set of containers, each with

their own purpose [17]. These containers are configured by using the „server.xml‟ file. The

hierarchy for the containers is shown below as it appears in the „server.xml‟ file format:

 <Service>

 <Connector />

 <Engine>

 <Host>

51 4.3 Setting up Tomcat | Rhodes University

 <Context />

 </Host>

 </Engine>

 </Service>

</Server>

The service tags for each container are contained within the server tags. The tags have

attributes that describe the behaviour of the container when servicing requests. The Tomcat

server is the interface for receiving all web requests for the gateway. It also has the

responsibility for receiving and sending requests, as well as responses on behalf of the

gateway connector. This is where the containers come in. The web requests are serviced by

the Tomcat‟s Catalina container as explained in [19]. (The service name for this container is

„Catalina'). The connector used for this project is the non-SSL HTTP/1.1connector. The port

reserved for this connector for the purposes of the project is port 80, as mentioned in

preceding Chapter 3. The Catalina service is always configured by default when installing the

Tomcat package. It is therefore not hard to set it up at all as it is the main Tomcat service.

Below is the configuration of the connector from the „server.xml‟ file:

<Connector port="80" maxHttpHeaderSize="8192"

 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"

 enableLookups="false" redirectPort="8443" acceptCount="100"

 connectionTimeout="20000" disableUploadTimeout="true" />

 For Tomcat to service requests and other traffic for the gateway connector, a new container

should be created. The service for this container should listen on the gateway host‟s port

15001. When the requests come in from the mobile web servers for connection establishment,

the container needs to parse the stream coming in using a protocol. After this is done, the

52 4.3 Setting up Tomcat | Rhodes University

requests need to be processed. The Tomcat container must know where to forward incoming

data. This is shown in the figure 15 which is from Alex Hanik‟s presentation entitled Hacking

Tomcat [18].

Figure 15: Tomcat Containers and request Flow

The endpoint is the receiver and sender of traffic. According to Alex Hanik all java.io,

java.nio/apr and socket logic form part of the endpoint illustrated in Figure [18]. For the

desired connector the important thing to do here is just to give the port, which is 15001. This

is the port on which the gateway will communicate with mobile web servers. The protocol

and the processor components should contain logic for parsing the data that comes in. The

Processor component is responsible for setting up buffers for passing streams and for parsing

the actual stream against the „Protocol‟ component. For the gateway this is the

MuserProtocolHandler which is an object from a class in the server package of the connector

module. This package contains classes that parse incoming and outgoing XML data. For the

control channel the UDP data could be for connection establishment, connection keep-alives

and data channel requests (when the gateway requests a data channel from the mobile web

server).

53 4.3 Setting up Tomcat | Rhodes University

The Adapter component, according to Hanik, handles passing on the requests and responses,

once parsed, to the container‟s engine. According to Apache‟s documentation of Tomcat, the

container's engine ” receives and processes all requests from one or more Connectors, and

returns the completed response to the Connector for ultimate transmission back to the client”.

The configuration of the mobile web server connector container in Tomcat is as shown below

(partially from [22]):

<Service name="Mws">

 <Connector protocol="com.nokia.mws.connector.server.MuserProtocolHandler”

processorChainSpec="com.nokia.mws.connector.server.RequestStreamer:com.nokia.mws.co

nnector.server.HitCounterResponseStreamer" logLevel="INFO"

muserObservers="com.nokia.mws.connector.server.observer.Messenger:com.nokia.mws.con

nector.server.observer.EverOnline"

port="15001"/>

 <Engine name="Mws" defaultHost="MwsHost"/>

 </Service>

The processorChainSpec attribute shows the container the objects that use the container. The

Requestreamer (in the connector module‟s server package) receives information about which

mobile web servers are requested and serves content depending on whether the requested

server is online or not. The hitcounterResponseStreamer is responsible for updating and

incrementing the „hits‟ property of the muserprops table every time a mobile web server is

accessed successfully. The muserObservers attribute has references to the observer objects.

These are the Messenger and the EverOnline classes or instances. Both are part of the

„observer‟ package. The EverOnline observer updates the everOnline property of mobile web

servers (also in the muserprops table). This property indicates whether the user (mobile web

server) has ever been online. The „Messenger‟ observer on the other hand handles the

54 4.3 Setting up Tomcat | Rhodes University

messaging. It sets the msg property in the muserprops database table. The observer handles

the sending and reading of messages by the mobile users depending on the connection state,

online or offline.

4.3.3 Setting up the Valve

According to the Apache Tomcat documentation [21] A Valve element represents a

component that will be inserted into the request processing pipeline for the associated

Catalina container (Engine, Host, or Context). As mentioned in chapter three, the valve or

dispatcher for the gateway is the part that determines where to forward the web requests as

they come into the gateway. It either forwards the requests to the web applications (the

Catalina HTTP 1.1 container) or to the gateway (Mws) connector, which is also a part of

Tomcat (as explained in the previous section). There needs to be a reference in Tomcat

pointing at the class that implements the valve. This is accomplished by placing the line

below in „server.xml‟ outside all the containers:

<Valve className="com.nokia.mws.valve.MuserValve"/>

It‟s outside all the connectors because it is the one that directs incoming requests to either the

web applications or the web servers. Phrased differently, it determines which container to

forward a request to as shown in the diagram below. If the incoming request is for a mobile

web server that happens to be offline, an offline page is generated and the „out of site‟ web

application is invoked. This is shown in Figure 16 with the line from the mobile web server

container to the web applications.

http://tomcat.apache.org/tomcat-6.0-doc/config/engine.html
http://tomcat.apache.org/tomcat-6.0-doc/config/host.html
http://tomcat.apache.org/tomcat-6.0-doc/config/context.html

55 4.4 The Web Applications | Rhodes University

Figure 16: The Valve and the Containers

4.4 The Web Applications

The gateway would not be complete without the web applications. The web applications

handle, amongst other things, user registration and user account management. For registration

56 4.4 The Web Applications | Rhodes University

a user only really needs to create an account with log-on details. The user should then be able

to manage (change details, delete their accounts) when they so wish. The web applications

also enable the administrator to manage mobile web server accounts by adding new users or

deleting on editing details of existing ones. They also enable the web visitors to see the

mobile users registered on the gateway and see whether they are online or not. The web

visitors also get the benefit of seeing the number of hits web visitors have paid to a particular

account. The web applications are the face of the gateway, they are all visitors really ever see

and the presentation as well as the user-friendliness will determine the visitors‟ impression of

the service. The web applications that come with the Nokia gateway package are far from

complete and are minimal. The next section describes the process of customizing, adding

functionality and setting them up.

