
3D Logic Games and Tutorials for BingBee

1

3D Logic Games and Tutorials for BingBee

 3D Logic Games and Tutorials for BingBee

 Principal Investigator: Bwini Mudimba
 Supervisor: Prof Peter Wentworth

 Submitted in partial fulfilment of the requirements for Bachelor of Science
 (Honours) degree at Rhodes University

3 November 2008

3D Logic Games and Tutorials for BingBee

2

3D Logic Games and Tutorials for BingBee

ABSTRACT

Games provide a forum in which learning arises as a result of tasks stimulated by the content

of the games, knowledge is developed through the content of the game, and skills are

developed as a result of playing the game [15]. There are various types of games, that is,

board games, card games, puzzles, and other types of non computerized and computerized

games that children play. Besides gaining logic skills like critical thinking, problem solving

and so on, children also learn how to use a computer by playing computer games. It is

asserted that the use of such games can stimulate the enjoyment, motivation and engagement

of users, aiding recall and information retrieval, and can also encourage the development of

various social and cognitive skills [20]. 3D games have been shown to be very popular with

game players but there is only one on BingBee. Introducing 3D Noughts and Crosses

(implemented using XNA Game Studio) will help introduce more 3D gaming on BingBee

with the prospect of adding more challenging 3D games with time to further increase the

skills that children acquire when they play the games.

3D Logic Games and Tutorials for BingBee

3

3D Logic Games and Tutorials for BingBee

ACKNOWLEDGEMENTS

Firstly, I would like to thank the rock of my salvation, Jesus Christ for seeing this work unto

its completion. He was my strength especially through the personal trials I encountered in the

second semester. Thank you Lord.

I also acknowledge the patience and dedication of my supervisor, Prof Wentworth without

whom this project would not have been successful. Thank you for your guidance and

exceptional programming skills. Mr John Ebden, your help and guidance is also

acknowledged.

I also acknowledge the Telkom Centre of excellence (CoE) at Rhodes who secured funding

for me to study at Rhodes this year. Thank you.

A big thank you also goes to my family and friends who were there for me throughout this

year. Special mention goes to Peter Nkomo, Sinini Ncube and Flora Tasse. Thank you for

your love and support.

I also acknowledge the financial and technical support of this project of Telkom SA,

Comverse SA, OpenVoice, Stortech, Tellabs, Amatole, Mars Technologies, Bright Ideas

Projects 39 and THRIP through the Telkom Centre of Excellence

at Rhodes University.

3D Logic Games and Tutorials for BingBee

4

3D Logic Games and Tutorials for BingBee

Table of Contents

Chapter 1: Introduction…………………………………………………………………….8

1.1 Background……………………………………………………………...8

1.2 Motivation for research……………………………………………….....10

1.3 Project aims……………………………………………………………...11

1.4 Thesis structure………………………………………………………….11

Chapter 2: Related work……………………………………………………………………12

2.1 Microsoft XNA framework……………………………………………..12

2.1.1 Development…………………………………………………………..12

2.1.2 Microsoft XNA Game Studio…………………………………………13

2.1.3 The XNA Framework Content Pipeline……………………………….14

2.1.3.1 Content Importer…………………………………………………….14

2.1.3.2 Content DOM……………………………………………….............15

2.1.3.3 Content Processor……………………………………………………15

2.1.3.4 Content Compiler……………………………………………………16

2.1.3.5 Content Manager…………………………………………………….16

2.2 Noughts and Crosses…………………………………………………….16

2.3 Summary…………………………………………………………………18

Chapter 3: Design and Implementation……………………………………………………20

3.1 How an XNA game works……………………………………………….20

3.2 3D graphics in XNA……………………………………………………..22

3.2.1 Matrices………………………………………………………………...27

3D Logic Games and Tutorials for BingBee

5

3D Logic Games and Tutorials for BingBee

3.2.2 Transformations………………………………………………………..28

3.2.2.1 Translation…………………………………………………………...28

3.2.2.2 Rotation……………………………………………………………..29

3.2.2.3 Scaling……………………………………………………………….29

3.3 3D Noughts and Crosses……………………………………………...30

3.3.1 3*3*3 matrix cube…………………………………………………..30

3.3.2 Detecting that a cubelet has been clicked……………………………...31

3.3.3 Importing 3D models…………………………………………………..33

3.3.4 Adding sound……………………………………………………….....34

3.3.5 Animation……………………………………………………………...35

3.4 Game Classes…………………………………………………………….36

3.5 Summary…………………………………………………………………37

Chapter 4: Results………………………………………………………………………….38

 4.1 3D Noughts and Crosses…………………………………………………38

 4.1.1 Version 1……………………………………………………………….39

4.1.2 Version 2……………………………………………………………….39

4.1.3 Version 3……………………………………………………………….39

4.2 First User Interface………………………………………………………39

4.3 Second User Interface……………………………………………………41

 4.4 Summary………………………………………………………………....43

Chapter 5: Conclusion…………………………………………………………………….. 45

 5.1 Challenges faced in the project …………………………………………..45

5.2 Possible project extensions ………………………………………………46

3D Logic Games and Tutorials for BingBee

6

3D Logic Games and Tutorials for BingBee

5.3 Project achievements …………………………………………………….47

References…………………………………………………………………………………48

Appendix………………………………………………………………………………….51

Table of Figures

Figure 2.1: Importers that are used in XNA Game Studio………………………….........15

Figure 2.2: Shows how the XNA framework content pipeline works……………………16

Figure 2.3: Standard 2D Noughts and Crosses…………………………………………...17

Figure 2.4: 3D Noughts and Crosses by using three 2D layers……………………...........17

Figure 2.5: 3D Noughts and Crosses by using a 3*3*3 matrix of cubelets…………........18

Figure 3.1: A flow diagram showing the XNA game loop……………………………….22

Figure 3.2: Shows a wire frame 3D model…………………………………………..........23

Figure 3.3: Shows a textured 3D model…………………………………………………..24

Figure 3.4: Shows the right hand orientation ……………………………………………..25

Figure 3.5: Shows triangle strips and triangle lists ………………………………….........25

Figure 3.6: Shows the normal vector on a triangle ………………………...……………..26

Figure 3.7: Showing the bounding sphere of a 3D model ………………………………..31

Figure 3.8: Shows the model with the cubelet under the mouse highlighted …………….32

Figure 3.9: Shows the model after a cubelet is clicked, the computer has made

another move, and the mouse has now moved over another cubelet………………..........33

Figure 3.10: The “Ducky” model…………………………………………………………34

Figure 3.11: The “Sonic” model…………………………………………………………..34

Figure 3.12: The MVC design pattern…………………………………………………….37

Figure 4.1: BingBee touchpad…………………………………………………………….41

Figure 4.2: The second user interface for Noughts and Crosses…………………………..42

3D Logic Games and Tutorials for BingBee

7

3D Logic Games and Tutorials for BingBee

Figure 4.3: Shows the 3*3*3 matrix cube after some cubelets have been played………...43

Table of Figures

Table 1.1: The elements that make computer games engaging …………………..............9

3D Logic Games and Tutorials for BingBee

8

3D Logic Games and Tutorials for BingBee

CHAPTER 1: INTRODUCTION

1.1 Background

To get a good understanding of what computer games are, it is important to first define a few

terms. According to Prensky [23], play is something one chooses to do as a source of

pleasure, which is intensely and utterly absorbing and promotes the formation of social

groupings, play also increases our involvement, which also helps us learn.

A game on the other hand is a set of activities involving one or more players. It has goals,

constraints, payoffs and consequences. A game is rule-guided and artificial in some respects.

Finally, a game involves some aspect of competition, even if that competition is with oneself

[6].

Prensky [23] states that computer games can be characterised by six key structural elements

which, when combined together, strongly engage the player. These elements are:

• rules

• conflict or competition or challenge or opposition

• goals and objectives

• interaction

• outcomes and feedback

• representation or story.

There are various types of computer games and these include action games, adventure games,

fighting games, platformers (where game characters run and jump along and onto platforms),

knowledge games, simulation or modelling or role-playing games such as management and

strategy games, drill-and-practice games, logical games and maths games [11]. Game play

can be competitive, cooperative or individualistic [3].

Video games on the other hand differ from computer games in that they include an interactive

virtual playing environment and the player has to struggle against certain opposition.

BingBee has about 40 activities ranging from logic games and puzzles, drill practise for

Xhosa/English vocabulary, videos, music, school plays and presentations from local artists.

BingBee [26] (website has details on what BingBee is, its purpose, the activities that it

contains and the people running BingBee) is an information kiosk designed to improve

literacy and numeracy skills in children through entertainment. BingBee currently targets

3D Logic Games and Tutorials for BingBee

9

3D Logic Games and Tutorials for BingBee

children between the ages of seven to fourteen years. There are various hardware systems that

can be used to deliver games and these include:

• mobile phones

• handheld devices for example Nintendo Wii

• game consoles for example Microsoft Xbox, Sony PlayStation

• personal computers

BingBee makes use of personal computers as a delivery system for the various activities and

computer games.

The major reason why computer games are used for learning is that they are engaging, that is,

they hold one’s attention. Some of the characteristics of a game that make it engaging are,

networking (multiplayer games), varying levels of difficulty, speed and graphic

representation. Prensky [23] also identified twelve elements (Table 1) that make a game more

engaging.

Characteristics of the computer

 Game

How characteristics contribute

to players’ engagement

Fun Enjoyment and pleasure

Play Intense and passionate involvement

Rules Structure

Goals Motivation

Interaction Doing (that is the activity)

Outcomes and feedback Learning

Adaptive Flow

Winning Ego gratification

Conflict/competition/challenge and opposition Adrenaline

Problem solving Sparks creativity

Interaction Social groups

Representation and a story Emotion

Table 1.1: The elements that make computer games engaging

3D Logic Games and Tutorials for BingBee

10

3D Logic Games and Tutorials for BingBee

Gee [11] argues that good computer games are not just entertainment but incorporate as many

as 36 important learning principles. Taking as long as 100 hours to win, some are very

difficult and they encourage the player to try different ways of learning and thinking, which

can be experienced as both frustrating and life-enhancing.

1.2 Motivation for research

One of the arguments for making use of games in education is that they grab and hold the

attention of the player. It is therefore paramount for game developers to design and

implement games that will attract and hold the players’ attention.

Solving problems, accomplishing tasks and making decisions lie at the heart of any game.

Games provide a type of learning environment that can help to foster general learning

applicable in a wide range of problem-solving situations. Frequent gaming is also said to help

users to adjust to a computer-oriented society [11].

