
Automated Firewall Rule Set Generation

Through Passive Tra�c Inspection

Georg-Christian Pranschke

November 11, 2009

Department of Computer Science

Rhodes Univerity

South Africa

Acknowledgements

I acknowledge the �nancial and technical support of this project by Telkom SA,
Comverse, Tellabs, Stortech, Mars Technologies, Amatole Telecommunication
Services, Bright Ideas Project 39, THRIP and the NRF through the Telkom
Centre of Excellence in the Department of Computer Science at Rhodes Uni-
versity.

Abstract

Introducing �rewalls and other choke point controls in existing net-

works is often problematic, because in the majority of cases there is al-

ready production tra�c in place that cannot be interrupted. This often

necessitates the time consuming manual analysis of network tra�c in or-

der to ensure that when a new system is installed, there is no disruption

to legitimate �ows.

An added complication that is often the case with legacies or other systems

that have developed organically, is that documentation about existing le-

gitimate communication may be very limited, or in some cases is incorrect.

Furthermore ever increasing tra�c volumes make manual tra�c analysis

less feasible. It is therefore desireable to automate as much of the �rewall

con�guration process as possible.

To improve upon this situation a system facilitating network tra�c anal-

ysis and �rewall rule set generation was developed. A detailed overview

of the design and implementation of such a system is presented and its

functionality evaluated.

It is found that �rewall rule set generation through passive tra�c in-

spection is a positive approach that signi�cantly reduces the time neces-

sary to create �rewall rule sets. However, user review and re�nement of

the generated rules is still required.

i

Contents

1 Introduction 1

1.1 Problem Statement . 1
1.2 Speci�cations And Requirements 1

2 Literature Survey 2

2.1 Firewalls . 2
2.2 FirewallBuilder . 2
2.3 Qt . 2
2.4 NetFlow . 3
2.5 SQLite . 3
2.6 libpcap . 3

3 Design And Implementation 4

3.1 Design . 4
3.1.1 High Level Overview Of The System And Its Components 5
3.1.2 The Tra�c Analyser . 5
3.1.3 Modes Of Operation And Commandline Flags 8
3.1.4 The Rule Generator . 8
3.1.5 The Pipeline . 9
3.1.6 Code Names For The Componets Of The Project 10

3.2 Implementation . 10
3.2.1 The tra�c analyser . 10
3.2.2 The Rule Generator . 15

4 Testing And Results 18

4.1 Testing . 18
4.1.1 Performance Testing Of The Tra�c Analyser 18
4.1.2 Network Firewall Con�guration Case Study 21

4.2 Results . 30
4.2.1 Detecting SYN scans . 31

5 Conclusion 35

5.1 Possible Future Extensions . 35

ii

List of Figures

1 High level overview of the system and its position in the �rewall
con�guration process . 6

2 Class diagram of the tra�c analyser 7
3 The Windows version of the visualisation script uses the sqlite3

executable in conjunction with common tools such as sed and
awk to generate directed graphs in the dot language. 8

4 class diagram of the rule generator 9
5 One application of Charybdis' verbose mode is to visualise small

trace �le cross sections. Cross sections can easily be created by
applying a bpf �lter expression to a trace �le with the analyser's
-f or -F options. 11

6 The Charybdis help screen provides a reference to all but one
undocumented command line �ags. 12

7 The time taken for �ow analysis increases proportioanally with
the number of �ows, whereas mode 2 analysis always performs
linearly; a feature heavily used for performance evaluations dur-
ing development. 13

8 Performance of the tra�c analyser with di�erent synchronous
modi. Synchronous mode set to o� outperformed the other modi
by far. 13

9 The best performance in terms of speed is achieved by using a
single transaction for all database accesses with snchronous set
to o�. 14

10 The Tetrix easter egg . 16
11 Packet throughput speeds without logging to a database are sig-

ni�cantly faster and positively identify the database as the biggest
bottleneck within the system. 19

12 Without transactions the system is limited to very small tra�c
volumes, as disk IO is very slow. It is in this setup that the vast
performance increase gained by disabling synchronous is most
apparent. 20

13 Packet throughput with transactions increases performance in
terms of speed signi�cantly in all synchronous modi. 21

14 A new database opened in the rule generator 22
15 Investigating SMTP �ows to �nd the networks MTAs. 23
16 SMTP tra�c on the network visualised in a dot digraph.The

machine in the centre is clearly the networks MTA. SMTP tra�c
contributions from external MTAs are represented by the number
of arrows pointing towards it. 24

17 Removing an IP protocol in Scylla. 25
18 The TCP services tab allows to delete or insert TCP �ows into

the system. 25
19 The UDP services tab allows to delete or insert UDP services into

the system. 26

iii

20 The ICMP tab allows to delete or insert ICMP types and codes. 26
21 The IP tab de�nes what address range should be considered �in-

side� the �rewall. 27
22 Excerpt of a FirewallBuilder network object �le created by Scylla. 27
23 The exported rules opened in FirewallBuilder 28
24 Selecting a target �rewall solution. 29
25 Compilation successful! . 29
26 Excerpt from an ipfw rule set created for FreeBSD 30
27 A SYN scan on 196.23/16 . 32
28 Part of the same SYN scan as in �gure 27, but this time visualised

on 196/8. 33

iv

1 Introduction

Focus of the project was to create a system capable of automatically generating
a set of �rewall rules by inspecting the underlying network tra�c at a proposed
choke point. Why the development of such a system is desireable shall be elabo-
rated in the following subsection and the project speci�cations and requirements
thereafter.

1.1 Problem Statement

Introducing �rewalls and other choke point controls in existing networks is often
problematic, because in the majority of cases there is already production tra�c
in place that cannot be interupted. This often necessitates the time consuming
manual analysis of network tra�c in order to ensure that when a new system is
installed, there is no disruption to legitimate �ows.
An added complication that is often the case with legacies or other systems
that have developed organically, is that documentation about existing legiti-
mate communication may be very limited, or in some cases is incorrect.
Furthermore ever increasing tra�c volumes make manual tra�c analysis less
feasible. It is therefore desireable to automate as much of the �rewall con�gu-
ration process as possible.

1.2 Speci�cations And Requirements

A working system or series of tools that facilitate(s) the analysis of either live
tra�c or a recorded pcap trace �le is to be developed. The output of this system
should be useable as input for a tool such as FirewallBuilder [1], which allows for
cross platform deployment on a wide variety of �rewalling solutions. Ideally the
resultant tool chain should be cross platform and be able to run on Unix-like
and Windows systems. Main target systems and their corresponding �rewall
solutions are ipfw and pf on FreeBSD, iptables and ipchains on Linux, �rewall
policies on Windows and ACL on Cisco.

