An Investigation into the Provision of Video
Capabilities in iLanga

Submitted in partial fulfilment
of the requirements of the degree
Bachelor of Science (Honours)
in Computer Science
at Rhodes University

Fred Otten

Supervisors:
Prof Alfredo Terzoli
Prof Peter Clayton

Abstract

iLanga is a complete, cost effective, computer based vaigatp branch exchange (PBX). It is
capable of connecting different endpoints using diffeqmatocols and delivering high quality
voice with value-added services. It is not, however, capalblvideo transport. The channel
based architecture of Asterisk, the core of iLanga, shaulgyrinciple, allow the transport of
video with relative ease. This paper introduces the relepestocols used in real time multi-
media, provides background on Asterisk, iLanga and th&tioaship and explores the channel
architecture, shedding light on the channel APl and thecsocwde of the Session Initiation Pro-
tocol (SIP) channel. It also shows how video capabilitiesraade available in iLanga, detailing
the configuration of SIP video within Asterisk. It also takel®ok at possible H.323 implemen-
tations and discusses their lack of video support. The iharmsgr interface and the extensions
made for call parking and call transfer are also discussédough this paper we highlight the
provisions made for video calls in iLanga with associatevises such as call transfer, call
parking and music on hold.

Acknowledgements

| would firstly like to thanks my supervisors, Prof AlfredorZeli and Prof Peter Clayton for their
constant support and patience through out the whole yeankihfor proof reading my work,
providing me with advice and steering me in the right dictirom the beginning to the end.
| would like to thank Jason Penton and Bradley Clayton foirtadvice and patience. Thanks
for taking the time to help me with installation problems.ahks to Dr Hannah Slay for proof
reading my paper and assisting me in correcting my writewwould like to thank my friend
and classmate Justin Zondagh for his assistance and ideaglhout the year, especially while
we were learning Asterisk, and delving into the code. Lakthould like to thank the whole
Honours class for their support and encouragement in tteethabugh out the year. Without all
the help from these people, this project would not nearlyeHaeen what it is.

| must also acknowledge the financial and technical supottie project from Telkom
SA, Business Connexion, Comverse SA and Verso Technoltigieagh the Telkom Centre of
Excellence at Rhodes University.

Contents

1 Introduction 8
1.1 Motivation. 9
1.2 TheProblem. 01
1.3 Approach 10
1.4 MyProjectaims e e 10
1.5 Writeup Structure e 11

2 Relevant Standards 12
2.1 Protocolstack 12
2.2 SignallingProtocols 13

221 SIP . . e 13

222 H.323 . . . e e 17
2.3 MediaProtocols 21

231 RTP . . e 21
2.4 SUMMANY e e e e e e 23

3 Asterisk and iLanga 24

3.1 Asterisk e 42
3.1.1 Architectureof Asterisk 25
3.1.2 Configuring Asterisk 26
3.1.3 FacilitiesProvided 26
3.1.4 Extending Asterisk 27

3.2 Qlanga e e 28
3.2.1 Architecture. e 8 2
3.2.2 Userinterface 03
3.2.3 iLanga, AsteriskandVideo 31

CONTENTS

3.3

4.1
4.2
4.3

4.4
4.5
4.6
4.7

4.8

5.1

5.2

5.3

Summary ... e

Channels in Asterisk and their Implementation
ChannelConcept,
AcallinAsterisk L

The dial application
4.3.1 Whatisthe dial application.
4.3.2 Calling the dial application
4.3.3 Extensions and the dial application.

4.3.4 How the dial application operates C
4.3.5 Importance of understanding the dial application

The channel structure
The channel API,
FramesinAsterisk,
How to design a channel in Asterisk
4.7.1 ModulesinAsterisk,
4.7.2 AddingcommandstotheCLI
4.7.3 Outputtingtothelogs
4.7.4 Theexamplechannel
SUMMaAry o e e e e e

The SIP and H.323 Channels

The SIPChannel
5.1.1 The SIP channeldriver
5.1.2 Channelregistration
5.1.3 Devicestate
5.1.4 The SIP Private Structure
5.1.5 MediaHandling,
516 Signalling o
SIPVideo e
5.2.1 Testing Environment
5.2.2 Configuration Lo
523 Results
H323 Channel Implementations
53.1 TheOH323channel

CONTENTS 3
5.3.2 TheH323channel 59
5.3.3 The OOH323channel 59
5.3.4 ChannelWoomera 59
54 NOH323Video e 60
5.5 Inheritance offeatures e 61
5.6 Summary e e e e e 62
6 iLanga User Interface and Extensions 63
6.1 Architecture 63
6.1.1 Asterisk ManageriInterface 64
6.1.2 Pythonscript 64
6.1.3 Extensibility 56
6.2 EXtensions. 65
6.2.1 CallTransfer e 65
6.2.2 CallParking e 67
6.3 Summary e e 71
7 Conclusion 72
7.1 DocumentSummary e e e e e 2 7
7.2 VideoiniLanga e 73
7.3 Inheritance offeatures e 73
7.4 SummaryofFindings 73
7.5 My projectachievements 74
7.6 Further Extensions 74
7.6.1 VideomailandVideoonHold 75
7.6.2 Legacyvideochannel.1715
7.6.3 Video MeetMe application, 75
7.6.4 H323video withinaH323 channel 75
7.6.5 H264 codec for cell phonetechnology 75
7.6.6 Streaming e e e 76
7.7 Finalwords 6 7
References 77
A More Channel API Functions 80

CONTENTS 4

B Example Channel 84
B.1 chan_eg.c 4
C iLanga User Interface Extensions 86
C.1 directory.fla 86
C.1.1 Actionscriptextracts 86
C.1.2 Graphicsandmovieclips. 87

C.2 navfla e
C.2.1 Actionscriptextracts 88
C.2.2 Graphicsandmovieclips. 91

C.3 ilangaproxy.py. o o o e e e 92

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4

Protocol Stack [29] 12
SIP Message Structure [29] 14
SIP Architecture [5] e 15
Establishinga SIP Connection 16
H.323 network [12] e 18
Protocol relationshipsin H.323[12] 19
The phasesofan H.323call[12] 20
RTP packet [12] e 22
Asterisk Architecture [33] e 25
iLanga system architecture 29
iLanga implementation [21] e 30
iLanga graphical frontend [8] 31

Use of channels between disparate protocols 34

Dial ApplicationFlow Chart 37
Parts of the dial application c..... 38
ast_channelstructure e 39
ast_channel_pvtstructure L 40
Asteriskframes 46
ast_framestructure L 46
TestsetupforSIPvideo e 55
Setup of windows messenger5.0 e 57
SIPvideoinoperation 58

gnomemeeting speaking with netmeeting 60

LIST OF FIGURES 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Cl
C.2
C3
CA4
C.5

Architecture of theweb interface 63
Initiating acalltransfer e 66
Confirmationof call transfer 68
The call transfer tab in the updated iLanga interface 68
Parking a call in the updated iLangainterface 69
Indication of having parkedacall 70
The call parking tab in the updated iLanga interface 71
Call Parking dialogbox 87
Call Parking tab inthe directory 87
Call Transferdialogbox 88
Call Transfertab inthe directory 88

Status buttonwhenacallisparked 92

List of Tables

2.1 SIP Messages [22,25,28,29] e 15
2.2 DescriptionsoffieldsinFigure2.8 22
3.1 Configurationfilesin Asterisk 26
4.1 Example arguments for the dial application 35
4.3 Frame TypesinAsterisk a7

Chapter 1
Introduction

Internet telephony is a great technology which makes lostpdce calls possible at the price
of a dedicated line or local call (or whatever the fee is fanrgecting to the internet for the call

duration). The integration of data and voice services has laesignificant focus in the telecom-
munications industry. These new networks are called nexéiggion networks and generally
operate over IP. Research into sending IP over all sortscoht@ogies such as ATM, frame re-
lay, and fibre has been significant in the past decade. It jeqged that sending voice over IP
will save businesses millions, and it is evident that it iarging the way most telecommunica-
tions companies world-wide are operating and marketing segvices.

There is a significant interest in Voice over IP (VoIP) andtrgeneration networks in both
research and industry. Video over IP receives less attentiowever is an emerging field. In
the past we have seen the use of video telephony for confeseand recently we have seen the
advent of streaming services over broadband internet] ¢i@neration (3G) cell phone networks,
and intranet local area network (LAN) environments. Videlephony over IP has also been
emerging, using the same protocols as VoIP.

Biologists have noted that human beings are more prone tahvi®gnition, and rely most
predominantly on their sight other and above their oversevigleo telephony offers a visual al-
ternative to the current auditory telephony for businesseshome users. Most of the protocols
that have been developed for real-time multimedia focusheruse of IP for generic real time
transmission, which makes video a possibility using theemirframeworks. The only question
is whether the larger packets are able to be transferredceadd in an acceptable time. This
requires an acceptable amount of bandwidth and a low latéteyning Schulzrinne, one of the

CHAPTER 1. INTRODUCTION 9

fathers, and significant contributors to the developmentaf-time transmission over IP net-
works says that it “offers the opportunity to design a glabaltimedia communication system
that may eventually replace the existing telephony infee$tire, without being encumbered by
the legacy of a century-old technology” [28]. This makesitexciting field to investigate. The

high speed LAN environment provides sufficient bandwidthvioleo telephony, which makes

this investigation viable, as this is the environment inathour PBX runs.

This investigation assumes that the iLanga PBX is in plackams to find out whether
the voice functionality provided can be easily extendeditie®. The remainder of this chapter
defines the research problem, outlining the motivation gitcach taken. It also gives a layout
of the thesis being presented.

1.1 Motivation

Next generation networks are having a profound impact orntdleEommunications industry.
These next generation networks need to be capable of hidityou@ice and video transmission
with relevant value-added services. VoIP and Video overévdal components of next genera-
tion networks. There is a commercial and a practical drigsenfthe industry, which makes these
topics very applicable for research.

Next generation PBXs are emerging with facilities for voared video analogous with the
concept of next generation networks. These PBXs are bumndtadservices such as conferenc-
ing, call forwarding and call parking for users of voice andeo.

iLanga is a full featured PBX developed at Rhodes Universtigurrently only provides high
guality voice over multiple protocols with services suchvagemail, call forwarding and call
parking. In order for iLanga to be a true next generation PiBKeeds to also provide facilities
for video. The visual nature of cognition, described egrigalso a major motivation for this
work. Video features along with call parking, call transéerd the audio features provided by
iLanga would thus be a useful extension for is users.

CHAPTER 1. INTRODUCTION 10

1.2 The Problem

The channel-based architecture of Asterisk, which is thimm@amponent of iLanga, offers the

potential for this extension. Channel modules may use theces provided in Asterisk. These

include conferencing, call transfer and call parking. Ifewvnchannel module is created and
registered with Asterisk, it also inherits the servicedlate in Asterisk. This has been shown
to be effective for voice channels, however the extent & itheritance for video and even the
support for video in Asterisk remains unanswered.

The basic problem addressed in this thesis in the invegiigaf the possibility of including
video into the iLanga framework, and determining if the 8rigfeatures available for voice can
be extended and applied to video.

1.3 Approach

The approach taken in this project was largely an increnhemt. The initial stages involved
reading literature on the various protocols and instalang configuring Asterisk. After that,
we began looking into the source code of Asterisk, for whioldncumentation was available,
and developed an understanding of the channel implementaaind the structures involved.
It was initially thought that a channel would need to be impdated in Asterisk to provide
the possibility of video conferencing, but further invgstiion revealed that video support was
already present in Asterisk for some channels. We produesdlts for the channels that do
support video, and investigated the channels such as Hia238lon't support video. We lastly
checked the availability of the features present for voicannels within video channels. For
this, it was necessary to implement a facility in the iLangarunterface for call parking and call
transfer.

1.4 My Project aims

My project aims include:
e Produce a document which explains channels, and the chAfhealvailable.
¢ Implement an example channel in Asterisk from the knowlegigeed.

e Check for the availability of video through testing in Asshr

CHAPTER 1. INTRODUCTION 11

e Explain how video is provided in Asterisk.

e Investigate the inheritance of the features available @dceschannels to video channels
and report the results.

e Extend the iLanga user interface to provide support forsieming and parking calls.

1.5 Writeup Structure

This thesis begins in Chapter 2. Relevant Standards, bpdakilook at the relevant standards
applicable to the areas of VoIP and Video over IP. It then maeand in Chapter 3: Asterisk
and iLanga, takes a look at Asterisk and iLanga, discussiegndividual systems, their archi-
tectures and the relationships between them. Chapter Zgpsnds on the problem statement
and the relevance of channels. This sets the scene for Chlapgidannels in Asterisk and their
Implementations, which takes a closer look at channelslamdhiannel API detailing the exam-
ple channel we have created. Chapter 5: The SIP and H.328 gidanels, then expands on the
SIP channel driver provided with Asterisk and presents $1Bo; detailing its configuration and
showing results. It explains the lack of H.323 video in therfbl.323 channels presented, and
explains why. It finally concludes with a summary of the featuthat the video channels inherit
from voice channels. Chapter 6: iLanga User Interface andrisions, explains the architecture
of the iLanga User Interface that has been developed, aaddite extensions made to add call
transfer and call parking to this interface. This thesisoheaies in Chapter 7: Conclusion, which
summarises this thesis and provides details on future wdrikiwcould be done in this area.
Appendixes are also attached containing extracts fromdbece code, and a few explanations.

Chapter 2
Relevant Standards

This chapter provides an analysis of the different signgllknd media protocols applicable to
this project. We will begin by taking a look at their positswithin in a protocol stack, and then
provide more detail on the signalling and media protocads éne applicable to this project. We
will expand on the SIP and H.323 signalling protocols andRf@ media protocol.

2.1 Protocol stack

signaling media transport

- o
IMGCP/Megaco) T
T
(SDP | ion . media encaps‘\‘
) £
risP) (rswe) [Rrep) BEELIFEES)
T

Crom) || ep) Crmee) G B
N\ ' “we))F

| N i f ' i,

(TCP - uDP)
¢ | |
IPv4, IPv6)
: :)
! ' |
C pee) [aaaa) [aAas) e

Figure 2.1: Protocol Stack [29]

12

CHAPTER 2. RELEVANT STANDARDS 13

There are many different protocols which may be used for \@iRideo over IP. Figure 2.1
illustrates the relationships between the various prdsoaod where they fit into the Open Sys-
tem Interconnection (OSI) protocol stack. The focus of tesearch is only from the transport
layer up, running over IP. Figure 2.1 illustrates this fobysenclosing the region of interest in a
rectangle. The protocols of interest can be broken downtimtocategories: Signalling Proto-
cols and Media Protocols. SIP and H.323 are examples of liiggarotocols, and RTP is the
protocol used to encapsulate the media frames for thesequiet It is important to have a good
understanding of these protocols when taking a look at ttieinnel drivers and understanding
its operation. We will take a brief look at the SIP, H.323 affdPRprotocols.

2.2 Signalling Protocols

This section describes two of the standards establishesgidoalling in real time multimedia
sessions. We take a brief look at the SIP and H.323 protopadsjding a bit of history, some
important details about their architectures and dealirth Wow a basic session is set up using
these protocols.

2.21 SIP

SIP [23], as its name suggests, is a client-server protasijded to establish, modify and ter-
minate sessions. It was designed by the Multiparty Multime®ession Control (MMUSIC)
working group, who have designed a family of protocols f@& $setup and teardown of realtime
multimedia session over the internet. [12]. After many semis, it was finally approved by the
IETF as a proposed standard in 1999 [7]. It has since beerteghttatake into account pressing
needs such as security [1], locating SIP servers [24] ancoession [4].

The remainder of this section describes 6 key features affBtocol description, message
structure, architecture, operation, the attraction aedafiplicable concepts to the project.

SIP is a text based protocol, similar in both syntax and séegto the HTTP (Hypertext
transfer protocol) and SMTP (Simple mail transfer protpgobtocols [22]. It makes minimal
assumptions about the underlying transport protocol, butlly runs on top of UDP. Both re-
guests and responses are textual [28]. This makes it easettext processing languages such
as Perl, and textual interfaces such as CGI for developingcss [22]. New tags such as lan-
guage could be easily added to the header and be identifigdiviely by programmers [28].

CHAPTER 2. RELEVANT STANDARDS 14

This makes SIP easily expandable.

The SIP protocol is a clean request-response model whiclkesrsikiple programming pos-
sible. Jonathan Rossenberg [22] chooses SIP as the poepdatéorm for programming Internet
telephony services.

request response
| method URL SIPI2.0 | SIPI2.0 status reason
| Via: SIP/2.0/ protocal host.port
From: user <sip:from_user({@source=
To: user <sip:to_user(@destination=
Call-ID: localid@host
CSeq: seq# method

Content-Length: od)
Content-Type:
Header: parameter parl=value ;par?="value"

spar3="value folded ints next line"

message header

a tvpe of bod)

blank line

V=0 Z

0= origin_user timesiamp fimestamp IN IP4 host 2

c=IN IP4 mesdia destinarion address)

=00 g

| m= media type port RTPIAVP payload tipes E
message

Figure 2.2: SIP Message Structure [29]

Figure 2.2 illustrates the structure of a SIP Message fon bequests and responses. The
message body contains data of the type specified in the Gehgpe field. Another protocol,
Session Description Protocol (SDP), is used to send infoomabout the session. In figure 2.2
the message body contains SDP information. The value foCtirgent-Type field would be
application/sdp in this case. This is a common value for this field, as SDP médion is
often sent with a SIP packet.