The web applications for this project are implemented using JavaServer Faces and in some

cases JavaServer Pages and Servlets. This enables applications to access other backend Java

code to access databases and other runtime information such as the connection state of the

mobile web servers. JavaServer Faces applications use the Ant build tool and have their

directory structure organized in standard Ant application structure. The main web application

folders contain the subfolders: build, dist, docs, src and web. In the main directories are also

ant build files. Ant build files (build.xml) perform functions such as importing all the needed

library jar files, for dynamically constructing the classpath for the project, compiling as well

as installing the web applications into Tomcat using the Catalina-Ant.jar file. The first thing

to do for any web application is therefore to set up this file. The logical flow of data in the

web applications for this project is depicted in the Figure 17:

57 4.4 The Web Applications | Rhodes University

Figure 17: Web Applications and Data Access

The JavaServer pages capture information and display it to the user. They forward or get the

data from the backing beans by using the beans' getter and setter methods. The flow and

navigation of the JavaServer Pages is guided by the „faces-config.xml‟ file. The backing

beans have libraries and import the database persistence module objects and packages. If data

from the database is to be queried, these objects are used to access it by calling their methods.

The beans also process the data and perform functions like sending email messages. The

webutil, util and the connector packages help in accessing connection information for mobile

users. By instantiating objects and calling their methods, the JavaBeans can obtain

information on which mobile web server users are online and which ones are offline. The

next sections will concentrate on the challenges faced while setting up and customizing the

web applications.

4.4.1 The User Registration Web Application

58 4.4 The Web Applications | Rhodes University

The gateway package did not come with a user registration web application and one had to be

put together to allow web users with mobile web servers to register for the service. The

application captures user information that is crucial to successful web-server-gateway

communication. It also sends an email to the registrant confirming the registration event to

them. The application should also have error handling to make sure that the details entered

are valid for successful user registration.

The only data that is important to the functionality of the gateway is that for the user account:

a user name and a password; and that for the access URL (that is the URL with which the

web server will be identified). With this a user can connect their mobile web server to the

gateway by putting their log-in details into the mobile PAMP connector. PAMP is combined

Apache, PHP and MySQL on a mobile phone (running a Symbian operating system).

However, there is other information that is needed for the web application presentation and

user management. This data includes pictures for display and an email address to contact user

when necessary. All this information should be solicited from the user with a clean, user-

friendly interface.

 JSP Pages

The web application first produces a user registration page that has a form with fields to be

completed. Upon successful submission, the application flows to the success page after

sending an email. If, however, the form was not completed successfully the application

displays the error at the top of the page (if it is an internal error such as database access) or

next to the field involved. If a cancel button is pressed, another page thanking the user for

trying, is displayed. This flow logic is all implemented in the „config.xml‟ file in the

„/web/web-inf‟ folder. Also declared in this file are references to the backing beans which do

the processing for the application. The main JSP Page and the final fields for user registration

are shown in Figure 18:

59 4.4 The Web Applications | Rhodes University

Figure 18: The Registration Page

There are tags from the JavaServer faces library for text, password and file upload fields. The

file uploading tag had to take in images only. An attribute named accept which specifies the

MIME type of the file had to be added to ensure this. The code extract from the JSP page for

accomplishing this operation is shown below:

<h:outputText value="Picture:"/>

 <t:inputFileUpload id="myUploadedFile" accept= "image/*"

 value="#{muserCreator.myUploadedFile}"/>

60 4.4 The Web Applications | Rhodes University

The string accept= "image/*" ensures that only image files are uploaded as part of this

operation.

The Backing Beans

The main aim for JavaServer Faces was to separate presentation from processing logic and

styling code. The backing beans handle the processing for a java web application and the JSP

pages handle the presentation. The backing beans are the MuserCreator.java and the

NameScopepair.java classes. The MuserCreator.java class has getters and setters for the

fields obtained from or displayed on the main registration form. It accesses the database

calling methods from the gwdb module. The bean ensures that the user identifier is unique

and registers the user after making sure everything is perfectly fine. After that, it sends an

email message affirming the registration by sending the user the details they had registered

with. The NameScopepair.java class is responsible for getting information about the domain

names used for constructing the mobile web server users‟ URLS. The gwdb objects used for

the registration are those for accessing the musers, musernames and the scopes tables.

The challenge encountered during the implementation of this application was the uploading

of files. The „muser‟ table in the database had no field for pictures. At first a „blob‟ field was

added to it for this purpose. However, storing picture in databases requires expensive

operations and memory. A lighter approach was taken that stores the picture on a directory on

the disk. The file path was then stored in the database. The pictures are all loaded in the same

folder with the user identifier as their names. This ensures that the pictures have unique

names and paths and can be overwritten easily.

The pictures are delivered from the interface using the

org.apache.myfaces.custom.fileupload.UploadedFile class. The object holding the picture

that is obtained from the interface is instantiated from this class. The picture is then stored in

61 4.4 The Web Applications | Rhodes University

a directory on the hard drive by using the operation below shown in the following code

extract from the MuserCreator.java bean:

public void sendFile(){

try{

//first create dir for file - not needed ofcourse

 File fileOnServer = null;

//create empty file with specified name and path

 filePath = "e:/pictures/" + muserId_ + ".jpg";

 fileOnServer = new File(filePath);

 filePath = muserId_ + ".jpg";

// save uploaded file into new one

 BufferedOutputStream os = new BufferedOutputStream(new
FileOutputStream(fileOnServer));

 BufferedInputStream is = new
BufferedInputStream(myUploadedFile_.getInputStream());

 byte[] buffer = new byte[1024];

 int count = 0;

 while ((count = is.read(buffer)) != -1) {

 os.write(buffer, 0, count);

 }

 fis = new FileInputStream(fileOnServer);

 os.close();

 is.close();

}catch(Exception e){

 e.printStackTrace();

}

62 4.4 The Web Applications | Rhodes University

}

The filePath variable is then stored in the database. It is guaranteed to be unique since it is

named after the user identifier. After all the input variables have taken in data from the input

form, the createMuser() method of the bean is called. It invokes all the operations for

creating a user.

