

Database Evaluation

A Comparative Investigation and Evaluation

of Oracle 9i and SQL Server 2000 with respect

to Performance and Scalability

Phathisile Sibanda
November 2005

Supervisor: John Ebden

Thesis submitted in partial fulfilment of the requirements for the

Bachelor of Science (Honours) Degree in Computer Science

at Rhodes University

 ii

ABSTRACT

Performance and Scalability are two supreme factors determining database availability and

reliability. This is especially true for modern computer systems due to the inclusion of the Internet

in Online Transaction Processing (OLTP) and E-commerce applications which use databases. This

trend has been motivated by the need to accommodate many users simultaneously accessing the

databases from many different networked locations. This evolution gave birth to an enduring need

for high throughput, good response time, excellent data consistency and concurrency control. This

project evaluates SQL Server 2000 and Oracle 9i with respect to performance and scalability. Initial

performance tests showed that at low to medium workload both database systems behaved in a

similar fashion in terms of throughput, response time and resource utilisation. At high load however

Oracle 9i emerged superior in all cases.

 iii

ACKNOWLEDGEMENT

The road to the completion of this investigation has not been an easy one. I would like to express

my utmost gratitude to anyone who honestly contributed its completion. Although you might not be

explicitly mentioned here, your input was of great significance: Thanks.

Firstly I would like to thank God for the strength he has given me throughout the year (2005). I thank

him for having given me the opportunity to work with all the people I met here at Rhodes who I must

thank for being such an inspiration to me; everyone has been so supportive.

Secondly I would like to thank my brilliant supervisor Mr John Ebden whom I have great respect

for. He was always ready to help and give as much support as he could despite the busy schedule he

had as a lecturer.

This project could not have been possible without the assistance from the technical department

people especially Chris who used to assist me with my Network Access Points which always gave

me problems and for doing software downloads for us.

I also thank other Honours friends that include Christo, Fred, David, Paul and Nhamo and others

not mentioned, their assistance was pivotal to the completion of this project.

I would like also to thank ANDREW MELLON PRESTIGIOUS SCHOLARSHIP for their financial support

which made it possible for me to be here at Rhodes University this year, 2005, thanks very much for

your support.

Lastly I would like to take this opportunity to acknowledge the financial support from Telkom SA,

Business Connexion, Converse SA, Verso Technologies and THRIP through the Telkom Centre of

Excellence at Rhodes University which assisted the department to maintaining and giving us good

service in terms of purchasing software and hardware for us, Thank you.

 iv

TABLE OF CONTENTS
Chapter 1 : Introduction and Project Background Information ..2

1.1 Project Aim ..2

1.2 Project Motivation..2

1.2.1 Why performance and scalability?..3

1.2.2 How database vendors fudge benchmark results ..4

1.3 Overview of the project..6

1.4 Overview of SQL Server 2000...6

1.5 Overview of Oracle 9i..7

1.6 Overview of project chapters ...7

1.7 Chapter Summary ..8

Chapter 2 : Design of the Experiments ..10

2.1 The Performance and Scalability Testing Environment ..10

2.1.1 Machine Configurations..11

2.2 Functional Test/Baseline Design ...13

2.2.1 Baseline Definition ...13

2.2.2 Functional Test Tools..14

2.3 Performance Tests..14

2.3.1 Load Testing ...14

2.3.1.1 Response time ..15

2.3.1.2 Throughput rate..15

2.3.1.3 Resource Utilization...16

2.3.1.4 Load Testing Steps...16

2.3.2 Stress Testing ..19

2.3.2.1 Stress Testing aspects in detail...20

2.3.2.1.2 Race conditions ...20

2.3.2.1.3 Server busy" error messages ...20

2.3.2.1.4 Loss of data during concurrent access of the database ...20

2.3.2.2 Stress Testing Process..21

2.3.2.2.1 Identification of key scenarios ..21

2.3.2.2.2 Load Simulation..21

2.3.2.2.3 UML Description ..22

2.4 Data Capture and Presentation...22

2.4.1 Data capture ..22

2.2.2 Presentation and Analysis of results ...23

 v

2.5 Chapter Summary ..23

Chapter 3 : Functional, Performance and Scalability tests and Results25

3.1 Functional Tests ...25

3.1.1 Client/Controller machine Baseline ..25

3.1.2 SQL Server 2000 Baseline..26

3.1.3 Oracle 9i Baseline ...26

3.1.3 Baselines and Performance Test results comparison ..27

3.2 Performance Tests..27

3.2.1 Load Testing ...28

3.2.1.1 Scenario 1: Testing Server Response Time ...28

3.2.1.2 Scenario 2: Testing Server Throughput Rate...30

3.2.1.3 Scenario 3: Testing Server Resource Utilization ...32

3.2.2 Stress Testing ..38

3.3 Scalability Testing..42

3.4 Chapter Summary ..42

Chapter 4 : Other Factors Affecting Performance and Scalability...44

4.1 Analysis of results..44

4.1.1 Concurrency model ...44

4.1.1.1 Multi-Version Read Consistency ...44

4.1.1.2 Non-Escalating Row-Level Locking ...45

4.1.2 Indexing capabilities ...46

4.1.2.1 Bitmap Indexes and Bitmap Join Indexes..46

4.1.3 Partitioning..47

4.1.3.1 Oracle9i Partitioning Options ..47

4.1.3.2 SQL Server 2000 Partitioning Options ..48

4.1.3.3 Partition Pruning ..49

4.1.3.4 Partition-Wise Joins ...49

4.1.4 Parallel execution of operations..49

4.1.5 Clustering..50

4.1.6 Performance tuning aspects affecting performance and scalability..................................51

4.2 Chapter Summary ..51

Chapter 5 : Conclusion and Possible Project Extensions...53

5.1 Conclusion ...53

5.1.1 Response Time Evaluation..53

5.1.2 Throughput Rate Evaluation ...53

 vi

5.1.3 Resource Utilisation Evaluation..53

5.1.4 Other factors affecting performance and scalability ...54

5.2 Possible Project Extensions ...54

5.2.1 In-depth Scalability Testing..54

5.2.2 Test different Operating Systems / latest DBMS systems ..54

5.2.3 DBMS technical/architectural comparison ...55

References ...56

Appendix A Tutorial 1: Universal Software Tools ...I

Appendix B Tutorial 2: SQL Server 2000 Specific Tools ... II

Appendix C Tutorial 3: Oracle 9i Specific Tools ..IV

Appendix D Tutorial 4: Third party software ...V

Appendix E Metrics ...VI

 vii

LIST OF FIGURES
Figure 1-1 SQL Processing Architecture ...5

Figure 1-2 Diagram shows Market Shares of popular DBMS systems ...7

Figure 2-1 Diagram shows the Performance Testing Environment (Project Overview)...................10

Figure 2-2 UML diagram showing stress testing...22

Figure 3-1 The Graph shows Response Time plotted against the number of users30

Figure 3-2 The Graph shows Throughput Rates plotted against the number of users32

Figure 3-3 The Graph shows % Processor Time plotted against the number of users33

Figure 3-4 The Graph shows % Memory Usage plotted against the number of users34

Figure 3-5 The Graph shows % I/O Subsystem Usage plotted against the number of users.............35

Figure 3-6 The Graph shows Average Resource Utilisation plotted against the number of users....36

Figure 3-7 The Graph shows Statspack screensho t 1 ...37

Figure 3-8 The Graph shows Statspack screenshot 2 ..37

Figure 3-9 The Graph shows % Processor Time Vs User load ...40

Figure 3-10 The Graph shows % Memory Usage Vs User Load...40

Figure 3-11 The Graph shows average resource utilisation plotted against the number of users41

 viii

LIST OF TABLES
Table 2-1 Client Machine configuration properties ..11

Table 2-2 Oracle 9i configuration informantion ...12

Table 2-3 SQL Server 2000 configuration information ...12

Table 2-4 Performance counters collected by all machines [APPENDIX E]18

Table 3-1 Table shows client machine resource consumption statistics as measured

using System Monitor...25

Table 3-2 Table shows SQL Server 2000 resource consumption statistics while at rest as measured

using System Monitor...26

Table 3-3 Table shows Oracle 9i resource consumption statistics as measured by System Monitor26

Table 3-4 Summary of SQL Server 2000 and Oracle 9i Load Testing results (Scenario 1)..............27

Table 3-5 Response Time in seconds for 800 users ...29

Table 3-6 Throughput Rates for 800 users in Records per second..31

Table 3-7 Table shows Oracle 9i average percentage resource utilisation33

Table 3-8 Table shows SQL Server 2000 average percentage resource utilisation33

Table 3-9 Table shows average resource utilisation results for Oracle 9i and SQL Server 200035

Table 3-10 Table shows average resource utilisation for Oracle 9i ...39

Table 3-11 Table shows average resource utilisation for SQL Server 200039

Table 3-12 Table shows average resource utilisation results for Stress testing................................41

Table 4-1 Summary of factors affecting Modern DBMS according to the Microsoft and Oracle 9i

documentation..50

Chapter 1
Introduction and Project Background

Information

Chapter 1 Highlights

- Project Aim

- Motivation

• Why performance and scalability were used for this particular

investigation.

• How database vendors fudge benchmark results.

- Overview of the project

- Overview of SQL Server 2000

- Overview of Oracle 9i

- Summary of Chapters

- Chapter Summary

 2

CHAPTER 1 : Introduction and Project Background

Information

1.1 Project Aim

The primary aim of this project is to investigate and evaluate, through a sequence of performance

and scalability tests, which of the two Database Management Systems (Oracle 9i or SQL Server

2000) performs and scales better than the other under certain specified conditions. For this project

the author only considered performance and scalability of the DBMS, other aspects like database

security, integrity and the recovery system were deliberately ignored and thus treated as constant. In

addition, the output of this evaluation would be valid only for the specified scenarios. This is largely

because comparing performance and scalability of two DBMS is a difficult and complex process

mainly due to the fact that in most cases database performance depends on the experience of the

Database Administrator (DBA) to fine-tune his database and other factors such as network

connectivity and hardware and software configurations at the time of the benchmarking.

The secondary goal of the project would be to determine why the DBMS systems reacted the way

they did during the testing process by performing a technical comparison of the two database

systems. Factors such as indexing, partitioning, parallel execution will be investigated and

compared.

The author aims to learn and appreciate performance benchmarking techniques including the

processes of performance and scalability testing together with their related methods that comprise

functional, load and stress testing. Furthermore the author seeks to gain knowledge of how

relational databases operate as well as understand how they influence provision of services in this

database dependent era.

1.2 Project Motivation

There is a strong debate amongst Database Administrators (DBA) as to which DBMS to choose

under given circumstances mainly because of two main facts:

1. The growing number of open source databases flooding the market.

2. The inclusion of the Internet in database systems especially in Online Transaction

Processing.

The first point has impelled serious completion between commercial and open source database

 3

vendors while the second has resulted in an enduring need for high throughput, good response

times, good data consistency and concurrency to enable quick data access and servicing of requests.

This whole controversy has in the past resulted in database vendors flawing performance

benchmark results as explained under the section “How database vendors fudge benchmark results”

below in a bid to falsely win more clients. This project seeks to assist and insulate Database

Administrators by providing them with a third voice and guideline they can use to evaluate database

performance and scalability before they make their choices since speed has become one of the vital

factors affecting database availability.

According to Hansen [1996, pg 432] the procedure for selecting a DBMS is based on one or a

combination of the following criteria:

• Response Time requirements: Response time could be the critical factor in some cases as I

have already pointed out above for Internet dependent systems. Modern database systems

are web-oriented thus require fast processing of requests since the systems are accessed by

millions of concurrent users. However response time might be trivial for standalone

database systems servicing fewer users.

• Maintaining data consistency: This category involve issues such as integrity, security and

recoverability. Databases like Military DBMS are high security risk systems therefore must

be more secure than Banking DBMS systems which hold integrity and recoverability at

high priority.

• Application requirements: This largely depends on who the user is and what are their

information requirements.

The evaluation performed for this project was based on the first mentioned criterion, since

performance and scalability both are dependent on response time.

1.2.1 Why performance and scalability?

Performance refers to the ability to retrieve information within a reasonable time and at a

reasonable cost [Rob et al, 2002, pg 448].Database performance is influenced by factors such as

communication speeds, number of concurrent users ,resource limitations, system (memory and CPU

type) and database configuration parameters (access path definition ,use of indexes and buffer size –

Oracle 9i).Scalability on the other hand is the system ability to process more workload, with a

proportional increase in system resource usage. In other words, in a scalable system, if you double

the workload then the system should use twice as many system resources. This notion could be

 4

proven other wise due to system conflicts.

Performance and scalability are good factors for evaluating databases since they are the most likely

measures to be used in future for the determination of database availability and reliability. This is

due to the spiralling enlargement of computer systems communicating over the internet. How fast

your system is in terms of servicing requests determines how many concurrent clients are able to

log on to the server and do meaningful work thus making maximum use of the expensive computer

hardware. Other evaluation factors that could have been used include:

• Security

• Integrity

• Backup and the Recovery System

• Ease of use and Cost

1.2.2 How database vendors fudge benchmark results

Database vendors employ numerous tricks to improve the processing speed of their DBMS systems

during benchmarking and thus falsely prove that their database product is superior to that of its

competitors. Almost all their tricks involve caching data and SQL statements in RAM prior to tests.

These tricks are possible due to the fact that database performance is all about disk I/O, and vendors

use large RAM memory regions to preload critical benchmark components to avoid any disk

accesses [Burleson, 2002].

 Some of their tricks include:

• Buffering up data rows - by preloading the data into the RAM buffers, the database can

access information thousands of times faster than a disk I/O access.

• Storing SQL execution plans in RAM - by pre-parsing and pre-computing the execution

plans for the SQL, the database vendors bypass the overhead of parsing and invoking the

SQL optimizer to generate the execution plan [Figure 1.1 below].

• Pre-joining tables - some database products have special pre-aggregation mechanisms to

pre-join tables. For example, Oracle uses Materialized Views that can store the results of

an n-way table join, allowing super-fast data access.

• Using high-speed CPUs and clusters - Database vendors can dramatically improve

benchmark speeds by using special high-speed machines and cluster architectures. For

 5

example SQL server 2000 support federated databases which allow Query broadcasting

leading to high speed SQL operations.

Figure 1.1 below shows the correct execution paths of a query by the two database systems.

Figure 1-1 SQL Processing Architecture

Figure 1.1 shows that under normal circumstances, if the execution path of a SQL statement is

followed correctly, the parser has to invoke the Optimizers (Rule-Based and Cost- Based

Optimizers) before getting to the Row Source Generator. This is a CPU intensive task which uses a

sizable number of CPU cycles thus by bypassing this step Database Vendors save optimiser

execution time and thus compromise the benchmarking process and prove their systems to be faster

than otherwise would be the case. All these tricks reduce disk I/O overhead by accessing all

required information to process requests from RAM thus greatly improving the overall database

performance. Therefore most database benchmark data should be viewed with healthy scepticism

[Burleson, 2002].