A user should be able to select from matching legitimate tra�c �ows at the
following sorts of granularity: IP and IP level communications, Protocol level
such as TCP, UDP etc., Port and Service level and a facility that handles ICMP
types and codes should be provided.

The remainder of the paper is structured as follows: section 2 provides back-
ground information on the concepts, technologies and building blocks involved
in the creation of the system. Section 3.1 presents a high level overview of the
design of the system and explains where it �ts into the �rewall con�guration
process. Section 3.2 details the steps taken to implement the system. Section
4.1 presents the methodologies employed to test the system and the results of
these test are then detailed in section 4.2. Section 5 concludes the paper and
subsection 5.1 brie�y outlines possible future extensions.

1

2 Literature Survey

This chapter serves to provide a brief overview of the concepts, technologies and
libraries used to implement the project. The section on NetFlow was included
to illustrate the concept of a tra�c �ow and why this representation is advan-
tageous when dealing with network tra�c, even though the project makes no
direct use of NetFlow.

2.1 Firewalls

A �rewall lends its name from the architectural structure of the same name,
which is a specialised wall structure that prevents �res from spreading from one
part of a house to another. In the context of computer networking a �rewall is
any hardware and or software device that prevents unwanted network connec-
tions to be established to or carried over a network. Firewalls are categorised
according to their design, purpose and scope. There are host based �rewalls,
protecting the single host they are running on, dedicated �rewalls and dedicated
�rewall appliances. In reality a �rewall is rarely a single part of hard- or soft-
ware but a combination of the former to varying degrees[18, 14]. All �rewalls
perform packet �ltering of some sort or another, by selectively allowing only
certain speci�ed kinds of tra�c through.

2.2 FirewallBuilder

FirewallBuilder is a GUI-based �rewall con�guration and management tool that
supports iptables (net�lter), ip�lter, pf, ipfw, Cisco PIX (FWSM, ASA) and
Cisco routers extended access lists [1]. It features a set of policy compilers that
compile the rule sets created from within its GUI, from xml based object �les,
into, �rewalling solution speci�c, �rewall rule sets. The policy compilers do
also create automatic deployment scripts, that allow the �rewall to be brought
up remotely and to roll back the installation if necessary. FirewallBuilder also
ensures that the SSH connection between the con�guring host and the �rewall
will never accidentally be interrupted. Because FirewallBuilder 's GUI is built
uponQt [2, 10] it is capable of running on a wide variety of target platforms, such
as Linux, FreeBSD, OpenBSD, Mac OS X and Windows [5]. All of the above
mentioned features make FirewallBuilder the ideal backend for the project.

2.3 Qt

Qt is a cross-platform application development toolkit for C++[2, 10]. It is
used in a wide variety of software, most notably in the KDE, Skype, Google
Earth, the opera web browser and SUN's VirtualBox. Qt recommends itself for
the project as FirewallBuilder 's GUI is itself based on Qt. But Qt is more than
a mere widget set - it includes networking, SQL, XML parsing and threading
capabilities that are all accessible through the same API on all its supported
platforms, which greatly facilitates and increases portability.

2

Qt has been acquired by Nokia in 2008, which has subsequently LGPLed the
windows version, which previously has only been available under a proprietary
licensing scheme.

2.4 NetFlow

NetFlow is both a format and a technology. Initially developed in-house at
Cisco, it has quickly become the de facto standard for network analysis and
is used for a variety of purposes including, but not limited to, billing, net-
work planning, tra�c engineering and the detection and analysis of security
incidents[8, 9]. NetFlow enabled devices can export �ow data via a UDP based
protocol to a NetFlow collector, which then �les, �lters and stores the �ow data.

Flows are created by continuously analysing IP packets and categorizing
them into IP �ows. A packet is either categorized into an existing �ow or
creates a new �ow. Finished or expired �ows are then exported to the NetFlow
collector via UDP. A �ow is de�ned by seven key �elds, namely, source IP,
destination IP, source port, destination port, protocol, type of service and input
interface. Any two packets sharing the same entries for all seven �elds belong to
the same �ow [7]. There are several versions of NetFlow, some of which are more
commonly used than others, namely versions 1, 5, 7, 8 and 9 that incrementally
improve upon another and provide a richer feature set with more detailed �ow
records [8].

2.5 SQLite

SQLite[3] is a small in-process database solution that is highly portable accross
platforms. It is serverless and requires no con�guration. This allows to add
database functionality to any program with minimal e�ort.

2.6 libpcap

libpcap[4] (WinPcap[6]) is a packet capture and analysis library that is almost
universal across di�erent platforms. It also includes an interface to the Berkeley
Packet Filter, which allows to only consider certain types of tra�c during packet
capture.

The following chapter on design and implementation elaborates on how the
described libraries were used in the project to create the system.

3

3 Design And Implementation

Fundamentally the project is an engineering problem. How can network tra�c,
consisting of individual packets and captured by pcap, be �ltered and classi�ed
into �ows and these �ows in turn be exportet into a format understood by
FirewallBuilder ?

Whatever system performes this task has to act as a middleware between
these two endpoints, network tra�c and FirewallBuilder, and thus makes auto-
mated �rewall rule set generation possible. By inspecting tra�c passively, the
sytem basically becomes an input driven parser that, after a �rst pass, addi-
tionally accepts user input by allowing the user to select between the calssi�ed
�ows created in pass one, which are then the basis for a second and �nal pass in
which the FirewallBuilder -based precursors of the �rewall rule sets are created.
The following subsections on design and implementation elaborate on exactly
how this was achieved.

3.1 Design

The system was initially envisioned in a classical client-server architecture, with
the command line based tra�c analyser acting as the server and the GUI-
based rule generator acting as its client. However, during implementation focus
shifted away from this approach as it became clear that no permanent two-way
communication between the tra�c analyser and the rule generator was actually
required. Within a typical run of the system, information, in form of the tra�c
analysis database, is exchanged only once, from the tra�c analyser to the rule
generator. This insight was taken into account and consequently the system
is now designed and implemented as two separate stand-alone applications and
their information exchange is handled by traditional means of �le exchange, such
as FTP, SCP, HTTP or any other service that is capable of transmitting large
�les between hosts. While the tra�c analyser encapsulates most of tcpdump's
functionality it isn't even necessary to install it on the proposed choke point if
an analysis is only going to be performed once. Tcpdump, which is included in
the default installation of most operating systems, can be used to create a pcap
trace �le which can then be transferred to an ideally powerful workstation to
allow the tra�c analysis and the consequent rule generation to take advantage
of its underlying hardware.

