
Text to Adventure Game: Automated Generation

of Adventure Games Based on Fiction Text

Submitted in partial ful�lment

of the requirements of the degree

Bachelor of Science (Honours)

of Rhodes University

Ross Berkland

09th November 2009

1

Abstract

Recent advancements in the Text-to-Scene �eld of research have lead to the devel-

opment of a system which automatically extracts key concepts from the text of a

�ction book and generates a computer animated movie depicting the story. This

project extends this idea by creating a Text-to-Game system capable of converting

text into a fully playable game. In order to achieve this we focus on recreating the

environment, characters and events described in the text. Evaluation of the system

occurs through user tests in which participants are asked to measure the accuracy

with which the game represents the events, characters and goals described in the

story. It is shown that the game created by the system it an accurate representation

of the text. Also, we discuss the system as a rapid prototyping tool and a new

method for automated game generation.

2

Acknowledgments

I would like to thank my supervisor Shaun Bangay for his guidance and constant

enthusiasm; The VRSIG for their support and insight; and the Computer Science

Department of Rhodes University for provided the facilities which have made this

research possible. I also acknowledge the �nancial and technical support of this

project of Telkom SA, Comverse SA, Stortech, Tellabs, Amatole, Mars Technologies,

Bright Ideas Projects 39 and THRIP through the Telkom Centre of Excellence at

Rhodes University

Contents

1 Introduction 8

1.1 Problem Statement . 8

1.2 Thesis Outline . 8

2 Related Work 10

2.1 Introduction . 10

2.2 Natural Language and Digital Media 11

2.2.1 Structure of Natural Language 11

2.2.2 Text-to-Scene Systems . 12

2.2.2.1 Existing Text-to-Scene Systems 12

2.2.2.2 Common components 14

2.2.2.3 Other Applications of the Text-to-Scene Concept . . 14

2.3 Narrative and Game Structures . 15

2.3.1 Interactive Narratives . 15

2.3.2 Emergent Interactive Narratives 16

2.3.3 Game Structures . 17

2.4 Game Development . 17

2.4.1 Manual Game Development 17

2.4.1.1 Programming Based Development 18

2.4.1.2 Non Programming Based Development 18

2.4.1.3 Markup Language in Games 19

2.4.2 Automated Game Development 20

2.5 Summary . 20

3

CONTENTS 4

3 Design 22

3.1 System scope . 22

3.2 System Components . 22

3.2.1 The Game Engine . 23

3.2.2 The Environment . 23

3.2.2.1 The Map generator 24

3.2.3 The Characters . 24

3.2.4 The Goals . 25

3.2.5 The Game Generator . 26

3.3 System overview . 27

3.4 Summary . 27

4 Implementation 29

4.1 The Annotations . 29

4.2 The Game Engine . 29

4.2.1 XML in Glest . 30

4.2.2 The Glest Binary Map . 30

4.2.3 The Tech Tree . 31

4.2.4 The Scenario . 32

4.3 The Map Generator . 33

4.3.1 Regions . 34

4.3.2 Creating Regions . 35

4.3.3 Paths . 37

4.3.4 Path Creation . 37

4.4 The Game Generator . 39

4.4.1 Creating the Scenario . 40

4.4.2 Creating Factions . 40

4.4.3 Creating Characters . 40

4.4.4 Creating the goals . 41

CONTENTS 5

5 Evaluation 43

5.1 Goals . 43

5.2 Methodology . 43

5.2.1 The Story . 44

5.2.2 The Questionnaire . 44

5.2.2.1 Measuring game Accuracy 44

5.2.2.2 Measuring the Quality of the Game 44

5.2.2.3 The Process . 45

5.3 Results . 46

5.3.1 Accuracy of the Map . 46

5.3.2 Accuracy of the Characters 47

5.3.3 Accuracy of the Events . 47

5.3.4 Technical Soundness . 48

5.3.5 Interface and Control Scheme 49

5.3.6 Additional Comments . 49

5.4 Experimental concerns . 49

5.4.1 User testing issues . 50

5.4.2 Alternative Evaluation Methods 50

5.5 Summary . 51

6 Conclusion 52

6.1 Summary . 52

6.2 Conclusions . 52

6.3 Contributions . 53

A User Evaluation 54

A.1 Story for user evaluation . 54

A.2 Questionnaire . 55

A.3 Results . 56

List of Figures

2.1 Example of text annotated with XML [9] 14

2.2 De�ning Properties for a custom unit in Glest 19

3.1 Overview of the system scope . 22

3.2 Overview of the map generator design 24

3.3 Example of the character tree structure 25

3.4 Relevance of the game generator within the system. 26

3.5 System structure overview . 28

4.1 GDF skeleton. 30

4.2 Creation of the cell struct and cells array 31

4.3 Screen capture of the Glest map editor 32

4.4 Scenario �le skeleton. 33

4.5 Region class information . 34

4.6 Region Example 1 . 36

4.7 Region Example 2 . 37

4.8 Unsmoothed path running over extremely jaggy terrain 38

4.9 Terrain smoothed by path smoothing algorithm 39

4.10 Goal annotations . 42

4.11 Goal annotations . 42

6

List of Tables

4.1 Scenario property de�nitions. 33

4.2 Character Tree �le structure . 41

5.1 Results for the map portion of the evaluation. 46

5.2 Results for the map portion of the evaluation. 47

5.3 Results for the map portion of the evaluation. 48

5.4 Results for the map portion of the evaluation. 48

5.5 Results for the map portion of the evaluation. 49

A.1 Results from user tests . 56

7

Chapter 1

Introduction

1.1 Problem Statement

Text-to-scene (TTS) systems have become an increasingly popular means for visu-

alising the textual description of an event or story. We extend this by creating an

interactive form of TTS system to emulate the experience of adventure books in a

virtual world. To achieve this we show that it is possible to convert a book into

a game by solving the problems involved in building such a system. This involves

translating the environment described in the text into a virtual map; creating vir-

tual characters which accurately match their textual counterparts; and �nally by

recreating the events of the story as achievable game goals.

While converting a book into a game is one of the primary goals of this research,

we also evaluate the system as a new, automated attempt to game development.

We aim to show that our Text-to-game system can simplify the game development

process by separating the game description from the actual implemented software

(source code) giving us a rapid prototyping system for games and a method for

customising the �nal game with ease and e�ciency.

1.2 Thesis Outline

The rest of this paper describes related work in various other �elds and provides

detail into the workings of our system. It adopts the following structure:

• In Chapter 2 we describe some of the research done in related �elds and show

how it ties into this project. In particular we look at research from the text-

to-scene and automated game generation �elds.

8

CHAPTER 1. INTRODUCTION 9

• Chapter 3 presents the design of the system. In particular we consider what

is required to generate the characters, map and events given the textual an-

notations..

• Chapter describes how the system is implemented. More speci�cally, we look

at the implementation of the various system components.

• Chapter 5 describes an evaluation of the system. First, the experimental

methodology is described and then results are discussed.

• In Chapter 5 we provide a summary of our results which is followed by the

�nal conclusion in which we summarise what this research has achieved

Chapter 2

Related Work

2.1 Introduction

Research on text-to-scene systems has become increasingly widespread. The capabil-

ities of these systems have evolved from the ability to �nd several pictures relating to

a piece of text to the generation of fully animated 3-dimensional scenes. Researchers

are also discovering a multitude of applications for such systems extending out as

far as the legal and law enforcement �elds. This is partly due to the rapid growth

of digital media as a means for communication and entertainment. Another fast

growing area of computer science is that of computer games. As is discussed in later

sections of the paper, game development is becoming increasingly popular as not

only an educational tool but also a career choice.

This chapter discusses key elements from both the Text-to-Scene and computer game

�elds and combines them to identify potential components for use in the development

of a Text-to-Adventure game system. This is done by examining 3 main areas of

research. The �rst deals with the applications which create a relationship between

natural language and digital media such as Parts-of-Speech taggers and Text-to-

Scene systems. Secondly, the paper discusses the structures that computer games

and their narratives typically tend to assume. Finally, various aspects of game

development and design are discussed. While these are signi�cantly di�erent areas

of research, we join them in a logical and meaningful manner to de�ne a structure

for the Text-to-Game system.

10

CHAPTER 2. RELATED WORK 11

2.2 Natural Language and Digital Media

Digital media such as computer generated movies, digital art and video games have

become increasingly popular. However, modeling a 3D scene on a computer is

generally more time consuming than describing that same scene in words. This

has led to the development of a new �eld in computer science known as text-to-

scene conversion. By taking natural language as input, these systems generate a

digital picture or scene with the aim of depicting the scene as accurately as possible.

Understanding these systems requires basic knowledge about how they function

which is described below. This section also presents details on existing text-to-scene

systems and various applications of the concepts behind such systems.

2.2.1 Structure of Natural Language

Text-to-Scene systems must have the ability to �nd key phrases in the input text

to generate the correct contents in the associated scene. This can be done with

Parts of Speech (POS) taggers. These applications make use of information about

a particular language in order to �nd those parts of speech which may be relevant.