This project therefore seeks to produce a third party voice for DBA just to complement vendor

benchmarks.

 6

1.3 Overview of the project

This project is divided into three sections. The first of these sections gives detailed information

about the considerations and methodologies used for the design of experiments. The second is the

implementation of the performance and scalability tests. This section also present results for

analysis and comparison. The last section concentrates on the analysis of obtained by evaluating

some architectural factors that could have influenced performance and scalability tests.

The performance testing section is further divided into three groups comprising of the functional

testing, load testing and stress testing. Functional testing was done prior to any tests in a bid to

create the DBMS regimen (DBMS operational baseline/schedule) which was used to evaluate the

systems in subsequent tests. Having compiled the baseline the next step was to perform the load

testing which was done using common database tools such as System Monitor, SQL Server 2000

Profiler, SQL Server 2000 and Oracle 9i Enterprise Managers and Statspack for Oracle 9i together

with third party software such as Quest Central for data generation, load simulation and data

capture. Results obtained from the load testing were used as input to the stress testing process.

Typically to stress test the systems the author needed to obtain the extreme load at which the

systems performed badly from the load testing phase. Stress testing follows load testing then

scalability testing concludes this section.

The third section investigated the following technical factors: the concurrency model, indexing,

partitioning and parallel execution capabilities.

1.4 Overview of SQL Server 2000

SQL Server 2000 is an enterprise-class proprietary Relational Database Management System from

the Microsoft Corporation. From the Microsoft website it is clamed that SQL Server 2000 exceeds

dependability requirements and provides innovative capabilities that increase business

effectiveness, integrate heterogeneous IT ecosystems, and maximize capital and operating budgets.

It is a database that has been benchmarked for scalability, speed, and performance providing core

support for Extensible Mark-up Language (XML) and Internet queries.

This short description from Microsoft shows that SQL Server 2000 is definitely one of the de facto

databases in the market today which commands a reasonable percentage of the market share as

illustrated in figure 1-2 below. Their dominancy in the market place is one of the reasons why SQL

Server 2000 (78% usage) and Oracle 9i (55% usage) were selected for this evaluation.

 7

Figure 1-2 Diagram shows Market Shares for popular DBMS systems

Source: SD Times http://www.mysql.com/why-mysql/marketshare/

These percentage figures were calculated from the number of customers each database polled in a

usage survey conducted in July 2004 by SD Times.

1.5 Overview of Oracle 9i

If Microsoft SQL Server 2000 is one of the biggest databases on the market today then Oracle 9i

from the Oracle Corporation is its biggest competitor [Figure 1-2 illustrates this]. Oracle 9i is also a

proprietary Relational Database Management System just like SQL Server 2000. According to

Oracle database experts Oracle 9i is the really enterprise solution given the functionality it offers.

Some of the technical aspects it provides include database performance and scalability

enhancements, ease of management, security and availability. Additional features originally specific

to Windows 2000 integration and application areas comprise of Internet content management, E-

commerce integration, packaged applications and business Intelligence. Its growing market

dominancy influenced its selection for this evaluation.

1.6 Overview of project chapters

Chapter 2:-This chapter gives the experiment design issues in detail. It gives the machine and

software configuration information used to perform the tests. Details of the Functional test;

Performance and Scalability experiment design aspects are also explained.

 8

Chapter 3: - This chapter gives the implementation details of the tests and presents the results on

various line graphs which include: Throughput Vs Number of Users, Response Time Vs Number

of Users and Resource Usage Vs User Load.

Chapter 4: - This chapter discusses and analyses results from the preceding chapter and presents a

technical comparison of the two systems in which the author investigated factors most likely to

have caused the DBMS to behave the way they did in the tests.

Chapter 5: -This chapter concludes the project by giving the conclusion and stating the possible

future research work in relation to this project.

1.7 Chapter Summary

This chapter is devoted to introducing the project and giving background information for the reader.

The aim of the project is given in the first few paragraphs before a detailed explanation of why this

project was chosen. Specifically the motivation expands on why “performance and scalability” were

used for this investigation including a brief list of other aspects that could have been used for this

experiment. Mentioned factors include security, integrity, backup and recovery System. , Ease of

use and the Cost of operating and maintaining these DBMS systems. A brief overview of the

project, Oracle 9i, SQL Server 2000 and chapters is given just to provide the user with a quick

reference and starting point. Chapter 2 explains in detail the design issues used for the testing

experiments.

Chapter 2
Design of the Experiments

Chapter Highlights
- Use Case Diagram and Descriptions

- The Performance and Scalability Testing Environment

- Functional Test/Baseline Test

- Performance Tests

• Load Testing

• Stress Testing

- Scalability Testing

- Data Capture and Presentation

 10

CHAPTER 2 : Design of the Experiments
This chapter discusses the considerations used for the design of experiments in order to ensure that

measurements were correctly taken. It starts by defining the testing environment and then presents

details of the performance and scalability testing processes.

2.1 The Performance and Scalability Testing Environment

The testing environment comprised of three machines as depicted by Figure 2-1 below.

Figure 2-1 Diagram shows the Performance Testing Environment (Project Overview)

 11

The client machine was used as the controller of all experiments. This machine was the focal point

from which both servers were remotely managed, monitored and controlled. Load and data

simulation was remotely performed from the client machine during the testing process using TPC-

C1 benchmark embedded in Quest Central software. In addition this machine was also used for

capturing activity data on the servers for presentation and analysis. All three machines, the

controller machine, Oracle 9i and SQL Server 2000 servers were connected to each other through a

100 megabytes connection to the Rhodes LAN in the Computer Science department [Figure 2-1].

The kind of set up shown in Figure 2-1 meant that performance test results were to be influenced by

network activity. To counter this effect the author made sure that experiments were performed

during periods of low network activity, for instance at night when there is less network traffic.

Moreover the measured results which included a network latency component were further resolved

by subtracting the network delay component to get the correct performance measure which

excluded network activity. Moreover, remote monitoring of performance and scalability tests was

not done for all scenarios in which case network sensitivity was not an issue since testing was done

on the actual DBMS system.

2.1.1 Machine Configurations

The following series of tables show machine configurations used for each machine during the

testing process.

Machine
Name

Machine/CPU Memory Network Disk
Space

Software

Client
Machine
(Hons11)

Intel(R)
Pentium(R) 4
CPU 3 GHz * 2
Processors

1 GB of
RAM

10 Mb
Ethernet
Connection

40 GB Microsoft Windows XP
Professional, Version
2002, Service Pack 2

Table 2-1 Client Machine configuration properties

Hons11 – is the name of the controller machine.

Ora1 – (Table 2-2) is the of the Oracle 9i server.
SS1 – (Table 2-3) is the name of the SQL Server 2000 server.

1 TPC-C stands for .Transaction Processing Performance Council Version C for Online processing

[Transaction Processing Performance Council, 2005].

 12

Machine
Name

Machine/CPU Memory Network Disk
Space

Software

Oracle
9i
(ora1)

Intel(R)
Pentium(R) 4
CPU 2.80 GHz
* 2 Processors

1 GB of
RAM

100 Mb
Ethernet
Connection

100 GB
hard
Drive

Microsoft windows Server
2003. Standard Edition.
Service Pack 1

Table 2-2 Oracle 9i configuration informantion

Machine
Name

Machine/CPU Memory Network Disk
Space

Software

SQL
Server
2000
(ss1)

Intel(R)
Pentium(R) 4
CPU 2.80 GHz
* 2 Processors

1 GB of
RAM

100 Mb
Ethernet
Connection

35 GB
hard
Drive

Microsoft windows
Server 2003. Standard
Edition. Service Pack 1.

Table 2-3 SQL Server 2000 configuration information

Oracle 9i documentation outlines best practices that should be followed when doing preparations

for benchmarking and in accordance with this project I list below a few of the guidelines which I

considered prior to performance testing:

• You should test with realistic data volumes and distributions: All testing must be done

with fully populated tables. The test database should contain data representative of the

production system in terms of data volume and cardinality between tables. All the

production indexes should be built and the schema (for Oracle 9i) statistics should be

populated correctly.

• Use the correct optimizer mode: All testing should be performed with the optimizer

mode that will be used in production. Oracle recommends the cost-based optimizer which

by default was the one used for this project.

• Test a single user performance: A single user on an idle or lightly used system should be

tested for acceptable performance (this criterion was fulfilled during Functional testing).

If a single user cannot get acceptable performance under ideal conditions, it is impossible

there will be good performance under multiple users where resources are shared.

 13

• Obtain and document plans for all SQL statements: Obtain an execution plan for each

SQL statement, and some metrics should be obtained for at least one execution of the

statement. This process should be used to validate that a good execution plan is being

obtained by the optimizer and the relative cost of the SQL statement is understood in

terms of CPU time and physical I/Os. This process assists in identifying the heavy use

transactions that will require the most tuning and performance work.

• Attempt multi-user testing: This process is difficult to perform accurately, because user

workload and profiles might not be fully quantified. However, transactions performing

DML statements should be tested to ensure that there are no locking conflicts or

serialization problems. There are a lot of free software in the market today that can do

load simulation for you. For this project the author used Benchmark Factory included in

Quest Central for Oracle and SQL Server.

• Test with the correct hardware configuration: It is important to test with a configuration

as close to the production system as possible. This is particularly important with respect

to network latencies, I/O sub-system bandwidth and processor type and speed. A failure

to do this could result in an incorrect analysis of potential performance problems [Tables

2-1 through Table 2-3 show configurations used for this project].

• Lastly measure steady state performance: When benchmarking, it is important to

measure the performance under steady state conditions. Each benchmark run should have

a ramp-up phase, where users are connected to the application and gradually start

performing work on the application. This process allows for frequently cached data to be

initialized into the cache and single execution operations, such as parsing, to be

completed prior to the steady state condition. Likewise, at the end of a benchmark run,

there should be a ramp-down period, where resources are freed from the system and users

cease work and disconnect.

These guidelines were strictly followed throughout the tests from the preparation phase to the

completion of tests.

2.2 Functional Test/Baseline Design

2.2.1 Baseline Definition

A baseline is simply "a set of measurements that tell you how a server behaves while at rest". In

more practical terms, a baseline is a complete record of a system performance taken immediately

 14

after the server becomes operational, but before the server is put under any measurable load. This

baseline is taken in a controlled environment, so that external activities (network sensitivity for

instance) do not impact the baseline measurements in a bid to collect accurate results. All

significant features of system performance are measured against predefined metrics2 and are later

recorded and analyzed [Kevin Kline, 2005].

Functional testing goals include:

• Telling you all about the performance of a server under normal conditions for later

comparison with performance and scalability test results.

• To help you document and understand as many as possible background processes running

on the server which assists you in recognising different processes during testing. A good

example includes separation of performance test processes from server processes.

• Assist you in building filters to catch “do not respond” situations before performance testing

starts. This allows you to respond to problems that need to be rectified before stressing your

system.

2.2.2 Functional Test Tools

For this process the author used System Monitor to capture statistical information since it allows

you to view real-time server activity and further save log statistics for future analysis. However

Quest Spotlight for both SQL Server 2000 and Oracle 9i was used for advanced analysis since it

provides a better graphical interface which offers easy real-time analysis but does not enable you to

save statistics for later analysis like System Monitor.

2.3 Performance Tests

The performance and scalability testing methodology and definitions used in this project were taken

from MSDN library [SQL Server Developer Centre, 2005]

2.3.1 Load Testing

Load testing allows you to verify that your database can meet vendor desired performance

objectives which are specified in a service level agreement of the product [Meier et al, 1994]. RPM

Solutions Pty Ltd (2004) defines load testing as tests that determine the system behaviour under

various workloads which include normal and critical loads. Its main objective is to determine how

2 Predefined metrics are simply performance objectives released with the product as certification (User Agreement)
information. For example CPU utilisation for Microsoft SQL Server 2000 should not exceed 80% under any
circumstances. Exceeding this threshold is a violation of certification agreement, in other words it can not be guaranteed
that the system will behave as expected at that level.

 15

system components react as the workload is gradually increased. The latter definition is the one that

the author used for load testing.

Prior to any performance testing, performance objectives, or aims need to be defined and known.

However since this project seeks to compare two systems as an independent voice, tests were

conducted in an exploratory manner. Load testing was performed to compare the systems in three

areas which include response time, throughput rates and resource utilization (CPU, network

latency, disk I/O subsystem and memory usage). These were chosen because response time and

throughput objectives affect database performance from the user perspective while resource

utilization and workload affect database scalability.

2.3.1.1 Response time

Response time, or latency, is defined as the amount of time that is required by the server to respond

to a request3. It can be measured from either the server side or the client side, although these

approaches measure slightly different aspects of response time [Meier et al, 1994].

At the server side (Oracle 9i or SQL server 2000), latency is measured as the time it takes the server

to finish executing the request. This is essentially the time that elapses between receiving the

request and sending the response and does not include any network latency that may occur during

the test. This is the setup which was used to evaluate resource utilisation by the systems.

Latency measured at the client side is the time that elapses between sending a request, and receiving

the response. This includes request queue time, execution time and any network latency that may

occur. There are two common measurements used with client side latency: “Time to First Byte”

(TTFB), which is measured as the time between sending the request and receiving the first byte of

the response, and “Time to last byte” (TTLB), which is measured as the time between sending the

request and receiving the last byte of the response [Meier et al, 1994]. This kind of setup was used

to evaluate the systems with respect to throughput and response time.

2.3.1.2 Throughput rate

The number of requests that the database server can handle per unit of time is known as throughput.

This varies depending on how many users are currently and concurrently using the server, and what

each user is currently doing. It is usually measured as requests per second, but transactions per

second or orders per second can also be used [Meier et al, 1994]. For this project I use requests per

second.

3 Requests in this perspective are mainly PL/SQL query send from the client machine to the server

 16

2.3.1.3 Resource Utilization

Server and network resource costs must be monitored in order to ensure that the servers do not

consume all of the available resources. The primary resources to be monitored as stated above are:

CPU usage, memory utilisation, disk I/O subsystem and network I/O latency. The resource cost of

each operation can be identified, indicating which transactions use most of the resources and where

the database administrators (DBA) need to focus their attention if over-utilisation occurs. The

required resources for a given workload can also be determined, indicating whether the server has

enough resources for the anticipated number of users [Meier et al, 1994]. Resource utilisation was

especially important for stress testing which involved staving the system for a resource for example

by submitting requests to a server while playing a movie. This means the request will have to

compete with the movie for CPU cycle which as the load increases will eventually choke the

system.

2.3.1.4 Load Testing Steps

Load testing is used to determine how the application will respond with various user loads. The

number of users being simulated is gradually increased until one of the stated objectives is violated.