If repeated runs of the tra�c analyser are expected or analysis it to be
performed on live tra�c the tra�c analyser can of course be deployed on the
proposed choke point itself.

There is a distinct advantage to this modular approach of separating the
analysis and rule genration functionalities. Because the tra�c analyser is de-
signed and implemented as a command line utility, it can be run remotely on
machines without windowing capabilities, such as rack-mounted servers, while
the GUI-based rule generator can take advantage of the convenience of a desktop
machine.

4

The project places a strong emphasis on portability, an absolute necessity
in today's inherently heterogenous networking environments.

In the following an overview of the two components and their position within
the �rewall con�guration process shall be given.

3.1.1 High Level Overview Of The System And Its Components

As previously stated, the system acts as a middleware between the observed
network tra�c and FirewallBuilder[1], as is depicted in �gure 1.

After the future choke point has been identi�ed, its underlying network
tra�c is fed into the system. This input can be in either one of the following
two formats. Firstly live tra�c and secondly pcap trace �les recorded at the
node. These inputs are then processed by the tra�c analyser which convertes
them into a custom �ow format that is largely inspired by Cisco's NetFlow.
This format features various metrics such as source IP and port, destination IP
and port, IP protocol, service level protocol, initiation time and packet length.
The �ows recorded by the tra�c analyser are stored in a database. The rule
generator then acts upon this database and allows the user to inspect, enquire
about and modify the present �ows on various levels of granularity such as IP, IP
protocol, service, connection count and so forth. After this initial inspection by
the user the rule generator proposes a set of rules that match the observed tra�c
and exports them into FirewallBuilder network object �le format. The proposed
rules can then consequently be reviewed and re�ned by the user from within
FirewallBuilder's UI, which in turn allows for the deployment and maintenance
of the �rewall.

3.1.2 The Tra�c Analyser

The program entry point lies within the class charybdis. Charybdis creates
itself one core which handles all functionality of the program. Charybdis is
therefore somewhat like an outer shell that serves as a placeholder for future
extensions. Core incorporates the global con�guration �le and spawns itself
a PcapEngine and a SqliteEngine which handle packet capture and database
access respectively. PcapEngine is linked against libpcap and incorporates the
protocol de�nition �le; it also handles protocol dissection and classi�cation.
SqliteEngine handles all database connection and access functions required by
the analyser. A graphical presentation of this architecture is given below in
�gure 2.

The analyser uses libpcap [4, 13](WinPcap [6] on Windows) for the process-
ing of live tra�c and trace �les. The handling of these two inputs within pcap
is nearly identical. This, from a programmers perspective, very convenient API
and its support for almost all major operating systems recommended pcap as
the basic building block for the tra�c analyser.

The strategy to obtain the information required for the custom �ow format
is to screen the packet data for three way handshakes and TCP FIN and RST
packets.

5

Figure 1: High level overview of the system and its position in the �rewall
con�guration process

6

Figure 2: Class diagram of the tra�c analyser

The ACK packets involved in the three way handshake can be determined
through the packets' sequence numbers [16]. This establishes the sources and
destinations and hence the direction of the tra�c �ows. The di�erence in the
timestamps between these packets allows for an estimation of the duration of
any given connection. The packets that are neither SYN nor FIN are matched
to one of the existing �ows and their payloads added to the total volume of
tra�c in the �ow. Their occurrence is also recorded in the packet count of
the �ow. Because packets might arrive out of order, care must be taken when
reconstructing the �ows to not disregard valuable information, meaning that
non SYN or FIN packets without a corresponding �ow do create their own
�ow so that it is possible to reconstruct them later or at least take them into
consideration when generating the rules at a later stage.

The project uses the embedded SQL database engine SQLite [3, 15] to record
the �ows, which has various advantages over other more sophisticated database
solutions. From a performance perspective, this in-process library is simply
much faster than any networked database solutions could ever be. Because
SQLite is serverless, self-contained and requires no con�guration it also increases
the ease of use of the system. SQLite stores its databases in a �le, in a format
that is consistent across all platforms, thus its database �les lend themselves as
the perfect format for information exchange between the tra�c analyser and the
rule generator, especially across di�erent platforms [15, 3]. There are two added

7

:: visWin.bat

:: queries a charybdis SQLite traffic database for src -dst flows

:: and pumps the output through fdp to create a directed dot graph

@echo off

sqlite3 -csv %1 "select sIP1 ,sIP2 ,sIP3 ,sIP4 ,dIP1 ,dIP2 ,dIP3 ,dIP4

from %2" > visWinTmp .1

gawk -F, "{print \"*\" $1 \".\" $2 \".\" $3 \".\" $4 \"* -# *\" $5

\".\" $6 \".\" $7 \".\" $8 \"*\"}" visWinTmp .1 > visWinTmp .2

sed -e s/#/" >"/g visWinTmp .2 > visWinTmp .3

sed -e s/*/\"/g visWinTmp .3 \" > visWinTmp .4

echo digraph G { > visWinLayout.dot

cat visWinTmp .4 >> visWinLayout.dot

echo } >> visWinLayout.dot

rm visWinTmp .*

fdp -Tjpg -o visWinLayout.jpg -Kfdp visWinLayout.dot

visWinLayout.jpg

Figure 3: The Windows version of the visualisation script uses the sqlite3 ex-
ecutable in conjunction with common tools such as sed and awk to generate
directed graphs in the dot language.

advantages to this approach, �rstly database �les can be e�ciently compressed
and are therefore ideal to be sent across the network and secondly this 'o�ine'
recording of �ows does not create any network tra�c associated with the recod-
ing process itself, that would otherwise create artefacts and would have to be
�ltered out.

3.1.3 Modes Of Operation And Commandline Flags

By default the tra�c analyser exhibits a very low level of verbosity, this is largely
due to the fact that outputting characters onto a terminal is a relatively slow
process on almost all operating systems. Some sort of visual feedback about
the state of the program is however desirable and increases the user experience.
To accomodate human psychology visual feedback is provided by a spinner that
indicates whether or not packets are being processed. If the verbosity �ag is set
the program will output its current state and the �ow directions of the packets
currently analysed onto the terminal. This can be useful for debugging purposes
or when working with small trace �les or short periods of live capture. It is also
a valuable visualisation tool when working with pcap cross sections on remote
terminals where the repeated transmission of visualisation script output might
be undesirable.