Development of Parts of Speech taggers has been active for many years and papers

on the subject can be found dating back to 1980 as can be seen in Svartvik [26]. The

basic concept behind these taggers is that of annotation of text. The tagger will

parse the given text and on discovering signi�cant words, will tag them with some

form of markup language, typically XML Glass and Bangay [10]. These annotations

are important in development of the scene-to-adventure game system as will be seen

later. As mentioned above and con�rmed by Glass and Bangay [10], the interpre-

tation of written text is necessary for the creation of a text-to-scene system. As a

�rst step towards creating an autonomous text-to-scene system, Glass and Bangay

[10] o�er an evaluation of several of the freely available parts-of-speech taggers. The

research also involves combining existing taggers for increased accuracy. However,

accuracy of these taggers are not within the scope of this paper so much as the

mere fact that these systems exist. The idea of annotating text for the purposes of

a text-to-scene system is extended by Glass and Bangay [11] in which they o�er a

method for speaker identi�cation in �ction books with approximately 80% accuracy.

The approach taken in developing the system involves making use of a collection of

parts-of-speech taggers (as mentioned above) for the purposes of giving clues for

speaker identi�cation. This system could be largely helpful in the development of a

scene-to-adventure game system due to the large quantity of narration and dialog

CHAPTER 2. RELATED WORK 12

in typical �ction books.

2.2.2 Text-to-Scene Systems

2.2.2.1 Existing Text-to-Scene Systems

Many text-to-scene systems have been developed to date, most of which di�er in

their methodology and output. Typically a text-to-scene system can be described as

one which takes text as its input and generates a scene depicting that text. Those

systems which adhere to this de�nition can be placed in one of three categories

regarding their output. That is to say that the current text-to-scene systems typ-

ically output either pictures (text-to-picture)Zhu et al. [30], still 3D scenes Coyne

and Sproat [6], Sproat [25] or animated 3D scenes Ma [18], Glass and Bangay [13].

These systems make use of the above mentioned parts-of-speech taggers in order to

annotate the text in meaningful way with some markup language.

Text-to-Picture

A system is introduced by Zhu et al. [30] in which they attempt to augment com-

munication through use of a text-to-picture system. The system functions by �rst

selecting those key-phrases from the given text which are most picturable1. It then

attempts to �nd pictures which best match the key-phrases by using words similar

to the key phrase to search a database of pictures Zhu et al. [30]. These pictures are

then positioned based on the text. For example, if the text speci�ed that mug was

on a table, the picture of the mug would be placed above the picture of the table.

While the system speci�ed in Zhu et al. [30] is designed for augmented communica-

tion, its simplicity may have prevented it from reaching its goal. Using nothing but

pictures to represent the idea described by a piece of text may remove and possibly

distort the meaning of the text. This is where the true value of modern text-to-scene

systems can be seen which is explained next

Static Text-to-Scene

Systems such as Wordseye, detailed by Coyne and Sproat [6], improve on the concept

of the above mentioned text-to-picture systems by rendering 3D scenes. This gives

systems like Wordseye the ability to not only illustrate the objects mentioned in

1Ease with which an idea can be illustrated with pictures

CHAPTER 2. RELATED WORK 13

text but also the spatial relation between them. This allows for a clearer and more

accurate representation of the scene described by the text. Another important aspect

of text-to-scene used in the Wordseye system is the use of 3D models as opposed to

the pictures used by Zhu et al. [30].

The Wordseye system makes use of an object database which contains all of the

potential models to be used in the rendered scenes Coyne and Sproat [6]. A database

such as this one would be crucial to the implementation of a scene-to-game system if

the process is to be fully automated. Additional functionality found in the Wordseye

system is that of the inferred environment, an extension developed by Sproat [25].

By considering the context of the scene described in the text Sproat [25] is able to

infer information about the environment. A text-to-game system would require such

functionality as large 3D open worlds are becoming more and more common as the

backdrops for adventure games. However, it must be noted that the input used by

many of the text-to-scene systems such as Wordseye takes in a speci�c storytelling

structure dissimilar to natural-language text.

Animated Text-to-Scene

The third type of text-to-scene system is those which generate animated 3D scenes.

The complexity and potential value of these systems is far greater than that of the

simpler systems. Not only do these systems consider the spatial properties of objects

but also their temporal nature. It is for this reason that these systems are highly

applicable when considering the design of a scene-to-game system. Recently, Glass

and Bangay [13] developed a system in which �ction text is converted into a 3D

animated scene. The system works by annotating the text through use of the parts-

of-speech taggers used in their earlier work Glass and Bangay [10]. An examples

of annotated text can be seen in Figure 2.1. The annotated text is then used to

create constraints which are solved to create trajectories and spatial relations for

the objects Glass and Bangay [12, 13]. Finally, this information is used in creating

an animated scene.

While several text-to-scene systems do exist, it is those which have the ability to

recognize natural-language text which are of interest in the current context. The

CarSim Johansson et al. [14] and WordsEye Coyne and Sproat [6] systems require

text which is structured in a speci�c story form. Systems such as that created by

Glass and Bangay [13] and the CONFUCIUS Ma [18] system can use input text

extracted directly from unmodi�ed �ction books. This type of functionality would

be a great asset to a scene-to-adventure game system in that there are countless

CHAPTER 2. RELATED WORK 14

�ction texts available with the potential to become fully-�edged adventure games.

It should be noted that the constraints used by Glass and Bangay [13] may be

unnecessary in a scene-to-game system as we wish to grant the player the freedom

to perform their own actions. However, The concept of player freedom and choice

will be discussed further in Section 2.3.

Figure 2.1: Example of text annotated with XML [9]

2.2.2.2 Common components

In designing a Text-to-Game system it is useful to consider the design of these Text-

to-Scene systems such as that presented by Glass [9] and Akerberg et al. [2]. An

investigation into these systems shows that most stories or texts are made uniquely

identi�able by 3 main elements, the environment, characters and events. For ex-

ample, consider the system o�ered by Glass [9] which makes use of the annotations

shown in 2.1. An investigation of these annotations shows that the system de�nes

characters as being avatars, the environment as being a setting and the events as

transitions and relations between characters and objects. Similarly, in the CarSim

system o�ered by Akerberg et al. [2], the vehicles relate to the characters or main

actors while the accident can be considered as the event and the road the environ-

ment.

2.2.2.3 Other Applications of the Text-to-Scene Concept

The systems mentioned above have valuable applications in various computer science

�elds. The technology found in such text-to-scene systems has been utilized to great

e�ect elsewhere as well. The CarSim system Johansson et al. [14] was developed

for visualizing tra�c accidents through a text based description of the event. This

technology could prove to be useful in a variety of �elds such as law, insurance and

safety. Durupinar et al. [7] have created a system for the reconstruction of crime

scene photographs. This makes use of text describing the contents of the photograph

to create a 3-dimensional reconstruction of the scene.

While these applications may not be applicable to the development of a scene-to-

adventure game system, it is interesting to note that the text-to-scene concept is

CHAPTER 2. RELATED WORK 15

very much in use and supported.

As we can see from the above discussions, the technology which exists in text-to-

scene research has progressed signi�cantly. The ability to render 3D scenes found in

current text-to-scene systems can be adapted to allow for the creation of computer

games. The next section describes how various narrative structures can be used to

create more realistic and enjoyable games.

2.3 Narrative and Game Structures

While text-to-scene systems have many components which could be useful in the

development of a scene-to-game system, the game design and narrative are also

vital parts of creating a game. While the game narrative will obviously be well

guided by the �ction text, the interactive nature of the game should allow for the

narrative to evolve as the game progresses. This section details the various narrative

structures used in interactive media along with the di�erent structures which video

games typically follow.

2.3.1 Interactive Narratives

Interactive narratives are those which have multiple story paths. A game which

makes use of interactive narratives allows users to make decisions which alter how

the story progresses Riedl et al. [22] .

The idea of interactive narratives in games is a very popular concept as increased

opportunity for choice lends itself to greater realism. The reason being that human

beings are not constrained by those elements which tend to limit a players choices

in games. For example, a prede�ned story or small map which depicts the entire

world hinders the amount of freedom which a player has. However, while choice

is desirable to a some extent, the lack of a narrative would greatly subtract from

the quality of an adventure game. It is for this reason that a trade-o� must be

made between interactivity and narrative structure. Riedl et al. [22] present this

problem as being storytelling versus simulation or a trade-o� between control and

coherence. In this approach storytelling describes the prede�ned coherent narrative

and simulation is the players ability to interact with the game and make decisions

or their control. Riedl et al. [22] approach this problem through the creation of an

automated story director which uses a high-level plot outline to guide the player.

Louchart et al. [17] take a similar approach to the issue by o�ering guidelines for

CHAPTER 2. RELATED WORK 16

narrative authoring such as considering di�erent actions which can be performed by

the player and the repercussions thereof.

The idea of interactive narratives can be tied to that of the text-to-scene concept

by looking at the Scene-Driver system Wol� et al. [29]. The system, developed by

Wol� et al. [29] in 2004 makes use of scenes from an existing children's television

show called Tiny Planets. It is represented in the form of a game in which children

are required to select dominoes which depict what will happen next in the story.

This is another area where the text-to-scene system could potentially be used. As

an alternative to re-using the Tiny Planets television show, existing �choose you own

adventure� style stories could be used as the narrative while a text-to-scene system

could be used in rendering the scene.

The terms interactive narrative and emergent narrative are often used interchange-

ably to describe those narratives giving the player choice and having alternate paths.

However, we must distinguish between those narratives which have prede�ned al-

ternate paths and those which have alternate paths as gateways to unde�ned story

elements. These emergent narratives will be described in the next section.

2.3.2 Emergent Interactive Narratives

The concept of interactive narratives can be extended to that of emergent narra-

tives which use less de�nitive story lines. Similarly to interactive narratives users

are given the ability to make choices. However, in an emergent narrative those

choices which the users make can alter the narrative in new unde�ned ways. Unlike

basic interactive narratives which tend to coerce the player into conforming to some

or other storyline, emergent narratives attempt to create new story-lines to accom-

modate the players decisions. Louchart et al. [16] de�ne the author's role in an

emergent narrative and subsequently give guidelines for ful�lling the role at design

time.