For example, you may have stated as one of your objectives that the CPU usage of the server may

not exceed 75%. When load testing this server, the number of users being simulated will be

increased until the server’s CPU usage is greater than 75%, assuming that no other objective has

been violated before this occurs. By doing this, the application’s maximum operation capacity can

be determined, as well as any bottlenecks that may be limiting this capacity [Meier et al, 1994].

Load testing process consists of six steps:

i. Identification of key scenarios: key scenarios are those scenarios that are critical for

performance.

ii. Identification of workload: the total application load is distributed among the scenarios

identified in the first step.

iii. Identification of metrics: This is where the various metrics that will be collected are

identified.

iv. Create test cases: The various test cases are identified and created.

v. Simulate load: The various loads are simulated using a load testing tool (Quest Central

software), performance metrics are also collected.

vi. Analyse results: Analyse the data collected during load testing.

 17

2.3.1.4.1 Identify key scenarios

A scenario is a set of actions that the client is likely to perform once he or she is logged on to the

database. For this project the author chose those user paths which either have significant

performance costs /impacts, or are resource intensive.

Scenarios which were used for this project include:

• Querying the database for certain information.

• Editing and updating a record of a database.

• Deleting a record(s) from the database.

2.3.1.4.2 Workload modelling

Workload is defined as the number of concurrent or simultaneous users accessing the server.

Concurrent users are users that send request to the database at exactly the same time; they basically

fire requests at the same time while simultaneous users maintain active connections to the database

although they might not be doing meaningful work. Simultaneous users simulate more realistic

production traffic, as users do not usually start using the system at exactly the same time. However,

concurrent users are more useful when stress testing the server as used in this project

Performance characteristics or workload for each of the above listed scenario should be identified.

To do this, the following factors were considered:

• The number of users for each scenario.

• The rate of requests: the number of requests received from all simultaneous and concurrent

users for a certain period of time.

• The pattern of requests: the rate of requests that individual functions of the servers

experienced.

After creating a workload model, begin load testing with a total number of users distributed against

your user profile, and then start to increment the load for each test cycle. Continue to increase the

load, and record the behaviour until you reach the threshold for the resources identified in your

performance objectives.

2.3.1.4.3 Identify Metrics

Metrics can help determine if there are any bottlenecks in the database, and whether the application

is achieving its objectives. Although the required metrics vary depending on the database

operations, there are a few that should be collected for every test.

Various system metrics must be monitored with respect to the client machine, which is the machine

 18

running the load test software4. The following table shows important counters measured for both the

client machine and individual servers.

Object Performance
Counter

Description

Processor % Processor
Time/_Total

% Processor Time is the percentage of elapsed time that the processor
spends to execute a non-Idle thread. It is calculated by measuring the
duration of the idle thread is active in the sample interval, and
subtracting that time from interval duration. This counter is the primary
indicator of processor activity, and displays the average percentage of
busy time observed during the sample interval. It is calculated by
monitoring the time that the service is inactive and subtracting that value
from 100%.

Memory Available Bytes

Page Reads/sec

Available Bytes is the amount of physical memory, in bytes,
immediately available for allocation to a process or for system use. It is
equal to the sum of memory assigned to the standby (cached), free and
zero page lists.

Page Reads/sec is the rate at which the disk was read to resolve hard
page faults. It shows the number of reads operations, without regard to
the number of pages retrieved in each operation. Hard page faults occur
when a process references a page in virtual memory that is not in
working set or elsewhere in physical memory, and must be retrieved
from disk. This counter is a primary indicator of the kinds of faults that
cause system-wide delays. It includes read operations to satisfy faults in
the file system cache (usually requested by applications) and in non-
cached mapped memory files. Compare the value of Memory\\Pages
Reads/sec to the value of Memory\\Pages Input/sec to determine the
average number of pages read during each operation.

Network
Interface

Bytes Total/sec Bytes Total/sec is the rate at which bytes are sent and received over each
network adapter, including framing characters. Network Interface\\Bytes
Received/sec is a sum of Network Interface\\Bytes Received/sec and
Network Interface\\Bytes Sent/sec.

Disk I/O system % Disk Time

Avg. Disk
Bytes/Transfer

% Disk Time is the percentage of elapsed time that the selected disk
drive was busy servicing read or writes requests.

Avg. Disk Bytes/Transfer is the average number of bytes transferred to
or from the disk during write or read operations.

Table 2-4 Performance counters collected by all machines [APPENDIX E]

These counters indicate how well the client machine and the servers are performing and identify

whether any bottlenecks are occurring, which may affect the final results of the tests. Appendix E

gives a full list of all metrics used in this project.

2.3.1.4.4 Test Cases

A Test plan, consisting of many test cases, needs to be documented for each workload pattern

identified in the “Identify Workload” step above. Test cases list information about each test to be

4 This client machine was my PC running Quest Central, Spotlight and Benchmark factory. It was the experiment
controller, this is where all load simulation, data capture and analysis was done for some tests.

 19

run. They contain details about the number of users in the test, the duration of the test, any think

time included in the test and user profiles of the test. These profiles describe the distribution of the

users across the various functions of the system under test. Users are distributed according to the

workload identified in the “Workload modelling” step discussed above.

Also listed here will be the expected results of each test case, which are derived from the stated

objectives of the application. Expected results for the following must be stated: throughput, requests

executing, average response time, and resource utilisation thresholds.

2.3.1.4.5 Load and data simulation

Using load testing tools such as Benchmark Factory and Quest Central software, tests were created

for the identified scenarios and ran against the servers at the specified workload, collecting the

required metrics for each test performed. The user load should then be incrementally increased for

each test until one of the stated objectives is violated or until the system reaches its breaking point

which could be identified by “server busy” massages or abnormal CPU usage.

2.3.1.4.6 Analyse results

The capture and analysis of results is any integral part of the benchmarking process testing thus a

separate section below was solely dedicated to detailing how the author compiled data for analysis.

See the section entitled “Data capture and presentation”.

2.3.2 Stress Testing

Stress testing is a kind of performance testing where the server is subjected to very high loads well

over its threshold, while denying it the resources required for processing that load. A good example

used for this research work was removing the random think time introduced in simulating

simultaneous users from the load testing. This meant that the servers had to deal with concurrent

users who fired requests to the servers at the same time. This exceedingly overloaded the server

since no resource additions were made to help the system. All users had to compete for system

resources, for instance CPU cycles and memory, which heavily impacted system scalability and

performance. Pushing the system way over its capacity in stress testing unearthed numerous bugs

which the author monitored to gauge server breaking point which was used for scalability

comparison in terms of how many users were able to do meaningful work before the system failed.

Some of the system bugs monitored for this exercise included:

• Synchronisation issues between request (SQL Server 2000 – shared locks)

• Race conditions

• “Server busy” error messages

 20

• Loss of data during concurrent access of the databases

2.3.2.1 Stress Testing aspects in detail

2.3.2.1.1 Synchronisation issues

Synchronisation issues are mostly a result of database applications/processes failing to

communicate correctly due to errors resulting in applications/processes crashing. SQL Server

crashed due to shared-locks contention between users.

2.3.2.1.2 Race conditions

Race condition occurs when a couple of processes that were in contention for a common data

structure, mainly through a software coding error (under pressure at high load) in one of the

database application processes, and both are able to get write access to a data structure at the same

time. This corruption leads to the involved processes getting into an infinite loop and spinning for

ever. Since database tables are inherently flat files they are prone to corruption. There is no inherent

locking mechanism that detects when a file is being used or modified, and so this has to be done on

the script level. Even if care is taken to lock and unlock the file on each access, a busy script (during

multithreaded access and modification by many simulated users) can cause a "race condition" and it

is possible for a file to be wiped clean by two or more processes that are fighting for the lock; the

timing of file locks becomes more and more important as the user numbers increase This problem

was most seen on SQL Server 2000.

2.3.2.1.3 Server busy" error messages

A memory (or resource) leak in databases occurs when the database processes lose the ability to

free the memory they consume. Repeated memory leaks cause the memory usage of a process to

escalate without bounds. Memory leaks are a serious problem, if the processes eat up all the

memory available finally resulting in the machine stopping and not responding to instruction.

“Server busy” error messages were used to identify this phenomenon.

2.3.2.1.4 Loss of data during concurrent access of the database

All the above problems can result in data losses when the database applications/processes fail to

communicate correctly due to synchronisation errors during race conditions. Data can be lost during

INSERT and MODIFY operations or when the data is being stored back to the database after

modifications.

 21

2.3.2.2 Stress Testing Process

The stress testing process basically followed the same six steps listed for load testing but with

different content for some of them. Below the author outlines those steps that were distinctly

different in content from those for load testing otherwise all those similar were not repeated here.

For stress testing to be feasible, instead of having a list of possible scenarios one needs to select one

particular case to stress test. It is also possible to have a combination of scenarios for which you

have performance objectives. The stress testing process requires you to obtain peak load capacity

statistics from the load testing process which will serve as input.

Another important point to recognise about stress testing is that to make the process effective, the

tests were carried out on the systems which already had resource intensive processes running on

them. A movie was played while testing. What this means is that the stress testing process had to

compete with other running processes for resources thus leading to contention and eventually

starvation. It is at this stage that system bugs identified above were revealed.

2.3.2.2.1 Identification of key scenarios

This step involves selecting the scenario or multiple scenarios that you need to stress test for

identifying a particular potential performance issue based on the following criterion.

• Scenarios could be selected based on how critical they are to overall server performance.

• Important scenarios are those that are most likely to affect performance. Such operations

include those that perform intensive locking and synchronization, long transactions and

disk-intensive I/O operations.

One such scenario that satisfies the above guidelines which the author used involved a scenario that

queries the database and scans all data table to return large amounts of data. This case involves a

lost of disk I/O operations, intensive use of memory thus is most likely to impact total system

performance.

2.3.2.2.2 Load Simulation

Load simulation for stress testing was performed using threaded scripts written in C sharp.

Threaded user requests were fired at the same time from a webpage on the controller machine to the

databases. The Unified Modelling Language (UML) Use Case diagram below shows the stress

testing process.

 22

Figure 2-2 UML diagram showing stress testing

2.3.2.2.3 UML Description

Figure 2-2 shows a UML model of the stress testing process. On the diagram there are two systems

operating. There is the actor (called Hons11) which is the controller machine and the system being

modelled, the actual server which could is either SQL Server 2000 or Oracle 9i. During stress

testing, threads were initiated from the client machine while on the DBMS system thread execution

and monitoring using the Profiler (SQL Server 2000) and Statspack (Oracle 9i) were the major

processes. Another important sever process was report generation which involved drawing tables

and graphs.

2.4 Data Capture and Presentation

2.4.1 Data capture

Data capture for both load and stress testing was mostly done by System Monitor since besides

 23

allowing the author to keep track of real-time server activity it also enabled him to capture and save

data onto log files for later scrutiny. Third party software used for this process basically included

Benchmark Factory, Quest Central and Spotlight. Other tools which provided statistics for SQL

Server 2000 included the Query Analyzer and the Profiler. SQL Query Analyzer has a powerful

functionality for displaying execution plans used by the SQL Optimiser when executing the queries.

Another of its strengthens including the Show Server Trace, Manage Statistics and Show Client

Statistics services which I used to gather various statistical information for analysis. Oracle 9i

provides a powerful Enterprise Manager which I extensively used in my project5 .

2.2.2 Presentation and Analysis of results

 A number of tools were used to present recorded data from performance tests. Microsoft Excel was

used for drawing most graphs otherwise other graphs were taken from tools like Quest Spotlight.

Graphs were sketched for:

• Throughput versus user load.

• Response Time versus user load.

• Resource Utilization versus user load.

Resource utilization comprised CPU, network I/O, disk I/O, and memory utilisation.

2.5 Chapter Summary

This chapter gives detailed information about the considerations and design of experiments used in

this research work. The system described here included three machines, the client machine and two

servers (SQL Server 2000 and Oracle 9i). It starts by the performance and scalability testing

environment. Functional, performance and scalability tests considerations are also discussed. A

UML Use Case diagram was used to explain the functionality of the system used to perform stress

testing. Lastly, this chapter gives information about data capture and presentation issues. The next

chapter gives the implementation details of the tests as well as the associated results.

5 Refer to Appendix A-D for more information on the use of various tools used for this process.

Chapter 3
Functional, Performance and Scalability

Tests and Results

Chapter Highlights
- Functional Tests

- Performance Tests

• Load Testing

• Stress Testing

 - Scalability Tests

 - Chapter summary

 25

Chapter 3 : Functional, Performance and Scalability tests and

Results
This chapter gives details of the implementation of the performance and scalability tests introduced

in the design phase of chapter 2. It starts by the functional testing process and then the performance

tests. The final section looks at the implementation of the scalability tests. Results for each section

are also stated.

3.1 Functional Tests

Functional testing was performed using System Monitor and Quest Spotlight. The following tables

show base processes and their related resource utilisation statistical information.

3.1.1 Client/Controller machine Baseline

Figure 3-1 is the baseline for the client machine. It shows resource usage percentages for particular

objects (processor, memory, disk I/O and the network interface) for the client machine before any

tests were taken. Also stated are system and user processes which were running on the machine

prior to testing .Only system processes with high resource utilisation were included in this baseline.

Controller Machine Resources
Type of Resource Metrics Ave. Values measured

Processor % Processor Time 46.032

Memory % Memory Utilisation 0.100

Physical Disk % Disk Time 0.767

Network Interface Bytes Received/sec 760.474

 Bytes Sent/sec 61.816
 Current Bandwidth 100000000

Table 3-1 Table shows client machine resource consumption statistics as measured
using System Monitor

Base processes which contributed to the resource usage figures displayed in table 3-1:

Sqlserver.exe –Memory Usage 10,195k Issa.exe- Memory Usage 10.325k
System Idle Process-Memory Usage 56k services.exe-Memory Usage 7.064k
mdm.exe –Memory Usage 2.864k winlogon.exe-Memory Usage 4.0651k
SavRoam.exe –Memory Usage 5.548k smss.exe –Memory Usage 408k
svchost.exe -Memory Usage 27.644k cidaemon.exe –Memory Usage 223k
savRoam.exe –Memory Usage 3.548k

 26

3.1.2 SQL Server 2000 Baseline

Table 3-2 is the baseline list of objects taken for SQL Server 2000. This baseline information was

used for identifying and separating server base processes from processes resulting from testing.