3.1.4 The Rule Generator

The rule generator code named Scylla, is basically a frontend to the tra�c
and �ow database �les created by Charybdis. It is GUI-based and built upon
the Qt library. Qt was chosen because of its extraordinary portability and
homogenity accross platforms. The fact that Qt is a superset of C++ also

8

Figure 4: class diagram of the rule generator

facilitated development as it allowed the entire project to be implemented in
this language.

From an architecureal point of view, the design of the rule generator is
very straight forward. A main class instantiates the MainWindow class which
contains the window frame and all menues, tool-, and statusbars. The central
widget of the MainWindow is the SQLBrowser which contains all tabs and
actions that carry database functionality. The actual database connection is
created and maintained through SQLBrowser's ConnectionWidget class, which
contains the database drivers and handles low level database access as is shown
in �gure 4.

The tra�c databases can be acted upon from within the rule generator using
the Structured Query Language, which might seem a little spartanic at �rst but
is certainly less cryptic than Berkeley Packet Filter expressions with which the
average user is certainly less familiar. Just like it is often argued that user
friendly and highly abstracted systems take a performance hit because of the
complexitites of the abstraction mechanisms, the author would like to argue
that the same is true for usability vs. versatility. While the mainly SQL based
interface might be less friendly towards the average computer user it de�nitely
allows for a versatility that cannot be parralled by any graphical representation
of tra�c �ows.

3.1.5 The Pipeline

The architecure of the project as was outlined above basically forms a �ltering
pipeline with various stages that can all be employed to �lter the recorded
tra�c down into humanly manageable chunks. The �rst �lter is pcap, and
associated with it bpf, which can be harnessed by Charybdis' -f and -F options,
which allow for a very �ne grained control of what types of tra�c are even
considered by the system. The second equally powerful �lter is the database
and its associated SQL interface from within the rule generator's GUI. Scripts
to prune or otherwise act on the database can be deployed from both the rule
generator and tra�c analyser alike. The ultimately last stage of the processing
pipeline is FirewallBuilder itself, in which all classi�ed �ows are disabled by

9

default and can be selectively enabled by ther user.
All but the last stage, FirewallBuilder, have applications beyond the initial

objective of the project.
The tra�c analyser and its associated �lters could for example be used as a

reconnaisance tool for penetration testers. An immense amount can be learned
about a network without sending out a single packet and thus minimizing the
danger of detection by an IDS. Please refer to section 4.2.1 for an example of
how to use the system to detect SYN scans.

3.1.6 Code Names For The Componets Of The Project

The code names for the rule generator and the tra�c analyser are Scylla and
Charybdis respectivly. The well know phrase �between Scylla and Charybdis�
has its origin in ancient greek mythology and refers to a situation in which one
has to choose between two options which are both guaranteed to have catas-
trophic e�ects. Scylla and Charybdis, two sea monsters guarding a narrow strait
ment almost certain demise to all sailors trying to pass through it. Charybdis
was a gigantic mouth in the sea which would, at random intervals, suck in water
and ships alike, a more than �tting metaphor for a tra�c analyser.

Scylla on the other hand was, according to Ovid, a once beautiful nymph
and love interest of the �sherman turned sea god Glaucus. When she turned
him down and escaped onto land where Glaucus could not follow, he sought
the help of the witch Circe, which in turn fell in love with Glaucus. Angry
with Scylla for turning Glaucus down, Circe cursed Scylla and turned her into a
six-headed monster. In Homer's Ilias Ulysses is faced with the task of crossing
between Scylla and Charybdis and chooses to pass closer to Scylla, a decision
that costs him six of his men. The metaphor for the rule generator being the
selection of classi�ed �ows instead of sailors.

3.2 Implementation

This section describes the implementation of the componets that make up the
system. It also highlights the roles of the libraries and toolkits upon which the
system was implemented, individually. For the libraries, a brief justi�cation as
to why they were chosen shall be given as well. A major driving force behind the
selection of the libraries and toolkits is their portability and licensing. A strong
emphasis is put on the use of free and open source software since high portability
is a fundamental requirement in the highly heterogenous environment of todays
networking infrastructures.

3.2.1 The tra�c analyser

The tra�c analyser, code named Charybdis, is capable of detecting all 142
protocols that IANA currently endorses as being transportable over IP. Fur-
thermore its protocol dissectors recognize 138 services transported over TCP,
106 services transported over UDP and all but the reserved ICMP types and all

10

Figure 5: One application of Charybdis' verbose mode is to visualise small trace
�le cross sections. Cross sections can easily be created by applying a bpf �lter
expression to a trace �le with the analyser's -f or -F options.

of their respective codes. All packet capturing is performed by utilising the pcap
library, this applies to both live tra�c and pcap trace �les alike. The following
paragraph provides a short introduction to the tra�c analyser's purpose and its
functionality.

The tra�c analyser's primary task is to create or extract tra�c �ows from
its input data and to consequently store these �ows in a database. Working
with �ows is advantageous because of their high information density[17, 11,
12], and because they contain stateful information about the prevalent network
connections.

Because the tra�c analyser relies heavily on pcap and SQLite, which are both
implemented in C/C++ and provide native interfaces to their functionality in
that language, its use for the implementation of this part of the project was an
easy choice. Implementing the tra�c analyser in C++ has other advantages
which are mainly the high performance of natively compiled executables and
the relative ease of porting between di�erent platforms. C++ programs are
often considered to be hard to port, but conditional compilation and the wide
availability of C++ compilers accross di�erent platforms, especially the GCC
has made porting quite feasible within the scope of the project. On Windows
theMinGW version of GCC that ships with Qt was used to compile the project,
tra�c analyser and rule generator alike. Portability was further enhanced by
the fact that the componets upon which the tra�c analyser builds are already
available on all targeted platforms. SQLite and pcap are both almost universal
to Windows, Linux and the *BSDs.

The biggest hurdle that had to be taken while implementing the tra�c anal-
yser was the apparently slow speed of SQLite. This however turned out to be
a well known problem and can be overcome by �rstly tuning SQLite by setting

11

Figure 6: The Charybdis help screen provides a reference to all but one undoc-
umented command line �ags.

the synchronous pragma to o� and secondly by conduction all database accesses
within a single transaction.