4.4.2 The User Account Web Application and Offline Properties

The user account web application was set up but what the mobile users could manage on their

accounts was very limited. The application allowed the users to change the identifiers

(usernames), passwords and real names. However there was a lot in the application that the

user could change. Additional data fields and forms were needed for changing pictures and

messages shown when a user is offline. A user also need to set if they wanted to be visible to

others on the „all-users‟ or online-users page. The gwdb objects used in the beans are for

accessing user information from the musers tables. However, the three fields for offline data

and visibility are part of the muserprops table which stores properties for users. Also, session

tracking and password recovery functionality had to be added, but this is fairly standard and

the code is shown in the extracts at the end. The main final form for this application is shown

in the Figure 19:

63 4.4 The Web Applications | Rhodes University

Figure 19: The Settings Page

A success.jsp page was also added to confirm the event of successful account data changing.

Necessary changes had to be made to the faces-config.xml file to add the page to the overall

application-flow logic.

Allowing Users to Change Offline Message and Picture (in the Backing Bean)

In the main backing bean (Settings.java), the methods used to change the offline fields are

those of the MuserProps interface in the gwdb module. The properties have codes. To set

these properties, the define method from the MuserProps interface was called. And the value

64 4.4 The Web Applications | Rhodes University

of the properties set to those input from the form in the JSP page. An extract of the most

important code for accomplishing this (from the Settings.java bean) is shown below:

MuserPropTag mpt = MuserPropTagMgr.getMuserPropTag("oos-text");

 muserProps().define(muserId_, "oos-text", msgProp_);

oos-text is the code for the offline message, muserId_ is the user that is currently logged on

and msgProp_ is the input data from the form. The muserProps() method returns the

muserprops table from the database for writing and querying. The offline picture is stored as

a „blob‟ in the database (muserprops table). An overridden method of the define method takes

in InputStream types instead of strings. This method is called for uploading the offline picture

as shown in the code extract below (from the Settings.java bean):

MuserPropTag mpt = MuserPropTagMgr.getMuserPropTag("oos-fg");

 muserProps().define(muserId_, "oos-fg", fis);

oos-fg is the offline picture tag code in the muserprops table; fis is the FileInputStream object

that contains the image uploaded from the input form. The file, however, does not come here

directly it has to be put in a FileInputStream object first. Simply taking the file object from

the interface and converting it to a FileInputStream object directly does not work. The

uploaded file was in the form of the org.apache.myfaces.custom.fileupload.UploadedFile

object and calling the getInputStream() method used for this was not rendering the desired

results. To get around this, the file had to be stored on the disk (as done in the sendFile()

operation for registration) and converted to a FileInputStream object (fis in the code

extract). This worked as expected. An example of an offline page is shown in Figure 20 with

a picture and message left by the user.

65 4.4 The Web Applications | Rhodes University

Figure 20: The Offline Page

Allowing users to set their visibility

Another feature added is that of allowing users to set if they want their status to be shown

online. They could set the combo-box on the screen to either true or false. If the user chooses

„true‟ their status are made „public‟ and everyone could see when they are online and when

they are not. If it is set to false their status is not set to false. This is set in part by using the

extract of code below:

MuserPropTag

 mpt = MuserPropTagMgr.getMuserPropTag("show-on-portal");

66 4.4 The Web Applications | Rhodes University

 muserProps().define(muserId_,

 "show-on-portal",

 visibleProp_);

Allowing Users to Change Profile Picture

 Another issue was uploading another picture (for the main profile picture). A JavaServer

Faces error about the clashing of variable names of the uploaded files when they were

different in both the forms and the beans was being displayed. To overcome this, the picture

had to be put on another JSP page (changePic.jsp) using a separate backing bean

(ChangeFile.java) to clear out these errors. Necessary changes had to be made to the faces-

config.xml file to reference the bean and to add the page to the overall application-flow logic.

Session tracking and Password Recovery

Session tracking using cookies was added to the application. This was done by adding the

cookies to a javax.faces.context.FacesContext object (facesContext). The following is an

extract of the main code used to add the cookies:

((HttpServletResponse)facesContext.getExternalContext().getResponse()).addCookie(userna

me);

((HttpServletResponse)facesContext.getExternalContext().getResponse()).addCookie(passwo

rd);

67 4.4 The Web Applications | Rhodes University

 This is a standard way of adding cookies to JavaServer Faces web applications.

For the password recovery feature, a user just needs to enter their user identifier in a textbox.

Their email address is obtained from the musers table and the corresponding password is sent

to their mailbox. Necessary changes had to be made to the faces-config.xml file to add the

password-recovery page to the overall application-flow logic.

4.4.4 The Admin Web Application

The administrator web application allows the administrator to manage the gateway from the

web. The functions that an administrator can perform are adding new users, deleting existing

ones and changing their details. The application also has a page for showing all the registered

users. Another page also shows the users that have their web servers online. The registered

users‟ page may be seen by the administrator only. For social networking purposes however

this is not favourable and the application was modified to be seen by all the web visitors. The

online users‟ page was also made visible to the public so that they might network with them.

The application was edited to display pictures uploaded by the users. This meant using the

methods of the „gwdb‟ objects to get the picture name of the mobile user. The task, however,

was not as simple as initially anticipated. The pictures were stored on the hard disk on a

folder that was outside the web application‟s context path. If the images were put in the

context path of the „admin‟ web application it would have deprived other applications access

rights. A solution had to be found to make sure the pictures were visible from outside the web

applications‟ context paths. The solution was using a third party servlet

(com.jsos.image.ImageServlet) that was in form of a jar file. The jar file was placed in the

library folder of the web application. In the web.xml file a servlet and its mapping was added.