Object Counter
Average Measured Values
 (01:00 to 03:00 , Sunday 16/10/05)

Memory % Memory Usage 10.2
Processor % Processor Time 4.481
Physical Disk Avg. Disk Bytes/Transfer 16389.000
Logical Disk % Disk Time 6.123
Network Interface Bytes Received/sec 0.000

Table 3-2 Table shows SQL Server 2000 resource consumption statistics while at rest as measured
using System Monitor

Baseline processes include:
System Idle Process-Memory Usage 56k java.exe –Memory Usage 20.965k
services.exe -Memory Usage 7.064k logons –Memory Usage 1.254k
mdm.exe –Memory Usage 2.864k winlogon.exe-Memory Usage 4.0651k
SavRoam.exe –Memory Usage 5.548k smss.exe –Memory Usage 408k
svchost.exe -Memory Usage 3.644k cidaemon.exe –Memory Usage 223k
savRoam.exe –Memory Usage 3.548k
ssqService.exe –Memory Usage 10.576k
quest_launcher.exe –Memory Usage 1.906k

3.1.3 Oracle 9i Baseline

Table 3-3 below is the Oracle 9i baseline. Like the previous regimen it gives Oracle 9i base

processes and their related resource consumption values which were subtracted from the

performance test results to get only performance testing results.

Object Counter
Average Measured Values
 (01:00 to 03:00 , Sunday 16/10/05)

Memory % Memory Usage 8.10
Processor % Processor Time 13.001
Physical Disk Avg. Disk Bytes/Transfer 7394.000
Logical Disk % Disk Time 1.913
Network Interface Bytes Received/sec 1499.177

Table 3-3 Table shows Oracle 9i resource consumption statistics as measured by System Monitor

Oracle 9i system processes included:
Sqlserver.exe –Memory Usage 21,023k Issa.exe- Memory Usage 10.325k
System Idle Process-Memory Usage 99k services.exe-Memory Usage 21.10k
System –Memory Usage 232k winlogon.exe-Memory Usage 4.8281k
SavRoam.exe –Memory Usage 5.854k smss.exe –Memory Usage 408k

 27

svchost.exe -Memory Usage 27.644k cidaemon.exe –Memory Usage 54k
dbtools.exe –Memory Usage 5.296k agntsvc.exe – Memory Usage 2.456k
oracle.exe –Memory Usage 139.183k ONRSD.EXE –Memory Usage 5.085k

3.1.3 Baselines and Performance Test results comparison

Table 3-1 through 3-3 above presented baselines for the three machines used in the tests as depicted

by figure 2-1. Table 3-4 below shows a summary of some performance load testing results which

illustrate how resource consumption changed for each machine with increasing load (number of

users) as compared to the respective baselines.

SQL Server 2000
Resource Utilisation

Users 80 160 240 320 400 480 560 640 720 800

% Processor Time Used 5.7 8 20 43 71 73 79.1 85 88 91
% Memory Usage 22.1 18.7 18.1 21.2 23.2 27.04 33.9 41.9 45.3 52
% I/O Usage (Avg. Disk
Bytes/Transfer) 8.1 12.3 15.1 17.4 15.6 20.9 25.4 28.3 29 33.2

Oracle 9i Resource
Utilisation

Users 80 160 240 320 400 480 560 640 720 800
% Processor Time Used 11 15 18 43 47 49 55 60 71 76

% Memory Usage 18 19.6 19.8 18 19.3 19.7 19.8 19.06 19.35 19.7
% I/O Usage (Avg. Disk
Bytes/Transfer) 9 11 14.9 16 17.3 21.5 25.6 27.5 32.3 28.3

Table 3-4 Summary of SQL Server 2000 and Oracle 9i Load Testing results (Scenario 1)

A comparison of the baselines with the above figures one can easily see the pattern in resource

utilisation for each database making the result analysis process reliable and potentially simple. For

instance one can analyses the % Processor time for SQL Server 2000 by noting that initially in the

baseline the server used 4.481 % of the CPU cycles but the moment it was loaded with 80 users

CPU percentage usage escalated to 5,7 % thus showing the effect of the load.

3.2 Performance Tests

This section presents performance tests which include load and stress testing. Each process was

performed for three distinct areas that include response time, throughput rates and resource

utilisation. For load testing three scenarios were used to investigate the three aspects mentioned

above while for stress testing one scenario was used to evaluate all three areas according to the

specifications in chapter 2 for loading and stressing the system.

 28

3.2.1 Load Testing

Chapter 2 identified the following load testing steps:

i. Identification of key scenarios

ii. Workload modelling

iii. Identification of metrics

iv. Creation of test cases

v. Load and data simulation

vi. Data collection and analysis

3.2.1.1 Scenario 1: Testing Server Response Time

Key Scenario Used:

Scenario 1 was used to evaluate how the DBMS behave with respect to response time as the user

load increases. Response time was measured as the total time the server took to execute and return

complete results of a query weighted by the frequency of each sequence in the mix6.

The scenario used included updating/editing the database tables according to the workload model

specified below. Basically the query included operations such as inserting and deleting data from

the database tables.

Definition of the workload model:

To emulate real production traffic a small percentage of concurrent users was used in the testing

process. A minimum of 800 users were used for this test of which 80% of them represented

simultaneous users while the remaining 20 % were concurrent users. Moreover 50% of the users

executed an insertion query while the other 50% performed deletions to produce a 32% percentage

mix.

Identification of metrics:

A combination of metrics were used for this process which include among others Transactions/sec,

% Processor Time/_Total, Page Reads/sec Available Bytes, Lock Requests/sec, Average Wait

Time (ms) and Full Scans/sec [APPENDIX E gives the a full list of metric definitions].

6 Scenario mix is basically the ratio of concurrent users to simultaneous users in the workload profile weighted with the
available actions among which the load is distributed, for instance Insertion and Deletion user actions. Percentage mix
calculation for Scenario 1: 20/100 *80/100 * 50/100 * 50/100 = 32%

 29

Test Case Description:

• 800 users were used for the test.

• A random Think Time7 in the script configuration was specified to be between 1 and 10

seconds.

• Keying Time also ranged from 1 to 10seconds. This time interval creates a delay before a

transaction executes, simulating activities such as data entry that a user performs before

executing the transaction.

• Inter-arrival Time was also set to be between 1 and 10 seconds .Inter-arrival Time is the rate

at which transactions are arriving to a server.

• Tests run for 2 hours each.

Load and Data simulation and Data collection and analysis:

Load, data simulation and data collection and analysis steps were combined to one phase since they

are performed simultaneously. Table 3-5 below shows response time figures captured using a

combination of System Monitor, Quest Central and Spotlight.

Response Time in seconds
Users Oracle9i SQL Server 2000

40 18.672 18.272
80 16.575 16.784

120 16.788 16.965
160 16.909 16.937
200 16.838 17.436
240 16.986 18.914
280 16.937 21.583
320 16.941 22.283
360 17.129 25.417
400 17.356 26.798
440 17.197 30.857
480 17.515 30.796
520 17.717 36.684
560 17.973 41.589
600 17.937 46.567
640 17.481 52.601
680 18.809 57.681
720 19.447 62.618
760 19.44 63.251
800 19.643 66.499

Table 3-5 Response Time in seconds for 800 users

7 Random think time is the time spent by the user between two consecutive requests. This is the time when a user thinks
of what to search for in the database

 30

Figure 3-1 below shows a graph plotted using response time results in Table 3-5 above. The graph

shows that at lower user load from 1 to about 200 users, response time for both servers was

relatively the same. As the user numbers increased, exciting more pressure on the DBMS the

response time started increasing steadily for SQL server 2000 while Oracle 9i remained with a

relatively flat curve with about 16 – 17 seconds. At extreme load response time for SQL server

2000 increased sharply to a maximum of 67 seconds for 800 users. Oracle 9i response time

remained fairly low with a maximum of 19 seconds for 800 users. Generally, response time results

show that Oracle 9i is much faster than SQL server 2000 at extreme load while at low load both

DBMS perform in a similar way.

Response Time Vs Userload

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800

Number of Users

R
es

po
ns

e
Ti

m
e

(s
ec

)

Oracle 9i SQL Server 2000

Figure 3-1 The Graph shows Response Time plotted against the number of users

3.2.1.2 Scenario 2: Testing Server Throughput Rate

Scenario Description:

The scenario used for this investigation was simply searching the database using a query which

returned a large set of data items based on the specified criterion. The servers had to make full scans

of all database tables before returning a full list of the records in order.

Definition of the workload model, Identification of metrics and Test Case Definition steps were

 31

omitted here because they are the same with those of the first scenario.

Load and Data simulation and Data collection and analysis:

Table 3-6 below shows throughput rates measured in request per second for Oracle 9i and SQL

Server 2000.

Throughput Rates (records per second)

Users Oracle9i SQL Server 2000
40 30 40.7
80 4.021 42.5

120 45.647 44.347
160 92.812 85.7
200 98.717 96.724
240 141.706 127.7
280 147.4 143.076
320 193.7 175.2
360 196.653 178.406
400 230 202.4
440 244.341 196.676
480 273.9 217.5
520 290.318 205.9
560 317.6 212.7
600 336.418 206.153
640 354.4 219.9
680 381.671 202.335
720 395.7 219.1
760 423.929 203.318
800 440.201 211.8

Table 3-6 Throughput Rates for 800 users in Records per second

Figure 3-2 below is a graph showing throughput rates in records per second for both DBMS

engines. At low to medium load both systems show rapid increases in the number of records

returned. Initially between 1 and 120 users Oracle 9i returns fewer records than SQL Server 2000

(with 40 ,80 and 120 users, Oracle 9i returned 30, 4, and 45 records per second as compared to

40,42,44 records per second for SQL Server 2000). There are many explanations for this

phenomenon but one possibility is that Oracle 9i does more initialisations of other involved

components than SQL Server 2000. This means therefore that while Oracle 9i was busy initialising

its components SQL Server 2000 was ready to service requests. However after that phase Oracle 9i

throughput rate increased higher than that of SQL Server 2000 for the period between low to

medium load (200 and 400 users). The graph for SQL Server 2000 flattened from 400 to 800 users

with about 196 to 211 records per second while Oracle 9i graph steepened to a maximum of 440

 32

records per second for 800 users.

Throughput Vs Userload

0

100

200

300

400

500

0 100 200 300 400 500 600 700 800

Number of Users

Th
ro

ug
hp

ut
(R

ec
or

ds
 p

er
 s

ec
)

Oracle 9i SQL Server 2000

Figure 3-2 The Graph shows Throughput Rates plotted against the number of users

3.2.1.3 Scenario 3: Testing Server Resource Utilization

Scenario Description:

Resource utilisation was tested using the update (insert and delete) query similar to the one used for

Scenario 1. This is because updating database tables is resource intensive thus makes a good

measure for resource utilisation.

Definition of the workload model, Identification of metrics and Test Case Definition steps were

omitted here because they are the same with those of the first scenario.

 Load and Data simulation and Data collection and analysis:

Table 3-7 and 3-8 below shows the average resource utilization percentages. Table 3-7 shows

resource usage percentages for Oracle 9i while Table 3-8 shows those for SQL Sever 2000.

 33

Oracle 9i Resource
Utilisation
Users 80 160 240 320 400 480 560 640 720 800
% Processor Time Used 11 15 18 43 47 49 55 60 71 76
% Memory Usage 18 19.6 19.8 18 19.3 19.7 19.8 19.06 19.35 19.7
% I/O Usage (Avg. Disk Bytes/Transfer) 9 11 14.9 16 17.3 21.5 25.6 27.5 32.3 28.3

Table 3-7 Table shows Oracle 9i average percentage resource utilisation

SQL Server 2000
Resource Utilisation

Users 80 160 240 320 400 480 560 640 720 800
% Processor Time Used 5.7 8 20 43 71 73 79.1 85 88 91

% Memory Usage 22.1 18.7 18.1 21.2 23.2 27.04 33.9 41.9 45.3 52
% I/O Usage (Avg. Disk
Bytes/Transfer) 8.1 12.3 15.1 17.4 15.6 20.9 25.4 28.3 29 33.2

Table 3-8 Table shows SQL Server 2000 average percentage resource utilisation

Figure 3-3 and 3-4 graphs respectively show processor and memory utilisation comparisons

between the two servers.

0

10

20

30

40

50

60

70

80

90

100

%
 P

ro
ce

ss
or

 T
m

e

80 160 240 320 400 480 560 640 720 800

Number of users

% Processor Time Vs User load

Oracle Processor Time SQL Server 2000 Processor Time

Figure 3-3 The Graph shows % Processor Time plotted against the number of users

 34

Figure 3-3 illustrates that at low user loads (1 to 240 users) both system seem to optimally use the

server resources. From 400 to 800 users resource consumption spiral simultaneously for both

servers although SQL Server 2000 was more processor intensive measuring with 91% percentage

Processor Time Used for 800 users as compared to 76% for Oracle 9i. Figure 3-4 below gives the

memory usage graph for SQL Server 2000 and Oracle 9i.

0

10

20

30

40

50

60

%
 M

em
or

y
U

sa
ge

80 160 240 320 400 480 560 640 720 800

Number of Users

% Memory Usage Vs User load

Oracle Memory usage SQL Server 2000 Memory usage

Figure 3-4 The Graph shows % Memory Usage plotted against the number of users

Figure 3-4 is the memory usage graph which shows that at extreme load SQL Server 2000 not only

used the most CPU cycles [Figure 3-3] but also consumed more memory than Oracle 9i.

Figure 3-5 below compares I/O Subsystem percentages for Oracle 9i and SQL Server 2000. Disk

I/O Subsystem was measured in Average Disk Bytes/Transfer. % disk time for both servers

increased steadily at low to medium load. At extreme load SQL Server 2000 suddenly produced a

higher % disk time (% 33.2 as compared to 28.3 % for Oracle)

 35

Disk I/O Sub system Vs User load

0

10

20

30

40

0 200 400 600 800 1000

Number of Users

%
 D

is
k

Ti
m

e

Oracle 9i SQL Sever 2000

Figure 3-5 The Graph shows % I/O Subsystem Usage plotted against the number of users

The following Table 3-9 shows the average resource utilisation results calculated by halving CPU

and memory usage percentages. Disk I/O Subsystem was measured and plotted as a separate entity

[Figure 3-5].

Table 3-9 Table shows average resource utilisation results for Oracle 9i and SQL Server 2000

AVERAGE RESOURCE UTILIZATION (%)
=(CPU + Memory Utilization)/2

Users SQL Sever 2000 Oracle 9i
80 13.9 14.5

160 13.35 17.3
240 19.1 18.5
320 32.1 30.5
400 47.25 33.2
480 50 34.35
560 56.6 37.4
640 63.45 39.5
720 66.6 45.15
800 71.5 47.85

 36

% Average Resource Utilisation Vs Usage Load

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800

Number of Users

R
es

ou
rc

e
U

til
is

at
io

n
(%

)

SQL Sever 2000 % Resource Usage Oracle 9i % Resource Usage

Figure 3-6 The Graph shows Average Resource Utilisation plotted against the number of users

Figure 3-6 above shows the combined average percentages of processor and memory utilization

which were used to reflect average DBMS performance. These results show how resource efficient

a DBMS is. The graph shows that at low load Oracle 9i generally consumed more memory and

processor cycles (14 -17 %) than SQL server 2000 (13-14 %) but as load increased the reverse was

true. At extreme load SQL server 2000 was more resource intensive than Oracle 9i consuming 75.5

% of its resources as compared to 47.85 for Oracle 9i.