Graphics, colour and audio effects are characteristics that players like in a game, so quality

and design is important [6]. According to research carried out at the University of Natal by

Amory et al [1], students prefer three dimensional (3D) adventure and strategy games to other

types of games. 3D games are more engaging because they seem more life-like, that is, like a

real world object compared to 2D games which have a flat structure. Another factor that

makes 3D games more worthwhile is play control, whereby the player is able to freely move

around the world. Currently BingBee has one 3D logic game called DropBlocks which was

implemented using Microsoft DirectX 3D technologies. The popularity of DropBlocks on

BingBee also reinforces the extent to which players find 3D games more appealing. This

project therefore seeks to delve into the graphics component of games by increasing the 3D

content on BingBee to pave way for increasingly rich 3D games that are more fun, and

perhaps more challenging.

In games, learners ask for novelty, surprise and humour and instructions which are clear and

concise. The nature of performance feedback and remediation is also very important [13].

Players also want the game to be fast and challenging; a time element should be incorporated

in graphic form [22]. They want the game to become more difficult as they improve.

Educational software is typically disliked by students “because the fun factor is missing”

3D Logic Games and Tutorials for BingBee

11

3D Logic Games and Tutorials for BingBee

[14]. To develop educational software which maintains the fun factor, it is important to take

into consideration the above elements that the players like in a game.

This project was also motivated by the emergence of Microsoft XNA Game Studio as an

allegedly “better and easier” game development platform, thus the games in this project were

developed using the XNA development platform.

1.3 Project aims

The aim of the project is to increase 3D content on BingBee by adding a 3D game and

possibly paving the way for the future addition of richer 3D games that simulate the

environment. A new 3D logic game, namely 3D Noughts and Crosses was implemented

using Microsoft XNA Game Studio. The intended approach was to take advantage of the

popularity of Noughts and Crosses and implement its 3D version to familiarise the players

with manipulating an object in 3D.

Microsoft XNA Game Studio is a fairly new game development platform which has not been

used before for developing games hosted on BingBee. This project therefore also seeks to

evaluate the usefulness or ease of using XNA in developing educational software.

1.4 Thesis structure

Chapter 2 outlines the development of XNA Game Studio and its emergence. The features of

XNA Game Studio that put it at an advantage over other game development platforms are

also outlined here. This chapter ends by discussing the origin and educational value of the

game developed in this project. Chapter 3 delves into the design and implementation of the

game using XNA Game Studio. Chapter 4 outlines the results from the game development

and the conclusion and possible project extensions for the future are discussed in chapter 5.

3D Logic Games and Tutorials for BingBee

12

3D Logic Games and Tutorials for BingBee

CHAPTER 2: RELATED WORK

2.1 MICROSOFT XNA FRAMEWORK

2.1.1 DEVELOPMENT

Over the years Microsoft has continually improved the tools used for game programming

starting with the release of the Windows 95 operating system. This was a great improvement

as it cut down on the tedious low-level coding that was done in DOS. However Windows still

had shortfalls because there was no way to get down to hardware level to do things that

required a lot of speed and Windows had a protected memory model that kept developers

from directly accessing the low-level interrupts of the hardware. To solve this, Microsoft

created a technology called DirectX. DirectX enabled developers to write games with one

source that would work on all PCs regardless of their hardware [5].

Starting with DirectX 1.0, Microsoft released a series of upgrades to DirectX 10. As part of

the upgrades Microsoft introduced Direct3D which allows developers to create 3D objects

inside 3D worlds. When there was no graphics hardware, games were slow, but they were

very flexible. Later, as hardware rendering became prominent, the games were faster, but

they were not very flexible in that all of the games really started to look the same. Now with

shaders, the speed of the hardware is combined with the flexibility for each game to render

and light its 3D content differently. DirectX 10 was released at the same time as Microsoft

Windows Vista. In fact, DirectX 10 only works on Vista and requires Shader Model 4.0

hardware. DirectX 9 is the foundation for Managed DirectX, an API that exposed the core

DirectX functionality to .NET Framework developers and it requires Shader Model 3.0. The

XNA Framework uses DirectX 9 in the background and developers used Managed DirectX as

a launching pad although XNA was not built on top of Managed DirectX. The XNA

Framework is a set of managed libraries based on the Microsoft .NET Framework 2.0 that are

designed for game development. A series of XNA integrated development environments

(IDEs) have been released starting with Microsoft XNA Game Studio Express and the latest

being Microsoft XNA Game Studio 2.0. A beta version of XNA Game Studio 3.0 was

3D Logic Games and Tutorials for BingBee

13

3D Logic Games and Tutorials for BingBee

released in September 2008 and it is mainly targeting the Zune platform. Zune (a competitor

for Apple's iPod) is a brand of digital media players and services sold by Microsoft.

2.1.2 MICROSOFT XNA GAME STUDIO

Initially, XNA was available in two versions, that is, XNA Game Studio Express which was

free for amateurs, and XNA Game Studio Professional for professional game developers.

These two platforms were merged into XNA Game Studio 2.0 to make only one tool

available to everyone, that is, students, hobbyists and professionals. In this project we used

Microsoft XNA Game Studio 2.0 which is an integrated development environment (IDE) to

develop our XNA games. Microsoft XNA Game Studio is a set of tools that plugs into

supported versions of Microsoft Visual Studio tools that allow students and hobbyists to build

games for both Microsoft Windows and Xbox 360. XNA Game Studio 2.0 in particular can

be used with any Visual Studio 2005 products. The XNA framework provides support for

both 2D and 3D games and it has the following useful functionalities:

� Easy access to the input devices (keyboard, game pad or controller, mouse) [24]. All

three controller types are provided in the framework for Windows games hosted on a

PC, while only the Gamepad is available for Xbox games. The developer does not

have to worry about acquiring or releasing a device, all they do is call GetState on

the appropriate controller type. This is useful for this project because the keyboard

and mouse are used as an interface between the player and the game, for example

using the arrow keys on the keyboard to rotate the 3*3*3 matrix cube in the game so

that all faces can be viewed.

� Easy access to the graphics hardware.

� Easy control of audio using Microsoft Cross-Platform Audio Creation Tool (XACT).

This was valuable in adding sounds to the game to make it more engaging and

interesting to the target group (children between the ages of 7-14 years).

� Provides the ability for us to store information like high scores and even saved games.

� Networking capability which provides multiplayer functionality.

� Math API which provides types that are often used in game programming, for

example, Vector2, Vector3, Vector4, Matrix, Plane and Ray. The Ray is particularly

useful for determining if a 3D object has been selected which is an important aspect

3D Logic Games and Tutorials for BingBee

14

3D Logic Games and Tutorials for BingBee

of the first user interface in the game. The Math API also provides bounding volume

types like the BoundingSphere, BoundingBox and BoundingFrustrum. This reduces

the workload on the game developer because they do not have to create the bounding

volume from scratch and it is also useful in selecting a 3D model [24].

Another useful feature of XNA Game Studio is the XNA framework content pipeline which

handles all the content that the game uses.

2.1.3 THE XNA FRAMEWORK CONTENT PIPELINE

Content is a large part of a game and getting content into a game is not a very easy task.

There are so many difficulties that one faces, for example, getting the right tools to export or

import, process and display content in the game. The XNA framework content pipeline

makes this work a lot easier. It is simpler to use; it's highly extensible and customizable to

what you're doing; and it gives you choices when putting your game together, both in the

tools you use to create content and in the engine you use [13].

With the XNA Framework Content Pipeline, the content is managed inside Visual Studio and

it is added just as one would add code files. The content pipeline is one of the components of

XNA Game Studio that make development easier. The XNA Framework content pipeline is

made up of different components. The bulk of the work – importing the fonts, textures, 3D

models and sound files is all done at compile time, and is compiled down to an internal

format that can be loaded at run time by the Content Manager. The main content pipeline

components are:

2.1.3.1 Content Importer

An importer is used, at compile time, when you begin to add data to your game. It is

responsible for taking data and normalizing it. For example, it manages which way the

content is facing and which way is up in the content creation tool. The importer then takes

files that have been saved from your content creation tools and imports them into Visual C#.

The importers found in XNA Game Studio include Fbx (.fbx), effect (.fx), fontdescription

(.spritefont), texture (.bmp, .jpg, .tga), X (.x), XACT (.xap) and Xml [13]. Figure 2.1 shows

some of the importers that exist in XNA Game Studio.

3D Logic Games and Tutorials for BingBee

15

3D Logic Games and Tutorials for BingBee

 Figure 2.1: Importers that are used in XNA Game Studio

2.1.3.2 Content document object model (DOM)

The job of the importer is to build an object of type DOM. The data in the content DOM is

represented in a consistent internal format, that is, a series of vertices or textures will look the

same regardless of the type of file they came from [13].

2.1.3.3 Content Processor

A processor takes data from the content DOM and "compiles" it to the objects which will be

used at run time. This object can be as simple as a model, or as complex as multiple

processors for your game. Some examples of available processors include Model (for simple

objects with textures), FontTexture (for sprites), FontDescription (converts a

spritefont file into font) and Effect (for handling the Model’s materials). The Model

processor makes it possible to use readymade objects though the flexibility to create your

own objects from points and lines is still available. In our 3D Noughts and Crosses game

described in this document, there are three kinds of 3D objects in use: two external models

called Ducky and Sonic represent the player and the computer's pieces, and an array of

cubelets represents the places where the players can play (Figure 2.5). The Model processor

was used in 3D Noughts and Crosses at compile time to prepare the Ducky and Sonic objects

for the game. The cubelets on the other hand were created at run time from points and

vertices.

3D Logic Games and Tutorials for BingBee

16

3D Logic Games and Tutorials for BingBee

2.1.3.4 Content Compiler

This component manages content building. When you click Build, all the output from the

known content will be built, saved to disk, and ready to be used at run time. The compiled

files have an extension .xnb. Incremental building is used, that is, when a change is made in

the game, only the items using the changed object will be rebuilt [13].

2.1.3.5 Content Manager

This is the run-time component that loads all the assets into the game (often from the .xnb

files that were created at compile time), and ensures that all associated assets are also loaded.

(Some .xnb files can reference external textures, for example.). Below is code that shows how

a content manager works:

ContentManager myManager = new ContentManager (GameServices);

model = myManager. Load<Model> ("ship");

The above components of the XNA framework content pipeline work together as illustrated

in Figure 2.2 below.

 Figure 2.2: Shows how the XNA framework content pipeline works

2.2 NOUGHTS AND CROSSES

Noughts and Crosses, also called Tic-tac-toe and many other names, is a game for two

players, who take turns marking the spaces in a 3×3 grid [25]. The player who succeeds in

placing three respective marks in a horizontal, vertical or diagonal row wins the game.