CHAPTER 2. RELEVANT STANDARDS 15

Message Function
INVITE Request to establish a session
BYE Terminate a session between two end points
OPTIONS Deal with information related to capabilities of an end poin
STATUS Informs another server about progress of signalling astrequested
ACK Used for reliable message exchange
PRACK Provisional acknowledgement
REGISTER Convey information to server about end point
CANCEL Terminate search for an end point
INFO Mid call information
SUBSCRIBE Subscribe to an event
NOTIFY Notify subscribers about an event
REFER Request the recipient to issue a SIP request

Table 2.1: SIP Messages [22, 25, 28, 29]

Table 2.1 summarises the SIP requests that may be sent. riRespare issued to these re-
guests in a similar manner to that of an HTTP request using<agx-6xx.

SIP Proxy and
— Redirect Servers oo

SIP SIP
SIP Usar __ il P
Agents (UA) /}“% B —~ "'\\
SIP Gateway ™,
/ % /7

b —
— Y @ \ — -u_._,\l
’ | | A Y
A y 3) 1
P
{/
A— .

z uﬁf_ PSTN
_\R.x N -

2

-

Legacy PBX

_,.-"

Figure 2.3: SIP Architecture [5]

CHAPTER 2. RELEVANT STANDARDS 16

Figure 2.3 shows a graphical representation of the SIPtaatbre, as shown in this figure, a
SIP network contains two main architectural elements, & agent (UA) (basically the phone
you have on your desk or the soft-phone running on your PCYlamdetwork server (examples
would be Asterisk or SER). UA end stations may be furtherdsdi into two types, the User
Agent Client (UAC) (client who is being sent the request) #mel User Agent Server (UAS)
(server who is sending the request). There are also threeatif types of network servers: redi-
rect, proxy and registrar servers. It must be emphasised\er, that a basic call does not need
servers, but more powerful features rely on them. We couwdtlhjave two endpoints, a UAC and
a UAS. [6]. Redirect servers process an INVITE message bgisgmack the SIP-URL where
the callee is reachable. Proxy servers perform applicddper routing of the SIP requests and
responses. They can either be stateless (deals on a megsagsdage basis forgetting about
the call until another message arrives) or stateful (haifts about the call for entire duration),
forking (ring several phones at once till someone takesahgar non-forking. Registrar servers
are used to record the SIP address (called a SIP URL) andgbeiated IP address. Note that a
SIP network server implements a combination of differepesyof servers [6]. It must be noted
that SIP requests can traverse many proxy servers each dfi wadeives a request and forwards
it towards a next hop server, which may be another proxy semvéhe final user agent server
(which responds to the requests) [28]. Further expansidhesfe concepts and architecture is
beyond the scope of this project. For more information redgv, 29, 28, 25, 6, 5].

The SIP address used to identify clients is an email liketilenof the form “user@domain”
(or “phonenumber@gateway” for external phones) #gd@sip.phone.ac.za . This is
great because we can put it on a web page and create sipiited @sip.phone.ac.za ,
similar to themailto: URL used today [3, 25].

INVITE personb@sip2.ac.za >

4 200 OK
ACK »
' RTP MEDIA I

persona@sipl.ac.za personb@sip2.ac.za

Figure 2.4: Establishing a SIP Connection

So let us look at an example of setting up a session for voicsgdao over IP. Each of the
end points have a SIP address. Figure 2.4 illustrates theepsmf setting up a session and the
messages which are sent. The SIP addresses are transteweddmain to an IP address using

CHAPTER 2. RELEVANT STANDARDS 17

DNS Service records, Canonical Name (CNAME) and finally addirecords. The media stream
will most likely be transported by RTP point-to-point, astims example, however any session
may be set up using SIP.

SIP has attracted a lot of attention because of its simplitl ability to support rapid intro-
duction of new services. All this means that inexpensiveieals based on SIP protocol may
be developed [12]. HTTP header fields similarity leads to/eéakegration with web services
[28], and it also provides rich support for personal moypiiervices [28], making it applicable
in this day and age. It must be emphasised that it is not justdd to internet telephony (though
it is its main application) and can be used to initiate and aganany type of session including
video, interactive games and text chat [34]. SIP is a veraetitze support tool for IP telephony
because it can operate as stateless or stateful. Once a rapriogress the servers do not have
to maintain information about the call state [3].

It is important to understand the various types of SIP messageir uses and in what situ-
ations they are applicable. It is also important to undedstaow sessions are established, and
where the media information is stored. This informatiommportant when analysing how the
SIP channel operates within Asterisk. The architectureSIiPanetwork is also important to gain
perspective on where, how and why the components of iLangagither to accommodate SIP
users and provide them with services.

2.2.2 H.323

H.323 is the International Telecommunications Union (I'Bpgcified standard for real time ses-
sions. H.323 is essentially an umbrella for a number of stedgland protocols for setting up,
controlling and performing realtime multimedia sessiortse remainder of this section will look
at 6 aspects of the H.323 protocol: Its history, the architecof a H.323 network, the proto-
cols it specifies, the call process, the services providddtaapplicable concepts to this project.

In 1996 the ITU decided on H.323 v1, referred to as a stanaanaél time videoconferenc-
ing over non-guaranteed Quality of Service (QoS) LAN. Inaking with the Public Switched
Telephone Network (PSTN) was the focus from the very begmniThis H.323 standard as-
sumed that a gateway handled signalling conversion, catrol) and media transcoding in one
box. This poses serious scalability problems [12]. It haseibeen developed and adapted and
is currently sitting at version 4 [15]. It is a very compliedtprotocol, essentially an umbrella for

CHAPTER 2. RELEVANT STANDARDS 18

many sub protocols referring to real time communicationr gacket switched networks [30].

H.323 embraces the more traditional circuit switched apginato signalling. It started out as
a protocol for multimedia communication on a LAN segmenthwiit QoS guarantees but has
evolved to try and fit the more complex needs of Internet tedap.

The architecture of an H.323 consists of the following 3 gmesomponents, with perhaps
more than one present on a single node: The terminal end (i&yateway (GW) and the gate-
keeper (GK). The TE is the endpoint from which you are pla@ngeceiving the call, the GK
provides address translation and controls access (admissntrol, bandwidth control, and zone
management) to the network. It also provides other sery&esh as call control signalling, call
authorization, bandwidth management and call managenents an optional component. The
Multipoint Control Unit (MCU) provides conferencing faities and handles the mixing of audio
or video for these conferences.

A typical H.323 network is composed of a number of zones cotaakeby a Wide Area Net-
work (WAN) each zone consists of a GK, a number of TEs, a numb&Ws and a number
of MCUs interconnected by a LAN. Each zone must contain éxacte GK which acts as an
administrator of the zone [12], this may be seen in Figure 25nust be emphasised that a

LAN ‘

Figure 2.5: H.323 network [12]

gatekeeper is not explicitly necessary to make a call, aiteinend may set up a call directly,
but a gatekeeper is necessary for added functionality aaddtstity [12].

H.323 is the umbrella for many protocols. The 4 major prot®eee are concerned with are:
RAS, Q.931 (both specified in H.225.0 [6]), H.245 and RTP.ustake a look at what these four
protocols are used for.

1. RAS (Registration Admission and Status) is a transacticantated protocol between end-

CHAPTER 2. RELEVANT STANDARDS 19

points and the GK. It is used to discover, register and ustegivith the GK. It can also
be used for requesting call allocation, bandwidth allargtand clearing a call. The GK
uses it for inquiring the status of end points.

2. Q.931 is a signalling protocol for call setup and teardbetween two H.323 TEs. Itis a
variant of one defined for the Public Services Telephone NWPSTN). H.323 adopted
it so interworking with PSTN/ISDN would be simplified.

3. H.245 is used for connection control, negotiating meda@essing capabilities such as
audio or video codecs. It is also used to exchange termimelibties and opening and
closing logical channels. RTP used as transport proto@&jl [1

4. RTP is used for the transport of media. This is detaileeatisn 2.3.1.

Figure 2.6 illustrates the protocol relationships in H.323

Control Data Audio Video AN control Control
G.7XX | H.26X
GK
Q.931 H.245 T.120 RTCP RAS
RTP
| TCP UDP
| IP

Figure 2.6: Protocol relationships in H.323 [12]

Let us take a look at the basic call process. Lui, et al. [1@%ifates the call well with this
diagram seen below in Figure 2.7.

This is when we have a GK involved in the call, when this ish& tase phase 1 and 7 are
omitted [12]. Between five and seven phases is quite a lot asghfor setting up and closing a
session, especially considering that connections areynbSP based [30]. H.323 thus adapted,
and fast connect was developed which reduces the phasesiyniog the Q.931 and H.245
phases [12]. In H.323 v3, TCP and UDP may be used [6] for d@stabfj connections.

CHAPTER 2. RELEVANT STANDARDS 20

Phase Protocol Intended functions

1 | Call admission RAS Request permission from GK to make/receive a call.
At the end of this phase, the calling endpoint receives the
0Q.931 transport address of the called endpoint.

2 | Call setup Q.931 Set up a call between the two endpoints. At the end of this
phase, the calling endpoint receives the H.245 transport
address of the called endpoint.

3 | Endpoint capability H.245 Negotiate capabilities between two endpoints.
negotiation and logical Determine master-slave relationship.
channel setup Open logical channels between two endpoints.

At the end of this phase, both endpoints know the RTR/RTCP
addresses of each other.

4 | Stable call RTP Two parties in conversation.

5 | Channel closing H.245 Close down the logical channels.

6 | Call teardown 0.931 Tear down the call.

7 | Call disengage RAS Release the resources used for this call.

Figure 2.7: The phases of an H.323 call [12]

H.323 has adapted a lot as a protocol, which is part of theoredss quite complex. It
uses several protocol components, which have no cleanaeparThe major bonus is that full
backwards compatibility has been maintained [12].

Services such as call transfer, call diversion, call fodirag, call hold, call park and pickup,
message waiting indication and call waiting may use the 6l.détocol included under the
umbrella of the H.323 specification. The H.450 protocol waplemented in version 2 to add
services, and now (at version 4) it provides a lot more than3tservices it did in version 2.
Non H.450 based services are also a possibility. They arkeimmgnted in the GK, which makes
the development of proprietary services a possibility. M@svices require interactions between
several of the protocols. For example, call forward requademponents of H.450, H.225 and
H.245 to be implemented [12]. We can use a gateway to pronieeonnection path between
the packet switched network (Internet telephony) and thécked circuit network (the PSTN)
[6]. All these services mean that H.323 is a viable optionstetting up sessions for audio and
video telephony.

It is important to understand what the functions of each efghotocols under the H.323
umbrella are and how they fit together to facilitate commatian. It is also important to get an
idea of what services are already available under the stdrstethey can be put to use. In our

CHAPTER 2. RELEVANT STANDARDS 21

analysis of the H.323 channels in Asterisk we need to havdemof the standard so that we can
take a critical look at what is being provided by each chamanel determine which is the best
channel and where it needs to be extended.

2.3 Media Protocols

This section describes the RTP protocol which is often usethi transport of real time multi-
media in both the SIP and H.323 standards.

231 RTP

RTP is a protocol designed for the transport of Real Time Ivhdtia when there are tight con-
straints on the QoS [14]. This makes it ideal for the trantspiorideo and voice over the internet,
where QoS is often quite poor. Its default behaviour is tarafgeon port 5004, but it may use a
port which has been registered for the particular appbeatiat is making use of the protocol. In
the remainder of this section we will take a look at 3 aspetEId®: the protocols components,
multicast distribution and the applicable concepts to pinggect.

The RTP protocol essentially consists of two parts, RTRfjtaich is a real-time end to end
protocol, and RTCP which is a protocol used to monitor the @a& convey information about
the participants in an ongoing session (loose sessionald@s]). RTCP facilitates modifica-
tions which can be made according to the feedback provitéed,improving total performance
[14]. This is particularly useful in the conference envimoent.

The services offered by RTP include payload type identificasequence numbering, times-
tamping and delivery monitoring, which means it is usefulgooviding transport of data with
an inherent notion of time. It will typically run on top of UDRTP does not grantee QoS, only
improves the possibility of QoS. Reservation of resoursegcessary for guaranteed QoS. QoS
may be established through the use of another third partp@obsuch as RSVP [14] for reser-
vation in tandem with RTP for transport and RTCP for monitgri

RTP also supports data transfer to multiple destinatiomggusiulticast distribution, which
also makes it a good choice for telephony, as conferencititsscare undoubtedly an important
service. RTP has been developed with flexibility and schtglim mind [14]. It facilitates QoS

CHAPTER 2. RELEVANT STANDARDS 22

by using timestamping. Packets received after the timeiredjcan thus be identified an dis-
carded. The use of sequence numbers allow receiver to iegoihe packet in the right order.
RTP may also provide encryption, but keys need to be excliamgjag some other protocol such
as SDP. Other functionality include mixers (take media frsewaeral users and combine it into
one media stream and send that out) and translators (takgle stream and send it out in a
different format). [28].

When a host wishes to send a media packet, it takes the mediaats it for packetisation,
adds any media specific headers, then prepends the RTP lagatiptaces it in a lower layer,
such as UDP to be sent [28]. Below in Figure 2.8, is the fornidh® RTP packet. Table 2.2
provides a textual description of the fields representedgare 2.8.

bit 0 8 16 24 32
. } | 1 | i 1 i | I] |
T P{21P§X| Effn{t: Mpayload type sequence number
timastamp
E synchronization source identifier (SSRC)
E contributing source identifiers (CSRC) EL
B e e e e T e _
T Eiestersis headerextension g
payload (audio,video,...)
0x00 &
Enles
Figure 2.8: RTP packet [12]
Field Description
\Y Protocol Version

signals presence of a header extension
if set the payload is padded to ensure proper alignment foyption
marker (specific to application typically set to denote banes in the data stream [3])

< |1 X

Table 2.2: Descriptions of fields in Figure 2.8

The SSRC identifier is randomly generated and uniquely ifiesitthe source (hence the
name synchronisation source identifier) within a multicasup. In the case that two have cho-
sen the same SSRC, they both choose a new one. The CSRCIlikes @ntributing sources’

CHAPTER 2. RELEVANT STANDARDS 23

SSRCs, the number is indicated by the CSRC count in the hesalér an audio conference it
will list all the speakers [28]. The payload type identifiee media encoding using an identifier
from IANA [10]. The sequence numbers increment. For morerimftion see RFC1889 [26]

and RFC1890 [27].

Each RTCP packet contains a number of elements usually @&sesyubrt (SR), which de-
scribes the data sent so far, as well as correlating RTP tiimgs a receiver report (IR), which
has one block per source, describing loss and jitter, anctealestination (SDES), which pro-
vides a simple form of session control and can contain coimtBoomation, and allow other forms
of communication[28].

The requirements for a protocol which transmits in real t{peaticularly one which is going
to be used for internet telephony) are: sequencing, ingdiasynchronisation, inter-media syn-
chronisation, payload identification, and frame indica{®8]. We can see that this is thoroughly
satisfied by RTP. It must be emphasised that though it wasgpitindesigned to satisfy the needs
of multi participant multimedia conferences, it is not Ited to this application. The storage of
continuous data, interactive distributed simulation, andtrol and measurement applications
may find RTP applicable. RTP works really well, and with premiservice, it provides almost
no delay and jitter for its packets, which makes it ideal falftime voice and video [28]. Both
SIP and H.323 make use of the RTP to exchange data [30].

RTP is used for media transmission for both the H.323 and B#Amels within iLanga. We
need to know how the media is being packaged and transpari@diér to investigate how the
channels are handling the media which is being passed thribxagn.

2.4 Summary

This chapter has introduced session based and media bagedqgbs used in real time multime-
dia. In particular it has described SIP and H.323, two seds&sed protocols, and RTP, a media
based protocol. This chapter has described each protaublslaown their applicability to this
project.

Chapter 3
Asterisk and iLanga

Asterisk and iLanga are the main topics of discussion withigproject. This chapter expands on
both of these frameworks giving a brief discussion on whay tre and what they do, detailing
their architectures and zooming in on specifics relevanhi® pgroject. We also explain how

Asterisk fits into iLanga, and why channels are an importaot$ point of this research.

3.1 Asterisk

Asterisk is a powerful and adaptable suite of integratezt@hmunications software which may
be implemented to suit a variety of needs. The name comestfremsterisk symbol *, which in
many prominent operating systems, such as unix, dos, wisdow linux, represents a wildcard.
Wildcards are used to match any filename. This is a powerfagegnanalogous to the design
philosophy of Asterisk, “Asterisk is designed to interfaangy piece of telephony hardware or
software with any telephony application seamlessly andistently” [33], and its goal is in fact
to support every possible telephony technology [20].

Asterisk is Open Source, which means that developers cat &da suit particular appli-
cations and add modules based on their needs. Current iraptations run under the Linux
operating system, however various windows versions aréall@ AsteriskWin32 is an exam-
ple. Itis the linux version compiled for windows using cygywwith a graphical interface.

The remainder of this section details the architecture aéwsk, explains its configuration,
expands on the facilities provided and details a few wayaritlze extended.