One of the tools used by Oracle 9i for monitoring and data collection when testing resource

utilisation was Statspack. An equivalent tool, the Profiler, was used for the same process by SQL

Server 2000. Figure 3-7 and 3-8 below shows screenshots which illustrate how one can connect to

Statspack and prepare for data collection and monitoring.

Figure 3-7 specifically shows the different types of information to expect when using Statspack.

Importantly the figure shows the required and configured metrics and the time consumed by the test

query per second/transaction. Metrics here were configured in line with the project. Details of how

to use this tool are given in APPENDIX C.

 37

Figure 3-7 The Graph shows Statspack screenshot 1

Figure 3-8 The Graph shows Statspack screenshot 2

 38

3.2.2 Stress Testing

Inputs to Stress Testing included the identified critical scenario, workload models and the peak load

capacities obtained from the load testing process. This load was used as a guideline for the

definition of the workload profile as the starting point in stressing the servers.

Steps followed for stressing were explained in the preceding chapter and are basically the same to

those used for load testing:

Identification of key scenarios:

Guidelines mentioned in chapter 2 on the identification of the stress testing scenario were used to

choose two possible scenarios for testing.

Possible Scenario 1

Searching the database (Use a search query that returns a lager table and thus scans all

tables) .This query had potential of impacting overall server performance with increased

resource utilization (memory usage, CPU utilization and I/O disk subsystem).

Possible Scenario 2

Use an Update query that specifies large input data.

This scenario had potential of exhibiting intensive locking, synchronization, and I/O disk-

intensive usage thus making a good scenario for stress testing.

Of the two scenarios identified above, the first one was chosen for this evaluation. Analysing

resource utilization was more likely easier and feasible than evaluating locking, memory leaks and

synchronization issues involved in the second scenario. However it would be interesting to note

how the results would be like if scenario two was used.

Identification of workload and Identification of metrics were the same as in the previous section

(load testing) thus the two steps were omitted here.

Create test cases:

• 800 concurrent users.

• A random Think Time of 0 seconds was used meaning all users fired requests at the same

time.

• The tests run for 2 hour.

 39

Load, Data simulation, Data collection and analysis:

Quest Central for both SQL Server 2000 and Oracle 9i was used for load simulation. Various tools

were used for data capture and representation. For instance statistical information was obtained

from SQL Server Query Analyzer (Execution plans) and the Profiler for SQL Server 2000 while

staspack was used for Oracle 9i.

Tables 3-10 and 3-11 below represent resource utilisation results from stressing Oracle 9i and SQL

Server 2000.

Oracle 9i Resource Utilisation
Users 80 160 240 320 400 480 560 640 720 800
% Processor Time Used 18 20 26 32 42 58 66 70 76 88
% Memory Usage 36 40 50 63 78 81 82 80 88 91

Table 3-10 Table shows average resource utilisation results for Oracle 9i

SQL Server 2000 Resource Utilisation
Users 80 160 240 320 400 480 560 640 720 800
% Processor Time Used 16 28 48 50 78 83 85 87 95 99
% Memory Usage 40 48 56 66 83 86 89 91 95 97

Table 3-11 Table shows average resource utilisation results for SQL Server 2000

Figure 3-9 is a processor line graph drawn from the statistics illustrated in Table 3-10 and 3-11.

When stress tested both servers showed increase resource utilisation [Figure 3-9 and 3-10 below] as

compare to the load testing results shown above. This is partly so due to the concept of concurrent

and simultaneous users. For load testing a variable random think / keying time of between 1 and 10

seconds was used in the scripts with a combination of 80% simultaneous users and 20%

concurrent users to simulate real production traffic. This distributed the load and frequency of

requests at the servers. Foe stress testing the Keying time was set to 0 seconds thus all users were

concurrently accessing the database which increased resource demand on the servers leading to high

processor and memory consumption.

 40

% Processor Time Vs User load

0

20

40

60

80

100

120

80 160 240 320 400 480 560 640 720 800

Num ber of Users

%
 P

ro
ce

ss
or

 T
im

e

Oracle 9i CPU Uti l isation % SQL Server 2000 CPU Uti l isation %

Figure 3-9 The Graph shows % Processor Time Vs User load

Figure 3-9 is a processor line graph drawn from the statistics illustrated in Table 3-10 and 3-11.

% Memory Usage Vs User load

0

20

40

60

80

100

120

2 4 6 8 10 12 14 16 18 20

Num ber of Users

%
 M

em
or

y
U

sa
ge

Oracle 9i % M emory Usage SQL Server 2000 % M emory Usage

Figure 3-10 The Graph shows % Memory Usage Vs User Load

 41

Table 3-12 and Figure 3-11 below show average resource utilization utilisation percentages and a

line graph from the stress testing process.

AVERAGE RESOURCE UTILIZATION (%)

=(CPU + Memory Utilization)/2
Users SQL Sever 2000 Oracle 9i

80 28 27
160 38 30
240 52 38
320 58 47.5
400 80.5 60
480 84.5 69.5
560 86 74
640 89 75
720 95 82
800 96.5 89.5

Table 3-12 Table shows average resource utilisation results for Stress testing

Due to lock, resource contention and synchronisation issues between concurrent readers and

readers, SQL Server 2000 crashed with “Server busy” messages just after servicing about 880

simulating users. On the other hand Oracle 9i continued servicing request. This was probably due to

its concurrency control mechanism (the Multi-Version Read Consistency) which enable many

concurrent user to access the database. Threading was used for simulating the users during stress

testing.

Figure 3-11 The Graph shows average resource utilisation plotted against the number of users

 SQL Server 2000 breaking
i

 42

Figure 3-11 shows that at all levels of user load SQL Server 2000 responded with high resource

utilisation than Oracle 9i. SQL Server 2000 failed with a maximum average resource utilisation of

96.5% which was more than 91.5 % for Oracle 9i with 1200 users.

3.3 Scalability Testing

Given the results above it is apparently clear that as the user numbers increased SQL Server 2000

resource consumption escalated while producing almost stagnant throughput rates [Figure 3-2].

Throughput rate results obtained from the second scenario in the Load testing process show that

SQL Server 2000 reached threshold much faster than Oracle 9i. In addition when looking at the

response time results one can see that in SQL Server 2000 as user populations increase response

time increases to unacceptable levels. All this means that Oracle 9i scales better than SQL Server

2000 with increasing number of simultaneous and concurrent users. However a conclusive picture

of scalability can be obtained by testing the DBMS systems under different software and hardware

(RAM and number of processors) configurations in which case scalability will be measured as by

noting the number of users the server is able to save as additional hardware in being added to the

system.

3.4 Chapter Summary

Chapter 3 explains the implementation of the performance tests with the associated results. Aspects

investigated include response time, throughput and resource utilization (processor, memory and I/O

disk subsystem). The next chapter presents a further evaluation of the results obtained from this

chapter and give other factors affecting DBMS performance and behaviour for modern database

systems.

Chapter 4
Other Factors Affecting Performance and

Scalability

Chapter Highlights
- Discussion/Analysis of results

- Database Engine Technical Comparison

• The Concurrency model

• Indexing

• Partitioning capabilities

• Parallel execution and clustering capabilities

- Chapter summary

 44

Chapter 4 : Other Factors Affecting Performance and

Scalability
This chapter analyses some factors affecting performance and scalability in modern DBMS

systems. The architectural design of each DBMS system is use to explain the performance and

scalability results obtained in chapter 3.

4.1 Analysis of results

Performance results unveiled in the preceding chapter could be analysed and evaluated further to

ascertain which technical factors influenced the DBMS to react as they did during the tests. These

factors either had a direct or indirect influence on performance and scalability as discussed in the

following section. Aspects investigated in this project comprise the concurrency model,

partitioning, database indexing and parallel execution capabilities. These factors were analysed in

relation to their influence on response time, throughput rate and resource utilisation.

4.1.1 Concurrency model

The concurrency control in databases ensures that under multi-user environments data

modifications done by one user do not negatively affect those done by another. SQL Server 2000

and Oracle 9i differ in the way they implement concurrency control mechanisms as explained in the

following section.

4.1.1.1 Multi-Version Read Consistency

Below is a list of some possible problems most likely to be encountered in multi-user conditions

that may have influenced response time and throughput rates for the first two scenarios in the load

test process.

• Dirty, or uncommitted, are reads that happen when a transaction can read changes made to

the database that have not yet been committed.

• Non-repeatable reads occur when a transaction re-reads data it has previously read and finds

that another committed transaction has modified or deleted the data.

Oracle 9i implements a concurrency model where multi-version read consistency always provides

consistent and accurate results. When an update occurs in a transaction , the original data values

are recorded in the database undo records. Oracle 9i uses the current information in the undo

records to construct a read-consistent view of table data, and to ensure that a version of the

 45

information, consistent at the beginning of the uncommitted transaction, can always be returned

to any user. SQL Server 2000 on the other hand, have to choose a workaround to avoid

concurrency problems, such as locking data to prevent it from changing while being read or

preventing queries from reading changed but uncommitted information [MSDN library, 2005]

,[Microsoft SQL Server documentation, 2005].

SQL Server 2000 does not provide multi-version read consistency. Instead it requires transactions to

either use shared locks for read operations, with various levels of isolation, or to accept dirty reads.

Shared locks prevent data that is read from being changed by concurrent transactions [MSDN

library, 2005]. It is clear therefore that this implementation restricts the ability of the system to

properly service concurrent requests and users in environments involving a mix of reads and writes.

This explains Figure 3-1 which represents response time plotted against the number of users where

response time for SQL Server 2000 increased exponentially with increasing load, reads and writes

had to be coordinated through shared locks which resulted in increased turnover time while Oracle

9i implementation of multi-version read consistency ensured that operations were freely executed

thus reducing the response overhead.

To try and add variation to the tests for architectural analysis purposes the author had to build

separate workload environments, some of which exhibited intensive read activities, such as

selecting rows by a query which needed to scan the whole database. Regardless of my efforts,

concurrency and accuracy undoubtedly affected throughput and scalability in SQL Server 2000 as

shown in Figure 3-2. With 400 users simultaneously querying the database SQL Server 2000

throughput rates remained constant at about 200 records per second while for Oracle 9i which

favours increased concurrent users due its sound concurrency model implementation throughput

rates increased with the increasing number of users to any extreme of 400 records per second for

800 users. This was because Oracle 9i allowed writers and readers to operate cleanly in mixed

workload environments without incurring any performance downtime.

4.1.1.2 Non-Escalating Row-Level Locking

Row-level locks offer the finest granularity of lock management, and thus, the highest degree of

data concurrency. Row-level locking ensures that any user or operation updating a row in a table

will only lock that row, leaving all other rows available for concurrent operations. Oracle 9i uses

row-level locking as the default concurrency model and stores locking information within the actual

rows themselves. By doing so, Oracle 9i can have as many row level locks as there are rows or

index entries in the database, providing unlimited data concurrency [Balloni , 2000].

 46

SQL Server 2000 on the other hand supports row-level locking as the default concurrency model.

However, because it was not the default level of lock granularity in earlier versions of the database,

the late addition of row-level locking was made possible only through the use of additional, separate

pools of lock structures. As with any memory structure, these lock structures are limited in their size

and thus limit the maximum number of locks that can be supported by the database. The maximum

amount of memory devoted to locks is limited to 40% of the amount reserved for the database.

According to information from the Microsoft documentation, SQL Server 2000 dynamically

determines the appropriate level at which to place locks for each statement but the level at which

locks are acquired does not depend on the memory available. For example a small table may have a

table lock applied, while a larger table may have row locking applied. A consequence is that as

more users access the application and transaction volume increases, SQL Server 2000 will escalate

row level locks to table locks to conserve memory [Understanding Locking in SQL Server, 2005].

This in turn means that fewer users can access the data at the same time – users will have to wait

which further supports the results obtained in the preceding chapter where Oracle 9i showed better

response time and throughput rates.

4.1.2 Indexing capabilities

Indexes are database structures that are created to provide a faster path to database information.

Using indexes can dramatically reduce disk I/O operations thus increasing the performance of a

DBMS in data retrieval. Both Oracle and SQL Server 2000 support traditional B-Tree indexing

schemes, which are ordered lists of key values, associated with the storage location of the table row

that contains these values. Both also support index-organized tables, which are called clustered

indexes by Microsoft experts. Index-organized tables provide fast access to table data for queries

involving exact match and/or range search on the primary key because table rows are stored in the

leaf nodes of the primary key index. However, Oracle9i also supports static bitmap indexes and

bitmap join indexes, whose usage can provide huge performance benefits for typical load and query

operations in data warehousing and multi-user environments.

4.1.2.1 Bitmap Indexes and Bitmap Join Indexes

A bitmap index uses a bitmap (or bit vector) for each key value instead of a list of the table rows’

 47

storage locations - ROWID8 . Each bit in the bitmap corresponds to a row in the table. The bit is set

when the table’s row contains the key value. Bitmap representation can save a lot of space over lists

of ROWID, especially for low cardinality data. Bitmap indexes lend themselves to fast Boolean

operations for combining bitmaps from different index entries. Bitmap indexing efficiently merges

indexes that correspond to several conditions in a WHERE clause. Rows that satisfy some, but not

all, conditions are filtered out before the table itself is accessed. This improves response time

dramatically.

With Oracle9i, it is also possible to create bitmap indexes on index-organized tables, thereby

allowing index-organized tables to be used as fact tables in data warehousing environments.

A bitmap join index is a bitmap index for the join of two or more tables. A bitmap join index can be

used to avoid actual joins of tables, or to greatly reduce the volume of data that must be joined, by

performing restrictions in advance. Queries using bitmap join indexes can be sped up via bit-wise

operations. Bitmap join indexes, which contain multiple dimension tables, can eliminate bitwise

operations, which are necessary in the star transformation with bitmap indexes on single tables.

Performance measurements performed under various types of star queries demonstrated tremendous

response time improvements when queries used bitmap join indexes.

SQL Server 2000 does not support bitmap indexes and bitmap join indexes.

4.1.3 Partitioning

Partitioning allows large database structures (tables and indexes for instance) to be decomposed into

smaller and more manageable pieces. Although it is primarily considered a feature for

manageability and availability, partitioning also provides a number of performance benefits

[Oracle9i partitioning, an Oracle white paper, May 2001].

4.1.3.1 Oracle9i Partitioning Options

Oracle 9i Database offers several table partitioning methods designed to handle different application

scenarios:

• Range partitioning uses ranges of column values to map rows to partitions. Partitioning by

range is particularly well suited for historical databases. Range partitioning is also the ideal

partitioning method to support ‘rolling window’ operations in a data warehouse.

8 Each ROWID represents the storage address of a row. A physical ROWID identifies a row in an ordinary table. A
logical ROWID identifies a row in an index-organized table

 48

• Hash partitioning uses a hash function on the partitioning columns to stripe data into

partitions. Hash partitioning is an effective means of evenly distributing data.

