
A Formalised Ontology for Network

Attack Classification

Submitted in fulfilment

of the requirements of the degree of

Doctor of Philosophy

of Rhodes University

Renier Pelser van Heerden

Grahamstown, South Africa

April 2014

Abstract

One of the most popular attack vectors against computers are their network connections.

Attacks on computers through their networks are commonplace and have various levels

of complexity. This research formally describes network-based computer attacks in the

form of a story, formally and within an ontology. The ontology categorises network

attacks where attack scenarios are the focal class. This class consists of: Denial-of-

Service, Industrial Espionage, Web Defacement, Unauthorised Data Access, Financial

Theft, Industrial Sabotage, Cyber-Warfare, Resource Theft, System Compromise, and

Runaway Malware. This ontology was developed by building a taxonomy and a temporal

network attack model. Network attack instances (also know as individuals) are classi�ed

according to their respective attack scenarios, with the use of an automated reasoner

within the ontology. The automated reasoner deductions are veri�ed formally; and via

the automated reasoner, a relaxed set of scenarios is determined, which is relevant in a

near real-time environment. A prototype system (called Aeneas) was developed to classify

network-based attacks. Aeneas integrates the sensors into a detection system that can

classify network attacks in a near real-time environment. To verify the ontology and the

prototype Aeneas, a virtual test bed was developed in which network-based attacks were

generated to verify the detection system. Aeneas was able to detect incoming attacks and

classify them according to their scenario. The novel part of this research is the attack

scenarios that are described in the form of a story, as well as formally and in an ontology.

The ontology is used in a novel way to determine to which class attack instances belong

and how the network attack ontology is a�ected in a near real-time environment.

Acknowledgements

Firstly I would like to thank my wife Lizelle without whose support I would not have

been able to complete this work. Lizelle supported me through many long nights and

weekends. I would like to thank my supervisor Prof Barry Irwin for his leadership and

patience in developing the ideas that are presented in this work. Along with Prof Irwin,

my secondary supervisor and colleague Dr Louise Leenen's constant encouragement and

feedback were essential during the research process.

I would like to thank my colleagues at the CSIR who contributed to the prototype de-

velopment: Ivan Burke, Shaun Egan and Heloise Pieterse, and the CSIR management,

Joey Jansen van Vuuren and Dr Jackie Phahlamohlaka, who supported this research. Fi-

nally my thanks to Jan Gutter and Aré van Schalkwyk for proofreading this thesis. This

research was completed with funding support from a CSIR Parliamentary Grant.

ACM Computing Classification System Classification

Security and privacy

Intrusion/anomaly detection and malware mitigation

Malware and its mitigation

Intrusion detection systems

Network security

Systems security

Formal methods and theory of security

Formal security models

Logic and veri�cation

Information systems

World Wide Web

Web data description languages

Web Ontology Language (OWL)

Information retrieval

Document representation

Ontologies

Computing methodologies

Arti�cial intelligence

Knowledge representation and reasoning

Description logics

Ontology engineering

The 2012 ACM Computing Classi�cation System was used1.

1http://www.acm.org/about/class/2012

CONTENTS

I Introduction 1

1 Introduction 2

1.1 Problem Statement . 4

1.2 Research Method . 5

1.3 Document Structure . 5

1.4 Research Output . 7

1.5 Document Conventions . 7

2 Significant Historical Computer Platform Attacks 10

2.1 Introduction . 10

2.2 Literature Survey . 11

2.2.1 Malware Lists . 11

2.2.2 Cyber-Attacks . 11

2.2.3 Cyber-Crime Lists . 12

2.2.4 Data Leaks . 12

2.3 Criteria and Timeline . 13

i

2.4 Signi�cant Computer Attacks Survey . 13

2.4.1 Phone Phreaking, 1970 . 15

2.4.2 The Logic Bomb, 1982 . 16

2.4.3 Brain Virus, 1986 . 16

2.4.4 PC-Write Trojan Horse, 1986 . 16

2.4.5 Morris Worm, 1988 . 16

2.4.6 Chameleon Virus, 1990 . 17

2.4.7 Michelangelo Virus, 1991 . 17

2.4.8 Kevin Mitnick, 1995 . 18

2.4.9 Citi Bank, 1995 . 18

2.4.10 Laroux, 1996 . 18

2.4.11 Melissa, 1999 . 19

2.4.12 I-LOVE-YOU, 2000 . 19

2.4.13 Ma�aboy, 2000 . 19

2.4.14 Titan Rain, 2000-2008 . 20

2.4.15 Apache.org Defaced 2000 . 20

2.4.16 Code Red, 2001 . 21

2.4.17 SQL Slammer, 2003 . 21

2.4.18 SCO Denial-of-Service, 2003 . 22

2.4.19 Cabir Worm, 2004 . 22

2.4.20 MyDoom, 2004 . 23

2.4.21 Sasser Worm, 2004 . 23

2.4.22 Sony XCP, 2005 . 23

ii

2.4.23 Operation Shady RAT, 2006-2010 24

2.4.24 Estonia Incident, 2007 . 25

2.4.25 South Ossetia Incident, 2008 . 25

2.4.26 Con�cker Worm, 2008 . 26

2.4.27 Ikee Worm, 2009 . 26

2.4.28 Operation Aurora 2009 . 26

2.4.29 Stuxnet Worm, 2010 . 27

2.4.30 Epsilon, 2011 . 27

2.4.31 PlayStation Network, 2011 . 28

2.4.32 HBGary, 2011 . 28

2.4.33 South African PostBank, 2012 . 28

2.4.34 Flame, 2012 . 29

2.4.35 SpamHaus, 2013 . 30

2.4.36 Edward Snowden, 2013 . 30

2.5 Attack Scenarios . 31

2.6 Signi�cance . 33

2.7 Summary . 34

3 Related Research 36

3.1 Introduction . 36

3.2 Network Attack Models . 37

3.2.1 Generalised Basic Attack Process 37

3.2.2 Hansman and Hunt Model . 38

iii

3.2.3 Tut nescu and Sofron Model . 40

3.2.4 Gadge and Patil Model . 40

3.2.5 Sharan Model . 40

3.2.6 Nachenberg Model . 40

3.2.7 Grant and Kooter Model . 41

3.2.8 Colarik and Janczowski Model . 42

3.2.9 Damballa Model . 42

3.2.10 Network Attack Models Overview 43

3.3 Attack Taxonomies . 43

3.3.1 Taxonomy of Attack Techniques by Lindqvist and Jonsson (1997) . 44

3.3.2 A Taxonomy of Network and Computer Attack Methodologies by

Hansman and Hunt (2003) . 44

3.3.3 Hacking? How They Do It, by CERT-In (2003) 46

3.3.4 Anatomy and Types of Attacks against Computer Networks by

Tut nescu and Sofron (2003) . 50

3.3.5 An Ontology for Network Security Attacks by Simmonds, Sandi-

lands, and van Ekert (2004) . 51

3.3.6 Taxonomies of Cyber-adversaries and Attacks by Meyers, Powers,

and Faissol (2009) . 51

3.3.7 Diversity in Network Attacker Motivation: A Literature Review by

Rounds and Pendgraft (2009) . 54

3.3.8 Dimension of Cyber-Attacks by Gandhi, Sharma, Mahoney, Sousan,

Zhu, and Laplante (2011) . 54

3.3.9 The Scrap Value of a Hacked PC, revisited by Krebs (2012) 55

3.3.10 Common Attack Pattern Enumeration and Classi�cation 57

iv

3.3.11 Taxonomies Overview . 57

3.4 Ontologies used to Detect Computer-based Attacks 59

3.4.1 RBAC Policy Engineering with Patterns by Rochaeli and Eckert

(2005) . 59

3.4.2 An Ontology-supported Outbound Intrusion Detection System by

Mandujano (2005) . 60

3.4.3 An Ontology-based Intrusion Alerts Correlation System by Li and

Tian (2010) . 60

3.4.4 Ontology-based Distributed Intrusion Detection System by Abdoli

and Kahani (2009) . 61

3.4.5 An Ontology-based System to Identify Complex Network Attacks

by Frye, Cheng, and He�in (2012) 62

3.4.6 Ontologies Overview . 63

3.5 Network Attack Sensors . 63

3.5.1 Anomaly and Misuse Detection . 65

3.5.2 Threat Detection . 65

3.5.3 Taxonomy for Intrusion Detection Systems by Debar, Dacier, and

Wespi (2000) . 67

3.5.4 Intrusion Detection Systems: A Survey and Taxonomy by Axelsson

(2000) . 67

3.5.5 Network Telescope . 69

3.5.6 Network Attack Sensors Overview 70

3.6 Summary . 70

v

II Theoretical 71

4 Network Attack Taxonomy 72

4.1 Introduction . 72

4.2 Taxonomy of Network Attacks . 73

4.2.1 Actor Class . 74

4.2.2 Actor Location Class . 76

4.2.3 Aggressor Class . 77

4.2.4 Asset Class . 78

4.2.5 Attack Goal Class . 79

4.2.6 Attack Mechanism Class . 79

4.2.7 Automation Level Class . 84

4.2.8 E�ect Class . 84

4.2.9 Motivation Class . 85

4.2.10 Phase Class . 86

4.2.11 Sabotage Class . 87

4.2.12 Scope and Scope Size Classes . 88

4.2.13 Target Class . 89

4.2.14 Vulnerability Class . 89

4.3 Attack Scenarios . 91

4.4 Model of Network Attacks . 93

4.4.1 Network Attack Phase . 94

4.4.2 Structured Analysis and Design Technique Analysis 96

4.5 Summary . 98

vi

5 Network Attack Ontology 99

5.1 Introduction . 99

5.2 Protégé . 101

5.2.1 Automated Reasoner . 103

5.3 Network Attack Ontology . 103

5.3.1 Denial-of-Service Scenario . 105

5.4 Formal Description of Network Attack Ontology 107

5.4.1 Network Attack Concepts . 108

5.4.2 Relations . 112

5.4.3 Constraints on Classes . 115

5.4.4 Denial-of-Service Scenario Formal De�nition 117

5.5 Inferring Class Membership of Individuals 118

5.6 Summary . 121

6 Detailed Ontology 122

6.1 Introduction . 122

6.2 Web Defacement . 122

6.2.1 Web Defacement Formal Description 124

6.2.2 Web Defacement Individual . 125

6.3 Unauthorised Data Access . 127

6.3.1 Unauthorised Data Access Formal Description 128

6.3.2 Unauthorised Data Access Individual 130

6.4 Cyber-Warfare . 131

vii

6.4.1 Cyber-Warfare Formal Description 133

6.4.2 Cyber-Warfare Individual . 134

6.5 Industrial Espionage . 136

6.5.1 Industrial Espionage Formal Description 137

6.5.2 Industrial Espionage Individual . 138

6.6 Financial Theft . 140

6.6.1 Financial Theft Formal Description 142

6.6.2 Financial Theft Individual . 143

6.7 Resource Theft . 145

6.7.1 Resource Theft Formal Description 146

6.7.2 Resource Theft Individual . 147

6.8 Industrial Sabotage . 149

6.8.1 Industrial Sabotage Formal Description 150

6.8.2 Industrial Sabotage Individual . 151

6.9 Runaway Malware . 153

6.9.1 Runaway Malware Formal Description 155

6.9.2 Runaway Malware Individual . 156

6.10 System Compromise . 158

6.10.1 System Compromise Formal Description 159

6.10.2 System Compromise Individual . 160

6.11 Conclusion . 162

viii

III Near Real-time 163

7 Evaluation of Near Real-time Fitness 164

7.1 Introduction . 164

7.2 Taxonomy Quanti�cation . 166

7.2.1 Actor Quanti�cation . 166

7.2.2 Actor Location Quanti�cation . 167

7.2.3 Aggressor, Motivation, E�ect and Sabotage Quanti�cation 168

7.2.4 Asset Quanti�cation . 168

7.2.5 Attack Goal Determination . 169

7.2.6 Attack Mechanism Determination 169

7.2.7 Automation Level Quanti�cation 171

7.2.8 Phase Classi�cation . 172

7.2.9 Scope and Scope Size Measurement 172

7.2.10 Target Monitoring . 172

7.2.11 Vulnerability Identi�cation . 172

7.2.12 Quanti�cation Summary . 173

7.3 Attack Scenarios Quanti�cation . 173

7.3.1 Relaxed Denial-of-Service and Cyber-Warfare Scenarios Formal De-

scriptions . 174

7.3.2 Inferring Cyber-Warfare and Denial-of-Service Scenarios 175

7.3.3 Inferring Unauthorised Data Access, Industrial Espionage and Fi-

nancial Theft Scenarios . 180

7.4 Summary . 181

ix

8 Attack Estimation Network Evaluation Architecture System 183

8.1 Introduction . 183

8.2 Design Rationale . 184

8.3 Central Information Server . 185

8.4 Scenario Algorithm, Event Queries and Database 186

8.4.1 Event Queries Example . 186

8.4.2 Database . 191

8.5 Sensors . 191

8.5.1 Network Telescope Sensor . 193

8.5.2 Honeypot and IDS Sensor . 193

8.5.3 Crawler Detector Sensor . 195

8.6 Summary . 196

9 Empirical Validation 197

9.1 Introduction . 197

9.2 Test beds . 198

9.2.1 Global Mobile Information System Simulator 198

9.2.2 User-de�ned and Organised Network 199

9.2.3 NetSim . 199

9.2.4 Network HTTP Simulator . 199

9.2.5 Virtual Environment for Learning Networking 200

9.2.6 Real-time Immersion Network Simulation Environment for Network

Security Exercises . 200

9.3 Test Bed Design Considerations . 200

x

9.4 Test Bed Implementation A: ESXi and Firewall 203

9.4.1 Simulated Network Tra�c . 204

9.4.2 Network Tra�c Type . 205

9.4.3 Tra�c Algorithm . 206

9.4.4 Temporal Map . 207

9.4.5 Web Tra�c Example . 207

9.5 Test Bed A Performance . 208

9.5.1 Firewall Data . 209

9.6 Test Bed Implementation B: ESXi and Core Emulator 210

9.6.1 Tra�c Simulation . 214

9.7 Validation . 215

9.8 Event Queries that use Interrupt Binary Sensors 218

9.8.1 Unusual Web Activity . 218

9.8.2 Failed Login Attempt . 219

9.8.3 Unauthorised Super User . 219

9.8.4 Hidden Data Accessed . 219

9.8.5 Web Defacement . 219

9.8.6 Runaway Malware . 220

9.9 Event Queries that Use Continuous Polling Sensors 220

9.9.1 Tra�c In�ux . 220

9.9.2 Servers Running . 225

9.9.3 Unusual Bandwidth . 225

9.10 Event Queries that use Interrupt Information Sensor 226

xi

9.10.1 Port Scan . 226

9.10.2 Vulnerability Scan . 226

9.11 Summary . 227

10 Conclusions 228

10.1 Introduction . 228

10.2 Research Review . 229

10.3 Research Goals Achieved . 230

10.4 Future Work . 231

Appendices 269

A Detail of Literature Survey of Significant Computer-based Attacks 270

B Event Queries 282

B.1 Tra�c In�ux . 282

B.2 Servers Running . 284

B.3 Unusual Web Activity . 285

B.4 Web Defacement . 287

B.5 Failed Login Attempts . 288

B.6 Runaway Malware: Single and Multiple . 289

B.7 Unusual Bandwidth . 291

B.8 Unusual Disk Usage . 292

B.9 Hidden Data Accessed . 293

B.10 Unauthorised Super User . 295

xii

C Sensors 297

C.1 Tripwire Access Sensor . 297

C.2 Is Alive Sensor . 298

C.3 Firewall Bandwidth Monitor Sensor . 299

C.4 Web Defacement Sensor . 300

C.5 Bro Connections Sensor . 300

C.6 Root Login Sensor . 301

C.7 SSH Login Sensor . 302

C.8 Failed Login Sensor . 303

C.9 Unusual Disk Usage Sensor . 303

C.10 Bandwidth and SYN Sensor . 304

C.11 Summary . 305

D Time Formats 306

xiii

LIST OF FIGURES

1.1 Taxonomy Class Level . 8

2.1 Timeline of Signi�cant Attacks . 14

2.2 Apache.org Defaced (Dede, 2010) . 20

2.3 Geographical Spread of SQL Slammer by Moore, Paxson, Savage, Shannon,

Staniford, and Weaver (2003) . 22

2.4 Operation Shady RAT Victims Geographical Locations (Alperovitch, 2011) 24

2.5 Defaced Georgian Parliamentary Website (Cluley, 2008) 25

2.6 Flame-infected Countries 28 May 2002 (Gostev, 2012) 29

2.7 CloudFare Monitoring Tra�c in front of SpamHaus (Prince, 2013) 30

2.8 List of Computer Attacks with the First Signi�cant Use of an Attack

Methodology . 33

2.9 List of Computer Attacks with the First Use of a New Technology 33

2.10 List of Computer Attacks with Signi�cant Financial Impact 34

2.11 List of Computer Sophisticated Attacks . 35

3.1 Generalised Basic Attack Process . 37

3.2 Basic Attack Models . 39

xiv

3.3 Grant and Kooter (2005) Model . 41

3.4 Colarik and Janczowski (2008) Model . 42

3.5 Damballa (2008) Model . 43

3.6 Classi�cation of Computer Misuse and the Results of Computer Misuse

after Lindqvist and Jonsson (1997) . 45

3.7 Attack Methodologies after Hansman and Hunt (2003) 47

3.8 Hansman and Hunt (2003) Attack Taxonomy 48

3.9 CERT-In (2003) E�ect of Hacking, Malware, Popular Vulnerabilities, At-

tack Methods, Hacking Tools, Types of Attacks, Attack Actions, Attacker

Actions and Attack Categories . 49

3.10 Active and Passive Attacks by Tut nescu and Sofron (2003) 50

3.11 Network Security Attacks Taxonomy by Simmonds et al. (2004) 52

3.12 Vulnerability Map after Simmonds et al. (2004) 53

3.13 CIA Triad . 53

3.14 A Circumplex of Adversaries after Meyers et al. (2009) 54

3.15 Hacker Agents after Rounds and Pendgraft (2009) 55

3.16 Dimensions of Cyber-Attacks after Gandhi et al. (2011) 56

3.17 Motivation Classes after Gandhi et al. (2011) 57

3.18 Reasons for Hacking a PC after Krebs (2012) 58

3.19 Alert Correlation Ontology (Li and Tian, 2010) 61

3.20 Abdoli and Kahani (2009)'s Attack Ontology 62

3.21 Complex Attack Ontology (Frye et al., 2012) 63

3.22 Intrusion Detection Concepts (Debar et al., 2000) 68

3.23 IDS System Characteristics and Detection Principles (Axelsson, 2000) . . . 69

xv

4.1 Network Attack Taxonomy . 74

4.2 The Actor Class . 74

4.3 Time Magazine August 21, 1995 Cover Page 75

4.4 The Actor Location Class . 76

4.5 The Aggressor Class . 77

4.6 The Asset Class . 78

4.7 The Attack Goal Class . 79

4.8 The Attack Mechanism (AM) Class . 80

4.9 The Automation Level Class . 84

4.10 The E�ect Class . 85

4.11 The Motivation Class . 85

4.12 The Phase Class . 86

4.13 The Sabotage Class . 87

4.14 Scope and Scope Size Classes . 88

4.15 The Target Class . 89

4.16 The Vulnerability Class . 90

4.17 The Attack Scenario Class . 91

4.18 Network Attack Model . 94

4.19 SADT Composition Attack Model . 97

5.1 Design and Evaluation Procedure for Ontology by Grüninger and Fox

(1995) . 100

5.2 Example of Protégé Editor . 101

5.3 Example of OWLViz Visualisation Tool . 102

xvi

5.4 Example of OntoGraf Visualisation Tool 102

5.5 Network Attack Ontology . 104

5.6 Denial-of-Service Attack Scenario . 105

5.7 SCO Denial-of-Service Attack Scenario Example 106

5.8 SpamHaus Denial-of-Service Attack Scenario Example 107

5.9 Composition Relationships . 115

5.10 Statement 5.70 . 116

5.11 SCO Attack Inferred a Denial-of-Service Scenario 120

5.12 SpamHaus Attack Inferred a Denial-of-Service Scenario 121

6.1 Web Defacement Attack Scenario . 123

6.2 Apache.org Web Defacement Attack Scenario Example 124

6.3 Apache.org Attack Inferred a Web Defacement Scenario 127

6.4 Unauthorised Data Access Attack Scenario 128

6.5 Kevin Mitnick Unauthorised Data Access Attack Scenario Example 129

6.6 Kevin Mitnick Attacks Inferred to Unauthorised Data Access Scenario . . . 131

6.7 Cyber-Warfare Attack Scenario . 132

6.8 Estonia Cyber-Attack Scenario . 133

6.9 Estonia Attack Inferred a Cyber-Warfare Scenario 135

6.10 Industrial Espionage Attack Scenario . 136

6.11 Titan Rain Industrial Espionage Attack Scenario Example 137

6.12 Titan Rain Attack Inferred an Industrial Espionage Scenario 140

6.13 Financial Theft Attack Scenario . 141

xvii

6.14 Post Bank SA Financial Theft Attack Scenario Example 142

6.15 PostBank SA Attack Inferred a Financial Theft Scenario 144

6.16 Resource Theft Attack Scenario . 145

6.17 Phone Phreaking Resource Theft Attack Scenario Example 146

6.18 Phone Phreaking Attack Inferred a Resource Theft Scenario 148

6.19 Industrial Sabotage Attack Scenario . 149

6.20 Stuxnet Industrial Sabotage Attack Scenario Example 150

6.21 Stuxnet Attack Inferred an Industrial Sabotage Scenario 153

6.22 Runaway Malware Attack Scenario . 154

6.23 I LOVE YOU Worm Runaway Malware Attack Scenario Example 154

6.24 I LOVE YOU Inferred a Runaway Malware Scenario 157

6.25 System Compromise Attack Scenario . 158

6.26 Flame System Compromise Attack Scenario Example 159

6.27 Flame Inferred a System Compromise Scenario 161

7.1 The Di�erence between False Negative and False Positive 170

7.2 Impact of Quanti�cation on the Ontology 174

7.3 Relaxed Cyber-Warfare and Denial-of-Service Scenarios 177

7.4 Relaxed Cyber-Warfare and Denial-of-Service Subset Visually Presented . 178

7.5 Protégé and HermiT Inferring the Relaxed Cyber-Warfare and Denial-of-

Service Scenarios . 179

7.6 Relaxed Unauthorised Data Access, Industrial Espionage and Financial

Theft Scenarios . 180

7.7 Relaxed Attack Scenarios . 182

xviii

8.1 The Aeneas Prototype . 184

8.2 Attack Estimation Network Evaluation Architecture System (Aeneas) Pro-

totype Process . 185

8.3 Attack Estimation Network Evaluation Architecture System 186

8.4 Event Queries Mapped to Attack Scenarios and Attack Phases 187

8.5 Web Crawler Scan Query Result . 188

8.6 Protégé Port Scan Query Result . 189

8.7 XML Schema . 192

8.8 The Network Telescope . 193

8.9 The Honey Snort Sensor . 194

9.1 Test Bed Architecture . 202

9.2 Physical Implementation of the Test Bed 203

9.3 Web Tra�c Temporal Map . 207

9.4 Firewall Tra�c Incoming without Tra�c Simulation 209

9.5 Firewall Tra�c Outgoing without Tra�c Simulation 210

9.6 Firewall Tra�c Incoming with Tra�c Simulation 211

9.7 Firewall Tra�c Outgoing with Tra�c Simulation 211

9.8 Core Emulator and ESXi Test Bed . 213

9.9 Core Emulator Display . 214

9.10 Breaking Point Screens . 216

9.11 Three Types of Sensors Used with Event Queries 217

9.12 Session Attack Experiment 1 . 221

9.13 CORE Emulator Display of SYN Attack Direct DMZ 222

xix

9.14 Bandwidth Measured with the Bandwidth and SYN Sensors 223

9.15 Session Attack Experiment 2 . 224

9.16 CORE Emulator Display of SYN Attack via Client Segment 224

9.17 Bandwidth Measurement During Session Attack 225

B.1 HermiT automatic reasoner Tra�c In�ux Event Query result 283

B.2 HermiT automatic reasoner Servers Running Event Query result 285

B.3 HermiT automatic reasoner Unusual Web Activity Event Query result . . . 286

B.4 HermiT automatic reasoner Web Defacement Event Query result 287

B.5 HermiT automatic reasoner Failed Login Attempts Event Query result . . 289

B.6 HermiT automatic reasoner Runaway Malware Event Query result 290

B.7 HermiT automatic reasoner Unusual Bandwidth Event Query result 292

B.8 HermiT automatic reasoner Unusual Disk Usage Event Query result 293

B.9 HermiT automatic reasoner Hidden Data Accessed Event Query result . . 294

B.10 HermiT automatic reasoner Unauthorised Super User Event Query result . 296

xx

LIST OF TABLES

2.1 Attacks Most Frequently Listed . 15

7.1 Summary of the Measurement Taxonomy 173

9.1 Most Visited Websites (eBizmda.com) . 208

A.1 Malware � a Brief Timeline (Heater, 2011) 271

A.2 Ten Most Costly Cyber-attacks in History (Julian, 2011) 272

A.3 The 12 Costliest Computer Viruses Ever (Miranda, 2010) 273

A.4 The Seven Worst Cyber-attacks in History (That We Know About) (Hall,

2010) . 274

A.5 The Decade's Biggest Cyber Crime Attacks Exploits (Marcus, 2011) 274

A.6 The Decade's Biggest Cyber-crime Attacks Scams (Marcus, 2011) 275

A.7 Ten Worst Cyber-crimes of the Decade (Buckland, 2011) 276

A.8 The Decade's Ten Most Dastardly Cyber-crimes (Poulsen, 2009) 277

A.9 Fifteen Worst Data Breaches (Armerding, 2012) 278

A.10 Top Ten Hacks of All Time Liddinton-Cox (2012) 279

A.11 Best Known Cyber-attacks of All Time (Tech Analyser, 2011) 280

A.12 Ten Worst Computer Viruses of All Time (Strickland, 2008) 281

xxi

LIST OF CODE LISTINGS

1 Unusual Web Activity Question . 187

2 Port-scans Question . 188

3 Tra�c In�ux Event Query . 189

4 Servers Running Event Query . 190

5 DoS Algorithm . 190

6 Threat Identi�cation Prototype Process . 191

7 Crawler Detector Sensor Algorithm . 196

8 Network Simulation Algorithm . 206

9 Tra�c In�ux Event Query . 283

10 Servers Running Event Query . 284

11 Servers Running Event Query . 286

12 Web Defacement Event Query . 287

13 Failed Login Attempts Event Query . 288

14 Runaway Malware: Single Event Query . 290

15 Unusual Bandwidth Event Query . 291

16 Unusual Disk Usage Event Query . 292

17 Hidden Data Accessed Event Query . 294

18 Unauthorised Super User Event Query . 295

19 Tripwire Sensor Algorithm . 298

20 IsAlive Sensor Algorithm . 299

21 Firewall Sensor Algorithm . 300

22 Web Defacement Sensor Algorithm . 301

23 Bro Connections Sensor Algorithm . 301

24 Root Login Sensor Algorithm . 302

25 SSH Login Sensor Algorithm . 303

26 Failed Login Sensor Algorithm . 303

xxii

27 Unusual Disk Usage Sensor Algorithm . 304

28 Bandwidth and SYN Sensor Algorithm . 305

xxiii

LIST OF ACRONYMS

ACK Acknowledge

AM Attack Mechanism

AS Attack Scenario

Aeneas Attack Estimation Network Evaluation Architecture System

API Application Program Interface

ARP Address Resolution Protocol

ARPANET Advanced Research Projects Agency Network

CAPEC Common Attack Pattern Enumeration and Classi�cation

CD Compact Disk

CEE Common Event Expression

CERT Computer Emergency Response Team

CERT-In The Indian Computer Emergency Response Team

CGI Computer Generated Imagery

CIA Con�dentiality, Integrity and Availability

CIA+ Con�dentiality, Integrity and Availability Authentication

CIS Central Information Server

CORE Common Open Research Emulator

xxiv

CVE Common Vulnerability and Exposure

CPU Central Processing Unit

CW Cyber-Warfare

DARPA Defense Advanced Research Projects Agency

DDoS Distributed Denial-of-Service

DMZ Demilitarised Zone

DNS Domain Name System

DoS Denial-of-Service

EQ Event Query

FBI Federal Bureau of Investigation

FIRE Fuzzy Intrusion Recognition Engine

FT Financial Theft

FTP File Transfer Protocol

GB Gigabyte

Gbps Gigabits per second

GHz Gigahertz

GloMoSim Global Mobile Information System Simulator

GUI Graphic User Interface

HIDS Host-based Intrusion Detection System

HTTP HyperText Transfer Protocol

Hz Hertz

IANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

IDES Intrusion Detection Expert System

xxv

IDS Intrusion Detection System

IE Industrial Espionage

IO Input and Output

IP Internet Protocol

IPv4 Internet Protocol version Four

IS Industrial Sabotage

LSASS Local Security Authority Subsystem Service

MAC Media Access Control

NIC Network Interface Card

NIDS Network-based Intrusion Detection System

NHS Network HTTP Simulator

NRL Naval Research Laboratory

NSA National Security Agency

OS Operating System

OSI Open Systems Interconnection

OWL Web Ontology Language

PETA People for the Ethical Treatment of Animals

PC Personal Computer

PLC Programmable Logic Control

RAID Redundant Array of Independent Disks

RINSE Real-time Immersion Network Simulation Environment for Network Security

Exercises

SADT Structured Analysis and Design Technique

SC System Compromise

xxvi

SCADA Supervisory Control and Data Acquisition

SCF Standard Communications Framework

SIEM Security Information and Event Management

SMTP Simple Mail Transfer Protocol

SQL Structured Query Language

SSH Secure Shell

SSL Secure Sockets Layer

SYN Synchronise

TB Terabyte

TCP Transmission Control Protocol

TIP Threat Identi�cation Prototype

US United States

UDA Unauthorised Data Access

UDP User Datagram Protocol

UDON User-de�ned and Organised Network

URL Uniform Resource Locator

US CERT United States Computer Emergency Readiness Team

USB Universal Serial Bus

Velnet Virtual Environment for Learning Networking

W3C World Wide Web Consortium

WD Web Defacement

XML Extensible Markup Language

XSS Cross-site Scripting

xxvii

Part I

Introduction

1

CHAPTER

ONE

INTRODUCTION

"... a science must deal with a subject and its properties."