24

CHAPTER 3. ASTERISK AND ILANGA 25

3.1.1 Architecture of Asterisk

Architecturally, Asterisk is fundamentally simple, butirar different from most telephony prod-
ucts [20]. It essentially acts as a middleware, connectetgriogeneous telephony technologies.
It is designed in such a manner so that it is transparent; tvam@s using completely different
voice codecs, and completely different protocols on difémplatforms speaking to each other
seamlessly and accurately as if they were identical. Fi@uteillustrates the architecture of
Asterisk.

Asterzk Application AP
"2 i T

fl= 0 = _Codec e

= | [
s Tranislator < | {
(&0 =< Scheduler =1)
[Parp f—: Application ‘?J{'E;' Elle
1 2 her) '
I_’NI- B Launchye: Manage o ;
law | | PRX =
o & - = waw
ACPCM § Switching = = \
\ n3 | 8 Core Dynarnic 5 ey
g | . ; 5
4 Module
— Looder

|
Actarigk Channel AR

Figure 3.1: Asterisk Architecture [33]

When Asterisk is loaded, the Dynamic Module Loader load$ edi¢he drivers which pro-
vide channel drivers file formats, codecs, applications, ahd links them with the appropriate
APIs. The Switching Core then accepts calls from the intedaand handles them according to
the dial plan which is located in a configuration file. The Apalion Launcher then provides
options such as voicemail, dialing outbound trunks, eteré&hs also a Scheduler and 1/0 Man-
ager that may be used by the drivers and applications. Thé@uddf codec translators means
that channels with different codecs can speak to each o#faenlessly [33]. We can see the in-
teraction of these various different components providesdf flexibility and makes it possible
to implement any particular type of telephony, which is the af Asterisk.

Seamless connection is made possible by using four ditfédlts in which modules are created.
They are:

CHAPTER 3. ASTERISK AND ILANGA 26

1. Channel API for channels such as SIP and H.323 channels

2. Application API for applications such as the Meetme aggtion (for conferencing), and
the Dial application (for dialing other end points)

3. Asterisk File Format API for supporting different file foats such as MP3 and GSM for
playback and recording.

4. Asterisk Codec Translator API for providing seamlesseation between different codecs

This project is focused on the Channel API (which is expand&gction 4), however the others
are mentioned above for completeness and concept.

3.1.2 Configuring Asterisk

Configuration File Role
sip.conf SIP channel and end point configurations
extensions.conf Configure the dial plan
iax.conf IAX channel and end point configurations
h323.conf H323 channel and end point configurations
oh323.conf Open H323 channel and endpoint configurations
modules.conf Asterisk modules configuration
manager.conf Manager configuration
features.conf Set up call parking
meetme.conf | Set up conference rooms for the MeetMe application

Table 3.1: Configuration files in Asterisk

Asterisk is rather easy to customise using the various conraigpn files located iretc/asterisk
Table 3.1 shows a summary of some of the configuration fileslwhave been relevant to this
project. More specific details on configuring Asterisk maydaend in [33, 19].

3.1.3 Facilities Provided

Asterisk has a great wealth of applications in industry a aethe home. Some of its uses
include: VoIP gateway, PBX, custom interactive voice reseo(IVR) server, softswitch, confer-
encing server, number translator, calling card applicatwedictive dialer, call queuing system

CHAPTER 3. ASTERISK AND ILANGA 27

with remote agents, and remote offices for an existing PBX [Balso supports features such as:
voicemail, call forwarding, conferencing, call parkingdgorovides a call detail records (CDR)
database using MySQL as an add-on [20, 21, 33]. Asteriskided H.323 gateway function-
ality (needs to be compiled in addition to other third partydules however) and may operate
as a SIP proxy [33]. These facilities make it a multi-face®&X suited for small businesses
and home users. The only problems Asterisk faces are sliglaksues, the lack of an H.323
gatekeeper and the lack of IPv6 support. Because of theenafuranslation and the size of
the Asterisk channel structure, Asterisk will battle to di@nmore than around 250 concurrent
calls, this raises scalability issues for larger businesdéis can be solved by using multiple
servers and creating tunnels between them using the Ik eXchange protocol (IAX),
and carefully configuring the dialplan. An H.323 gatekeeagser be provided by using another
application, such as Open H.323 gatekeeper, in tandem vgitérisk. By adding other compo-
nents, such as SIP Express Router (SER) and Open H.323 gpézken tandem with Asterisk
we can also provide extra features, such as call forking,paodde further scalability. This is
part of the motivation for the iLanga system’s expansion sfedisk. The lack of IPv6 support
is still a problem, however IPv6 is not mainstream yet, ansl pinoblem should be rectified in
future versions of Asterisk [34].

3.1.4 Extending Asterisk

Developers may extend Asterisk by adding channels, coflecgrmats and applications. This
is done by working with the C API. AGI scripts, which are argias to CGlI scripts [31], may
also be created to provide further facilities and serviceshsas a weather reader or a cricket
score reader. These AGI scripts are called from the dialplan

The dial plan also provides many facilities for harnesshggower provided by Asterisk. It
provides pattern matching algorithms for setting up théptha, as well as the use of variables,
logical operations and arithmetic operations. It uses thecept of an extension, the number
you dial in Asterisk, and it routes the channel that is ibgththrough a sequence of commands
specified for that extension such as dialing another charhying back a file.

Asterisk uses a channel based infrastructure. A channelsgdlly a unit which brings in
a call to the Asterisk PBX. Every call is placed or receivedaattistinct channel. Asterisk uses
channel drivers to support each type of hardware [35]. H.SH IAX, MGCP and ISDN are all
currently supported in Asterisk. In chapters 4 and 5, we @4ffand on channels, and illustrate

CHAPTER 3. ASTERISK AND ILANGA 28

how we can create a channel using the channel API. We willial@stigate their current support
for video, and showing how it is achieved and the pitfalls ¢bannels in which video is not
supported.

3.2 iLanga

iLanga is a complete, cost-effective, computer based PBXfthas been built at Rhodes Univer-
sity. It is based on three open source components: AstédigknH323 Gatekeeper (OpenGK)
and SIP Express Router (SER). Asterisk as a stand alone cmnpprovides limited support
for large scale VoIP networks [21]. SER and OpenGK (also kmass GNUGK) have thus been
added to complement Asterisk by providing further funcility essential for a high quality
voice PBX system, extending the VoIP support provided. daaprovides further abstraction to
the concepts of a user and an end point. Different devicegs¶te channels for the same
individual may be grouped under a single user account, wikioked when dialing that individ-
ual. In this manner, the user will simply dial another indival and need not be exposed to the
non-intuitive idea of a specific device as an end point. Thay ime taken further by providing
priority to certain devices and calling different devicéslifferent times of day.

In the remainder of this section we will take a look at the @exture of iLanga, expand
on the user interface and conclude with linking Asterislariga and video expanding on their
relationship and where the channel structure fits into theupe.

3.2.1 Architecture

Figure 3.2 illustrates how the components have been inegjta form the iLanga system.

Asterisk [2] is the core switching-software and handles transastaira call signalling level. It
provides support for the integration of multiple protodoysacting as a gateway for cross-
communication between different end points. It also dedls the media layer, providing
codec translation. This means that Asterisk is able to degeamless communication
between different endpoints. More information about tHe af Asterisk in iLanga may
be found in [21].

SER [11] is an open, high performance SIP proxy, location andteetiserver. Asterisk has a
built-in SIP proxy, however it is limited in functionalityna only acts as a minimal SIP

CHAPTER 3. ASTERISK AND ILANGA 29

Asterisk | @

k / SIF Proxy \ ™ /SIP Users
SIPExpress

Router (str)

SIP Proxy
h /H.azs Users
OpenH33

-« H323 Gatekeeper
[OpenGK]

Asterisk

Core switching software

[Asterisk
H323
Gateway

Figure 3.2: iLanga system architecture

location server. It was thus decided to incorporate a movaraged SIP proxy into the
iLanga PBX. SER offers more secure registration than Agtelt provides secure digest
authentication as opposed to the plain text authenticatsea in Asterisk. In iLanga SIP
users register and authenticate with SER before being aldenrhmunicate with Asterisk
via the Asterisk SIP proxy. Peer-to-peer communicationwbeh Asterisk and SER is
ensured by configuring the Asterisk dial plan to forward dP $equests to SER. This
architecture means that SIP users can enjoy all the furadtioenefits of SER such as
instant messaging, presence and forking (ringing on mlaltgtive clients all using the
same address) and still have access to the functionalitgemites provided by Asterisk
such as conferencing, call forwarding and call parking. Byng Asterisk as a gateway,
seamless and transparent cross-protocol communicatemnies viable. To the SIP user,
iLanga appears as a single conglomerate. More informabonteSER and its integration
into iLanga may be found in [21].

OpenGK [17] is an open source, full featured H.323 gatekeeper. rs&teloes not provide
H.323 management or alias address functionality (thestuationalities provided by a
gatekeeper), it just behaves as an H.323 terminal or gatR8hyA gatekeeper is an im-
portant component of an H.323 network [12]. Some of its raspmlities include: man-
agement, authentication and alias address managemense ahe essential for H.323
users, and therefore OpenGK was added to iLanga. In iLang@3Hisers are managed
by OpenGK and communicate with Asterisk via the Asterisk23.8ateway. Asterisk is
configured to act as an H.323 gateway to achieve peer-togmeemunication between
OpenGK and Asterisk. This architecture means that H.32Guss enjoy all the benefits
of having a gatekeeper and still have access to the funditipaad services provided by
Asterisk. These include conferencing, call forwarding ealtiparking. Seamless commu-

CHAPTER 3. ASTERISK AND ILANGA 30

nications with other protocols is also provided throughtkh&23 gateway. More informa-
tion about OpenGK and its integration into iLanga may be tbum[21].

Packet Network— C5
| LaN
3 H.323 B IAX i, SIP)
Voice =,
Telephones =
1 ISDN =i
line @ Ty
YVoice - i a,
Telephones — ETE—
on PBX 3 ISD_\" !l 8 analog
lines FXS lines
iLanga
Box

Figure 3.3: iLanga implementation [21]

The final component required by a complete voice PBX is a lomataikto the PSTN to provide
the ability to call outside of the network. This is provideg installing an Integrated services
digital network (ISDN) interface using a Zaptel card. Thefimplementation of iLanga is
illustrated in Figure 3.3. The combination of these thremponents, the ISDN interface and the
features provided by Asterisk result in a complete voicedeinmunications package, iLanga.
iLanga provides call forking (from SER), voice mail, callfearding, call transfer, call parking
and an IVR system (for example a menu system: “Press 1 Joft.i8 also not difficult to design
custom services such as a weather reader or cricket scaierrea

3.2.2 User interface

A Flash based, user-friendly interface has been developed_&nga, as detailed in [8]. A
snhapshot of the user interface may be seen below in Figure 3.4

CHAPTER 3. ASTERISK AND ILANGA 31

‘ Dain Frusta e i Eaat Dontorusivnn Denstigd mn
TRAATEI MRIEDT MLMEIE MRen LLLH PORT CUTABETH
TARROTED W IR D ANTIERD BRAT LiR3} B YO 0AL S ERAAIDN
JOBABIEY 1N GKAY BALORILINA BEDE [=%%] PR ETASETS
FEBANT T IEAETE EMIAMELTA EneE BaBE cyE TR

2007 FTIEBER BEIANNLIG BRI Ll o3 TH

004072 IHIEKY BALIEERNLL e L] AT ELUTASITH
F0000T 71 IMIEGY BILETIRRAR LLE LULL ERAHANMTOWS
JURETT1 1ESETS MMIAMELIS BEEE ®LE1 o e

TORHNTTL LR BLNATNIY RUE BLE4 PORT ELUZASETE
F00800F1 1EFRIE WIATEES ekdo RLEL B VO GAC S EPAMRIO N
FERANTIIIEITTT BRAGINZEAR BRE ELEL T
L0467 19 THIESY BEIANETRIS ll:.lI RLEL T MTH

FRBLET AN ILIRSN BESESIRENS

Figure 3.4: iLanga graphical frontend [8]

Further extensions to this interface have been identifidibagy necessary. These are high-
lighted and their implementations explored in chapter 6.

3.2.3 iLanga, Asterisk and Video

iLanga is a powerful, cost effective voice PBX, however therent lack of support for video

is a problem. The channel based architecture of Asterisktensible and provides support for
video. This means that it is possible to bring video into ilamusing the channel structure of
Asterisk. It is for this reason that the Asterisk channalictire is the particular focus of this
investigation. The implementations and issues of chararadsvideo are explored in the next
chapter.

3.3 Summary

This chapter has described Asterisk and iLanga, which geothe framework that this project
is built on. It has highlighted the architectures and féiesi provided by each of these telephony
products and demonstrated the extensibility inherentair Hrchitectures. It has also established
the relationship between Asterisk and iLanga, and explhwley channels in Asterisk are the
focus for video in iLanga. From this point onwards, this padjwill be focusing on Asterisk and
iLanga. Firstly, in chapters 4 and 5, we will be discussingrotels in Asterisk, their implemen-

CHAPTER 3. ASTERISK AND ILANGA 32

tations and video support within these channels. We wilhtlve chapter 6, take a look at some
extensions we have made in the iLanga user interface.

Chapter 4

Channels in Asterisk and their
Implementation

This chapter delves into the heart of Asterisk, exposingnobk in Asterisk, explaining how to
implement them, and exploring the availability of video hitit the SIP channel and the lack of
video within H.323 channels. It begins by introducing thermhel concept, and then explores
calls in Asterisk, and takes a look at the dial applicatiarthén moves on, elaborating on the
physical channel structures within the source code, arallohef the functions available in the
channel API. It then takes a look at how frames operate, andlgdes by discussing how to
design a channel module, looking at the example channel wedraated. This chapter reveals
the documentation created by the author from investigatiaio the source code and conceptual
experiments performed during this project. It reveals th#har’s understanding of channels
gained from the source code.

4.1 Channel Concept

The channel based architecture is largely where the powastefrisk lies. Each end of the call
is abstracted into a channel and they are bridged by Asterigkovide communication between
them. For each of the channels, the relevant channel dhesidle the appropriate signalling, and
pass codec translations to the Asterisk Core before traimgjeéhe media between the endpoints.
This results in seamless conversation between the two @hésmeans that the handling of the
media largely depends on the implementation of the codeitsnithe Asterisk core.

33

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 34

Media: RTP (GSM Codec) RTP |G 711u Codec)

(@ <_> Asterisk @

Signalling: H. 323

Figure 4.1: Use of channels between disparate protocols

Figure 4.1 illustrates the channel concept in action. Ia éxample we have two endpoints
using different voice codecs and different signalling poais. Person A is utilising a SIP phone
with the audio encoded using the GSM codec, while person Biisguan H.323 phone and
the G.711u codec for audio encoding. The channel basedtectirie of Asterisk creates the
possibility of seamless communication between these entdpderson A will be using the SIP
channel driver, while person B will be using the H.323 chaduinger. These channel drivers are
created as modules and compiled as system object files. Bmaehdrivers are registered when
Asterisk starts up, and used by Asterisk in the call.

4.2 A callin Asterisk

When the call is initialised, Asterisk creates two chantrelctures using the appropriate channel
drivers. It also determines which codecs are going to be aisédinds the least common denom-
inator between the two, using a translator function in AskerBoth of these channels are created
using an instance of a universal structure cafl&dchannel . These structures are bridged for
signalling and media using a functiast_bridge_call . This allows communication to then
take place between these two endpoints. A call is initidlisging the dial application.

4.3 The dial application

This section takes a look at the Dial application in Asterlgighlighting its usage for initiating
calls, and explaining how it operates in view of the impoctaaf understanding how the channels
are utilised and used by this application.

4.3.1 What is the dial application

The code for the dial application is founddpp_dial.c . This code is compiled as a module, and
registers an application called Dial in itsd_module function. The dial application is called

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 35

| Argument | Description |

SIP/2000 Dial a single SIP client registered as 2000
SIP/2000&IAX2/3000| Dial two clients, one registered as 2000 wjth
the SIP channel and the other registered as
3000 with the IAX2 channel
... | 6000 Specify a timeout for the dialing of a call
oo | | AT Set options to allow caller and callee to trams-
fer the current call

Table 4.1: Example arguments for the dial application
by Asterisk to make a call with another channel, as menti@aelier.

It requests one or more channels and places specified ogtgalls on them. As soon as
a channel answers, the Dial application will answer theioating channel (if it needs to be
answered) and will bridge a call with the channel which isngred first. All other calls placed
by the Dial application will be hung up. If a timeout is not sgied, the Dial application will
wait indefinitely until either one of the called channels\aess, the user hangs up, all channels
return busy or an error occurs.

4.3.2 Calling the dial application

The dial application is called by executing the applicatal within Asterisk. The dial appli-
cation requires an argument to be passed to it with infoomatbout the channels that are going
to be dialed, how long the time out should be (if there is oar{ other options such as enabling
call transfer during a call. The general format of the argointieat may be passed is:

technology/number & technology2/number2 ... | timeout | op tions | URL

Table 4.1 shows some example arguments which may be passhd thal application.
Within the table, the ellipsis means that zero or more chiaraanay be filled into that field.
The only compulsory section of the dial argument is the fégtnology/number field shown
in the first row of Table 4.1. There is no limit to the numbereahnology/number fields spec-
ified in the argument. All of these will be dialed and the badgll be established with the first
channel to answer. More information about the options agdraents that may be passed to the
dial application may be found by runnisgow application dial in the Asterisk CLI.