Currently BingBee has a popular game of Noughts and Crosses played on 2D squares. In

BingBee this game is often the first one used by newcomers, and so has a role of

3D Logic Games and Tutorials for BingBee

3D Logic Games and Tutorials for BingBee

familiarizing them with the system and its user interaction. This project will implement

extended 3D version of the game i

to the various facets of the cube

the cube. Our objective is to

extended 3D version becomes an

in the 3D world. To win in 3D

horizontally, vertically, diagonally or through the cube. Many develope

McLeod [16], have modified the standard

it on 3 layers of 2D squares [Figure 2.4

implementing Noughts and Crosses on a solid 3*3*3 matrix cube

[Figure 2.5] and using 3D models in place of the conventional X and O

 Figure 2.3

 Figure 2.4: 3D Noughts and Crosses by using three 2D layers

3D Logic Games and Tutorials for BingBee

3D Logic Games and Tutorials for BingBee

with the system and its user interaction. This project will implement

version of the game in a 3*3*3 matrix cube. The player will be able to navigate

to the various facets of the cube by using arrow keys or other inputs to rotate a

 leverage the user's familiarity with the 2D game, so that the

extended 3D version becomes an easy way to get them familiar with manipulating an object

in the 3D world. To win in 3D Noughts and Crosses the player has to complete a row either

diagonally or through the cube. Many developers, inc

modified the standard Noughts and Crosses [Figure 2.3

squares [Figure 2.4]. The difference with our approach is that we are

and Crosses on a solid 3*3*3 matrix cube which is a 3D model

and using 3D models in place of the conventional X and O.

Figure 2.3: Standard 2D Noughts and Crosses

3D Noughts and Crosses by using three 2D layers, as often done by others

17

with the system and its user interaction. This project will implement an

n a 3*3*3 matrix cube. The player will be able to navigate

by using arrow keys or other inputs to rotate and manipulate

leverage the user's familiarity with the 2D game, so that the

easy way to get them familiar with manipulating an object

has to complete a row either

rs, including Jeremiah

Noughts and Crosses [Figure 2.3] and implemented

he difference with our approach is that we are

which is a 3D model

, as often done by others

3D Logic Games and Tutorials for BingBee

18

3D Logic Games and Tutorials for BingBee

 Figure 2.5: Our 3D Noughts and Crosses by using a 3*3*3 matrix of cubelets

2.3 Summary

This chapter outlines some aspects of the XNA framework, and the features that it has that

make XNA Game Studio an easier game development tool. The aim of designing XNA Game

Studio was to reduce the difficulties and inefficiencies that game developers had to deal with

when developing games. XNA Game Studio is therefore a game development platform that

makes game programming easier because it provides useful classes that reduce the amount of

work that the developer has to do. One of these classes is the XNA Framework Content

Pipeline which is responsible for handling all the content in the game project. The content

pipeline comes with built in importers, processors and a compiler which handle the content

therefore giving the game developer an opportunity to develop the actual game without

having to spend too much time fussing about how the content is handled behind the scenes.

3D Logic Games and Tutorials for BingBee

19

3D Logic Games and Tutorials for BingBee

The other useful features that come with XNA which were particularly useful in developing

3D Noughts and Crosses include:

� the Math API

� the Graphics API,

� the input API

� the sound API.

The XNA features, therefore cut down on the workload carried by the game programmer,

thus making the game development process easier. Another useful feature of XNA Game

Studio is that it comes with a lot of tutorials that take a beginner through step by step

procedures on how to create a game using XNA.

3D Logic Games and Tutorials for BingBee

20

3D Logic Games and Tutorials for BingBee

CHAPTER 3: DESIGN AND IMPLEMENTATION

3.1 How an XNA game works

The XNA Framework’s logic flow [4] works like this:

1. The Main application calls the Game Constructor.

2. The Game Constructor will create any game components and call their constructors.

3. The XNA Framework calls the game’s Initialize method.

4. The XNA Framework calls each of the game component’s Initialize methods.

5. The XNA Framework calls each of the Drawable game component’s

 LoadGraphicsContent methods.

6. The XNA Framework calls the game’s LoadGraphicsContent method.

7. The XNA Framework calls the game’s Update method.

8. The XNA Framework calls each of the game component’s Update methods.

9. The XNA Framework calls the game’s Draw method.

10. The XNA Framework calls each of the Drawable game component’s Draw methods.

11. Steps 7 through 10 are repeated many times each second, as fast as the computer allows.

12. If the device is lost (user moved the window to another monitor, screen resolution is

 changed, window is minimized, etc.), then a call to UnloadGraphicsContent is

 made. (This is automatically handled by the XNA Framework)

 13. If the device is reset then we start back at step 6 again.

14. The gamer exits the game.

15. The XNA Framework calls the game’s Dispose method

16. The game’s Dispose method calls the base object’s Dispose method

17. The XNA Framework calls each of the game component’s Dispose methods.

18. The XNA Framework calls the game’s UnloadGraphicsContent method.

19. The game’s Dispose method gets focus back and the game exits. [4]

The game loop [9] is the heartbeat of every game and it is a series of steps that happen while

the game is running regardless of what the player is doing. The game loop alternates between

the Update and Draw methods until the player ends the game.

Because computers differ in speed, the XNA framework has an inter-frame timer which is

passed to the Update call (step 7 above). The programmer can use the elapsed time between

3D Logic Games and Tutorials for BingBee

21

3D Logic Games and Tutorials for BingBee

frames to scale movement or action in the game. With care, the programmer can ensure that

in a game like a car-racing game, the speed of the car appears the same on a fast machine or a

slow machine: the faster machine simply renders more frames per second, and the action

looks smoother.

The algorithm below shows a simple outline or skeleton of an XNA game with the game

loop.

Initialize ()

LoadGraphicsContent ()

while (stillPlaying)

{

 Update ()

 Draw ()

}

UnloadGraphicsContent ()

The Initialise method starts the game and this is followed by loading the graphics

resources that are needed in the game. While the game is still running, the Update and

Draw methods are called simultaneously. The Update method as the name suggests

updates the game, that is, it is called when the game determines that there is game logic to be

processed. Examples of game logic include, getting player input, rotating objects on the

screen, checking for collisions and making decisions (is there any winner or is the game

over?) based on the previous three examples. The Draw method handles the drawing or

rendering for the game program. When the game stops running, the graphics resources are

unloaded before the game is closed. Figure 3.1 shows a clear illustration of the game loop.

3D Logic Games and Tutorials for BingBee

22

3D Logic Games and Tutorials for BingBee

 Figure 3.1: Flow diagram showing the XNA game loop

The unloading of the graphics content is an important step that is also handled automatically

by the XNA framework. Generally, the games make use of advanced graphics hardware and

processors. The graphics hardware has its own memory and resource constraints. Loading

models and textures into the game often involves sending the points or the textures from the

CPU to the Graphics hardware device, where they are available during hardware-accelerated

rendering. It is important to free these resources on the graphics hardware when the game

ends.

3.2 3D graphics in XNA

3D graphics can be a great challenge especially to a beginner in 3D graphics programming,

but once one understands the geometry it becomes easier. The first challenge is drawing 3D

primitive shapes like points, lines and triangles. This challenge can however be overcome by

simply importing a complete textured model from a tool like Blender, for example. This is

3D Logic Games and Tutorials for BingBee

23

3D Logic Games and Tutorials for BingBee

made possible by the Model processor in the XNA framework content pipeline. However,

there are times when a game programmer needs to construct the model from primitives. This

approach is also supported in XNA Game Studio. Everything in a 3D game is represented by

3D points. XNA stores these points or vertices in vectors. XNA provides three different

vector structures - Vector2, Vector3, and Vector4. Vector2 only has an x and y

component and this 2D vector is used in 2D games and when using a texture. Vector3

which adds in the z component is used to represent the primitive points in a 3D game. In this

project we will use Vector3 to store coordinates for our points. These points make up

triangles which are a basis for all 3D models (Figure 3.2) [5].

 Figure 3.2: Shows a wire frame 3D model

To make the 3D model look solid, we have to fill the triangles in the wire frame model. This

can be done with solid or blended colours, or we can add pictures to the wire frame model,

that is, texture the model (Figure 3.3). Textures are images applied to the surfaces of

primitive objects. Without textures, especially in a 3D game, the models appear less

interesting and engaging. Texturing 3D models make them look more like real world objects.

Vector2 coordinates are used for texturing because a texture is a two-dimensional object.

3D Logic Games and Tutorials for BingBee

24

3D Logic Games and Tutorials for BingBee

The points on a three-dimensional triangle are mapped onto corresponding positions on the

texture. To learn these fundamentals, a tutorial is available on the XNA Game Studio

documentation [19] and it’s entitled “How to: Draw points, lines and other 3D primitives”.

 Figure 3.3: Shows a textured 3D model

XNA uses a right-handed coordinate system [4] where the x axis is aligned with the thumb of

the right hand, the y axis is aligned with the index finger of the right hand and the z axis is

aligned with the middle finger of the right hand (Figure 3.4). This means that the x axis goes

from left to right (left being negative and right being positive), the y axis goes down and up

(down being negative and up being positive), and z goes forward (positive values of z and

coming towards the viewer) and backward (negative values of z and moving away from the

viewer).