Aristotle, 340 BC

Computers evolved from stand-alone systems, such as mainframes, to personal computers

and, more recently, smart phones that are permanently connected to the Internet. In

1969, with the establishment of the United States (US) Advanced Research Projects

Agency Network (ARPANET), computers started to communicate over long distances.

ARPANET started a process of making networking an integral part of computing (Leiner,

Cerf, Clark, Kahn, Kleinrock, Lynch, Postel, Roberts, and Wol�, 2009). The concept

was already expressed in 1984 by John Gage1 in his famous phrase: "the network is the

computer" (Thornburg, 2009). With the emergence of the Internet, networking has grown

to a level where computers can instantly communicate over the whole world. Networked

computers have become standard for most companies and other technology using entities.

Computers are connected via Intranets and connected to the rest of the world though the

global Internet. A computer network is de�ned as a single network, including computers,

servers, network equipment and other related devices, that form part of a single entity

and that are connected to the Internet.

Attacks on computers have also evolved and the Internet is now used as an attack path

as well as in attacks on the network infrastructure itself. Modern computer networks

1Chief Researcher and Vice President of the Science Office for Sun Inc. 1982-2008

2

3

connect to the Internet, and are thus rendered accessible to anyone in the world. The

Internet presents four novel advantages to any attacker:

The �rst is that an aggressor can initiate a network-based attack with a high level of

anonymity ensured. An aggressor can hide by forging the origin of an attack or use

intermediates in an attack (Lee and Shields, 2001). The aggressor can thus potentially

attack any computer-based network from any place, at any location in the world, thus

making the source of the attack virtually untraceable (Baba and Matsuda, 2002; Choo,

2008).

The second is that the target of a computer-based attack is usually online, thus an attack

cannot be prevented or mitigated by removing the target from the attack vector, i.e.

taking it o�ine. Sorin (2008) states that website and server uptime are directly related

to pro�t, and system outages may also lead to future losses from visitors who will not

return to a site if it has been o�ine or inaccessible. In the movie The Social Network 2,

the Mark Zuckerberg character states how important uptime is (Mezirch, 2009; Sorkin,

2010):

"Okay, let me tell you the di�erence between Facebook and everyone else, we don't crash

EVER! If those servers are down for even a day, our entire reputation is irreversibly

destroyed! Users are �ckle, Friendster has proved that. Even a few people leaving

would reverberate through the entire userbase. The users are interconnected, that is

the whole point. College kids are online because their friends are online, and if one

domino goes, the other dominoes go, don't you get that."

This quote indicates how important uptime is for Facebook. Thus, removing a target's

ability to communicate on the Internet is also a major attack methodology or goal.

The third advantage is that any computer network of signi�cant size has a high probability

of security holes existing in its design or implementation (Geer, 2007; Perrow, 2008).

Although Shin and Williams (2008) only found weak evidence that software complexity

is directly related to vulnerabilities, they still concluded that vulnerable code is more

complex than other code. Harter, Kemerer, and Slaughter (2012) state that the size of

the code is a key factor that in�uences the quality of software, and that increasing the

complexity of software adds more �aws.

The fourth and �nal advantage is that many users of a computer network are not computer-

security literate, and unaware of how their ignorance can be exploited. These users render

2http://www.imdb.com/title/tt1285016/

1.1. PROBLEM STATEMENT 4

a whole network vulnerable (Ying, Dinglong, Haiyi, and Rau, 2007; Kritzinger and von

Solms, 2010). Rescorla (2003, 2005) determined that administrators are on average slow

to apply patches that �x security holes and postulated that it might not be econom-

ically worthwhile for security researchers to �nd and expose security holes (Rescorla,

2005):

". . . we cannot conclude that vulnerability �nding and disclosure provides an increase

in software security su�cient to o�set the e�ort being invested."

Choo (2008) and Shahzad, Sha�q, and Liu (2012) states that organisations generally do

not patch their systems with the same frequency as security vulnerabilities are made

public and that laxness in security is often used to compromise systems. Arjun (2012)

noted that people contributed to making networks vulnerable, and that if there is a choice

between usability and security, people tend to choose usability.

1.1 Problem Statement

Attacks on computer networks have become so commonplace that it has become a fact

of life (Choo, 2011). With the rise of complexity of computer networks, the attacks on

them have also become more complex and varied. Attacks on a computer network can

di�er signi�cantly. One of the popular attacks is a Denial-of-Service (DoS), which di�ers

completely from defacing a website or stealing secrets from a networked computer. The

goal of this research is to formally de�ne network attacks.

The secondary goal of this research is to investigate how the de�nition of network attacks

di�ers in the near real-time environments. Verizon3 found that the average time for busi-

nesses and corporations to determine if they have been breached is seven months (Gliddon,

2012; Verizon RISK Team, 2012), with compromises typically being much longer.

The scope of this research will be limited to attacks on computer networks in the cyber-

sphere, occurring through computer network connections, such as Universal Serial Bus

(USB) �ash drives. The target of the attacks are computer networks themselves and their

component parts. Social engineering attacks such as Spam, Spear Phishing and physical

attacks also fall outside the scope of this thesis, although social engineering is included in

the taxonomy for completeness.

The speci�c research questions are:

3http://www.verizon.com/

1.2. RESEARCH METHOD 5

∙ What are the di�erent types of computer network attacks?

∙ How are such computer network attacks de�ned?

∙ What is the impact on attacks in a near real-time environment?

The answer to the �rst research question is to be evaluated by considering how well

computer network attacks are classi�ed. The second question will be addressed when

networks attacks are formally described and modelled. The last question refers to how

attacks are impacted when they are only evaluated in near real-time and the question can

be validated by prototyping a network attack prediction system and empirically verifying

the impact of attacks in near a real-time environment.

1.2 Research Method

The research questions raised in this thesis were addressed using four research method-

ologies: formal (analytical), experimental (empirical), build (engineering) and model (sci-

enti�c). These methodologies are described by (Glass, 1995; Elio, Hoover, Nikolaidis,

Salavatipour, Stewart, and Wong, 2005). Models were developed to enhance the un-

derstanding of all the factors that in�uence a network attack. One model described the

temporal aspects of attacks, and the other model listed all the factors in the form of a

taxonomy. The relationships between the classes of a taxonomy were formally speci�ed

in the form of an ontology in order to enable the veri�cation of the software implemen-

tation. The model and formal description were veri�ed by building a software artefact,

in which the concepts were tested experimentally. The experiments proved that the

conceptual framework is viable.

1.3 Document Structure

The body of this document consists of three parts that are structured as follows:

∙ Part I contains the introduction, a history of computing attacks and a literature

study. This part supplies the background information on network attacks and in-

vestigates related work in this �eld.

– Chapter 2 investigates signi�cant historical computer-based attacks. These

attacks are discussed and a list of attack scenarios are constructed.

1.3. DOCUMENT STRUCTURE 6

– Chapter 3 presents a literature study of related work. Models, taxonomies,

ontologies and sensors related to network attacks are investigated.

∙ Part II contains the bulk of the work, namely the development of the temporal

model, taxonomy, ontology and formal descriptions thereof.

– Chapter 4 develops a taxonomy that presents the classes of a computer

network-based attack from both the point of view of an attacker and defender.

A temporal model of network-based attacks is also presented.

– Chapter 5 presents an ontology that describes the relationships between the

taxonomy classes formally. The ontology is presented in the form of a scenario,

formally and via a software implementation. The Denial-of-Service scenario is

presented in detail.

– Chapter 6 describes in detail the ontology representation of each of the re-

maining attack scenarios, in story form, formally and as an individual within

the Protégé implementation.

∙ Part III describes the impact of the attack scenarios in near real-time. The impact

is formally explored and a reduced set of scenarios are determined.

– Chapter 7 investigates the quanti�cation and possible measurements of the

classes on the taxonomy in near real-time. A determination of which attack

scenarios can be quanti�ed in near real-time is made. The Denial-of-Service

and Cyber-Warfare scenarios quanti�cation in near real-time are presented.

– Chapter 8 demonstrates how to identify attack scenarios by mapping sensors'

outputs to the temporal attack model and attack scenarios. A prototype system

called Aeneas is presented in this chapter. The Aeneas system classi�es network

attacks with respect to their related scenario and phase.

– Chapter 9 presents the environment in which the prototype system was veri-

�ed. Two environments are presented: visualised systems with a �rewall con-

nected to the Internet and visualised systems within an Internet simulator.

The validation of the prototype is presented. The Aeneas system is validated

by performing a range of simple tests.

The document concludes with Chapter 10, which re�ects on the research project and

on possible future work. Supplemental information is supplied in the form of appendices.

These appendices contain detailed information, and are referred to where applicable within

the main text.

1.4. RESEARCH OUTPUT 7

1.4 Research Output

This section lists the main research output of this thesis. Published conference and journal

outputs arising from this research are:

1. Grant, T., Burke, I., and van Heerden, R. P. Comparing models of offensive

cyber operations. In Proceedings of the 7th International Conference on Information-

Warfare & Security (ICIW 2012), pages 108�121. ACI, 2012

2. van Heerden, R. P., Burke, I., and Irwin, B. Classifying network attack

scenarios using an ontology. In Proceedings of the 7th International Conference on

Information-Warfare & Security (ICIW 2012), pages 311�324. ACI, 2012b

3. van Heerden, R. P., Pieterse, H., and Irwin, B. Mapping the most signifi-

cant computer hacking events to a temporal computer attack model. In International

Conference on Human Choice and Computers (HCC10): ICT Critical Infrastruc-

tures and Society, pages 226�236. IFIP, Springer, 2012c

4. van Heerden, R., Leenen, L., Irwin, B., and Burke, I. A computer net-

work attack taxonomy and ontology. International Journal of Cyber Warfare and

Terrorism, 3:12�25, 2012a

5. van Heerden, R., Leenen, L., and Irwin, B. Using an automated reasoner to

classify computer network attacks. In 5th Workshop on ICT Uses in Warfare and

the Safeguarding of Peace. November 2013a

6. van Heerden, R., Pieterse, H., Burke, I., and Irwin, B. Developing a vir-

tualised testbed environment in preparation for testing of network based attacks. In

5th Workshop on ICT Uses in Warfare and the Safeguarding of Peace. November

2013b

1.5 Document Conventions

In this document, some non-standard conventions are used. These include the term

near real-time and the presentations of taxonomies. The main sub-concept is that the

information presented in near real-time must be available timeously. For example, near

real-time for a meteorologist is measured in hours and minutes, while near real-time for

1.5. DOCUMENT CONVENTIONS 8

a telecommunications systems would be in milliseconds. For the purpose of this thesis,

near real-time is de�ned as within 60 seconds.

When referring to a website, the Uniform Resource Locator (URL) is listed as a foot-

note. This ensures that relevant information is available directly without obstructing the

reader's �ow.

Taxonomies, models and the ontology are presented in illustrations. By presenting them

as �gures, the reader can surmise the information visually, without having to read through

long, detailed lists. The level of each class in the taxonomy is presented in a di�erent

colour and the various colours are associated with each level throughout this document.

Figure 1.1 illustrates �ve levels.

Figure 1.1: Taxonomy Class Level

When describing a logical set, the term class is used and individuals are members of

these sets. For example, the Denial-of-Service scenario class is a set with SCO Attack

and SpamHaus Attack individuals belonging to this set. These individuals are presented

in Section 5.3.1. The description of the ontology as a story in Chapter 5 is not intended

to produce grammatically perfect text, but rather a �exible skeleton which can be further

developed. The �rst letters of the classes of the taxonomy and ontology are capitalised,

whereas the �rst letters of the relationships are lower case.

The mathematical symbols used in this thesis are listed below:

∃ There exists at least one element

1.5. DOCUMENT CONVENTIONS 9

∋ Such that

∈ Element of

∧ Logical And

∨ Logical Or

⊆ Subset of

× Cartesian Product (Relation)

∘ Composition

≡ Equivalent

∪ Union

Throughout the thesis, the DoS attack example is used to illustrate the principles that

are developed in each chapter. The DoS attack is also formally presented in the main

thesis in Section 5.4.4, whereas the other scenarios are presented formally in Chapter 6.

CHAPTER

TWO

SIGNIFICANT HISTORICAL COMPUTER PLATFORM

ATTACKS

"You will never find a more wretched hive of scum and villainy."

Obi-Wan Kenobi – Star Wars

2.1 Introduction

This chapter presents a collection of the most signi�cant attacks on computer platforms.

This collection is the subjective view of the researcher, but is in part based on similar lists

of other authors. It is a list of signi�cant network attacks and it provides a large spectrum

of di�erent attacks, making it possible to identify network attack scenarios. The attack

scenarios are used as a means of illustrating the Network Attack Taxonomy described in

Chapter 4 and form the base of the ontology developed in Chapter 5.

This chapter begins with a literature study of similar lists compiled by other authors.

These lists are also subjective, but provide a good starting point in compiling a list of the

most signi�cant network attacks. In Section 2.3, the criteria that were used to determine

which computer attacks were signi�cant are described. In Section 2.4 each signi�cant

computer attack is described in detail and in Section 2.5 attack scenarios are derived

from the selection of attacks. In Section 2.6, the attacks are sorted according to four of

the criteria mentioned in Section 2.3. Section 2.7 summarises the identi�ed attacks.

10

2.2. LITERATURE SURVEY 11

2.2 Literature Survey

All lists that measure the signi�cance of computer attacks are subjective. When one

examines a collection of these lists, the most popular events can be extracted and used

as a base for signi�cant attacks. This base was augmented by computer attacks found to

be signi�cant by the researcher. In Appendix A, the complete lists of signi�cant attacks

are listed.

2.2.1 Malware Lists

Heater (2011), Miranda (2010) and Strickland (2008) made lists of signi�cant malware.

Heater listed malware that in his opinion best enabled insight into the development of

malware, and concentrated on malware that targets novel aspects of computers, such

as malware in shareware, email, databases, cellphones, social networks and the Internet.

Heater also explicitly stated that his list is not de�nitive, but rather informative. Miranda

examined the malware that had the biggest �nancial impact, and discovered that malware

can cost millions in economic productivity. Strickland concentrated on malicious malware

that can cripple computers or networks, and he noted that when the computer industry

was in its infancy, systems were being sabotaged, but it took a few decades for hackers to

start coding computer viruses. As early as 1949, John von Neumann developed a theory

on the possibility of a self-replicating programme (Neumann and Burks, 1966).

2.2.2 Cyber-Attacks

Hall (2010), Julian (2011), Liddinton-Cox (2012) and (Tech Analyser, 2011) made lists of

cyber-attacks. Hall listed seven major cyber-warfare events and noted that attacks are

only reported after the fact, and that cyber-attacks can potentially target government,

banking or military networks and a�ect vital data and funds, or can in�ict physical

damage. Liddinton-Cox listed hackers that had either achieved fame or were charged

with felonies. The individuals Michael Calce (Ma�aboy), Kevin Mitnick and Adrian

Lamo are personally listed, while the rest of his list concentrates on events rather than

persons. Tech Analyser Online magazine explored some of the most notorious cyber-

attacks (Tech Analyser, 2011). They examined how cyber-attacks have evolved from the

initial basic spreading through �oppy disks to the modern use of removable media or

spreading malware via the Internet.

2.2. LITERATURE SURVEY 12

Julian (2011) listed ten of the costliest cyber-attacks. The claims of which attacks were the

costliest cannot be veri�ed, but the attacks themselves can all be considered signi�cant.

The list presented by Miranda di�ers from that of Julian, and both lists claim to present

the most costly computer attacks. According to Leeson and Coyne (2005), �nancial

institutions will most likely not report hacker-related incidents, fearing the e�ect this will

have on their customers, as well as on stockholders' impressions of their security. Damage

amounting to approximately $55 billion was caused by malware in 2002, according to

Leeson and Coyne. It is impossible to measure the precise amount of damage done.

2.2.3 Cyber-Crime Lists

Marcus (2011), Buckland (2011), Poulsen (2009) and Armerding (2012) made lists of

signi�cant cyber-crimes. Marcus from McAfee discussed the last decade's (2000�2010)

most serious cyber-related attacks, and found that cyber-crime has reached new levels

of maturity, and that targeted attacks against governments and large organisations are

becoming commonplace. The scope of attacks has also reached unprecedented levels.

McAfee detected an average of 60 000 new pieces of malware each day in 2010, and

malware directed at social media is one of the fastest-growing threats (Marcus, 2011).

Buckland from Microsoft published his list of the worst cyber-crimes of the 2000s. The

crimes include malware creation, scams, hacking, credit card number theft, phishing and

disclosure of secret information. Computer networks were used as tools or were the target

of all the crimes. A similar list was developed by Poulsen (2009). Poulsen's list examined

"the most ingenious, destructive or ground-breaking cyber-crimes of the �rst ten years of

the new millennium". Only four entries appear on both the Buckland and Poulsen lists.

Even the dates used to specify when some of the cyber-crimes occurred di�er in the lists.

These two lists indicate why such lists are considered to be subjective.

2.2.4 Data Leaks

Armerding (2012) listed 15 of the largest data breaches recorded, which demonstrates

how diverse and widespread data breaches have become. Information from technology

giants such as Google and even security companies such as RSA Security Inc. have

been leaked. Since Armerding's list, two major data breaches have occurred: Bradley

Manning gave over 260 000 sensitive diplomatic cables to Wikileaks1 (Sweetman, 2011;

1http://wikileaks.org/

2.3. CRITERIA AND TIMELINE 13

Jones, 2013) and Edward Snowden supplied the leaked information about the National

Security Agency (NSA) worldwide covert data collection programme (Richelson, 2013).

2.3 Criteria and Timeline

Bases on the works described above, a timeline was developed of the major computer

network attacks. These attacks are considered to be the most signi�cant by the researcher

as they had an impact in one of the following areas:

∙ �rst use of a particular attacking methodology

∙ �rst use of a new class of attack

∙ signi�cant �nancial impact

∙ widespread geographical impact

∙ level of sophistication

∙ attacks considered to be signi�cant by other authors

∙ famous hackers

Figure 2.1 illustrates the computer network attacks that the researcher considered to

be the most signi�cant. The attacks are divided into �ve categories, namely Infamous

Hackers, Viruses and Trojans, Worms, Commercial Attacks and Cyber-War. Viruses

were initially very signi�cant. As the Internet became more available, viruses gave way to

worms. In recent times, commercial attacks and cyber-warfare attacks have become more

prominent. Figure 2.1 illustrates that the signi�cant network attacks have moved from

viruses in the 1980s and 1990s to worms in the early 2000s. From 2008, commercial attacks

and cyber-warfare have become much more prevalent. These incidents are discussed

further in Section 2.4.

2.4 Significant Computer Attacks Survey

The attacks listed in Section 2.2 that were chosen by three or more authors are listed in

Table 2.1. The third column indicates the number of times a particular attack was chosen

to be signi�cant.

14

Pre

1984

1985-

1988

1989-

1992
1993-

1996

1997-

2000

2001-

2004

2005-

2008
2009 -

Kevin

Mitnick

1995

“Mafiaboy”

Michael

Calce

2000

Brain

Virus

1986

PC-Write

Trojan

1986

Chameleon

Virus

1990

Michelangelo

Virus

1991

Laroux

Excel

Virus

1996

Morris

Worm

1988

Melissa

Worm

1999

I-LOVE-

YOU

Worm

2000

Code

Red Worm

2001

SQL

Slammer

Worm

2003

Cabir

Worm

2004

Sasser

Worm

2004

MyDoom

Worm

2004

Conflicker

Worm

2008

Ikee

Mobile

Worm

2009

Titan

Rain

2000

Sony

 XPS

2005

HBGary

Attack

2011

PlayStation

Network

Attack

2011

Epsilon

2011

South

African

Postal

Service

2012

Phone

Phreaking

1970

Logic

Bomb

1982

Estonia

Incident

2007

South

Ossetia

Incident

2008

Stuxnet

2010

Flame

2012

Cyberwar

Commercial

Attacks

Worms

Viruses

and

Trojans

Infamous

Hackers

Time

Operation

Aurora

2009

Apache.org

Defaced

2000

SCO DoS

2003

Operation

Shady

RAT

2006

Citi Bank

1995

SpamHaus

DDos

2013

Edward

Snowden

2013

Figure 2.1: Timeline of Signi�cant Attacks

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 15

Table 2.1: Attacks Most Frequently Listed

Date Attack #

2000 I-LOVE-YOU 6
2004 MyDoom 6
1988 Morris Worm 4
1999 Melissa Virus 4
2003 SQL Slammer 4
2008 Con�cker 4
2000 Ma�aboy 3
2000 Titan rain 3
2004 Sasser Worm 3
2010 Stuxnet 3
2011 Epsilon 3
2011 Sony Playstation 3

In the following sections, the author will list signi�cant computer network attacks. These

attacks have been discussed previously in van Heerden, Pieterse, and Irwin (2012c).

2.4.1 Phone Phreaking, 1970

A toy whistle included in a box of Cap'n Crunch cereal became the simplest method to

break into telephone systems (Rajagopalan, 2000; Robson, 2004). This little toy whistle

produced a tone that was used to control telephone systems, and enable the user to make

free long-distance calls (also known as phreaking). The whistle generated a frequency

similar to the maintenance frequency used by the telephone systems. John Draper was

one of the �rst hackers to abuse this simple method to make free long-distance calls (Levy,

1984; Massey, 2003). Phreaking became a popular hobby for college students, businessmen

and anyone else who knew enough about electronics, and it led to the development of new

methods that included war dialers, wiretapping and phreaking boxes (Rajagopalan, 2000).

Joe the Whistler, a blind man who could whistle a perfect 2600 Hz tone, was used by

phreakers to tune their boxes (Rajagopalan, 2000). For many years, US phone companies

could do little to counteract phreaking, but as the systems changed from analogue to

digital, and the 2600 Hertz (Hz) signal slowly phased out, phreaking techniques were

successfully employed in fewer places (Lapsley, 2013). Phone phreaking is considered one

of the �rst computer-based system hacks.

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 16

2.4.2 The Logic Bomb, 1982

In 1982 the Central Intelligence Agency discovered that Soviet spies had secretly acquired

a gas pipeline controller built in Canada. The Central Intelligence Agency proceeded to

plant a Trojan horse, which consisted of a logic bomb, in the software of the controllers

(Goertzel, 2009). The controller software controlled the testing of the pipeline pressure

gauges, and the logic bomb caused resetting of the gauges to read two-fold lower than

the actual gas pressure in the pipelines. This resulted in one of the most monumental

non-nuclear explosions ever seen from space (Sa�re, 2004). This event is one of the �rst

known physical attacks perpetrated by means of hacking.

2.4.3 Brain Virus, 1986

The Brain Virus is considered the world's �rst computer virus. It was created by two

brothers, Basit and Amjad-Farooq Alvi, in Lahore, Pakistan (Abou-Assaleh, Cercone,

Keselj, and Sweidan, 2004). It was a boot sector virus since it only a�ected boot records

(Spa�ord, Heaphy, and Ferbrache, 1989; Leyden, 2006). The Brain Virus marked the area

where the virus code was hidden as having bad sectors. It occupied a part of the computer

memory and infected any �oppy disk that was accessed and hid itself from detection by

hooking into the interrupt vector of the boot sector. When an attempt was made to read

the infected sector, the virus simply showed the original sector (F-Secure, 2012). Thus the

Brain virus was also the �rst "Stealth" virus that actively attempted to hide its presence.

2.4.4 PC-Write Trojan Horse, 1986

One of the �rst recorded Trojan Horse software developments, PC-Write Trojan, appeared

in 1986. The Trojan pretended to be a Quicksoft PC-Write word processor version 2.72

(Wiggins, 2001; Wang, Chen, and Xu, 2011). When the application was started, the

PC-Write Trojan also started. The Trojan then formatted the hard drive and deleted all

stored data. It is well known that Quicksoft never published a PC-Writer version 2.72.

2.4.5 Morris Worm, 1988

On 2 November 1988, a Cornell graduate student, Robert Tappan Morris, unleashed

one of the �rst computer worms into the wild (Orman, 2003). It started as a benign

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 17

experiment with a simple bug in a programme, but the worm replicated much faster than

anticipated (Chen and Robert, 2004). By the following morning, it had infected over 6 000

hosts, nearly 10% of the Internet at the time (Spa�ord, 1989; Cass, 2001). Ultimately

the worm became a victim of its own success as it could not determine whether a host

had already been infected or not. As a result the worm distributed multiple copies of

itself on a single host. The exponential increase in data load eventually tipped o� the

system administrators and the worm was discovered. The success and damage caused

by the Morris worm led to the founding of the �rst Computer Emergency Response

Team (CERT) at Carnegie Mellon University2. The Morris worm prompted the Defense

Advanced Research Projects Agency (DARPA) to fund a computer emergency response

team, now the CERT.

2.4.6 Chameleon Virus, 1990

Polymorphic computer viruses appeared in the early 1990s (Bania, 2009). The Chameleon

Virus (also known as the 1260 Virus), created by Mark Washburn, was the �rst poly-

morphic virus. Polymorphic viruses modify themselves with every new infection. The

Chameleon Virus consisted of a combination of the Vienna Virus and the Cascade Virus

(Beaucamps, 2007b). Washburn extended the original Cascade Virus code and developed

a decryptor with a mutable body. The creation of the polymorphic virus shocked the

antiviral community since detection techniques used at the time relied on �xed signatures

(Beaucamps, 2007a).

2.4.7 Michelangelo Virus, 1991

The Michelangelo Virus surfaced in 1991 (Baskerville, 1993; White, Swimmer, Pring,

Arnold, Chess, and Morar, 1999). This particular virus was one of the �rst viruses to

spread worldwide, and it received much media attention. The purpose of the virus was to

strike on 6 March, with the e�ect of destroying millions of computer hard disks. Less than

20 000 computers were actually infected. The Michelangelo Virus contributed greatly to

public awareness of computer viruses.

2http://www.cert.org/encyc_article/

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 18

2.4.8 Kevin Mitnick, 1995

The name Kevin Mitnick has become synonymous with hacking and computer crime

(Shimomura and Marko�, 1995; Liddinton-Cox, 2012). As a young boy living in the San

Fernando Valley, Kevin started developing his social engineering skills by obtaining free

bus rides (Mitnick, Simon, and Wozniak, 2002). During the years that followed, Kevin

evolved his skills from phone phreaking to hacking, and eventually mastered the art of

social engineering. He soon became the most wanted cyber-criminal in the United States.

The Federal Bureau of Investigation (FBI) arrested Kevin in 1995. Well-known criminal

acts of Kevin include hacking into DEC, Motorola, Nokia, Sun, NEC, as well many other

systems (Mitnick et al., 2002). Kevin Mitnick became the poster boy for hacking and the

role model for aspiring hackers (Greenberg, 2008).

2.4.9 Citi Bank, 1995

The attack on Citi Bank was one of the �rst major �nancial attacks (Hancock, 1995;

Hesseldahl and Kharif, 2010). A Russian hacker (Vladimir Levin) programmed Citi Bank

Systems to send $10 million to his own account. Hancock speculated that Levin gained

access via stolen passwords. Vladimir Levin was eventually extradited to the United

States where he served a three-year prison sentence, and paid $240 000 in damages. Citi

Bank managed to recover most of the money (Kabay, 2003).

2.4.10 Laroux, 1996

In July 1996, the �rst Excel virus, called Laroux, was discovered (Davis, 1996; Haddox,

1996). This virus can be described as a macro virus that consisted of two other macros

called "Auto_Open" and "Check_Files" which are stored in a hidden datasheet named

"laroux". This virus replicates itself each time a new document is created. Documents

that used to be read and write �les have become executable, and thus a new agent to

spread malware. Since documents are also now a danger, the scope of malware infections

has increased from executable binaries only to all but the most basic documents.

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 19

2.4.11 Melissa, 1999

The Melissa Virus arrived in the early hours of 26 March 1999 in the form of a Word

document (McNamara, 2009). David L. Smith was the alleged creator (Garber, 1999).

The Word document, called list.doc, supposedly contained a list of passwords to adult-

content websites. Upon opening the document, the virus turned o� the security protocol

and emailed copies of the infected document to other users of Microsoft Outlook. Melissa

was responsible for serious disruptions in big organisations such as Intel, Lockheed-Martin

and Microsoft. At the time, it was one of the most damaging computer viruses ever

created, and was the �rst to use email methodology.