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 36

4.3.3 Extensions and the dial application

Extensions are one of the core concepts in Asterisk. Thasixtes, defined iaxtensions.conf
are the numbers that Asterisk recognises as valid. Whentans®&n is dialed, the extension in
the context which the user has been placed during theirtratien is executed in order of prior-
ity. The following is a possible extract froextensions.conf

[default]

exten => 4000,1,Answer
exten => 4000,2,Playback(file)
exten => 4000,3,Hangup

This extract is a subset of the default context. If we are a pleeed in the context default, and
dial 4000, the extract above is parsed in order of prioritythe call is answered (1), a file is
played back to the user (2), and then the call is hungup (8ykRkck is an application registered
with Asterisk in the same manner as the Dial applicationo®as another possible extract from

extensions.conf

exten => _XXXX,1,Dial(SIP/${EXTEN})

This will execute the application Dial which is registergdtbe moduleapp_dial.so ~ which is

a compiled version odpp_dial.c . The dial application sets up a call using arguments defined
earlier. This example uses the pattern matching facilaieslable in Asterisk to match any four
digit number. The Dial application is called, if any four digumber is dialed, and the argument
SIP/{four digit number} is passed to it.

4.3.4 How the dial application operates

Figure 4.2 and 4.3 are flow charts illustrating the operaibtine dial application. The numbers
within the circles may be used to track the operation of thiesp the dial application, illustrated

in Figure 4.2, and used to simplify the reading of the flowthahe basic process consists of
four steps.

1. Parsing the dial arguments, setting the options andiogeatist of possible channels
2. Waiting for an answer from one of the channels
3. Bridging the channels

4. Closing off the application, updating variables andkglchannels

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 37

Begin Dial_exac

FParse Dial

Arguments
Oplions and sat Y es—
the beginning part

to cur

Still more:
argumenis left 7

Wait for an answer
from one of the
devices in the list, Yes b@ [>
assign the
“winner” to veer E
If {hurgup)
res=-1

L= L j
{nobody
answared) End DHal_exec

Figure 4.2: Dial Application Flow Chart

Figure 4.3 (a) shows the setting up of the channel list. We lmeviously discussed the argu-
ments that may be passed to the dial application, this psda&ss all the devices listed in the dial
argument, and puts them in the list. Aninteresting methodésl to check whether it is available.
For each device, the device gets called to check whetheytbueg is alright (ie. it is available),
and only if this is the case then it is added to the list. Onegelidt is established, a function,
wait_for_answer is executed. It uses the channel API functesn waitfor n , and returns
the channel which answers the call, so that it may be bridgddthhe channel making the call.
Figure 4.3 (b) illustrates the bridging of the calst_bridge_call callsast_channel_bridge

which bridges signalling and media between the channels.i$lletailed in section 4.5, which
deals with the channel API. Figure 4.3 (c) illustrates theileg of the dial application.

4.3.5 Importance of understanding the dial application

It is important to understand how channels are managed ieri8ktso that when we create or
alter a channel it may still be used by Asterisk as intenddg dial application is important as

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION

38

Take dial
arguments (curh
up o4, setthe
‘&' toan and af
string character,
effectively
tokenizing, and
assign the rest of
the string after '&’
to =t

v

Split cur argument
into tyzes
nurhar

h 4
Send a channel
request using
type and nuroer
and put the
channel into
structure Lop

Call the channel
with an immediate
timeout to ses
avarything is ok,
put resultin r==

Hang the call up

!

Add top fo
cutgeing linked
list

Channel request
successful ?

() ()

Kl the entire
sutaoing inked
list except the item
containing the
pes=r channel

A4

Maka channels
compatible send
resulting output lo
res

Yes

¥
Qutput error and

hangup then
ratum -1

— Mo

Bridge the call using
ast bridge call
which calls

ast_channel bridoge

relurns result (o res

N Ralavant Emor
= Meszapge
¥
No—»| cur=rest

(b) Bridging the channels

(a) Setup a channel list

©

¥
Kill the: rest of the
outgedng linked
list (ie the ceer
channel}

A J

Close of call
updating pbx
vanables

Returm r=z

{c} Ending the dial application

®©

Figure 4.3: Parts of the dial application

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 39

it is the usual method of establishing a call between two eimdp in Asterisk.

4.4 The channel structure

The channel structure of Asterisk is the structure in whithrhechanisms for a particular chan-
nel type are established. The channel structures are sgtap dst_request which calls the
function specified as the request function during the reggisn of the channel. The channel
structure is essentially composed of two componentsghehannel struct and thest_channel_pvt
struct.

ast_channel
name Wariable Types
| langLage [twe | M char
fols || char
musicclasas | generatordata | generatar | weriteinterrupt || waid®
bricoe dizled dialing reversedialed Mmass masgr crflags blocking L ast_generator*
_softhangup zombie data | | ast_channel®
exception fono zched streamic stream vatreamicd vatream alchwritefarmat int
tirmingfod timingfunc timingdata _state rings stack niativeformats readformat time_t
writeformat restrictcid callingpres pthread_t
ast_mutex_t
context = - -
| | sched_context™
[|| ast_filestream®
macrocantext function pointer
ast_frame
*
macroexten ?St—ChanneLp“
jrnp_buf
macropriarity ast_phx®
exten ast_cdr
nriority tone_zone™
ast_monitor_channel™
app . -
long
*
p— ast_var_t
deterdtmf
ot
jmp
I | accourtcode
call_forweard
zone | monitor | inzmpl | autsmpl | fin | fout
Lnigueic
hangupcause | Yars | varsheadd | callgroup pickupgroup | flany | next

Figure 4.4: ast_channel structure

The ast_channel struct contains many variables, locks and descriptors tmecdhonitor-
ing the channel’s operation and storing information abbetthannel. It is found in the file
channel.h . Figure 4.4 shows thast_channel structure. Within this structure, there is a vari-
ablepvt , which is a pointer to a variable of typet_channel_pvt

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 40

ast_channel_pwt

woic* ast_frame* int [2] ast_trans_pvt*

pt ready alerpipe witetrans
ast_trans_pt* int int function poirter | function poirter

readtrans rawewtiteformat | rawreadformat | send_digit call

function pointer | function pointer | function pointer | function pointer | function pointer

hangup answer read wite send_text
function pointer | function poirter | function pointer | function poirter | function poirter

send_image send_html exception bridge indicate

function pointer | function pointer | function pointer | function pointer | function pointer
fixup setoption queryoption transfer wite_video

Figure 4.5: ast_channel_pvt structure

Figure 4.5 illustrates the private structure of the channélcontains information about
the media and translators being used and the functions vérltalled by the channel API
for signalling, and the reading and writing of media frames a@ial tones. These functions
include the functions for calling, answering and hangingaupall made using the channel.
ast_channel_pvt also contains a pointer to a structure caled. This is the specific chan-
nel’s private structure, i.e in the case of the SIP chanhelSP private structure. This structure
usually contains locks, sockets and media informationiqaer to an instance of a particular
channel type. These structures are called and altered lgh#mnel API using functions speci-
fied inast_channel_pvt

4.5 The channel API

The channel API consists of a number of functions designdddititate communication be-
tween the channel drivers and the Asterisk core in aid of fesmeonnection between protocols,
discussed previously. The channel API consists essgnth number of functions, and two
particular structures. These structuresaatechannel andast _channel_pvt . Files of interest
includechannel.c , channel.h ,channel pvth , andres_features.c . The table that follows
contains a few of the functions from the channel APl whichueed when dealing with channels
and discussed in this text. Appendix A contains more fumstiopom the channel API which are
useful. These tables have been produced during the inaéistig and expand on the function’s
purpose, how they are used within Asterisk and what theymetaunctions such ast_call
ast_read , ast write use functions which are defined within the relevant channgkdas
they are specific to their channel typat_channel_register andast_channel_unregister

are used in the respective functidesd_module andunload_module contained in the channel
modules. They are used to register a channel driver modisie (@ferred to as a channel driver
and a channel module) to support a protocol of type of hardwar

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 41

ast_call_bridge is called to bridge a call. It operates as an “infinite loogilyobreaking
out of the loop once the bridge is broken or the channels argum Within this “infinite loop”,
there are calls tast_channel bridge which performs the transfer of media between the chan-
nels usingast_read andast write statements which operate according to the settings made
for media compatibility.

Media compatibility is established using tie@ channel_make_compatible function. This
function makes calls tast_set read_format andast_set_write_format to configure the
channels with appropriate formats and set variables intihamel structure and the private chan-
nel structure.

‘ Function ‘ Description ‘

ast_request Description: Requests a channel of a given type, runningtiue
from the channel driver of that type

Example call: ast_request(type, format, number) where tigpa
character array containing the type of channel (eg.
SIP), format is an integer referring to the format |of
the data and number is of any type and contains|the
number being called.

Returns: ast_channel* (Pointer to an asterisk channel),ifny
unsuccessful
ast_channel_register_ex Description: Registers a particular channel with a functio poll

devicestate

Example call: ast _channel_register_ex(type, descriptioapabili-
ties, requester, devicestate) where type a character ar-
ray containing the type of channel, analogous with
type specified in other functions, description is a char-
acter array containing the description of channel being
registered, capabilities in an integer representing|the
capabilities of the channel, requester is a pointer 1o a
function returning an ast_channel struct in the charjnel
driver which is run when an ast_request is passed|and
devicestate which is a pointer to a function returning
an integer which returns the device state. This fupc-
tion has a parameter data for the number of the device
whose state the driver is interested. This is optionallfor
a channel driver.

Returns: int, -1 if there is an error, 0 if successful

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION

Features

Description

ast_channel_register

Description:

Example call:

Returns:

Registers a particular channel, used in thad
module to register channel with Asterisk, usg
ast_chan_register_ex. but with devicestate functior
to null

ast_channel_register(type, descriptioapabilities,
requester) where type a character array containing
type of channel, analogous with type specified in ot
functions, description is a character array contain
the description of channel being registered, capal
ties in an integer representing the capabilities of
channel, and requester is a pointer to a function ret
ing an ast_channel struct in the channel driver wh
is run when an ast_request is passed.

int, -1 if there is an error, 0 if successful

ast_channel_unregister

Description:

Example call:

Returns:

Unregisters a channel with the Asterisk syste

ast_channel_unregister(type) where typetsaracter
array containing the type of channel to be unregiste
eg. SIP

void

ast_hangup

Description:

Example call:

Returns:

Calls a hard hangup of the channel, stoppiregsts,
and destroying the channel, uses the hangup fung
in the channel driver

ast_hangup(chan), where chan is of type goitat

42

set

the

ner

ing

ili-
the
urn-

ich

red,

tion

ast_channel struct and is the structure of the channel

we wish to hangup
int, O if successful otherwise the value returnethb
hangup function in the channel driver

ast_answer

Description:

Example call:

Returns:

Answers the call, calls a function in the chelrdriver
ast_answer(chan) where chan is the pointeheq
ast_channel struct of the channel of interest

int, -1 if it is being hung up, the result returnesihr
answer in the channel driver if the state of the chan

is ringing, otherwise 0

nel

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION

43

Features

Description

ast_call

Description:

Example call:

Returns:

Makes a call to a channel, using functions enchan-
nel driver

ast_call(chan, addr, timeout) where charmpisiater to
the ast_channel struct of the channel we wish to ¢
addr is a character array for the destination of the
and timeout is an integer for the time waited for a cq
nection

int, -1 if a call function doesn'’t exist or a hangap
scheduled for the function, otherwise the results
turned by the function in the channel driver

all,
call

ast_indicate

Description:

Example call:

Returns:

Indicates a condition on a channel such as, vumy
ing or congestion

ast_indicate(chan, condition) where chaa @inter
tothe ast_channel struct of the channel we wish to s
an indication to, and condition is an integer represe
ing the condition which we wish to indicate

int, -1 if hangup is scheduled of invalid conditiOrif
channel doesn’t support it, or the result returned fr
the channel driver

end
xnt_

olppl

ast_waitfor

Description:

Example call:

Returns:

Wait for input on a channel

ast_waitfor(chan, ms) where chan is a poittehe
ast_channel struct of the channel we are waiting
and ms an integer for the length of time we can w
for

int, -1 if there is an error, 0 if nothing ever ardythe
number of milliseconds remaining otherwise

for
ait

ast_waitfor_n

Description:

Example call:

Returns:

Waits for input from a group of channels
ast_waitfor_n(chanlist, number, ms) whévandist is
an array of pointers to the ast_channel struct of
channel we are waiting for, number is an integer ¢
taining the number of channels in the list and ms
integer for the length of time we can wait for
ast_channel*, the channel with activity, otheewiull

the
DN-
an

ast_read

Description:

Example call:

Returns:

reads a frame from a channel using a functicimén
channel driver

ast_read(chan) where chan is a pointer to
ast_channel struct of the channel we are reading fr

the

ast_frame*, a frame, null on error

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION

44

ting the 2 channel’s read or write formats, 0 on succ

Features Description
ast_write Description: write a frame to a channel using function indhannel
driver
Example call: ast write(chan, frame) where chan is a poiot¢he
ast_channel struct of the channel we are writing| to
and frame is a pointer to ast_frame struct which is the
frame we are writing to the channel
Returns: int, -1 on error, O if the functions don't exist, ahd
result from the function in the channel driver otherwise
ast_write_video Description: write a video frame to a channel using a funcitncthe
channel driver
Example call: ast write_video(chan, frame) where chanpsiater
to the ast_channel struct of the channel we are writing
to and frame is a pointer to ast_frame struct which is
the frame we are writing to the channel
Returns: int, -1 on error, O if the functions don't exist, ahd
result from the function in the channel driver otherwise
ast_set_read_format Description: sets the format to be read by a channel
Example call: ast _set read_format(chan, format) whem@nads a
pointer to the ast_channel struct of the channel|for
which we are setting the format, and format is an inte-
ger representing the format being read by the channel
Returns: int, -1 on error, 0 otherwise
ast_set write_format Description: sets the format to be written by a channel
Example call: ast set write_format(chan, format) wherancis a
pointer to the ast _channel struct of the channel|for
which we are setting the format, and format is an inte-
ger representing the format being written by the chan-
nel
Returns: int, -1 on error, 0 otherwise
ast_channel_make_compatihléDescription: Attempt to make two channels compatible witlcre
other
Example call: ast _channel_make_compatible(chan, peebherey
chan and peer are pointers to the ast_channel stfucts
of the channels we are making compatible in termg of
codecs
Returns: int, -1 if there is no path to translate, or an emat-

eSS

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION

Features

Description

ast_channel_bridge

Description:

Example call:

Returns:

Create a bridge between two channels in tefrnmee
dia

ast_channel_bridge(chanl, chan2, configtfrdene,
destchan) where chanl and chan2 are pointers tg
ast_channel structs which we are bridging, config

45

the

a pointer to the ast_bridge_config struct containingthe

configuration of the bridge, destframe and destchan

are

double pointers to ast_frame and ast_channel structs

respectively. They are used to pass the dest
tion channel and frames so that functions such
ast_call_bridge may use this data.

int, -1 on an error to do with channels waiting todhan

up or existing bridges, 0 on success

ast_transfer

Description:

Example call:

Returns:

transfer a channel if it is a supported funttiathin
that channel driver
ast_transfer(chan, dest) where chan is agrdimthe

na-
as

ast_channel struct of the channel we are transferfing
and dest is a character array representing the destina-

tion of the transfer

int, -1 if channel is being hung up or a transfer fu
tion doesn’t exist otherwise return the result from {
function in the channel driver

ast_channel_alloc

Description:

Example call:

Returns:

Create a channel structure
ast_channel_alloc(needalertpipe) wheeglalertpipe

nc
he

is an integer representing a boolean value determining

whether we set up this part of the structure in out a
cation

ast_channel*, null if shutting down or error othise
return a new allocated channel

ast_channel_free

Description:

Example call:

Returns:

Destroy a channel structure
ast_channel_free(chan) where chan is agrdiothe

ast_channel struct of the channel we are destroyin
void

lo-

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 46

Features Description

ast_bridge_call Description: Bridge a call allowing for parking and transéssing
asterisk core. This function calls ast_channel_bridge

Example call: ast_bridge_call(chan, peer, config) wheranchnd
peer are pointers to the ast channel structs which
we are bridging and config is a pointer to the
ast_bridge_config struct containing the configuratjon
of the bridge

Returns: int, -1 on error, 0 on success.

It is necessary for each channel driver to establish their pivate structure. The usage of
the channel API will be expanded in the sections on the exariphnnel and SIP channel. We
will look at this after a brief look at how frames work withinséerisk between channel drivers.

4.6 Frames in Asterisk

RTP RTP
Media: (GSM Codec) Astenisk (G.711u Codec)
Ve Fams Voo e
worora | croms ﬁ @
ﬁ one | o o= onver
@& Rl o
g ES *l= @
Signqllmg: SlP Control Frame: Control Frame H 323

=ast_frame

Figure 4.6: Asterisk frames

In Asterisk everything is packaged as frames. These framepassed between the channels
via the Asterisk core. Figure 4.6 illustrates how the medid signalling are processed using

frames by the channel driversst_read , ast_write, ast_write_video , ast_senddigit and
ast_indicate all send or receive frames within the Asterisk channel driidese are defined

in the private structure of the channel driver.

ast_frame

int int int int
frarmetype | subclagss | datalen | samples
int int char* woic*
malloccd | offset St data
timeval ast_frame* | ast_frame*
delivery prev next

Figure 4.7: ast_frame structure

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION a7

These frames are packaged in a structisteframe . This is illustrated in Figure 4.7. It
has a double linked list based structure with pointers tanthé frame and the previous frame.
mallocd illustrates whether the data has been allocated using osdlthat it can be freed when
the frame is destroyedsrc is a pointer to a character array, containing a descriptiothe
source, and is included in the structure for debugging mepoThe data length is contained in
datalen , and the data is stored in the location pointed to bysthe pointer.