• List partitioning allows users to have explicit control over how rows map to partitions. This

is done by specifying a list of discrete values for the partitioning column in the description

for each partition.

• In addition, Oracle supports range-hash and range-list composite partitioning.

Oracle 9i also provides three types of partitioned indexes:

• A local index is an index on a partitioned table that is partitioned using the exact same

partition strategy as the underlying partitioned table. Each partition of a local index

corresponds to one and only one partition of the underlying table.

• A global partitioned index is an index on a partitioned or non-partitioned table that is

partitioned using a different partitioning-key from the table.

• A global non-partitioned index is essentially identical to an index on a non-partitioned table.

The index structure is not partitioned. Oracle allows all possible combinations of partitioned

and non-partitioned indexes and tables: a partitioned table can have partitioned and non-

partitioned indexes and a non-partitioned table can have partitioned and non-partitioned

indexes.

4.1.3.2 SQL Server 2000 Partitioning Options

SQL Server 2000 supports partitioned views. A partitioned view joins horizontally partitioned data

from a set of member tables across one or more servers, making the data appear as if from one

table. The data is partitioned between the member tables based on ranges of data values in one of

the columns, called the partitioning column. The data ranges for each member table are defined in a

CHECK constraint specified on the partitioning column. The view uses UNION ALL to combine

selects of all the member tables into a single result set. SQL Server 2000 distinguishes between

local and distributed partitioned views. In a local partitioned view, all participating tables and the

view reside on the same instance of SQL Server. In a distributed partitioned view, at least one of the

participating tables resides on a different (remote) server.

Due to its lack of real partitioning capabilities, SQL Server 2000 suffered from many important

deficiencies which impacted performance and scalability.

 49

4.1.3.3 Partition Pruning

Partition pruning enables operations to be performed only on those partitions containing the data

that is needed. The query optimizer analyzes FROM and WHERE clauses in SQL statements to

eliminate the unneeded partitions: partitions that do not contain any data required by the operation

are eliminated from the search. This technique dramatically reduces the amount of data retrieved

from disk and shortens the use of processing time, improving query performance and resource

utilization. It is an essential performance feature for data warehousing environments. Oracle9i fully

implements partition pruning, including with composite partitioned objects. In addition, partition

pruning can be combined with index access (global or local). When the index and the table are

partitioned on different columns, Oracle9i will eliminate unneeded index partitions, even when the

partitions of the underlying table cannot be eliminated. SQL Server 2000 implements rudimentary

partition pruning with local partitioned views, when all participating tables and the view reside on

the same instance of SQL Server. If CHECK constraints are used on the partition columns when

creating the member tables, the query optimizer will determine which member tables contains the

rows and will limit the search to these tables. However, overall performance effectiveness is limited

since this technique cannot be combined with global indexes and composite partitioning, which are

not supported. Partition pruning with Distributed Partitioned Views is severely restricted and suffers

from lack of scalability.

4.1.3.4 Partition-Wise Joins

With Oracle9i, partitioning can also improve the performance of multi-table joins, by using a

technique known as partition-wise joins. Partition-wise joins can be applied when two tables are

being joined together, and both of these tables are partitioned on the join key. Partition-wise joins

break a large join into smaller joins that occur between each of the partitions, completing the overall

join in less time. This offers significant performance benefits both for serial and parallel execution.

SQL Server 2000 does not support partition-wise joins.

4.1.4 Parallel execution of operations

Parallel execution of SQL operations vastly improved the performance for operations involving

large volumes of data such as full table scans that I implemented for scenario 1. It helped reduce

response time for data-intensive operations on my large database. Oracle9i was able to execute

INSERT, UPDATE and DELETE statements in parallel when accessing both partitioned and non-

partitioned database objects. With SQL Server 2000, INSERT, UPDATE, and DELETE statements

were only executed which further hindered throughput and increased response time leading to

performance downtime [Jones, 1997, pg 181].

 50

4.1.5 Clustering

One last factor the author would have wished to evaluate for these databases was their

implementation of Clusters. Clusters are groups of independent servers, or nodes, connected via a

private network (called a cluster interconnect), that work collaboratively as a single system.

Clusters allow applications to scale beyond the limits imposed by single node systems when

processing loads which exceed the capacity of large individual servers. They have a significant

influence on performance and scalability.

The table below shows a summary of the technical comparison of the two DBMS systems with the

respect to the above discussed factors that are most likely to have influenced performance and

scalability during tests.

Factors influencing Performance and Scalability in modern DBMS systems

 Oracle 9i SQL Server 2000

Concurrency Model

Multi-version read

Consistency

Non-Escalating row level

locking

Minimal deadlocks under load

Shared read locks or

dirty reads

Locks escalate

Deadlocks can be a serious

problem under load

Indexing capabilities

B-Tree indexes

Index-organized Tables

Bitmap indexes

Bitmap Join Indexes

B-Tree indexes

Clustered Indexes

Not supported

Not supported

Partitioning options

Range, hash, list and

composite partitioning

Local and global indexes

Not supported

Only local indexes with

member tables

Parallel execution

Queries, INSERT,

UPDATE, DELETE

Queries only

Table 4-1 Summary of factors affecting Modern DBMS according to the Microsoft and Oracle 9i
documentation

 51

4.1.6 Performance tuning aspects affecting performance and scalability

• SQL Server 2000 has no control over sorting (memory allocation) while Oracle 9i can fully

control the sort area size and allows it to be set by the DBA.

• SQL Server 2000 has no control over SQL Caching (memory allocation) while this is

otherwise in Oracle 9i.

• SQL Server 2000 has no control over storage/space management to prevent fragmentation.

All pages (blocks) are always 8k and all extents are always 8 pages (64k). This means you

have no way to specify larger extents to ensure contiguous space for large objects. On the

other hand Oracle 9i, this is fully configurable.

• And lastly SQL Server 2000 has no Log miner facility. Oracle 9i supply a Log Miner which

enables inspection of archived redo logs. This comes free with the database. But in the case

of SQL Server, external products from other companies have to be purchased to do this

important DBA task [At lease 10 difference between oracle 9i and SQL server 2000.htm].

All these factors influenced the performance and scalability of the databases during tests.

4.2 Chapter Summary

This chapter discussed factors most likely to have caused the DBMS to behave the way they did

during the testing process. Investigated factors include the concurrency model (multi-version

consistency and lock escalating capabilities), indexing, and partitioning and parallel execution

capabilities. Also briefly discussed is the clustering capability. The next chapter is the last of this

project and therefore gives a conclusion of issues in presented in the proceeding chapters.

Chapter 5
Conclusion and Possible Project

Extensions

Chapter Highlights
- Conclusion

- Possible Project Extension

- References

- Appendix A-E

 53

CHAPTER 5 : Conclusion and Possible Project Extensions
This presents the conclusion and final analysis of the results detailed in the previous chapters. Also

of particular importance the possible project extensions are given below.

5.1 Conclusion

According to the results presented in the preceding chapters it is apparently clear that SQL Server

2000 is positioned between MS-ACCESS and ORACLE in terms of performance and scalability.

It makes a work group level solution with a relatively small number of simultaneous and concurrent

users and for small amounts of data. On the other hand Oracle 9i is much more sophisticated with

more complex functionalities for both Online Transaction Processing and Data Warehousing

applications. Although the performance and scalability of a DBMS is highly dependent on to

experience of the Database Administrator to fine tune his database factors presented in chapter 4,

Oracle 9i is a true enterprise solution in multi-user environments.

5.1.1 Response Time Evaluation

Response time results presented in chapter 3 for Scenario 1 showed that both server at low load

produce reasonable turnaround times. However because of the architectural design factors discussed

in chapter 4, especially the implementation of the concurrency model, SQL Server 2000 response

time increase far much faster than that of Oracle 9i. It is apparent therefore that Oracle has a better

scaling mechanism with increasing populations. This conclusion further supports my conclusion

that Oracle 9i is a true enterprise solution.

5.1.2 Throughput Rate Evaluation

Figure 3-2 represents the throughput rates obtained from Scenario 2 of the load testing process. The

figure shows Oracle 9i throughput rate increasing unboundedly as compared to SQL Server 2000

whose graph flattened at about 200 requests per second. Regardless of the increasing numbers of

user load the amount of the work done remained constant. This is a serious phenomenon for multi-

user environments. This restricts SQL Server 2000 to smaller workgroup environments as compared

to Oracle 9i which undoubtedly favours large corporation environments.

5.1.3 Resource Utilisation Evaluation

Scenario 3 of the load testing process and stress testing results show that SQL Server 2000 can

perform better with an additional resource pools. The latest SQL Server 2000 federated and

clustered database abilities enhance performance by adding more resources in terms of software and

hardware. Despite these performance and scalability issues that SQL Server 2000 has it is a better

 54

database in terms of usability and maintainability as compared to Oracle 9i which quires skills and

technical knowledge thus making it more expensive to maintain.

5.1.4 Other factors affecting performance and scalability

In chapter four factors most likely to have influenced performance and scalability tests were

discussed. Form the architectural comparison the concurrency model, indexing capacities,

partitioning and parallel execution factors were evaluated with respect to the performance and

scalability results presented in chapter 3. These factors showed that SQL Server 2000 has an

architecture that favours small working environments while Oracle 9i favours large corporate

situations characterised by multi-user environments.

5.2 Possible Project Extensions

5.2.1 In-depth Scalability Testing

The first possible extension to this project is to perform a deeper evaluation of the DBMS not only

through stress and load testing but using different system configurations to determine the effects of

adding/subtracting hardware and /or software to distribute “work” among system components

(clustering). Tests of this kind according to RPM Solutions Pty Ltd (2004) can be performed in a

variety of configurations, with such variables as network speed, number and type of server/CPUs

and memory closely monitored during scalability testing.

Oracle and Microsoft and other systems form different RDBMS vendors could be evaluated for

performance and scalability using portioning, clustering and federated databases. This will require

additional hardware and a lot of effort to accomplish.

5.2.2 Test different Operating Systems / latest DBMS systems

Similar performance and scalability experimental tests can be performed on a UNIX platform like

Linux and results compared to these found from using a Windows NT platform for the same

Database Management Systems and/or different systems. Moreover, experiments could be

performed to investigate latest DBMS system from both Microsoft and Oracle Corporation which

are Oracle10g and Microsoft Yukon.

 55

5.2.3 DBMS technical/architectural comparison

Table 4-1 shows a table of factors that affect performance and scalability capabilities offered by

modern DBMS systems. A possible project extension therefore might be to prove, using different

code, to what extent these factors affect performance and scalability of relational database

management systems.

 56

References

Books:
[Hansen 1996, pg 432]
Hansen, G.W., and Hansen, J.V., Database Management and Design, 1996, Prentice Hall

[Rob et al, 2002, pg 448]
Rob, P. and Coronel, C., Database Systems: Design, Implementation, & Management, 4th Ed, 2002,

Thomson Learning - Course Technology, USA.

[Jones et al, 1997]

Jones, J. and Monk, S., Databases in Theory and Practice, International Thomson Computer Press,

1997

[Chorafas, 1998]

Chorafas, D.N., Transaction Management: Managing Complex transactions and Sharing

Distributed Database, St.Martin’s Press, Inc., 1998

[Post, 1999]

Post, G.V., Database Management Systems: Designing and Building Business Application,

Irwin/McGraw-Hill, 1999

Online references:
[Burleson, 2002]

Burleson D, August 8 2002.”Oracle Guru” Database Benchmark Wars: What you need to know

[Online]. Available from: http://www.dba-oracle.com/art_db_benchmark.htm . Last Updated

05/08/2002, Access date 15/05/05

[Kevin Kline, 2005]

Kevin Kline, Director of Technology, White Papers, 2005. [Online] Available from:

http://www.quest.com/documents/list.aspx?searchoff=true&technology=8&contenttypeid=1, Last

Updated 2005, Access date 12/06/05.

 57

[Balloni, 2000]

Michael Balloni, 2000. SQL Server Lock Contention Tamed: the Joys of NOLOCK and ROWLOCK,

[Online] Available from: http://www.sql-server-

performance.com/lock_contention_tamed_article.asp Access date 06/06/05

[Microsoft SQL Server documentation, 2005]

Microsoft SQL Server documentation, 2005 Understanding Locking in SQL Server, [Online]

Available from:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/acdata/ac_8_con_7a_7xde.asp .

Access date 15/05/05

[Meier et al, 1994]

J.D. Meier, Srinath Vasireddy, Ashish Babbar, and Alex Mackman, 2004. Improving .Net

Application performance and scalability [Online] Available from:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/scalenetchapt16.asp

Last Updated May 2004, Access Date 06/05/05.

[Transaction Processing Performance Council, 2005]

Transaction Processing Performance Council, 2005 Top Ten TPC-C by Performance [Online]

Available from: http://www.tpc.org/tpcc/default.asp .Last Updated 21-Sept-2005 7:52 PM Access

date 14/05/05.

[RPM Solutions Pty Ltd, 2004]

RPM Solutions Pty Ltd, 2004. Performance Tests [Online] Available from:

http://www.loadtest.com.au/types_of_tests/performance_tests.htm .Last Updated August 04,

2004 , Access date 06/05/05.

[MSDN library, 2005]

MSDN library for SQL Server Developer Centre, 2005, Concurrency Problems, [Online] Available

from: http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/acdata/ac_8_con_7a_8i93.asp, Last Updated 2005, Access date 15/10/05.

 58

[MSDN library, Using Partitioned Views, 2005]

MSDN library for SQL Server Developer Centre, 2005 Using Partitioned Views [Online] Available

from: http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/acdata/ac_8_con_7a_8i93.asp , Last Updated 2005, Access date 15/10/05.

 I

Appendix A Tutorial 1: Universal Software Tools
1.1 System Performance Monitor

System Performance Monitor tool is performance monitoring tool. It is composed of two parts:

System Monitor and Performance Logs and Alerts. With System Monitor, you can collect and view

real-time data about memory, disk, processor, network, and other activity in graph, histogram, or

report form. Through Performance Logs and Alerts you can configure logs to record performance

data and set system alerts to notify you when a specified counter's value is above or below a defined

threshold [Help and Support Centre]. When used with Quest spotlight they form a very powerful

performance monitoring system.

To open Performance Monitor, click -> Start, click-> Control Panel, click-> Performance and

Maintenance, click ->Administrative Tools, and then double-click Performance.

1.2 Enterprise Manager

This is the central point from which all component of the server are managed. Using the Enterprise

Manager you can have access to performance tuning tools for of the DBMS.

You can use Enterprise Manager to:

• Administer, diagnose, and tune multiple databases.

• Manage a wide range of "targets" in addition to Oracle databases, including: Web servers,

application servers, applications, and Microsoft® SQL Server.

• Monitor target conditions throughout the network

• Create, schedule, and publish HTML reports to quickly view and analyze information about

your managed systems.