2.4.12 I-LOVE-YOU, 2000

The I-LOVE-YOU Worm �rst appeared on 4 May 4 2000 in the form of an email with

the subject: I-LOVE-YOU (Ebel, Mielsch, and Bornholdt, 2002). It was created by a

student named Onel de Guzman, and originated from Manila, Philippines. The worm

code was written using Visual Basic and processed by the Microsoft WScript engine

(Bishop, 2000). It targeted computers using Internet Explorer and Microsoft's Outlook

application. Within a few hours, it had spread worldwide via email by making use of

addresses in the Outlook address books of infected users. This worm exploited human

curiosity in order to entice people into opening an untrusted email.

2.4.13 Mafiaboy, 2000

Michael Calce also known as "Ma�aboy", grabbed headlines in Canada when this high

school student launched multiple Distributed Denial-of-Service (DDoS) attacks against

major commercial websites. Yahoo, Amazon, Dell, eBay and CNN were some his targets

(Groebel, Metze-Mangold, van der Peet, and Ward, 2001). Most of these websites were

attacked using a well-known method called "Smurf attacks" (US-CERT, 1998). Smurf

attacks involve using fake reply addresses (spoo�ng), and requesting that the replies be

broadcast into a network, thus causing a denial of service though a spike in network tra�c

(Shearman, 1999). Michael Calce was considered an amateur by other hackers. Grabosky

(2004); Genosko (2008) speculated that Michael's main motivation was to receive recog-

nition within his hacker peer group.

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 20

2.4.14 Titan Rain, 2000-2008

In 2004, Shawn Carpenter discovered a series of "cyber-raids" carried out by alleged

government-supported cells in China targeting the US (Kabay, 2008). Several sensitive

computer networks were in�ltrated, including Lockheed-Martin and Sandia. The FBI

later named it "Titan Rain". The motives were mostly political and economic (Gandhi

et al., 2011). It is considered one of the most sophisticated state-sponsored computer

attacks ever detected. The attackers searched military networks for single computers

with vulnerabilities they would use at a later time to extract data (Thornburgh, 2005).

The scale and ambition of this attack made it unique in its time.

2.4.15 Apache.org Defaced 2000

Figure 2.2: Apache.org Defaced (Dede, 2010)

In May 2000, the Apache.org website was defaced (Dede, 2010). Peter van Dijk and his

accomplices modi�ed the web page to include a banner "Powered by Microsoft BackO�ce"

(Apache is a Microsoft competitor in the web-hosting space). The hackers had discovered

that their target was using a default con�guration. Thus they were able to obtain root

access (van Dijk, 2000). The Apache administration team resolved the problems quickly

without any signi�cant after e�ects. The defaced website is shown in Figure 2.2. This

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 21

attack is considered signi�cant as it represents not only the defacement of a web page, but

the defacement of the web page of the most popular web page software. From October

1996 to 2012, Apache had the top market share for web servers worldwide (Netcraft, 2012).

If the attackers' motives were more sinister they could have explored the opportunity of

installing malicious code into the web server code.

2.4.16 Code Red, 2001

The Code Red Worm appeared on 12 July 12 2001. It exploited a bu�er-over�ow vulner-

ability in Microsoft's IIS web servers (Moore et al., 2003). Upon infection of a machine,

it checked whether the date was between the �rst and the 19th of the month. If so, a

random list of IP addresses was generated and each machine on the list was probed to

infect as many other machines as possible. Proper propagation of the worm failed due to

a code error in the random number generator (Zou, Gong, and Towsley, 2002). On 19

July, a second version of the Code Red Worm appeared, which infected computers at a

rate of 200 hosts per minute (Orman, 2003) and infected more than 250 000 systems in

just nine hours (Berghel, 2001). This new version shared no source code with the original,

but used the same vulnerability and was called Code Red II (Dolak, 2001).

2.4.17 SQL Slammer, 2003

The SQL Slammer Worm consisted of a single User Datagram Protocol (UDP) packet that

exploited a Structured Query Language (SQL) server vulnerability. This worm infected

over 90% of vulnerable targets within ten minutes (Moore et al., 2003; Zou, Gao, Gong,

and Towsley, 2003). It caused signi�cant network outages among �nancial and government

institutions. One of the Slammer's novel features was its incredible scanning rate. The

Slammer did not in�ict damage with a malicious payload, but rather by overloading

networks through the saturating of available bandwidth (Chen and Robert, 2004). In

Figure 2.3 the geographical spread of the SQL Slammer worm is shown a mere 30 minutes

after its release. The diameter of each circle represents the number of infected hosts on a

logarithmic scale.

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 22

Figure 2.3: Geographical Spread of SQL Slammer by Moore et al. (2003)

2.4.18 SCO Denial-of-Service, 2003

An Unix company SCO fell victim to a distributed denial-of-service attack in May 2003

(Shankland, 2003). This attack used multiple computers to simultaneously request a

magnitude of connections to the SCO web server. The SCO web server was unable to

serve (respond in time) all the connections. Thus SCO's web presence was removed

during the attack. A SCO representative stated that they had no indication of who was

behind the attack, and nobody claimed o�cial responsibility for it. In a similar attack

during December 2003, the UCSD Network Telescope calculated that the SCO server

had to respond to more than 700 million attack packets over a 32-hour period (Moore

and Shannon, 2003). The motive for the attack was suspected to be related to the SCO

lawsuit against IBM regarding copyright of the Linux code (Namuduri, 2006). This attack

is considered signi�cant as it is an example of hacktivism, where a website was attacked

by non-state actors for political reasons.

2.4.19 Cabir Worm, 2004

The Cabir Worm was discovered by Symantec on 14 June 2004. It was the �rst worm to

infect mobile devices (Sarwar, Ramadass, and Budiarto, 2007). It targeted mobile devices

using the Symbian OS. Its creator lived in France and used the name Vallez (Gostev, 2006).

Infection occurred via Bluetooth. The infection rate was signi�cantly restricted due to the

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 23

short transmission distances of Bluetooth (Attewell, 2005). The worm did not succeed

in creating major havoc on mobile devices, and caused little damage. However, with

the rising popularity of smart phones it is expected that mobile devices will increasingly

become the targets of malware.

2.4.20 MyDoom, 2004

27 January 2004 saw the arrival of the mass-mailing worm called MyDoom (Dübendorfer

and Plattner, 2005). The worm spread via executable email attachments, and also set up

a backdoor Trojan on infected computers. It used its own Simple Mail Transfer Protocol

(SMTP) engine to send infected emails. During its active lifetime of 12 months it caused

an increase in global email tra�c estimated to be between 14% and 30% (Dübendorfer and

Plattner, 2005). Public awareness, antivirus software and �rewalls using SMTP �ltering

prevented it from growing rapidly. The MyDoom Worm had many variants, including

the variant MyDoom.e, which attacked the SCO web page, and the variant MyDoom.f

attacked Microsoft and RIAA websites (Germain, 2004).

2.4.21 Sasser Worm, 2004

The Sasser Worm spread through a Microsoft network vulnerability (MS04-0113). This

vulnerability exploited a bu�er over�ow in the Local Security Authority Subsystem Ser-

vice (LSASS). The Sasser Worm was allegedly authored by Swen Jaschan, a German

high school student (TrendMicro, 2004). It randomly generated IP addresses and then

attempted to connect on Transmission Control Protocol (TCP) port 445 and exploit more

hosts. This worm was able to infect over half a million Windows users within the �rst

few days of its release (Sanger, 2012).

2.4.22 Sony XCP, 2005

Sony BMG included digital rights management technologies in Compact Disks (CDs)

released during 2005 (Halderman and Felten, 2006; Mulligan and Perzanowski, 2007). One

such technology was XCP, a CD-based protection measure developed by First4Internet.

The initial purpose of XCP was to place certain restrictions on the use of purchased CDs.

3http://technet.microsoft.com/en-us/security/bulletin/ms04-011/

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 24

In addition to the restrictions, XCP also created a number of security vulnerabilities for

Windows users. Mark Russinovich was the �rst person to release information about these

risks to the public on 31 October 2005 (Krebs, 2005). Sony's initial response was slow.

By the end of 2005, millions of infected CDs were still available in retail stores before

their eventual recall. This vulnerability was an example of where a large international

corporation's (Sony) desire to protect its content led to damaging users' computers and

the corporation's own reputation.

2.4.23 Operation Shady RAT, 2006-2010

Operation Shady RAT was a huge corporate spying network used to steal corporate secrets

from over 72 international companies (Alperovitch, 2011). This included source code,

email archives, exploration details for fossil fuels, legal contracts, design schematics, etc.

McAfee was able to gain access to one of the command and control computers used in

this attack and identi�ed 72 compromised parties that were distributed all over the world

(Figure 2.4). Although no de�nitive proof exists, it is currently suspected that the attack

originated in China (Gross, 2011).

Figure 2.4: Operation Shady RAT Victims Geographical Locations (Alperovitch, 2011)

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 25

2.4.24 Estonia Incident, 2007

Early in 2007, a series of politically motivated cyber-attacks struck Estonia (Finn, 2007;

Czosseck, Ottis, and Taliharm, 2011). The attacks included web defacements and DDoS

attacks on well-known Estonia government agencies, banks and Internet service providers.

The attacks followed the removal of a six-foot-tall bronze statue in Tallinn, which com-

memorated the dead of the Second World War (Davis, 2007). At the time of the attacks,

Estonia was one of the leading nations in Europe with regard to information and com-

munication technologies (Czosseck et al., 2011). This can be considered an example of

cyber-warfare and its potential e�ects (Clarke and Knake, 2011).

2.4.25 South Ossetia Incident, 2008

Websites in Georgia were hacked three days before the start of the Georgia Russia war.

The websites of the Georgian Ministry of Foreign A�airs and its Parliament were replaced

with images comparing the Georgian president Mikheil Saakashvili to Adolf Hitler, as

shown in Figure 2.5 (Cluley, 2008).

Figure 2.5: Defaced Georgian Parliamentary Website (Cluley, 2008)

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 26

Russian intelligence services also conducted DoS attacks on Georgian websites. Re-

searchers concluded that the attacks were synchronised with Russian military operations,

and that the malware was written or customized for the attack against Georgia (Ruther-

ford, 2009). The Russian state-sponsored news agency, RIA Novosti was attacked in

retaliation (Spiegelman, 2008).

2.4.26 Conficker Worm, 2008

The Con�cker Worm was the �rst worm to penetrate cloud technology (Fitzgibbon and

Wood, 2009; Sharma, 2011). It �rst appeared in November 2008 and quickly became one

of the most infamous worms to date. It controlled over nine million computer systems and

also controlled the world's largest cloud network at the time (Wattanajantra, 2009). As

a result of the infrastructure of a cloud, the worm could propagate much faster, infect a

broader range of hosts and cause greater damage. Con�cker spread via autorun in remov-

able storage devices and also spread via network shares (Porras, Saïdi, and Yegneswaran,

2009). Con�cker has not been used as an attack weapon since, and it is speculated that

it might have been a precursor to Stuxnet (Finkle, 2011).

2.4.27 Ikee Worm, 2009

The �rst worm to infect Apple's iPhones emerged in 2009. Ikee targeted jailbroken iPhones

by exploiting default passwords (Porras, Saidi, and Yegneswaran, 2010). It did not cause

serious damage to the infected iPhone, but simply changed the wallpaper to an image

of the singer Rick Astley. After changing the wallpaper, it sought out other jail-broken

iPhones to infect. The creator, a 21-year-old student called Ashley Towns, only developed

the worm in order to raise concerns about certain security issues (Andersen, 2009). It did

not contain any malicious content.

2.4.28 Operation Aurora 2009

Google disclosed in early 2010 that it fell under attack from China (Higgins, 2010; Drum-

mond, 2010). The goal of the attacks was to extract source code from Google, Adobe and

other signi�cant technology companies (Zetter, 2010). The attackers used a 0-day exploit

in Internet Explorer to steal intellectual property. Also, signi�cantly, access to Chinese

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 27

Gmail accounts was sought. Attacks of this sophistication and scope was unknown at the

time and required signi�cant investment and time to execute (Zetter, 2012a). McAfee

described the steps used by the attackers to steal data (McAfee, 2010):

1. A targeted user received a link in email or instant message from a ‘trusted’ source.

2. The user clicked on the link, which caused them to visit a website hosted in Taiwan

that also contained a malicious JavaScript payload.

3. The user’s browser downloaded and executed the malicious JavaScript, which in-

cluded a zero-day Internet Explorer exploit.

4. The exploit downloaded a binary disguised as an image from Taiwanese servers and

executed the malicious payload.

5. The payload set up a back door and connected to command and control servers in

Taiwan.

6. As a result, attackers had complete access to internal systems.

The attack was traced back to two schools in China that have close ties with the Chinese

military (Marko� and Barboza, 2010).

2.4.29 Stuxnet Worm, 2010

Stuxnet was one of the most complex threats ever analysed (Falliere, Murchu, and Chien,

2011). The primary purpose of Stuxnet was to target industrial control systems, such as

gas pipelines and power plants, with the goal of reprogramming the Programmable Logic

Controls (PLCs) systems to enable an attacker to control them. Stuxnet was also the

�rst to exploit four zero-day vulnerabilities as well as compromise two digital certi�cates.

As of 29 September 2010, Iran had the greatest number of infected computer systems.

Stuxnet has shown that direct-attack attempts on critical infrastructure are no longer a

myth, but a de�nite possibility. Stuxnet actions can be considered an act of war, but no

one has o�cially claimed responsibility for it (Fidler, 2011), although Sanger (2012) was

able to con�rm that Stuxnet was a joint Israeli-American cyber-weapon.

2.4.30 Epsilon, 2011

In April 2011, customer information (names and emails) were stolen from Ameriprise

Financial, Best Buy, Bookstone, Capital One, Citi, Disney Destinations, Home Shopping

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 28

Network, JPMorgan Chase, Marriott Rewards, US Bank, TiVo and Walgreens (Olivarez-

Giles, 2011). Epsilon, a marketing email provider from which the email addresses were

leaked stated that passwords and credit card details were not compromised (Halliday,

2011). The biggest danger resulting from this attack is a possibility that the stolen names

and email addresses may be used in future Spear Phishing attacks (Kerber and Bartz,

2011).

2.4.31 PlayStation Network, 2011

Sony's PlayStation Network went o�ine on 20 April 2011 (Thomas, 2011). A few days

later, Sony confessed that the network went o�ine due to an external intrusion. Sony also

warned its users to watch out for possible identity theft as the hackers obtained sensitive

information such as usernames, passwords, addresses and birth dates (Goodin, 2011).

Sony blamed Anonymous for the attack, but Anonymous denied involvement (Cohen,

2011; Kaplan, 2011).

2.4.32 HBGary, 2011

In February 2011, a computer attack was launched on one of the leading computer security

�rms, HBGary Federal (Bright, 2011). The CEO of HBGary Federal, Aaron Barr, an-

nounced that he was going to unmask the well-known hacking group Anonymous. Anony-

mous responded swiftly and caused severe damage to the security �rm. The attacks re-

sulted in defacement of their website and deletion of vast amounts of data. In addition,

a website owned by the owner of HBGary, Greg Hoglund, went o�ine and the user reg-

istration database was published on the Internet. Anonymous ultimately removed the

links to the published emails after negotiations with Barr and Hoglund (Zetter, 2011).

This attack is considered signi�cant as it demonstrates the potentially negative impact of

skilled hacker groups, and the inherent vulnerability of individuals.

2.4.33 South African PostBank, 2012

The South African PostBank was robbed of R42 million ($6.7 million) during a 72-hour

operation that took place during the New Year holiday period (Swart and Afrika, 2012).

Boy Meshack Thekiso a Postbank employee, used the computer of a colleague who was on

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 29

leave, which was linked to the PostBank server, to transfer money to multiple accounts.

Large amounts of money were withdrawn from ATM's all over South Africa from these

accounts. Two of the syndicate members, Motsoane and Masoleng, were arrested in

February 2012 and sentenced to 15 years for their role in the theft (SAPA, 2012; Swart,

2012). Thekiso turned state witness and received a ten-year sentence.

2.4.34 Flame, 2012

Flame is a modular computer malware that attacks computers running the Microsoft

Windows operating system. The Flame malware has a backdoor, a Trojan, and worm

features which allow it to replicate in a local network (Gostev, 2012). The Flame software

seems to especially target systems in Iran, Lebanon, Syria, Sudan, Israel and other Middle

Eastern countries. In Figure 2.6, a map of the initially infected countries is shown.

Figure 2.6: Flame-infected Countries 28 May 2002 (Gostev, 2012)

Flame is considered the most sophisticated and complex malware ever found (Sharma,

2012).

2.4. SIGNIFICANT COMPUTER ATTACKS SURVEY 30

2.4.35 SpamHaus, 2013

On 16 March 2013, a DDoS attack was launched on the SpamHaus website (Hanford,

2013)4. The attack grew to 300 Gigabits per second (Gbps) of �ood tra�c, a level which

threatened the overall Internet core infrastructure and Leyden (2013) claimed that it

was the "Biggest DDoS attack in History". SpamHaus contracted CloudFare5 to mitigate

against the attack, and they were able to restore SpamHaus services (Prince, 2013). Figure

2.7 displays bandwidth across a number of the routers that CloudFare monitored in front

of the SpamHaus web site. The green area represents incoming requests in-bound and

the blue line represents outgoing data. The massive spike in incoming tra�c presents the

DDoS attack.

Figure 2.7: CloudFare Monitoring Tra�c in front of SpamHaus (Prince, 2013)

Although they deny it, it has been speculated that a Dutch hosting company called Cyber-

Bunker attached SpamHaus in retaliation for being placed on the SpamHaus anti-spam

list (Marko� and Perlroth, 2013). A Dutch national was arrested in Spain during April

2013, was extradited to the Netherlands and faces charges with regard to the DDoS attack

on SpamHaus. The DDoS attack on SCO in 2003 and SpamHaus in 2013 used the same

methodology, and only di�ered in scale. In the ten years between the attacks, the Internet

and related networks have grown to the extent that the amount of data required for a

successful DDoS attack is signi�cantly greater.

2.4.36 Edward Snowden, 2013

In June 2013 The Guardian and Washington Post newspapers revealed in June 2013 that

the NSA accessed servers from large US tech companies to collect metadata (Greenwald,

4http://spamhaus.org/
5https://www.cloudflare.com/

2.5. ATTACK SCENARIOS 31

2013). More revelations about NSA cyber-spying programme called PRISM was revealed

in the following weeks. The source of the leaks were revealed to be Edward Snowden,

a NSA contractor (Glenn Greenwald and Poitras, 2013). Snowden's motivation for re-

vealing information about PRIMS and the NSA is that he wanted to prompt a national

security debate (Farivar, 2013):

"The surveillance of whole populations, rather than individuals, threatens to be the great-

est human rights challenge of our time. . . "

It has emerged that one of the techniques that Snowden used to collect all the material

was by convincing "20 to 25" of his coworkers to hand over their login credentials and

passwords (Geuss, 2013). Currently Snowden has been given temporary asylum in Russia

while the US insists that he is a traitor (Walker, 2013). Catro (2013) estimates that

Snowden's revelations will cost the US cloud computer industry up to $35 billion.

2.5 Attack Scenarios

Rahmad, Supangkat, Sembiring, and Surendro (2010) developed the concept of a "threat

scenario". They reasoned that all threats can be classi�ed as either the hijacking of uses,

espionage, exceeded limits of operation, damage, modi�cations or loss of property. These

scenarios were used as a starting point for development of the following attack scenarios:

∙ Denial-of-Service (SCO DoS, Ma�aboy, SpamHaus)

∙ Industrial Espionage (Titan Rain, Operation Aurora, Operation Shady RAT)

∙ Web Defacement (HB Gary Hack, Apache.org Defaced)

∙ Unauthorised Data Access (Kevin Mitnick, Playstation Network, Epsilon, Edward

Snowden)

∙ Financial Theft (South African PostBank, Citi Bank)

∙ Industrial Sabotage (The Logic Bomb, Stuxnet Worm)

∙ Cyber-Warfare (South Ossetia Incident, Estonia Incident)

∙ Resource Theft (Phone Phreaking)

∙ System Compromise (Flame, MyDoom, Con�cker, Code Red, Sony XCP)

∙ Runaway Malware (I-LOVE-YOU, Morris Worm, Mellissa, SQL Slammer, Brain

Virus, PC-Write Trojan Horse, Chameleon Virus, Michelangelo Virus, Laroux, Cabir

Worm, Sasser Worm, Ikee)

Each of the attack scenarios above are explored in more detail in Section 4.3. The Denial-

of-Service scenario is used to describe attacks that target accessibility by overloading a

2.5. ATTACK SCENARIOS 32

victim's capability to respond to a �ood of interaction requests. Industrial Espionage

refers to the theft of commercially valuable data such as trade secrets, system blueprints

or sales numbers. Unauthorised Data Access refers to a situation where a person has

access to a location that is hidden or contains sensitive or secret data. This can lead to

the unauthorised entry of data into a �le, reading a �le, changing the contents of the �le

or for any other malicious purpose.

Web Defacement can be considered gra�ti of the digital world. Websites are the public

face of commercial and other entities in the digital world, and reputations are negatively

a�ected by defacing them.

Computers can be used for direct �nancial gain by stealing money directly from banks,

individuals or other institutions. Computer attacks with a sole �nancial goal are referred

to as the Financial Theft scenario. Much malware attempts to control computers and

networks. When control of a computer or network has been lost, the System Compromise

is applied. System Compromise refers to the breaking or cracking into a single or multiple

computers without authorisation. Such a compromise is often achieved by using stolen

identi�cation and/or passwords to achieve privilege escalation and then compromise the

computer system.

Industrial Sabotage scenarios refer to where computers are used to attack industrial targets

physically. The Logic Bomb and Stuxnet attacks resulted in physical damage to industrial

equipment. The next step is to use computers directly in war. This was done in the

South Ossetia Incident where computer attacks were launched in conjunction with military

operations.

Much of the malware that caused the greatest damage and �nancial losses was software

that was written with no other goal than to see how far it could spread. This Runaway

Malware usually exploits some technical �aw that allows it to spread.

Resource Theft is the unauthorised usage of computer resources, such as bandwidth and

disk space, to accomplish uno�cial tasks. Resource Theft includes, but is not limited to,

the following activities: using computing facilities and resources to interfere with the work

of an employee, abusing computing facilities and resources to send unauthorised messages

that are obscene, harassing or threatening and interfering with the normal operations of

a company's computing system.

2.6. SIGNIFICANCE 33

2.6 Significance

In this section, the signi�cance of the attacks are sorted according to four criteria:

∙ �rst use of an attack methodology;

∙ �rst signi�cant use of a new technology;

∙ attacks with signi�cant �nancial impact; and

∙ sophisticated attacks.

The grouping of the attacks into these criteria is subjective and meant to be a de�nitive

grouping.

In Figure 2.8, the attacks are listed that are signi�cant because they were the �rst known

instance of a new attack methodology. For example, the Laxroux Excel Virus was the

�rst macro virus, and Ikee the �rst worm that attacked via mobile phones.

Pre 1984 1985-1988 1989-1992 1993-1996 1997-2000 2001-2004 2005-2008 2009 -

Brain

Virus

1986

PC-Write

Trojan

1986

Chameleon

Virus

1990

Laroux

Excel Virus

1996

Morris

Worm

1988

Melissa

Worm

1999

SQL

Slammer

Worm

2003

Sasser

Worm

2004

Conflicker

Worm

2008

Ikee

Mobile

Worm

2009

Phone

Phreaking

1970

Logic

Bomb

1982

Estonia

DoS

Attack

2007

Time

Computer

Attack

Figure 2.8: List of Computer Attacks with the First Signi�cant Use of an Attack Method-
ology

The �rst signi�cant use of a technology for computer-related attacks is shown is Figure

2.9. One of the best examples of an attack that used a new technology for the �rst time

is the Sony XPS attack, which used digital rights management technology.

Pre 1984 1985-1988 1989-1992 1993-1996 1997-2000 2001-2004 2005-2008 2009 -

Brain

Virus

1986

PC-Write

Trojan

1986

Morris

Worm

1988

I-LOVE-

YOU

Worm

2000

Conflicker

Worm

2008

Sony

 XPS

2005

Phone

Phreaking

1970

Logic

Bomb

1982

Estonia

DoS

Attack

2007

South

Ossetia

Incident

2008

Stuxnet

2010

Time

Operation

Aurora

2009

Computer

Attack

Figure 2.9: List of Computer Attacks with the First Use of a New Technology

2.7. SUMMARY 34

Many of the computer-related attacks had a signi�cant �nancial impact. Many of the

attacks shown in Figure 2.10 regarding �nancial impact cannot be determined due to the

di�culty in measuring con�dence loss. For example, the Playstation Network Attack was

estimated to have cost Sony over $170 million (Stone, 2012).

Pre 1984 1985-1988 1989-1992 1993-1996 1997-2000 2001-2004 2005-2008 2009 -

Kevin

Mitnick

1995

“Mafiaboy”

Michael

Calce

2000

Michelangelo

Virus

1991

Morris

Worm

1988

Melissa

Worm

1999

I-LOVE-

YOU

Worm

2000

Code

Red Worm

2001

SQL

Slammer

Worm

2003

Sasser

Worm

2004

MyDoom

Worm

2004

Conflicker

Worm

2008

Titan

Rain

2000

Sony

 XPS

2005

HBGary

Attack

2011

PlayStation

Network

Attack

2011

Epsilon

2011

South Africa

Postal

Service

2012

Phone

Phreaking

1970

Logic

Bomb

1982

Estonia

Incident

2007

South

Ossetia

Incident

2008

Stuxnet

2010

Time

Operation

Aurora

2009

SCO DoS

2003

Operation

Shady

RAT

2006

Citi Bank

1995

Computer

Attack

SpamHaus

DDoS

2013

Edward

Snowden

2011

Figure 2.10: List of Computer Attacks with Signi�cant Financial Impact

The �nal criterion is sophisticated attacks. One of the best examples is the Stuxnet

attack, which used multiple zero-days and attacked a network that was not accessible via

the Internet. Stuxnet is considered to be a cyber-weapon (Chen, 2010).

2.7 Summary

Computer viruses were the most signi�cant computer attacks in the 1980s. Computer

viruses used novel and unique methodologies to attack computers. Viruses started out as

simple viruses such as the Brain Virus that simply copied itself through interrupt vectors.

More complicated viruses are the polymorphic viruses such as the Chameleon Virus.

2.7. SUMMARY 35

Pre 1984 1985-1988 1989-1992 1993-1996 1997-2000 2001-2004 2005-2008 2009 -

Kevin

Mitnick

1995

Code

Red Worm

2001

Sasser

Worm

2004

MyDoom

Worm

2004

Conflicker

Worm

2008

Titan

Rain

2000

HBGary

Attack

2011

PlayStation

Network

Attack

2011

South Africa

Postal

Service

2012

Logic

Bomb

1982

Estonia

Incident

2007

Stuxnet

2010

Flame

2012

Time

Operation

Aurora

2009

Apache.org

Defaced

2000

Operation

Shady

RAT

2006

Citi Bank

1995

Computer

Attack

Figure 2.11: List of Computer Sophisticated Attacks

With the development of the Internet, the signi�cant computer attacks became network-

based attacks. During the 1990's and 2000's, worms became the most signi�cant threat.

These worms spread though server software vulnerabilities (such as the Morris Worm and

SQL Slammer) or used social engineering methods such as the I-LOVE-YOU email worm.

With the commercial growth of the Internet, attacks on commercial entities became more

sophisticated and signi�cant. The scope of attacks on commercial entities ranged from

politically motivated (SCO DoS) to large-scale industrial espionage. The step from indus-

trial espionage to industrial sabotage reached a signi�cant level with the Stuxnet-targeted

attack. The Stuxnet attack proved that, since computer networks have become an integral

part of a nation's infrastructure, they can be used as an attack vector.

This chapter examined recent history to identify computer attacks that have had the most

impact or can be considered the most signi�cant. These signi�cant attacks were used to

identify computer attack scenarios. These scenarios are used as the base for the computer

attack ontology developed in Chapter 5. In the next chapter, related research on network

attacks will be presented.

CHAPTER

THREE

RELATED RESEARCH

"Read at every wait; read at all hours; read within leisure; read in

times of labour; read as one goes in; read as one goes out. The

task of the educated mind is simply put: read to lead."

Marcus Tullius Cicero – 106 BC to 43 BC

3.1 Introduction

Attacks on computer networks can be considered an arms race. With every advance

in protection/prevention, new attacks counter it and become more sophisticated (Zhou,

Leckie, and Karunasekera, 2010; Kayac�k, Zincir-Heywood, and Heywood, 2011). This

chapter presents related work in the study of computer network attacks. In Section

3.2, a survey of network attack models is presented and in Section 3.3, a summary of a

collection of network attack taxonomies is presented. Ontologies have been used in the

�eld of computer attack detection, and such studies are presented in Section 3.4. Sensors

that can be used to detect network-related attacks are discussed in Section 3.5.

Most models, taxonomies and ontologies are presented in the form of �ow charts or class

diagrams. The �owcharts simplify the presentation of the interaction within models and

the the class diagrams enable a holistic view and comprehension. Where applicable,

references are made to where these classes were used within the researcher's taxonomy

and ontology.

36

3.2. NETWORK ATTACK MODELS 37

3.2 Network Attack Models

In this subsection, models that represent attack on networks are discussed. The most

basic attack process and slight variations on it are presented. This model was used to

base the network attack model developed in Section 4.4. The variations on the basic

model are presented in historical order as shown in Figure 3.2.