This was done with this XML extract:

<servlet>

 <servlet-name>Image</servlet-name>

68 4.4 The Web Applications | Rhodes University

 <servlet-class>com.jsos.image.ImageServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>Image</servlet-name>

 <url-pattern>/servlet/Image</url-pattern>

</servlet-mapping>

In the backing bean (MuserInfo.java) the picture path is obtained from the „gwdb‟ objects

using the musers.getPicturepath method. The picture path is then rendered to the JSP using a

getter method. On the page the graphicImage tag of the http://myfaces.apache.org/tomahawk

library was used. The image‟s path is referenced in the url attribute of this tag. The URL is

basically that of the com.jsos.image.ImageServlet servlet as specified in the web.xml

(/servlet/Image). The parameter taken by the servlet (through the URL) is the file path and

that is e:\pictures\#{muserInfo.picturePath}. #{muserInfo.picturePath} is expression

language to access the picturePath property of the muserInfo.java bean. The code extract is

as follows:

<t:graphicImage url="/servlet/Image?e:\pictures\#{muserInfo.picturePath}"

 border="1"

 alt="image not available."

 width = "90" height = "120"

 />

69 4.4 The Web Applications | Rhodes University

This successfully displays the picture from outside the context path of the application, that is

in the folder located on the hard disk (e:\) in the pictures folder. Figure 21 is a screenshot of

the mobile web server gateway users‟ page.

 Figure 21: The All Users Page

70 4.4 The Web Applications | Rhodes University

4.4.5 The main Page and Styling of the Web Applications

The web applications needed to be connected to other pages and to a main page (the initial

page that connects all the others). Styling also needed to be changed for the application to

look more attractive and consistent. The implementation had to be simple and minimal to

allow for easy editing. A Cascading Style Sheet (css) file was used to style the web

applications (basic.css). Each application has its own „basic.css‟ file in the web folder. The

styles are applied using four files because of they are needed in different places in the JSP

file. <@include> tags are used to include the files into the pages at compile time. The three

files contain content to format the header, the body and the footer. The file extracts fro the

four ‘.inc’ are shown in the appendix, but just for clarity‟s sake the files contain links and

<div> tags that are included at four distinct places in the main file were they styles are

needed. Including the four files required the tags following tags (in the JSP files).

<%@include file="inc/head.inc" %>

<%@include file="inc/subBody.inc" %>

%@include file="inc/subBodyFin.inc" %

<%@include file="inc/footer.inc" %>

The „head.inc‟ file contains the header information and the reference to the „basic.css‟ file.

The other „.inc‟ files have „<div>’ style tags for the different parts of the JSP files such as the

navigation list the body, and the footer. After application the results is the styling for the

pages shown in the preceding sections with the links to all the web applications and a

highlighted link (orange) link for the current one. The Main page basically has the link to all

the web applications; software downloads of the web-server and other supporting software

that works with the gateway.

mailto:%25@include%20file=%22inc/subBodyFin.inc%22%20%25

71 Chapter Summary | Rhodes University

4.4.6 Setting up the Web Applications

After everything is edited and finalized for the web applications an Ant command is issued in

the main directory of the web application to compile it (the default action in the „build.xml‟

file). Once this is done, Tomcat is started and the „Ant install‟ command is used to install or

deploy the application. This uses the Catalina-ant.jar file which is used by „Ant‟ to deploy

applications. Once this is done the web applications can be visited using their context URLs

or by going to the index.html page (the main page) that has all the links to all the other web

applications.

4.5 Chapter Summary

In conclusion, the author has discussed the relevant issues encountered during the process of

building and setting up the gateway. The chapter explain how the gateway was set up using

the open source Nokia gateway. It describes how the database was installed and how Tomcat

was configured. The chapter also explains how the web applications where modified to add

new functionality and to make them more attractive

72 Design and Implementation of the Location Based Services for the gateway | Rhodes
University

Chapter 5

Design and Implementation of the Location

Based Services for the gateway

5.1 Introduction

One of the project objectives was to design and build a new feature that works harmoniously

with the other parts of the gateway. The new feature implemented is the gateway location

based service that gets GPS information from the mobile phone serving mobile content and

shows the location of the web servers on a map. Since location is a sensitive issue, the mobile

user would need explicitly to log on to upload their coordinates to the server. They should

also be able to delete the coordinates if they so wish. This chapter will discuss the design and

the main points of implementation encountered during this phase of the project.

5.2 Application Specifications and Development Considerations

The application residing on the mobile phone needed to be capable of soliciting

authentication information and for obtaining GPS data from the GPS device on the phone.

The application was designed to communicate its information with the server and receive a

reply stating whether the GPS coordinates were to be updated at a certain interval. The

information was meant to be sent be sent over a TCP connection which is terminated after the

updates to make sure power use on the mobile phones was minimal. Contrary to expectations,

however, the implementation of TCP connections using streams was not so simple. The

approach taken was that of establishing a TCP connection to the server and opening streams

to communicate through this connection. The program worked very well on the emulator and

on the Local Area Network. On GPRS networks it was a totally different story. The TCP

connections were being established but the streams were not being established. Instead the

73 5.2 Application Specifications and Development Considerations | Rhodes University

program hung at that point until it was stopped. The simplest solution to the problem was to

use UDP connections instead of the originally proposed TCP. This is discussed in the

implementation section of this chapter.

 The GPS application was designed to be invoked explicitly by the user of the mobile phone,

separately from the use of the web server and its connector. This application can in future be

easily modified and used for other features if implemented separately from the mobile web

server code. Another reason why the application was implemented separately is that it was

much easier to implement it using the Java Mobile environment (JME) rather than Symbian

C++ or Python for Symbian. Both these languages are currently very inconvenient for

implementing applications in as they need to be Symbian-signed before they can do anything

useful like accessing the GPS data. For signing one can either apply for a publishers' key

(given only to publishers!) or upload the application to Symbian Signed which enables one

individual to run the application on only one phone
1
. Both approaches are relatively

inconvenient compared to the use of Java applications on the mobile phone.

There is a server application on the gateway that receives information from the mobile

phones and updates the location information in the gwdb database. This application was

implemented in Java and it listens on a specific port for any incoming connections. Its

operations are simple: for each incoming request (thread), it reads the message and divides it

into tokens; checks if the user exists and updates their GPS coordinates and map message (the

message that will show on the map). If a user does not exist or their logon details do not

match, they are ignored. The GPS coordinates and the map message are accessed later by a

JavaServer Pages web application through the gwdb module. The web application then

displays the most recent updates at the given coordinates on a Google map. The service is

delivered as shown in Figure 22.