Frame Type Subclass Content Type | Integer Value
AST_FRAME_DTMF A digit DTMF Digits 1
AST_FRAME_VOICE AST_FORMAT Voice data 2
AST_FRAME_VIDEO AST_FORMAT Video data 3

AST_FRAME_CONTROL| AST_CONTROL Control frame 4
AST_FRAME_NULL - Empty frame 5
AST FRAME_IAX - IAX Private frame 6
AST_FRAME_TEXT - Text messages 7
AST_FRAME_IMAGE - Images 8
AST_FRAME_HTML AST_HTML HTML 9
AST_FRAME_CNG level of CNG in -dBov| Comfort noise 10

Table 4.3: Frame Types in Asterisk

Table 4.3 contains a list of possible values for tfaenetype and the possible subclasses.
Video frames may have H.261 or H.263 as subclasses, audie$ranay have GSM and G.711u
as subclasses, and control frames may have congestiomgiagbusy as possible subclasses
for theframetype . An expanded list of possible subclasses and the valuekdaranstants may
be found in the source fileame.h . We will now take a look at how to design a channel in
Asterisk.

4.7 How to design a channel in Asterisk

In order to design a channel in Asterisk, we need to use thenghaAPI and create a mod-
ule which registers the channel and provides the functi@tessary for signalling and media
transfer. The main functions of these modules are to inéénarious signalling, passing the
appropriate calls to the Asterisk core as control messaggs &s busy, ringing, hangup, and

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 48

congestion, and passing the media as frames to Asteriskelying read and write functions.

The remainder of this section describes three aspects oinehareation: modules, com-
mands in the command line interface (CLI) and outputtingptygs| and concludes with a look at
the example channel which we have created for proof-of-ephc

4.7.1 Modules in Asterisk

A module in Asterisk consists of a few essential componetiigsioad_module function, the
unload_module function, theusecount function, thekey function and thelescription func-
tion. Theload_module andunload_module functions are executed when Asterisk starts and
loads modules, and when Asterisk shutsdown and kills theutesdespectively, and are also
used for registering the module with Asterisk and settingCupcommands. Theescription
function returns a character array containing the desorigf the channel, in this case “Exam-
ple Channel (EG)”. Theey function returns the ASTERISK_GPL_KEY character arrayilevh
theusecount function returns the amount of times the module has been U$es function uses

a lock. In a channel driver, we also need to be able to requéstmation about channel. In
Asterisk we may run commands in the CLI for this purpose.

4.7.2 Adding commands to the CLI

The Asterisk CLI is a powerful management console providdd wsterisk. It is used to get
information about the status of the PBX and its modules. i aiso be used to find out informa-
tion about the modules registered and get help on how to ese.tm order to add commands to
the CLI, we need to run the functiest_cli_register . This is done in the following manner:

ast_cli_register(&cli_eg_info);

This is done in theéoad_module function. We perform amst_cli_unregister in the exact
same manner in thenload_module to unregister the CLI commandii_eg_info is defined in
the following manner:

static struct ast_cli_entry cli_eg_info =

info", NULL }, eg_info, "Example Channel Informat ion",
eg_info_usage };

When we run the commareg info inthe CLI, the functioreg_info is executed. If we wanted
to create a command suchts is a test then we would define the first part of the struct

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 49

above ag “this”, “is”, “a’, “test”, NULL } . If we seek help by running the help com-
mand the string “Example Channel Information” is displayecdt to “eg info”. If we runhelp
eg info , the character arrayg_info_usage gets displayed. It is defined as follows:

static char eg_info_usage[] =
"Usage: eg info\n"
Displays Information about Example Channel\n";

Functions such asg_info which we have linked to the commaid info need to be able to
output information to the CLI.

4.7.3 Outputting to the logs

The ability to output notices and other information to thd Glalso important in a channel driver.
This information can be both informative and used for delnuggvhen problems arise. Thus it
is crucial for both the developers and the users of the PBXrtbaces and other messages are
included. In order to have this functionality we need to urid the header filegger.h . Below
are two examples of sending messages to the CLI.

ast_log(LOG_NOTICE, "This is the example channel in Asteri sk\n");
ast_verbose("== Initiating a new call to the example channe [==\n");

The first displays a notice in the CLI. This notice includetegdéime, source file and line num-

ber in the source. This is useful for debugging, however LAGTICE may be replaced by
LOG_DEBUG, which only display when in debugging mode. Aistecan be run in verbose
mode. This may be set by running Asterisk with a -vvv optiorstartup (for a verbosity of 3) or

by runningset verbose 3 command in the CLI. Messages such as the second example using
ast_verbose Will only be displayed when the verbosity is greater than 0.

4.7.4 The example channel

In order to verify an understanding of the essentials foranokel, we decided to create an ex-
ample channel which just outputs to the CLI when it is reqeetsind called. No media facilities

were implemented in this channel, however, the evidenacabshows the example channel to
be operational.

CHAPTER 4. CHANNELS IN ASTERISK AND THEIR IMPLEMENTATION 50

Asterisk 1.0.9, Copyright (C) 1999-2004 Digium.
Written by Mark Spencer <markster@digium.com>

Connected to Asterisk 1.0.9 currently running on g02z0525- 1 (pid = 30823)
== Creating a new Example Channel :) ==
== Initiating a new call to the example channel ==

g02z0525-1 *CLI> show channels

Channel (Context Extension Pri) State Appl. Data
EG/5555-ec4c (default s 1) Up AppDial (Qutgoing Line)
SIP/600-ca00 (local-from-sip 5555 1) Ring Dial EG/5555

2 active channel(s)

This channel was built after evaluation of the SIP channel e channel API. Within the
load_module function, we register the channel using the type “EG” anddbscription “Ex-
ample Channel (EG)” which is put into a character amdggc . We set the request function
to eg_request . This function calls another functiasy_new which returns the channel type. It
begins by usingst_channel_alloc to allocate a channel structure. In this example channel,
we just define functions for call and hangup in the channgbpeistructure. Since it is necessary
to have a private structure for the instance of the chaneelgn eg private structure), we take
a character array containing the text “pvt” and set it to tinecture so that channel will be op-
erational. When the functioeg_request is called, it outputs== Creating a new Example
Channel :) == to the CLI if Asterisk is running with a verbosity greater thzero. The call
and hangup function pointers are linkecktpcall andeg_hangup respectively. This is a rather
basic channel. It is necessary to take a look at a fully fometd, operational channel within As-
terisk in order to grasp the deeper concept of the channel\WPlhave chosen the SIP channel
as our test case.

4.8 Summary

This chapter has described channels, and the channel ARdsishown how channels are ini-
tialised, how calls are made, and how the modules are stagttut has also demonstrated an
example channel created for proof-of-concept.

Chapter 5

The SIP and H.323 Channels

In the previous chapter, we have exposed the channel4steuot Asterisk. This chapter moves
on from these foundations and explores the SIP and H.32%hehanplementations, discussing
their availability of video. It concludes with a discussion the inheritance of features within
Asterisk. This chapter presents the authors work, invastigs and experiments with the SIP
and H.323 channels.

5.1 The SIP Channel

Asterisk provides a SIP channel driver to support SIP endtpoiThis channel includes a SIP
registrar proxy, however lacks the ability of a forking pyo¥Endpoints may be registered with
Asterisk if they have a user account set up in the configurdii@sip.conf . More details about
this configuration may be found in [33].

The remainder of this section will look at 6 aspects of the &iBnnel: The channel driver,
channel registration, theevicestate ~ function, the private structureif_pvt), media handling
and signalling.

5.1.1 The SIP channel driver

The SIP channel driver is written as a module for Asterisk jraid may be found as the file
chan_sip.c . This is compiled as a system objectan_sip.so , and loaded by Asterisk on
startup to provide support for SIP end points. Previouslyhaee taken a look at the channel
structure, the channel API, and an example channel. Thealewa lot about how channels

51

CHAPTER 5. THE SIP AND H.323 CHANNELS 52

are constructed and how they operate within the Asterisk,doowever analysing an existing
channel driver is necessary to make the concepts more clear.

5.1.2 Channel registration

When the module is loaded, thead _module function is called. This function initiates a
call to register the channel with Asterisk. As we have seethénchannel API, there are two

functions which may be used to register a channel with Asltesist_register_channel and
ast_register_channel_ex . The SIP channel callsst_register_channel_ex , setting the re-
guest function taip_request and thedevicestate function tosip_device_state . Within

the load_module function there are also a number of calls to a functencli_register

This function registers commands with the CLI so that infation about the channel’s status
may be obtained when we are running the CLI. This makes cordswsurch asip show users

a possibility. We also notice the useast_mutex_lock andast_mutex_unlock . This is used
so that threads may use data concurrently avoiding readr\wroblems.

5.1.3 Devicestate

sip_devicestate is the function passed as the function to determine the dest@mte during
the registration of the channel. It returns an integer iatihg the state of the device reg-
istered with the channel driver. The specific device is iatid in the parameter data. Val-
ues returned are either AST_DEVICE_INVALID (4), AST_DEWCUNAVAILABLE (5), or
AST_DEVICE_UNKNOWN (0). These constants may be foundhannel.h

5.1.4 The SIP Private Structure

Within the private channel structure, there is a pointentatlaer private structure for the individ-
ual channel. This is an important part of a channel structfitbis is not declared, calls will not
be possible using the channel module that has been createty fMinctions within the channel
API check to see whether this structure exists. Within tHe @lannel there is such a structure,
sip_pvt . This structure contains variables for sockets, configumabptions, locks and media
data. Two important variables atte andvrtp . These are pointers to ast_rtp type which is
used for media transmission by this channel.

Whenast_request is called in the channel API, the functisip_request is called. This
returns arest_channel type. It is within this function that we setup the channel tioe call.

CHAPTER 5. THE SIP AND H.323 CHANNELS 53

sip_alloc is called to setup the private structure amd new is called to set up the channel
that is returned. The functiasip_new gets passed parameters for the private structure, the state
which indicates the device state and title which indicatbtvregistered device we are dealing
with. sip_new creates and returns a channel structure. It eatlshannel_alloc to create

the channel structure, and then assigns the values for dreneks private structurgvt . These
include setting up the functions that get called for readingd writing media, as well as ones for
initiating a call.

tmp->pvt->pvt = i
tmp->pvt->send_text = sip_sendtext;
tmp->pvt->call = sip_call;
tmp->pvt->hangup = sip_hangup;

tmp->pvt->answer = sip_answer;
tmp->pvt->read = sip_read,;
tmp->pvt->write = sip_write;
tmp->pvt->write_video = sip_write;
tmp->pvt->indicate = sip_indicate;

tmp->pvt->transfer = sip_transfer;
tmp->pvt->fixup = sip_fixup;
tmp->pvt->send_digit = sip_senddigit;

The above extract of code is a rather important part of getiim the channel. The first line
is where the SIP private structure gets assigned and thésrestere the function pointers get
assigned which are use by methods suchsagall , ast read , andast write for their pur-
poses within the channelst read andast write are used for media transfer, whist_call

is used to initiate a call with the channel.

5.1.5 Media Handling

tmp->fds[0] = ast_rtp_fd(i->rtp);
tmp->fds[1] = ast_rtcp_fd(i->rtp);

if (i->vrtp) {
tmp->fds[2] = ast_rtp_fd(i->vrtp);
tmp->fds[3] = ast_rtcp_fd(i->vrtp);

The above segment of code is used to set up the media frameptiescwithin the channel
structure. The SIP channel needs to use RTP for media trasferisk provides a module for
RTP. It is contained withimtp.n andrtp.c . The functionsst_rtp fd andast rtcp_fd are

contained within the RTP module. The transmission and temepf media, as mentioned in

CHAPTER 5. THE SIP AND H.323 CHANNELS 54

the Section 4.5, is done usinrgt_read andast write . Within this channelsip_rtp_read

is called bysip_read which is the function assigned for reading, as has been sesiopsly.
sip_rtp_read receives two parameters. The first is for the channel we deeeisted and the
second is for the SIP private structure associated withdhannel.sip_rtp_read checks the
frame type using the frame descriptor numberd) and returns the frame which is read either
from thertp orvrtp streams usingst_read_rtcp for the rtcp frames andst_read_rtp ~ for
the rtp framessip_write accepts two parameters, one for the relevant channel arditeefor
the frame we are writing. The frame type is assessed usingath&ype variable in the frame
structure, and if it is video then it is written to thep stream, and if it is voice then it is written
to thertp stream. This writing is done using thet_rtp_write function passing thest_rtp
stream and theast_frame which we are writing.

Within load_module ,ast_rtp_proto_register is used to register RTP for the SIP channel.
The address afip_rtp (&sip_rtp) is passed as a parameter, and the definition is shown below.
This is necessary for the usage of RTP.

static struct ast_rtp_protocol sip_rtp = {
get rtp_info: sip_get rtp_peer,
get_vrtp_info: sip_get vrtp_peer,
set_rtp_peer: sip_set_rtp_peer,
get_codec: sip_get_codec,

3

sip_get_rtp_peer returns thetp stream (of typeast_rtp) andsip_get_vrtp_peer returns
thevrtp Stream.sip_set_rtp_peer utilisesast_rtp_get_peer and the socketgdirip and
vredirip forthertp andvrtp streams respectively. These sockets are located in theri8He
channel structure. Further discussion of the RTP functioestioned is beyond the scope of this
project.

5.1.6 Signalling

In terms of the signalling, the channel driver contains a benof functions for transmitting the
packets discussed in Section 2.2.1. These are all prefixbdnansmit such asansmit_response
transmit_invite , andtransmit_notify . A number of sockets are established in the SIP pri-
vate structure, and within the code for transmission. Theyuaed throughout the code to send
signalling data. SDP information from the SIP packets iglusanterpret media types as video
or audio and set up the various translations required forgusie RTP functions discussed in the

CHAPTER 5. THE SIP AND H.323 CHANNELS 55

previous section. These translations are performed bydhslators in the Asterisk core accord-
ing to translation paths determined usually by runristgmake_compatible , and stored in the
channel structure.

5.2 SIP Video

We have found that the SIP driver provided with Asterisk dpesvide support for video if
configured correctly. The SIP private structuie, pvt , contains two pointersip andvrtp ,

for media streams. The channel driver uses the SDP infoomatbm the SIP packet to determine
whether the mediais video or audio as discussed earlieedBasthis information, it then utilises
thevrtp stream for video based media or tlae stream for voice based media. In this section
we will outline how to configure the SIP channel to be capalbleideo, and demonstrate the
results.

5.2.1 Testing Environment

/; %I\

|
iﬂ—Asterlsk— ﬁ

Figure 5.1: Test setup for SIP video

Figure 5.1 shows the setup of the environment used for eSIR video. We are using two
Logitech webcams, each connected to a Pentium 4 3.0 GHz neaalmning Windows XP. For

a video client, we have chosen to use Windows Messenger Shile ttiere are many SIP soft-
phones available, there are very few soft-videophonesadlai Messenger seems to be the best
client available, and is available freely from the web. Newersions of Messenger have dropped
the support for setting up SIP directly, so thus Messend@eisiised. We setup Messenger to use
the Asterisk box as the SIP server. This machine is also dauPedt 3.0 GHz machine running
the current stable version of Asterisk, Asterisk 1.0.9, @m@o Linux.

CHAPTER 5. THE SIP AND H.323 CHANNELS 56

5.2.2 Configuration

To make video possible in Asterisk we need to edit the maincBliguration file of Asterisk
(sip.conf). Below is an extract of what the configuration file shouldteimto enable video in
the SIP channels.

[general]

videosupport=yes
allow=h261
allow=h263

This configuration allows the usage of the codecs H.261 aB83{.and enables video support.
H.261 and H.263 are the prominent video codecs used for t@ephony in commercial video
phones and most video conferencing systems. Asterisk dpped these codecs, so it is impor-
tant that our channels are setup with the ability to make @ifgese codecs.

The next step is to add a registration account for the entpminse when signing in. This
is also done in the sip.conf file. Below is another extractrfitbis file to set up an account for
registration with the Asterisk SIP proxy.

[4000]

type=friend

context=default
username=4000
secret=1234

host=dynamic

callerid="SIP Video Phone”

This is identical to the configuration used for setting up B #bice client in Asterisk. In this
example, we have created an account 4000 on our SIP proxywglssword of 1234 and a caller
id of “SIP Video Phone”. These settings just need to be iegdrito the video phone along with
the IP address of our Asterisk box. Video calls will then begible through Asterisk. More
information about setting up sip.conf may be found in [19].

In order for us to be able to dial the video phone from anothéew phone, we need to
insert an extension into the Asterisk dialplan. This is tedan another configuration file called
extensions.conf. Below is an extract from this configurafite which makes dialing our video
phone from another phone a possibility.