Similarly to interactive narratives, emergent narratives can be linked to text-to-

scene systems. Implementation of a scene-to-adventure game system would be the

perfect case of this. The �ction text will be used in constructing a game world and

emergent narrative in which the player will be able to explore alternative storylines

not mentioned in the text.

CHAPTER 2. RELATED WORK 17

2.3.3 Game Structures

While narratives play an important role in creating a game with playable value, the

game mechanics must also be considered. These can often work hand in hand with

the narratives. Lindley [15] provides several ideas relating to the structure of games

in terms of their goals and narratives. While the paper does not o�er much in the

way of research methodology, some interesting ideas are mentioned by relating to

the structure of games. Game structure is highly dependent on the type of narrative

used but the way in which the game world could be represented at any given point

is also important. For example, the game could follow a tree-like structure whereby

each leaf or node would represent some event or scenario Lindley [15]. Alternatively,

the game could be stateful whereby attributes would represent all of the objects in

the game world and the values of those attributes would determine the current state.

Knowledge of game and narrative structures is important in developing a text-to-

game system as the game is dependent on the story. However, in order to use such

concepts we must �rst discover any limitations which implementation may present.

The following section discusses the various methods available for game development

and how they can be used in the creation of a text-to-game system.

2.4 Game Development

With user created content becoming increasingly popular, more and more tools for

game development have emerged. Numerous open source engines and game devel-

opment tools have been made available. These ranging from entirely new languages

to applications purpose built for the development of game creation. This section

details the most relevant of these tools and their uses.

2.4.1 Manual Game Development

As mentioned above, a large jump in the availability of game development tools has

caused creating games to become increasingly popular. While projects are being

undertaken relating to automatic game development, these systems would not be

possible without some initial manual development.

CHAPTER 2. RELATED WORK 18

2.4.1.1 Programming Based Development

While many of the game development tools currently available do not require any

programming language, game development is still an area which has high educational

value. It is no longer uncommon for universities to o�er courses and perhaps even

majors in the �eld of game development Finkel et al. [8]Argent et al. [4]. Schaefer

and Warren [23] provide a guide for teaching students about geometric modeling

and computer graphics through game design. Many open source games engines and

languages exist such as the Glest engine2 which makes a perfect candidate for use

in the scene-to-adventure game system which will be discussed in Section 2.4.1.3.

2.4.1.2 Non Programming Based Development

The development of non-programming based game development tools is responsible

for a large surge in the number of independent games currently available. These

tools can also be used to speed up the game development process for existing game

developers.

Torrente et al. [28] provide an open source environment, the <e-Adventure3D>,

for the creation of 3-dimensional educational adventure games. The application

Torrente et al. [28] simply consists of an authoring tool and game engine giving those

users with no programming knowledge the ability to create games. A noticeable

part of the system Torrente et al. [28] is that the storyboard for the created games

uses an XML-based language and modifying the game becomes as simple as editing

certain variable values. This use of XML has potential to be largely useful in the

development of a scene-to-adventure game system and is discussed further in the

next section.

Many other systems exist which allow users to create games without using any

programming language such as GameMaker3 and Adventure Game Studio4. These

systems o�er development techniques such as a drag-and-drop interface and generic

objects which prove that large parts of game development can be generalized. This

is of great importance in developing a text-to-game system

2http://www.glest.org/en/engine.php
3http://www.yoyogames.com/gamemaker
4www.adventuregamestudio.co.uk

CHAPTER 2. RELATED WORK 19

<uni t>
<parameters>

<s i z e va lue='#' />
<he ight va lue='#' />
<max−hp value='#' r eg ene ra t i on ='#' />
<max−ep value='#' r eg ene r a t i on ='#' />
<armor value='#' />

Figure 2.2: De�ning Properties for a custom unit in Glest

2.4.1.3 Markup Language in Games

The creation of non programmer based game development tools has become in-

creasingly popular. Much e�ort has gone into creating systems which will allow

the creation of both simple and advanced games with minimal e�ort. In order for

this to be achieved, it was necessary for developers to create generic interfaces to

make game engines accessible to those unfamiliar with programming. Sepchat et al.

[24] created a semi-automated game creation system which creates tactile games for

visually impaired children. While the scope of such a system is signi�cantly smaller

than that of the potential scene-to-adventure game system, it is interesting to ob-

serve the interface used as it makes use of generic properties which can be tweaked

to alter the game.

One way of accomplishing this is through the use of a markup language such as

XML. Simply �lling in meta data is a much easier process than learning to program.

Many of the systems mentioned above such as the <e-Adventure3D> Torrente et al.

[28] and the Glest engine 5 make use of XML in the same manner. An example of the

typical use of XML in the Glest engine can be seen in Figure 2.26. Moreno-Ger et al.

[19] developed a system similar to <e-Adventure3D> Torrente et al. [28] which also

makes use of a markup language for the story board and a processor (game engine)

for the language.

These markup language interfaces prove to be very useful in the development of a

scene-to-adventure game system as XML is used to a large extent in both text-to-

scene system and several modern game engines.

5http://www.glest.org/en/engine.php
6http://glest.wikia.com/wiki/GAE/Unit_XML

CHAPTER 2. RELATED WORK 20

2.4.2 Automated Game Development

Automated game development is still a relatively small �eld. However, work is being

done on creating systems which automate the design process for games. Nelson

and Nelson and Mateas [20] developed a prototype system which is aimed at the

automatic creation of small �WarioWare� style games7 such as clicking on a fast

moving object in a small screen. The main tasks are building the system with

the ability to make sense of the abstract rules for the games and determining some

methods for visualizing these rules. Nelson and Mateas [20] also faced the problem of

dealing with common sense as the system worked by allowing users to specify verbs

or nouns to describe the game. Another attempt at automated game creation was

made by Togelius and Schmidhuber [27] in which the initial game was generated and

left to evolve. This involves the creation of neural networks to guide the evolution of

the NPC (Non-player character) 8 controllers as well as the game rules Togelius and

Schmidhuber [27]. However, the paper does not contain results and it is therefore

di�cult to imagine the possible current applications of such a system.

While these systems have potential in opening a new �eld of computer science, the

methods which they use are only applicable to a very limited set of small games.

The development of a scene-to-adventure game is a far more plausible concept with

the currently available technology as the story and narrative structure provide a

basis for the goals and events of the game.

In this section we have shown that there is a clear link between the input of several

of the available game development tools and the annotated text which modern text-

to-scene systems generate in creating their output.

2.5 Summary

These 3 signi�cantly di�erent research areas provide the resources needed to create a

working Text-to-Game system. Parts-of-Speech taggers and Text-to-Scene systems

have all of the functionality required for the initial step of annotating the �ction

text e�ciently and with a usable level of accuracy. Relating directly to this is

the structure which many modern games are taking by creating generic interfaces

for ease in game development. With this functionality available we show how the

annotations acquired from the �rst step can be used in providing the initial detail

7Small and simple mini-games.
8A computer controlled actor such as an opponent.

CHAPTER 2. RELATED WORK 21

for the games. This can then be used in crafting enjoyable and playable games with

rich environments and narratives based on popular �ction texts. Another important

aspect of this survey is the design of text-to-scene systems. Separating such a system

into 3 main components, namely the environment characters and events, provides a

good starting point for the design of our Text-to-Game system.

Chapter 3

Design

3.1 System scope

The concept of a Text-to-Game system is best thought of as a process. Like most

systems it is typically concerned with taking input, modifying that information in

some way, and producing output. However, while Text-to-Scene systems such as

that presented by Glass [9] deal with the annotation of text, we are not concerned

with this part of the process. Instead, we make use of prede�ned annotations to

give us the appropriate information meaning that any text is annotated by hand. It

should be noted that the story concepts which we use in the creation of the system

are those typically found in Adventure/Fantasy texts as they are best suited for

creating an enjoyable game. Figure 3.1 illustrates the scope of the system. The

actual components of the system will be described in the next chapter.

Figure 3.1: Overview of the system scope

3.2 System Components

Section 2.2.2.2 describes how existing Text-to-Scene systems exploit the idea that

most texts can be broken down into an environment, characters and events in their

design. We adopt this approach in designing our Text-to-Game system as we create

our components to accommodate these 3 key elements. Following sections in this

chapter detail how the system was designed in relation to these 3 elements. However,

22

CHAPTER 3. DESIGN 23

while these system components are crucial for the creation of a Text-to-Game system.

Implementation would not be possible without a game engine to support the creation

of the game. The next section describes the game engine used and how it relates to

the system.

3.2.1 The Game Engine

We make use of the Glest engine mentioned in section 2.4.1.1 as its extensive use of

XML is ideal for the text-to-game system. However, while this engine is suitable for

the needs of a Text-to-Game system, the implementation of the system components

are only applicable to the Glest engine. This means that switching to another

game engine would require major refactors of the system components. However,

by showing that the system is dependent on the game engine we generate another

potential problem. This problem is whether or it is possible to generate a game

engine

An important aspect of the engine which plays a large role in our system is that of

scenarios. Scenario are used to store all of the global information for a particular

game. For example, the characters to appear in the game, the name of the map and

the goals are all stored in the scenario. We make extensive use of this as it allows for

many game to be stored centrally and share the same resources (3D models, sounds,

images) therefore conserving physical memory.