After the basic models, three complex models are presented. These complex models

include the inputs and outputs of the attack models. The complex models are shown in

Figures 3.3, 3.4 and 3.5.

3.2.1 Generalised Basic Attack Process

The most basic generalised attack process, as derived from research conducted by Cheswick

(1992); Kurtz, McClure, and Scambray (1999); Boyd (2000); Schultze (2002); Teumim

(2010), is shown in Figure 3.1.

Figure 3.1: Generalised Basic Attack Process

According to Teumim (2010), and Knapp (2011) the attack process is equally valid for

any target being attacked, be it Internet networks or industrial systems. Teumim de�ned

the attack phases as follows:

∙ Reconnaissance: This is the initial phase (also known as "foot printing") where an

attacker obtains information about an organisation, such as its employees, Internet

domain and other useful information.

∙ Scanning: This is the identi�cation of network-related devices using Internet Control

Message Protocol (ICMP) to determine live hosts, and open TCP and UDP ports

to determine possible services.

3.2. NETWORK ATTACK MODELS 38

∙ Enumeration: This is the identi�cation of user accounts, network shares and other

open information on the network. For example, if a user account name can be

obtained, its password can be guessed or cracked by brute force.

∙ Disrupt: The goal of this activity is only to withhold some service from the computer

user. This does not necessarily require further network or computer penetration.

∙ Penetrate: The goal of this phase is to overcome the system's defences, such as

antivirus and privilege-level software.

∙ Infect: The goal of this phase is to become a persistent threat by attempting to stay

hidden while performing any required tasks. Sterling (2010) listed additional steps

required to maintain persistent infection:

– constructing outbound connections (also known as backdoors) for command

and control use

– collecting user credentials and attempting to access more systems

– escalating user privileges to a higher level

– using legitimate services to hide outbound connections

– utilising mutation and other polymorphic techniques to avoid detection

– maintaining its hidden presence on the system by removing logs (evidence of

infection)

Formal variations on the basic network attack model are introduced in sections 3.2.2

to 3.2.6. These models all follow the same basic steps, with small variations in name

conventions and steps. The models mostly follow a linear path, have between four and

eight stages, and are presented in chronological form. In sections 3.2.7 to 3.2.9, more

complicated attack models are presented. These models also require inputs and outputs

for each stage.

3.2.2 Hansman and Hunt Model

Hansman and Hunt (2003) described a computer attack as a process with several distinct

phases occurring on a targeted computer or network. An attack follows four main phases,

as demonstrated in Figure 3.2a. The Hansman and Hunt model denotes Information

Gathering and Target Selection as phases that occur concurrently and distinctly. Most

other models regard Target Selection as a phase that occurs before Information Gathering.

39

(a) Hansman and Hunt Model

(b) Tutănescu and Sofron Model

(c) Gadge and Patil Model

(d) Sharan Model

(e) Nachenberg Model

Figure 3.2: Basic Attack Models

3.2. NETWORK ATTACK MODELS 40

3.2.3 Tutănescu and Sofron Model

Tut nescu and Sofron (2003) presented a synthetic anatomy of network attacks, as shown

in Figure 3.2b. Tut nescu and Sofron also stated that these attack phases are in contin-

uous development and require constant updating. The Footprint and Scanning phase is

similar to other Reconnaissance phases. This model is similar to the model of Grant and

Kooter, which is also only limited to attacks that gain access to systems, and it does not

represent the Denial-of-Service scenarios.

3.2.4 Gadge and Patil Model

The Gadge and Patil (2008) model consists of six basic steps: performing reconnaissance,

scanning and enumeration, gaining access, escalation of privilege, maintaining access, and

covering tracks and placing backdoors. Gadge and Patil de�ned reconnaissance as the

phase where a hacker tries to �nd out as much as possible about the target. The researcher

refers to this phase as Target Identification, but Jung, Paxson, Berger, and Balakrishnan

(2004) refer to the Scanning and Enumeration phases as the Reconnaissance phase. The

researcher chose to refer to scanning and other similar actives as reconnaissance. In Figure

3.2c, the Gadge and Patil model is displayed.

3.2.5 Sharan Model

Sharan (2010) described �ve stages of ethical hacking. These stages are shown in Figure

3.2d. The steps used by ethical hackers can also be used by hackers with more malicious

intent. Sharan's steps are very similar to Teumim's model, except for di�erentiating

between active and passive reconnaissance. Sharan uses slightly di�erent terms, such as

Gaining Access rather than the more popular Enumeration used by most authors.

3.2.6 Nachenberg Model

Nachenberg (2012) described hacking as a systematic, wearisome process. This process is

methodical, and requires six main steps: footprinting, scanning, enumeration, penetration,

advance and covering tracks. In the advance phase, the hacker beverages information

gained to launch the next level of attacks, for example installing backdoors. Figure 3.2e

displays Nachenberg's model.

3.2. NETWORK ATTACK MODELS 41

3.2.7 Grant and Kooter Model

Grant and Kooter (2005) developed an attack model within a crime context. It was

developed following an analysis of hackers' writings. The model is summarised in Figure

3.3, where it uses the similar phases as described previously and includes the inputs and

outputs of each phase. This model is speci�c to hacking-type attacks, with phases such as

Penetration, Control, Embedding, Data Extraction and Attack Relay. These phases can be

used in denial-of-service-type scenarios. Grant, Venter, and Elo� (2007) re�ned the model

into nine phases: footprinting, reconnaissance, vulnerability identi�cation, penetration,

control, embedding, data extraction, attack relay and attack dissemination.

Figure 3.3: Grant and Kooter (2005) Model

3.2. NETWORK ATTACK MODELS 42

3.2.8 Colarik and Janczowski Model

Colarik and Janczowski (2008) developed a model within a hacking terrorism context.

Their model was developed by creating analogies based on hacker crime instances. The

model is presented in Figure 3.4. The Colarik and Janczowski model groups the identi�-

cation of vulnerabilities and selection of malware into a single Penetration phase. Unlike

the Grant and Kooter model, this model di�erentiates between owning a system and

disrupting a system.

Figure 3.4: Colarik and Janczowski (2008) Model

3.2.9 Damballa Model

Damballa (2008) looked at case studies of lone hackers within the criminal context. His

model is illustrated in Figure 3.5 and consists of only three basic steps: Deliver Malware,

Consolidation and Take Action. This model does not use the Reconnaissance or similar

phases.

3.3. ATTACK TAXONOMIES 43

Figure 3.5: Damballa (2008) Model

3.2.10 Network Attack Models Overview

In this section, several network attack models are presented. All the models follow a

similar path, with slight di�erences. These di�erences are in naming conventions or

grouping of stages. For example, the terms Footprint and Reconnaissance could be used

interchangeably. Most of the models start with some Footprint/Reconnaissance/Scanning,

followed by Gaining Access/Enumeration/Escalation Privilege. After the system has been

compromised, the attack Disrupts/Penetrates/Infects/Maintains Access of some sort and

ends by Covering Tracks/Installing Backdoors. The attack model developed in Section

4.4 is based on the stages presented in this section.

3.3 Attack Taxonomies

In this section, the network attack and related taxonomies are explored. Rouse (2005)

de�nes a taxonomy as:

"the science of classi�cation according to a predetermined system, with the resulting

catalog used to provide a conceptual framework for discussion, analysis, or information

retrieval."

3.3. ATTACK TAXONOMIES 44

The word taxonomy is derived from the Greek taxis (arrangement) and nomos (law).

Hlava (2012) de�nes a taxonomy as a knowledge organization system. It is therefore a set

of words that is used to de�ne a �eld's vocabulary.

Taxonomies are presented as �gures with their main class at the top. Some of the tax-

onomies were split to �t all the classes and sub-classes within a single page. The level of

the classes and sub-classes can be di�erentiated by their shape, as illustrated in Section

1.5. The taxonomies are presented in a chronological sequence.

3.3.1 Taxonomy of Attack Techniques by Lindqvist and Jonsson

(1997)

Lindqvist and Jonsson (1997) presented a classi�cation of network intrusions. The classi-

�cation was built on intrusion experiments. Lindqvist and Jonsson expanded on the nine

computer misuse classes de�ned by Neumann and Parker (1989). In Figure 3.6, Lindqvist

and Jonsson display the Computer Misuse and Computer Misuse Result classes.

The researcher's Attack Goal, Effect and Sabotage classes were in�uenced by Neumann

and Parker's taxonomy, whose taxonomy is fully presented within Lindqvist and Jonsson's

taxonomy. These can be seen in sections 4.2.5, 4.2.8, and 4.2.11. Their taxonomy Com-

puter Misuse Result class does not present destruction, changing or disclosure of data on

its disclosure. Their Computer Misuse class also caters for activities which fall outside the

scope of computer network attacks, such as Misuse from Inaction and Hardware Misuse.

3.3.2 A Taxonomy of Network and Computer Attack Methodolo-

gies by Hansman and Hunt (2003)

In Figure 3.7, Hansman and Hunt present attack methodologies, and in Figure 3.8, their

attack taxonomy. The attack methodologies are separated by the their mechanism (such

as Bu�er Over�ows and Physical Attacks), their target (such as Web Application and

Password Attacks) or e�ect of the attack (such as Denial-of-Service and Information

Gathering Attacks). The complexity of attack mechanisms is shown as Figure 3.7 presents

more than 30 unique attack mechanisms classes.

The Attack Mechanism class of Section 4.2.6 is based primarily on Hansman and Hunt's

work. Furthermore, the Target, Vulnerability and Attack Goal classes were all in�uenced

45

Figure 3.6: Classi�cation of Computer Misuse and the Results of Computer Misuse after
Lindqvist and Jonsson (1997)

3.3. ATTACK TAXONOMIES 46

by Hansman and Hunt's taxonomy, as shown in Figure 3.8. Hansman and Hunt's target

class has three main distinctions � hardware, software and network � all referring to

physical elements that are targeted. The Target class developed in Section 4.2.13 uses

de�nition, but also adds an Industrial Equipment class. The three vulnerabilities; Con-

�guration, Design and Implementation, are used in the Vulnerability class developed in

Section 4.2.14. Some payloads shown in Figure 3.8, namely Disclosures of Information

and Corruption of Information, correspond to the Attack Goal sub-classes: Steal Secret

and Change Data.

The Attack Methodology (Figure 3.7) class of Hansman and Hunt only lists attack methods

and does not group them according to a higher attack methodology goal. The human-

based attack, such as social engineering and phishing, is also required. The Network

Attack Dimensions (Figure 3.8) class only addresses the scope of the attack under the

sub-class Miscellaneous, and not as a speci�c sub-class. Only the physical properties of

an attack is mentioned, without investigating the origin of the attack.

3.3.3 Hacking? How They Do It, by CERT-In (2003)

The Indian Computer Emergency Response Team (CERT-In) conducted a crime and

security survey of computer-related crime incidents (CERT-In, 2003). They made the

following �ndings regarding hacking:

∙ The biggest �nancial loss was caused by theft of secret and proprietary information.

∙ The second biggest loss was due to denial of service attacks.

∙ Virus incidents and insider abuse were the most frequent types of incident.

∙ More than two-thirds of corporate companies are against hiring hackers that have

been reformed.

CERT-In developed an attack methodology in their survey. In this methodology they

examined the e�ect of hacking, the type of attacks, exploit types, vulnerabilities and

hacking tools (Figure 3.9). The methodology was developed to enable administrators to

maintain a constant watch over malicious code, and enable them to immediately update

their security protection solution. Thus providing for rapid, timely patching.

Within the researcher's Attack Mechanism (as presented in Section 4.2.6), the Malware

sub-class was derived from CERT-In's similar class. The Popular Vulnerabilities, Attack

Methods and Effect of Hacking classes also in�uenced the researcher's Attack Mechanism

47

Figure 3.7: Attack Methodologies after Hansman and Hunt (2003)

48

Figure 3.8: Hansman and Hunt (2003) Attack Taxonomy

49

Figure 3.9: CERT-In (2003) E�ect of Hacking, Malware, Popular Vulnerabilities, Attack
Methods, Hacking Tools, Types of Attacks, Attack Actions, Attacker Actions and Attack
Categories

3.3. ATTACK TAXONOMIES 50

class. CERT-In classes list the di�erent attack methods in detail, which can be reduced

to a simpler class, such as the �rst sub-class of the researcher's Attack Mechanism class,

namely: Access Attack, Information Gathering and Data Manipulate. The critique holds

for their Popular Vulnerabilities class which is oversimpli�ed and does not present any re-

lationship to the vulnerabilities. Their Effect of Hacking class is also too limited, without

any references to other hacking e�ects, as listed by the researcher in Section 4.3.

3.3.4 Anatomy and Types of Attacks against Computer Networks

by Tutănescu and Sofron (2003)

Tut nescu and Sofron (2003) described active and passive computer network attacks.

These attack types are shown in Figure 3.10. The Active Attacks and Passive Attacks only

Figure 3.10: Active and Passive Attacks by Tut nescu and Sofron (2003)

describe a single property of attacks. This property does not add value to the researcher's

taxonomy, and Tut nescu and Sofron's classi�cation of IP sniffing could also fall within

the passive class. Passive attacks formed part of the researcher's Target Identification

(Section 4.2.10) sub-class.

3.3. ATTACK TAXONOMIES 51

3.3.5 An Ontology for Network Security Attacks by Simmonds

et al. (2004)

Simmonds et al. (2004) de�ned an extensible ontology for network security from teaching a

network security subject at the University of Technology in Sydney. Although Simmonds

et al. refers to an ontology, the paper presents an extensive taxonomy that is presented in

Figure 3.11. A map was developed to demonstrate the vulnerability relationships (Figure

3.12).

The Simmonds et al. Actor, Asset, Outcome and Motive classes directly in�uenced the

author's Actor, Asset, Effect and Motivation. The researcher's classes are presented in

sections 4.2.1, 4.2.4, 4.2.8 and 4.2.9. Their taxonomy used a Fault class to describe vulner-

abilities. This class presents similar information to the Vulnerability class (Section 4.2.14),

but di�erentiated according to structure, not methodology. Their Attack On class is a

direct mapping to the traditional Con�dentiality, Integrity and Availability Authentica-

tion (CIA+) mapping of security threats. The researcher's Attack Goal (Section 4.2.5)

presented the same information and added a sub-class to present indirect attack goals.

The CIA+ is an expansion of the popular Con�dentiality, Integrity and Availability (CIA)

triad (Anderson, 2003; Whitman and Mattord, 2011), as shown in Figure 3.13.

3.3.6 Taxonomies of Cyber-adversaries and Attacks by Meyers

et al. (2009)

Meyers et al. (2009) proposed a taxonomy of cyber-adversaries based on the work done

by Rogers (2006). This taxonomy was presented as a two-dimensional circumplex (Fig-

ure 3.14) image in which motivation is presented along the circumference and where the

sophistication level increases with the radius. Each quadrant represents: Revenge, Finan-

cial, Notoriety and Curiosity.

Script kiddies, newbies and novices are adversaries with limited programming skills, who

are new to hacking and rely mainly on prewritten tools. Hacktivists and political ac-

tivists are motivated by political cause and not necessarily by personal gain. Cyber-

punks, crashers and thugs are attention-seeking hackers with more programming skills

than novices. Insiders and user malcontents are considered by many as the greatest risk

(Rogers, 2006; Gellers, Brant, and B., 2008; Meyers et al., 2009). Insiders, due to their

specialised knowledge, can cause a very large amount of damage. Coders and writers are

52

Figure 3.11: Network Security Attacks Taxonomy by Simmonds et al. (2004)

3.3. ATTACK TAXONOMIES 53

Figure 3.12: Vulnerability Map after Simmonds et al. (2004)

Figure 3.13: CIA Triad

primarily used to write code for use by the other groups. White hat hackers, old guard

and sneakers are hackers without malicious intent, who have no regard for privacy or

secrecy. Black hat hackers, professionals and elite are professional hackers who sell their

skills to the highest bidder. These adversaries can be employed by organised crime syn-

dicates. Cyber-terrorists are skilled hackers that engage in state-sponsored information

warfare. Meyers et al.'s list of cyber-adversaries are contained in the Actor, Aggressor

and Motivation classes (Section 4.2.1, 4.2.3, 4.2.9).

3.3. ATTACK TAXONOMIES 54

Low
Sophistication

Motivation
Revenge

Motivation
Finacial

Motivation
Curiosity

Motivation
Notoriety

High
Sophistication

High
Sophistication

High
Sophistication

High
Sophistication

Insiders

Cyber
Terrorists

Black Hat
hackers

Hacktivists

Cyber
Punks

Script
Kiddies

White Hat
hackers

Coders

Figure 3.14: A Circumplex of Adversaries after Meyers et al. (2009)

3.3.7 Diversity in Network Attacker Motivation: A Literature

Review by Rounds and Pendgraft (2009)

Rounds and Pendgraft (2009) investigated the diversity in network attacker motivations

and compiled a list of possible hacker agents (Figure 3.15). The researcher's Actor, Ag-

gressor and Motivation classes were in�uenced by their review of attacker motivation.

These classes are presented in sections 4.2.1, 4.2.3 and 4.2.9. Rounds and Pendgraft's

class does not separate between who is the attacker and who is sponsoring the attacker.

3.3.8 Dimension of Cyber-Attacks by Gandhi et al. (2011)

The goal of Gandhi et al. (2011)'s goal was to thoroughly understand a cyber-attack by

studying the nature and the motivation behind it. The taxonomy developed by Gandhi

et al. is shown in Figure 3.16. They noted that a hacker's motivation can be classi�ed

into three classes: political, sociocultural and economical. These classes can overlap, as

shown in Figure 3.17.

3.3. ATTACK TAXONOMIES 55

Figure 3.15: Hacker Agents after Rounds and Pendgraft (2009)

The Aggressor and Actor classes of Section 4.2.3 and 4.2.1 have similarities with the

Gandhi et al. Attack Agent and Attack Co-ordination classes. For example, Nation States,

Script Kiddie, Hactivists, Cybervigilante, Cyber-Mafia, Organised Crime can directly be

mapped to the classes presented in sections 4.2.3 and 4.2.1.

Gandhi et al.'s Attack Victim class represents the main targets of cyber-attacks. These

victims are presented as the scope of an attack in Section 4.2.12. The Attack Consequences

class of Gandhi et al. Describes, with over 15 classes, what e�ects or consequences cyber-

attacks have. These consequences are presented in Section 4.2.11 as the Sabotage class.

The Attack Motive presented by Gandhi et al. has three main classes: Socio-cultural,

Economic and Political. Gandhi et al. state that motivation is not set, but could contain

a combination of factors. How the factors can be combined is shown in Figure 3.17 as the

Attack Motive class.

This taxonomy had only a simplistic method to vulnerabilities and attack mechanisms.

The target and its properties were not presented in the same detail as the attacker,

aggressor and attack agent, which was developed in detail by Gandhi et al.

3.3.9 The Scrap Value of a Hacked PC, revisited by Krebs (2012)

Krebs (2009, 2012); Cardenas, Radosavac, Grossklags, Chuang, and Hoofnagle (2010)

compiled lists of all the methods in which a compromised PC can be used for �nancial

gain. The goal of these lists are to demonstrate why someone would want to hack a PC

(Figure 3.18). Krebs' classes are contained within the researcher's Attack Goal class. More

speci�cally, the Steal Data and Gain Control sub-classes presented in Section 4.2.5 were

56

Figure 3.16: Dimensions of Cyber-Attacks after Gandhi et al. (2011)

3.3. ATTACK TAXONOMIES 57

Figure 3.17: Motivation Classes after Gandhi et al. (2011)

in�uenced by Krebs's classes. Krebs's reasons for hacking a Personal Computer (PC) are

extensive and can be used when analysing the reasons for attacking computers in detail.

3.3.10 Common Attack Pattern Enumeration and Classification

Common Attack Pattern Enumeration and Classi�cation (CAPEC) is publicly available

lists of common attack patterns and a classi�cation taxonomy1. An attack pattern is

de�ned as an abstraction of the mechanism employed by an attack. Each pattern de�nes

a challenge that an attacker faces and provides a description of the technique(s) used

by the attacker to overcome the problems faced in executing an attack. Recommended

methods for mitigating an actual attack are also listed. The comprehensive CAPEC

lists are community-developed and freely available2. The CAPEC lists' goal is to be

as comprehensive as possible, and thus provides too much detail and information to be

useful.

3.3.11 Taxonomies Overview

In this section, several network attack-related taxonomies are presented. Hansman and

Hunt (2003), CERT-In (2003), Simmonds et al. (2004) and Gandhi et al. (2011) developed

taxonomies that cover most aspects of network attacks. The motivations behind attacks

1http://capec.mitre.org/
2http://capec.mitre.org/data/index.html/

58

Figure 3.18: Reasons for Hacking a PC after Krebs (2012)

3.4. ONTOLOGIES USED TO DETECT COMPUTER-BASED ATTACKS 59

were probed by Rounds and Pendgraft (2009), whereas Krebs (2012) investigated all

the di�erent ways to make money from attacking a PC. The CAPEC lists provide a

comprehensive enumeration of attack patterns. The taxonomies listed in this section

contributed to the researcher's taxonomy, as presented in Chapter 4.

3.4 Ontologies used to Detect Computer-based Attacks

The use of ontologies in the study of network attacks is relatively new and not much has

been published on this. In this section, four network attack-related ontologies are pre-

sented. Most of these ontologies have not used automated reasoners to infer information,

such as those developed by the researcher in Chapter 5.

Gruber (1993) describes an ontology as: "a speci�cation of a representational vocabu-

lary for a shared domain of discourse � de�nitions of classes, relations, functions, and

other objects...". Noy and McGuinness (2001) de�ned an ontology as: "... a com-

mon vocabulary for researchers who need to share information in a domain ... includes

machine-interpretable de�nitions of basic concepts in the domain and relations among

them" Grüninger and Fox (1995) state: "An ontology is a formal description of objects,

properties of objects and relations among objects". They list the following motivations

for developing an ontology:

∙ sharing a common understanding of the structure of information

∙ facilitating re-use of domain knowledge

∙ making domain assumptions clear

∙ separating domain knowledge from operational knowledge

∙ analysing domain knowledge

The research of Simmonds et al. (2004) into network security ontology concentrates mainly

on the taxonomy and presents a very limited ontology. In sections 3.4.2 to 3.4.5, research

into the use of network attacks is presented in chronological form.

3.4.1 RBAC Policy Engineering with Patterns by Rochaeli and

Eckert (2005)

Rochaeli and Eckert (2005) proposed an ontological approach to construct the knowledge

representation framework for computers and their vulnerabilities. A framework was de-

3.4. ONTOLOGIES USED TO DETECT COMPUTER-BASED ATTACKS 60

veloped in which security administrators can search for patterns that match the scenario-

oriented risks and thus specify policies with the help of experts' knowledge. With this

framework, security administrators can interpret their detected scenario, compare with

patterns that match the scenario and assert instances of the scenario into the knowledge

representation framework.

3.4.2 An Ontology-supported Outbound Intrusion Detection Sys-

tem by Mandujano (2005)

Mandujano (2005) developed an ontology to generate and identify attack programme

signatures. Mandujano used Snort3 to match signatures as input data for their ontology.

This ontology is aimed at the packet-level intrusion detection and is therefore more suited

to a sensor within the researcher's system.

3.4.3 An Ontology-based Intrusion Alerts Correlation System by

Li and Tian (2010)

Li and Tian (2010) developed an ontology-based intrusion alerts correlation system. This

system consisted of agents and sensors, where the sensors collate security information and

agents process the information.

An automated reasoner was used to determine attack sessions and classes that could be

used to determine risk. The attack classes have to be analysed o�ine by experts. Li and

Tian's ontology cannot handle new types of attacks in real time as their knowledge base

has to be updated for new attacks.

This is a design feature. Their ontology is shown in Figure 3.19. The researcher's tax-

onomy and ontology also have Asset, Vulnerability and Attacker classes and hasAttacker

and hasVulnerability relationships. Li and Tian's Address class is presented by the author

as Actor Location.

3http://www.snort.org/

3.4. ONTOLOGIES USED TO DETECT COMPUTER-BASED ATTACKS 61

Figure 3.19: Alert Correlation Ontology (Li and Tian, 2010)

3.4.4 Ontology-based Distributed Intrusion Detection System by

Abdoli and Kahani (2009)

Abdoli and Kahani (2009) developed a system that uses IDSagents and a special Master-

Agent for intrusion detection. The MasterAgent contains the attack ontology. When an

IDSagent detects an attack, a detection report is sent to the MasterAgent, which extracts

the semantic relationships. Their system was able to reduce false negatives and false

positives. Abdoli and Kahani's ontology is presented in Figure 3.20.

3.4. ONTOLOGIES USED TO DETECT COMPUTER-BASED ATTACKS 62

Figure 3.20: Abdoli and Kahani (2009)'s Attack Ontology

This ontology only presented attacks and their sub-classes, and relationships and other

ontology properties were not developed.

3.4.5 An Ontology-based System to Identify Complex Network

Attacks by Frye et al. (2012)

Frye et al. (2012) used an ontology to determine what constitutes a network attack.

They developed an ontology with four main classes: Availability, Recon, GainAccess, and

ViewChangeData, and a separate ontology that presents complex attacks. The complex

ontology (Figure 3.21) with four main sub-classes is similar to four of the scenarios de-

veloped in Section 2.5. The relationships between the classes were only developed to a

limited extent to the levels of sub-class "intersection", "union" or "contains".

3.5. NETWORK ATTACK SENSORS 63

Figure 3.21: Complex Attack Ontology (Frye et al., 2012)

3.4.6 Ontologies Overview

The use of ontologies to describe network attacks is still very limited and very few research

papers have been published in this �eld of study. The ontologies vary signi�cantly and

thus no constant theme can be derived. For example, Frye et al. (2012) have only four

main classes without specifying their relationships.

3.5 Network Attack Sensors

Network attacks are measured by integrating information from various sensors. The

function and scope of these sensors are investigated in this section. The main sen-

sors that are used to detect computer network attacks are Intrusion Detection Sys-

tems (IDSs). Mukherjee, Heberlein, and Levitt (1994) de�ned network intrusion as:

"the problem of identifying individuals who are using a computer system without au-

thorization (i.e., `crackers') and those who have legitimate access to the system but are

abusing their privileges (i.e., the `insider threat')".

3.5. NETWORK ATTACK SENSORS 64

Mukherjee et al. (1994) also postulated:

"IDS's are based on the belief that an intruder's behavior will be noticeably di�erent

from that of a legitimate user and that many unauthorized actions are detectable."

In this section, the type of sensors available and taxonomies of IDS are presented. Only

two IDS research papers are presented in sections 3.5.3 and 3.5.4 due to the researcher's

interest in the types of taxonomy of IDS, and not the details of their design or performance.

In this subsection the characteristics and methods of sensors are presented to present a

comprehensive picture on when and how sensors are used.

IDSs can either be host based or network-based (Anderson, 1980; Lunt and Jagannathan,

1988; Lunt, 1993; Mukherjee et al., 1994; Kuwatly, Sraj, Al Masri, and Artail, 2004;

Garcia-Teodoro, Diaz-Verdejo, Macia-Fernandez, and Vazquez, 2009). Network-based In-

trusion Detection System (NIDS) monitor network tra�c, by examining network packets.

NIDS monitors the IP address, ports and the data segments of packets, whereas tradi-

tional �rewalls only monitor the Internet Protocol (IP) addresses and ports of data packets

(Kachirski and Guha, 2003). Host-based Intrusion Detection Systems (HIDSs) examine

data that is held on individual systems, which are used to protect a single system or a sin-

gle data source. Crosbie and Spa�ord (1995) and Balasubramaniyan, Garcia-Fernandez,

Isaco�, Spa�ord, and Zamboni (1998) stated that for an IDS to be e�ective, it must have

the following characteristics:

∙ It must run continually with minimal human supervision.

∙ It must be fault tolerant in the sense that it must be able to recover from system

crashes, either accidental or caused by malicious activity.

∙ It must resist subversion. The IDS must be able to monitor itself and detect if it

has been modi�ed by an attacker.

∙ It must impose a minimal overhead on the system where it is running, so as to not

interfere with its normal operation.

∙ It must be able to be con�gured according to the security policies of the system

that is being monitored.

∙ It must be able to adapt to changes in system and user behaviour over time.

The Hybrid IDS system has been developed to use network- and host-based characteristics

(Day, Flores, and Lallie, 2012; Aydin, Zaim, and Ceylan, 2009). Abraham and Thomas

(2005) developed a Distributed IDS system that consists of multiple IDSs over a network,

which all communicate with each other, or with a central server.

Mandujano (2005) determined that three main classes of intrusion detection agents exist:

3.5. NETWORK ATTACK SENSORS 65

∙ Sensors: Sensors are responsible for collecting data, and are divided into Tra�c

Sensors or Process Sensors, depending on the source of data.

∙ Correlators: Correlators receive data from sensors and examine the data for events.

∙ Reactors: Reactors are triggered after speci�c events, and are divided into Guards

(that execute locally) and Tracers (that execute externally).

3.5.1 Anomaly and Misuse Detection

Stiawan, Idris, Ihsan, Hussain, and Abdullah (2011); Peddabachigari, Abraham, Grosan,

and Thomas (2007); Wu and Banzhaf (2010) describe two main intrusion detection meth-

ods:

∙ anomaly detection; and

∙ misuse detection.