The SQLite documentation states that it is capable of up to 50000 inserts
per second, however, insertion speeds of this magnitude are only achieved if the
synchromous pragma is set to o�, which instructs SQLite to continue operation
as soon as data was handed over to the operating system. While this mode
of operation can be up to 50 times faster, it comes with the drawback that
a powercut or application crash might leave the database corrupted as not all
information might have been written to disk, yet.

In the context of the tra�c analyser there is simply no other choice than
to set the synchronous pragma to o� because operation in synchronous modi
normal and full are simply prohibitivly slow as is illustrated in �gure 8.

As is shown in �gure 8 the speeds achieved by disabling the synchronous
mode are still not nearly fast enough to record any reasonable amount of tra�c
let alone high tra�c volumes, and further optimizations were necessary. The
breaktrough in terms of database speed was achieved when the entire tra�c
analysis was treated as a single database transaction, meaning that all inserts
and table creation processes were enclosed by a single BEGIN - COMMIT state-
ment, as is illustrated in �gure 9.

While the overall speed up is signi�cant, the transaction approach seems to
diminish the speed up contribution of the synchronous setting. Why this might
seem to be the case is further explored in the results section.

Measurements with the undocumented mode 2 in which no �ow analysis is
performed and packets are indiscriminately added to a packet database show a
171 fold speed improvement of transaction/o� over without transaction/normal.

The initial �ow analysis is performed after all the packets have been added
to the database and the �rst pass of the tra�c analysis has come to an end.

12

Figure 7: The time taken for �ow analysis increases proportioanally with the
number of �ows, whereas mode 2 analysis always performs linearly; a feature
heavily used for performance evaluations during development.

Figure 8: Performance of the tra�c analyser with di�erent synchronous modi.
Synchronous mode set to o� outperformed the other modi by far.

13

Figure 9: The best performance in terms of speed is achieved by using a single
transaction for all database accesses with snchronous set to o�.

This is for the technical reason, that even though SQLite is perfectly capable
of 50000 inserts per second, updates are very much slower and the time needed
to �nd a certain �ow in order to update its state increases with the number
of �ow records already added to the database. This is illustrated in Figure 7.
Flow records are initally created in a format that is a stripped down version of
NetFlow and carry no stateful �ow information by default, since stateful con-
nection details are not regarded in FirewallBuilder and adding state information
to the �ows in FirewallBuilder is much easier and quicker than extracting this
information from the �ow database.

In a default mode 1 analysis the tra�c anlayser creates a set of tables, that
each full�l a specialised purpose. Some of the tables are highlighted in the
following: The FRAMES table containes all observed packets individually and
is the basis for all consecutive steps of the �ow analysis. It is the only table
that is also created in mode 2. From this FRAMES table one table is create for
every IP protocol identi�ed during the analysis. These protocol tables have the
extension _raw. From each of these tables another table with just the name of
the protocol without the _raw extension is created, in which only distinct �ows
between hosts are recorded. This is an absolute necessity to prune the tables
to a humanly manageable size. As a �nal step a table of all found protocol
names is created that is the basis for the IP protocol pruning tab within the
rule generator. Should the actual protocol �ow tables ever be corrupted they
can easily be reconstructed from the _raw tables, that are left untouched in the
database for this very reason.

The tra�c analyser also features the previously mentioned undocumented
mode 2 in which no initial �ow analysis is conducted. This feature is a leftover

14

from a debugging feature used during development, but was intenionally left
intact as it can be harnessed by the experienced user not only to speed up
the initial �ow analysis by disregarding certain IP protocols, like UDP which
takes by far the longest to analyse, but also to allow to create �ows based on
custom �lters. Mode 2 was used extensively for packet throughput timings
during develoment and during this wite up.

3.2.2 The Rule Generator

The rule generator uses the database �le created by the ananlyser to propose
�rewall rule sets that match the observed tra�c. The di�erent types of �ows
recorded in the database are each individually visualized in a table view where
they can be closely inspected and modi�ed by the user. A facility to perform
custom SQL queries against the database is also provided within the GUI and
is a very prominent and powerful aspect of the system. Within the connection
widget the table structure and �eld names of all tables can be enquired, by right
clicking on a table and selecting 'show metadata'. All functions within the GUI
can also be invoked by means of keyboard shortcuts to create a highly responsive
working environment. This allows SQL queries to be issued in quick sucession,
so that the thought process of querying the database is uninterupted by repeated
point and click actions. The output of all custom queries can be sent to the
scripting interface. The scripting interface itself is actually a functionality of the
tra�c analyser, but it can also be conveniently accessed from within the rule
generator. One application for the scripting interface is to investigate certain
kinds of �ows accross the network. If for example an exotic service like the
Andrew File System is found on the network the user can create a table that
holds all connections of this type by issuing a command like:

create table AFS as select * from UDP where service like 'AFS%'

This will pull all AFS services (there are at least seven distinct ones, all run-
ning on di�erent ports) into a single table which then in turn can be visualised
by invoking the visualisation script. An example of how to use this technique to
�nd for example the MTA of a network is given in the section on testing. How
powerful this visualisation capability is cannot be overstated. Understanding
raw IP addresses or even DNS names and keeping the relevant enpoints and
directions of the involved �ows in mind is certainly much harder than having
the �ows of interest represented graphically.

At the end of the inspection, review and re�nement process the user is able to
export the policies into a FirewallBuilder network object �le. The basic strategy
to automatically generate a rule set is to divide the network into an 'inside the
wall' and an 'outside the wall' part. All �ows carried between inside and outside
are split into an inbound and an outbound �ow and the corresponding policies
are created. Initially all �ows are denied.

In order to export to FirewallBuilder, its network object �le format had to
be reverse engineered. This was achieved by employing a black box approach.
A sample �le was created and an object such as a policy, a group, an address

15

Figure 10: The Tetrix easter egg

or a network service added to it. The resulting changes were then observed
in the XML based network object �le itself. The attributes for most elements
are very verbose and self explanatory and presented no problem to replicate.
The id attribute of all elements turned out to be more cryptic but de�nitely
follows a pattern. A random 4 digit number followed by the character X, fol-
lowed by a three digit number. The number after the X remains static within
all subelements of any given element whereas the number before the X is con-
tinuously incremented for every new subelement within an element. Because it
is unclear whether these numbers are random or carry a deeper meaning the
numbers created by the template were replicated and the plus one algorithm
applied wherever id tags have to be generated dynamically. Because elements
frequently reference earlier elements, all id tag ranges for every element are
temporarily stored in integer variables. No library or XML functionality within
Qt was used to create the XML �le, but plain printf statements that insert the
dynamic parts of the network object �les by means of simple loops.