The game also has the necessary provisions to aid the creation of those 3 key com-

ponents mentioned in section 2.2.2.2. However, these will be described in following

sections. The next section describes how part of the system was designed to handle

the creation of the environment in the game.

3.2.2 The Environment

Typically video games make use of maps to represent the environment. Therefore,

the words environment and map may be used interchangeably. In determining the

key features of the environment we examine an illustration of a map depicting the

world from the Lord of The Rings1 series of fantasy texts. We discover that there

are 2 main elements to such an environment. Those being points of interest and

paths.

1Popular fantasy text written by J. R. R. Tolkien.

CHAPTER 3. DESIGN 24

Points of interest are those places in the environment which have some signi�cance

in the story. For example, a point of interest may be a town or a major geographical

feature such as a lake or mountain. In order to create links between these 2 places

we need paths such as roads and footpaths.

In order to allow the system to create environments we require a map generator

capable of converting the appropriate annotations into an environment.

3.2.2.1 The Map generator

In order to create maps with the given annotations we have also created a map

generator. This is one of the major system components and is simply responsi-

ble for generating a map given the environment annotations. Figure3.2 shows the

relationship between the annotations and the map.

Figure 3.2: Overview of the map generator design

3.2.3 The Characters

In designing how the system handles characters it was necessary to examine what

character information would be available in the text. It was also necessary to con-

sider how characters could �t into the game. Typically characters in games are either

controlled by the player or the computer. Also characters in games are typically sep-

arated into teams which have opposing goals. Also, many fantasy texts have many

races (for example, trolls, humans and elves). Fortunately, strategy games such as

Glest make use of factions to separate characters into races or teams.

Another important aspect of the characters is their appearance. However, generating

the 3D models and textures for each character is outside of the scope of the project.

CHAPTER 3. DESIGN 25

Typically Text-to-Scene systems such as Wordseye Coyne and Sproat [6] and that

created by Zhu et al. [30] make use of an existing database of images or models.

We take the same approach by storing a set of 3D models and texture which can be

used for the characters appearance.

Along with this we realise that the spatial relationships between characters in a

book is important and so characters need starting positions which are relative to

the game map.

Examining this information we de�ne the initial properties which characters will

have. These include a name, a faction, a control method (computer or human), a

model (appearance) and a starting position . In order to structure these characters

into their factions appropriately we make use of the concept of a character tree.

Figure 3.3 illustrates the structure of an example character tree.

The next section describes how events will be recreated in the game.

Figure 3.3: Example of the character tree structure

3.2.4 The Goals

In creating the game we wish to recreate any events described by the text. However,

while one of the goals of the system is to accurately represent the events of the story,

we need to tailor those events to �t the playable game. For this reason, we describe

a way of converting those events which involve the playable characters into goals

which the player can complete. In order to achieve this it was necessary to create

a standard way of representing multiple di�erent types of goals. Examples of such

goals would be the character needing to reach a speci�c destination or collecting an

item before a speci�ed amount of time passes.

CHAPTER 3. DESIGN 26

Goals or objectives in games can be thought of as conditions which the player must

meet. Also, we consider that the completion of a goal often leads to some action

such as a reward for the player. We therefore initially consider a goal in terms of a

condition and action. However, we also need to know when to check these conditions

to see if they are met. We therefore introduce the concept of a trigger. Triggers

specify an action or event which must occur in order for a goal to be completed. This

allows us to know which conditions should be checked and when. Having de�ned

these 3 concepts we now consider goals in terms of triggers, conditions or actions.

While designing the goals and characters is an important part of the creation of

the system, a mechanism for generating these elements must also be discussed. The

next section describes the game generator which is responsible for converting the

character and goal annotations into their virtual forms.

3.2.5 The Game Generator

The game generator is the system component responsible for converting the anno-

tations into the characters and goals. However, this is not the game generators

only function. Section 3.2.1 describes the concept of a scenario. Another important

function of the game generator is the generation of the scenario �le. once the map,

characters and goals have been generated, the scenario �le is created and �lled with

the global game information. Figure 3.4 shows an overview of game generator in

relation to other relevant parts of the system.

The next section explains the overall system design and how the various components

�t together.

Figure 3.4: Relevance of the game generator within the system.

CHAPTER 3. DESIGN 27

3.3 System overview

While accurately generating the map, characters and goals is a necessary part of the

Text-to-Game process. It is also important that the system is structured in such a

way that allows these elements to eventually be combined to create a game. The last

system component which we de�ne is the actual Text-to-Game application. This

will simply be responsible for taking in the annotations and calling the map and

game generators to create the game. Figure 3.5 shows how all of the components

and elements mentioned in this section �t together to create structure of our Text-

to-Game system.

3.4 Summary

This section has discussed our design choices for recreating those key story elements

in the game. By considering each of these elements both in terms of the text and

the game we have created a system design capable of supporting our Text-to-Game

system. The next chapter discusses how we have implemented these system compo-

nents and provides a lower level explanation of how the system functions.

CHAPTER 3. DESIGN 28

Figure 3.5: System structure overview

Chapter 4

Implementation

In this section we describe how the concepts and system components mentioned

in Chapter 3 are implemented. However, we must �rst discuss the annotations in

context of the system. Also, we describe the facilities o�ered by the Glest engine as

these are used extensively throughout the system.

4.1 The Annotations

With the various game components come many di�erent annotations. For this reason

we require that annotations are stored centrally to avoid confusion. Therefore,

we have created the concept of a Game Descriptor File (hereafter referred to as

the GDF). The purpose of which is simply to store all of the annotations in the

same place. This means that whenever a component of the system requires some

annotation information it must parse the GDF to �nd what it is looking for. Figure

4.1 shows an outline of the GDF and all of the possible annotations.

The next section discusses the important facilities o�ered by the Glest engine.

4.2 The Game Engine

As Section 3.2.1 describes, implementation of the system components is relative to

the game engine. This section details the facilities made available by the Glest

engine as these are important aids in implementing the various system components.

The 3 main facilities provided by the engine are the Map class, the tech tree and

the scenario �le. We will begin by examining the Map class. However, before this

is done a brief explanation of the use of XML in the Glest engine is required.

29

CHAPTER 4. IMPLEMENTATION 30

<Game name>
<Map name>

<Regions>
<reg ion name rad iu s xcenter ycente r heightmin

heightmax jaggy ob j e c t s u r f a c e />
. . .

</Regions>
<Paths>

<path s t a r t end />
. . .

</Paths>
</Map>
<CharacterTree name>

<f a c t i o n value type />
. . .
<charac t e r name f a c t i o n s t a r t i n g p o s i t i o n model/>
. . .

</CharacterTree>
<Goals>

<Goal>
<Trigger></Trigger>
<Condition></Condition>
<Action></Action>

</Goal>
. . .

</Goals>
</Game>

Figure 4.1: GDF skeleton.

4.2.1 XML in Glest

Almost any element in the Glest engine is de�ned with an XML �le. This includes,

factions, characters (referred to as units in the Glest engine) and scenarios. Also,

some of these elements have additional resources which are all declared in the XML

de�nition �le. For example, units in Glest consist of a sound folder which stores

sounds, a models folder which stores the 3D models and the units XML �le which

de�nes all of the units properties.

We will now look at the �rst important facility o�ered by the Glest engine, the Map

class.

4.2.2 The Glest Binary Map

The maps which the game engine makes use of are stored using a Glest Binary

Map (.gbm) format. Map are stored as 2D array of cells, each of which has several

properties for de�ning the cell. Figure 4.2 shows the initialisation of the cells and

CHAPTER 4. IMPLEMENTATION 31

the information contained in each cell. Another important tool o�ered by the Glest

engine is the map editor (pictured in Figure 4.3) which allows for visual creation

of maps and is described in the next section. The map editor o�ers an overhead

view of the map and allows users to click on cells to change their properties. This

also introduces a useful concept which is the abstraction of brushing values onto the

map. Instead of simply editing one cell, users can change the 'brush' size and alter

all of the cells in a circular area (the brush tip) at the same time. This concept is

used extensively in the map generator portion of the system and will be explained

further in section.

The next important facility o�ered by Glest is the tech tree. This will be discussed

in the section below.

Ce l l ∗∗ c e l l s ;

struct Ce l l {
int s u r f a c e ; // t e x t u r e drawn onto the map
int ob j e c t ; // the o b j e c t (bu i l d i n g , t r e e) p laced on the map
int r e s ou r c e ; // the resource (go ld , s tone) p laced on the map
f loat he ight ; // the h e i g h t o f the map

} ;

Figure 4.2: Creation of the cell struct and cells array

4.2.3 The Tech Tree

The tech tree in Glest is a structured collection of �les and folders which is used to

separate the units (characters) into factions. A single tech tree can have any number

of factions which in turn can have any number of units. This is highly important

in our system as it o�ers the perfect facilities needed to create a character tree.

What should also be noted is the upgrades which factions have. While factions

are primarily for storing units, they also allow for upgrades. These are simply

modi�cations which can be applied to individual units in the faction. Upgrades are

worth mentioning as they provide a method for modifying characters after the game

has started. The next section describes the concept of a scenario within the Glest

engine.

CHAPTER 4. IMPLEMENTATION 32

Figure 4.3: Screen capture of the Glest map editor

4.2.4 The Scenario

As mentioned in Section 3.2.1, scenarios are a means for storing the information

about a particular game centrally. All of the details describing a particular game

are stored in the scenario �le. Figure 4.4shows an outline of the scenario �le while

Table 4.1 provides de�nitions for each of the properties found in the scenario �le. It

is worth taking note of the scripts section as this is where the goals and events for

games are stored. The Glest engine o�ers the facilities to create Lua scripts which

can be called from within the glest source code.