1
 Nokia's recent purchase of Symbian Signed may change this situation, which has caused much concern and

anger in the mobile development community.

74 | Rhodes University

Figure 22: The Gateway's Positioning Feature

5.3 Designing and Implementing the Applications

As shown in the diagram in section 5.2, the application should have a client-server

architecture, with the gateway hosting a server that awaits requests from mobile clients. The

application on the server has to be multi-threaded and has to access the database through a

single connection. This is much more efficient than creating new objects and database

connections as connections come in from the clients. Since the client application would be

behind the operator firewall it would need to make the connection to the server. It does not

matter if the connection is unreliable because the messages are resent after a number of

milliseconds. Therefore employing UDP for the job is the best option because packet loss is

not a major problem in this instance.

75 5.3 Designing and Implementing the Applications | Rhodes University

5.3.1 The Mobile Phone Application

The application on the mobile phone has a form that takes in three values: the username, the

password and the message to be displayed on the map. In the background, it opens a UDP

connection to the server on a known port. The GPS coordinates are obtained from the

phone‟s GPS device by a class that implements the

javax.microedition.location.LocationListener interface. This interface requires that the

classes implementing it subscribe to three methods: the locationUpdated,

locationStateChanged and the run methods. In the run method preferred GPS accuracy, and

battery usage are specified. This method is responsible for obtaining the GPs coordinates

from the GPS device. It calls the javax.microedition.location.LocationProvider.getLocation()

method that gets the coordinates from the GPS device. Also set in this method is the interval

between which the application prefers to get the GPS coordinates.

The other method that classes should subscribe to is the locationUpdated method. This

method contains all the tasks that are to be carried out after a successful GPS update, such as.

sending the coordinates to the server. The message is constructed using a special string

delimiter, !; (an exclamation mark and a semicolon) to separate the tokens. The components

of the message are (as previously mentioned) the username, password, latitude and longitude

coordinates and the message to be displayed on the map. The message is then converted to

bytes and inserted into a datagram. It is then sent to the server on port 55555 using the

connection established earlier. This is repeated after every ten thousand milliseconds until

the user terminates the connection. The actions are illustrated in the Figure 23:

76 5.3 Designing and Implementing the Applications | Rhodes University

Figure 23: The Client Application’s Flow Chart

77 | Rhodes University

While the application is updating the server, it displays a form that tells the user that the

updates are currently being made every ten thousand milliseconds. If the user presses the

back button on the server, the locationUpdated method is stoped.

5.3.2 The Server Application

The application that resides on the gateway server sits and waits for incoming connections

and messages. When started, it establishes a connection to the gwdb database and waits for

datagrams to come in on port 55555. When a connection comes, it is serviced by a thread.

The thread reads in the datagram and converts the contents to a string. The string is parsed

through a tokenizer to get the separate parts of the message into variables. The username and

the password parts of the message are then matched against those in the database. If the user

exists the updates are made to the gwdb database‟s muser table. The fields overwritten are the

latitude, longitude and the mapmessage. The connection thread runs a while loop that listens

for incoming connections on the designated port. The loop is terminated when the server is

stopped.

5.4 The Web Application

5.4.1 Introduction

The GPS service would not have been complete without the front end, the web application.

The web application‟s functions are simple. It takes the coordinates and the message from the

database through the objects provided by the gwdb module and displays the markers of those

that have GPS coordinates at their location on a Google map. When a marker is clicked, the

an information window should pop up showing the profile picture of the mobile user, the

username, their real name, their message and a link to their mobile web servers. The gwdb

methods used for obtaining the data from the database are those of the musers table added to

the database in section 4.2.1.

78 5.4 The Web Application | Rhodes University

5.4.3 Server-Side and Client-Side Value Exchange

Google maps can be used by getting a key from „maps.google.com.‟ Once a key is given it

can be used for maps in a particular Domain or sites using the registered URL. The maps can

be manipulated by using JavaScript code that can call Google maps-specific objects and

methods. The methods and objects can be used to draw maps on a page, to put markers at

specific coordinates and to put information windows. The information windows can also be

displayed after clicking a marker (known as an overlay) after adding an action listener to the

marker. This application needed to be displaying markers at positions determined from the

coordinates stored in the gwdb database. Also, the markers are displayed only when there are

values for them in the database. All the users that have coordinates in the database need to

have their markers displayed at their positions. Moreover, when the markers are clicked they

display the picture of the user, their names, their map-message and a link to their mobile web

server. Before this was done one crucial thing had to be understood, the server-side and

client-side values exchange.

5.4.3 Server-Side and Client-Side Value Exchange

The web application was implemented using a servlet that constructs a new page through a

java.io.PrintWriter object. The reason why this approach was taken was that it is much easier

to integrate with Google maps JavaScript code and to iterate over it in a manner that yields

the desired points on the map. The challenge involved in rendering the Google maps to the

client for this application is that it should be a combination of server-side and client side

code. The two sets of code are executed on the server and the browser respectively. Although

the aspect of Google maps using server-side Java values is not well documented, what was

noted was that if the values (from server-side variables) are rendered to the browser as part of

JavaScript code they are executed anyway. An example doing this is as follows:

pw.println("point = new GLatLng(" + lat + ", " + lon + ");

map.addOverlay(createMarker(point, " + count + "," + capt + ")); ");

79 5.4 The Web Application | Rhodes University

The bold variables are server-side variables that („lat‟ for latitude coordinates from the

database, lon for longitude coordinates) are used by client-side Google maps JavaScript code

(in italics). On the server the variables are resolved to their current values and are executed at

the client as if the were normal client side values.

By writing the values of the variables on the server to be executed in JavaScript code, a

technique to add markers, information windows and listeners to the maps was realized

successfully.