When working with large datasets, as the program is intended to do, or when
issuing complicated queries or calling scripts on large datasets, that take a long
time to return one has the option of passing the time with the hidden Tetrix
easter egg, that is depicted in �gure 10. The keyboard shortcut to start a new
instance of Tetrix is [CTRL+T].

In conclusion it can be said that the design and implementation of the project
was successful and that the resulting system is not only functioning to speci�ca-
tion but also demonstrates capabilities beyond the initial scope of the project.
It was also outlined how a few technical hurdles that presented themself during
implementation were incrementally overcome.

16

The following chapter four details how the implementation was stress tested,
on what what hard- and software platforms these tests were conducted and how
the system performed in these test.

17

4 Testing And Results

The two components of the system, tra�c analyser and rule generator, were
initially tested separately to evaluate their relative performance within their
respective problem domain. Focus of the analyser tests was to identify and
eradicate bottlenecks as much as possible to tune performance in terms of speed.
The rule generator was only indirectly tested, since it full�ls more the function
of a front-end and relies heavily on the tra�c analyser. The rule generator's rule
export function is known to be working correctly, since incorrect FirewallBuilder
network object �les simply will not be opened by FirewallBuilder. Rules are
exported in the �le format of FirewallBuilder 3.0.5, previous versions are not
supported because subsequent releases of FirewallBuilder add new attributes to
the �le format which are not understood by previous versions.

4.1 Testing

The system was thoroughly tested to ensure that it can deal with loads of the
required magnitude.

All testing was performed on a machine with the following hardware and
software speci�cations:

Intel Pentium 4 at 3 GHz

1024 MB RAM.

SATA diskcontroller / disks

Windows XP Professional SP2

Testing of the analyser was focused on speed optimizations, whereas the
main focus for testing of the rule generator lay within the domain of correct
rule generation.

4.1.1 Performance Testing Of The Tra�c Analyser

In most situations the actual time taken for a tra�c analysis is not the main
concern for the usability of the system, since its operation is unattended. How-
ever it has to be within workable limits, i.e. an analysis that takes longer than
the period of observed tra�c that is used as its input is certainly undesirable.
Therefore the analyser was sped up as much as possible. Focus of all tuning
activities was the SQLite interface as its disk IO is certainly the main bottle-
neck, as was established by simply testing analysis speed with and without the
�database option. The results of this test are conclusive and illustrated in �gure
11.

18

Figure 11: Packet throughput speeds without logging to a database are sig-
ni�cantly faster and positively identify the database as the biggest bottleneck
within the system.

Timings were taken in mode 2, that measures only packet throughput time.
In the analysers default mode with transactions enabled and synchronous set to
o�, 1000000 packets are processed in 115 seconds and 5000000 packets are pro-
cessed in 528 seconds.When packets are not recorded in a database, throughput
times for 1000000 and 5000000 packets decrease to 37 and 118 seconds respec-
tively.

When working with a database, as is the case during normal operation,
vast performance increases in terms of speed can be achieved by setting the
synchronous pragma to o� and by enclosing all database accesses in a single
transaction.

The aforementioned undocumented mode 2, in which no initial �ow analysis
is conducted, again served as a basis for the speed up evaluations of these two
settings. Conveniently for throughput testing, mode 2 database access times
increase linearly with anaysed tra�c volume. The incremental performance
increases obtained by applying the two previously stated tweaks to the system
are documented in the following.

19

Figure 12: Without transactions the system is limited to very small tra�c
volumes, as disk IO is very slow. It is in this setup that the vast performance
increase gained by disabling synchronous is most apparent.

The performance gain of synchronous mode set to o� over full synchronous
mode without transactions is 26 fold as is depicted in �gure 12.

If all database accesses are enclosed in a single transaction the performance
increase in terms of speed gained by disabling synchronous is only realised once,
as all operations on the database are treates as one atomic operation. This is
illustrated in �gure 13.

20

Figure 13: Packet throughput with transactions increases performance in terms
of speed signi�cantly in all synchronous modi.

While it might seem that the employed synchronous mode loses its signi�-
cance if transactions are enabled, this is certainly not true. Obviously the above
timings were recorded in mode 2, and the speed ups gained by the faster disk
access only begin to show in the normal mode of operation, mode 1. In mode 2
5000000 packets are recorded in the database in 531 seconds if synchronous is
set to full, but in only 528 seconds if synchronous is set to o�. In mode 1, in
which the number of database inserts is signi�cantly higher, the speed up gained
by using synchronous o� shows very clearly. 5000000 packets are processed a
full 19 seconds faster when synchronous is set to o�. This e�ect is accumulative
when working with dataset very much larger than 5000000 packets.

The second bottleneck in the operation of the tra�c analyser is verbosity as
print to screen operations are relatively slow on most operating systems. The
design decision to keep verbosity to a minimum by default is de�nitely rewarded
by the observed speed ups. A 1000000 million packet analysis in mode 2 takes
1 minute 58 seconds whereas the same operation with the verbosity �ag set
completes only after 7 minutes and 14 seconds.

4.1.2 Network Firewall Con�guration Case Study

The functionality of the system was tested using pcap trace �les recorded at one
of the schools in Grahamstown. Objective was to create a �rewall for the class
C network segment 196.23.167/24. The 4.28 GB trace �le contained just over
47 million packets which accounted for one week's worth of tra�c. On a �le of
this size the total analysis time was 5 hours 46 minutes and 22 seconds of which
only 1 hour 39 minutes and 59 seconds were needed to add the tra�c into the
database, while the remaining 4 hours 6 minutes and 23 seconds were taken to

21

complete the initial �ow analysis.
After Charybdis' analysis run completed, the resulting �ow database could

be inspected from within Scylla, as is depicted in Figure 14.

Figure 14: A new database opened in the rule generator

At this stage it is now possible to create custom �ows to investigate the
network layout as is shown in Figure 15.

22

Figure 15: Investigating SMTP �ows to �nd the networks MTAs.

With the help of the visualisation script networking infrastructure like mail
servers can be identi�ed very quickly, as is shown in �gure 16.