The next section describes the �rst major system component, the map generator.

CHAPTER 4. IMPLEMENTATION 33

<scenar io>
<d i f f i c u l t y va lue/>
<players>

<player c on t r o l f a c t i o n team/>
. . .

</p layers>
<map value/>
<t i l e s e t va lue/>
<tech−t r e e value/>
<de fau l t−r e s ou r c e s va lue/>
<de fau l t−un i t s va lue/>
<de fau l t−v ic to ry−cond i t i on s va lue/>
<s c r i p t s />

</scenar io>

Figure 4.4: Scenario �le skeleton.

Property Purpose

di�culty Determines how di�cult the game is. For example, a
more di�cult game may have stronger enemies.

player A character, or team of characters which will feature in
the game.

map Speci�es the virtual world in which the game will take
place.

tileset The tileset used will determine the type of scenery
found in the game. This is purely for aesthetic reasons.

tech-tree Speci�es the name of the character tree which will be
used in the game.

default-resources Used to toggle whether or not the various teams start
with a default value of resources which is speci�ed for

each faction.
default-units Used to toggle whether or not the various teams start

with the default units speci�ed for each faction.
default-victory-conditions Used to toggle whether or not the prede�ned default

values for the victory conditions will be used.
script Each (lua) script represents a di�erent trigger which

may be used in specifying goals for the game.

Table 4.1: Scenario property de�nitions.

4.3 The Map Generator

As mentioned in Section 3.2.2, the creation of a map depends on the ability to

create both points of interest and the paths between them. Therefore, the �rst task

in creating the map generator was to de�ne an abstract way of representing the

CHAPTER 4. IMPLEMENTATION 34

class Region {
public :
C i r c l e brush ; //The s i z e and coord ina t e s
double heightmin ; //The minimum he i g h t
double heightmax ; //The maximum he i g h t
double jaggy ; //The amount o f var iance in h e i g h t between c e l l s
int ob j e c t ; //The o b j e c t p laced onto each c e l l in the reg ion
int s u r f a c e ; //The sur f a ce drawn onto each c e l l in the reg ion
int r e s ou r c e ; //The resource p laced onto each c e l l in the reg ion

int dens i ty ; //The den s i t y o f the o b j e c t w i th in the reg ion
} ;

class Ci r c l e {
public :
f loat x ; //The x coord ina te o f [the cen ter o f] the reg ion
f loat y ; //The y coord ina te o f [the cen ter o f] the reg ion
f loat r ; //The rad ius o f the reg ion

} ;

Figure 4.5: Region class information

points of interest. The next section describes how we create such a representation.

4.3.1 Regions

In order understand the possible ways of representing points of interest we consult

the map class. As mentioned previously the 2D array structure of the the map

allows us to draw elements onto the map more than one cell at a time. Therefore

we recognise that it is possible to change the cell properties of entire areas on the

map. However, if we consider the complexity of drawing random shapes versus the

complexity of drawing circles we realise that much time and e�ort can be saved by

making use of circles to draw elements onto the map. This led to the creation of the

concept of a Region.

We de�ne a region as being a circular area with certain properties. Figure 4.5 shows

the properties of the Region class. As we can see the Region class has all of the

information contained in the cell struct along with a Circle (consisting of a radius

and coordinates) and some other values. This class allows us to create circular areas

with any object. The next section describes how these properties are used to create

regions on the map.

CHAPTER 4. IMPLEMENTATION 35

4.3.2 Creating Regions

In order to draw Regions onto the map it was necessary to create a makeRegion()

method. This works by looping through all of the cells in the map and checking if

the they fall inside the region. If a cell does fall inside the region, its height, surface,

object and resource are changed accordingly. Changing cell properties is done with a

respective method in the Map class. For example, the method changePointHeight(x,

y, height) will change the height of the cell speci�ed to the x and y coordinates.

While this method is e�cient for drawing regions, we do not always want the height

of the cells in a region to be the same. Therefore, we make use of the procedural

terrain generation techniques created by Alcock [3] to calculate realistically varying

heights. This allows us to create a range of geographical features including �at �elds,

rolling hills, lakes and mountains. The minimum and maximum heights of a region

are modulated by the respective properties in the region class while the extremeness

in the di�erence between the heights is altered by the 'jaggy' property. Figure 4.6and

4.7show samples of the regions created with the makeRegion() method.

Another important aspect of the the method is the ability to create regions with

varying object densities. This is done with a roulette wheel type selection in which

a random number is generated between 1 and 100. If the number is less than or

equal to the density property of the region it will be placed on the current cell. This

is an important facility especially when creating towns as the number of buildings

per an area of size n would be far smaller than the number of trees in a forest of

size n.

CHAPTER 4. IMPLEMENTATION 36

Figure 4.6: Region Example 1

CHAPTER 4. IMPLEMENTATION 37

Figure 4.7: Region Example 2

We shall now look at concepts of paths in relation to the system.

4.3.3 Paths

Paths are simply described as being a graphical guide between 2 points. Therefore

creating a path could be as simple as changing the texture of all of the cells between

2 points. However, this would create only straight paths. The next section describes

the techniques we use to create realistically formed paths.

4.3.4 Path Creation

Creation of the paths is done with a recursive subdivision algorithm. This means

that the midpoint between the start and endpoints is calculated and a path is created

between the start and middle points and another between the middle and end points.

However, the surface texture is only changed where the length of a path is less than

or equal to 1. Also, once a midpoint has been calculated, a horizontal and vertical

CHAPTER 4. IMPLEMENTATION 38

o�set the size of which is determined by the paths 'jaggy' property. This is added to

the position of the point. The size of the o�set is depended on the depth of recursion

meaning that large o�sets will only be seen towards the centre of the path. These

o�sets help in creating paths realistic paths which are not exactly straight.

Another key feature of the Path class is the smoothing algorithm. Prior to im-

plementation of the smoothing algorithm a path which went over a highly jaggy

mountain would be unwalkable. An example of such a path can be seen in Figure

4.8. The smoothing algorithm works by assigning the height of a given point, the

average of heights of surrounding points. The result of enabling this smoothing

algorithm can be seen in Figure 4.9.

Figure 4.8: Unsmoothed path running over extremely jaggy terrain

CHAPTER 4. IMPLEMENTATION 39

Figure 4.9: Terrain smoothed by path smoothing algorithm

The map generator is solely responsible for the creation of the map. This is unlike

the game generator which is responsible for the creation of all of the other elements

of the game. This includes that character tree and the goals. The next section

discusses how the game generator is implemented to create he character tree and

goals.

4.4 The Game Generator

As mentioned previously the game generator is responsible for the creation of the

character tree and the goals. Another important task of the game generator is the

creation of the Scenario �le as this is essentially what describes the entire game.

While the game generator is responsible for producing a large part of the game, it

should be mentioned that it is simply a python script which works by parsing the

GDF and producing the relevant game elements as well as an entire scenario �le

which is discussed in the next section.

CHAPTER 4. IMPLEMENTATION 40

4.4.1 Creating the Scenario

Figure 4.4 provides an outline of the scenario �le. Many of these these properties

such as the di�culty and default-victory-conditions are generated with default val-

ues. However, values such as the faction name and player nodes are created as the

the various components of the system are generated.

The next sections discuss how the character tree is generated.

4.4.2 Creating Factions

The �le structure of Factions can be seen in Figure 4.2. This consists of upgrades,

music, characters and an XML �le which describes the faction. Values in the XML

�le specify faction-speci�c characteristics such as the di�erent armor classes and

attack styles which the units in the faction will be able to use. In order to simplify

the process of creating a faction, we do not modify the XML �le for each faction,

instead we simply use a default faction XML �le which is copied to the faction

directory and renamed with the faction name. We also use default music as this

removes the need for content generation which is not within the scope of this project.

Once the factions have been created, character can be created and placed in the

various factions. How this is done is explained in the next section.

4.4.3 Creating Characters

Characters in the game engine consist of a sounds, models, images and an XML

�le (hereafter referred to as the descriptor) as illustrated by 4.2 which describes the

characters properties. In order to understand how characters can be generated, we

must consider the annotations which describe a character. As mentioned in section

3.2.3 the character properties which we are concerned with are a name, a faction,

a control type, a starting position and a model. The starting position and control

type will be stored in scenario which is described later and we can therefore ignore

these 2 properties for the time being. The property which we are most concerned

with now is the model. The reason being that the model does not simply specify

the appearance of the character. It also speci�es what skills the character will have

and various other attributes. The reason for this is that a characters descriptor

describes all aspects of the unit, including its appearance and sounds. Therefore,

creating a unit is simple as it involves nothing more than copy the unit �les of the

appropriate model into the faction folder and renaming the characters descriptor.

CHAPTER 4. IMPLEMENTATION 41

However, issues where encountered initially as a characters descriptor de�nes skills

or attributes which may be faction speci�c. Therefore, errors were received where

the characters descriptor made use of game elements such as an upgrade or armor

type which was not de�ned in the faction. In order to prevent this, the descriptor

of any model which is added to the system must be checked for faction dependent

properties which must then be removed.

The next section describes how goals are created.