3D Logic Games and Tutorials for BingBee

3D Logic Games and Tutorials for BingBee

 Figure 3.4

Triangles and lines can be drawn in strips or in lists

drawing separate points, lines, or triangles. Strips

the lines or triangles are combined to create one complex shape like a 3D model. Strips are

also more efficient than lists for saving memory and, as a result, enable faster drawing

When you’re drawing a triangle strip, adding one more vertex to the strip generates one more

triangle. A strip practically cuts the memory requirements for vertex data in half when

compared to a list:

Total triangle list vertices = N triangles * 3 vertices

Total triangle strip vertices = N triangles + 2 vertices

 Figure 3.5: shows 4 triangles in a strip and two triangles in a list

When triangle lists are used, a single corner on a cubelet features on as many as six

triangles, the point on the texture can be individually assigned for each of those cases. Using

the more compact strip notation means that the textures need to be organized so that the same

3D Logic Games and Tutorials for BingBee

3D Logic Games and Tutorials for BingBee

Figure 3.4: Shows the right hand orientation

Triangles and lines can be drawn in strips or in lists (Figure 3.5). Lists are required for

drawing separate points, lines, or triangles. Strips, on the other hand, are more efficient where

the lines or triangles are combined to create one complex shape like a 3D model. Strips are

also more efficient than lists for saving memory and, as a result, enable faster drawing

iangle strip, adding one more vertex to the strip generates one more

triangle. A strip practically cuts the memory requirements for vertex data in half when

Total triangle list vertices = N triangles * 3 vertices

rtices = N triangles + 2 vertices

Figure 3.5: shows 4 triangles in a strip and two triangles in a list

When triangle lists are used, a single corner on a cubelet features on as many as six

triangles, the point on the texture can be individually assigned for each of those cases. Using

the more compact strip notation means that the textures need to be organized so that the same

25

. Lists are required for

, on the other hand, are more efficient where

the lines or triangles are combined to create one complex shape like a 3D model. Strips are

also more efficient than lists for saving memory and, as a result, enable faster drawing [5].

iangle strip, adding one more vertex to the strip generates one more

triangle. A strip practically cuts the memory requirements for vertex data in half when

Figure 3.5: shows 4 triangles in a strip and two triangles in a list

When triangle lists are used, a single corner on a cubelet features on as many as six different

triangles, the point on the texture can be individually assigned for each of those cases. Using

the more compact strip notation means that the textures need to be organized so that the same

3D Logic Games and Tutorials for BingBee

3D Logic Games and Tutorials for BingBee

texture point is also shared when the point

to create the mapping between the

In this project therefore, triangle lists were used to draw the 3D cube because it is much

easier to texture, we have a small number of triangles

speed as high-action games might have.

When defining a wireframe cubelet, one has a choice to create vertices that are associated

with specific colours (VertexPositionColor

(VertexPositionTexture

image, and its points become addressable by values between 0 and 1 on each axis.) Colour

mapped vertices cause the rendering hardware to fill the triangles with (optionally b

solid colours, while texture-mapped vertices cause the rendering hardware to fill the resultant

triangles by choosing pixel colours from the texture.

With texture-mapped vertices, which are what we used for the cubelets, there are two points

of particular interest:

• different texture sources can be attached at the time of rendering

render the same cubelet object, but make it look differ

by changing the texture we apply at rendering time.

• the renderer has to know which surface of the triangle to apply the texture to.

face in a mesh has a perpendicular unit normal vector

direction is determined by the order in which the vertices are defined and by whether

the coordinate system is right

front side of the face and a

order [17]. The texture should be applied on the front face and when one gets this

order wrong, the texture will not be visible and the 3D model will appear to have

holes in it

 Figure 3.6: S

3D Logic Games and Tutorials for BingBee

3D Logic Games and Tutorials for BingBee

texture point is also shared when the point on the triangles is shared, and this makes it harder

to create the mapping between the wireframe points and the texture.

, triangle lists were used to draw the 3D cube because it is much

we have a small number of triangles, and we don't have the same need for

action games might have.

When defining a wireframe cubelet, one has a choice to create vertices that are associated

VertexPositionColor), or with specific positions in a texture

rtexPositionTexture). (For this purpose, a texture is created from a simple 2D

image, and its points become addressable by values between 0 and 1 on each axis.) Colour

mapped vertices cause the rendering hardware to fill the triangles with (optionally b

mapped vertices cause the rendering hardware to fill the resultant

triangles by choosing pixel colours from the texture.

mapped vertices, which are what we used for the cubelets, there are two points

sources can be attached at the time of rendering.

render the same cubelet object, but make it look different (highlighted or numbered

by changing the texture we apply at rendering time.

has to know which surface of the triangle to apply the texture to.

face in a mesh has a perpendicular unit normal vector (Figure 3.6)

direction is determined by the order in which the vertices are defined and by whether

stem is right- or left-handed. The face normal points away

and a front face is one in which vertices are defined in clockwise

The texture should be applied on the front face and when one gets this

e texture will not be visible and the 3D model will appear to have

Figure 3.6: Shows the normal vector on a triangle

26

is shared, and this makes it harder

, triangle lists were used to draw the 3D cube because it is much

and we don't have the same need for

When defining a wireframe cubelet, one has a choice to create vertices that are associated

), or with specific positions in a texture

). (For this purpose, a texture is created from a simple 2D

image, and its points become addressable by values between 0 and 1 on each axis.) Colour-

mapped vertices cause the rendering hardware to fill the triangles with (optionally blended)

mapped vertices cause the rendering hardware to fill the resultant

mapped vertices, which are what we used for the cubelets, there are two points

. This allows us to

ent (highlighted or numbered)

has to know which surface of the triangle to apply the texture to. Each

(Figure 3.6). The vector's

direction is determined by the order in which the vertices are defined and by whether

handed. The face normal points away from the

front face is one in which vertices are defined in clockwise

The texture should be applied on the front face and when one gets this

e texture will not be visible and the 3D model will appear to have

3D Logic Games and Tutorials for BingBee

27

3D Logic Games and Tutorials for BingBee

3.2.1 Matrices

In this project, another useful structure which is provided by XNA is the matrix. In XNA a

matrix is a 4x 4 table of data. In rendering any 3D model, three important matrices come into

play, namely, the world matrix, view matrix and the projection matrix [18]. In 3D graphics,

these three matrices need to be set before 3D geometry can be rendered. These matrices are

used to transform the 3D geometry from its initial definition in model space into the final

image drawn on the screen in 2D screen space.

The geometry goes through the following steps:

� First you define your 3D object in an editor or by hard coding the values. We chose to

use (0, 0, 0) as the origin of the cubelet object, and made the cubelet size (1, 1, 1),

with our vertex positions defined relative to the centre. These positions are defined in

model space [8].

� The next step is to position, rotate and scale our 3D model into our game world. In

order to do this we must provide a matrix that XNA Game Studio can use to convert

the vertex positions from model space into this new space, known as world space.

This matrix is called the world matrix. The world matrix therefore transforms 3D

data from model space into world space and this should be set before rendering every

entity in your world [8]. Each object in the world will have its own world matrix that

positions and possibly scales the object relative to other objects in the world. If an

object is moving in the world, or rotating, its world matrix will be continually

changing to reflect this. Changing the world matrix for each 3D model was

particularly useful in 3D Noughts and Crosses because only one Ducky or Sonic

model was imported into the game and only one cubelet was constructed from

individual points. From these three object definitions, the world matrix was

manipulated to draw the twenty seven instances of the cubelets in different positions,

varying the textures as drawing took place.

� The world will be viewed from a certain position. This position is the location of the

eye or camera. So we provide a matrix that allows XNA Game Studio to convert from

World Space into view space (sometimes known as camera space). This matrix is

called the view matrix. The view matrix therefore transforms from world space into

view space. There is only one view matrix which applies to all the objects in the

scene, and this only needs to be modified each time your camera changes position [8].

3D Logic Games and Tutorials for BingBee

28

3D Logic Games and Tutorials for BingBee

In 3D Noughts and Crosses there was no need to ever move the camera, so the view

space matrix does not change while the game is being played.

� Finally we need to tell XNA Game Studio how to project this 3D View Space onto

our flat 2D screen. So we provide a matrix that allows XNA Game Studio to convert

from view space into screen space. This matrix is known as the projection matrix.

The key parameters for constructing this matrix define the aspect ratio (width and

height) of the rendering surface, and the field-of-view (allowing for effects like zoom

in and zoom out). The projection matrix therefore transforms from view space into

screen space and this is normally set just once during initialization [8]. In our game

we have no need to resize the drawing window dynamically, and no zoom capability,

so the matrix remains constant.

3.2.2 Transformations

Transformation data is held in the world matrix and there are three common transformations,

namely translation, scaling, and rotating. Transformations, in accordance with the name,

transform our 3D objects.

3.2.2.1 Translation

Translation simply moves an object. Translation moves all the points in the 3D Model in the

direction of the offset vector you specify with the OffsetX, OffsetY, and OffsetZ properties.

For example, an offset vector of (0.0f, 1.6f, 1.0f) would, during rendering, cause the model

vertex (2.0f, 2.0f, 2.0f) to instead be rendered at (2.0f, 3.6f, 3.0f). The cube's vertex remains,

always, at (2.0f ,2.0f ,2.0f) in model space, but now that model space has changed its

relationship to world space so that (2.0f ,2.0f ,2.0f) in model space becomes (2.0f ,3.6f ,3.0f)

in world space [18]. This is the transformation that is used in this project to render instances

of the initial cubelet at other positions to draw the twenty seven cubelets positioned in a

3*3*3 matrix cube. There is therefore iteration during rendering as the world matrix is

manipulated to translate the rendering of the initial cubelet from one position to a different

neighbouring position until we have rendered twenty seven small cubelets that make up a

bigger 3*3*3 matrix cube [Figure 2.5].

3D Logic Games and Tutorials for BingBee

29

3D Logic Games and Tutorials for BingBee

3.2.2.2 Rotation

A transformation that is applied to an object will appear to turn the object on one or more

axes when the object is rendered. Rotation transforms the world matrix before rendering the

model. If the model was not created about the origin, or has been translated previously, the

rotation appears to "pivot" the model about the origin instead of rotating in place. To rotate

the model "in place," specify the model's actual centre as the centre of rotation [8]. This

transformation is used in this project to enable the player to spin the cube on the x, y and z

axis by using input methods like the arrow keys on the keyboard. The player can therefore

rotate the cube and view all six faces and click on any of the cubelets as they choose. This

improves visualisation of all the game elements on the cubelets.

Notice that cubelets that are displaced from the centre position (that is, those on the corner)

do have their translation applied before the rotation, so in fact they do pivot about rather than

rotate in place.

We also used another form of rotation in our game: when a position on the game cube

becomes part of a winning line, we apply a special "pitch rotation" to the rendering of those

cubelets to highlight the winning line by making the pieces do somersaults. This winning-

line pitch rotation has to be applied to the cubelet before the translation and rotation of the

big cube.

3.2.2.3 Scaling

Scaling an object will make the object larger or smaller. Scaling changes the model's scale by

a specified scale vector. One can specify a uniform scale, which scales the model by the same

value in the X, Y, and Z axes, to change the model's size proportionally. For example, setting

the transformation's ScaleX, ScaleY, and ScaleZ properties to 0.5 halves the size of the

model; setting the same properties to 2 doubles its scale in all three axes [8]. In our case,

scaling was important because we imported two external models, Sonic and Ducky, with their

own model space and sizes. We used our own cubelet size as the "standard" for the world,

and then scaled the imported models to fit our world appropriately.