23

Figure 16: SMTP tra�c on the network visualised in a dot digraph.The machine
in the centre is clearly the networks MTA. SMTP tra�c contributions from
external MTAs are represented by the number of arrows pointing towards it.

24

After an initial understanding of the network and its key services and �ows
is attained, the user can now make informed decisions as to what kind of tra�c
should be allowed to be carried on the network. All subsequent tabs allow to
delete or insert protocols and services.

Figure 17: Removing an IP protocol in Scylla.

Figure 18: The TCP services tab allows to delete or insert TCP �ows into the
system.

25

Figure 19: The UDP services tab allows to delete or insert UDP services into
the system.

Figure 20: The ICMP tab allows to delete or insert ICMP types and codes.

Pruning the present �ows this way is a very quick and easy way to disregard
entire protocol suites, it is however not necessary to do all �ow selection from
within Scylla, as after the �ows have been imported into FirewallBuilder the
user will have another chance to select between classi�ed �ows that should be
allowed on the network on an even �ner grained level.

Before the �ows are exported to FirewallBuilder network object �le format,
the part of the network that is to be protected by the �rewall is specifyed in the
IP tab, as can be seen in �gure 21.

26

Figure 21: The IP tab de�nes what address range should be considered �inside�
the �rewall.

With a click on the FirewallBuilder icon in the toolbar or by invoking the
shortcut [CTRL+E] the user is promted to which �le the FirewallBuilder object
�le should be saved to. An excerpt of such an XML �le is shown in �gure 22.

Figure 22: Excerpt of a FirewallBuilder network object �le created by Scylla.

This �le can then be opened with FirewallBuilder and the user can select
between classi�ed �ows. Every �ow creates two rules by default, one for inbound
and one for outbound tra�c. For security reasons all �ows are initially disabled.
The network behind the �rewall is grouped into an object called inside to make
the ruleset easier to comprehend. Besides this Scylla generated FirewallBuilder

27

object library, there is also the standard library available which has many very
useful building blocks for �rewall policies that can simply be dragged and droped
into the rule set. A tyipical Scylla generated rule set is depicted in �gure 23.

Figure 23: The exported rules opened in FirewallBuilder

When the user is satis�ed with the created policies, the �rewalling solution
and operating system are selected as is shown in �gure 24.

28

Figure 24: Selecting a target �rewall solution.

A click on the compile policy icon starts the compilation process and creates
the desired rule set in the same folder as the initial FirewallBuilder object �le.

Figure 25: Compilation successful!

The user can now choose to either deploy this ruleset manually or use the
functionality within FirewallBuilder to do so.

The rule set shown below in �gure 26 is the �nal rule set for the school. The

29

user had to choose between 77 rules within FirewallBuilder from which a rule
set with over 16800 lines was created.

Figure 26: Excerpt from an ipfw rule set created for FreeBSD

4.2 Results

Using passive tra�c inspection as a datasource for automated �rewall rule set
generation was shown to be a positive approach, as is demonstrated by the proof
of concept system implemented during the course of the project. The project
is highly portable and successful compilation on most POSIX compliant but
non-Microsoft operating systems can be achieved by simply uncommenting the
#de�ne _WINDOWS_ pragma in the tra�c analyser's conf.h �le.

The tra�c analyser demonstrates unplanned and unanticipated functional-
ities beyond the initial scope of the project, that emerged from the scripting
interface. One example of such an application is brie�y elaborated upon in the
following section 4.2.1.

Unfortunately the correctness of the rules generated by the rule generator
cannot be proven, since the input on which their generation is based is limited by
the comparatively short periods of time over which the system analyses tra�c.
It is this imperfect information that forms the basis for the rule generation,
that does not allow to draw any deterministic conclusions on the correctness
of the generated rules. The main problem is that there might potentially be
an important service that was not observed during the analysis period, which
would, as a consequence, not be considered in the rule set. Rule collision are
however handled by FirewallBuilder and any rule set created by the system
should therefore be free of them. Initial tests of the rule sets in the school's

30

network have been successful and no adverse e�ects have been experienced so
far.

4.2.1 Detecting SYN scans

The tra�c analyser is a powerful tool to investigate all aspects of the observed
tra�c. One possible application is the detection of SYN scans. Because a single
SYN packet will not create a �ow on its own, we have to resort to the FRAMES
table in the tra�c database to extract the relevant packets. An alternative way
of isolating packets with certain criteria is to make use of the analyser's bpf
interface and the corresponding -f or -F �ags. An example shall be shown in
the following.

SYN packets are isolated by issuing a query like:

create table synscan19623

as select distinct sIP1 ,sIP2 ,sIP3 ,sIP4 ,dIP1 ,dIP2 ,dIP3 ,dIP4

from frames where ipproto = 'TCP ' and flags = 'SYN '

and sIP1 = 196 and sIP2 = 23 and dIP1 = 196 and dIP2 = 23

This will create a table showing all SYN packets exchanged on 196.23/16.
This table can then in turn be visualised using the visualisation script, as can be
seen in �gure 27. Using the host / nslookup utility the host in the centre making
connection attempts to all other machines on the subnet was identi�ed as a dial-
up line. The real extent of the scan can however only be seen when visualising
the entire class A network segment, as can be seen in Figure 28. The dot graph
took 47 minutes to complete and is 24 megabytes in size, while no indivudual
nodes can be recognised on paper we can obviously zoom into the graph using a
graphics package such as gimp. It is just shown here to illustrate how apparent
such a scan is and how easily it can be detected. An interesting side e�ect of
this approach to SYN scan detection is that even very slow running scans that
could potentially evade some intrusion detection and prevention systems can be
very clearly visualised as time over the observed period is basically �attened
out.

31

Figure 27: A SYN scan on 196.23/16

32

Figure 28: Part of the same SYN scan as in �gure 27, but this time visualised
on 196/8.

In summary this chapter provided a detailed overview of the performance
testing of the system and found that with carefully chosen settings bottlenecks

33

within SQLite and operating system dependent terminal outputting routines
could be overcome. Furthermore a full end-to-end case study presented the cor-
rectly functioning system. It was also shown how the system can be deployed for
other non-�rewall related tasks such as SYN scan detection and investigations
into the topographical layout of a network or a speci�c service carried on the
network.