Table 4.2: Character Tree �le structure

4.4.4 Creating the goals

In section 3.2.4 we de�ne goals in terms of triggers, events and actions. As mentioned

in section 4.2.4 the goals are stored in the scenario �le. Glest makes provisions for

these goals by providing a (Lua) scripting interface. To best understand how we

have implemented goals, we discuss the following example. Consider the following

text: �Tramus needed to reach Wiseman Pat in order to learn about the about the

dangers which approached�. The trigger would be Tramus moving, the condition

would be Tramus being near to WisemanPat and the action would be Wiseman

Pat informing Tramus. The annotations which we de�ne for such a goal are based

structured to accommodate the Lua scripts used by the engine. The resultant anno-

tations can be seen in Figure 4.10. In this example, unitMoved, unitNearUnit and

showSimpleMessage are all examples of lua scripts which the system is capable of

CHAPTER 4. IMPLEMENTATION 42

understanding. Figure 4.11 shows what the goal will look like when it is placed into

the scenario �le by the game generator. As we can see the unitMoved or trigger

script has been placed in angle brackets. This shows that it is a script which will be

called when a certain event has happened. Also, the condition has been wrapped in

an if else statement and an 'end' statement has been placed after the action.

<goa l>
<t r i g g e r>unitMoved</ t r i g g e r>
<cond i t i on>(unitNearUnit (Tramus , 5 , WisemanPat) == 1)</ cond i t i on

>
<act i on> showSimpleMessage (You must now journey to the East to

f i nd the golden sword , He l lo Tramus)
</ ac t i on>

</ goa l>

Figure 4.10: Goal annotations

. . .
<s c r i p t s>

<unitMoved>
i f (unitNearUnit (Tramus , 5 , WisemanPat) == 1) then

showSimpleMessage (You must now journey to the
East to f i nd the golden sword , He l lo Tramus
)

end
</unitMoved>

</ s c r i p t s>
. . .

Figure 4.11: Goal annotations

Chapter 5

Evaluation

5.1 Goals

In designing the evaluation we consider the high level functions of the system. Those

being the ability to act as a game development tool and recreate the characters,

events and environment described in a piece of text or story in the form of a game.

We therefore decide that evaluation of the system must achieve 2 goals. Firstly, we

must discover how accurate the game is in relation to the story and secondly, we

must determine the quality of the produced game.

However, there is no quanti�able method for evaluating how accurately a game

represents a story. Also, there is di�culty in evaluating the quality of games due

to a lack of standard quantitative review criteria. The next section details how we

overcome these issues and describes the design of the system evaluation.

5.2 Methodology

While the system has been developed as a game development tool, the games which

it creates will ultimately be played by the end-users. For this reason evaluation of

the system takes place in the form of user evaluation. In order for users to evaluate

the system properly, it is necessary that they evaluate the game not just as a game,

but also as a product of the system. This requires that users are able to play the

game and then relate it to a story. To achieve this a short story was written and

then used to generate a game. Section 5.2.1 describes how the story was written

In order to record results, a questionnaire was drawn up with several Likert state-

ments and open questions which will be described in following sections.

43

CHAPTER 5. EVALUATION 44

5.2.1 The Story

While the primary goal of the system is to show that it is possible to implement

a Text-to-Game system. Complexity is introduced by the fact that text can be

used to describe any number of events, characters or environments. It is therefore

necessary to bear in mind the scope of the system. Advanced features such as

generating models for the appearance of characters is not within the scope of the

project. While it is possible to manually add support for new character models,

environmental details and goals we did not feel it was necessary as this was not

within the scope of the system. Therefore the characters, events and environment

in the story are con�ned to the content which is currently o�ered by the system.

The story can be found in Section A.1 of Appendix A.

The next sections describes the design of the questionnaire.

5.2.2 The Questionnaire

As mentioned in Section 5.1, the purpose of this evaluation is to ascertain the level of

accuracy with which story is represented by the game and to determine the quality

of the game. The sections below explain how the questionnaire was designed to

re�ect this.

The questionnaire can be seen in Section A.2 of Appendix A.

5.2.2.1 Measuring game Accuracy

Initially the questionnaire drawn up had only 1 Likert statement relating to the

accuracy of the game. Users were asked if they felt that the game was an accurate

representation of the story. However, after several test evaluations we found that

this did not provide enough detail. In order to �x this issue we consider how the

relationship between the game and story can be de�ned in terms of the environment,

the characters and the events. Therefore the Likert statement relating to accuracy

was replaced with 3 newer statements relating to the map, characters and goals

(Questions 1 to 3 in the questionnaire).

5.2.2.2 Measuring the Quality of the Game

As mentioned in Section 5.1 the di�culty in evaluating the quality of a game is

introduced by the face that there is no standard for doing so. Many of the game

CHAPTER 5. EVALUATION 45

reviews found on the Internet make use of several categories to judge each game on

a standardised criteria [1, 21]. While di�erent reviewers may use similar categories,

there is still no standard for de�ning these categories. Beale and Bond [5] attempt

to create such a standard by performing a grounded theoretical analysis. They

describe grounded theory as an approach to research in which hypotheses about

some scenario are formed from raw data. More speci�cally, [5] compare several

di�erent game reviews in order to determine which characteristics make a �good�

game and which are most common in �bad� games.

The results obtained show that cohesion, variety, good user interaction and a social

aspect are the characteristics which are responsible for a good game while technical

soundness, customisable and a good environment are some of the characteristics of

moderate importance. However, variety and cohesion can only be seen in signi�-

cantly large games while the game used for evaluation is a small game, only lasting

several minutes. Also, the social aspect is not within the scope of this project and

is therefore not relevant.

While these characteristics may be necessary to create good, commercial games.

The criteria by which we choose to rate our games must accommodate the fact that

they are products of a Text-to-Scene system. Therefore, along with those Likert

statements which measure the accuracy of the game, we provide 2 additional [fairly

broad] questions for measuring the quality of the game. These relate to technical

soundness and the control scheme and interface of the game (Questions 4 and 5).

Additionally, we include an open question in which users are asked to mention any

improvements to the game which they could recommend.

The next section describes the experimental process which was performed during

the testing period.

5.2.2.3 The Process

Candidates were obtained on a volunteer basis and tests happened individually and

in isolation of the other candidates. Participants where �rst asked to read the story

found in Section A.1 of Appendix A. On completion, the game was started and

candidates were given a short tutorial on the control scheme. Candidates were then

left to complete the game until they won or lost. Candidates who lost the game

were asked to replay it until they won. This was to allow candidates to experience

the entire game. On completion of the game participants were handed a copy of the

questionnaire and asked to complete it in their own time. Once 10 questionnaires

had been returned the results were examined.

CHAPTER 5. EVALUATION 46

The results obtained are shown in the next section.

5.3 Results

Due to the structure of the questionnaire both quantitative and qualitative results

were obtained. Table A.1 of Appendix A shows the scores obtained from the ques-

tionnaires where 5 is the highest (best) score and 1 is the lowest. Candidates where

also asked to give reasons for their scores thus allowing us to gain insight into the

results. Going back to the problem statement, the major goals of the system are

to generate the characters, environment and events described in text. Therefore,

examination of the results will happen in separate sections according to these ele-

ments. We also examine those results relating to the gameplay and the game engine

separately to allow us to examine the quality of the game. We begin by examining

the results for the �rst question, the accuracy of the map.

5.3.1 Accuracy of the Map

The results for the map portion of the evaluation can be seen in Table 5.1. The high

mean and mode are good indications that users felt the map accurately represented

the environment in the text. Several users mentioned that by following the directions

mentioned in the story they were able to navigate to the various points of interest.

It was also mentioned that developers have di�erent interpretations of the story

map and it is therefore important that directions in the game match that of the

text. Directions in this case being the spatial orientations of points of interest. For

example, if a town lies to the east of some trees, this should be accurately recreated

in the game.

The next section will look at the results obtained for the characters.

Scores:
Run Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
Score 4 4 5 4 4 5 4 5 5 5
Additional statistics:

Mean 4.5
Median 4.5
Mode 4

Maximum 5
Minimum 4
Range 1

Table 5.1: Results for the map portion of the evaluation.

CHAPTER 5. EVALUATION 47

5.3.2 Accuracy of the Characters

Table 5.2 summarises the results obtained for the character section of the question-

naire. While the mean is still above 4, we must examine the existence of several low

results. By examining test 2 and 5 which resulted in low scores of 3 we �nd some

insight into the reason for these lower scores.

The reason for the score in Test 2 as described by the participant is: �Its hard to

gather much into about the characters from the story�. This shows that determining

if the characters in the game accurately match the characters in the story may only

be possible if characters in the story are described with a certain level of detail. An

issue which might be �xed by increasing the level of detail in the story. The reason

for the low score in Test 5 as described by the participant is: �Suppose [rating the

character accuracy] is interpretational. I viewed the deamon di�erently�. This in-

troduces another issue with evaluating the character which involves the characters

appearance. Di�erent readers imagine the appearance of objects, environments and

characters di�erently. Once again, we see another reason to increase the level of de-

tail provided by the story as this would limit the amount of information which would

be imagined by the participant. The next section discusses the results obtained from

evaluation of the events.

Scores:
Run Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
Score 4 3 5 4 3 5 4 4 4 5
Additional statistics:

Mean 4.1
Median 4
Mode 4

Maximum 5
Minimum 3
Range 2

Table 5.2: Results for the map portion of the evaluation.