5.4.4 The Implementation

The gwdb package was imported to access the coordinates, pictures and messages. The

application was first coded separately (JavaScript and Java) and then merged to produce a

map from the database. The program basically has a Java loop that iterates over all the users

and checks if they have left any GPS coordinates and messages. If they have, the values for

the current user are put into variables that are then put into JavaScript code to form markers

and information windows. The code for obtaining the values is shown below:

while (musers.hasMoreElements()) {

 String muserId = (String)musers.nextElement();

 String realName = gwTables().getMusers().getRealName(muserId);

 String pic = gwTables().getMusers().getPicturePath(muserId);

 String lat = gwTables().getMusers().getLatitude(muserId);

 String lon = gwTables().getMusers().getLongitude(muserId);

 String message = gwTables().getMusers().getMapMessage(muserId);

80 5.4 The Web Application | Rhodes University

Once the values were put into the variables they had to be put into JavaScript code in such a

way that the coordinates determined the position of the markers or overlays and the other

information was put in the information window. This was done with the following code:

For the information window (put in a string variable first):

 String capt = " \" <img src='http://mobile.ict.ru.ac.za/mws-musers/servlet/Image?" + pic + "'

" + "width='200' height='200'/>
\" + \"<h2> Name: </h2> " + realName + "<h2> User:

</h2>" + muserId + "<h2> Message: </h2>" + message + "
\" + \" goto

\" ";

For the image, the approach was different from that used in the admin web application:

instead of specifying the directory and the file path in the code, this information was put in

the „build.xml‟ file as shown in the following code extract:

<servlet>

 <servlet-name>Image</servlet-name>

 <servlet-class>com.jsos.image.ImageServlet</servlet-class>

 <init-param>

 <param-name>dir</param-name>

 <param-value>e:/pictures</param-value>

 </init-param>

 </servlet>

To place the overlay in the position determined from the coordinates the GlatLng javascript

method was called. To create a marker with an overlay, a custom JavaScript function

(„createMarker’) had to be called:

81 5.4 The Web Application | Rhodes University

pw.println("point = new GLatLng(" + lat + ", " + lon + ");

map.addOverlay(createMarker(point, " + count + "," + capt + ")); ");

The variable count holds the number of iterations the loop has suffered. It is passed to the

createMarker method for uniquely identifying the marker. The capt variable is that shown in

the earlier code extract and has information that will be shown in the information window.

The createMarker method was defined using this code:

pw.println(" function createMarker(point, number, toSay)");

pw.println(" {var marker = new GMarker(point); marker.value = number;

GEvent.addListener(marker, \"click\", function() {var holder = ''; ");

 pw.println("holder = toSay");

 pw.println("map.openInfoWindowHtml(point, holder); });return marker;}");

As is evident in the code, the method creates a marker at the coordinates given using the

Google GMarker method. The marker is then given the value that was input as the value in

the count variable when the method was called. The GEvent.addListener method then adds a

listener for clicking actions to be picked up when a user wants to see information about a

particular marker.

The results of the application are best shown in Figure 24 which is showing a screenshot of

the requested map getting the values from a database:

82 Chapter Summary | Rhodes University

Figure 24: The Positions of the Mobile Web Server Users

5.5 Chapter Summary

In conclusion, the author has discussed the relevant issues encountered during the process of

adding the positioning feature to the gateway. It discusses the client and the server

applications and how they communicate to deliver location on a web application. A google

map is used to display the location of the mobile web servers and the offline messages left by

the mobile web server users.

83 Testing the Gateway | Rhodes University

Chapter 6

Testing the Gateway

6.1 Introduction

Now that the gateway was set-up the last thing to do is to test that it is working properly. The

gateway as introduced in chapter one should be an intermediate point between the mobile

web servers on phones on a cellular network and HTTP clients on the internet. With the

gateway the mobile web servers can be addressed and accessed whenever they are online.

The problems related to the mobile operator firewall are solved by the gateway without any

harm or help from the operators themselves. The primary focus of this chapter is on testing

the gateway. Although for the gateway to server its main purpose it had to be visible on the

internet, it was first tested in the Local Area Network. This was done using a Nokia N95

phone with the web servers installed on it. After these tests were completed successfully the

gateway was finally put on the internet with the help of the Information Technology

Department. Further tests were performed to make sure that the gateway was providing

access by having the mobile web servers addressed through it. The tests where performed

using the Nokia N95and the Nokia N82 mobile phones with web servers installed on them.

The three phones laid on the MTN and the Cell-C networks.

6.2 Testing the Gateway in the WLAN

6.2.1 The Tools

The tools used for this test were:

1. The Nokia N95 that was registered on the local wireless network

84 6.2 Testing the Gateway in the WLAN | Rhodes University

The software that was installed on the phone was the PAMP mobile web server

(specifically PAMP_with_htdocs_on_c.sis). PAMP is a mobile web server which is a

combination of mod_PHP, mod_ Apache and mod_MySQL. The mod prefix means

that they are the ported versions of the originals (ported to work on the Symbian

operating System). The version of PAMP used for the tests

(PAMP_with_htdocs_on_c) comes with a mobile connector that can be configured to

connect to a particular gateway on a specified port. The software required for PAMP

to work were the openc_ssl.sis and the pips_s60.sis

Also installed on the phone was the Nokia Mobile Web Server (version 122). The

Nokia mobile web server is a ported Apache web server as explained in chapter 2.

The server-side scripting for web applications of this web server are done in Python

for S60. Therefore the supporting python runtime was installed using the

PythonFor60.sis file.

2. The Hamilton Lab wireless access point

3. A virtual host on an Intel Xeon 2.4 GHz processor with 512MB of RAM. The

gateway was assembled on this host.

4. Web browsers installed on the Hamilton labs‟ computers (these were used to browse

to the connected mobile web server).

6.2.1 Configurations

Before testing commenced the tools and the software installed on them needed to be

configured. The Mobile connector which was part of the PAMP installation had to be

configured to work with the gateway. By going to the menu and selecting the settings, the

were set as follows:

- The identifier (the identifier of an account on the gateway): was set to test

85 6.2 Testing the Gateway in the WLAN | Rhodes University

- The password (the password of the gateway account being used for the test): was set

to ptest

- The access point: was set to the local Hamilton labs access point.

- The Gateway address: was set to the IP address of mobile.ict.ru.ac.za

(146.231.121.211)

- The gateway port: was set to 15001(the port where the gateway listens for the data

and control data)

- Max connections (the maximum number of incoming connections that could

communicate with the web server): 5

- Keep-alive interval (the time that should pass before the web server is considered

orphaned if it does not receive a keep-alive message from the gateway): set to 0 which

means it will be adjusted by the gateway connector dynamically.