3D Logic Games and Tutorials for BingBee

30

3D Logic Games and Tutorials for BingBee

3.3 3D Noughts and Crosses

3.3.1 3*3*3 matrix cube

As discussed earlier, there are two ways of getting 3D models into XNA Game Studio, that

is, importing an existing model using the .x or .fbx importer or by drawing the model from

3D points. The second approach was used for the 3*3*3 matrix cube. The

VertexPositionTexture structure was used which contains Vector3 coordinates for

the position of the cube and another set of Vector2 coordinates for the texture. The code

snippet below shows how to draw the front face of the cube using the

VertexPositionTexture structure.

// Front face
trianglelist[0] = new VertexPositionTexture(new Vector3(0.0f, 0.0f, 0.0f),
new Vector2(0.0f, 0.0f));
trianglelist[1] = new VertexPositionTexture(new Vector3(0.0f, 1.0f, 0.0f),
new Vector2(0.0f, 1.0f));
trianglelist[2] = new VertexPositionTexture(new Vector3(1.0f, 0.0f, 0.0f),
new Vector2(1.0f, 0.0f));
trianglelist[3] = new VertexPositionTexture(new Vector3(1.0f, 0.0f, 0.0f),
new Vector2(1.0f, 0.0f));
trianglelist[4] = new VertexPositionTexture(new Vector3(0.0f, 1.0f, 0.0f),
new Vector2(0.0f, 1.0f));
trianglelist[5] = new VertexPositionTexture(new Vector3(1.0f, 1.0f, 0.0f),

new Vector2(1.0f, 1.0f));

As shown above, each face is made up of six points which are joined together by vertices to

make triangles which are the basis of 3D models. Each vertex has a 3D position, and a 2D

position that determines its corresponding point on a texture. To make up a cube, six faces

were required. One important aspect that was confusing at the beginning of this project was

to ensure consistency in the winding order of the triangles, that is, drawing the vertices in a

clockwise manner so that the normal is pointing towards the viewer to ensure that the texture

is placed correctly on the front face. The next step was to actually draw or render the cube in

the Draw method. In order to draw the cube in 27 different places to form the 3*3*3 matrix

cube, a translation matrix is used which specifies different positions for each of the cubelets.

In our design, we created an object instance for each of the cubelets. In the game, this keeps

the state of the cubelet (whether it has been played, by whom, as well as precomputed offsets

from the origin, and some other data).The translation matrix is shown below, and it uses the

translations from the specific object that describes the state of this cubelet.

Matrix tr = Matrix.CreateTranslation(new Vector3(posns[i].X, posns[i].Y,

posns[i].Z));

3D Logic Games and Tutorials for BingBee

31

3D Logic Games and Tutorials for BingBee

3.3.2 Detecting that a cubelet has been clicked

After the 3*3*3 matrix cube was drawn the next step was to work on the 3D visual effects of

the game which are key components of the user interface. This is handled by the Update

method. The crux of the visual impact of this game is in actually being able to play with the

cubes like real life objects which is what makes 3D games engaging. One exciting aspect of

this game is the ability to rotate the cube in the yaw, pitch and roll directions. The game also

has a mouse-over effect whereby the cubelet that is under the mouse is rendered with a

different texture. This improves the interaction that the player has with the game. The

gameplay is in actually clicking on a cubelet in order to put your piece into it and own it. This

can be quite tricky considering you only want to select one object at a time but this is made

quite easy by using the XNA Unproject method, the Ray structure and the

BoundingSphere which are part of the built in Math API.

Picking a 3D object from a scene using a mouse click can be complicated because 3D objects

are made up of many triangles joined together and the 2D mouse coordinates have to be

converted to 3D coordinates that are usable with the 3D objects. To simplify this task, a

BoundingSphere was defined for each cubelet in the 3*3*3 matrix cube. A bounding

sphere (Figure 3.5) is a hypothetical sphere that completely encompasses an object. It is

defined by a 3D coordinate representing the centre of the sphere, and a scalar radius that

defines the maximum distance from the centre of the sphere to any point in the object.

 Figure 3.7: Showing the bounding sphere of a 3D model

When the mouse is clicked, there is a method that gets the position of the mouse. The

Unproject method (which projects a vector from screen space to object space , that is, it

3D Logic Games and Tutorials for BingBee

32

3D Logic Games and Tutorials for BingBee

uses the projection matrix to do the inverse of what the projection matrix does) is used to

convert the mouse coordinates to a 3D representation. This unprojection, going from a 2D

point to 3D, cannot uniquely identify a point in the 3D space. Rather, it produces a line

object that runs away from the eye into the scene. In this same method, a nearsource and

farsource which are both Vector3 are defined using the X and Y coordinates of the

mouse position and a Z value. The nearsource and farsource, together with the

unprojected line, make up the Ray object with the nearsource being the starting point and the

farsource being the furthest point. The next step is to find all objects that intersect with the

Ray, loop through the objects to find one nearest to the viewer and that is the one which is

selected (Figure 3.6 and Figure 3.7).

 Figure 3.8: Shows the model with the cubelet under the mouse highlighted

3D Logic Games and Tutorials for BingBee

33

3D Logic Games and Tutorials for BingBee

Figure 3.9: Shows the model after a cubelet is clicked, the computer has made another move,

and the mouse has now moved over another cubelet.

3.3.3 Importing 3D models

In our game we used a combination of techniques. Two pre-defined models, called "Ducky"

(Figure 3.10) and "Sonic" (Figure 3.11), were downloaded and imported into the game

through the content importer during initialization. These objects will be rendered when the

computer or the user has played one of the available twenty seven cubelet positions. For the

positions that have not been played, we constructed our own cubelet wireframe model, and

rendered it with one of a number of different textures.

3D Logic Games and Tutorials for BingBee

34

3D Logic Games and Tutorials for BingBee

 Figure 3.10: The “Ducky” model

 Figure 3.11: The “Sonic” model

As shown in Figure 3.9, when a player clicks on a cubelet, a duck model is drawn in place of

the cubelet. Importing the model into an XNA game is made possible by the .x or .fbx

importers and the Model processor. The models are loaded in the

LoadGraphicsContent method as shown in the code snippet below:

ducky = Content.Load<Model>("Models\\ducky_highres");

sonic = Content.Load<Model>("Models\\sonic");

3.3.4 Adding sound

Music sets the atmosphere for our games and sound effects add to the realism of our games.

To add sound, we used the Microsoft Cross-Platform Audio Creation Tool (XACT) which

3D Logic Games and Tutorials for BingBee

35

3D Logic Games and Tutorials for BingBee

comes with XNA Game Studio. XACT takes completed wav files and puts them in a format

that XNA can read and use [4]. Although XACT only supports wav files, one can add

multiple sound files to the wave bank.

To implement XNA audio, you must, at least, use these five main objects:

• XACT audio project file

• Audio engine

• Global settings

• Wave banks

• Sound banks

The XACT audio project file is the file created from XACT and it has a .xap extension. This

file stores the wave file references, sound cue instances, and their playback settings. The

AudioEngine object instantiates and manipulates core sound objects for playing game

audio. Global settings are the definitions for the audio controls created by the sound designer.

This file is used to initialize the sound engine. A wave bank is a collection of wave files

loaded and packaged in an .xwb file. A sound bank is a collection of instructions and cues for

the wave files to regulate how the sounds are played in your program. Cues are used to

trigger audio playback from the sound bank [4]. The code snippet below shows how XACT

audio is used in this game:

engine = new AudioEngine("Content\\Audio\\soundXOX.xgs");

soundBank = new SoundBank(engine, "Content\\Audio\\Sound Bank.xsb");

waveBank = new WaveBank(engine, "Content\\Audio\\Wave Bank.xwb");

// Play the sound.

soundBank.PlayCue("bugsbunny1");

soundBank.PlayCue("beep");

soundBank.PlayCue("cheering");

3.3.5 Animation

Animation is a visual technique that provides the illusion of motion by displaying a collection

of images in rapid sequence [2]. Each image contains a small change, for example a leg

moves slightly, or the wheel of a car turns. When the images are viewed rapidly, your eye

fills in the details and the illusion of movement is complete. When used appropriately in your

application’s user interface, animation can enhance the user experience while providing a

3D Logic Games and Tutorials for BingBee

36

3D Logic Games and Tutorials for BingBee

more dynamic look and feel. Animated models make a game more exciting and realistic

which are some of the characteristics that engage the player. In this game, we did not

implement any animation of the models themselves (that is, Sonic does not wave his hands,

nor does Ducky change shape). However, the models in the winning line are spun for about 5

seconds before the next game starts.

3.4 Game classes

The system is designed around three main classes, namely, Cubelet, XOXModel and

Game. The architecture (loosely) adheres to the Model, View and Controller (MVC) design

pattern because MVC (Figure 3.8) separates the concern of storing, displaying, and updating

data into three components that can be tested individually [21]. The MVC pattern separates

the modelling of the domain, the presentation, and the actions based on user input into three

separate classes. The XOXModel class is the MVC model of the game and it is responsible

for managing the behaviour of the cubelets, managing the game states and also responds to

instructions from the controller. The Cubelet class is also part of the MVC model: it keeps

the state of each of the cubelets during play, and also keeps some relative information about

the position of the cubelet relative to the origin. The MVC viewer uses this data extensively

when the game is rendered. The Game class is the one supplied by the XNA framework, (and

extended by ourselves). It is the controller of the game and it is responsible for handling

events or logic in the game. The Game class Update method interprets user inputs from the

keyboard or mouse and gives instructions to the model or view to change accordingly. The

Draw method in the Game class corresponds to the view of MVC. The controller also keeps

track of Yaw, Pitch and Roll values in order to allow the viewer to rotate the 3*3*3 matrix

cube.

3D Logic Games and Tutorials for BingBee

37

3D Logic Games and Tutorials for BingBee

 Figure 3.12: The MVC design pattern

There are some minor anomalies in our design where the MVC architecture is not strictly

followed. For example, our activity keeps scores and plays multiple games in a row. It was

more convenient to simply handle this directly in the Game class, although in strict MVC we

should have represented the scores and multiple-game/who-starts-next logic as part of the

MVC model.

3.5 Summary

In order to implement 3D Noughts and Crosses it was important first to understand the basic

geometry of 3D graphics in order to be able to model the cube. This was made quite easy by

the introductory tutorial that is found in the XNA documentation [18]. This chapter therefore

showed the features of the XNA framework that were discussed in chapter two coming into

use. The Math and Input API’s in particular made implementing the game a lot easier. The

Math API was fundamental in actually modelling and rendering the 3*3*3 matrix cube using

the Vector and Matrix structures. Designing the user interface which involved using the

BoundingSphere and Ray types was made easier by the Math API. The Input API which

defines the Keyboard and Mouse controller types was useful in actually manipulating the

cube in order to view all faces. The ease with which sound is played using XACT also made

it possible to add various sounds to the game to be played on separate events in order to aid in

emphasising the distinction between events.