Misuse detection uses prede�ned signatures to search for matches for known intrusion

behaviour or known malware. Anomaly detection looks for statistical di�erences between

normal system behaviour and user behaviour. Behaviour that di�ers signi�cantly from

the statistical norm is classi�ed as malware or an intrusion.

Aydin et al. (2009) discussed the advantages and disadvantages of the two types of detec-

tion systems. Anomaly detection can detect attacks even if previous information about

the attack method is not available, but it has a high false positive rate. Anomaly detection

systems also require a large training data set. Misuse detection systems provide a simple

way of monitoring computer systems without the requirement of training data, but only

previously characterised attacks can be identi�ed.

Idika and Mathur (2007) made a survey of malware detection methods. They listed three

main methods: anomaly, speci�cation and signature methods. Each of these methods

could then be split into a dynamic, static or hybrid approach to malware detection.

3.5.2 Threat Detection

Lunt and Jagannathan (1988) and Lunt (1993) developed an Intrusion Detection Expert

System (IDES) that learns the behaviour patterns of users. Thus threats were detected

by users or the computer system alternated suddenly from its usual behaviour. Two

categorical measures were used:

3.5. NETWORK ATTACK SENSORS 66

∙ discrete measure: a function that uses �nite measure of a user's behaviour, such as

user time and location of login; and

∙ continuous measure, a function that changes during usage, such as average Central

Processing Unit (CPU) use, and Input and Output (IO) activity.

Stiawan et al. (2011) investigated methods whereby threats can be identi�ed. The follow-

ing methods have been incorporated by other researchers:

∙ The use of Domain Name System (DNS) Blacklists to stop man-in-the-middle at-

tacks have been investigated by Ramachandran, Dagon, and Feamster (2006).

∙ Internet Assigned Numbers Authority (IANA) port numbers can be used to identify

botnet activity (Karasaridis, Rexroad, and Hoe�in, 2007).

∙ URL and IP Block Blacklists are used to prevent access to malicious Internet sites

(Dietrich and Rossow, 2009).

∙ Common Vulnerability and Exposure (CVE) lists are used to identify network vul-

nerabilities (FIRST-Forum, 2007). Attack methodologies and the source of attackers

can be determined from honeypot data (Provos, 2004).

∙ Intercepting and analysing tra�c �ows can be used to identify network intrusions

(Sperotto, Scha�rath, Sadre, Morariu, Pras, and Stiller, 2010).

∙ Data stored in logs can indicate the presence of an attack and help the defender in

managing the attack (Kent and Souppaya, 2006).

∙ Spam rules prevent unwanted email from spreading by stopping the email before it

reaches its target (Madigan, 2005).

∙ Computer viruses are a signi�cant risk to computer systems that require e�ective

and timely response (Subramanya and Lakshminarasimhan, 2001).

∙ Computer security policy should be an integral part of securing any computer net-

work (Sterne, 1991).

∙ IDS alerts indicate that an attack may be in progress and that a computer is vul-

nerable (Gula, 2011).

∙ Web Crawler data can be used to identify malware hosted on Internet sites (Moshchuk,

Bragin, Gribble, and Levy, 2006).

∙ Regular Expression pattern matching can be used to detect attacks in raw through-

put data (Vasiliadis, Polychronakis, Antonatos, Markatos, and Ioannidis, 2009).

3.5. NETWORK ATTACK SENSORS 67

3.5.3 Taxonomy for Intrusion Detection Systems by Debar et al.

(2000)

Debar et al. (2000) constructed a taxonomy for intrusion detection systems. They build

from the e�ciency measurement de�ned by Porras and Valdes (1998). The measures

are: Accuracy, Performance, Completeness, Fault Tolerance and Timeliness. Their �ve

main concepts are: Detection Method, Behaviour on Detection, Audit Source Location,

Detection Paradigm and Usage Frequency. These classes and the taxonomy sub-classes

are:

∙ Accuracy: Reducing the occurrence of false positives. This refers to the classi�cation

of normal or legitimate tra�c as malicious.

∙ Performance: The tempo or rate at which tra�c can be analysed for malicious

tra�c.

∙ Completeness: The chance of detecting all attacks. This measure is di�cult to

measure and impossible to achieve. This measure can only be measured when an

attack cannot be detected, which implies that the attack has been detected through

some other method.

∙ Fault Tolerance: The intrusion detection system itself must be able to handle and

defend the system against attacks. The detection systems itself must not add vul-

nerabilities to the system.

∙ Timeliness: The analysis and reporting of the intrusion detection system must occur

timeously, to ensure that someone can act on the information it presents. If the

detection or analysis of an attack is too slow, the relevance of identifying it may be

lost.

Debar et al.'s intrusion detection concepts are shown in Figure 3.22.

3.5.4 Intrusion Detection Systems: A Survey and Taxonomy by

Axelsson (2000)

Axelsson (2000) surveyed the �eld of intrusion detection and presented a taxonomy that

described IDS systems with respect to their System Characteristics and Detection Princi-

ples (Figure 3.23). Anomaly detection principles depend on abnormalities in tra�c rather

than detecting known intrusions.

3.5. NETWORK ATTACK SENSORS 68

Figure 3.22: Intrusion Detection Concepts (Debar et al., 2000)

Signature detection principles determine intrusions by comparing behaviour with a model

of the intrusive process. These principles operate irrespective of user behaviour, by only

looking for intrusion-like patterns. Signature Inspired detection principles use anomaly

and signature principles to determine intrusive behaviour. Programmed methods require

direct input (in the form of an algorithm or list) to detect what is a security violation. Self-

Learning automatically learns suspicious behaviour after being trained through examples

of normal and intrusive behaviour. Time of detection refers to real-time or postponed

detection characteristics. Granularity of Data-Processing di�erentiates between continu-

ously processing data or handling data in batches. The main Source of Audit data sources

are either network data (for example multicast Ethernet streams) or host-based data (such

as security, kernel, application, �rewall, logs, etc.).

The Response to Detected Intrusions are passive or active. Passive responses notify the

authority about the intrusion. Active responses can either try to thwart the attack by

controlling the attacked system or neutralise the threat directly. The last option is con-

3.5. NETWORK ATTACK SENSORS 69

Figure 3.23: IDS System Characteristics and Detection Principles (Axelsson, 2000)

sidered a legal grey area and is fraught with legal dangers (Caltagirone and Frincke, 2005;

Mans�eld-Devine, 2009). Locus of data processing and Locus of data collection refer to

the manner in which data is processed, namely: distributed or centralised.

The Security characteristic refers to the ability of the IDS system to withstand an attack

on itself. The last characteristic found by Axelsson is Degree of inter-operability, whereby

the IDS can co-operate in conjunction with other IDSs.

3.5.5 Network Telescope

A network telescope, also known as a darknet, Sinkhole, Internet Motion Sensor or Black

Hole (Moore, Shannon, Voelker, and Savage, 2004; Harrop and Armitage, 2005; Bailey,

Cooke, Jahanian, Myrick, and Sinha, 2006), is a network system that observes di�erent

3.6. SUMMARY 70

events taking place on a network. Network telescopes have been used to monitor the

system for malicious Internet tra�c (Irwin, 2011). The telescope observes tra�c targeting

the dark (unused) address space of the network. Since all tra�c to these addresses is

suspicious, information about possible network attacks can be obtained. The network

telescope is an ideal sensor to detect threats because:

∙ only malicious tra�c is captured; and

∙ the following types of malicious tra�c can be detected:

– random scanning malware (Moore et al., 2004),

– DDoS backscatter, (a DDoS attack using multiple spoofed addresses) (Moore,

Shannon, Brown, Voelker, and Savage, 2006),

– targeted scans.

3.5.6 Network Attack Sensors Overview

The best-known sensor to detect network attacks is an IDS. An IDS is typically either a

host, a network or a combination of the two. These IDSs either detect anomalies or direct

misuse. Threats can also be directly detected by learning users' patterns and detecting

alternative behaviour, and indirectly by suspicious data though network telescopes.

3.6 Summary

This chapter introduced the academic base of the network attack model of Chapter 4,

Section 4.4, the taxonomy of Chapter Section 4.2 and ontology of Chapter 5.3. Most of the

network attack models presented in Section 3.2 have only a few basic steps. The network

attack model developed in Section 3.2 uses very similar steps. Taxonomies that cover most

of the aspects of network attacks are presented in Section 3.3. Only a limited number of

ontologies are used to describe network attacks, and those presented in this chapter di�er

from each other. A comprehensive network attack ontology is presented in Chapter 5.

IDS and network telescope-type systems are the main sensors that are available to detect

network-based attacks. These sensors are either host or network based, or a combination

of the two. In the next chapters, the attack model, taxonomy and ontology are developed

in detail, based on the information provided in the presented literature study.

Part II

Theoretical

71

CHAPTER

FOUR

NETWORK ATTACK TAXONOMY

"You don’t know the power of the Dark Side."

Darth Vader – Star Wars

4.1 Introduction

This chapter presents a taxonomy that describes network attacks and contains more than

15 main classes and more than 100 sub-classes. The researcher speci�cally developed it

to address computer network-based attacks and it focuses on the classes that are required

in order to specify such attacks. Several taxonomies have been developed by other re-

searchers, as reviewed in Section 3.3. In this section, the taxonomies are presented in the

form of diagrams, where each class and sub-class are represented. These taxonomies are

either too wide or too focused for this research. The taxonomy developed by Hansman

and Hunt (2003) provided the primary foundation for the author's taxonomy. According

to Hansman and Hunt (2003), a taxonomy has the following basic requirements:

∙ Acceptability and usefulness: If the community accepts it, the taxonomy will be

useful. This requirement can only be realised at a later time and is di�cult and

impractical to verify.

72

4.2. TAXONOMY OF NETWORK ATTACKS 73

∙ Comprehensibility and unambiguousness: The taxonomy should be understood by

novices as well as experts in the related �eld. No doubt should exist as to what

a class or sub-class refers to. This taxonomy tries to enhance comprehensibility

speci�cally by di�erentiating between attacker and defender. For example, the At-

tack Mechanism is not shortened to Mechanism to clearly di�erentiate between the

mechanism used to attack and the mechanism under attack.

∙ Completeness: This requirement cannot be proven, or ever achieved. New tech-

nologies or too many subtle di�erences make it impossible to achieve completeness.

The Attack Mechanism class has over 30 sub-classes, and these sub-classes can be

further subdivided if required. For example, the Virus sub-class could be divided

into Boot Sector Virus, Polymorphic Virus and Macro Virus.

∙ Determinism and repeatability: The class or sub-class that is used should be simple

to determine. By clearly de�ning what each class and sub-class represents, individu-

als should �nd it simple to place. In most cases this could be easily achieved, except

for classes that specify unclear concepts. For example, it is di�cult to di�erentiate

between the Scope Size class and Medium Network and Large Network.

∙ Existing terminology should be used to avoid confusion and to build on previous

knowledge. Security terminology of previous taxonomies was used, where applicable.

The taxonomy developed in this chapter describes the attack from the point of view

of the attacker (aggressor) and defender (target). Thus both sides of a network attack

are described. The taxonomy presented in Section 4.2 was originally developed by the

author and presented by van Heerden, Leenen, Irwin, and Burke (2012a), although some

of the classes have since been updated. In Section 4.3, ten network attack scenarios are

explored. These scenarios were originally developed by van Heerden, Burke, and Irwin

(2012b). In Section 4.4, a temporal attack model is presented. Parts of this model were

�rst presented by Grant, Burke, and van Heerden (2012). Section 4.5 concludes this

chapter with a summary of the taxonomy.

4.2 Taxonomy of Network Attacks

The main classes in the author's Network Attack Taxonomy are shown in Figure 4.1.

The classes are: Actor, Actor Location, Aggressor, Asset, Attack Goal, Attack Mechanism,

Attack Scenario, Automation Level, Effects, Motivation, Phase, Sabotage, Scope, Scope

Size, Target and Vulnerability. Each class has sub-classes that are described in the sections

below.

4.2. TAXONOMY OF NETWORK ATTACKS 74

Figure 4.1: Network Attack Taxonomy

The main goal of this taxonomy is to present all the factors that de�ne or di�erentiate a

network-related attack. The secondary goal is to build an updated taxonomy that can be

understood and accepted by researchers in the �eld of network attacks. The classes are

presented alphabetically, except for the Attack Scenario class, which is presented at the

end.

4.2.1 Actor Class

The Actor Class describes the entity that is performing the attack by coding malware,

executing malicious scripts or abusing the system. The Actor class is presented in Figure

4.2. This class has four main classes and seven sub-classes. This class was primarily

Figure 4.2: The Actor Class

derived from the work of Simmonds et al. (2004) and Rounds and Pendgraft (2009). The

taxonomy is presented in Section 3.3.5 and Rounds and Pendgraft's taxonomy in Section

3.3.7. From Simmonds et al., more detail was added to Group Actor to include Organised

Criminal Group, Protest Group and Cyber Army.

4.2. TAXONOMY OF NETWORK ATTACKS 75

The sub-class Organised Criminal Group refers to organisations that launch network and

computer attacks for �nancial and other gain. For example, in Russia criminal organi-

sations have recruited hackers to launch attacks on their behalf (Savona and Mignone,

2004). The Organised Criminal Group sub-class is not placed in the Aggressor class be-

cause the Aggressor class refers to criminal groups that perform their own attacks and

not criminals who hire hackers. Choo (2008) stated that organised crime groups use the

Internet for criminal activity.

Protest groups refers to groups that attack networks based on an ethical agenda. This also

includes groups whose goals are driven by speci�c issues, and groups that use hacking to

e�ect change or spread propaganda. Taylor (2001) referred to this practice as Hacktivism.

The hacking group Anonymous is an example of a protest group that launched network

attacks not as a criminal group, but rather as a protest group (Schwartz, 2012). The Cyber

Army sub-class refers to military personnel who perform computer-based attacks as part

of their normal duties. The concept of cyber-warriors and cyber-war had already became

mainstream in the mid-1990s with Time magazine (Figure 4.3) referring to cyber-war and

cyber-soldiers (Washington, 1995).

Figure 4.3: Time Magazine August 21, 1995 Cover Page

The Insider sub-class refers to a person who is a member of a target organisation or

is in some trusted relationship with the target. Magklaras and Furnell (2001) de�ned

three main insider groups: System masters, Advanced users and Application users. The

4.2. TAXONOMY OF NETWORK ATTACKS 76

Advanced and Application users are classi�ed as Normal users and System masters as

Administrators. The distinction between Advanced and Application users was considered

too vague for this taxonomy.

For this research it was decided to group Hacker, Cracker and Malevolent user in the

researcher's Hacker sub-class, where Rounds and Pendgraft (2009) used a �at structure.

Rounds and Pendgraft hacker agents are listed in Section 3.3.7. The hacker agents of

Rounds and Pendgraft (2009) were used to verify the possible classes, although some of

their classes were used by the Aggressor class. The Hacker sub-class was subdivided into

Script Kiddie and Skilled Hacker. Script Kiddie refers to hackers that use freely available

tools without any in-depth knowledge of their inner workings (Murry, 2004). (Spitzner,

2000, p. 1) de�ned a Script Kiddie as follows:

"The script kiddie is someone looking for the easy kill. They are not out for speci�c

information or targeting a speci�c company. Their goal is to gain root the easiest way

possible. They do this by focusing on a small number of exploits, and then searching

the entire Internet for that exploit. Sooner or later they �nd someone vulnerable."

4.2.2 Actor Location Class

This class refers to the country or state from where an attack is launched, and derives

from the "location of attack" class developed by Underco�er, Pinkston, Joshi, and Finin

(2004). These researchers categorised the location of an attack as Remote, Local or

Remote/Local. The only class not listed by Underco�er et al. is one where the location

is not known. The Actor Location sub-classes are shown in Figure 4.4.

Figure 4.4: The Actor Location Class

The actor location can thus be outside the target's national borders, i.e. Foreign. Foreign

refers to an Actor that is external to its own national borders. Lewis (2002) suggested that

foreign militaries, criminals or terrorists can initiate cyber-attacks and thus constitute a

cyber-threat. The second sub-class refers to an actor within the target's national borders.

4.2. TAXONOMY OF NETWORK ATTACKS 77

Sometimes an actor location cannot be determined or spans di�erent countries. In such

cases, the Indeterminate sub-class is used. Although the location of an attacking computer

can be determined, it does not necessarily correspond with the actor's physical location

as the attack can be executed via the Internet (Xin, Dickerson, and Dickerson, 2003).

4.2.3 Aggressor Class

This class refers to the perpetrator of an attack, and di�ers from the Actor class in that

it describes an association with an Actor, rather than a type of Actor. The sub-classes of

the Aggressor class are shown in Figure 4.5.

Figure 4.5: The Aggressor Class

State refers to a nation or state that sanctions an attack. Gandhi et al. de�ned a similar

sub-class Nation States. Some researchers suggested that France, Russia, Japan, China,

Germany, Israel and South Korea are actively engaged in economic espionage by means

of the Internet and computer network attacks (Joyal, 1996; Kshetri, 2005; Brenner and

Crescenzi, 2006; Burstein, 2009). Commercial Aggressor refers to a corporate entity, for

example the News of the World British tabloid that authorised other entities to hack

celebrities' cellphones (Myler and Wapping, 2011). Commercial Aggressor has the sub-

classes Organised Group Aggressor and Flash Mob. Organised Group Aggressor refers to

a perpetrator with commercial associations, for example People for the Ethical Treatment

of Animals (PETA)1. Flash Mob refers to attackers that are not o�cially organised, and

participants do not necessarily know each other. The SCO computer network was attacked

in December 2003. Although no evidence exists, it is suspected that the attack was

instigated following a lawsuit against IBM concerning IBM's use of Linux, and that open-

source activists were the attackers (Argyraki and Cheriton, 2005). When the Aggressor

1http://www.peta.org/

4.2. TAXONOMY OF NETWORK ATTACKS 78

and Actor are the same entity, the Self Instigator sub-class is used. This sub-class refers

to lone hackers who are not motivated by an external party. The Unknown Aggressor sub-

class is used when the identity of the perpetrator is unknown. For example, up to 2010,

the instigators and perpetrators of the Con�cker Worm attack have not been identi�ed

(Con�cker Working Group, 2011).

4.2.4 Asset Class

This class refers to the device class that is under attack. This class distinguishes between

di�erent assets that can be attacked. Examples of assets are information stored as data,

the system that uses computers, or the network infrastructure itself. The Asset class is

shown in Figure 4.6.

Figure 4.6: The Asset Class

Typically, the goal of Denial-of-Service attacks is to deny users access to their own com-

puter resources or as described by Specht and Lee (2004):

"DoS attack is an attack with the purpose of preventing legitimate users from using a

speci�ed network resource".

When an attack targets communication infrastructure, the a�ected asset is classi�ed as

Network. When attacks a�ect information, Data is the asset under attack. This can

include changing data, stealing data and removing data. The Access sub-class refers to

unauthorised access to the situation where computers or computer networks have been

obtained.

Some attacks make use of computer networks. Two signi�cant examples are the Logic

Bomb (Section 2.4.2) and the Stuxnet Worm (Section 2.4.29), which a�ected physical

assets outside the computer network. With the Logic Bomb, a pipeline was a�ected, and

with Stuxnet centrifuges were a�ected. These attacks are classi�ed so as to a�ect the

System asset.

4.2. TAXONOMY OF NETWORK ATTACKS 79

4.2.5 Attack Goal Class

This class refers to the purpose of the attack, and is subdivided as shown in Figure 4.7:

Steal Data, Change Data, Disrupt, Gain Control, Gain Resources and Spread.

Figure 4.7: The Attack Goal Class

Steal Data, Change Data, Disrupt correspond with the traditional CIA+ information secu-

rity principles and Simmonds et al. (2004) outcome classes. Examples of the Stealing Data

sub-class are Titan Rain (Section 2.4.14) and Operation Aurora 2009 (Section 2.4.28). A

hacker changed the grades of more than 60 current and former students from Santa Clara

University (Zetter, 2012b). This attack falls under the Change Data sub-class as well as

the attack on HP Gary (Section 2.4.32). Hansman and Hunt (2003) referred to this as

Corruption of Information.

The Gain Control goal represents instances where the network under attack is used only

as a staging post for attacks on a di�erent network. When information is disclosed without

permission (Hansman and Hunt, 2003), the Steal Data sub-class is used. The Con�cker

Worm's goal is to build a platform from where other attacks can be launched (Con�cker

Working Group, 2011), and thus can be classi�ed as Spread. The Gain Resources goal

represents the goal of obtaining computer resources such as processing power, bandwidth

and disk memory. The Gain Control goal refers to gaining administrator rights to a

system.

4.2.6 Attack Mechanism Class

This class represents the attack methodology, and is linked to vulnerability maps devel-

oped by Simmonds et al. (2004). Attack mechanisms have also been listed by Hansman

and Hunt (2003). The sub-classes are presented in Figure 4.8, where Attack Mechanism

80

(a)

(b) (c)

(d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.8: The Attack Mechanism (AM) Class

4.2. TAXONOMY OF NETWORK ATTACKS 81

is shortened to AM. The �rst sub-classes are presented in Figure 4.8a: Denial of Service

AM. System Abuse, Exploit, Information Gathering, and Malware.

The System Abuse sub-class refers to the abuse of computer resources (as shown in Figure

4.8b). Three main resources have been identi�ed: Processing Power System Abuse, Band-

width System Abuse and Storage System Abuse. Although Krebs (2012) identi�ed over 30

abuses of computer systems, these can be summarised as abuse of processing power, disk

space or bandwidth when the physical components of a system are considered.

Malware attacks can take the form of Trojans, Viruses or Worms, shown in Figure 4.8c.

Vasudevan and Yerraballi (2006) de�ned malware as: "a generic term that encompasses

viruses, trojans, spywares and other intrusive code." There is currently no clear scienti�c

distinction between the di�erent types of malware-based attack methodologies. Yampol-

skiy and Govindaraju (2007) listed the most acknowledged de�nitions:

∙ Virus: a self-replicating malicious programme which requires a careless user or ex-

ternal software to replicate itself

∙ Worm: a self-replicating programme that automatically spreads through vulnera-

bilities

∙ Trojan Horse: a malware programme posing as a legitimate programme

The Information Gathering sub-class refers to the mechanisms used to acquire informa-

tion about a possible target, for example public information on websites. Information

Gathering sub-classes are shown in Figure 4.8d. Search engines such as Google can be

used to �nd Open Information, even though the target does not realise that the infor-

mation is available. This technique is also referred to as Google Hacking (Long, 2007).

Information required for an attack can also be totally in the open. Corporate websites and

phone directories sometimes publicly list email addresses and telephone numbers that can

be used for attacks. One of the most popular methods to scan computers is to identity

which ports are open. Lee, Roedel, and Silenok (2003) found that port scans represented a

measurable portion of Internet tra�c. Some information that an attacker uses is publicly

available. Scanning (also know as vulnerability scanning) refers to the process of probing

computers with the goal of identifying which services are running, which operating system

they are using or which applications are actively running with the goal of �nding vulnera-

bilities. Social Engineering attack mechanisms refer to processes used to gain access to a

target by misleading people into granting access or giving away con�dential information

by means of social interactions (Goodchild, 2010). Social engineering is de�ned by Rouse

(2006, p. 1) as follows:

4.2. TAXONOMY OF NETWORK ATTACKS 82

"Social engineering is a term that describes a non-technical kind of intrusion that relies

heavily on human interaction and often involves tricking other people to break normal

security procedures."

Spear Phishing refers to targeted social engineering-type email attacks (Jagatic, Johnson,

Jakobsson, and Menczer, 2007). Boerio and McCracken (2012) di�erentiated between

spear phishing and a general Phishing in that regular phishing targets a large amount

of people, with a small chance of success per person, and spear phishing targets a small

number of people with a large chance of success. Brody, Mulig, and Kimball (2007) state

that spear phishing is harder to detect since spear messages appear to be legitimately sent

from people known to have an established relationship with the target. Kevin Mitnick

often used social engineering as his favourite method of attack, and even wrote two books

on the subject (Mitnick et al., 2002; Mitnick and Simon, 2005).

Denial of Service Attack Mechanisms refers to attacks that use valid communication

methodologies in malicious methods or in great numbers to deny the correct users access

(as shown in Figure 4.8e). These attacks can be on one of the following vectors (Lau,

Rubin, Smith, and Trajkovic, 2000; Mirkovic and Reiher, 2004):

∙ Host Denial of Service Attack Mechanisms, an attack on a single hosts

∙ Network Denial of Service Attack Mechanisms, an attack that consumes all available

bandwidth

∙ Distributed Denial of Service Attack Mechanisms, an attack that uses or targets

multiple systems in the attacks

The Exploit attack mechanisms (Figure 4.8f) are used to present the methodologies that

are used to attack vulnerabilities directly. The main sub-classes for this sub-class are:

∙ Network-based Exploit (Figure 4.8g);

∙ Access Exploit (Figure 4.8h);

∙ Web Application Exploit (Figure 4.8i); and,

∙ Password Exploit (Figure 4.8j).

Network-based Exploit refers to attacks that exploit vulnerabilities in the network. These

attacks use and abuse data that �ows on the network, using the following mechanisms:

∙ Spoofing. With a spoo�ng attack misleading context is created with the goal of hoax-

ing a victim into trusting malicious intended information (Felten, Balfanz, Dean,

and Wallach, 1997). This technique is typically used to change IP source packets

(Bremler-Barr and Levy, 2005).

4.2. TAXONOMY OF NETWORK ATTACKS 83

∙ Open Access. This refers to attacks that defeated systems because no security

existed, or that assumed that security by obscurity would be enough (Mercuri and

Neumann, 2003; Hoepman and Jacobs, 2007).

∙ Session Hijack. With this attack mechanism the attacker gains access to a user's

session by obtaining his session identi�cation information (Kol²ek, 2002).

Access Exploit attack mechanisms abuse access mechanisms to provide access on a false

premise. This can be achieved by:

∙ Buffer Overflow. The Bu�er Over�ow method can be used when systems do not

perform checks on the input limits. This oversight can be abused by overriding secu-

rity measures via specialised crafted input. The Morris Worm (Section 2.4.5) used

a bu�er over�ow vulnerability to propagate (Cowan, Pu, Maier, Walpole, Bakke,

Beattie, Grier, Wagle, Zhang, and Hinton, 1998).

∙ Physical Access. This refers to manual methods of gaining access, for example

physically removing the hard drive or breaking the access door to enter a secure

server room.

∙ Escalation. This is also known as privilege escalation, where administration rights

are obtained by attacking �aws in the operating system or application design (Govin-

davajhala and Appel, 2006).

Web Application Exploit attack mechanisms refer to methods used speci�cally on websites

and web servers. Web servers are vulnerable to uniquely related attacks because of their

interactive nature, and they are designed to interact and exchange data which enables

them to use the following attack mechanisms:

∙ SQL injection. This uses common escape characters to execute user-de�ned database

queries, thus bypassing authentications and other security measures (Mookhey and

Burghate, 2004).

∙ Cross-site scripting (XSS). This is a methodology that enables attackers to inject

client-side script into web pages. These pages can then be viewed by unsuspecting

users (Mookhey and Burghate, 2004).

∙ Web Crawl. This is a process used by search engines or crawling software to collect

information from web pages (Castillo, 2005).

Password Exploit attack mechanisms refer to methods used to obtain or bypass password

protection, such as:

∙ Brute force. These are attacks that attempt to bypass security by trying each pos-

sible key sequentially (Cowan, Wagle, Pu, Beattie, and Walpole, 2000; Ste�an and

4.2. TAXONOMY OF NETWORK ATTACKS 84

Schumacher, 2002). This type of attack mechanism systematically uses all possible

character key combinations to uncover username and password combinations. This

process does not require skill and is thus referred to as brute force.

∙ Sniffing. This entails eavesdropping on communications to capture secrets such as

passwords (Oppliger, 1998).

∙ Guessing. This entails overcoming password protection by guessing popular pass-

words (Gong, 1995).

4.2.7 Automation Level Class

This class describes the degree to which network attacks are automated. The sub-classes

for the Automation Level class are shown in Figure 4.9.

Figure 4.9: The Automation Level Class

The sub-classes were derived from Mirkovic and Reiher (2004)'s taxonomy. Manual refers

to an attacker selecting the attack target and methodology by hand. Automatic refers

to a system requiring minimum input from the attacker, even with regards to target

selection. Mudge (2011) lists methods and tools that can be used to automate attacks.

Many attacks are Semi-automatic, where a mixture of automation and manual methods

are used, and some user interaction is required, but tools are used to execute attacks.

4.2.8 Effect Class

This class refers to the impact of an attack. Mirkovic and Reiher (2004) discussed the

impact of di�erent attacks. The sub-classes for the E�ects class are shown in Figure 4.10.

4.2. TAXONOMY OF NETWORK ATTACKS 85

Figure 4.10: The E�ect Class

Null refers to no e�ect on the target, Minor to recoverable damage and Major to non-

recoverable damage. Catastrophic refers to damage of such a nature that the target ceases

to operate as an entity, for example declaration of bankruptcy.