• Automate repetitive tasks on multiple targets at varying time intervals

To open Enterprise Manager for:

Oracle 9i, click -> Start, click-> All Programs, click->Oracle- <name of your Host>, click->

Enterprise Management Packs, and then click-> Enterprise Manager

Username: phathi

Password: phathisile

SQL Server 2000, click -> Start, click-> All Programs, click-> Microsoft SQL Server, click->

Enterprise Manager

There are no passwords needed

 II

Appendix B Tutorial 2: SQL Server 2000 Specific Tools
2.1 SQL Server 2000 Query Analyzer

The SQL Server 2000 Query Analyzer is not only a tool for developing and debugging Transact-

SQL code, it is also a great tool for performance tuning Transact-SQL code. Another of its powerful

functionality which I found useful to my research is its ability to display the execution plan

followed by the SQL Optimizer to actually execute the queries. Added to the graphical view if you

move the cursor on top of each of the steps in the query plan, a pop-up box appears with detailed

information exactly what the Query Optimizer did in each step as the query was executed as well as

the estimated time of execution.

Show Server Trace can be used to help performance tune queries, stored procedures and Transact-

SQL scripts. What it does is display the communications sent from the Query Analyzer (acting as a

SQL Server client) to SQL Server. The results of the trace are in the form of rows, with each row

representing a distinct communication from Query Analyzer to SQL Server. Each row includes the

text of the communication, such as Transact-SQL code; the Event Class, which describes the type

of communication being sent; the duration of the communication; the amount of CPU time used,

and how many reads or writes that were performed for the event. This information can be very

valuable when analyzing query performance, and when comparing the performance of one variation

of a query against another.

Show Client Statistics Like the Show Server Trace feature, the Show Client Statistics can be very

helpful when performance tuning queries, stored procedures, and scripts. What this option does is

provide you with application profile, network, and time statistics of whatever Transact-SQL you are

running in Query Analyzer. This statistics provide additional information you can use to see how

efficiently a query is running, and also allows you to easily compare one query against another.

Manage Statistics Without you doing anything, SQL Server automatically creates and maintains

internal statistics on the rows of data in all of your tables. These statistics are used by the Query

Optimizer to select the optimal execution plan of Transact-SQL code. Most of the time, SQL Server

does a fine job of maintaining these statistics, and the Query Optimizer has the necessary

information it needs to do its job.

To open SQL Query Analyser, click -> Start, click-> All Programs, click-> Microsoft SQL Server,

click-> Enterprise Manager, on the Tools menu, click-> SQL Profiler

 III

2.2 SQL Server 2000 Profiler

The SQL Server 2000 Profiler is a powerful tool for helping identify SQL Server performance

problems, but it is not a tool for the beginner. Essentially, it allows you to capture the

communications between your application and SQL Server. The SQL Server 2000 Profiler can

capture virtually all communication between a SQL Server and any other application. The various

communications you can capture are referred to as events, and are grouped in Event Classes.

Use SQL Profiler to:

• Monitor the performance of an instance of SQL Server. This was the most important aspect

for this project.

• Debug Transact-SQL statements and stored procedures.

• Identify slow-executing queries during Performance Testing

• Test SQL statements and stored procedures in the development phase of a project by single-

stepping through statements to confirm that the code works as expected.

• Above all the Profiler provides performance statistical information and produce execution

plan for analysis.

To open SQL Server 2000 Profiler , click -> Start, click-> All Programs, click-> Microsoft SQL
Server, click-> Enterprise Manager, on the Tools menu, click-> SQL Profiler

 IV

Appendix C Tutorial 3: Oracle 9i Specific Tools
3.1 Oracle 9i Statspack

Statspack is primarily a diagnostic tool for instance-wide performance problems; it also supports

application tuning activities by identifying high-load SQL statements. It can be used both

proactively to monitor the changing load on a system, and also reactively to investigate a

performance problem (this is why it was chosen statistical performance and scalability testing in the

project).

Using Statspack: Installing Statspack

Run the installation script using SQL*Plus from within the $ORACLE_HOME/rdbms/admin

directory:
SQL> connect / as sysdba

SQL> @spcreate

This will create a database user PERFSTAT and the Statspack schema. Note that the script must be
run from SQL*Plus. All subsequent Statspack operations are run as the PERFSTAT user.

Data collection

Once you have installed Statspack the simplest way to collect a ‘snapshot’ of performance data is

by executing the snap function from the Statspack package.

SQL> execute statspack.snap;

Data collection can also be automated at either the OS or database level using the dbms_job

package.

Producing reports

To examine the delta in statistics between two times, run the spreport.sql report while being
connected to the PERFSTAT user.
You will be prompted for:
1. The beginning snapshot Id
2. The ending snapshot Id
3. The name of the report output file to be created (default name includes the begin and end
snapshot id)

This will produce reports similar to the ones shown in figures 3-7 and 3-8

To open Statspack package, click -> Start, click-> All Programs, click-> Oracle, click->

Application Development, SQL Plus and then connect as shown above.

 V

Appendix D Tutorial 4: Third party software
4.1 Quest Central for Oracle 9i and SQL server 2000 and Quest Spotlight

Quest Central for Oracle or SQL Server is an integrated database management solution that is

designed to simplify everyday DBA tasks. Whether you are doing an intensive analysis or simply

tuning your database, Quest Central finds and resolves thousands of bottlenecks both historically

and in real time for optimum performance and availability. [www.Quest.com]

Quest Central for Oracle components include:

• Database Administration

• Space Management

• 24x7 monitoring

• Performance Diagnostics with Spotlight

• Database analysis (health check)

• SQL Tuning

• Performance Analysis

• Load Testing and Data Generation

To open Quest Central and Quest Spotlight, click -> Start, click-> All Programs, click->Quest

Software, click-> Spotlight or Quest Central

Using Quest Central and Spotlight

The version used for this project was a complete trail version with a licence valid for 7 days which

could be renew on request. Benchmark factory is a 30 days trail version.

The testing environment presented in chapter 2 [Figure 2-1] shows that you need to install the

software on the client machine and on the server side you need to install a small application

program provided with the down loads which Oracle uses as an interface between it and the client

machine. Once the installations are finished you do not need any complex password, you are

generally read to use the software. The software interface in so user friendly that navigation around

the tool bars is as easy as just clicking buttons and the rest will follow.

This software is available online from www.quest.com under the section on database solution

 VI

Appendix E Metrics

Wait Event Categories:

Wait events are statistics that are incremented by a server process/thread to indicate that it had to

wait for an event to complete before being able to continue processing. Wait event data reveals

various symptoms of problems that might be degrading performance within the system. The

following wait event categories were considered in calculation the final load and stress testing

results. All wait event measurements are in seconds.

Wait Event Description
CPU Usage When SQL statements and other types of calls are made to SQL Server, an

amount of CPU time is necessary to process the call. Average calls require
a small amount of CPU time. However, a SQL statement involving a large
amount of data or a runaway query can potentially consume a large amount
of CPU time, reducing CPU time available for other processing.

CPU utilization is the most important operating system statistic in the
tuning process. Excessive CPU usage usually means that there is little idle
CPU on the system. This could be caused by an inadequately-sized system,
by un-tuned SQL statements, or by inefficient application programs.

CPU Wait Wait Time until the CPU resource is available. Time spent by the session
waiting in the system's run queue for CPU cycles. The amount of time is
dependant upon the number of concurrent processes and threads requesting
CPU time. The metric value should be inspected in conjunction with the
value of the "Run Queue Length" metric.

I/O Wait Time spent waiting for disk input/output operations to complete.

Input/output (I/O) is one of the most expensive operations in a database
system. SQL statements that are I/O intensive can monopolize memory and
disk use and cause other database operations to compete for these
resources.

Generally, I/O Wait is caused by poorly-tuned SQL or applications which
generate a significant amount of logical I/O translating into excessive
physical disk usage. In this case, SQL/Application tuning can reduce the
logical I/O- induced load. However, it could also be caused by poorly-
configured disks or storage sub-systems.

Network Wait Time spent waiting for messages to be sent or received over the network
interface.

Network performance can be evaluated by the number (per second) of
packets sent and received.

Excessive network wait can be caused by either:

• excessive network usage originating in the application

 VII

physical problems, identifiable by network errors and network collisions
Lock Wait Time spent by the session being blocked, waiting for the blocking lock to

be released.
Parallel
Coordination

The time spent by the various processes coordinating parallel query threads
and exchanging data.

Cursor
Synchronization

The time spent by the various processes synchronizing information flow
within cursors.

Remote Provider The time spent by the various processes waiting for a remote OLEDB call
to complete or DTS synchronization

Log The time spent waiting by the various processes waiting for a LOG
operation to complete.

Other Wait The aggregate performance of assorted different wait metrics. Elapsed time
spent waiting for miscellaneous operations to complete. None of the
operations can be classified into any other wait categories.

Latch Wait Time spent by the session being blocked by a latch, waiting for it to be
released.

Latches need not be locked for the duration of a transaction. They are low-
overhead, short-term memory synchronization objects. They are used
mostly to protect a row when queried for a connection.

Complete Metric Listing:
These metrics were used to track numerous aspects of the database system. Some of these include

Network latency, Response Time, Throughput, Resource usage (CPU and Memory utilisation, Disk

I/O subsystem). These metrics were used during functional, load and stress testing by System

Monitor, SQL Server 2000 Query, Profiler, Quest Central, Benchmark factory, stoplight and Oracle

9i Statspack.

Metric Description
Average Lock
Duration (Seconds)

Average duration of blocked lock requests

100 * Lock Wait
Lock Requests

Average SQL
Duration (Seconds)

Average duration of the SQL statements, executed during the current
interval.

Blocked Lock
Requests

Number of lock requests that could not be satisfied immediately, causing the caller to
block and wait before acquiring the lock.

 VIII

Metric Description
Blocked Lock
Requests Ratio

This ratio measures the percentage of lock requests that required the caller to wait
before acquiring the lock.

High percentage (over 20%) along with high Lock Wait indicates that the
system is not handling locks well and concurrency mechanisms need to
be tuned.

Excessive blocking can be a major cause of poor application
performance, as the user of an application often does not realize that they
are waiting on a lock held by another user. From their point of view, it
often seems like their application has stopped responding.

100 * Blocked Lock Requests
Lock Requests

Cache Hit Ratio
(%cache hits)

The percentage of pages that were found in the buffer pool without
having to incur a read from disk. When this percentage is high your
server is operating at optimal efficiency (as far as disk I/O is concerned).

A low Buffer Cache hit rate indicates that SQL Server is finding fewer
pages already in memory, and therefore has to perform more disk reads.
This is often caused by one of two possibilities: SQL Server has
insufficient memory to work with, or SQL queries are accessing a very
large number of pages in a non-sequential manner. The best figure will
vary from one application to another, but ideally this ratio should be
above 90%.

DB CPU Usage
(Seconds)

Total amount of CPU consumption as reported by SQL Server in the
system processes table.

Degree of
Parallelism

Average number of SQL Server threads assigned to serve a SQL
statement.

Disk Queue Length Number of I/O requests that were outstanding on the busiest disk in the
system.

Disk Utilization The percentage of time the busiest disk spent serving system-wide I/O
requests.

File System Cache
Hit Ratio (% Cache
Hits)

The percentage of file read operations that were satisfied by the file
system cache and did not require any physical I/O.

Full Scans Number of unrestricted full scans. Refers to both table and full index
scans.

Full Text Search
CPU Usage (% CPU
Busy)

CPU consumption of the Full Text Search service.

Full Text Search
Resident Memory
Usage (MB)

Amount of physical memory consumed by the Full Text Search service.

 IX

Index Searches Number of index searches. Index searches are used to start range scans,
single index record fetches, and to reposition within an index.

Lazy Writes Number of buffers written by the Buffer Managers lazy writer.

The Lazy Writer Process periodically scans all SQL Server caches, and
maintains a list of "free" pages that are available for immediate reuse.

When SQL Server needs a free memory page (for example, when reading
a database page from disk into the Buffer Cache), and there are no free
pages immediately available, the connection needing the free page must
wait while SQL Server makes buffers available. This will result in slower
performance. In the worst case, the connection will have to wait while
SQL Server writes a modified page out to disk in order to make a free
buffer.

Lock Requests Number of new locks and lock conversions requested from the lock
manager.

Log Flushes Number of log flushes.

As users make modifications to SQL Server databases, SQL Server
records these changes in a memory structure called the Log Cache. Each
SQL Server database has its own log cache.

When a user transaction is committed (either explicitly via a COMMIT
statement, or implicitly), SQL Server writes all changes from the Log
Cache out to the log files on disk. This process is termed a log flush. The
user that issued the commit must wait until the log flush is complete
before they can continue. If the log flushes takes a long time, this will
degrade the user's response time.

Memory Utilization
(% Memory Used)

Total amount of physical RAM consumed by the various processes.

High utilization (over 90%) along with high swapping and paging rates
indicates that the amount of physical RAM should be increased.

Network Collisions Number of times when two computers send packets at the same time on
the network and the packets "collide" so that both packets must be re-
transmitted.

Network Incoming
Traffic (KB) Volume of data received on all network interfaces.

Network Outgoing
Traffic (KB) Volume of data sent on all network interfaces.

Network Traffic
Volume (KB) The total of incoming and outgoing network traffic.

Non-SQL Server
CPU Usage (% CPU
Busy)

Overall CPU consumption not associated with the monitored SQL Server
instance.

Non-SQL Server Overall resident memory consumption not associated with the monitored

 X

Resident Memory
Usage (% CPU
Busy)

SQL Server instance (background and foreground processes).

OLAP CPU Usage
 (% CPU Busy) CPU consumption of the Analysis Services processes.

OLAP Resident
Memory Usage

Amount of physical memory consumed by the Analysis Services
processes.

Parallel
Coordination

The time spent by the various processes coordinating parallel query
threads and exchanging data.

Physical I/O Number of physical I/O operations performed.

Run Queue Length
(Processes/Threads)

System average run queue.

The CPU run queue is a holding area for threads and processes that
require the CPU when the CPU is busy serving other processes. The run
queue length is an indicator of whether the system has sufficient CPU
resources for all the processes it executes.

High values along with high CPU utilization, indicates that the system
requires faster or more CPUs to handle the given load.

SQL Agent CPU
Usage (% CPU
Busy)

CPU consumption of the SQL Agent service (related to the monitored
instance).

SQL Compilations Number of SQL compilations.

SQL Executions Number of statements executed during the current interval.

SQL Executions
Ended Number of statements whose activity finished during the current interval.

SQL Executions
Started Number of statements started running during the current interval.

SQL Recompilations Number of SQL re-compilations.

SQL Server
Background CPU
Usage (MB)

Amount of memory consumed by the monitored SQL Server instance
background processes, both physical and swap memory.

SQL Server Cache
Memory (MB)

Total amount of dynamic memory the server is using for the dynamic
SQL cache.