5.3.3 Accuracy of the Events

Table 5.3 summarises the results obtained for the character section of the question-

naire. Once again a moderately high score is achieved. However, user comments

in this section of the questionnaire were scarce. This is possibly because the term

'event' was not de�ned properly in the context and so users may have been confused

as to what this was referring to. A possible solution might be to ask the participants

CHAPTER 5. EVALUATION 48

if the major events of the game match that of the story as this would allow us to

determine which events the participants consider to be 'major'.

The next section describes the quality of the game.

Scores:
Run Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
Score 4 4 5 4 4 5 4 4 4 4
Additional statistics:

Mean 4.2
Median 4
Mode 4

Maximum 5
Minimum 4
Range 1

Table 5.3: Results for the map portion of the evaluation.

5.3.4 Technical Soundness

The results for the technical soundness rating are shown in Table5.4. Here we notice

that the results obtained are signi�cantly low. Several users described the graphics

as being average and nothing exceptional. However, one candidate mentioned that

he/she would not purchase the game based on its technological level. This provides

some insight into the lower scores as it shows that users may compare the game to

recent commercial titles. However, this is not surprising as the Glest engine was

released in the year 2004. As mentioned by on of the participants, an advantage

of having an older engine is that it will create games which are playable on older

machines.

In the next section we discuss the results obtained from the interface and control

scheme evaluation.

Scores:
Run Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
Score 3 4 4 3 3 4 3 3 3 4
Additional statistics:

Mean 3.4
Median 3
Mode 3

Maximum 4
Minimum 3
Range 1

Table 5.4: Results for the map portion of the evaluation.

CHAPTER 5. EVALUATION 49

5.3.5 Interface and Control Scheme

The results for the interface and control scheme rating are shown in Table5.5. In-

terestingly only one test resulted in a score other than 4. The candidate from Test

1 felt that the control scheme was slightly di�cult to learn. This is probably due to

a lack of experience with strategy games. We draw this conclusion because several

participants stated that control scheme followed the standard employed by other

games. The next section discusses any additional comments which users provided.

Scores:
Run Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
Score 3 4 4 4 4 4 4 4 4 4
Additional statistics:

Mean 3.9
Median 4
Mode 4

Maximum 4
Minimum 3
Range 1

Table 5.5: Results for the map portion of the evaluation.

5.3.6 Additional Comments

Participants were asked to provide any ideas which they believe might improve the

game. While most candidates did not make any speci�c suggestions, one participant

mentioned that the environment felt static and should have been in�uenced by

the story. This was supported by another candidate who stated that the game

should have been more interactive and detailed. However, as mentioned previously,

generation of additional content is not the primary concern of our research.

While the above tests yield promising results, particularly in the area of accuracy,

we must consider that results may have been skewed by external factors. The next

section discusses possible improvements to the experimental process.

5.4 Experimental concerns

In performing our experiments much was learned about the methodology required

to evaluate a Text-to-Game system. This chapter describes possible solutions for

those experimental issues which should be addressed in future work. In the �rst

CHAPTER 5. EVALUATION 50

section we consider the dangers introduced by user testing. Secondly, we consider

alternative approaches to evaluation of the Text-to-Game system.

5.4.1 User testing issues

We recognise that the results of the experiment are positive. However, dangers are

introduced with user testing in the form of many external (uncontrollable) factors.

These dangers may cause extreme results skewed by personal preference or feeling.

For example, a participants like or dislike for strategy games may in�uence the score

which they give.

In order to deal with this issue a control test can been introduced. This would allow

us to eradicate those external factors which might cause issues as results obtained

in the experiment would be relative to those obtained in the control if participants

are kept constant.

An example of such a control test would be as follows:

1. Users read a story which has already been [manually] converted into a game

2. Users then play the existing [possibly commercial] game based.

3. Users complete the questionnaire

4. Users play the game generated by the Text-to-Game system

5. Users complete another questionnaire

This would allow us to look at the results relative to a control test. This eradicates

any external factors as they should be common to both the control and experimental

tests.

5.4.2 Alternative Evaluation Methods

Evaluation of the system was purely focused on the game. It would also be bene�cial

to attempt evaluating the system as a game development tool. This is possible if

we use the concept of a control test again. If we measure the amount of time and

e�ort required to create a game manually, we can then examine the amount of time

required to recreate the game using the Text-to-Scene system. On comparing these

2 results we would be able to determine if the Text-to-Game system can increase

the rate and e�ort required to produce a game.

CHAPTER 5. EVALUATION 51

5.5 Summary

Issues with determining the accuracy of the game were encountered as some par-

ticipants felt that the story lacked detail for certain elements. Also, interpretation

of the game elements varied between participants meaning that some aspects of the

game were not recognised by the participants. However, scores were favorable and

all participants agreed that the map, characters and events were accurately repre-

sented by the game. In terms of the quality of the game, users felt that the technical

aspects of the game are good but lag behind more modern games. However, in con-

ducting these experiments we learn that issues may arise if a control test is not

performed. Also, the qualitative nature of user tests prevents us from obtaining a

quanti�able result for representing the performance of the system. An issue which

could be overcome by employing a di�erent research methodology.

The next Chapter summarises the results and �ndings of our research.

Chapter 6

Conclusion

6.1 Summary

Research was started through a categorization of related work in which we de�ne the

link between Text-to-Scene systems and game development tools. Further examina-

tion of related work showed that stories or �ction texts can be uniquely identi�able

by 3 main elements. These include the environment, the characters and the events.

We then carry this idea across to aid the design of the system. This lead to the con-

cepts of a map and game generator which together are responsible for creating the

environment, the characters and events. Next, we describe the implementation of

the system in terms of 3 main components, the game engine, the map generator and

the game generator. Evaluation of the system is then then discussed as we consider

a user testing based methodology for determining the quality of game generated by

the system and how accurately they represent their textual counterparts. We then

give a discussion of results and mention possible improvements to our experimen-

tation methodology. The next section concludes our research by relating the work

done to the initial problem which we set out to solve.

6.2 Conclusions

In concluding we revisit the problems which we set out to solve. In doing this

research we have solved the achieved the following:

1. Created a method for accurately converting the environment described in a

story into a virtual map.

52

CHAPTER 6. CONCLUSION 53

2. Developed a system with the ability to recreate the characters described in a

piece of text as players in a virtual world.

3. Create a system capable of replicating the events described in a story as achiev-

able game goals.

By solving these problems we have managed to create a accurate, working Text-to-

Scene system.

6.3 Contributions

In performing this research we have contributed the following to this �eld of research:

1. Provided a new method for automated game development.

2. Created a rapid prototyping tool for use in game development.

3. By creating a game development tool which relies solely on annotations we

have managed to simplify the game development process and separate the

concept/story of the game from the actual implementation.

Appendix A

User Evaluation

A.1 Story for user evaluation

Tramus had just arrived in The Valley. He had been called upon to defeat the

behemoths which had been causing havoc there for some time now. Not having

visited The Valley before Tramus was slightly unsure of his surroundings and so

continued along the mountains until he came across a path. He then followed the

path to the South until he encountered an old man who greeted him openly. `Hello

stranger' said the old man. `I am Wiseman Pat. I believe you are the one who is

trying to defeat the behemoths to the west. Take 20 gold pieces to the blacksmith

and he may be persuaded to upgrade your armor and sword. He can be found in

the woods to the North-East. Also, I heard a rumor about a stash of gold situated

just beyond the mountains to the East' Tramus then thought to himself `there is

no way to be sure if this old man is crazy.' But Tramus knew that defeating the

behemoths would not be an easy task and so he began venturing to the east in search

of the gold. Eventually he came into a clearing beyond the mountains where Tramus

was faced by a strange looking daemon. As he drew nearer he caught a glimpse of

something shiny behind the daemon. It was a pile of gold not yet removed from its

natural state. Suddenly the daemon lunged toward him. Tramus quickly drew his

sword and managed to knock the daemon unconscious. `That was lucky' Tramus

thought to himself. `I should take this gold and �nd the blacksmith.' So Tramus

collected the gold and headed back the way he came. After some time he noticed

a small path heading amongst the some trees. He decided to follow this path and

was pleased to see that he had found the blacksmith. `Welcome. I see you have

some gold traveler. I will use this to upgrade your sword and armor'. Once the

blacksmith had �nished Tramus felt a new con�dence and decided that it was time

54

APPENDIX A. USER EVALUATION 55

to �nd the behemoths. Remembering what Wise-man Pat had said, he started his

journey to the west in search of the creatures. After some time came across a sparse

area which seemed eerily quiet. After taking a few more steps Tramus turned his

head and �nally caught sight of what it was that he was called to defeat. Realising

that he was the best chance The Valley stood against these violent beasts, he drew

his sword and charged. With his new gear Tramus felt powerful and was able to

overcome the beasts with little e�ort.

A.2 Questionnaire

Each of the statements are followed by a scale representing a range of responses.

Users were asked to tick the appropriate response for each question and provide

feedback on their reasoning.

Question 1:

The game map accurately matched the description of the world in the story.

Strongly

agree

Agree Neutral Disagree Strongly

disagree

Question 2:

The characters in the game accurately represented the characters in the story.

Strongly

agree

Agree Neutral Disagree Strongly

disagree

Question 3:

The events described in the story are accurately recreated by the game.

Strongly

agree

Agree Neutral Disagree Strongly

disagree

Question 4:

Please rate the game technologically. (graphics, sounds, e�ects, etc.)

5 (best) 4 3 2 1 (worst)

Question 5:

APPENDIX A. USER EVALUATION 56

Please rate the interface and control scheme of the game.

5 (best) 4 3 2 1 (worst)

Question 6:

Are there any improvements to the game which you could recommend?