4.2.9 Motivation Class

This class refers to an attacker's motivation for an attack. Rounds and Pendgraft (2009)

listed three kinds of possible motivations: political, socio-cultural and economical. These

classes were also used by Gandhi et al. (2011). The sub-classes are shown in Figure 4.11:

Figure 4.11: The Motivation Class

Financial refers to hacking for �nancial or other gain, such as stealing money or manip-

ulating the stock market. The attack on SA Postbank (Section 2.4.33) was motivated by

possible �nancial gain. The Financial motivation can be criminal in nature, but Crimi-

nal motivation refers in this case to criminal organisations that use network hacking to

supplement their operations. For example, attacking law enforcement agencies' networks

to disrupt investigations is motivated by criminal intent. The Financial and Criminal

mutually are not multilaterally exclusive. Fun refers to hackers looking for a challenging

4.2. TAXONOMY OF NETWORK ATTACKS 86

hack with no other evil intentions. Many of the most famous worms and viruses were not

developed with any harm intended, but got out of the creators' control. Ethical motiva-

tion refers to motivation that has an ethical aspect. This ethical aspect can be national

interest by spies, political reasoning or vigilantes.

4.2.10 Phase Class

The Phase class was derived from the temporal attack model in Section 4.4. Figure 4.12

presents the phase classes. Within the taxonomy, their temporal relationships are not

presented, but only their de�nitions.

Figure 4.12: The Phase Class

Target Identification refers to the action of an attacker choosing a target. The target

identi�cation phase ends when a speci�c device or entity (an individual, company or state

institution) has been identi�ed.

Reconnaissance refers to the action of an attacker probing a target for a weakness. Probing

consists of scanning, Google queries and other network-related activities. No computer or

network system is changed or adversely a�ected. The goal is to identify avenues of attack

whilst leaving network operations una�ected.

Attack refers to the action of compromising the target according to the CIA principles

(con�dentiality, integrity or availability), and has three sub-phases. The Ramp-Up sub-

phase refers to the action of an attacker preparing to achieve a goal. The target may be

a�ected, but not necessarily adversely. An example of the Ramp-Up phase is installation

of a sni�er by an attacker on an unsuspecting user to harvest clear text passwords for

later use so as to steal data. The Damage sub-phase refers to the action of the attacker

4.2. TAXONOMY OF NETWORK ATTACKS 87

in�icting damage on the target. Damage may take the form of breached con�dential-

ity, compromised integrity or disrupted service availability. Damage can be in�icted via

data, physical means (computer-controlling hardware) or to the target's reputation. The

Residue sub-phase refers to damage or artefacts of the attack that occur after the attack

goal has been achieved, and occurs because the attacker loses control of some systems.

For example, after the launch of a DDoS attack, zombie computers may still connect to

the target for some days following the attack.

Post-Attack refers to actions undertaken by an attacker after the attack has occurred, and

takes the form of inspections to verify if backdoors are still available, or scans to verify

if security holes have been patched. The goal is not to in�ict damage, but to verify the

target's status.

4.2.11 Sabotage Class

This class refers to the type of loss the target experiences during and after the attack. The

Sabotage class is inspired by Gandhi et al. (2011) Attack Consequences class. Sabotage

di�ers from the Attack Goal, by referring to the damage of the target, not the attackers

goal (even though it usually is the same). The sub-classes are shown in Figure 4.13.

Figure 4.13: The Sabotage Class

Physical Sabotage refers to physical damage of a device; such as that caused to the Siberian

pipeline by the original Logic Bomb. Financial Loss sabotage refers to monetary loss.

Virtual sabotage occurs when computer resources are lost (such as processing, bandwidth

or memory). Reputational Loss is not a measurable tangible loss, but may result in other

related problems for a company later on. Operational Loss occurs when the system cannot

perform its required function. Secret Loss refers to when secrets have been compromised.

4.2. TAXONOMY OF NETWORK ATTACKS 88

(a) The Scope Class

(b) The Scope Size Class

Figure 4.14: Scope and Scope Size Classes

4.2.12 Scope and Scope Size Classes

This class refers to the type of entity that is targeted. The Scope class di�ers from the

Target class in that it views the entity holistically, rather than looking at speci�c devices,

and it is based on the Gandhi et al. (2011) Attack Victim class. The sub-classes for

the Scope class are shown in Figure 4.14a. The Corporate Network sub-class refers to

networks controlled by private companies. The Government Network sub-class refers to

networks controlled by the government. Individual Scope is used when the target is a

single person or computer. The Military Network sub-class refers to networks under the

control of a military institution. Critical Information Infrastructure includes networks

that are essential to a nation's economy by providing vital services.

The Scope Size class refers to the size of entity that is targeted. The sub-classes for

this class are shown in Figure 4.14b. If the attacks a�ect a large portion of the Internet

or multiple countries, the scope size is referred to as Global Network. Large Network

represents large cooperates or signi�cant government networks such as state departments.

There are no hard de�nitions that separate small, medium and large networks and thus

the separation is a subjective judgement. Single size is used to present attacks on a single

person or single computer.

4.2. TAXONOMY OF NETWORK ATTACKS 89

4.2.13 Target Class

This class refers to physical devices that are targeted by an attack, whereas the Hansman

and Hunt (2003) taxonomy included the software operating systems in its taxonomy.

Hansman and Hunt's level of detail is considered too �ne for the researcher's taxonomy.

The sub-classes are shown in Figure 4.15.

Figure 4.15: The Target Class

The Personal Computer sub-class refers to desktop PCs, laptops, tablets and similar de-

vices with a single user. Internet-based attacks on smartphones also falls within this class.

Network Infrastructure Device refers to devices such as routers and switches that only en-

able data �ow, but can still be attacked. Industrial Equipment refers to computerised

automation equipment used in industrial plants. This equipment is also referred to as

Supervisory Control and Data Acquisition (SCADA) systems. A PC has a lot of useful

information or other malicious uses that can be used by an attacker. Krebs (2009, 2012)

compiled a list of all the methods in which the information on a compromised PC can

be used for monetary gain (Section 3.3.9). Server subclass refers to computing devices

that provide services to clients. These clients either run on the same computer or other

computers via a network. Server has the following subclasses: Web Server, File Server,

Email Server and Application Server. Any server that falls outside of an Email Server, a

File Server or a Web Server can be classi�ed as an Application Server.

4.2.14 Vulnerability Class

This class refers to the weaknesses exploited by the attacker. Simmonds et al. (2004)

constructed a Vulnerability map, as shown in Section 3.3.5. Underco�er et al. (2004)

4.2. TAXONOMY OF NETWORK ATTACKS 90

listed the following vulnerabilities: input validation errors, bu�er over�ows, boundary

condition errors and other malformed input. The vulnerability map of Simmonds et al.

di�erentiates according to short and long terms. The researcher's Vulnerability does not

have a temporal aspect, and no distinction should therefore be made between short-

and long-term vulnerabilities. The �rst level of sub-classes for this class is the same as

developed by Hansman and Hunt (2003). The sub-classes for the Vulnerability class are

shown in Figure 4.16.

Figure 4.16: The Vulnerability Class

Configuration vulnerabilities describe instances where vulnerabilities are exposed by in-

correct con�guration of a device or software. Two types of incorrect con�guration are

listed, namely Access Rights and Default Setup. Access Rights refers to an instance where

incorrect access rights have been allocated to normal users. For example, Citigroup was

hacked by thieves that penetrated the bank's defences by �rst logging on to the site

reserved for its credit card customers (Schartz and Dash, 2011). Default set-up refers

to the use of default usernames and passwords to overcome the security of a system.

This vulnerability is often caused by inexperienced or lazy users. Lancor and Workman

(2007) described how Google can be used to hack systems by using default usernames and

passwords.

Design vulnerabilities render a system insecure because of design errors. Design errors

can be either in the protocol or in the access control. The "Ping-of-death" is an example

of a protocol vulnerability (Karig and Lee, 2001).

4.3. ATTACK SCENARIOS 91

Implementation vulnerabilities refer to vulnerabilities introduced by faulty coding or sys-

tem construction, and have the following sub-classes:

∙ Buffer Overflow refers to the ability of injecting an attack code (Cowan et al., 2000).

∙ Race Condition refers to the creation of a vulnerability in a programme due to a

short opening for an attacker also known as a timed window vulnerability (Bishop

and Dilger, 1996).

∙ An SQL Injection vulnerability enables an attacker to take advantage of �awed

coding of websites. An attacker usually injects SQL commands into a website that

then allows him access to a database (Razvan, 2009).

∙ Variable Type Checking is also known as format string vulnerability, where an at-

tacker can abuse input variable strings to inject code or gain access (Shankar, Talwar,

Foster, and Wagner, 2001).

4.3 Attack Scenarios

In Section 2.5, ten network attack scenarios were identi�ed. The attacks listed in Chapter

2 (Figure 4.17) are classi�ed according to these listed attack scenarios.

Figure 4.17: The Attack Scenario Class

McDowell (2009, p. 1) from the United States Computer Emergency Readiness Team

(US CERT) de�ned a Denial-of-Service attack as: "attempts to prevent legitimate users

from accessing information or services". Almeida and Mutina (2011) noted that they

were able to archive 1 419 203 examples of web defacements. Denial-of-Service attacks

can take many forms, such as Bandwidth Depletion Attacks (Ampli�cation Attacks or

4.3. ATTACK SCENARIOS 92

Flood Attacks) or Resource Depletion Attacks (Protocol Exploit Attacks or Malformed

Packet attacks) (Specht and Lee, 2004). When multiple computers are used to attack a

system and attempt to overwhelm it by sheer number of connections, it is referred to as

a DDoS. For example, the DDoS attack on U.S. �nancial institutions in December 2012

peeked at 60 Gbps (Constantin, 2012). The Estonia Hack Attack, SCO Denial-of-Service

and Ma�aboy exploits can be considered Denial-of-Service type attacks.

Industrial Espionage refers to network attacks of which the goal is to acquire commercial

secrets such as source code, industrial processes, customer lists, etc. Titan Rain, Op-

eration Aurora, and Operation Shady Rat can be considered Industrial Espionage-type

attacks.

Web Defacement refers to vandalism of a public website. The motive for defacing websites

could be for entertainment, looking for a challenge, patriotism, a political agenda or

revenge (Balakrishnan and Sarma, 2004). Almeida and Mutina (2011) noted with concern

that in 2010 they were able to archive 1 419 203 website defacements. The defacement of

Apache.org and HB Gary Hack can be considered Web Defacement attacks.

Unauthorised Data Access refers to curious or malicious individuals, spies or anyone snoop-

ing around for secrets. Most of Kevin Mitnick's attacks focused on looking for secrets.

The PlayStation hack can also be de�ned as snooping for secrets.

Financial Theft refers to stealing money via computers. Computer networks in banks and

other �nancial institutions can be compromised and money can be transferred electron-

ically to criminals. Individuals can also be targeted and attacked through web banking

interfaces. The attacks on Citi Bank and SA Postbank are examples of network attacks

with �nancial theft as the main goal.

Resource Theft refers to the act of controlling computers so that the collection of computer

resources can be sold or used at a later date. For example, millions of "zombie" computers

are for sale on the Internet black market (Marko�, 2007). MyDoom, Con�cker and Code

Red are examples of malware that attempted to amass computer resources. Industrial

Sabotage refers to damaging industrial capability of commercial or state entities. The

Logic Bomb and Stuxnet are examples of industrial sabotage.

The South Ossetia Incident and the Estonia Incident had elements of Cyber-Warfare even

though no war was declared. Beidleman (2009, p. 10,12,13) de�ned cyber-war, cyber-

attacks and cyber-space as follows:

Cyber-war: when cyber-attacks reach the threshold of hostilities commonly recognized

as war by the international community and de�ned by international law.

4.4. MODEL OF NETWORK ATTACKS 93

Cyber-attacks: a subset of cyber-operations employing the hostile use of computers

and information technology infrastructure to achieve e�ects or objectives in or through

cyber-space.

Cyber-space: global domain within the information environment consisting of the in-

terdependent network of information technology infrastructures, including the Internet,

telecommunications networks, computer systems, and embedded processors and con-

trollers.

Some attacks result from software that escapes control and spreads further than initially

intended. This malware is sometimes only written to prove a point or exploit a new

vulnerability, but then goes out of control. Many of the famous viruses and worms of

the 1980s and 1990s are examples of out-of-control software. The I-LOVE-YOU Worm,

Morris Worm, Melissa, SQL Slammer, Brain Virus, PC-Write Trojan, Chameleon Virus,

Michelangelo Virus, Laroux, Cabir Worm, Sony XPS and Ikee attacks listed in Chapter

2 fall within the Runaway Malware category.

When physical industrial equipment is targeted, rather than the information, network

or services, the attack is referred to as Industrial Sabotage. Stuxnet, which targeted the

centrifuges of Iran's nuclear programme, and the Logic Bomb attacks, which targeted the

gas pipeline, fall within this category.

The System Compromise scenario refers to unauthorised personnel or hackers gaining user

rights out of their scope. A system compromise attack refers to hackers breaking into a

single or multiple computers without authorisation and taking control of such a system.

Thus the computer system is considered compromised. Flame malware is an example of

an attack with the goal of compromising systems.

4.4 Model of Network Attacks

In this section, a temporal network attack model is described. This model is based on

the models presented in Section 3.2 and by van Heerden et al. (2012c). This attack

model consists of the multiple phases (also referred to as stages) of an attack. Four

basic phases were identi�ed: Target Identification, Reconnaissance, Attack and Post-

attack Reconnaissance. The Attack phase was divided into three sub-phases: Ramp-up,

Damage and Residue. Each phase is unique, but their temporal instances can overlap.

4.4. MODEL OF NETWORK ATTACKS 94

4.4.1 Network Attack Phase

The phases either follow each other discretely as shown in Figure 4.18a, or overlap tem-

porally to some extent, as shown in Figure 4.18b.

(a) Discrete Attack Model

(b) Non-Discrete Attack Model

Figure 4.18: Network Attack Model

The Target Identification phase represents actions undertaken by an attacker in choosing

a target. Identi�cation of these actions falls outside the scope of threat identi�cation, but

forms part of the overall threat model.

The Reconnaissance phase represents actions undertaken by an attacker to identify poten-

tial weak spots. These actions are the earliest indications that a network will fall under

attack, before any real damage has occurred. Popular reconnaissance actions include

network mapping and scanning with tools such as Nmap2, Nessus3 (Feng, 2003; Fyodor,

1998; Deraison, 2005) and Zmap4 (Durumeric, Wustrow, and Halderman, 2013).

Google and other search engines can also be used to identify potential weak spots. The

2http://www.nmap.org
3http://www.tenable.com/
4https://zmap.io/

4.4. MODEL OF NETWORK ATTACKS 95

Attack phase represents modi�cation of the target system by the attacker. The system

can be modi�ed in terms of the following aspects:

∙ con�dentiality;

∙ integrity; and

∙ availability.

These aspects are also known as the CIA triad (as shown in Section 3.3.5) . Con�dential-

ity is the term used to prevent the disclosure of information to unauthorised individuals

or systems. Integrity means that data cannot be modi�ed undetectably. Availability

refers to the availability of information when required by the system to serve its pur-

pose. In computing, e-business and information security, it is necessary to ensure that

data, transactions, communications and documents are genuine. It is also important that

authentication validates the identities of both parties involved.

The Attack phase is subdivided into sub-phases. The �rst sub-phase is the Ramp-up

phase. This sub-phase refers to the preparatory actions performed by an attacker before

his/her �nal goal can be attained. The targeted computer network is modi�ed in this

phase, but only in preparation for some other goal. This phase typically includes the

installation of backdoors and other malware.

The Damage sub-phase refers to actions undertaken by an attacker during the achievement

of his/her �nal goal. In this sub-phase, the network is compromised in terms of the

Information Security CIA principles. For example, when an attacker launches a DDoS

attack on a network, the Damage sub-phase is entered as soon as the attack is launched.

The process of installing DDoS attack software falls under the Ramp-up state.

The Residue sub-phase refers to unintended communications and actions by malware after

an attack has been completed. For example, computers that have incorrect time settings

may attack their target at a later date and/or time than when the original co-ordinated

attack was planned. This is also noticed in DDoS attacks.

The Post-Attack Reconnaissance phase refers to scouting and other similar reconnaissance

actions performed by an attacker after completion of the Attack phase. The attacker's

goal in this phase is to verify the e�ects of his/her attack and to assess whether the same

methodology can be used again in the future.

4.4. MODEL OF NETWORK ATTACKS 96

4.4.2 Structured Analysis and Design Technique Analysis

Structured Analysis and Design Technique (SADT) is used to specify the actions of sys-

tems in terms of functional processes (Marca and McGowan, 1987). SADT uses a graphical

notation to symbolise the system as a group of boxes connected by arrows. The boxes rep-

resent processes and the arrows interfaces between the processes. Information is passed

from each process concurrently to the next through the interface arrows. Arrows that

enter into the left side of a box represent input data. Arrows that enter into the top of

a box represent control inputs. Arrows that enter into the bottom of a box represent the

mechanisms or resources required. Arrows are only allowed to exit a box from the right

and represent data output. Only the input and output data is changed in a box; the

control and resource inputs are not a�ected by these processes.

Each box (process) can be separated into sub-boxes (sub-processes). With the SADT

notation, this was symbolised by enclosing a group of boxes within a larger box. The

larger box inputs and outputs must be the same as the inputs and outputs of the smaller

boxes that are not interconnected. These inputs and outputs are referred to as free inputs

and free outputs. Marca and McGowan stated that SADT should topically have three to

seven boxes (processes). Grant et al. (2012) used the SADT process to evaluate di�erent

O�ensive Cyber Operations models. The attack model is presented as a SADT model in

Figure 4.19.

The model presented in Figure 4.19 consists of four main boxes: Target Identification,

Reconnaissance, Attack and Post-attack Reconnaissance. These boxes are the same as the

phases presented in Section 4.4. The Target Identification box has two inputs: potential

targets that can be attacked, and the motivation for the attack. The output of this block

is the attack goal and a list of targets.

The list of targets is the input for the Reconnaissance box. The mechanism which this

box uses is a prede�ned list of weaknesses and attack avenues. The output of the Recon-

naissance box identi�es weaknesses and possible avenues for attack. Weakness refer to

the state of the target and avenues for attack methodologies that the attacker can use.

The Attack box uses four inputs: the attack goal and identi�ed target outputs from the

Target Identification box, weaknesses identi�ed, and possible avenues for attack outputs

from the Reconnaissance box. The output of the Attack box is the breached CIA and

artefacts that the attack caused. These artefacts are unintentional behaviour of the tar-

geted network because of the attack, for example when an attacker can lock out legitimate

users by repeatable failed logins.

97

(a)

(b)

(c)

Figure 4.19: SADT Composition Attack Model

4.5. SUMMARY 98

The Post-attack Reconnaissance box uses the attack goal, breached CIA and attack arte-

facts as inputs. This box has a single output: the status of the target. The status is an

indication of how e�ective the attack was.

The Attack box is expanded to three more boxes: Ramp-up, Damage and Residue. The

Residue box uses the identi�ed targets, weaknesses and possible avenues for attacks as

inputs. Its output is malware and access. This malware now directly attacks its target,

or access to the required system or data has been achieved. The malware, access and

identi�ed targets are then used as the input for the Damage box. This box represents

the place where the attacker goal is achieved. The Damage box output represents the

breached CIA principles, which along with the attack goal represents the inputs for the

Residue box. The Residue box represents e�ects that are not planned, but caused by the

attack, and its output is attack-related artefacts.

4.5 Summary

In this chapter, a taxonomy was presented whereby the elements of a computer-based

attack can be described. The taxonomy consists of the following classes: Actor, Actor

Location, Aggressor, Asset, Attack Goal, Attack Mechanism, Attack Scenario, Automation

Level, Effect, Motivation, Phase, Sabotage, Scope, Scope Size, Target and Vulnerability.

The taxonomy presents both the view of the attacker and defender. Each class in this

taxonomy has sub-classes that can be used to classify types of computer attacks in more

detail.

The Phase class is used to build a temporal model of network attacks. This model consists

of the following phases: Target Identification Reconnaissance Attack and Post-attack

Reconnaissance. The Attack phase consists of Ramp-up, Damage and Residue. These

phases are used in Chapter 8 when a network attack prediction system is developed.

The relationships between the classes are explored in the next chapter with the develop-

ment of an ontology. An ontology builds on the knowledge of a taxonomy by de�ning and

constraining the relationships between the classes. The ontology is formally described

and the ontology editor Protégé and automated reasoner HermiT are introduced.

CHAPTER

FIVE

NETWORK ATTACK ONTOLOGY

"Deep in the human unconscious is a pervasive need for a logical

universe that makes sense. But the real universe is always one step

beyond logic."

Frank Herbert, Dune

5.1 Introduction

In this chapter, an ontology is presented whereby the classes that were introduced in

the taxonomy described in Chapter 4 are used in the ontology. Each attack scenario in

Section 4.3 is described in detail with an illustrative example. The ontology is formally

described in Section 5.4. The same is done for the Denial-of-Service scenario.

Noy and McGuinness (2001) de�ned an ontology as a formal, explicit description of con-

cepts of discourse classes, with the properties of each class describing various attributes

of the concepts (slots) and their restrictions. Classes are the focal point of ontologies,

and can be divided into sub-classes which represent more detailed concepts. The ontol-

ogy presented in this chapter used the main classes in Chapter 4 as the focal point, and

the sub-classes are used to present a more detailed picture. Noy and McGuinness (2001)

further stated that developing an ontology requires:

99

5.1. INTRODUCTION 100

∙ de�nition of classes;

∙ arrangement of classes in a taxonomy;

∙ description of the attributes of slots;

∙ de�nition of allowed values for attributes; and

∙ de�nition of events according to classes and slots.

Grüninger and Fox (1995) stated that an ontology is used to formally describe objects,

their properties and relations, and stated:

"The development of ontologies is motivated by scenarios that arise in the applications.

In particular, such scenarios may be presented by industrial partners as problems which

they encounter in their enterprises. The motivating scenario often has the form of story

problems or examples which are not adequately addressed by existing ontologies."

Figure 5.1: Design and Evaluation Procedure for Ontology by Grüninger and Fox (1995)

The network attack ontology presented in this chapter is presented as stories regarding the

di�erent types of scenarios. Grüninger and Fox (1995) noted that one of the �rst steps in

verifying an ontology is providing scenarios from which the motivation of the ontology can

be understood (Figure 5.1). In this chapter, the ontology is formally described and then

implemented within Protégé. Grüninger and Fox noted that the �rst steps in specifying

an ontology entails the identi�cation of the objects in the domain, which was done as seen

in the taxonomy in Chapter 4.

The relationships between objects are de�ned in this chapter. In Section 5.2, the Protégé

ontology editor is presented. A story that describes network attacks utilising the taxonomy

is presented in Section 5.3. A formal description of the ontology is presented in Section

5.4 to verify the ontology implementation. Network attack individuals are inferred from

their respective scenarios in Section 5.5.

5.2. PROTÉGÉ 101

5.2 Protégé

Protégé is an editor that represents ontologies and their relationships. This editor was

developed by Stanford University and is freely available1. Protégé is the most popular

ontology editor and according to Cardoso (2007) has a 68% market share. The Protégé

editor facilitates the building of ontologies via de�nitions of their relationships, properties

and individuals (Akinbode and Longe, 2011; Malviya, Mishra, and Sahu, 2011). The

Protégé editor enables a simple method for:

∙ de�nition of classes;

∙ relationships between classes;

∙ properties of these relationships; and

∙ class hierarchies.

To aid with the visualisation process, Protégé has additional plug-in packages such as

OWLViz2 and OntoGraf3. In Figure 5.2, the class editor of Protégé is shown, in Figure

5.3, an example of the visualisation tool OWLViz is shown and in Figure 5.4, an example

of the visualisation tool OntoGraf is shown.

Figure 5.2: Example of Protégé Editor

1http://protege.stanford.edu/
2http://protegewiki.stanford.edu/wiki/OWLViz/
3http://protegewiki.stanford.edu/wiki/OntoGraf/

5.2. PROTÉGÉ 102

Figure 5.3: Example of OWLViz Visualisation Tool

Figure 5.4: Example of OntoGraf Visualisation Tool

Protégé allows the user to store the ontology in Web Ontology Language (OWL) format.

"The Semantic Web" was proposed by Berners-Lee, Hendler, and Lassila (2001) to link

5.3. NETWORK ATTACK ONTOLOGY 103

data on the web so that the information can be re-used across multiple applications

and lead to a common understanding. The OWL format is the accepted standard for

implementing the "The Semantic Web" information in the form of ontologies (Antoniou

and Van Harmelen, 2009; Akinbode and Longe, 2011). The o�cial OWL overview is

available at World Wide Web Consortium (W3C) standards website4.

5.2.1 Automated Reasoner

One of Protégé's main features is its automated reasoners. Gong, Guo, Yu, Zhang, and

Xue (2008) stated that the role of an automatic reasoner is to establish that the ontology

is correct and consistent. The automatic reasoner has the ability to �nd contradictions

regarding the ontology and thus ensure that the ontology is consistent. Bock, Haase, Ji,

and Volz (2008) described some of the functionalities of an automated reasoner:

∙ ability to satisfy (verify if a class can have instances)

∙ subsumption (verify if a class is subsumed by another class)

∙ consistency (verify the consistency of individuals within the ontology)

∙ instance checking (verify the assertions within the ontology)

∙ retrieval problem (given a property and individual, determine all other individuals

related to them)

∙ conjunctive queries (class selection, projection or renaming queries)

The researcher uses the HermiT5 OWL automatic reasoner to answer the following ques-

tions (Shearer, Motik, and Horrocks, 2008):

∙ In which scenario does a speci�c network attack fall (subsumption relationships of

individuals)?

∙ Can some attack scenario classi�cations be merged when scenarios in near real-time

are considered (subsumption relationships of classes)?

∙ Which attack scenarios do network-based sensors indicate?

5.3 Network Attack Ontology

The Network Attack ontology maps all the classes of the Network Attack taxonomy into

a single concept, with the Attack Scenario as the base class. This mapping is presented

4http://www.w3.org/TR/owl-features/
5http://www.hermit-reasoner.com/

5.3. NETWORK ATTACK ONTOLOGY 104

in Figure 5.5 and as the following story (the classes are in bold and within brackets):

An [Actor] based at [ActorLocation] with the goal of [AttackGoal] is sponsored by

[Aggressor] with a [Motivation] motivation. The attack effected [ScopeSize] [Scope]

scope. A [Target] was attacked via [Vulnerability]. This attack effected [Asset] and

resulted in [Sabotage] to [Effect] during each attack phase. During each phase the

[AttackMechanism] was used, and was automated to [AutomationLevel] level.

The story listed above is not intended to be grammatically perfect, but is used as a �exible

skeleton. This skeleton is used to illustrate the scenarios and their individuals. Thus to

maintain similar storylines, the grammatical presentation has to be �exible.

AttackScenario

Attack GoalScope

Actor

Aggressor

Attack Mechanism

Automation Level

Target

Asset

hasA
tta

ck
Goal

(w
ith

 th
e goal)

hasTarget
(was Attacked)

hasAttackM
echanism

(w
as used during phase)

hasAutomationLevel

(automated)

h
asA

sset
(effected

) h
as

Sc
o

p
e

(s
co

p
e)

hasAggressor

(sponsored by)

hasActor
(Actor)

Sabotage

h
asSab

o
tage

(resu
lted

 in
)

Actor Location
hasActorLocation

(based at)

Motivation

hasM
otivation

(m
otevation)

Effect
hasEffect

(effect during phase)

Vulnerability

hasVulnerability

(via)

Scope Size

hasScopeSize

(scopesize)

Figure 5.5: Network Attack Ontology

In Figure 5.5, the relationships between the formal classes are shown along with their use

in the story. Each of the Attack Scenarios listed in Section 2.5 have unique constraints

within the Network Attack ontology, and have a unique mapping.

5.3. NETWORK ATTACK ONTOLOGY 105

5.3.1 Denial-of-Service Scenario

A story for each Attack Scenario can be constructed. Their stories di�er where the classes

are de�ned as sub-classes. The Denial-of-Service Attack Scenario story is as follows:

An Hacker based at [ActorLocation] location with the goal of Disrupt sponsored by

[Aggressor] with a [Motivation] motivation. The attack effected [ScopeSize] [Scope]

scope. A Network Infrastructure was attacked via [Vulnerability]. This attack ef-

fected Access and resulted in Operational Loss to Major effect during the Damage

attack phase and to Null effect during the Ramp-up attack phase. During the Ramp-up

and Damage phase the Denial-of-Service Mechanism was used, and was automated

to Automatic level.

Attack Goal
Scope

Actor

Aggressor

Attack Mechanism Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

Network

Infrastructure

AttackScenario

Denial-of-Service

Scenario Hacker

Disrupt
Access

Automatic Network Based

Sabotage

Operational

Loss

Major

Null

Ram
p-up &

Dam
age

Damage

Ramp-up

Denial-of-Service

AM

Figure 5.6: Denial-of-Service Attack Scenario

The Denial-of-Service Attack Scenario constrains are shown in Figure 5.6 and two in-

dividuals, the SCO, and Spamhaus DDoS attacks are shown in Figure 5.7 and Figure

5.8. In these �gures, the sub-classes for each scenario are shown as sub-classes within the

main classes and extra information that identi�es individuals is shown in the rectangular

blocks.

The attacks on the SCO network and SpamHaus (discussed in sections 2.4.18 and 2.4.35)

5.3. NETWORK ATTACK ONTOLOGY 106

are examples of a Denial-of-Service attack scenario and their stories can be formatted in

the same way:

SCO Attack:

Hackers based at Indeterminate location with the goal of Disrupting sponsored by

Flash Mob with a Vigilantism motivation. The attack effected Medium Network

Corporate (SCO) scope. A Network Infrastructure was attacked via Protocol Er-

ror vulnerability. This attack effected Access and resulted in Operational Loss to Ma-

jor during Damage phase and to Null effect during the Ramp-up attack phase. During

the Ramp-up and Damage phase the Denial-of-Service Mechanism was used, and was

automated to Automatic level.