CHAPTER 5. THE SIP AND H.323 CHANNELS 57

— -

Options X

Personal | Phone | Preferences anacy:ADCDun‘S Cannection

NET Passpart Account Mot Signed In
e [My contacts include users of NET Messenger Service
fEt

SIP Communications Service Account Signed In

3 My contacts include users of a SIP Commurications Service
pis

Sigrin rsme. | 40000 A

SIP Communications Service Connection Configuration

Select which method should be used to configure your connection to a
ications service:

) Automatic configuration
(&) Configure settings
Server name of IF addess. | R
Connect using
QT
= I
O o
®Upp
aK.] l Cancel] [Help
T L

Figure 5.2: Setup of windows messenger 5.0

[default]
exten => 4000,1,Dial(SIP/4000)

We have now registered the video phone as a number 4000. Bygdilais number from another
phone we will be able to communicate with our video phone. éaalrmore about the dialplan
see [19].

Figure 5.2 illustrates the setup of Windows Messenger adeoyhone. First you open the
option dialog box, and navigate to the Account tab. Next, fckithe box for a SIP Commu-
nications Service, and enter the SIP URL as your Sign-in nahie SIP URL is of the form
username-in-asterisk@ip-address-of-server. Finatly, glick on the Advanced button and se-
lect Configure settings. You then input the server IP addiedschoose UDP as the protocol for
connection. This configuration results in a video phonegi¥ifindows Messenger.

5.2.3 Results

The results of a call between two Windows Messenger endpoialy be seen in Figure 5.3. As,
this figure shows, the video call was completed successfully

CHAPTER 5. THE SIP AND H.323 CHANNELS 58

* asteriske === == Conversation D@g|

= v = |
.‘5960031&_“ 2 % Conversation u@g|
File Edit Wiew Actions Help

Eile Edit “ew Actions Help

To: asterisk@ S — | Stop Camera: 6

instant message conversation, instant message conversation,

A& vou have asked to have a
video and voice conversation
wyith Ge00E = =
Please wait for a response or
Cancel {alt+0) the pending
irveitation,

A astariskim = — —
would like 1o have a video and
voice conversation with you, Do
you want to Accept (AT or
Decline {Alt+D) the invitation?

48 vou have accepted the

request from asterisk@ A Options~ § l§ & genng= = —=has
g — — =tohave avideo ! i accepted your request to have a ! <
and voice conversation, Speakers = video and voice conversation, Speakers =
= i A = = gl =
- U B : 0B
— | Microphone = — | Microphone —
@ A u- -— e A = -— =
Send I Send 5 File ar Phota Send I Send File or Phato
More Maore
K,, Conneckion established K, Connection established

Figure 5.3: SIP video in operation

5.3 H323 Channel Implementations

A default installation of Asterisk does not include a chdmirezer compiled for H.323 support
in Asterisk. We have sourced four different channel driferdd.323. For each of these drivers,
one has to collect the correct versions of their H.323 liesgrand then compile the channels
with the correct configuration. In this section we will takdéoak at the channels, their basic
architectures, advantages and disadvantages.

5.3.1 The OH323 channel

The OpenH323 (OH323) channel driver [16] was the first H.328nel available for Asterisk.

It utilises the OpenH323 stack, which is a complete opencsotir323 implementation used by
products such as gnomemeeting. Since its initial releédess undergone a lot of improvements
and developed into a really robust H.323 channel drives iow capable of a much higher load
and is still an active and developing project. OH323 is notuded with Asterisk because of
licencing issues. We have installed versions 0.5.9, 0,280, 0.6.6, and 0.7.2 of this channel
during this project, using the versions of OpenH323 reconu®rd in the installation instructions

of each version. We have used all these drivers for audicdbeaés, speaking with other chan-
nels such as the SIP channel. iLanga currently uses verssah00of the OpenH323. Since this
channel driver has proven reliable, and is still developirig the choice channel implementation

CHAPTER 5. THE SIP AND H.323 CHANNELS 59

for this project.

5.3.2 The H323 channel

The H323 channel driver was written by Jeremy McNamara toigeobetter usage of the RTP
stack than the older versions of OH323. It claims to suppbigher load than the older OH323
channel drivers [19]. This H.323 channel is included withekisk. It has based its signalling
on the older versions of the OH323 channel driver, but has b#ered to use the Asterisk RTP
media stack for translation rather than requesting rawaaiaditranslation purposes. There is a
marked similarity to the SIP channel code in terms of RTP,dwaw it lacks the implementation
of avrtp stream and does not use e rtp_bridge for bridging between two H323 channels
but rather a H.323 channel bridge similar to the one in oléesions of the OH323 channel. The
signalling uses the OpenH323 stack, however the back erditosaterface with OpenH323
limits the version that may be used with OpenH323 1.12.2 avitbFL..5.2 which are rather out-
dated. This means that improvements in the OpenH323 staeknrs of speed an functionality
may not be taken advantage of with this channel.

5.3.3 The OOH323 channel

Objective Systems have developed an H.323 channel drilgecive Open H323 (OOH323)
[18], in C++. Itis based on their own H.323 stack, which isited in comparison to the mature
OpenH323 stack. Itis rather new and unexplored, but loddkesti time it will be very promising.
Currently the stack provides support for most of the commamicerand video codecs, but the
channel driver only provides support for a limited amounheThannel driver currently only
supports ulaw, gsm, g729a, g723.1 and rfc2833. There asdafevent plans to include support
for more audio codecs as well as video. It is currently inellich the asterisk-addons package
for the development version (unstable) of Asterisk 1.2 icWv has just recently been released as
beta. The OOH323 channel is not considered suitable forgaaas it is currently only available
in Asterisk 1.2.0 which hasn’t been released as a stableowved/e have installed and tested this
channel in Asterisk 1.2.0 beta using both version 0.7.2 an@®f the OOH323 stack.

5.3.4 Channel Woomera

Channel Woomera [13] is a channel for the Woomera framewdomera is a basic text proto-
col designed by Craig Southern . Currently woomera only etpH.323 using the OpenH323

CHAPTER 5. THE SIP AND H.323 CHANNELS 60

stack but will soon support the OPAL VoIP abstraction layédrich will allow it to speak to
many other protocols. It is not an ideal companion to Askelt®wever since it translates the
signalling to a common protocol which is part of the advaatafjAsterisk. This could also lead
to a problem of generality, where new features are not stupgdry Woomera and hence are
not available to the end points. We can accomplish the sasudtseif not better, using generic
channels for the various protocols because we don’t havelsetygeen. The advantage however
is that as Woomera develops, new protocols will be suppdiyeit, and this will be inherited
into Asterisk through Woomera. We have installed and coacpthe channel on Asterisk 1.2.0
beta.

5.4 No H323 Video

Netmeeting, which is provided in the default installationWwindows XP, is used as a client for
the H.323 endpoints. We can show that that the OpenH323 afil Pstalled on the server
supports video. Gnomemeeting is an application, similarettmeeting, available in Linux for
H.323 video. By initiating a call between netmeeting andrgameeting, we can show that the
OpenH323 and Pwlib installed on that machine are configuoectly for video.

v _ﬁetMeeting -1 Conne... E]|E|

Call Wiew Tools Help

[} GromeMecting [SFY
call Edit Wiew Tools Help
h323:146.231.123.73] W | -
[Mame
QFredOtten
‘% & Fred Otten
D
:Iﬂ ' Fred Otten :-' [f Al Ma |
] =) RO Rl
Connected — Gy
(a) gnomemeeting (b) netmeeting

Figure 5.4: gnomemeeting speaking with netmeeting

CHAPTER 5. THE SIP AND H.323 CHANNELS 61

Figure 5.4 illustrates a call between netmeeting and gnageéng running on the server.
We can see that video is operational. Because the sever dbkave a webcam installed, it just
sends a gnomemeeting logo which moves around. We can seadheegeeting logo coming
though to netmeeting and the video coming through to gnoreénge This proves that the cur-
rent installation of OpenH323 and Pwlib supports video.

None of the H.323 channels we have discussed support videt.awé attempted to initialise
video calls with all four of the channels mentioned in thevpyas section, but it did not work
with any of them. A closer look at the source code revealsttiainterface between OpenH323
and the channel drivers for the OH323 channels and H323 elf®dnes not contain routines to
video in terms of media and signalling.

static struct ast_rtp *0h323 _get vrtp_peer(struct ast_channel * chan)

{
return NULL,;

}

This extract is taken from the H323 channel’'s code, whictsuke Asterisk RTP stack. This
clearly does not send any video. Attempts to model the codb@BIP channel driver failed,
as the socket information could not be extracted using ttezface to OpenH323. Adding vrtp
pointers thus proved futile, as the signalling could not badied with the current implemen-
tation. Thus providing video would incorporate a thoroughestigation into the OpenH323
libraries and creating an interface for the channel driverse for signalling and media handling,
which is beyond the scope of this project, but is suggestedfature extension.

5.5 Inheritance of features

There are many facilities available to the channels in Asiter These include services such
as conferencing, call transfer, call parking, music on haldd a large range of applications,
written using Asterisk Gateway Interface (AGI) Scripts @ahd C API. This provides a lot of

flexibility, and allows easy service creation within Asgii We have found that the call parking,
call transfer and music on hold to all be operational with 3t video channels. Call parking
freezes the last video frame received, and plays music ahdsoit does on the voice end points.
Call transfer works really well. Conferencing, however slaet work. The MeetMe application

CHAPTER 5. THE SIP AND H.323 CHANNELS 62

which is used for setting up conferences claims to suppdeojihowever in reality that support
is not yet available, because of the lack video mixers in tleetMle application.

5.6 Summary

This chapter has described the channel implementationiglaleafor SIP and H.323 within As-
terisk. It began with a detailed look at the SIP channel drigad then elaborated on the con-
figuration of SIP video. It also took a look at the various FB&hannels we have installed, and
highlighted the lack of H.323 video support, and where thebjam lies with evidence of the
H.323 stack supporting video. It concluded with a summaryhefinheritance of features in
which we saw that call parking and call transfer are sucodlgsfarried over to video.

Chapter 6
ILanga User Interface and Extensions

The iLanga user interface provides a web based system foPBXe It contains a directory
listing, facilities for listening to voicemail and a dataigaof calls made with their costs. It is
designed to be extensible. In this chapter we briefly disthesarchitecture of the web interface,
and show and explain the extensions that we have made fordprgwall parking and call
transfer facilities within the interface.

6.1 Architecture

' l POST / GET ?@-

Flash Web Interface perl / php

'

}..JIXMLSockef I m
(% . l\lg;’abase
\\5 ~) Interface

phoneproxy.py
Python Script }
Asterisk

Figure 6.1: Architecture of the web interface

The basic architecture of the iLanga User interface is shiovwfigure 6.1. The interface is
a Flash project designed using Macromedia Flash MX 2004eBsadnal. This interface uses

63

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 64

PHP and Perl scripts to get data from a MySQL database whictaics information about the

users, their devices and the calls that have been made. rifbreniation is then displayed us-
ing a variety of movie clips (basic graphical componentslask) and text in Flash. The Flash
interface communicates with a Python script using XML Séska feature readily available in

Flash. This Python script then communicates with the Asitdvlanager Interface, passing only
necessary responses back to the User interface using XML.

The remainder of this section describes the manager ioterthe Python script and the
extensibility this architecture provides.

6.1.1 Asterisk Manager Interface

The Asterisk Manager Interface (otherwise known as the iganAPI) provides a method of
performing various actions remotely by sending plain texthmands over a TCP connection.
This TCP port is opened when the Asterisk PBX starts up ifenabled in the configuration file
manager.conf . The manager interface provides external applicationis thg ability to connect
to this port and communicate with Asterisk by writing anddieg requests and responses re-
spectively. Various actions such as initialising a calbsohg a channel and redirecting a call are
possible. The Asterisk Manager Interface also reportsttte sf devices using a response. Too
many connections to the manager interface can cause ilitstabthe system. It is for this rea-
son that we create a middle layer between our Flash intebfacie end and the Asterisk manager
interface using a Python script.

6.1.2 Python script

The Python script is written using the twisted framework.eTivisted framework, written in
Python, was created for writing networked applicationandtudes implementations for many
common used network services, and is a perfect choice foagiag the TCP connections that
are required for interfacing between our user interface taedmanager interface. This script
may be readily extended to support more features so that mimmenation may be fetched by
the user interface from multiple sources using new XML comdsain the user interface back
end.

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 65

6.1.3 Extensibility

The extensibility provided by this architecture is rathgeful. It means that we can easily extend
the user interface to provide new features for the users. Byng new action scripts, adding
new graphical and textual objects to the Flash project adthgdo the Python scripts, we can
easily add features to the user interface. Features sudildasansfer and call parking are not
possible on soft phones which do not support the sending dfiBTones while in a call. We
can easily add these features to the user interface. Thesaettbn expands on the extensions
that we have made to the user interface. Further informatiathe user interface and the twisted
framework may be found in [10].

6.2 Extensions

This section exposes the extensions we have made to thedlueseg interface to add call transfer
and call parking. It gives details on the manager interfacernands used, and show screen shots
of the new interface with details on the operation of these features.

6.2.1 Call Transfer

Asterisk provides facilities for call transfer. We can makis facility available to the users by
addingtT to the arguments sent to the dial application when initgaaincall. Call transfer is
usually done by pressingon the phone and entering the extension to which you wislatester
the call. Unfortunately, many video phones, especially sbbnes such as Window Messenger,
cannot send DTMF tones during a call and hence they are netablse this facility.

The manager interface in Asterisk 1.0.9 has the ability tecabtransfer using &edirect
action. We thus decided that we will extend the iLanga ugerface to provide facilities for call
transfer by sending the relevant manager interface comsnand

The following command can be used to transfer a call in theaganinterface:

Action: Redirect
Channel: SIP/200-8f54
Context: local-from-sip
Exten: 9600

Priority: 1

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 66

The channel field can be obtained using ttenmandaction in the manager interface command
to runshow channels . This request returns a response containing the resulésnelot when
runningshow channels in the CLI. The following manager interface command is used:

Action: Command
Command: show channels

From these results we choose the appropriate channel nanoeiriend of the call. The channel
names are quite intuitive, so this process can be easilicegpt with a script.

In order to make call transfer a possibility in the user if#tee we have created a few Flash
movies that are used in the interface. We also have writtashFhction scripts which send the
commands to the manager interface via the Python script.thHi®rXML Sockets are used in
the same manner as before. The next step was to add some db@eRgthon script so that it
can pass back the channel names involved in the call to Fiasinacts of the source code and
explanations are contained in Appendix C.

MY DETAILS DIRECTORY

Firstname

Surname
Search

last name first name Resitence Number
&

.......

Middieton Matthew Residence 7723
Moretti Lisa Residence 03
Morley Chris Residence 7544
Moyo 0“‘ aaaaa qa Residence 7712
Mpofu Nyaladzi Residence T546
Kauna Residence 7539
Residence 1185

Residence 7554

N

Residence 7762
Residence 7524

Residence 7699

Residence 7500

:ccccc-ccc-ccccdg‘

Figure 6.2: Initiating a call transfer

Figure 6.2 illustrates our updated user interface for catigfer. The status button located at
the bottom right corner of the interface is red when we areaalh If the user takes this button

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 67

and drags it to a person in the directory, as indicated inrei§.2, they may transfer the call to
that person. The user may also click on the person’s nameeidithctory for the same effect.
Figure 6.3 then appears requesting confirmation of the i@ikfter requested. If you click on
Yes, then the user interface performs the call transferguia XML sockets to communicate
with the Python script, as described earlier.

An information tab has been made available within the digctvhich explains how to
transfer a call. This is illustrated in Figure 6.4.

6.2.2 Call Parking

Asterisk also provides call parking facilities. We park d bg transferring it to the extension de-
fined as the parking extension. Call parking is configuredeconfiguration filéeatures.conf

in Asterisk 1.0.9. In this configuration file we specify thdl parking extension and the positions
available. For example:

[general]

parkext => 400 ; What ext. to dial to park

parkpos => 401-420 ; What extensions to park calls on

context => local-from-sip ; Which context parked calls are i n
parkingtime => 600 ; Number of seconds a call can be parked for

When a call is parked, the user is read the number of the gagasition, and the other end of
the call receives music on hold until the parked call is es&d, the parking time has expired or
the parked user hangs up. To park a call using the manageéiairegewe transfer the call to the

parking extension. This is done in the same manner as sgkrifibe previous section on call

transfer. We just setxten to 400 (or the relevant parking extension).

Call parking is an important facility in a PBX, so we have diestl to add this facility to the
user interface. We have done this by creating movie clipshfervarious graphical element and
writing action scripts to send XML to the Python script foetlelevant manager interface com-
mands.

CHAPTER 6.