SQL Server
Connection Memory
(MB)

Total amount of dynamic memory the server is using for maintaining
connections.

SQL Server CPU
Usage (MB)

Overall SQL Server processes CPU usage.

SQL Server Background CPU Usage + SQL Server Foreground CPU

 XI

Usage
SQL Server
Foreground CPU
Usage (% CPU
Busy)

CPU time consumed by the monitored SQL Server instance user
(session) processes.

SQL Server Free
Memory Total number of free pages on all free lists.

SQL Server Memory
Growth Pressure (%)

Relative amount of additional memory (measure in percents) that SQL
Server is willing to consume.

Values higher than 20% might indicate that the system is low on physical
memory.

100 * Total SQL Instance
Memory 100 -
Target SQL Instance Memory

SQL Server
Optimizer Memory
(MB)

Total amount of dynamic memory the server is using for query
optimization.

SQL Server Physical
I/O Operations

Total number of pages read or written to disk. These operations require
physical disk access (although some may be satisfied by the file system
cache).

Page Reads + Page Writes

SQL Server

Procedure Cache
Memory

Number of pages used to store compiled queries.

SQL Server Swap

Memory Usage
(MB)

The amount of virtual memory that the SQL Server process has reserved
for use in the paging file(s).

SQL Server/System
CPU Usage (% CPU
Busy)

The amount of CPU consumed by the entire system broken into SQL
Server and Non-MSSQL activity.. High values indicate that SQL Server
is a major CPU consumer and is likely causing bottlenecks. It is thus the
object of tuning efforts. Low values indicate other system activity as the
major CPU consumer and the problem solution likely resides with other
applications or at the operating system level.

Table Lock
Escalations

Number of times a lock on a table has been escalated.

Target SQL Server
Memory (MB)

Total amount of dynamic memory the server is willing to consume. A
value significantly higher than Total SQL Instance Memory might
indicate that the system is low on physical memory.

Total CPU Usage
(MB)

Overall operating system CPU Usage (including SQL Server).

Total Kernel CPU Usage + Total User CPU Usage
Total Free Memory Amount of free RAM in the system.

 XII

(MB)

Total Kernel CPU
Usage

Percentage of CPU time consumed by the operating system's processes
(kernel mode activities).

Total Logical Reads Number of system-wide logical reads. The metric counts both Physical
I/O reads which require disk access and reads which were satisfied
entirely by the operating systems file cache.

Total Logical Writes Number of system-wide logical writes. The metric counts both Physical
I/O writes that require disk access and writes performed entirely in the
operating system's file cache.

Total Memory Usage
(MB)

Amount of memory consumed by entire OS processes (including SQL
Server), both RAM resident and swapped.

Total Physical I/O
Operations

Total number of disk operations (both read and write) performed by the
operating system. This metric does not include operations that were
satisfied using the file system cache.

Total Physical Reads + Total Physical Writes
Total Physical
Writes

Number of system-wide physical writes. The metric counts Physical I/O
writes that require disk access.

Total User CPU
Usage

Percentage of CPU time consumed by the operating system's processes
(user mode activities).

Total SQL Server
Memory (MB)

Amount of memory consumed by SQL Server, both RAM resident and
swapped.

 XIII

Appendix F: General Information and Scripts
The information and experiments provided in this project are applicable to any database in both

Oracles 9i and SQL Server 2000.

All scripts and the database used for this project are provided on the CD with all other relevant

information.

There are no passwords needed to re-execute any part of this project except that when you are

logging on to Oracle Enterprise Manager one has to be the Administrator otherwise you will not

have all necessary rights.

Below are same of the important scripts used for the creation of database schema, indexes and an
UPDATE/DELETE script used for same scenarios.

Declaimer: These scripts are very dangerous thus use at own risk

-- Oracle 9i PerformanceTestingDatabase create constraints and
indices script

-- Oracle9i version
-- note: don't use "compute statistics" option; that will be done later

echo on
connect PerformanceTestingDatabase/g05s5782

select 'starting full indexing run' as message, to_char(sysdate,'MM-DD-YYYY
HH24:MI:SS') as time from dual;

select 'creating customer indices' as message, to_char(sysdate,'MM-DD-YYYY
HH24:MI:SS') as time from dual;

create index customer_username on customer (username) tablespace indx parallel;

select 'finished creating customer indices' as message, to_char(sysdate,'MM-DD-
YYYY HH24:MI:SS') as time from dual;

select 'creating subjects indices' as message, to_char(sysdate,'MM-DD-YYYY
HH24:MI:SS') as time from dual;

create index subjects_subjectname on subjects (subjectname) tablespace indx
parallel;

select 'finished creating subjects indices' as message, to_char(sysdate,'MM-DD-
YYYY HH24:MI:SS') as time from dual;

select 'creating products indices' as message, to_char(sysdate,'MM-DD-YYYY
HH24:MI:SS') as time from dual;

 create index products_subjectid on products (subjectid) tablespace indx
parallel;

create index products_booktitle on products (booktitle) tablespace indx
parallel;

 XIV

 create index products_author on products (author) tablespace indx
parallel;

select 'finished creating products indices' as message, to_char(sysdate,'MM-DD-
YYYY HH24:MI:SS') as time from dual;

select 'creating ordercluster indices' as message, to_char(sysdate,'MM-DD-YYYY
HH24:MI:SS') as time from dual;

 create index ordercluster_orderid on cluster ordercluster tablespace indx
parallel;

select 'finished creating ordercluster indices' as message, to_char(sysdate,'MM-
DD-YYYY HH24:MI:SS') as time from dual;

select 'creating orders indices' as message, to_char(sysdate,'MM-DD-YYYY
HH24:MI:SS') as time from dual;

select 'finished creating orders indices' as message, to_char(sysdate,'MM-DD-
YYYY HH24:MI:SS') as time from dual;

select 'creating orderdetails indices' as message, to_char(sysdate,'MM-DD-YYYY
HH24:MI:SS') as time from dual;

select 'finished creating orderdetails indices' as message, to_char(sysdate,'MM-
DD-YYYY HH24:MI:SS') as time from dual;

select 'creating shoppingcart indices' as message, to_char(sysdate,'MM-DD-YYYY
HH24:MI:SS') as time from dual;

 alter table shoppingcart add constraint shoppingcart_customerid_FK foreign
key (customerid) references customer (customerid) parallel;
 alter table shoppingcart add constraint shoppingcart_bookid_FK foreign key
(bookid) references products (bookid) parallel;

select 'finished creating shoppingcart indices' as message, to_char(sysdate,'MM-
DD-YYYY HH24:MI:SS') as time from dual;

select 'finished full indexing run' as message, to_char(sysdate,'MM-DD-YYYY
HH24:MI:SS') as time from dual;

commit;
exit

--

-- Oracle 9i PerformanceTestingDatabase create Schema creation
Script

set echo on

-- log in as correct user
connect PerformanceTestingDatabase/g05s5782

 XV

-- drop objects
drop table shoppingcart;
drop table ordersdetails;
drop table orders;
drop table products;
drop table subjects;
drop table customer;
drop sequence customer_customerid_seq;
drop sequence orders_orderid_seq;
drop sequence orderdetails_orderitemid_seq;

-- create sequences
-- 10K scale factor: use "create sequence customer_customerid_seq start with
10001;"
-- 5M scale factor: use "create sequence customer_customerid_seq start with
5000001;"
create sequence customer_customerid_seq start with 5000001;
create sequence orders_orderid_seq;
create sequence orderdetails_orderitemid_seq;

-- create tables

-- behavior: read-only table
create table customer (
 customerid int NOT NULL,
 firstname varchar(30) NOT NULL,
 lastname varchar(30) NOT NULL,
 address1 varchar(30),
 address2 varchar(30),
 city varchar(30),
 state varchar(2),
 zip varchar(5),
 email varchar(50),
 phone varchar(20),
 creditcard varchar(30),
 creditcardexpiration varchar(4),
 username varchar(30) NOT NULL,
 password varchar(30) NOT NULL,
 constraint customer_customerid_PK primary key (customerid)
) organization index
 pctfree 0
 tablespace users;

-- behavior: read-only table
create table subjects (
 subjectid int NOT NULL,
 subjectname varchar(30) NOT NULL,
 constraint subjects_subjectid_PK primary key (subjectid)
) organization index
 pctfree 0
 tablespace users;

-- behavior: read-only table
create table products (
 bookid int NOT NULL,
 subjectid int NOT NULL,
 booktitle varchar(50) NOT NULL,
 author varchar(50) NOT NULL,
 price numeric(8,4) NOT NULL,
 retail numeric(8,4) NOT NULL,
 isbn varchar(20) NOT NULL,
 quantityonhand int NOT NULL,
 constraint products_subjectid_bookid_PK primary key (subjectid,bookid)
) organization index

 XVI

 compress 1
 pctfree 0
 tablespace users;

-- heap organized (all inserts will go at end of heap)
-- behavior: high insert rate, all of which is at the end of the table; no
updates or deletes
create table orders (
 orderid int NOT NULL,
 customerid int NOT NULL,
 orderdate date default CURRENT_DATE NOT NULL,
 netamount numeric(8,4) NOT NULL,
 tax numeric(8,4) NOT NULL,
 totalamount numeric(8,4) NOT NULL
) pctused 40 pctfree 5 initrans 2
 tablespace users
 storage (initial 5M next 5M pctincrease 0 freelists 10);

-- heap organized (all inserts will go at end of heap)
-- behavior: high insert rate, all of which is at the end of the table; no
updates or deletes
create table orderdetails (
 orderid int NOT NULL,
 orderitemid int NOT NULL,
 bookid int NOT NULL,
 quantity int NOT NULL
) pctused 40 pctfree 5 initrans 2
 tablespace users
 storage (initial 10M next 10M pctincrease 0 freelists 10);

-- behavior: high select, insert and delete rate throughout the table, but the
total number of rows does not grow above a few thousand; updates do not change
the size of the row
create table shoppingcart (
 customerid int NOT NULL,
 bookid int NOT NULL,
 quantity int NOT NULL,
 constraint shoppingcart_custid_bookid_PK primary key (customerid, bookid)
) organization index
 pctfree 5 initrans 2
 tablespace users
 storage (initial 5M next 5M pctincrease 0 freelists 10);

-- end

commit;
exit

--

-- Microsoft SQL Server 2000 version
-- create constraints and indices script

-- start
use PerformanceTestDatabase
go

-- create data table indices

select "starting full indexing run", getdate()

 XVII

go

-- customer index
create unique clustered index customer_customerid_clu on customer (customerid)
with fillfactor = 100
go
create unique index customer_username on customer (username) with fillfactor =
100
go

--subject index

create unique clustered index subjects_subjectid_clu on subjects (subjectid)
with fillfactor = 100
go
create index subjects_subjectname on subjects (subjectname) with fillfactor =
100
go

-- products index

create unique clustered index products_subjectid_bookid_clu on products
(subjectid, bookid) with fillfactor = 100
go
create unique index products_bookid on products (bookid)
create index products_booktitle on products (booktitle)
create index products_author on products (author)
go

-- fully covered index for specials listing on homepage
create index products_specials on products (subjectid, bookid, booktitle,
author) with fillfactor = 100
go
-- fully covered index for browse query on subjectid or subject name
create index products_searchsubject on products (subjectid, booktitle, author,
price, retail, bookid) with fillfactor = 100
go
-- fully covered index for browse query on author name
create index products_searchauthor on products (author, retail, price,
booktitle, bookid) with fillfactor = 100
go

-- orders

-- don't use a clustered index -- it leads to contention on the last index page
as new rows are inserted

create unique index orders_orderid on orders (orderid)
go

-- orderdetail

create unique clustered index orderdetail_clu on orderdetails
(orderid,orderitemid)
go

-- shoppingcart

create unique clustered index shoppingcart_clu on shoppingcart (customerid,
bookid)
go

-- add constraints

 XVIII

-- if there wasn't already an index on products(subjectid), this would create
one
alter table products add foreign key (subjectid) references subjects
(subjectid)
go

alter table orders add foreign key (customerid) references customer
(customerid)
go

alter table orderdetails add foreign key (orderid) references orders
(orderid)
go
alter table orderdetails add foreign key (bookid) references products
(bookid)
go

alter table shoppingcart add foreign key (customerid) references customer
(customerid)
go
alter table shoppingcart add foreign key (bookid) references products
(bookid)
go

-- end
select "finished full indexing run", getdate()
go
checkpoint
go

--

-- Microsoft SQL Server 2000 version
-- create tables

-- start
use PerformanceTestDatabase
go

-- create data tables

-- customer

create table customer (
 customerid int not null,
 firstname varchar(30) not null,
 lastname varchar(30) not null,
 address1 varchar(30),
 address2 varchar(30),
 city varchar(30),
 state varchar(2),
 zip varchar(5),
 email varchar(50),
 phone varchar(20),
 creditcard varchar(30),
 creditcardexpiration varchar(4),
 username varchar(30) not null,
 password varchar(30) not null
)
go

 XIX

-- subjects

create table subjects (
 subjectid int not null,
 subjectname varchar(30) not null
)
go

-- products

create table products (
 bookid int not null,
 subjectid int not null,
 booktitle varchar(50) not null,
 author varchar(50) not null,
 price money not null,
 retail money not null,
 isbn varchar(20) not null,
 quantityonhand int not null
)
go

-- orders

create table orders (
 orderid numeric(9,0) identity not null,
 customerid int not null,
 orderdate datetime not null,
 netamount money not null,
 tax money not null,
 totalamount money not null

)
go

-- create default_orderdate function to set default value for orders.orderdate

create default default_orderdate as getdate()
go
sp_bindefault default_orderdate,"orders.orderdate"
go

-- orderdetails

create table orderdetails (
 orderid int not null,
 orderitemid numeric(9,0) identity not null,
 bookid int not null,
 quantity int not null,
)
go

-- shoppingcart

create table shoppingcart (
 customerid int not null,
 bookid int not null,
 quantity int not null,
)
go

-- end
checkpoint

 XX

go

-- Microsoft SQL Server 2000 version/ Oracle 9i

Purpose: Example: UPDATE/DELETE in a loop and commit very X records
 Handy for huge tables that cause rollback segment problems
 DON'T ISSUE COMMIT TOO FREQUENTLY!

declare
 i number := 0;
 cursor s1 is SELECT rowid, t.* FROM tab1 t WHERE col1 = 'value1';
begin
 for c1 in s1 loop
 update tab1 set col1 = 'value2'
 where rowid = c1.rowid;

 i := i + 1; -- Commit after every X records
 if i > 10000 then
 commit;
 i := 0;
 end if;

 end loop;
 commit;
end;
/

-- Note: More advanced users can use the mod() function to commit every N rows.
-- No counter variable required:
--
-- if mod(i, 10000)
-- commit;
-- dbms_output.put_line('Commit issued for rows up to: '||c1%rowcount);
-- end if;
--