3D Logic Games and Tutorials for BingBee

38

3D Logic Games and Tutorials for BingBee

CHAPTER 4: RESULTS

4.1 3D Noughts and Crosses

In all the versions of the game, the human plays against the computer. Instead of the

conventional X and O that is used in the 2D game, we used two 3D models as pieces for each

player, that is, Ducky and Sonic. The models were imported into the XNA game using the .x

importer. In this game there are 49 possible winning lines which go either vertically,

horizontally, diagonally or through the 3*3*3 matrix cube. Whenever a new game starts, the

first player is alternated between the human and the computer. Sound has been incorporated

into the game such that beeps accompany every move that is made. The beeps have a

different tone to distinguish between the two players.

There are four possible states of ownership that a cubelet can be in; none, player 1, player 2

and void. At the beginning of the game, all the cubelets have the Owner.None state. When

a cubelet is selected or played, it is assigned either player 1 or player 2 depending on whether

it is the human or computer that played. This logic of owning a cubelet is done in response to

inputs detected during the Update method of the XNA game loop.

The Draw method interrogates the XOXModel object and takes note of the cubelet

ownerships to render the game content as follows:

• If the state is Owner.None, a textured cubelet will be drawn

• If the state is Owner.Player1, Ducky will be drawn in place of the cubelet

• If the state is Owner.Player2, Sonic will be drawn in place of the cubelet

• If the state is Owner.Void, the cubelet is not rendered at all (this is used in one of

the game variations where we prefer not to render the centre cubelet)

The state of the game is also tracked in the Update method. At the beginning of every game

the state of the game is GameOutcome.None. If any of the winning lines is owned by one

player, then there is a winner and the game state changes to GameOutcome.P1Wins or

GameOutcome.P2Wins depending on the player who has won.

When there is a winner, the winning cubelets are identified and marked as part of the winning

line. During rendering, an extra rotation matrix is applied to all the objects in the winning

line such that they spin for a while. A cheering sound also accompanies every winning move

3D Logic Games and Tutorials for BingBee

39

3D Logic Games and Tutorials for BingBee

which makes the game interesting and likely to be great fun for the target audience. After

every win, and an appropriate timeout, a new game is loaded. 3D Noughts and Crosses also

has a scoring scheme whereby a score is awarded for every move made and even higher

points are awarded to the winner in each round. The scoring is continuous for the number of

rounds that the player plays before quitting the game. This system therefore determines the

ultimate winner if more than one game is played. This game tested two different user

interfaces with one particularly designed to suit BingBee which uses a touchpad (Figure 4.1)

instead of the conventional mouse and keyboard. A number of other variations were also

implemented:

4.1.1 Version One

This first version is the easiest one in which the intelligence of the computer is oriented

towards or prioritises blocking the human player. When the human player takes possession of

the two cubelets in a winning line, the computer moves to block the third cubelet and prevent

the human from winning.

4.1.2 Version Two

The second version of the game is such that the aim of the computer is to win and not to

block the human player. The computer therefore aims to own three winning cubelets at any

given opportunity.

4.1.3 Version Three

In this version, the middle cubelet in the 3*3*3 matrix cubelet is deactivated to try and make

the game easier for the target audience. Therefore, instead of 27 playable cubelets, we now

have 26. The game code still leaves the option for activating the middle cubelet. Deactivating

the middle cubelet leaves only 36 possible winning lines instead of the initial 49 and this is

less complex for the player.

4.2 First User Interface

This interface during development only took into consideration the keyboard and mouse as

the medium of user input. With this interface, the player uses the arrow keys to rotate the

3*3*3 matrix cube so that all sides can be viewed and the appropriate cubelet can be selected.

3D Logic Games and Tutorials for BingBee

40

3D Logic Games and Tutorials for BingBee

Using the method for determining which cubelet has been selected, moving the mouse pointer

over the cubelets highlights the selected one by giving it a different texture. When the mouse

is clicked on the highlighted cubelet, the cubelet is assigned an owner and the appropriate

model is drawn in that position. This interface worked well using the keyboard and mouse

and it was implemented on BingBee. After a few trials on BingBee, this interface proved to

be quite tedious. BingBee has a pad which can mimic mouse movement (but it is not as

accurate or responsive as a real mouse), and it needs a separate key-press instead of a

convenient click of a button that is right under the user's finger. BingBee uses a touchpad

(Figure 4.1) as a means of input. Using the first user interface, the player selected a cubelet

as follows:

� the player made use of the arrow keys to rotate the 3*3*3 matrix cube

� the mouse pad (the area written BingBee in Figure 4.1 below) was used to highlight a

potential cubelet and

� the enter key was pressed to play in that cubelet.

As a result, that user interface had to be changed to make it a bit easier and faster. The

BingBee combination of moving the cursor and then hitting an enter key proved somewhat

difficult, so it gave rise to the second user interface.

3D Logic Games and Tutorials for BingBee

41

3D Logic Games and Tutorials for BingBee

 Figure 4.1: BingBee touchpad

4.3 Second User Interface

The new user interface was such that each cubelet on the face that is facing forward was

assigned a number from 1 to 9, labelled as such using textures (Figure 4.2) and the number

keys were dynamically assigned to each cubelet on the front face.

The first step was to determine, during Update after new rotations could have been applied

to the cube, which face on the 3*3*3 matrix cube is closest to the viewer. Every matrix object

in XNA has six easily assessable unit vectors pointing up, left, right, down, forward and back.

We looked at these 6 unit vectors in the rotation matrix, and found the one which had the

largest Z value, that is, closest to the viewer. From this we know which the forward-facing

3D Logic Games and Tutorials for BingBee

42

3D Logic Games and Tutorials for BingBee

face of our cube is. This is shown in the code snippet below, where tf is the transformation

matrix controlling the pitch, yaw and roll of the cube:

faces[0] = tf.Backward.Z; //front
faces[1] = tf.Left.Z; //left
faces[2] = tf.Forward.Z; //back:forward vector is away from the viewer
faces[3] = tf.Right.Z; //right
faces[4] = tf.Up.Z; //up
faces[5] = tf.Down.Z; //down

 Once we know which face is forward-facing, we can associate numbers with the cubelets on

that face. Therefore to play a cubelet; the player had to just press the corresponding number

on the BingBee number pad. In the case where the centre cubelet is also active in the game, it

can be selected by using the number 0 on the keypad.

 Figure 4.2: The second user interface for Noughts and Crosses

Pressing the number 1 will draw the sonic model in the cubelet currently labelled 1. When the

3*3*3 matrix cube is rotated, the face that is facing forward will be relabelled (Figure 4.3)

and the upside down sonic models show the winning line. (Notice that only the cubelets that

have not been get textured with this labelling.)

3D Logic Games and Tutorials for BingBee

43

3D Logic Games and Tutorials for BingBee

 Figure 4.3: Shows the 3*3*3 matrix cube after some cubelets have been played

4.4 Summary

Game variations were incorporated into the game to accommodate the target audience. The

objective in 3D Noughts and Crosses is to incorporate varying levels of difficulty which is an

aspect that players enjoy in a game. The easiest version is whereby the computer’s priority is

to defend. The human player therefore only concentrates on evading the defence and

winning. In this version therefore the computer only won by chance if the line it was

defending coincided with its winning line. The second version which is a bit more

challenging requires the human player to defend and to make winning moves at the same

time because the computer prioritizes winning.

3D Logic Games and Tutorials for BingBee

44

3D Logic Games and Tutorials for BingBee

A third variation was included whereby the middle cube was deactivated and this actually

produced a more balanced game whereby the computer either defended or won

interchangeably depending on the ownership of the cubelets in any winning line.

3D Logic Games and Tutorials for BingBee

45

3D Logic Games and Tutorials for BingBee

CHAPTER 5: CONCLUSION

Computer and video games have become an increasingly prevalent form of entertainment.

While the primary purpose of games is entertainment, the underlying design employs a

variety of strategies and techniques which require players to analyse, synthesize, and to use

critical thinking skills. Ironically, these are also many of the same types of critical thinking

skills educators and instructional designers attempt to foster when creating educational

materials and media [7]. “3D Noughts and Crosses” is a strategy game that requires critical

thinking and evaluation of the player’s position and that of the opponent before making a

move. As a result, the player exercises and improves their intellectual skills by playing the

game. This therefore confirms the potential of BingBee as a means of not only entertaining

the children but educating them at the same time. The key therefore to successful

edutainment is to maintain the fun factor in the games so that the players will keep on coming

back for more. Game players have also been shown to love challenge in a game, it is

therefore important to maintain an increasing level of difficulty as the player progresses.

XNA Game Studio has also proved to make 3D game development reasonably accessible to

non-expert game developers, and to programmers who prefer the ease of a modern garbage-

collected language like C# in a fully-featured development environment, that is, Visual

Studio. This is because of the content pipeline that handles the content of the game. The

math of the game, for example, detecting that a 3D object has been clicked is also made

easier because of the built in KeyboardState and MouseState classes. XACT also

makes the addition of audio files into the game easier which is important because sound is a

crucial part of the game if it is to remain engaging.

For one who is using XNA Game Studio for the first time, the tutorials that are available in

the documentation make learning relatively easy.

5.1 Challenges faced in the project

The first problem is that XNA Game Studio requires a graphics card that supports DirectX

9.0c and Shader Model 1.1. Shader Model 2.0 is recommended and required for some Starter

Kits provided by Microsoft. Some of the machines at the deployed BingBee did not have the

required graphics capability so the hardware had to be upgraded in order to run the game.

This therefore delayed the deployment of the game.

3D Logic Games and Tutorials for BingBee

46

3D Logic Games and Tutorials for BingBee

The game was developed on a standard computer using the keyboard and mouse as input

devices. BingBee on the other hand uses a touch pad as an input device. When the game was

deployed on a BingBee machine, the user interface was tedious, that is, using the arrow keys

to rotate the 3*3*3 matrix cube, using the mouse pad for selecting a cubelet and using the

enter key to play a cubelet. To accommodate the touchpad the user interface had to be

changed as described in 4.1.3. Other concurrent projects [Building an intuitive interface for

BingBee by Ray Musvibe] are attempting to provide more sophisticated gesture recognition

on BingBee's input pad, and this might change the ease of use.