ILANGA USER INTERFACE AND EXTENSIONS

iLanga

Firstname

Are you sure that you would like

to transfer your current call to
Thamsanga Moyo

]’Bﬁ ﬁirectui’}-

=
g Ndakunda -Kauna Residence 7539
[g HNottingham Alastair Residence 7785
0 odom steve Residence 7884
‘ O Dkai Tettey Harold Residence: 7762
‘ 0 Opie Jake Residence 7824
@ otn Fred Residence 7650
g Penton Jason Residence 7500
)

iLanga

Call Transfer

To transter a call, you need to be in a call. This will be the case
when you have a red status button showing at the bottom of the
interface. When this is the case, you can either click on the
button and drag it to the preson in the directory to whom you
wish to transfer the call, or you can click on that persons name.
You will then recieve a prompt confirming whether you would like
to transfer the call or not. If you answer yes to this .prqmpt then

call Transfer

Figure 6.4: The call transfer tab in the updated iLanga fater

68

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 69

iLanga

Firstname

Surname

Are you sure that you would like
to park your current eall

PBX Directory

Residence 7721

Residence TI22

Residence T728

ccoccocoocooc

Residence 731

Figure 6.5: Parking a call in the updated iLanga interface

When we are in a call, the colour of the status button in théobotight corner of the inter-
face is red. We have already noted that dragging it to a pe@omitiate a call transfer. Clicking
on it, however, brings up the option of parking the currefit Gais is illustrated in Figure 6.5. If
the user confirms the request, then the necessary calls detmthe manager interface via the
Python script, and the call is parked and the number readfoacktrieval. It has been decided
not to include the functionality of retrieving a parked dalt security reasons. If you know the
number then you can retrieve the parked call, as with thel wgemation of call parking by dial-
ing the number given when the call was parked. Including éteaval of parked calls into the
interface is a trivial extension. It would just involve semglanOriginate request to the man-
ager interface with the number that has been read out. Tegbaerlls, and the number required
for retrieval, may be retrieved by running thieow parkedcalls ~ command from the CLI. In
the manager interface, we can issueoamandaction request, or sendParkedCalls ~ action re-
guest. This will cause a response containing informati@uathe calls that are currently parked.

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 70

iLanga

Firstname

Surname

Search

last name first name Residence Number

7706 7706 Residence 1706
7707 7707 Residence 7707
7714 7714 Residence 7714
7716 7716 Residence 7716
T 7717 Residence T
T718 TT18 Residence 7718
7719 7719 Residence 7719
7720 7720 Residence F720
7721 7721 Residence 7721 \
7722 1722 Residence 7722

Tr24 17124 Residence 7724

725 Ti25 Residence 7125

000CC0CCOCOCC

731 7731 Residence 7131

Figure 6.6: Indication of having parked a call

When we have parked a call, we change the colour of the stattmnbat the bottom right
corner of the interface to orange. This s illustrated in#fe6.6. The Asterisk Manager interface
sends out an Event resporiekedCall containing information about a parked call. This infor-
mation is received and checked whether the user has parke®agked calls time out and may
be hung up. Therefore we check the parked calls at the begjrfieach status check within the
interface, and update the status button accordingly.

An information tab has been made available within the dimgoivhich explains how to park
a call. This is illustrated in Figure 6.7.

CHAPTER 6. ILANGA USER INTERFACE AND EXTENSIONS 71

MY DETAILS iF

Call Parking

To park a call, elick on the red status button showing at the
bottom of the interface, and you will be prompted whether you
would like to park the call or not. Note that a call can only bhe
parked if you are in a call, hence this will not work when the
status button is gren, as that indicates that you are not currently
in a call. If the status button has turned orange, then you have
parked a call. To retrieve the call, dial the number given to you

Gall Parking

Figure 6.7: The call parking tab in the updated iLanga iaissf

6.3 Summary

This chapter has demonstrated the extensibility inheretiiteé architecture of this web interface
by adding features for call transfer and call parking. Weehlaniefly described the architecture
of this user interface and explained how it co-operates thighAsterisk manager interface via
the Python script. We have also introduced the managerfaetsrand the twisted framework
used in the Python script.

Chapter 7
Conclusion

This chapter provides an overview of the document, detailie achievements and summarising
the findings of our investigation into the provision of videgpabilities in iLanga. It also details
further extensions possible in this field, and concludesutiteup with final words on the subject.

7.1 Document Summary

Chapter 2 introduced the session based and media basedgisaised in real time multimedia.
In particular it described SIP and H.323, two session basatgols which we deal with in this
project. RTP, the media based protocol used by these pistoes also described. Chapter 3
described Asterisk and iLanga, the framework this projediilt on. The architectures and fa-
cilities provided have been highlighted, and extensipdiscussed. Asterisk, the core of iLanga,
uses a channel-based architecture. This was explored th dephapter 4, which takes a look
at channels, the channel API and how they are used. Chaptso 4l@monstrated an example
channel created for proof-of-concept. Chapter 5 contiritoes the previous chapter. It took a
look at the SIP channel in detail and elaborated on the canattigun of SIP video. It also looked
at the various H.323 channels we installed, and highligthediack of H.323 video support,
and expanded on the problem. It finally concluded with a lobtha inheritance of features.
This revealed that call parking and call transfer were ss&fcdly carried over to video channels.
Chapter 6 demonstrated the web interface and expanded ertéesions made.

72

CHAPTER 7. CONCLUSION 73

7.2 VideoiniLanga

We have shown that video is available in iLanga through theiaeapabilities available in

Asterisk. It does, however, largely depend on the impleatert of the particular channel.
Tests have revealed that SIP video is available, while tlB28ichannel drivers do not currently
support video. This is because of their channel implemiemtsin terms of handling media and
interfacing with an external H.323 stack.

7.3 Inheritance of features

Natively Asterisk provides facilities such as call parkegd call transfer to the voice channels.
By using the manager interface, and the iLanga user ineerfa@e have performed call trans-
fer and call parking on our video endpoints. This establidghe inheritance of these features
are inherited to video channels. We have found that the Meeipplication, which provides
conferencing facilities to channels, does not supportwigecause of it lack of video mixers.

7.4 Summary of Findings
This project has resulted in the following research findings

e Channels can be constructed using the channel API.
¢ Video is possible in iLanga through Asterisk.
e The SIP and IAX2 channels support video.

e The H.323 channel does not support video due to implementtf RTP and the interface
with external stack.

e The features, such as call parking and call transfer, alailfor voice channels are in-
herited to video channels. When a call is parked on a videar@iamusic on hold gets
played, as with voice channels, while the screen displag/tat$t video frame received.

e The MeetMe application, for conferencing in Asterisk, doessupport video as claimed.

CHAPTER 7. CONCLUSION 74
7.5 My project achievements
My project achievements include:

e Documenting and creating a flow chart of the operation of thed &pplication used for
initialising a call in Asterisk.

e Producing a document which explains the channel concefdteapands on the channel
API particularly the functions and structures available.

e Implementing an example channel in Asterisk from the knagégained. It does not
support media transfer, but outputs to the CLI when a caflitsalised.

¢ Finding video to be available in the SIP channel if it is coafeg correctly.

e Documenting the configuration of both the SIP end points &edIP channel for video
support.

e Documenting the basic operation of the SIP channel module.

e Finding H.323 video to not be available in the four channedshave found, compiled and
installed in Asterisk.

e Explaining why this is the case, presenting proof that ther®p323 stack provides video.
e Explaining how video is provided in Asterisk.

¢ Investigating the inheritance of the features availabteséace channels to video channels
and reporting the results.

e Extending the iLanga user interface to provide supportremmgferring and parking calls.

7.6 Further Extensions

This research explains channels and explores the avéyadiilvideo in iLanga. In this section
we explain some possible extensions which stem from thesareb.

CHAPTER 7. CONCLUSION 75

7.6.1 Video mail and Video on Hold

The iLanga PBX provides facilities for voice mail and musichwld. The video facilities would
be well complemented with video on hold and video mail. Theniga user interface could also
be extended to include playback of the video recorded usahgpvmail.

7.6.2 Legacy video channel

There are many legacy video devices around. From this redsear the channel API and the
channel structure, a channel may be developed for one of thgacy video devices.

7.6.3 Video MeetMe application

The MeetMe application, as has been mentioned, does nobdupgeo. By investigating the
MeetMe application and the various MCUs available, a videsete application could be
developed for video conferencing.

7.6.4 H323 video within a H323 channel

This research has shown that the H.323 channels availathesterisk do not support video. We
have mentioned that this is because of the handling of mediale interfacing with the external
stack. This extension would involve investigating an exaéistack, and from this information
rectifying the lack of support for video. A new H.323 chanpetld also be built that does not
use an external stack.

7.6.5 H264 codec for cell phone technology

The emergence of third generation cell phone technology, amtompanying devices which
support video raises a need to provide support for this taolgy. Most of these devices use
the H.264 codec specification for video. This is not avadablAsterisk. This extension would
involve taking a look at the H.264 specification and the imp@atation of codecs and translators
within the Asterisk core and, from this information, deyaltg codecs and translators using
appropriate Asterisk APIs.

CHAPTER 7. CONCLUSION 76

7.6.6 Streaming

Facilities such as video on demand may be developed for tregid PBX. This would mean that
a user may dial a number and watch the associated live televeatream associated with this
number. This is analogous with the live streaming conceq@ggt using a PBX.

7.7 Final words

iLanga is a full featured PBX developed at Rhodes Univensitych provides support for high
guality voice over multiple protocols with accompanyingvéees such as voicemail, call for-
warding and call parking. Asterisk, the core of iLanga,is#i$ a channel-based architecture. We
have provided a detailed overview of the channel API, andritesd how a new channel can be
created. We have also presented video using Asterisk, andrisrated the inheritance of fea-
tures for a video channel, answering the question posedfeHberes tested include call transfer,
call parking and music on hold.

We have thus investigated the possibility of video in iLangad shown that some of the
features available for voice are extended to video.

References

[1] J. Arkko, V. Torvinen, G. Camarillo, A. Niemi and T. HaukkSecurity Mechanism Agree-

[2]
[3]
[4]

[5]

[6]

[7]

[8]

ment for the Session Initiation Protocol (SIFETF Request for Comments 3329. January
2003.

Asterisk.Asterisk Open Source PBXebsite located at: http://www.asterisk.org. 2005.
U. Black. Voice over IR Advanced Communication Series. Prentice Hall. 2000.

G. Camarillo.SIP: Compressing the Session Initiation Protocol (SIE)TF Request for
Comments 3486. February 2003.

Cisco Systems IndGuide to Cisco Systems’ VOIP Infrastructure Solution fd?. $étrieved
from: http://www.cisco.com/univercd/cc/td/ doc/protiwoice/sipsols/biggulp/bgsip.pdf.
2000.

I. Dalgic and H. FangComparison of H.323 and SIP for IP Telephony signalliRgoc. of
Photonics East, Boston, Massachusetts. September 1999.

M. Handley, H. Schulzrinne, E. Schooler and J. Rossent®&iP: Session Initiation Proto-
col. IETF Request for Comments 2543. March 1999.

J. Hitchcock, J. Penton, A. Terzoll,he design of a graphical frontend for and Asterisk-
based software PBXSouth African Telecommunications Networks and Applian€en-
ference, September 2004, Spiers.

[9] J. Hitchcock.Decorating Asterisk: Experiments in Voice over IP Serviceafion for a

[10]

Multi-Protocol EnvironmentRhodes University. May 2005.

IANA. RTP Parameterdnternet document located at:
http://www.iana.org/assignments/rtp-parameters.

77

REFERENCES 78

[11] IPTel.SIP Express Routelocated at: http://www.iptel.org/ser. 2005.

[12] H. Liu and P. Mouchtarisvoice over IP signalling: H.323 and beyon&EE Communica-
tions Magazine. 2000.

[13] A. Minessale Channel Woometrdocated at: http://www.pbxfreeware.org/chan_woomera.
2005.

[14] D. Minoli and E. Minoli. Delivering voice over IP network$Viley Computing Publishing.
1998.

[15] Nortel Networks A Comparison of H.323 v4 and SIBGPP S2, Tokyo, Japan. Technical
Document: S2-000500. January 2000.

[16] OpenH3230pen H.323 channel drivelocated at:
http://www.inaccessnetworks.com/projects/Asterisig23. 2005.

[17] OpenGK.Open H.323 gatekeepdocated at: http://www.gnugk.org. 2005.
[18] Objective System€OOH323 channel driveldocated at: http://www.obj-sys.com. 2005.
[19] Various PartiesVolIP info. Internet forum located at: http://www.voip-info.org.2®

[20] J. Penton and A. TerzoliAsterisk: A Converged TDM and Packet-based Communica-
tions SystemSouth African Telecommunications Networks and ApplianGonference
(SATNAC), September 2003, Fancourt.

[21] J. Penton, A. Terzoli, iLangaA Next Generation VolP-based, TDM-enabled PBXuth
African Telecommunications Networks and Appliances Caeriee (SATNAC), September
2004, Spiers.

[22] J. Rossenberg, J. Lennox and H. SchulzrifPregramming Internet Telephony Services
IEEE Internet Computing, Vol. 3, No. 3, pg. 63-72. June 1999.

[23] J. Rossenberg, H.Schulzrinne, G. Camarillo, A. Jatmst), Peterson, R. Sparks,
M.Handley and E. SchooleBIP: Session Initiation ProtocolETF Request for Comments
3261. June 2002.

[24] J. Rossenberg and H.SchulzrinBession Initiation Protocol (SIP): Locating SIP Servers:
IETF Request for Comments 3263. June 2002.

REFERENCES 79

[25] H. Schulzrinne and J. Rossenbehgternet Telephony: Architecture and Protocols - An
IETF perspectiveComputer Networks Vol. 31, No. 3. 1999.

[26] H. Schulzrinne, S. Casner, R. Frederick and V. JacobRadi: A Transport protocol for
real time applicationsIETF Request for Comments 1889. January 1996.

[27] H. SchulzrinneRTP Profile for audio and video conferences with minimal cdntETF
Request for Comments 1890. January 1996.

[28] H. Schulzrinne. SIP - Signalling for Internet Telephony and Conferencing
Slides - Berkeley Multimedia, Interfaces and Graphics $@mi located at:
http://bmrc.berkeley.edu/courseware/ cs298/fall98stldes.pdf. November 1998.

[29] H. Schulzrinne.The Session Initiation Protocol (SIP¥lides: hgs/Tutorial located at:
http://www.cs.columbia.ed/~hgs/teaching/ais/slidgs/long.pdf. University of Columbia.
May 2001.

[30] H. Schulzrinne and J. Rossenbe@pmparison of H.323 and SIP for IP Telephoiet-
work and Operating Systems Support for Digital Audio andeddNOSSDAV), Cam-
bridge, England. 1998.

[31] B. Schwarz Asterisk Open-Source PBXinux Journal Vol. 2004, Issue 118, pg. 6. Spe-
cialized Systems Consultants, Inc. Seattle, WA, USA Fealyra@04.

[32] Team Solutionsvideo Conferencing Standards and Terminoldgyernet resource located
at: http://www.teamsolutions.co.uk/tsstds.html.

[33] M. Spencer, M. Allison, C. Rhodes, et &lsterisk Handbook (Version .2pigium. March
2003.

[34] D. Tarrant and T. HuntVoIP - Voice over IP overviewJniversity of Southhampton. Doc-
ument located at: http://www.ecs.soton.ac.uk/~dt308&g/VOIP-Overview.pdf. August
2004.

[35] Unknown Authors.Implementing a channelAsterisk source documentation located in
/doc/channel.txt.