34

5 Conclusion

It was shown that �rewall rule set generation through passive tra�c inspection
is an overall positive approach, and that the goals of the project, as outlined in
section 1.2, were met. The process of generating �rewall rules still requires some
human review and intervention, but this was expected from the very beginning
of the project. Because the system matches all existing tra�c by default it also
creates rules for unwanted tra�c that is present on the network, and it is these
tra�c �ows that have to be pruned by a human user of the system. Employing a
heuristic or some sort of fuzzy logic system to identify legitimate �ows is simply
not an option in a security context, as a miscon�gured �rewall will certainly
only provide the illusion of network security.

The system was also shown to demonstrate some unanticipated functional-
ities, like SYN scan detection and network layout visualisation, that emerged
from the pipeline created by the systems' components, that have proven use-
ful beyond the initial scope of the project. Especially the scripting interface
has proven to be extremely useful and will be more thoroughly explored in the
future.

The system's to a large extent unattended operation was shown not only
to be quicker and more convenient than manual �rewall con�guration, but is
possibly more accurate and allows for faster turnaround in the deployment of
new �rewalling solutions. This also results in decreased risk and cost for organ-
isations deploying such solutions.

5.1 Possible Future Extensions

One future extension that is de�nitely desirable is to extend the tra�c anal-
yser to include support for NetFlow and SNMP. This is mainly to accomodate
for the aforementioned heterogentiy of networking equipment and by doing so
broadening the range of targeted platforms and to increase versatility. Net�ow
as a fundamentally text-based format could be added elegantly via a lex / yacc
grammar or if performance should turn out to be an issue, a small hand written
LL parser.

The feasablity of creating optimized rule sets could be investigated, this
would involve probing the FirewallBuilder policy compilers for existing func-
tionality of this kind and modifying the rule generation process to take advan-
tage of it. All the metrics that might be necessary for such an undertaking, like
tra�c volume or packet count could be extracted from the tra�c database with
relative ease.

A further very interesting extension would be to include an intrusion detec-
tion and prevention system, such as snort into the system and to consequntly
con�gure it automatically as well. While this would certainly increase complex-
ity, which is often non-bene�cial to overall network security, in this particular
case could proof advantageous since a �rewall alone is just one network security
component that by itself is not capable of preventing all forms of attack. One
example that springs to mind is HTTP, often labeled as the universal �rewall

35

traversal protocol, where an IDS will almost certainly increase overall network
security.

Adding support for other database solutions would de�nitely bene�t the
system. Support for industrial strength databases like ORACLE could proof
advantageous, especially when generating rule sets for WANs or VPNs. The
subtle problem that the database connection during the tra�c analysis would
show up in the analysis �le can easily be prevented by employing the relevant bpf
�lter. Whether or not networked database storage is feasible, largely depends
on the load of the network in question, as the analysis process would almost
certainly double the amount of tra�c, since every packet creates a database
entry. Furthermore alternative front-ends could be developed, web-based front
ends based on php or perl would certainly go hand in hand with networked
databases.

Another very exiting area of research in the department is packet �ltering us-
ing a CUDA based GPGPU approach. Almost unbelievable speedups in tra�c
analysis have already been achieved. It can be expected that database solutions
such as SQLite will be ported to these massively parallel platforms within only
a few years. This would make tra�c analysis and rule generation almost instan-
taneous and probably only unnoticeably longer than the period over which the
tra�c itself is observed.

36

References

[1] Firewall builder cookbook. Online: http://www.fwbuilder.org/guides/.

[2] Qt - a cross-platform application and ui framework. Online:
http://www.qtsoftware.com.

[3] Sqlite. Online: http://www.sqlite.org.

[4] Tcpdump/libpcap public repository. Online: http://www.tcpdump.org.

[5] What is �rewall builder. Online: http://fwbuilder.org/about.html.

[6] Winpcap: The windows packet capture library. Online:
http://winpcap.org.

[7] Cisco ios ipsec accounting with cisco ios net�ow. Technical report, Cisco
Systems, 2004.

[8] Cisco cns net�ow collection engine user guide, 5.0.3. Technical report, Cisco
Systems, 2005.

[9] Introduction to cisco ios net�ow - a technical overview. Technical report,
Cisco Systems, 2007.

[10] Jasmin Blanchette and Mark Summer�eld. C++ GUI Programming with
Qt 4. Prentice Hall, 2006.

[11] Baek-Young Choi and Supratik Bhattacharyya. Observations on cisco sam-
pled net�ow. SIGMETRICS Perform. Eval. Rev., 33:18 � 23, 2005.

[12] Cristian Estan, Ken Keys, David Moore, and George Varghese. Building a
better net�ow. In SIGCOMM '04: Proceedings of the 2004 conference on
Applications, technologies, architectures, and protocols for computer com-
munications, pages 245�256, New York, NY, USA, 2004. ACM.

[13] Luis Martin Garcia. Programming with libpcap - sni�ng the network from
our own application. hackin9, 3:39, 2008.

[14] Terry Ogletree. practical �rewalls. Que, 2000.

[15] Michael Owens. The De�nitive Guide to SQLite. Apress, 2006.

[16] Karanjit S. Siyan and Tim Parker. TCP Unleashed. SAMS Publishing,
2002.

[17] Robin Sommer and Anja Feldmann. Net�ow: information loss or win? In
IMW '02: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment, pages 173�174, New York, NY, USA, 2002. ACM.

[18] Elizabeth D. Zwicky, Simon Cooper, and D. Brent Chapman. Building
Internet Firewalls. O'Reilly, 2000.

37

Appendix A: Contents Of The CD

The enclosed CD containes this thesis itself and a mirror of the accompaning
website. The sources of Scylla and Chraybdis are included within the mirrored
site. For the latest versions of the sources please refer to http://www.cs.ru.ac.za/research/g05p3292/

+−−−t h e s i s
| coverpage . pdf
| t h e s i s . pdf
|
\−−−webs i te

| b log . html
| d e f au l t . c s s
| index . html
|
+−−−download
| about . pdf
| blunt −0.4 . z ip
| bluntPl −0.1 . z ip
| charybdis −0 . 5 . 7 . z ip
| charybdis1 .wmv
| charybdis2 .wmv
| l i tRev i ew . pdf
| po s t e r . pdf
| proposa l . pdf
| s c y l l a −0 . 4 . 3 . z ip
| s c y l l a 1 .wmv
| s c y l l a 2 .wmv
| s c y l l a 3 .wmv
|
\−−−images

bg02 . jpg
bg04 . jpg
bottom . png
crimsonCrack . png
menu . png
top . png