SpamHaus Attack:

Hackers based at Foreign (Netherlands) location with the goal of Disrupting spon-

sored by Commercial (CyberBunker) with a Vigilantism motivation. The attack

effected Large Network Corporate (SpamHaus) scope. A Network Infrastructure

was attacked via Protocol Error vulnerability. This attack effected Access and resulted

in Operational Loss to Major during Damage phase and to Null effect during the

Ramp-up attack phase. During the Ramp-up and Damage phase the Denial-of-Service

Mechanism was used, and was automated to Automatic level.

Attack Goal
Scope

Actor

Aggressor

Attack Mechanism Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

Network

Infrastructure

AttackScenario

Denial-of-Service
Scenario, SCO Hacker

Disrupt
Access

Automatic Network Based

Sabotage

Operational

Loss

Major

Null

Ram
p-up &

Dam
age

Damage

Ramp-up

 Corporate Network,
SCO Network

Flash Mob

Medium Network

Indeterminate

Vigilantism

Protocol Error

Denial-of-Service

AM

Figure 5.7: SCO Denial-of-Service Attack Scenario Example

5.4. FORMAL DESCRIPTION OF NETWORK ATTACK ONTOLOGY 107

Attack Goal
Scope

Actor

Aggressor

Attack Mechanism Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

Network

Infrastructure

AttackScenario

Denial-of-Service
Scenario, SpamHaus Hacker

Disrupt
Access

Automatic Network Based

Sabotage

Operational

Loss

Major

Null

Ram
p-up &

Dam
age

Damage

Ramp-up

 Corporate Network,
SpamHaus

Commercial
(CyberBunker)

Large Network

Foreign
(Netherlands)

Vigilantism

Protocol Error

Denial-of-Service

AM

Figure 5.8: SpamHaus Denial-of-Service Attack Scenario Example

The rest of the scenarios, stories and examples are presented in Chapter 6.

5.4 Formal Description of Network Attack Ontology

The HermiT automated reasoner (Section 5.2.1) can infer from an ontology in which

scenarios individuals fall and which scenarios can be merged. Thus to verify the ontology

design, a formal description of ontology was developed.

An ontology can be de�ned as a 4-tuple according to Schar�e and de Bruijn (2005);

Chaudhri, Farquhar, Fikes, Karp, and Rice (1998); Zhai, Chen, Yu, Liang, and Jiang

(2009):

𝑂 =< 𝐶,𝑅, 𝐼, 𝐴 >

where

𝑂 is an ontology;

𝐶 is a set of concepts de�ned for the domain;

𝑅 is a set of binary semantic relations de�ned between concepts in 𝐶;

5.4. FORMAL DESCRIPTION OF NETWORK ATTACK ONTOLOGY 108

𝐼 is a set of instances where each instance can be one one or more classes linked by

relations (Davies, Studer, and Warren, 2006) and

𝐴 is a set of axioms.

An axiom is a real fact or reasoning rule and a concept is considered to be a class in an

ontology.

This de�nition assumes there is an implicit assumption of a set, 𝐷, which represents the

domain of interest. It follows that:

𝐶 ⊆ 𝐷 (5.1)

𝑅 ⊆ 𝐷 ×𝐷 (5.2)

The network ontology is de�ned in Statement 5.3:

𝑁𝐴 =< 𝐶𝑁𝐴, 𝑅𝑁𝐴, 𝐼𝑁𝐴, 𝐴𝑁𝐴 > (5.3)

where 𝑁𝐴 de�nes an ontology related to a network attack. The set of concepts (or base

classes) 𝐶𝑁𝐴 is described in Section 5.4.1. Section 5.4.2 de�nes all the relations between

the concepts, i.e. the set 𝑅𝑁𝐴. An example of an individual is discussed in Section 2.4.18.

5.4.1 Network Attack Concepts

The subsets of the set 𝐶𝑁𝐴 are shown in Statement 5.4 and contain all the base classes

of the taxonomy listed in Chapter 4.

𝐴𝑐𝑡𝑜𝑟, 𝐴𝑐𝑡𝑜𝑟𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟,

𝐴𝑠𝑠𝑒𝑡, 𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙, 𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚,

𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜, 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙,

Effect,𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛, 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒, 𝑆𝑐𝑜𝑝𝑒,

𝑆𝑐𝑜𝑝𝑒𝑆𝑖𝑧𝑒, 𝑇𝑎𝑟𝑔𝑒𝑡, 𝑉 𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ⊆ 𝐶𝑁𝐴

(5.4)

The 15 subsets of 𝐶𝑁𝐴 are de�ned in the following statements: 5.5, 5.9, 5.10, 5.12, 5.13,

5.14, 5.24, 5.25, 5.26, 5.27, 5.29, 5.30, 5.31, 5.32 and 5.34. Some of these subsets are

de�ned in more detail below. The class Actor and its sub-classes as displayed in Figure

5.4. FORMAL DESCRIPTION OF NETWORK ATTACK ONTOLOGY 109

4.2 are presented in statements 5.5 to 5.8.

𝐺𝑟𝑜𝑢𝑝𝐴𝑐𝑡𝑜𝑟,𝐻𝑎𝑐𝑘𝑒𝑟,

𝐼𝑛𝑠𝑖𝑑𝑒𝑟, 𝑈𝑛𝑘𝑛𝑜𝑤𝑛𝐴𝑐𝑡𝑜𝑟 ⊆ 𝐴𝑐𝑡𝑜𝑟
(5.5)

𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑒𝑑𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙𝐺𝑟𝑜𝑢𝑝,

𝑃𝑟𝑜𝑡𝑒𝑠𝑡𝐺𝑟𝑜𝑢𝑝, 𝐶𝑦𝑏𝑒𝑟𝐴𝑟𝑚𝑦 ⊆ 𝐺𝑟𝑜𝑢𝑝𝐴𝑐𝑡𝑜𝑟
(5.6)

𝑆𝑐𝑟𝑖𝑝𝑡𝐾𝑖𝑑𝑑𝑖𝑒, 𝑆𝑘𝑖𝑙𝑙𝑒𝑑𝐻𝑎𝑐𝑘𝑒𝑟 ⊆ 𝐻𝑎𝑐𝑘𝑒𝑟 (5.7)

𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑜𝑟,𝑁𝑜𝑟𝑚𝑎𝑙𝑈𝑠𝑒𝑟 ⊆ 𝐼𝑛𝑠𝑖𝑑𝑒𝑟 (5.8)

The class ActorLocation and its sub-classes are displayed in Figure 4.4 and are presented

in statement 5.9.

𝐼𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒, 𝐿𝑜𝑐𝑎𝑙, 𝐹𝑜𝑟𝑒𝑖𝑔𝑛 ⊆ 𝐴𝑐𝑡𝑜𝑟𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (5.9)

The class Aggressor and a sub-class Commercial are described in statements 5.10 and

5.11.

𝑆𝑡𝑎𝑡𝑒, 𝐶𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙, 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, SelfInstigator

𝑈𝑛𝑘𝑛𝑜𝑤𝑛𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 ⊆ 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟
(5.10)

𝐹𝑙𝑎𝑠ℎ𝑀𝑜𝑏,𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑒𝑑𝐺𝑟𝑜𝑢𝑝 ⊆ 𝐶𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 (5.11)

The classes Asset, AttackGoal and AttackMechanism are described in statements 5.12 to

5.14. Statements 5.15 to 5.23 give more detail regarding the sub-classes of AttackMecha-

nism.

𝐴𝑐𝑐𝑒𝑠𝑠,𝐷𝑎𝑡𝑎,𝑁𝑒𝑡𝑤𝑜𝑟𝑘, 𝑆𝑦𝑠𝑡𝑒𝑚 ⊆ 𝐴𝑠𝑠𝑒𝑡 (5.12)

𝐺𝑎𝑖𝑛𝐶𝑜𝑛𝑡𝑟𝑜𝑙, 𝐺𝑎𝑖𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠, 𝑆𝑝𝑟𝑒𝑎𝑑𝐴𝑡𝑡𝑎𝑐𝑘,

𝑆𝑡𝑒𝑎𝑙𝐷𝑎𝑡𝑎,𝐷𝑖𝑠𝑟𝑢𝑝𝑡, 𝐶ℎ𝑎𝑛𝑔𝑒𝐷𝑎𝑡𝑎 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙
(5.13)

5.4. FORMAL DESCRIPTION OF NETWORK ATTACK ONTOLOGY 110

DenialOfService𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚,

𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚,

InformationGathering𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚,

𝑀𝑎𝑙𝑤𝑎𝑟𝑒𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚,

𝑆𝑦𝑠𝑡𝑒𝑚𝐴𝑏𝑢𝑠𝑒𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚

(5.14)

𝑆𝑜𝑐𝑖𝑎𝑙𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔,

𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔,

OpenInformation ⊆ InformationGathering𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚

(5.15)

𝑆𝑝𝑒𝑎𝑟𝑃ℎ𝑖𝑠ℎ𝑖𝑛𝑔, 𝑆𝑝𝑎𝑚 ⊆ 𝑆𝑜𝑐𝑖𝑎𝑙𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔 (5.16)

𝑊𝑜𝑟𝑚, 𝑉 𝑖𝑟𝑢𝑠, 𝑇𝑟𝑜𝑗𝑎𝑛 ⊆ 𝑀𝑎𝑙𝑤𝑎𝑟𝑒𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 (5.17)

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑DenialOfService,

𝑁𝑒𝑡𝑤𝑜𝑟𝑘DenialOfService,

𝐻𝑜𝑠𝑡DenialOfService ⊆ DenialOfService𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚

(5.18)

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐵𝑎𝑠𝑒𝑑𝐸𝑥𝑝𝑙𝑜𝑖𝑡, 𝐴𝑐𝑐𝑒𝑠𝑠,WebApplication,

𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑𝐸𝑥𝑝𝑙𝑜𝑖𝑡 ⊆ 𝐸𝑥𝑝𝑙𝑜𝑖𝑡
(5.19)

𝐵𝑟𝑢𝑡𝑒𝐹𝑜𝑟𝑐𝑒, Sniffing, 𝐺𝑢𝑒𝑠𝑠𝑖𝑛𝑔 ⊆ 𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑𝐸𝑥𝑝𝑙𝑜𝑖𝑡 (5.20)

𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙,BufferOverflow, 𝐸𝑠𝑐𝑎𝑙𝑎𝑡𝑖𝑜𝑛 ⊆ 𝐴𝑐𝑐𝑒𝑠𝑠 (5.21)

𝑆𝑄𝐿𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛,WebCrawl, 𝑋𝑆𝑆 ⊆ WebApplication (5.22)

𝑆𝑝𝑜𝑜𝑓𝑖𝑛𝑔, 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐻𝑖𝑗𝑎𝑐𝑘,𝑂𝑝𝑒𝑛𝐴𝑐𝑐𝑒𝑠𝑠 ⊆ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐵𝑎𝑠𝑒𝑑𝐸𝑥𝑝𝑙𝑜𝑖𝑡 (5.23)

5.4. FORMAL DESCRIPTION OF NETWORK ATTACK ONTOLOGY 111

Statements 5.24 to 5.27 describe AttackScenario, Automation Level , Effect and Motiva-

tion. Statement 5.28 describes a sub-class of Motivation, namely Ethical.

DenialOfService,

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝐸𝑠𝑝𝑖𝑜𝑛𝑎𝑔𝑒,

WebDefacement,

𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒,

FinancialTheft,

𝑈𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑠𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑐𝑐𝑒𝑠𝑠

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒,

CyberWarfare,

ResourceTheft,

𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜

(5.24)

𝑀𝑎𝑛𝑢𝑎𝑙, 𝑆𝑒𝑚𝑖𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐, 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 = ⊆ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙 (5.25)

𝑁𝑢𝑙𝑙,𝑀𝑖𝑛𝑜𝑟,𝑀𝑎𝑗𝑜𝑟, 𝐶𝑎𝑡𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑖𝑐 ⊆ Effect (5.26)

𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙, 𝐹 𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙, 𝐹𝑢𝑛,𝐸𝑡ℎ𝑖𝑐𝑎𝑙 ⊆ 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (5.27)

𝐸𝑠𝑝𝑖𝑜𝑛𝑎𝑔𝑒, 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙, 𝑉 𝑖𝑔𝑖𝑙𝑎𝑛𝑡𝑖𝑠𝑚 ⊆ 𝐸𝑡ℎ𝑖𝑐𝑎𝑙 (5.28)

Statements 5.29 - 5.33 address the classes Sabotage, Scope, ScopeSize and Target.

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠,

𝐹 𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝐿𝑜𝑠𝑠,

𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒,

𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠,

𝑆𝑒𝑐𝑟𝑒𝑡𝐿𝑜𝑠𝑠, 𝑉 𝑖𝑟𝑡𝑢𝑎𝑙 ⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒

(5.29)

5.4. FORMAL DESCRIPTION OF NETWORK ATTACK ONTOLOGY 112

CriticalInformationInfrastructure,

𝐶𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒,𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡,

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑆𝑐𝑜𝑝𝑒,𝑀𝑖𝑙𝑖𝑡𝑎𝑟𝑦,

𝐴𝑙𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠 ⊆ 𝑆𝑐𝑜𝑝𝑒

(5.30)

𝐺𝑙𝑜𝑏𝑎𝑙, 𝐿𝑎𝑟𝑔𝑒,𝑀𝑒𝑑𝑖𝑢𝑚, 𝑆𝑚𝑎𝑙𝑙, 𝑆𝑖𝑛𝑔𝑙𝑒 ⊆ 𝑆𝑐𝑜𝑝𝑒𝑆𝑖𝑧𝑒 (5.31)

NetworkInfrastructure, 𝑃𝐶, 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡, 𝑆𝑒𝑟𝑣𝑒𝑟 ⊆ 𝑇𝑎𝑟𝑔𝑒𝑡 (5.32)

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑟𝑣𝑒𝑟, 𝐸𝑚𝑎𝑖𝑙𝑆𝑒𝑟𝑣𝑒𝑟, 𝐹 𝑖𝑙𝑒𝑆𝑒𝑟𝑣𝑒𝑟,WebServer ⊆ 𝑆𝑒𝑟𝑣𝑒𝑟 (5.33)

The last subset of 𝐶𝑁𝐴, Vulnerability, is described in Statement 5.34, and its sub-classes

in statements 5.35 to 5.37.

𝐶𝑜𝑛𝑓𝑖𝑔,𝐷𝑒𝑠𝑖𝑔𝑛, 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 ⊆ 𝑉 𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (5.34)

𝐴𝑐𝑐𝑒𝑠𝑠𝑅𝑖𝑔ℎ𝑡𝑠,DefaultSetup ⊆ 𝐶𝑜𝑛𝑓𝑖𝑔 (5.35)

𝑂𝑝𝑒𝑛𝐴𝑐𝑐𝑒𝑠𝑠, 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝐸𝑟𝑟𝑜𝑟 ⊆ 𝐷𝑒𝑠𝑖𝑔𝑛 (5.36)

BufferOverflow𝑉 𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑅𝑎𝑐𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛,

𝑆𝑄𝐿𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑉 𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑇𝑦𝑝𝑒𝐶ℎ𝑒𝑐𝑘𝑖𝑛𝑔 ⊆ 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
(5.37)

5.4.2 Relations

One of the main bene�ts of an ontology is its capability to express the meaning of domain

knowledge. Whilst a taxonomy provides a hierarchical classi�cation of concepts in a do-

main, an ontology also represents the relationships between the concepts. In this section,

the authors describe the relationships between the di�erent classes in the ontology by

means of mathematical relations. Statement 5.38 de�nes the set 𝑅𝑁𝐴, whilst statements

5.4. FORMAL DESCRIPTION OF NETWORK ATTACK ONTOLOGY 113

5.39 to 5.57 de�ne the elements of 𝑅𝑁𝐴, i.e. the relations.

𝑅𝑁𝐴 = {ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟, ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛,

ℎ𝑎𝑠𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟, ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡, ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙,

ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚, ℎ𝑎𝑠𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙,

hasEffect, ℎ𝑎𝑠𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛, ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒,

ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒, ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒𝑆𝑖𝑧𝑒, ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡

ℎ𝑎𝑠𝑉 𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦}

(5.38)

ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜× 𝐴𝑐𝑡𝑜𝑟 (5.39)

ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ⊆ 𝐴𝑐𝑡𝑜𝑟 × 𝐴𝑐𝑡𝑜𝑟𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (5.40)

ℎ𝑎𝑠𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 ⊆ 𝐴𝑐𝑡𝑜𝑟 × 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 (5.41)

ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡 ⊆ 𝑇𝑎𝑟𝑔𝑒𝑡× 𝐴𝑠𝑠𝑒𝑡 (5.42)

ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙 ⊆ 𝐴𝑐𝑡𝑜𝑟 × 𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙 (5.43)

ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜× 𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 (5.44)

ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑒𝑐𝑜𝑛,

ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑚𝑝𝑢𝑝,

ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝐷𝑎𝑚𝑎𝑔𝑒

⊆ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚

(5.45)

ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑒𝑐𝑜𝑛 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜× AttackMechanism

ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑚𝑝𝑢𝑝 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜× AttackMechanism

ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝐷𝑎𝑚𝑎𝑔𝑒 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜× AttackMechanism

(5.46)

ℎ𝑎𝑠𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚× 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙 (5.47)

ℎ𝑎𝑠Effect ⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒× Effect (5.48)

ℎ𝑎𝑠Effect𝑅𝑒𝑐𝑜𝑛, ℎ𝑎𝑠Effect𝑅𝑎𝑚𝑝𝑢𝑝, ℎ𝑎𝑠Effect𝐷𝑎𝑚𝑎𝑔𝑒 ⊆ ℎ𝑎𝑠Effect (5.49)

ℎ𝑎𝑠Effect𝑅𝑒𝑐𝑜𝑛 ⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒× Effect

ℎ𝑎𝑠Effect𝑅𝑎𝑚𝑝𝑢𝑝 ⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒× Effect

ℎ𝑎𝑠Effect𝐷𝑎𝑚𝑎𝑔𝑒 ⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒× Effect

(5.50)

5.4. FORMAL DESCRIPTION OF NETWORK ATTACK ONTOLOGY 114

ℎ𝑎𝑠𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ⊆ 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 ×𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (5.51)

ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 ⊆ 𝐴𝑠𝑠𝑒𝑡× 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 (5.52)

ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜× 𝑆𝑐𝑜𝑝𝑒 (5.53)

ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒𝑆𝑖𝑧𝑒 ⊆ 𝑆𝑐𝑜𝑝𝑒× 𝑆𝑐𝑜𝑝𝑒𝑆𝑖𝑧𝑒 (5.54)

ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜× 𝑇𝑎𝑟𝑔𝑒𝑡 (5.55)

ℎ𝑎𝑠𝑉 𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ⊆ 𝑇𝑎𝑟𝑔𝑒𝑡× 𝑉 𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (5.56)

Some of the relations are formed by composition. The compositions of two relations 𝑆

and 𝑅 are de�ned by 𝑆 ∘𝑅 below:

𝑅 ⊆ 𝑋 × 𝑌

𝑆 ⊆ 𝑌 × 𝑍

𝑆 ∘𝑅 = {(𝑥, 𝑧) ∈ 𝑋 × 𝑍 | ∃𝑦 ∈ 𝑌 : (𝑥, 𝑦) ∈ 𝑅 ∧ (𝑦, 𝑧) ∈ 𝑆}

(5.57)

In statements 5.58 to 5.69, the composited relationships are presented (as shown in Figure

5.9):

ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝐴𝑐𝑡𝑜𝑟𝐴𝑐𝑡𝑜𝑟𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟 ∘ ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (5.58)

ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝐴𝑐𝑡𝑜𝑟𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 = ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟 ∘ ℎ𝑎𝑠𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 (5.59)

ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝐴𝑐𝑡𝑜𝑟𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙 = ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟 ∘ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙 (5.60)

ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝑆𝑐𝑜𝑝𝑒𝑆𝑐𝑜𝑝𝑒𝑆𝑖𝑧𝑒 = ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡 ∘ ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒𝑆𝑖𝑧𝑒 (5.61)

ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝑇𝑎𝑟𝑔𝑒𝑡𝐴𝑠𝑠𝑒𝑡 = ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡 ∘ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡 (5.62)

ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝑇𝑎𝑟𝑔𝑒𝑡𝐴𝑠𝑠𝑒𝑡𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 = ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡 ∘ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡 ∘ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 (5.63)

hasChainTargetAssetSabotageEffect =

ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡 ∘ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡 ∘ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 ∘ hasEffect
(5.64)

hasChainTargetAssetSabotageEffectRecon,

hasChainTargetAssetSabotageEffectRampup,

hasChainTargetAssetSabotageEffectDamage

⊆ hasChainTargetAssetSabotageEffect

(5.65)

5.4. FORMAL DESCRIPTION OF NETWORK ATTACK ONTOLOGY 115

ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝑇𝑎𝑟𝑔𝑒𝑡𝑉 𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡 ∘ ℎ𝑎𝑠𝑉 𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (5.66)

ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝐴𝑐𝑡𝑜𝑟𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

= ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟 ∘ ℎ𝑎𝑠𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 ∘ ℎ𝑎𝑠𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛
(5.67)

ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝐴𝑀𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙

= ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 ∘ ℎ𝑎𝑠𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙
(5.68)

ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝐴𝑀𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙𝑅𝑒𝑐𝑜𝑛,

ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝐴𝑀𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙𝑅𝑎𝑚𝑝𝑢𝑝,

ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝐴𝑀𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙𝐷𝑎𝑚𝑎𝑔𝑒

⊆ ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝐴𝑀𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙

(5.69)

h
asC

h
ain

TargetA
ssetSab

o
tageEffect

AttackScenario

Attack Goal

Scope

Actor

Aggressor

Attack Mechanism

Automation Level

Target

Asset

ha
sA
tt
ac
kG
oa
l

hasTarget

h
asA

ttackM
ech

an
ism

hasAutom
ationLeve

l

h
asA

sset

h
as
Sc
o
p
e

hasAggressor

hasActor

Sabotage

h
asSab

o
tage

Actor Location

ha
sA
ct
or
Lo
ca
tio
n

Motivation

hasM
otivation

Effect

has
Effe

ct

Vulnerability

hasV
ulnerability

Scope Size

has
Sco

peS
ize

hasCh
ainAc

torAc
torLo

catio
n

hasChainActorAggressor

ha
sCh

ain
Ac
tor

Att
ack

Go
al

ha
sC
ha
in
A
m
A
ut
om

at
io
nL
ev
el

ha
sCh

ain
Tar

get
Vu
lne

rab
ilit
y

hasChainTargetAsset

hasChainTargetA
ssetSabotage

ha
sC
ha
in
Sc
op
eS
co
pe
Siz
e

hasChainActorAggressorMotivation

Figure 5.9: Composition Relationships

5.4.3 Constraints on Classes

In this section, the set Attack Scenario (AS) is described (refer to Figure 5.5). The symbol

∃ is the �rst-order existential quanti�er: there exists at least one element. The symbol

∋ is used to express the words: such that. The symbol ∈ represents to the classical set

5.4. FORMAL DESCRIPTION OF NETWORK ATTACK ONTOLOGY 116

theory operator: element of. The symbol ∧ represents to the logical operator: and. The

constrained de�nition of the set AS is presented in Statement 5.70.

𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = {𝑥|(∃𝑧 ∈ 𝑆𝑐𝑜𝑝𝑒 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒)∧

(∃𝑣 ∈ 𝐴𝑐𝑡𝑜𝑟 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟)∧

(∃𝑤 ∈ 𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚)∧

(∃𝑢 ∈ 𝑇𝑎𝑟𝑔𝑒𝑡 ∋ (𝑥, 𝑢) ∈ ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡)}

(5.70)

Statement 5.70 further constrains the Attack Scenario set such that for every element 𝑥

of the set 𝐴𝑆, as depicted in Figure 5.10. The following conjunction hold:

∙ At least one element exists, 𝑧, which is a member of the set 𝑆𝑐𝑜𝑝𝑒, and is such that

the ordered pair (𝑥, 𝑧) participates in the relation ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒.

∙ At least one element exists, 𝑣, which is a member of the set 𝐴𝑐𝑡𝑜𝑟, and is such that

the ordered pair (𝑥, 𝑣) participates in the relation ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟.

∙ At least one element exists, 𝑤, which is a member of the set 𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚, and

is such that the ordered pair (𝑥,𝑤) participates in the relation ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚.

∙ At least one element exists, 𝑢, which is a member of the set 𝑇𝑎𝑟𝑔𝑒𝑡, and is such

that the ordered pair (𝑥, 𝑢) participates in the relation ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡.

Similarly, constraints for the sets 𝑆𝑐𝑜𝑝𝑒, 𝐴𝑐𝑡𝑜𝑟, 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟, 𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚, 𝑇𝑎𝑟𝑔𝑒𝑡,

𝐴𝑠𝑠𝑒𝑡 and 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 are de�ned.

𝑆𝑐𝑜𝑝𝑒 = {𝑥|(∃𝑦 ∈ 𝑆𝑐𝑜𝑝𝑒𝑆𝑖𝑧𝑒 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒𝑆𝑖𝑧𝑒)} (5.71)

𝐴𝑐𝑡𝑜𝑟 = {𝑥|(∃𝑧 ∈ 𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙)∧

(∃𝑣 ∈ 𝐴𝑐𝑡𝑜𝑟𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)∧

(∃𝑤 ∈ 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟)}

(5.72)

𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 = {𝑥|(∃𝑦 ∈ 𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛)} (5.73)

Figure 5.10: Statement 5.70

5.4. FORMAL DESCRIPTION OF NETWORK ATTACK ONTOLOGY 117

𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 = {𝑥|(∃𝑧 ∈ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙)}
(5.74)

𝑇𝑎𝑟𝑔𝑒𝑡 = {𝑥|(∃𝑧 ∈ 𝐴𝑠𝑠𝑒𝑡 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡)∧

(∃𝑦 ∈ 𝑉 𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑉 𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦)}
(5.75)

𝐴𝑠𝑠𝑒𝑡 = {𝑥|(∃𝑦 ∈ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒)} (5.76)

𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 = {𝑥|(∃𝑦 ∈ 𝐸𝑓𝑓𝑒𝑐𝑡 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐸𝑓𝑓𝑒𝑐𝑡)} (5.77)

5.4.4 Denial-of-Service Scenario Formal Definition

The goal of a Denial-of-Service (DoS) attack is to prevent or impair the legitimate use

of computer networks (Houle and Weaver, 2001). One of the most frequent methods

that DoS attacks use, is to �ood a single network point with network tra�c. This �ood

of tra�c will then prevent normal network operations. DDoS attacks disrupt networks

by �ooding them with tra�c from multiple sources. These sources can number in the

millions.

The Denial-of-Service scenario set is de�ned in statements 5.78 to 5.84 (also refer to Figure

5.6). In Figure 5.6, the sub-classes that are speci�c to the Denial-of-Service scenario

are displayed. This demonstrates which sub-classes are used when the Denial-of-Service

attack scenario is presented. For example, only the OperationalLoss sub-class is used from

Sabotage class. Note Attack Mechanism may be shortened to AM and Denial-of-Service

is shortened to DenialOfService or DoS.