Appendix A

More Channel API Functions

Function Description

ast_request_and_dial Description: Request a channel using the function abowe déis
the channel

Example call: ast _request_and_dial(type, format, numtimeout,
reason, callerid) where type is a character array gon-
taining the type of channel (eg. SIP), format is an |n-
teger referring to the format of the data, number ig of
any type and contains the number being called, time-
out an integer containing the value for timing out the
dial attempt, reason is an integer containing a vglue
representing the reason for failure if it occurs, and gal-
lerid is a character array containing the callerid of the
channel being setup

Returns: ast_channel*, null if unsuccessful

ast_soft_hangup Description: Hangsup the channel as above, however doagenot
stroy the channel structure just sets a variable _goft-
hangup to the cause variable (This can be used to
safely hangup a call managed by another thread)

Example call: ast_softhangup(chan, cause) where chan @néep
to an ast_channel struct of the channel which is pe-
ing softly hangup, and cause is an integer used for|the
value of the variable

Returns: int, always 0

80

APPENDIX A. MORE CHANNEL API FUNCTIONS

Function Description
ast_check_hangup Description: Determine whether hangup has been requestea
channel
Example call: ast_check hangup(chan)where chan is agrdathe
ast_channel struct for which you are enquiring
Returns: int, 1 if hangup requested otherwise 0

ast_channel_setwhentohang

upescription

Example call:

Returns:

Place a time limit on when to hangup a channel
ast_channel_setwhentohangup(chan, pffsdiere
chan is a pointer to the ast_channel struct of the ch

nel you wish to place a time limit upon, and offset ig

81

an-

time_t variable which is the time in seconds from the

current time that you are requesting a hangup of
channel specified

void

ast_senddigit

Description:

Example call:

Returns:

Sends a digit to a channel using a functionénctian-
nel driver

ast_senddigit(chan, digit) where chan is iatpoto
the ast_channel struct of the channel to which we
sending a digit and digit is a character containing
digit being sent

int, 0 always

the

are

the

ast_channel_masquerade

Description:

Example call:

Returns:

Creates a clone of a specified channel, takiagtts
of the channel and moving it to another channel, th
destroying the old channel structure, leaving the g
in the new channel

ast_channel_masquerade(original, cloferevorig-
inal and clone are pointers to the ast_channel str
which we are dealing with for the masquerade
scribed above

int, -1 on error, 0 on success

nen

uts

LICtS

le-

APPENDIX A. MORE CHANNEL API FUNCTIONS

82

t to

nge

State

Function Description
ast_begin_shutdown Description: Initiate a system shutdown, stop channeisfbeing
allocated
Example call: ast_begin_shutdown(hangup) where hanqapiigte-
ger representing a boolean value of whether or ng
soft hangup all channels in operation
Returns: void
ast_cancel_shutdown Description: cancels an existing shutdown, and resumesalap-
eration
Example call: ast_cancel_shutdown()
Returns: void
ast_active_channels Description: gets the number of active channels
Example call: ast_active_channels()
Returns: int, the number of active channels
ast_setstate Description: change the state of a current channel
Example call: ast_setstate(chan, state) where chan isnéeptd the
ast_channel struct of the channel we wish to chal
the state and state is an integer representing the
that we are setting the channel to
Returns: int, 0 always
ast_queue_frame Description: gueue an outgoing frame
Example call: ast _queue_frame(chan, frame) where chapamger
to the ast_channel struct of the channel and frame
pointer to an ast_frame which we are going to quel
Returns: int, -1 on frame error, O otherwise
ast_queue_control Description: gueue an outgoing control using ast_queaendr
Example call: ast_queue_control(chan, control) wherencisa a
pointer to the ast_channel struct of the channel
control is an integer representing a control frame
Returns: int, -1 on frame error, O otherwise

is a

e

and

APPENDIX A. MORE CHANNEL API FUNCTIONS 83

Function Description

ast_queue_hangup Description: gueue an outgoing hangup
Example call: ast _queue_hangup(chan)where chan is aptirthe
ast_channel struct of the channel

Returns: int, -1 on error, 0 otherwise

ast_change_name Description: Change the name of a channel
Example call: ast_change_name(chan, newname) where shan i
pointer to the ast channel struct of the channel jwe
wish to change the name of, and newname is a char-
acter array containing the new name

Returns: void

Appendix B

Example Channel

B.1 chan_eg.c

/ *

Fred Otten

Channel Creation Example

Based on Investigations into the SIP, H323 and IAX channel dr ivers
General Conventions and Basic Requirements

*/

#include <stdio.h>

#include <string.h>

#include <asterisk/lock.h>
#include <asterisk/channel_pvt.h>
#include <asterisk/cli.h>

#include <asterisk/module.h>

#include <asterisk/logger.h>
static char +desc = "Example Channel (EG)";
static char *type = "EG";

static char +tdesc = "Example Channel (EG)";
static char eg_info_usage[] =
"Usage: eg info\n"
Displays Information about Example Channel\n";
static int usecnt = 0;

AST_MUTEX_DEFINE_STATIC(usecnt_lock);

static int eg_info(int fd, int argc, char * argvl])
{
ast_log(LOG_NOTICE, "This is the example channel in Asteri sk\n");
return 0;
}
static struct ast_cli_entry cli_eg_info =
{ { "eg", "info", NULL }, eg_info, "Example Channel Informat ion", eg_info_usage };
static int eg_hangup(struct ast_channel *ast)
{
return 0;
}
static int eg_call(struct ast_channel *ast, char +dest, int timeout)
{
ast_verbose("== Initiating a new call to the example channe I ==\n");
return 0;

84

APPENDIX B. EXAMPLE CHANNEL

}
static struct ast_channel *eg_new(char xtitle)
{
ast_verbose("== Creating a new Example Channel :) ==\n");
struct ast_channel *tmp;
tmp = ast_channel_alloc(0);
if (tmp)
{
char *p = "pvt";
snprintf(tmp->name, sizeof(tmp->name), "EG/%s-%04x", t
tmp->type=type;
tmp->pvt->call=eg_call;
tmp->pvt->hangup=eg_hangup;
tmp->pvt->pvt=p;
ast_setstate(tmp, AST_STATE_UP);
ast_mutex_lock(&usecnt_lock);
usecnt++;
ast_mutex_unlock(&usecnt_lock);
}
else
ast_log(LOG_WARNING, "Unable to create channel");
return tmp;
}
static struct ast_channel * eg_request(char *type, int format, void
{
struct ast_channel *tmpc = NULL;
char +dest = data;
tmpc = eg_new(dest);
return tmpc;
}
int load_module()
{
if (ast_channel_register(type, tdesc, 2, eg_request))
{
ast_log(LOG_ERROR, "Unable to register channel class %s\n
return -1;
}
ast_cli_register(&cli_eg_info);
return 0;
}
int unload_module()
{
ast_cli_unregister(&cli_eg_info);
ast_channel_unregister(type);
return 0;
}
int usecount()
{
int res;
ast_mutex_lock(&usecnt_lock);
res = usecnt;
ast_mutex_unlock(&usecnt_lock);
return res;
}
char key()
{
return ASTERISK_GPL_KEY;
}
char = description()
{

return desc;

itle, rand() & Oxffff);

* data)

", type);

85

Appendix C

ILanga User Interface Extensions

C.1 directory.fla

C.1.1 Action script extracts

Call Parking

on(release) {

var chan = this._parent._parent._parent._parent._paren t._parent.mc_statusbar.mc_jason.otherchan;
if (chan != ")
{
myStr = "Action: Redirect, Channel: "+ chan +", Exten: 400,C ontext: from-manager, Priority: 1;\r\n";
this._parent._parent._parent._parent._parent._paren t.mc_statusbar.mc_jason.myXMLSocket.send(myStr);
}

this._parent.removeMovieClip();

Call Transfer

on(release) {

var chan = this._parent._parent._parent._parent._paren t._parent.mc_statusbar.mc_jason.ourchan;
if (chan != ")
{
myStr = "Action: Redirect, Channel: "+ chan +", Exten: " + _pa rent.callchannel + ",Context: from-manager,
Priority: 1;\r\n";
this._parent._parent._parent._parent._parent._paren t.mc_statusbar.mc_jason.myXMLSocket.send(myStr);
}
this._parent._parent.userSP.spContentHolder.disable self(false);

this._parent.removeMovieClip();

Setting up tabs

tabsd=["PBX Directory","My Directory","Call Transfer", "Call Parking"]

86

APPENDIX C. ILANGA USER INTERFACE EXTENSIONS 87

C.1.2 Graphics and movie clips

This section shows the movie clips that have been createdashFor call transfer and call
parking.

Figure C.1: Call Parking dialog box

Call Parking

To park a call, click on the red status button showing at the bott:
be prompted whether you would like

to park the call or not. Note that a call can only be parked if you
are in a call, hence this will not work when the status button is
gren, as that indicates that you are not currently in a call. If the
status button has turned orange, then you have parked a call. To
retrieve the call, dial the number given to you when you parked the
call,

Figure C.2: Call Parking tab in the directory

APPENDIX C. ILANGA USER INTERFACE EXTENSIONS

@' to transfer your current call to

another person

Figure C.3: Call Transfer dialog box

Call Transfer

To transfer a call, you need to be in a call. This will be the case
when you have a red status button showing at the bottom of the
interface. When this is the case, you can either click on the button
and drag it to the preson in the directory to whom you wish to
transfer the call, or you can click on that persons name. You will
then recleve a prompt confirming whether you would like to
transfer the call or not. If you answer yes to this prompt then the
call will be transfered to this |

Figure C.4: Call Transfer tab in the directory

C.2 nav.fla

C.2.1 Action script extracts

LED Button
This contains code for the dragging of the LED buttons andydreeral state.

this.buttons = ['red", "green”, "Flashing", "orange"];
this.states = ["up”, "down", "ringing", “"down"];
this.attachMovie("redled","red",10);
this.attachMovie("greenled","green”,11);
this.attachMovie("Flashingled","Flashing”,12);

88

APPENDIX C. ILANGA USER INTERFACE EXTENSIONS 89

this.attachMovie("orangeled”,"orange",13);
this.UP = 0;

this.DOWN = 1;

this.RINGING = 2;

this.PARKED = 3;

this.setstate

}

= function(n) {

this.state = n;

if(this.state == this.DOWN) {
this.green._visible = true;
this.red._visible = false;
this.Flashing._visible = false;
this.orange._visible = false;

}

else

if(this.state == this.UP) {
this.green._visible = false;
this.red._visible = true;
this.Flashing._visible = false;
this.orange._visible = false;

}

else

if(this.state == this.RINGING) {
this.green._visible = false;
this.red._visible = false;
this.Flashing._visible = true;
this.orange._visible = false;

}

else

if(this.state == this.PARKED) {
this.green._visible = false;
this.red._visible = false;
this.Flashing._visible = false;
this.orange._visible = true;

if (this.state!=3) { this.setstate(this.DOWN); }
this.onPress = function() {

var m = this._parent._parent._parent;

m.attachMovie(this.buttons[this.state]+"led","mouse icon",100);
m.onMouseMove = function() { updateAfterEvent(); }
var xdiff = this._parent._xmouse-this._x;
var ydiff = this._parent._ymouse-this._y;
m.mouseicon.state = this.state;
m.mouseicon._x = m._xmouse-xdiff;
m.mouseicon._y = m._ymouse-ydiff;
m.mouseicon.origx = m.mouseicon._x;
m.mouseicon.origy = m.mouseicon._y;
m.mouseicon.orig = this._parent;
m.mouseicon.onMouseUp = function() {
stopDrag();
if ((Math.abs(this._x-700)<5) and (Math.abs(this._y-55 4)<5)) {

if (this.state==3) {
/I Call currently parked

}
else {
/I Park the call
this._parent.parkCall(this.state);
}
m.movemouseicon = true;
}
else {

m = this._parent;
var dt = eval(this._droptarget);
if(dt._parent._parent and (dt._parent._parent==m.nav.

m.makeCall(dt._parent.number.text,dt._parent.fname.

this.removeMovieClip();
}
else {
m.movemouseicon = true;

container.holder.directory.userSP.spContentHolder))
text+" "+dt._parent.Iname.text,this.state);

}

startDrag(m.mouseicon,false);
}
stop();

Frame 1
Contains code for XML Sockets and the code called when wé olicthe directory

myPark = "Action: ParkedCalls\r\n\r\n";
MyXMLSocket.send(myPark);
/Iparkedcall

if (messageportions[0] eq "Event: Link"){
ourchan = messageportions[1].substring(10);
otherchan = messageportions[2].substring(10);

devData = new LoadVars()
devData.username = _global.username;
devData.password = _global.passwd;
devData.parent = this;

devData.onLoad = function(success)

{
if (success) {
var n;
var temp = O;
for(n = 0; n < this.num; n++) {
if (ourchan.indexOf(this["channel"+n])!=-1)
{
temp = 1
}
}
if (temp==0)
{
tmp = ourchan;
ourchan = otherchan;
otherchan= tmp;
}
}
}
devData.sendAndLoad("http://pbx.ict.ru.ac.za/iLanga
}
if (messageportions[0] eq "Event: Unlink"){
ourchan = "
otherchan = "
}

if (messageportions[0] eq "Event: ParkedCall"){
leds.setstate(3);

}
function makeCall(dnumber,dname,state) {
if (state==0){
/ICall Transfer
this.nav.container.holder.directory.attachMovie("ca

this.nav.container.holder.directory.calltransfer0._
this.nav.container.holder.directory.calltransfer0._

if (_global.language == "en") {

APPENDIX C. ILANGA USER INTERFACE EXTENSIONS

/userdevices.php",devData,"POST");

litransfer”,
x = 180;
y = 80;

this.nav.container.holder.directory.calltransfer0.t

this.nav.container.holder.directory.calltransfer0.q

to transfer your current call to\n "

}

else {

+ dname;

this.nav.container.holder.directory.calltransfer0.t

“calltransfer0",1000);

itle.text = "Call Transfer";

text.text = "Are you sure that you would like\n

itle.text = "Call Transfer";

90

APPENDIX C. ILANGA USER INTERFACE EXTENSIONS 91

this.nav.container.holder.directory.calltransfer0.q text.text = "Are you sure that you would like\n
to transfer your current call to\n " + dname;
}
this.nav.container.holder.directory.calltransfer0.e xtension = dnumber;
this.nav.container.holder.directory.calltransfer0.s tatusbarroot = statusbarroot;
}

if (state==1){
var statusbarroot = this.nav.mc_statusbar.mc_jason;

trace(statusbarroot);

this.nav.container.holder.directory.userSP.spConten tHolder.disableself(true);
this.nav.container.holder.directory.attachMovie("ch oosedev","choosedev0",1000);
this.nav.container.holder.directory.choosedev0._x = 1 80;
this.nav.container.holder.directory.choosedev0._y = 8 0;

trace("testing");
if (_global.language == "en") {

this.nav.container.holder.directory.choosedevO.titl e.text = "Please select the device to use to call "
+ dname + ")";
trace("in here");

}
else {

this.nav.container.holder.directory.choosedevO.titl e.text = "Nceda ukhethe isixhobo osifunayo ("

+ dname + ")%

}
this.nav.container.holder.directory.choosedevO0.exte nsion = dnumber;
this.nav.container.holder.directory.choosedevO.stat usbarroot = statusbarroot;
this.nav.container.holder.directory.choosedev0.phon esSP.contentPath="phoneclips";

}
function parkCall(state) {
if (state==0){
/ICall Transfer
this.nav.container.holder.directory.attachMovie("ca lipark”,"callpark0",1000);

this.nav.container.holder.directory.callpark0._x = 18 0;
this.nav.container.holder.directory.callpark0._y = 80 H

if (_global.language == "en") {

this.nav.container.holder.directory.callparko0.title text = "Call Parking";
this.nav.container.holder.directory.callpark0.qtext text = "Are you sure that you would like\n to park your
current call";
}
else {
this.nav.container.holder.directory.callparko.title text = "Call Parking";
this.nav.container.holder.directory.callpark0.qtext .text = "Are you sure that you would like\n to park your
current call";
}
}

if (state==3){
/I Get parked call

C.2.2 Graphics and movie clips

This section shows the movie clip created in Flash. Thisatstbutton when a call is parked.

APPENDIX C. ILANGA USER INTERFACE EXTENSIONS 92

+

@
Figure C.5: Status button when a call is parked

C.3 ilangaproxy.py

The messageRecieved method processes any message received from the Managdadete

It uses a variableendmessage as a boolean value originally false. This is updated usikg th
methods defined such agannelFilter , mailboxFilter , ExtStateFilter , isAdminUser
parkedCallFilter , linkFilter and unlinkFilter which each check the message to see
whether it matches their functionality, and if this is theseahen they return true, and the
sendmessage Variable then becomes true, which results in the messageg Bent to the Flash
user interface parkedcCallFilter , linkFilter and unlinkFilter are used for call parking
and call transfer, and have been created during this projeéetmanager interface passasni

and uUnlink event packet when calls are created and destroyed resggctiVhe contain the
channel named necessary for call transfer and call parkirtguss they are passed to the Flash
interface.parkedCall ~ filter manages thearkedCall event packets for updating the status but-
ton in the interface.

Listed below are some extracts from the source file:

def parkedCallFilter(self,message):
chan = ™
parked = 0
for lin in message:
k = lin.keys()[0].strip()
if k == "Event":
if lin[k]=="ParkedCall":
print "We have a parked call"
parked = 1
if k == "From": #"Channel":
chan = lin[K][0:lin[K].find("-")];
if k == "Channel":
inchan = lin[k]
if chan == "™
if parked == 1:
fname="/tmp/park%s.dat" % self.username
parkfile=open(fname,’r’)
chan=parkfile.read().strip()
parkfile.close()
if chan != ™"
self.factory.db.query("select + from userdevices where username='%s"™ % MySQLdb.escape_s tring(self.username))
for result in self.factory.db:
if chan.find(result["channel"]) >= 0:
self.factory.db.query("select + from userdevices where channel="%s™ % MySQLdb.escape_st ring(chan))
for result in self.factory.db:
print result["'username”]

APPENDIX C. ILANGA USER INTERFACE EXTENSIONS 93

if result["username"]==self.username:
fname="/tmp/park%s.dat" % self.username
parkfile=open(fname,'w’)
parkfile.write(inchan)
parkfile.close()

print "parked %s from %s username %s\n" % (inchan, chan, self .username)
return 1
return 0
def linkFilter(self,message):
chan = ™
temp = 0
for lin in message:
k = lin.keys()[0].strip()
if k == "Event":
if lin[k]=="Link":
temp = 1
if k == "Channell™
chanl1=lin[k];
if k == "Channel2":
chan2=lin[k];
if temp == 1:
self.factory.db.query("select + from userdevices where username='%s"™ % MySQLdb.escape_s tring(self.username))
for result in self.factory.db:
if chanl.find(result["channel"]) >= 0:
return 1
if chan2.find(result["channel"]) >= 0:
return 1
return 0

def unlinkFilter(self,message):
chan = ™
temp = 0
for lin in message:
k = lin.keys()[0].strip()

if k == "Event":
if lin[k]=="Unlink":
temp = 1
if k == "Channell™
chan1=lin[k];
if k == "Channel2":
chan2=lin[k];
if temp == 1:
self.factory.db.query("select + from userdevices where username='%s"™ % MySQLdb.escape_s tring(self.username))
for result in self.factory.db:
if chanl.find(result["channel"]) >= 0:
return 1
if chan2.find(result["channel"]) >= 0:
return 1
return 0
def messageReceived(self,message):
sendmessage = 0
sendmessage = sendmessage or self.channelFilter(message) or self.mailboxFilter(message) or self.ExtStateFilter (message) or
self.isAdminUser() or self.parkedCallFilter(message) o r self.linkFilter(message) or self.unlinkFilter(messag e)

if sendmessage:
for z in message:
k = z.keys()[0].strip()
self.sendLine("%s: %s\r\n" % (k, z[k]))