The game loop in XNA Game Studio calls the Update and Draw methods while the game

is running. In certain instances, for example, checking if the mouse has been clicked, this was

not desirable because the game loop kept on reading in one key press several times per

second. It is also in the CheckMouseClick method, that the current players were

alternated. As a result of this game loop, the current player would not alternate consistently,

for example, the human would play 3 times before the computer gets its turn. As a result, this

complicated the game logic and the code had to be modified as follows in order to read a key

press only once:

bool gotThisClick; // a flag that is true while the mouse is down
 // so that we react to the down transition only
bool CheckMouseClick() // return true if a move is valid
 {
 MouseState mouseState = Mouse.GetState();
 if (mouseState.LeftButton != ButtonState.Pressed)
 {
 gotThisClick = false;
 }
 else
 {
 if (!gotThisClick)
 {
 gotThisClick = true;

 //method logic
 }
 }
 }

5.2 Possible project extensions

The purpose of this project was to introduce more 3D content on BingBee to pave way for

more challenging 3D games. One possible project extension would be to delve more into 3D

serious gaming which simulates an actual environment, for example, a game that involves 3D

buildings, cars, vegetation and people to make the games more engaging. Another beneficial

3D Logic Games and Tutorials for BingBee

47

3D Logic Games and Tutorials for BingBee

aspect would be to develop networked games because XNA Game Studio supports multi

player games.

5.3 Project achievements

Our initial question of whether XNA is a suitable programming platform for game

development, specifically for use in BingBee, has been positively answered. Our sample

game has shown the feasibility of this approach, and the additional work (outside the scope of

this project) that was undertaken to integrate XNA games into BingBee has established a new

capability that will be a useful future building block for new BingBee activities. The

objective of adding more 3D content on BingBee has also been fulfilled by the deployment of

this game (3D Noughts and Crosses).

3D Logic Games and Tutorials for BingBee

48

3D Logic Games and Tutorials for BingBee

References

[1] Amory Alan, Naicker Kevin, Vincent Jacky, Adams Claudia, The use of computer

games as an educational tool: identification of appropriate game types and game

elements British Journal of Educational Technology 30 (4), p311–322, 1999:

[Retrieved on 28/02/20]

www.nu.ac.za/biology/staff/amory/bjet30.rtf

[2] Apple Inc., Animation overview © 2008 Apple Inc.

http://developer.apple.com/documentation/GraphicsImaging/Conceptual/Animation_

Overview/Animation_Overview.pdf

[3]Becta, Designing software for schools, ©Becta, 2001

http://partners.becta.org.uk/page_documents/research/summary.pdf

[4] Carter Chad, Microsoft ® XNA™ Unleashed: Graphics and Game programming

for Xbox 360 and Windows SAMS, USA, c2008

http://knowfree.net/2007/08/11/microsoft-xna-unleashed-graphics-and

gameprogramming- for-xbox-360-and-windows.kf

 [5] Cawood Stephen and McGee Pat, Microsoft ® XNA ™ Game Studio Creator’s

Guide: An Introduction to XNA Game Programming, The McGraw Hill Companies,

USA, c2007

http://knowfree.net/2008/01/02/microsoft%C2%AE-xna-game-studio-creators-

guidepaperback.kf

[6] Dempsey, J. V., Lucassen, B. A., Haynes, L. L. & Casey, M. S. (1996, April).

Instructional applications of computer games, Paper presented at the annual meeting of the

American Education Research Association, New York.

http://eric.ed.gov/ERICDocs/data/ericdocs2sql/content_storage_01/0000019b/80/14/7c/a7

.pdf

[7] Dickey Michelle D, “Ninja looting” for Instructional Design: The Design challenges

of creating a Game-based learning environment, 2006

3D Logic Games and Tutorials for BingBee

49

3D Logic Games and Tutorials for BingBee

[8] Ditchburn Keith (A lecturer on the Games Programming Courses at the University

of Teesside) Spaces and Matrix in Direct3D, © 2004-2008

http://www.toymaker.info/Games/html/matrices.html

[9] Eveland Evan, ”XNA development-Basic concepts: The game loop”, blog, March

12, 2008

http://evelands.net/evan/xna02.php

[10] Falco Marsha Jean - The Creative Genius behind Set, ©Copyright Set

Enterprises Inc. 2004

http://www.setgame.com/set/index.html

[11] Gee James Paul, What video games have to teach us about Learning and

Literacy, ACM Computers in Entertainment, Vol. 1, No. 1, October 2003, BOOK01

[12]Greenfield et al, Cognitive socialisation by computer games in two cultures:

Inductive discovery or mastery of an iconic code? Journal of applied developmental

psychology 15, pg 59-85, 1994

[13] Klucher Michael (Program manager – XNA Game Studio) –The XNA Framework

Content Pipeline, XNA team blog, August 29, 2006

http://blogs.msdn.com/xna/archive/2006/08/29/730168.aspx

[14]Leddo, J. (1996). An intelligent tutoring game to teach scientific reasoning, Journal of

Instruction Delivery Systems, 10(4), 22-25.

[15] McFarlane Angela (Professor), Sparrowhawk Anne, Heald Ysanne: Report on

the educational use of games: an exploration by TEEM of the contribution which

games can make to the education process, 2002 [Retrieved on 28/02/2008]

http://www.teem.org.uk/publications/teem_gamesined_full.pdf

 [16] McLeod Jeremiah, 3D - Noughts and Crosses (Tic-Tac-Toe)

http://www.murderousmaths.co.uk/games/ttt/ttt.htm

3D Logic Games and Tutorials for BingBee

50

3D Logic Games and Tutorials for BingBee

[17] Microsoft Corporation: 3D coordinate systems and geometry, © 2008

http://msdn.microsoft.com/en-gb/library/bb324489(VS.85).aspx

[18] Microsoft Corporation: 3D Transformations overview, © 2008

http://msdn.microsoft.com/en-us/library/ms753347.aspx

[19] Microsoft Corporation: XNA Game Studio 2.0 documentation, © 2008

http://msdn.microsoft.com/en-us/library/bb200104.aspx

[20] Mitchell Alice and Savill-Smith Carol – The use of computer and video games for

learning © Learning and Skills Development agency, 2004

http://www.lsda.org.uk/files/PDF/1529.pdf

[21] Microsoft patterns and practices, Model-View-Controller, ©2008 Microsoft
Corporation
http://msdn.microsoft.com/en-us/library/ms978748.aspx

[22] Moursund David, Some Personal Thoughts about Research on Using
Games in Education, NECC 2006

[23] Prensky Marc, Digital game-based Learning, ACM Computers in Entertainment,

Vol. 1, No. 1, October 2003, Book 02.

[24] Walker Mitch (25/08/2006) Program manager | XNA Framework: What is the

XNA Framework, XNA team blog, August 25, 2006 [Retrieved on 01/03/2008]

http://blogs.msdn.com/xna/archive/2006/08/25/724607.aspx

[25] Weisstein Eric W, “Tic-Tac-Toe." From MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/Tic-Tac-Toe.html

[26] http://www.bingbee.com/

[27] http://creators.xna.com/

3D Logic Games and Tutorials for BingBee

51

3D Logic Games and Tutorials for BingBee

Appendix

C# code for 3D Noughts and Crosses

Cubelet class (Model)

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

namespace MyCube
{
 public enum Owner { None, Player1, Player2,Void };
 class Cubelet
 {
 public Owner theOwner;
 public bool inWinningLine = false;
 private int onFrontFace = -1;

 public int OnFrontFace
 {
 get { return onFrontFace; }
 set { onFrontFace = value; }
 }

 public Cubelet()
 {
 theOwner = Owner.None;
 }
 }
}

XOXModel class (Model)
using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework;

namespace MyCube
{
 public enum GameOutcome { None, P1Wins, P2Wins, Full };

 public class XoXGameModel
 {
 Cubelet[] cubes;

 Random rand = new Random();

 internal Owner TheOwner(int selectedIndex)
 {
 return cubes[selectedIndex].theOwner;
 }

3D Logic Games and Tutorials for BingBee

52

3D Logic Games and Tutorials for BingBee

 internal bool IsInWinningLine(int i)
 {
 return cubes[i].inWinningLine;
 }

 internal void SetCubeOwner(int selectedIndex, Owner owner)
 {
 cubes[selectedIndex].theOwner = owner;
 }

 internal void SetCubeOnFrontFace(int i, int val)
 {
 cubes[i].OnFrontFace = val;
 }

 internal int GetCubeOnFrontFace(int i)
 {
 return cubes[i].OnFrontFace;
 }

 public XoXGameModel()
 {

 cubes = new Cubelet[27];
 for (int i = 0; i < 27; i++)
 {
 cubes[i] = new Cubelet();
 cubes[i].theOwner = Owner.None;
 cubes[i].inWinningLine = false;

 }
 cubes[13].theOwner = Owner.Void;
 }

 bool full = false;

 int[,] Winners = {{0, 3, 6}, {1, 4, 7}, {2, 5, 8}, {0, 1, 2}, {3,
4, 5}, {6, 7, 8}, {0, 4, 8}, {6, 4, 2} , {9, 12, 15}, {11, 14, 17}, {9, 10,
11}, {15, 16, 17}, {18, 21, 24}, {19, 22, 25}, {20, 23, 26} , {18, 19,
20}, {21, 22, 23}, {24, 25, 26}, {18, 22, 26}, {24, 22, 20}, {0, 12, 24},
{2, 14, 26}, {0, 10, 20}, {6, 16, 26}, {0, 9, 18}, {1, 10, 19} , {2, 11,
20}, {3, 12, 21}, {5, 14, 23}, {6, 15, 24}, {7, 16, 25}, {8, 17, 26}, {24,
16, 8}, {18, 10, 2}, {20, 14, 8}, {18, 12, 6}};

 public int CalculateCompMove()
 {
 int pos = GoforBlock();
 if (pos >= 0) return pos;
 pos = GoforWin();
 if (pos >= 0) return pos;
 pos = GoforCenter();
 if (pos >= 0) return pos;

 return GoforRandom();
 }

 private int GoforCenter()
 {

 if (cubes[4].theOwner == Owner.None)

3D Logic Games and Tutorials for BingBee

53

3D Logic Games and Tutorials for BingBee

 {
 cubes[4].theOwner = Owner.Player1;
 return 4;
 }

 if (cubes[22].theOwner == Owner.None)
 {
 cubes[22].theOwner = Owner.Player1;
 return 22;