A.3 Results

Question 1 Question 2 Question 3 Question 4 Question 5
Accuracy of

map
Accuracy of
characters

Accuracy of
events

Technological
soundness

Control
scheme and
interface

Test 1 4 3 4 4 4
Test 2 5 5 5 4 4
Test 3 4 4 4 3 4
Test 4 4 4 4 3 3
Test 5 4 3 4 3 4
Test 6 5 5 5 4 4
Test 7 4 4 4 3 4
Test 8 5 4 4 3 4
Test 9 5 5 5 4 4
Test 10 5 5 4 4 4

Mean 4.5 4.1 4.2 3.4 3.9
Median 4.5 4 4 3 4
Mode 4 4 4 3 4

Maximum 5 5 5 4 4
Minimum 4 3 4 3 3
Range 1 2 1 1 1

Table A.1: Results from user tests

Bibliography

[1] Dan Adams. Ign: Warcraft iii: Reign of chaos review.

http://pc.ign.com/articles/363/363926p2.html, July 2002.

[2] Ola Akerberg, Hans Svensson, Bastian Schulz, and Pierre Nugues. Carsim: An

automatic 3d text-to-scene conversion system applied to road accident reports.

In Research Notes and Demonstrations Conference Companion, 10th Confer-

ence of the European Chapter of the Association of Computational Linguistics,

pages 191�194, Budapest, Hungary, April 12-1 2003. Association for Computa-

tional Linguistics. URL citeseer.nj.nec.com/563862.html.

[3] Bruce Alcock. A procedural, minimal input, natural terrain plug-in for

Blender. Technical Report Honours Project Report, Virtual Reality Special

Interest Group, Computer Science Department, Rhodes University, Graham-

stown, South Africa, November 2007.

[4] Lawrence Argent, Bill Depper, Rafael Fajardo, Sarah Gjertson, Scott T.

Leutenegger, Mario A. Lopez, and Je� Rutenbeck. Building a game de-

velopment program. Computer, 39(6):52�60, 2006. ISSN 0018-9162. doi:

http://dx.doi.org/10.1109/MC.2006.189.

[5] Russell Beale and Matthew Bond. What makes a good game? using reviews

to inform design. In HCI 2009 - 23rd Annual Conference on Human-Computer

Interaction, 2009.

[6] Bob Coyne and Richard Sproat. Wordseye: an automatic text-to-scene conver-

sion system. In Proceedings of the 28th annual conference on Computer graphics

and interactive techniques, pages 487�496. ACM Press, 2001.

[7] Funda Durupinar, Umut Kahramankaptan, and Ilyas Cicekli. Intelligent index-

ing, querying and reconstruction of crime scene photographs. In TAINN2004,

pages 297�306, 2004.

57

BIBLIOGRAPHY 58

[8] David Finkel, Mark Claypool, Michael A. Gennert, Fred Bianchi, Dean ODon-

nell, and Patrick Quinn. Teaching game development: At the intersection of

computer science and humanities & arts.

[9] Kevin Glass. Automating the Conversion of Natural Language Fiction to Multi-

Modal 3D Animated Virtual Environments. PhD thesis, Department of Com-

puter Science, Rhodes University, Grahamstown, South Africa, August 2008.

[10] Kevin Glass and Shaun Bangay. Evaluating parts-of-speech taggers for use in a

text-to-scene conversion system. In Judith Bishop and Derrick Kourie, editors,

SAICSIT 2005 South African Institute of Computer Scientists and Information

Technologists, pages 20�28, White River, South Africa, September 2005.

[11] Kevin Glass and Shaun Bangay. A naive salience-based method for speaker

identi�cation in �ction books. In PRASA 2007: Proceedings of the 18th Annual

Symposium of the Pattern Recognition Association of South Africa, pages 1�6,

November 2007.

[12] Kevin Glass and Shaun Bangay. Constraint-based conversion of �ction text to a

time-based graphical representation. In SAICSIT '07: Proceedings of the 2007

annual research conference of the South African institute of computer scientists

and information technologists on IT research in developing countries, pages

19�28, New York, NY, USA, October 2007. ACM Press. Best paper award.

[13] Kevin Glass and Shaun Bangay. Automating the creation of 3D animation from

annotated �ction text. In Proceedings of the IADIS International Conference

on Computer Graphics and Visualization 2008, pages 3�10, July 2008.

[14] Richard Johansson, Anders Berglund, Magnus Danielsson, and Pierre Nugues.

Automatic text-to-scene conversion in the tra�c accident domain. In IJCAI-

05, Proceedings of the Nineteenth International Joint Conference on Arti�cial

Intelligence, pages 1073�1078, Edinburgh, Scotland, July 2005.

[15] Craig A. Lindley. Story and Narrative Structures in Computer Games. High

Text, January 2005. ISBN 393326992X.

[16] S. Louchart, I. M. T. Swartjes, M. Kriegel, and R. S. Aylett. Purposeful author-

ing for emergent narrative. In Proceedings of the First Joint International Con-

ference on Interactive Digital Storytelling, Erfurt, Germany, Berlin, September

2008. Springer Verlag.

BIBLIOGRAPHY 59

[17] Sandy Louchart, Ruth Aylett, Michael Kriegel, Joï¾÷o Dias, Rui Figueiredo,

and Ana Paiva. Authoring emergent narrative-based games. Journal of Game

Development, 3(1):19�37, March 2008.

[18] Minhua Eunice Ma. Confucius: An intelligent multimedia storytelling inter-

pretation and presentation system. Technical report, School of Computing

and Intelligent Systems, University of Ulster, Magee, September 2002. URL

url{http://www.infm.ulst.ac.uk/~paul/phd/ma1styrrpt.pdf}.

[19] Pablo Moreno-Ger, José Luis Sierra, Iván Martínez-Ortiz, and Baltasar

Fernández-Manjón. A documental approach to adventure game develop-

ment. Sci. Comput. Program., 67(1):3�31, 2007. ISSN 0167-6423. doi:

http://dx.doi.org/10.1016/j.scico.2006.07.003.

[20] Mark J. Nelson and Michael Mateas. Towards automated game design. In

AI*IA '07: Proceedings of the 10th Congress of the Italian Association for Ar-

ti�cial Intelligence on AI*IA 2007, pages 626�637, Berlin, Heidelberg, 2007.

Springer-Verlag. ISBN 978-3-540-74781-9. doi: http://dx.doi.org/10.1007/

978-3-540-74782-6_54.

[21] Joel Rasdall. Strategy-gaming: Warcraft iii: Reign of chaos review.

http://www.strategy-gaming.com/reviews/warcraft_3/index.shtml, Septem-

ber 2002.

[22] Mark O. Riedl, Andrew Stern, and Don M. Dini. Mixing story and simulation in

interactive narrative. In John E. Laird and Jonathan Schae�er, editors, AIIDE,

pages 149�150. The AAAI Press, 2006. ISBN 978-1-57735-235-8.

[23] Scott Schaefer and Joe Warren. Teaching computer game design and construc-

tion. Technical report, Worcester Polytechnic Institute, 2004.

[24] Alexis Sepchat, Nicolas Monmarché, Mohamed Slimane, and Dominique Ar-

chambault. Semi automatic generator of tactile video games for visually im-

paired children. In Klaus Miesenberger, Joachim Klaus, Wolfgang Zagler, and

Arthur I. Karshmer, editors, Proc. ICCHP 2006 (10th International Conference

on Computers Helping People with Special Needs), volume 4061 of LNCS, pages

372�379, Linz, Austria, July 2006. Springer.

[25] Richard Sproat. Inferring the environment in a text-to-scene conversion system.

In K-CAP 2001: Proceedings of the international conference on Knowledge

capture, pages 147�154. ACM Press, 2001.

BIBLIOGRAPHY 60

[26] Jan Svartvik. Computer-aided grammatical tagging of spoken english. In

Proceedings of the 8th conference on Computational linguistics, pages 29�31,

Morristown, NJ, USA, 1980. Association for Computational Linguistics. doi:

http://dx.doi.org/10.3115/990174.990180.

[27] Julian Togelius and Jürgen Schmidhuber. An experiment in automatic game

design. In Proceedings of the 2008 IEEE Symposium on Computational Intelli-

gence in Games CIG-2008, 2008.

[28] Javier Torrente, Angel del Blanco, Guillermo Canizal, Pablo Moreno-Ger, and

Baltasar Fernandez-Manjon. e-adventure3d: an open source authoring environ-

ment for 3d adventure games in education. In ACE '08: Proceedings of the 2008

International Conference on Advances in Computer Entertainment Technology,

pages 191�194, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-393-8. doi:

http://doi.acm.org/10.1145/1501750.1501795.

[29] Annika Wol�, Paul Mulholland, Zdenek Zdráhal, and Richard W. Joiner. Scene-

driver: An interactive narrative environment using content from an animated

children's television series. In Stefan Göbel, Ulrike Spierling, Anja Ho�mann,

Ido Iurgel, Oliver Schneider, Johanna Dechau, and Axel Feix, editors, TIDSE,

volume 3105 of Lecture Notes in Computer Science, pages 213�218. Springer,

2004. ISBN 3-540-22283-9.

[30] Xiaojin Zhu, Andrew B. Goldberg, Mohamed Eldawy, Charles R. Dyer, and

Bradley Strock. A text-to-picture synthesis system for augmenting communi-

cation. In AAAI'07: Proceedings of the 22nd national conference on Arti�cial

intelligence, pages 1590�1595. AAAI Press, 2007. ISBN 978-1-57735-323-2.