- Keep-alive max latency (the time that should pass after a web server is orphaned and

the when the mobile connector should stop waiting for the gateway to start sending

keep-alive messages again): was set to 10 seconds (however this is ignored because

the keep-alive interval was set to 0)

- Reconnect Interval (if the connection is broken and cannot be re-established

immediately, the value settings specifies how many seconds the terminal should wait

before attempting to re-connection): was set to 20.

- Server (the mobile web server host to which the connector should forward incoming

data channels): set to 127.0.0.1 (since the mobile web server was on the local phone)

- Server port (the server port to which the connector should forward incoming data

channels): was set to 80 (the port on which local mobile web servers listen for

requests).

- On the Nokia Mobile Web Server, the password was set to testwb and the password to

testwbp. This was the password used for logging onto the default web applications

that come with the Nokia Mobile Web Server.

86 6.2 Testing the Gateway in the WLAN | Rhodes University

6.2.1 Tests and Results

The gateway was started by starting the Tomcat web server. The two connectors (containers

in Tomcat) were started and they were waiting for connections. At this point, the mobile

connector was started with the configurations explained in the configurations section. When

this was done, the connector went into discovering state then it exchanged a handshake with

the server. It was then declared online after this sequence of events. When the netstat

command was run at the command prompt, the connection showed the results as shown in the

extract below:

Proto Local Address Foreign Address State

TCP mobile:3389 hons04.ict.ru.ac.za:3526 ESTABLISHED

TCP mobile:15001 ict-coeph05.wlan.ru.ac.za:51422 ESTABLISHED

TCP mobile:5555 ict-coeph05.wlan.ru.ac.za:4572 ESTABLISHED

The Mobile Web Server was then started on port eighty of the mobile phone. The settings

were set to run the web server on the local phone without any network connections. In this

case the daemon (HTTPd) runs locally on port eighty and the mobile connector forwards the

incoming HTTP requests to the mobile web server. To see the contents of the mobile web

server the URL http://mobile.ict.ru.ac.za/~test was used by the five testing web browsers.

This, in about five seconds and a half, displayed the web contents (hosted applications)

served by the mobile web server. Going a level deeper the web application hosted on the

phone required the visitors to log on to gain access to the features provided by the web

application. The password testwbp was used with the username testwb to log into the web

application and the results are shown in the Figure 25:

87 6.2 Testing the Gateway in the WLAN | Rhodes University

Figure 25: The Mobile Web Server's Main Web Application

Next the test efforts went to the account web application in an attempt to change the message

and the picture for the offline message. The mobile web server and the connector were put

offline and browsing to the URL again resulted in the offline page being displayed with the

offline message and the picture that was setup for the user in the account web application.

88 6.2 Testing the Gateway on the Internet | Rhodes University

6.2 Testing the Gateway on the Internet

6.2.1 The Tools

The gateway was made visible on the internet through the Rhodes university firewall. The

only two ports permitted were the standard HTTP port eighty and the port for control and

data channels (port 15001 for communication with mobile web servers). The tools used were

the same as those used for the WLAN test except that the mobile phones were connected to

the gateway from a GPRS network. This was the main purpose of the gateway. The MTN

phone was using the MTN GPRS access point, the Cell-C phone on the Cell-C GPRS

network. The account used was the test account mentioned earlier an a new test account with

the name „test2‟ an password „ptest2‟. The following extract shows the results of the netstat

command that shows the hosts that are connected to the mobile host:

 Proto Local Address Foreign Address State

TCP mobile:15001 41.157.10.20:4569 ESTABLISHED

TCP mobile:15001 41-208-11-176.mtnns.net ESTABLISHED

At he very bottom there are two TCP connections. The first TCP connection , 41.157.10.20,

was from the Cell-C network. The bottom most one was from 41-208-11-176.mtnns.net on

port 15001 this is the connection from the MTN GPRS network. By browsing to the

http://mobile.ict.ru.ac.za/mws-admin/onliners.jsf the online users are shown as expected. This

were „test‟ and „test2‟ as expected. This is shown in Figure 26.

89 6.2 Testing the Gateway on the Internet | Rhodes University

Figure 26: The Online Users (Testing)

By going to the URL http://mobile.ict.ru.c.za/~test2 the web application in the diagram below

was shown. The web applications on the two phones were identical and one could see the

general outcome in Figure 27:

90 Chapter Summary | Rhodes University

Figure 27: The Mobile Web Server Page

6.3 Chapter Summary

In conclusion, the author has discussed the process of testing the core functionality of the

gateway. The gateway is tested with mobile web servers, first, within the local area network

and later on the internet. The phones are accessed from the MTN and The Cell-C GPRS

networks. The results prove that the gateway works as expected and the responses are

acceptable.

91 Conclusion and Future Work | Rhodes University

Chapter 7

Conclusion and Future Work

This chapter concludes the project and discusses, briefly, extensions that could be added to

the project in future.

7.1 Conclusion

Having web servers on mobile phones is a very exciting idea. Its implementation, however, is

not so easy because of the firewalls that mobile operators use to protect their cellular

networks. Also, the mobile phones do not have unique internet addresses with which to

access them. A gateway host needs to service the people wishing to request services from the

mobile web servers. The gateway host allows access to the web servers and gives them a

means of being addressed by the clients wanting to use their services.

The aim of the project was to put together a gateway that provided a way for addressing and

accessing Nokia Mobile Web Servers. The solution to the problem used other provided

programs from Nokia (The Nokia Open Source Gateway) to achieve the most optimal results

in the time frame given. The implementation of the project has shown that it is feasible to set

up one‟s own gateway and it is highly recommended as it familiarizes one with the

technology involved in implementing mobile web servers.

92 7.2 Future Work | Rhodes University

The gateway performs the same functions as those performed by the Nokia Mobile Web

Server Gateway and with imagination one can make it even more attractive. To make it more

social, the registered mobile users‟ access details were made public. Also an application for

seeing other users on the map and displaying the messages they have left gives the gateway a

unique dimension.

The gateway worked as expected and the objectives set initially have been met. Overall it was

an exciting challenge to work with the concepts and ideas in this domain.

7.2 Future Work

The project should be extended to include more social networking into the world of mobile

web servers and gateways. The users need to find out more about others and have access to

information based on relationships established between users. Adding functionality that

enables people to add others as friends and to see their profiles as web applications hosted on

their phones will be a self –propagating idea. This will make the gateway more unique and

more popular than the Nokia Gateway.