 }
 return -1;
 }

 private int GoforBlock()
 {
 for (int w = 0; w < 36; w++) //49
 {

 if (cubes[Winners[w, 0]].theOwner == Owner.Player2 &&
cubes[Winners[w, 1]].theOwner == Owner.Player2 && cubes[Winners[w,
2]].theOwner == Owner.None)
 {
 cubes[Winners[w, 2]].theOwner = Owner.Player1;
 return Winners[w, 2];
 }

 if (cubes[Winners[w, 0]].theOwner == Owner.Player2 &&
cubes[Winners[w, 1]].theOwner == Owner.None && cubes[Winners[w,
2]].theOwner == Owner.Player2)
 {
 cubes[Winners[w, 1]].theOwner = Owner.Player1;
 return Winners[w, 1];
 }

 if (cubes[Winners[w, 0]].theOwner == Owner.None &&
cubes[Winners[w, 1]].theOwner == Owner.Player2 && cubes[Winners[w,
2]].theOwner == Owner.Player2)
 {
 cubes[Winners[w, 0]].theOwner = Owner.Player1;
 return w;
 }
 }
 return -1;
 }

 private int GoforWin()
 {
 for (int w = 0; w < 36; w++) //49
 {
 if (cubes[Winners[w, 0]].theOwner == Owner.Player1 &&
cubes[Winners[w, 1]].theOwner == Owner.Player1 && cubes[Winners[w,
2]].theOwner == Owner.None)
 {
 cubes[Winners[w, 2]].theOwner = Owner.Player1;
 return Winners[w, 2];
 }

 if (cubes[Winners[w, 0]].theOwner == Owner.Player1 &&
cubes[Winners[w, 1]].theOwner == Owner.None && cubes[Winners[w,
2]].theOwner == Owner.Player1)

3D Logic Games and Tutorials for BingBee

54

3D Logic Games and Tutorials for BingBee

 {
 cubes[Winners[w, 1]].theOwner = Owner.Player1;
 return Winners[w, 1];
 }

 if (cubes[Winners[w, 0]].theOwner == Owner.None &&
cubes[Winners[w, 1]].theOwner == Owner.Player1 && cubes[Winners[w,
2]].theOwner == Owner.Player1)
 {
 cubes[Winners[w, 0]].theOwner = Owner.Player1
 return Winners[w, 0];
 }
 }
 return -1;
 }

 private int GoforRandom()
 {
 int comp = rand.Next(26);
 if (cubes[comp].theOwner == Owner.None)
 {
 cubes[comp].theOwner = Owner.Player1;
 return comp;
 }
 return -1;
 }

 private void CheckFull()
 {
 for (int p = 0; p < 27; p++)
 {
 if (cubes[p].theOwner == Owner.None)
 full = false;
 else
 full = true;
 }
 }

 public GameOutcome CheckOutcome()
 {
 for (int w = 0; w < 36; w++) //49
 {
 if (cubes[Winners[w, 0]].theOwner == Owner.Player2 &&
cubes[Winners[w, 1]].theOwner == Owner.Player2
&& cubes[Winners[w, 2]].theOwner == Owner.Player2)
 {
 cubes[Winners[w, 0]].inWinningLine = true;
 cubes[Winners[w, 1]].inWinningLine = true;
 cubes[Winners[w, 2]].inWinningLine = true;
 return GameOutcome.P2Wins;
 }
 else if (cubes[Winners[w, 0]].theOwner == Owner.Player1 &&
cubes[Winners[w, 1]].theOwner ==Owner.Player1 && cubes[Winners[w,
2]].theOwner == Owner.Player1)
 {
 cubes[Winners[w, 0]].inWinningLine = true;
 cubes[Winners[w, 1]].inWinningLine = true;
 cubes[Winners[w, 2]].inWinningLine = true;
 return GameOutcome.P1Wins;
 }
 }

3D Logic Games and Tutorials for BingBee

55

3D Logic Games and Tutorials for BingBee

 for (int i = 0; i < 27; i++)
 {
 if (cubes[i].theOwner == Owner.None)
 {
 return GameOutcome.None;
 }
 }

 return GameOutcome.Full;

 }
 }
}

Game class (Controller)

The code below shows the Update method that handles game logic.

float mdlRotation = 0f;
bool gotKey = false;

protected override void Update(GameTime gameTime)
 {
 mdlRotation += 0.04f;
 KeyboardState newState = Keyboard.GetState();
 // Allows the game to exit
 if (Keyboard.GetState(PlayerIndex.One).IsKeyDown(Keys.Escape))
 this.Exit();

 if (Keyboard.GetState(PlayerIndex.One).IsKeyDown(Keys.Up))
 {
 pitch -= (float)gameTime.ElapsedGameTime.TotalMilliseconds
 *MathHelper.ToRadians(0.1f);
 }
 if (Keyboard.GetState(PlayerIndex.One).IsKeyDown(Keys.Down))
 {
 pitch += (float)gameTime.ElapsedGameTime.TotalMilliseconds
 *MathHelper.ToRadians(0.1f);
 }
 if (Keyboard.GetState(PlayerIndex.One).IsKeyDown(Keys.Left))
 {
 yaw -= (float)gameTime.ElapsedGameTime.TotalMilliseconds *
 MathHelper.ToRadians(0.1f);
 }
 if (Keyboard.GetState(PlayerIndex.One).IsKeyDown(Keys.Right))
 {
 yaw += (float)gameTime.ElapsedGameTime.TotalMilliseconds *
 MathHelper.ToRadians(0.1f);
 }
 if (Keyboard.GetState(PlayerIndex.One).IsKeyDown(Keys.OemComma))
 {
 roll -= (float)gameTime.ElapsedGameTime.TotalMilliseconds *
 MathHelper.ToRadians(0.1f);
 }
 if (Keyboard.GetState(PlayerIndex.One).IsKeyDown(Keys.OemPeriod))
 {
 roll += (float)gameTime.ElapsedGameTime.TotalMilliseconds *
 MathHelper.ToRadians(0.1f);
 }

3D Logic Games and Tutorials for BingBee

56

3D Logic Games and Tutorials for BingBee

 labelForwardFacingCubelets();

 if (DateTime.Now.CompareTo(dontPlayUntil) > 0)
 {
 if (newGamePending)
 {
 StartAnotherGame();
 }
 else
 {
 if (playerToMoveNext == Human)
 {
 Keys[] theKeys =
 Keyboard.GetState(PlayerIndex.One).GetPressedKeys();
 if (theKeys.Length == 0)
 {
 gotKey = false;
 }
 else
 {
 if (theKeys.Length == 1)
 {
 bool played = false;
 if (!gotKey)
 {
 switch (theKeys[0])
 {
 case Keys.NumPad1: played = selectCubelet(1);
 break;
 case Keys.NumPad2: played = selectCubelet(2);
 break;
 case Keys.NumPad3: played = selectCubelet(3);
 break;
 case Keys.NumPad4: played = selectCubelet(4);
 break;
 case Keys.NumPad5: played = selectCubelet(5);
 break;
 case Keys.NumPad6: played = selectCubelet(6);
 break;
 case Keys.NumPad7: played = selectCubelet(7);
 break;
 case Keys.NumPad8: played = selectCubelet(8);
 break;
 case Keys.NumPad9: played = selectCubelet(9);
 break;
 default: break;
 }

 if (played)
 {
 soundBank.PlayCue("blip1");
 dontPlayUntil =
 DateTime.Now.AddSeconds(0.8)
 playerToMoveNext = Computer;
 }
 gotKey = true;
 }
 }
 }
 }

3D Logic Games and Tutorials for BingBee

57

3D Logic Games and Tutorials for BingBee

 else
 {
 theModel.CalculateCompMove();
 compscore++;
 soundBank.PlayCue("beep");
 playerToMoveNext = Human;
 }
 switch (theModel.CheckOutcome())
 {
 case GameOutcome.None:
 break;
 case GameOutcome.P1Wins:
 soundBank.PlayCue("cheering");
 dontPlayUntil = DateTime.Now.AddSeconds(5);
 winner = true;
 this.BoardState = GameState.ComputerWins;
 compscore += 10;
 newGamePending = true;
 break;
 case GameOutcome.P2Wins:
 soundBank.PlayCue("applause");
 dontPlayUntil = DateTime.Now.AddSeconds(5);
 winner = true;
 this.BoardState = GameState.HumanWins;
 score += 10;
 newGamePending = true;
 break;
 case GameOutcome.Full:
 dontPlayUntil = DateTime.Now.AddSeconds(5);
 newGamePending = true;
 break;
 }
 }
 }
 engine.Update();
 base.Update(gameTime);
 }

The code below is the Draw method of the game which forms the View component

of the design.

protected override void Draw(GameTime gameTime)
{
 graphics.GraphicsDevice.Clear(Color.DarkGray);

 // The effect is a compiled effect created and compiled elsewhere
 // in the application.
 for (int i = 0; i < posns.Length; i++)
 {
 Matrix centercubelet = Matrix.CreateTranslation(-0.5f, -0.5f,
 0.5f);
 Matrix centerbigblock = Matrix.Identity;
 Matrix tr = Matrix.CreateTranslation(new Vector3(posns[i].X,
 posns[i].Y, posns[i].Z));
 Matrix mm = tr * centerbigblock *
 Matrix.CreateFromYawPitchRoll(yaw, pitch, roll);
 switch (theModel.TheOwner(i))
 {
 case Owner.None:

3D Logic Games and Tutorials for BingBee

58

3D Logic Games and Tutorials for BingBee

 graphics.GraphicsDevice.VertexDeclaration = vertexDeclaration;
 basicEffect.Begin();

 switch (theModel.GetCubeOnFrontFace(i))
 {
 case 1:
 basicEffect.Texture = one;
 break;
 case 2:
 basicEffect.Texture = two;
 break;
 case 3:
 basicEffect.Texture = three;
 break;
 case 4:
 basicEffect.Texture = four;
 break;
 case 5:
 basicEffect.Texture = five;
 break;
 case 6:
 basicEffect.Texture = six;
 break;
 case 7:
 basicEffect.Texture = seven;
 break;
 case 8:
 basicEffect.Texture = eight;
 break;
 case 9:
 basicEffect.Texture = nine;
 break;

 default:
 basicEffect.Texture = unclicked;
 break;
 }

 basicEffect.TextureEnabled = true;
 basicEffect.World = centercubelet * mm;

 foreach (EffectPass pass in
 basicEffect.CurrentTechnique.Passes)
 {
 pass.Begin();
 DrawTriangleList();
 pass.End();
 }

 basicEffect.TextureEnabled = true;
 basicEffect.End();
 break;
 case Owner.Player1:
 DrawModel(ducky, mm, theModel.IsInWinningLine(i));
 break;
 case Owner.Player2:
 DrawModel(sonic, mm, theModel.IsInWinningLine(i));
 break;
 }
 }

3D Logic Games and Tutorials for BingBee

3D Logic Games and Tutorials for BingBee

3D Logic Games and Tutorials for BingBee

3D Logic Games and Tutorials for BingBee

59