93 References: | Rhodes University

 Chapter 8

References:

[1] Stefan Raab; Madhavi W. Chandra; Kent Leung; Fred Baker. Mobile IP Technology and

Applications. Cisco Press, May 2005.

[2] Hauben, Michael. History of ARPANET. [on-line] Available:

http://www.dei.isep.ipp.pt/~acc/docs/arpa--1.html. Last accessed: 27 June 2008

[3] Lillian Goleniewski; Kitty Wilson Jarrett . Telecommunications Essentials, Second

Edition: The Complete Global Source. Addison Wesley Professionals, October 2006

[4] Service Stratergies Inc. Most Popular and Widely Used WAP Servers. [on-line] Available:

http://www.ssimail.com/WAP_gateway.htm, November 2003 last accessed: 21 August 2008

[5] Matto Valtonen; Nokia Corporation. The Story of WapIT . . [on-line] Available:

http://www.vesku.com/pdf/The_Wapit_Story.pdf Last accessed: 20 August 2008

[6] Lars Wirzenius (gateway Architect WapIt ltd.). Kannel Architecture Design. [on-line]

Available:http://www.kannel.org/download/1.3.2/arch-1.3.2/arch.pdf last accessed: 24

August 2008

http://www.informit.com/authors/author_bio.asp?ISBN=158705132X
http://proquest.safaribooksonline.com/158705132X
http://proquest.safaribooksonline.com/158705132X
http://www.informit.com/authors/author_bio.asp?ISBN=0321427610
http://www.ssimail.com/WAP_gateway.htm
http://www.vesku.com/pdf/The_Wapit_Story.pdf
http://www.kannel.org/download/1.3.2/arch-1.3.2/arch.pdf

94 References: | Rhodes University

[7] Jani Ilkka; Carlo Vainio; Nokia. Mobile Web Server Handbook. Published by Nokia

Corporation-2007.

[8] Apache Software Foundation. HTTP Server [on-line] Available: http://httpd.apache.org/.

Last Accessed: 24 August 2008

[9] World Intellectual Property Organization. (WO/2006/129182) SYSTEM AND METHOD FOR

ACCESSING A WEB SERVER ON A DEVICE WITH A DYNAMIC IP-ADDRESS RESIDING A

FIREWALL. [on-line] Available:

http://www.wipo.int/pctdb/en/wo.jsp?wo=2006129182&IA=WO2006129182&DISPLAY=DESC.

Last Accessed: 16 May 2008

[10] Johan Wikman, Ferenc Dósa Rácz. Providing HTTP Access to Web Servers Running on

Mobile Phones. Nokia Research Center article - May 24 2006 [on-line] Available: Last

accessed: 27 June 2008

[11] Pasi Eronen, Nokia Research Centre. TCP Wake-Up: Reducing Keep-Alive Traffic in

Mobile IPv4 and IPsec NAT Traversal. Nokia Research Center article – January 31 2008 Last

accessed: 27 June 2008

[12] Ajit Jaokar; Tony Fish. Mobile Web 2.0. Published by FutureText Limited-London-15

August 2006

[13] Borko Furht - Ph.D., Mohammad Ilyas – Ph.D. Wireless Internet handbook –

Technologies Standards and Applications. Published By CRC Press LLC - 2003

http://httpd.apache.org/
http://www.wipo.int/pctdb/en/wo.jsp?wo=2006129182&IA=WO2006129182&DISPLAY=DESC
http://research.nokia.com/people/johan_wikman/index.html

95 References: | Rhodes University

[14] Nancy J. Yeager; Robert E. McGrath. Web Server Technology. Published by Morgan

Kaufman Publishers Inc. San Francisco California – 1996

[15] Subir Kumar Sarkar, T.G. Basavaraju. C. Puttamadapa. Ad hoc Mobile Networks:

Principles, Protocols and Applications. Published by CRC Press - 2007

[16]Timo Halonen, Javier Romero, Juan Melero. GSM, GPRS and EDGE Performance –

Second Edition. Published by John Wiley and Sons – 2003

[17] James Goodwill, co-Founder of Virtuas Solutions, LLC. Embedding Tomcat Into Java

Applications. [on-line] Available:

http://www.onjava.com/pub/a/onjava/2002/04/03/tomcat.html?page=1. Last Accessed: 20

October: 20 June 2008.

[18] Alex Hanik, Tomcat Committer / ASF member - Implemented NIO connector in Tomcat

6. Available: us.apachecon.com/us2007/downloads/ApacheConUS2007-

HackingTomcat.ppt. Last Accessed: 20 June 2008.

[19] Tim Funk- Catalina Documenter. Apache Tomcat Configuration Reference: HTTP

Connector. [on-line] Available: http://tomcat.apache.org/tomcat-6.0-doc/config/http.html

Last Accessed:18 June 2008.

[20] Tim Funk- Catalina Documenter. Apache Tomcat Configuration Reference: The Engine

Container. [on-line] Available: http://tomcat.apache.org/tomcat-6.0-doc/config/engine.html.

Last Accessed:18 June 2008.

http://www.informit.com/authors/author_bio.aspx?ISBN=9780672326905
http://www.onjava.com/pub/au/145
http://www.virtuas.com/
http://www.onjava.com/pub/a/onjava/2002/04/03/tomcat.html?page=1
http://tomcat.apache.org/tomcat-6.0-doc/config/http.html
http://tomcat.apache.org/tomcat-6.0-doc/config/engine.html

96 References: | Rhodes University

[21] Tim Funk- Catalina Documenter. Apache Tomcat Configuration Reference: The Valve

Component. [on-line] Available: http://tomcat.apache.org/tomcat-6.0-doc/config/valve.html .

Last Accessed:18 June 2008.

[22] Johan Wikman, Ferenc Dósa Rácz, Installing The Mobile Web server Gateway, [on-line]

Available: http://huono.info/gateway/installguide.html. Last Accessed:10 June 2008.

http://tomcat.apache.org/tomcat-6.0-doc/config/valve.html
http://research.nokia.com/people/johan_wikman/index.html
http://huono.info/gateway/installguide.html