𝐷𝑜𝑆 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (5.78)

𝐻𝑎𝑐𝑘𝑒𝑟𝐷𝑜𝑆 ⊆ 𝐻𝑎𝑐𝑘𝑒𝑟 ⊆ 𝐴𝑐𝑡𝑜𝑟 (5.79)

𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝐷𝑜𝑆 ⊆ 𝐷𝑖𝑠𝑟𝑢𝑝𝑡 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙 (5.80)

DenialOfService𝐴𝑀_𝐷𝑜𝑆 ⊆

DenialOfService𝐴𝑀 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚
(5.81)

5.5. INFERRING CLASS MEMBERSHIP OF INDIVIDUALS 118

𝐷𝑜𝑆 = {𝑥|(∃𝑣 ∈ 𝐻𝑎𝑐𝑘𝑒𝑟 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟)∧

(∃𝑤 ∈ DenialOfService𝐴𝑀 ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑦 ∈ DenialOfService𝐴𝑀 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝐷𝑎𝑚𝑎𝑔𝑒)∧

(∃𝑢 ∈ NetworkInfrastructure ∋ (𝑥, 𝑢) ∈ ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡)}

(5.82)

NetworkInfrastructure𝐷𝑜𝑆 ⊆ NetworkInfrastructure ⊆ 𝑇𝑎𝑟𝑔𝑒𝑡 (5.83)

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠𝐷𝑜𝑆 ⊆ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠 ⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 (5.84)

𝑁𝑢𝑙𝑙𝐷𝑜𝑆 ⊆ 𝑁𝑢𝑙𝑙 ⊆ Effect (5.85)

𝑀𝑎𝑗𝑜𝑟𝐷𝑜𝑆 ⊆ 𝑀𝑎𝑗𝑜𝑟 ⊆ Effect (5.86)

𝐻𝑎𝑐𝑘𝑒𝑟𝐷𝑜𝑆 = {𝑥|∃𝑧 ∈ 𝐷𝑖𝑠𝑟𝑢𝑝𝑡 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙} (5.87)

DenialOfService𝐴𝑀_𝐷𝑜𝑆 = {𝑥|∃𝑧 ∈ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙)}
(5.88)

𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐𝐷𝑜𝑆 ⊆ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 ⊆ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙 (5.89)

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝐷𝑜𝑆 = {𝑥|∃𝑧 ∈ 𝐴𝑐𝑐𝑒𝑠𝑠 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡)} (5.90)

𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑜𝑆 ⊆ 𝐴𝑐𝑐𝑒𝑠𝑠 ⊆ 𝐴𝑠𝑠𝑒𝑡 (5.91)

𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑜𝑆 = {𝑥|∃𝑦 ∈ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒} (5.92)

𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝐷𝑜𝑆 = ({𝑥|∃𝑦 ∈ 𝑁𝑢𝑙𝑙 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑎𝑚𝑝𝑢𝑝∧

∃𝑧 ∈ 𝑀𝑎𝑗𝑜𝑟 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝐷𝑎𝑚𝑎𝑔𝑒)}
(5.93)

5.5 Inferring Class Membership of Individuals

This section demonstrates how Protégé is able to infer to which class an individual be-

longs (van Heerden, Leenen, and Irwin, 2013a). The ontology classes and relationships

were implemented in Protégé and information about attacks was used to populate the

individual's properties. Two of the signi�cant attacks discussed in Section 5.3.1, the SCO

and SpamHaus attacks (discussed in sections 2.4.18 and 2.4.35), �t the description of the

Denial-of-Service scenario. The SCO individuals were de�ned in Protégé as follows:

∙ is a member of the Attack Scenario class; and

∙ has at least one:

5.5. INFERRING CLASS MEMBERSHIP OF INDIVIDUALS 119

– Hacker Actor de�ned by hasActor relationship;

– Denial-of-Service Attack Mechanism de�ned by hasAttackMechanismDamage

relationship;

– Denial-of-Service Attack Mechanism de�ned by hasAttackMechanismRampup

relationship;

– Automatic Level de�ned by hasChainAMAutomationLevel relationship;

– Indeterminate Actor Location de�ned by hasChainActorActorLocation rela-

tionship;

– Flash Mob Aggressor de�ned by hasChainActorAggressor relationship;

– Vigilantism Motivation de�ned by hasChainActorAggressorMotivation rela-

tionship;

– Disrupt Attack Goal de�ned by hasChainActorAttackGoal relationship;

– Medium Network de�ned by hasChainScopeScopeSize relationship;

– Access Asset de�ned by hasChainTargetAsset relationship;

– Operational Loss de�ned by hasChainTargetAssetSabotage relationship;

– Major Loss Effect de�ned by hasChainTargetAssetSabotageEffectDamage rela-

tionship;

– Null Effect de�ned by hasChainTargetAssetSabotageEffectRampup relationship;

– Protocol Error Vulnerability de�ned by hasChainTargetVulnerability relation-

ship;

– Corporate Network de�ned by hasScope relationship;

– Network Infrastructure Device Target de�ned by hasTarget relationship.

By setting an individual using the properties as above, the automated reasoner HermiT

plug-in for Protégé was able to determine that the SCO attacks fall within the Denial-of-

Service scenario. Protégé output is shown in Figure 5.11, with the automated reasoner-

inferred class shown in yellow at the bottom.

The SpamHaus individual was de�ned in Protégé with the following characteristics:

∙ is a member of the Attack Scenario class; and

∙ has at least one:

– Hacker Actor de�ned by hasActor relationship;

– Denial-of-Service Attack Mechanism de�ned by hasAttackMechanismDamage

relationship;

– Denial-of-Service Attack Mechanism de�ned by hasAttackMechanismRampup

relationship;

– Automatic Level de�ned by hasChainAMAutomationLevel relationship;

5.5. INFERRING CLASS MEMBERSHIP OF INDIVIDUALS 120

Figure 5.11: SCO Attack Inferred a Denial-of-Service Scenario

– Foreign Actor Location de�ned by hasChainActorActorLocation relationship;

– Commercial Aggressor de�ned by hasChainActorAggressor relationship;

– Vigilantism Motivation de�ned by hasChainActorAggressorMotivation rela-

tionship;

– Disrupt Attack Goal de�ned by hasChainActorAttackGoal relationship;

– Large Network de�ned by hasChainScopeScopeSize relationship;

– Access Asset de�ned by hasChainTargetAsset relationship;

– Operational Loss de�ned by hasChainTargetAssetSabotage relationship;

– Major Loss Effect de�ned by hasChainTargetAssetSabotageEffectDamage rela-

tionship;

– Null Effect de�ned by hasChainTargetAssetSabotageEffectRampup relationship;

– Protocol Error Vulnerability de�ned by hasChainTargetVulnerability relation-

ship;

– Corporate Network de�ned by hasScope relationship;

– Network Infrastructure Device Target de�ned by hasTarget relationship.

By creating an individual using the properties as shown above, the automated reasoner

HermiT plug-in for Protégé was able to determine that the SpamHaus attack belongs to

the Denial-of-Service scenario. Figure 5.12 shows the entry for this individual in Protégé:

the properties of the individual are shown in the �rst two blocks and the output of the

automated reasoner-inferred class is highlighted in the bottom block, i.e. this individual

5.6. SUMMARY 121

is a member of the Denial-of-Service Attack Scenario.

Figure 5.12: SpamHaus Attack Inferred a Denial-of-Service Scenario

Refer to Chapter 6 for examples of individuals of the other attack scenarios. In Chapter

6, the formal description and individuals for Web Defacement, Unauthorised Data Access,

Cyber-Warfare, Industrial Espionage, Financial Theft, Resource Theft, Industrial Sabotage

and Runaway Malware are presented.

5.6 Summary

In this chapter, the ontology that describes computer network attacks is presented. This

ontology used the classes of the taxonomy and binds them with relationships that de-

scribe how the classes are related. The ontology is presented in story form, formally, and

implemented within the Protégé editor6. Two attack individuals are represented within

Protégé, and the HermiT automated reasoner is used to determine to which attack sce-

nario they belong. Thus the ontology and automated reasoner can classify network attacks

into their associated scenario. In the next chapter, the impact on the ontology in a near

real-time environment is explored. The ontology relationships are relaxed to only include

classes that have an impact in a near real-time environment.

6http://www.networkattackontology.com/Ontology/

CHAPTER

SIX

DETAILED ONTOLOGY

"Men rise from one ambition to another: first, they seek to secure

themselves against attack, and then they attack others."

Niccolo Machiavelli – 1513

6.1 Introduction

The chapter describes in detail the ontologies for each of the attack scenarios, similar to

how the Denial-of-Service scenario is described in Section 5.3.1. For each of the scenar-

ios, their stories with an example is presented and detailed mathematical de�nitions are

presented. In sections 6.2 to 6.10, the attack scenarios stories, formal descriptions and

individuals are presented. A conclusion of this chapter is presented in Section 6.11.

6.2 Web Defacement

Web defacement can be considered gra�ti of the digital world (Lewis, 2007). Websites are

the public face of commercial and other entities in the digital world, and their reputations

are negatively e�ected by defacing it. The web defacement scenario refers to attacks

122

6.2. WEB DEFACEMENT 123

Attack Goal
Scope

Actor

Aggressor

Attack Mechanism

Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

Web Server

AttackScenario

Web Defacement
Hacker

Change

 DataData

Sabotage

ReputationalLoss

Minor

Damage

EthicalFun OR

CorporateGoverment OR

Null

ReconnaissanceRamp-up

Web

Application
Web Crawl

R
am

p
-u

p

D
am

age

Reconnaissance

MajorOR

Figure 6.1: Web Defacement Attack Scenario

directed at a website's content. Web defacement is an attack on a website, which performs

unauthorised changes to a speci�c web page. Such changes include altering the visual

appearance, written content or overall message of the website into a form that is o�ensive

and can potentially harm a company's reputation.

The story that describes the Web Defacement Scenario follows (Figure 6.1):

A Hacker based at [ActorLocation] location with the goal of Change Data sponsored

by [Aggressor] with a Fun OR Ethical motivation The attack effected [ScopeSize]

Corporate OR Government Network scope. A Server was attacked via [Vulner-

ability]. This attack effected Data and resulted in Reputation Loss to Minor OR

Major effect during the Damage attack phase. During the Reconnaissance phase Web

Crawl was used, during the Ramp-up phase Web Application was used and during the

Damage phase Web Application was used. The attack was automated to [Automa-

tionLevel] level.

The Apache.org (Section 2.4.15) is an attack that can be classi�ed as a Web Defacement

Attack Scenario (Figure 6.2):

A Hacker based at Foreign (Netherlands) location with the goal of Change Data

sponsored by Self Instigator with a Fun motivation The attack effected Medium Cor-

6.2. WEB DEFACEMENT 124

porate (Apache.org) scope. A Server was attacked via Configuration vulnerability.

This attack effected Data and resulted in Reputation Loss to Minor effect during the

Damage attack phase. During the Reconnaissance phase Web Crawl was used, dur-

ing the Ramp-up phase Web Application was used and during the Damage phase Web

Application was used. The attack was automated to Manual level.

Attack Goal
Scope

Actor

Aggressor

Attack Mechanism

Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

Web Server

AttackScenario

Web Defacement,
Apache

Hacker,
Peter van Dijk

Change Data
Data

Sabotage

ReputationalLoss
Damage

Fun

Corporate,

Apache.org

Null

ReconnaissanceRamp-up

Web App
Manipulate

R
am

p
-u

p

D
am

age

Reconnaissance

Minor

Manual

Configuration

Medium

Foreign,
Netherlands

Self Instigator

Web

Application
Web Crawl

Figure 6.2: Apache.org Web Defacement Attack Scenario Example

6.2.1 Web Defacement Formal Description

The Web Defacement scenario set is de�ned in statements 6.2 to 6.12 (also refer to Figure

6.1). In Figure 6.1, the sub-classes that are speci�c to the Web Defacement scenario

are displayed. This demonstrates which sub-classes are used when the Web Defacement

attack scenario is presented. For example, only the OperationalLoss sub-class is used from

the Sabotage class. The Web Defacement class name is shortened to WD in statements

6.1 to 6.12.

WebDefacement ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (6.1)

6.2. WEB DEFACEMENT 125

WD = {𝑥|(∃𝑣 ∈ 𝐻𝑎𝑐𝑘𝑒𝑟 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟)∧

(∃𝑤 ∈ WebCrawl ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑒𝑐𝑜𝑛)∧

(∃𝑦 ∈ WebApplication ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑠 ∈ WebApplication ∋ (𝑥, 𝑠) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝐷𝑎𝑚𝑎𝑔𝑒)∧

(∃𝑡 ∈ (𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 ∪ 𝐶𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒) ∋ (𝑥, 𝑡) ∈ ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒)∧

(∃𝑢 ∈ WebServer ∋ (𝑥, 𝑢) ∈ ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡)}

(6.2)

HackerWD ⊆ 𝐻𝑎𝑐𝑘𝑒𝑟 ⊆ 𝐴𝑐𝑡𝑜𝑟 (6.3)

HackerWD = {𝑥|∃𝑧 ∈ 𝐶ℎ𝑎𝑛𝑔𝑒𝐷𝑎𝑡𝑎 ∋

(𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙}
(6.4)

WebServerWD ⊆ WebServer ⊆ 𝑇𝑎𝑟𝑔𝑒𝑡 (6.5)

WebServerWD = {𝑥|∃𝑧 ∈ 𝐷𝑎𝑡𝑎 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡} (6.6)

DataWD ⊆ 𝐷𝑎𝑡𝑎 ⊆ 𝐴𝑠𝑠𝑒𝑡 (6.7)

DataWD = {𝑥|∃𝑦 ∈ 𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒} (6.8)

ReputationalLossWD ⊆ 𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠 ⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 (6.9)

ReputationalLossWD = {𝑥|(∃𝑦 ∈ 𝑁𝑢𝑙𝑙 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑒𝑐𝑜𝑛)∧

(∃𝑣 ∈ 𝑁𝑢𝑙𝑙 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑧 ∈ (𝑀𝑖𝑛𝑜𝑟 ∪𝑀𝑎𝑗𝑜𝑟) ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝐷𝑎𝑚𝑎𝑔𝑒)}

(6.10)

AggressorWD ⊆ 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 (6.11)

AggressorWD = {𝑥|(∃𝑧 ∈ (𝐹𝑢𝑛 ∪ 𝐸𝑡ℎ𝑖𝑐𝑎𝑙) ∋

(𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛)}
(6.12)

6.2.2 Web Defacement Individual

The Apache.org attack (Section 2.4.15) was inferred as part of the Web Defacement sce-

nario. The Apache.org attack individual was de�ned in Protégé as follows:

∙ is a member of the Attack Scenario class; and

∙ has at least one:

– Hacker Actor de�ned by hasActor relationship;

6.2. WEB DEFACEMENT 126

– Web Application Attack Mechanism de�ned by hasAttackMechanismDamage

relationship;

– Web Application Attack Mechanism de�ned by hasAttackMechanismRampup

relationship;

– Web Crawl Attack Mechanism de�ned by hasAttackMechanismRecon relation-

ship;

– Manual Automation Level de�ned by hasChainAMAutomationLevel relation-

ship;

– Foreign Actor Location de�ned by hasChainActorActorLocation relationship;

– Self Instigator Aggressor de�ned by hasChainActorAggressor relationship;

– Fun Motivation de�ned by hasChainActorAggressorMotivation relationship;

– Change Data Attack Goal de�ned by hasChainActorAttackGoal relationship;

– Medium Network de�ned by hasChainScopeScopeSize relationship;

– Data Asset de�ned by hasChainTargetAsset relationship;

– Reputational Loss de�ned by hasChainTargetAssetSabotage relationship;

– Minor Loss Effect de�ned by hasChainTargetAssetSabotageEffectDamage rela-

tionship;

– Null Effect de�ned by hasChainTargetAssetSabotageEffectRampup relationship;

– Null Effect de�ned by hasChainTargetAssetSabotageEffectRecon relationship;

– Configuration Error Vulnerability de�ned by hasChainTargetVulnerability re-

lationship;

– Corporate Network de�ned by hasScope relationship;

– Web Server Target de�ned by hasTarget relationship.

By setting an individual using the properties as above, the automated reasoner HermiT

plug-in for Protégé was able to determine that the Apache.org attacks fall within the

Web Defacement scenario. Protégé output is shown in Figure 6.3, with the automated

reasoner-inferred class shown in yellow at the bottom. Note, the terms Web Defacement

and Web Defacing are interchangeable.

6.3. UNAUTHORISED DATA ACCESS 127

Automated reasoner

infers

Web Defacement

Access Scenario

Individual

Properties

Individual

Name

Figure 6.3: Apache.org Attack Inferred a Web Defacement Scenario

6.3 Unauthorised Data Access

This scenario refers to hackers/insiders gaining access data which they don't have permis-

sion to access. Unauthorised data access refers to a situation where a person has access

to a location that is hidden or contains sensitive data. This can lead to the unauthorised

entry of data into a �le, reading a �le, changing the contents of the �le or for any other

malicious purpose.

The story that describes the Unauthorised Data Access Scenario follows (Figure 6.4):

A Hacker based at [ActorLocation] location with the goal of Steal Data OR Change

Data sponsored by [Aggressor] with a [Motivation]. The attack effected [ScopeSize]

Corporate OR Government Network OR Military scope. A Server was attacked

via [Vulnerability]. This attack effected Data and resulted in Secret Loss to Null

effect during the Reconnaissance attack phase, to Null OR Minor effect during the

Ramp-up attack phase and to Minor OR Major effect during the Damage attack phase.

During the Reconnaissance phase Open Information was used, during the Ramp-up

phase Scanning was used and during the Damage phase Exploit was used. The attack

was automated to [AutomationLevel] level.

6.3. UNAUTHORISED DATA ACCESS 128

Attack Goal

 Scope

Actor

Aggressor

Attack Mechanism
Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

Server

AttackScenario

Unauthorised Data

Access Hacker

Steal Data

Data

Scanning

Sabotage

Secret Loss

Ram
p-up

Damage

DamageRamp-up

CorporateGoverment OR

Null

Reconnaissance

Ram
p-up

Exploit
Open

Information

D
am

age

Reconnaissance

Major

Military

OR

Minor

Change DataOR

Figure 6.4: Unauthorised Data Access Attack Scenario

Kevin Mitnick (Section 2.4.8) gained unauthorised access to multiple classi�ed computer

systems (Figure 6.5):

A Hacker (Kevin Mitnick) based at Local (USA) location with the goal of Steal

Data sponsored by Self Instigator with a Fun motivation. The attack effected Large

Corporate scope. A Server was attacked via Access Rights vulnerability. This attack

effected Data and resulted in Secret Loss to Null effect during the Reconnaissance attack

phase, to Minor effect during the Ramp-up attack phase and to Minor effect during the

Damage attack phase. During the Reconnaissance phase Open Information was used,

during the Ramp-up phase Scanning was used and during the Damage phase Access

Attack Mechanism was used. The attack was automated to Manual level.

6.3.1 Unauthorised Data Access Formal Description

The Unauthorised Data Access (UDA) scenario set is de�ned in statements 6.13 to 6.22

(also refer to Figure 6.4). In Figure 6.4, the sub-classes that are speci�c to the Unautho-

rised Data Access scenario are displayed. This demonstrates which sub-classes are used

6.3. UNAUTHORISED DATA ACCESS 129

Attack Goal

Scope

Actor

Aggressor

Attack Mechanism

Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

Server

AttackScenario

Unauthorised Data
Access, Kevin Mitnick Hacker

Steal Data
Data

Sabotage

Secret Loss

Ram
p-up

Ramp-up

Damage

Corporate

Null

Reconnaissance

D
am

age

Reconnaissance

Minor

Self Instigator

Fun

Local

Large

Access Rights

Manual

Scanning
Access

Attack Mechanism

Open

Information

Figure 6.5: Kevin Mitnick Unauthorised Data Access Attack Scenario Example

when the Unauthorised Data Access attack scenario is presented.

UDA ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (6.13)

UDA = {𝑥|(∃𝑣 ∈ 𝐻𝑎𝑐𝑘𝑒𝑟 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟)∧

(∃𝑤 ∈ OpenInformation ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑒𝑐𝑜𝑛)∧

(∃𝑦 ∈ 𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑠 ∈ 𝐸𝑥𝑝𝑙𝑜𝑖𝑡 ∋ (𝑥, 𝑠) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝐷𝑎𝑚𝑎𝑔𝑒)∧

(∃𝑡 ∈ (𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 ∪ 𝐶𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒 ∪𝑀𝑖𝑙𝑖𝑡𝑎𝑟𝑦) ∪ (𝑥, 𝑡) ∈ ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒)∧

(∃𝑢 ∈ 𝑆𝑒𝑟𝑣𝑒𝑟 ∋ (𝑥, 𝑢) ∈ ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡)}

(6.14)

HackerUDA ⊆ 𝐻𝑎𝑐𝑘𝑒𝑟 ⊆ 𝐴𝑐𝑡𝑜𝑟 (6.15)

HackerUDA = {𝑥|∃𝑧 ∈ (𝑆𝑡𝑒𝑎𝑙𝐷𝑎𝑡𝑎 ∪ 𝐶ℎ𝑎𝑛𝑔𝑒𝐷𝑎𝑡𝑎) ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙} (6.16)

𝑆𝑒𝑟𝑣𝑒𝑟UDA ⊆ 𝑆𝑒𝑟𝑣𝑒𝑟 ⊆ 𝑇𝑎𝑟𝑔𝑒𝑡 (6.17)

𝑆𝑒𝑟𝑣𝑒𝑟UDA = {𝑥|∃𝑧 ∈ 𝐷𝑎𝑡𝑎 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡)} (6.18)

6.3. UNAUTHORISED DATA ACCESS 130

𝐷𝑎𝑡𝑎UDA ⊆ 𝐷𝑎𝑡𝑎 ⊆ 𝐴𝑠𝑠𝑒𝑡 (6.19)

𝐷𝑎𝑡𝑎UDA = {𝑥|∃𝑦 ∈ 𝑆𝑒𝑐𝑟𝑒𝑡𝐿𝑜𝑠𝑠 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒} (6.20)

𝑆𝑒𝑐𝑟𝑒𝑡𝐿𝑜𝑠𝑠UDA ⊆ 𝑆𝑒𝑐𝑟𝑒𝑡𝐿𝑜𝑠𝑠 ⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 (6.21)

𝑆𝑒𝑐𝑟𝑒𝑡𝐿𝑜𝑠𝑠UDA = {𝑥|(∃𝑦 ∈ 𝑁𝑢𝑙𝑙 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑒𝑐𝑜𝑛∧

(∃𝑣 ∈ (𝑁𝑢𝑙𝑙 ∪𝑀𝑖𝑛𝑜𝑟) ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑧 ∈ (𝑀𝑖𝑛𝑜𝑟 ∪𝑀𝑎𝑗𝑜𝑟) ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝐷𝑎𝑚𝑎𝑔𝑒)}

(6.22)

6.3.2 Unauthorised Data Access Individual

The Kevin Mitnick attack individual (Section 2.4.8) was de�ned in Protégé as follows:

∙ is a member of the Attack Scenario class; and

∙ has at least one:

– Hacker Actor de�ned by hasActor relationship;

– Access Attack Mechanism de�ned by hasAttackMechanismDamage relation-

ship;

– Scanning Attack Mechanism de�ned by hasAttackMechanismRampup relation-

ship;

– Open Information Attack Mechanism de�ned by hasAttackMechanismRecon

relationship;

– Manual Automation Level de�ned by hasChainAMAutomationLevel relation-

ship;

– Local Actor Location de�ned by hasChainActorActorLocation relationship;

– Self Instigator Aggressor de�ned by hasChainActorAggressor relationship;

– Fun Motivation de�ned by hasChainActorAggressorMotivation relationship;

– Steal Data Attack Goal de�ned by hasChainActorAttackGoal relationship;

– Large Network de�ned by hasChainScopeScopeSize relationship;

– Data Asset de�ned by hasChainTargetAsset relationship;

– Secret Loss de�ned by hasChainTargetAssetSabotage relationship;

– Minor Loss Effect de�ned by hasChainTargetAssetSabotageEffectDamage rela-

tionship;

– Minor Effect de�ned by hasChainTargetAssetSabotageEffectRampup relation-

ship;

– Null Effect de�ned by hasChainTargetAssetSabotageEffectRecon relationship;

6.4. CYBER-WARFARE 131

– Access Rights Vulnerability de�ned by hasChainTargetVulnerability relation-

ship;

– Corporate Network de�ned by hasScope relationship;

– Server Target de�ned by hasTarget relationship.

By setting an individual using the properties as above, the automated reasoner HermiT

plug-in for Protégé was able to determine that the Kevin Mitnick attacks fall within the

Unauthorised Data Access scenario. Protégé output is shown in Figure 6.6, with the

automated reasoner-inferred class shown in yellow at the bottom.

Automated reasoner

infers

Unauthorised Data

Access Scenario

Individual

Properties

Individual

Name

Figure 6.6: Kevin Mitnick Attacks Inferred to Unauthorised Data Access Scenario

6.4 Cyber-Warfare

Cyber-Warfare is the practical use of hacking and other information operations method-

ologies by a state against another state (Ophardt, 2010). The story that describes the

Cyber-Warfare scenario follows (Figure 6.7):

A Cyber Army based at Foreign location with the goal of Disrupting sponsored by

State with a Political motivation, The attack effected Large Corporate OR Military

OR Government scope. A Network Infrastructure was attacked via [Vulnera-

bility]. This attack effected Access and resulted in Operational Loss to Major OR

6.4. CYBER-WARFARE 132

Catastrophic effect during the Damage attack phase and resulted in Minor OR Null

effect during the Ramp-up attack phase. During the Ramp-up and Damage phase the

Denial-of-Service Mechanism was used, and was automated to [AutomationLevel]

level.

Attack Goal

Scope

Actor

Aggressor

Attack Mechanism Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

Network

Infrastructure

AttackScenario

Cyber-Warfare
Scenario CyberArmy

Disrupt
Access

Network Based

Sabotage

Operational

Loss

Major

Null

Ram
p-up &

Dam
age

Damage

Ramp-up

Denial-of-Service

AM

Foreign

State

Political

Large

Government

Military

Corporate

O
R

O
R

Minor

CatastrophicOR

OR

Figure 6.7: Cyber-Warfare Attack Scenario

The cyber-attack on Estonia (Section 2.4.24) is presented in Figure 6.8.

A Cyber Army based at Russia (Foreign) with the goal of Disrupting sponsored by

State with a Political motivation The attack effected Large Corporate OR Govern-

ment scope. A Network Infrastructure was attacked via [Vulnerability]. This attack

effected Access and resulted in Operational Loss to Catastrophic effect during the

Damage attack phase and resulted in Minor effect during the Ramp-up attack phase.

During the Ramp-up and Damage phase the Denial-of-Service Mechanism was used,

and was automated to [AutomationLevel] level.

6.4. CYBER-WARFARE 133

Attack Goal

Scope

Actor

Aggressor

Attack Mechanism Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

Network

Infrastructure

AttackScenario

Cyber-Warfare
Scenario, Estonia CyberArmy

Disrupt
Access

Network Based

Sabotage

Operational

Loss

Ram
p-up &

Dam
age

Damage

Ramp-up

Denial-of-Service

AM

Foreign,

Russia

State

Political

Large

Government

Corporate

O
R

Minor

Catastrophic

Figure 6.8: Estonia Cyber-Attack Scenario

6.4.1 Cyber-Warfare Formal Description

The Cyber-Warfare (CW) scenario set is de�ned in statements 6.23 to 6.36 (also refer

to Figure 6.7). In Figure 6.7, the sub-classes that are speci�c to the Cyber-Warfare

scenario are displayed. This demonstrates which sub-classes are used when the Cyber-

Warfare (CW) attack scenario is presented.

𝐶𝑊 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (6.23)

𝐶𝑊 = {𝑥|(∃𝑣 ∈ 𝐶𝑦𝑏𝑒𝑟𝐴𝑟𝑚𝑦 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟)∧

(∃𝑤 ∈ DenialOfService𝐴𝑀 ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑦 ∈ DenialOfService𝐴𝑀 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝐷𝑎𝑚𝑎𝑔𝑒)∧

(∃𝑠 ∈ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∋ (𝑥, 𝑠) ∈ ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡)∧

(∃𝑢 ∈ (𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 ∪𝑀𝑖𝑙𝑖𝑡𝑎𝑟𝑦 ∪ 𝐶𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒) ∋ (𝑥, 𝑢) ∈ ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒)}

(6.24)

𝐶𝑦𝑏𝑒𝑟𝐴𝑟𝑚𝑦𝐶𝑊 ⊆ 𝐶𝑦𝑏𝑒𝑟𝐴𝑟𝑚𝑦 ⊆ 𝐴𝑐𝑡𝑜𝑟 (6.25)

6.4. CYBER-WARFARE 134

𝐶𝑦𝑏𝑒𝑟𝐴𝑟𝑚𝑦𝐶𝑊 = {𝑥|(∃𝑧 ∈ 𝐷𝑖𝑠𝑟𝑢𝑝𝑡 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙)∧

(∃𝑦 ∈ 𝑆𝑡𝑎𝑡𝑒 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟)∧

(∃𝑣 ∈ 𝐹𝑜𝑟𝑒𝑖𝑔𝑛 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)}

(6.26)

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝐶𝑊 ⊆ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ⊆ 𝑇𝑎𝑟𝑔𝑒𝑡 (6.27)

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝐶𝑊 = {𝑥|∃𝑧 ∈ 𝐴𝑐𝑐𝑒𝑠𝑠 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡)} (6.28)

𝐴𝑐𝑐𝑒𝑠𝑠𝐶𝑊 ⊆ 𝐴𝑐𝑐𝑒𝑠𝑠 ⊆ 𝐴𝑠𝑠𝑒𝑡 (6.29)

𝐴𝑐𝑐𝑒𝑠𝑠 = {𝑥|∃𝑦 ∈ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒} (6.30)

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠𝐶𝑊 ⊆ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠 ⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 (6.31)

𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 = {(𝑥|∃𝑦 ∈ (𝑁𝑢𝑙𝑙 ∪𝑀𝑖𝑛𝑜𝑟) ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑎𝑚𝑝𝑢𝑝)∧

∃𝑧 ∈ (𝑀𝑎𝑗𝑜𝑟 ∪ 𝐶𝑎𝑡𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑖𝑐) ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝐷𝑎𝑚𝑎𝑔𝑒)}
(6.32)

𝑆𝑡𝑎𝑡𝑒𝐶𝑊 ⊆ 𝑆𝑡𝑎𝑡𝑒 ⊆ 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 (6.33)

𝑆𝑡𝑎𝑡𝑒𝐶𝑊 = {𝑥|∃𝑧 ∈ 𝑃𝑜𝑙𝑖𝑡𝑖𝑐𝑎𝑙 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛} (6.34)

𝑆𝑐𝑜𝑝𝑒𝐶𝑊 ⊆ (𝐶𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒 ∪𝑀𝑖𝑙𝑖𝑡𝑎𝑟𝑦 ∪𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡) ⊆ 𝑆𝑐𝑜𝑝𝑒 (6.35)

𝑆𝑐𝑜𝑝𝑒𝐶𝑊 = {𝑥|∃𝑧 ∈ 𝐿𝑎𝑟𝑔𝑒 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒𝑆𝑖𝑧𝑒} (6.36)

6.4.2 Cyber-Warfare Individual

The attack on Estonia (Section 2.4.24) was inferred as part of the Cyber-Warfare scenario.

The Estonia attack individual was de�ned in Protégé as follows:

∙ is a member of the Attack Scenario class; and

∙ has at least one:

– Cyber Army de�ned by hasActor relationship;

– Denial-of-Service Attack Mechanism de�ned by hasAttackMechanismDamage

relationship;

– Denial-of-Service Attack Mechanism de�ned by hasAttackMechanismRampup

relationship;

– Foreign Actor Location de�ned by hasChainActorActorLocation relationship;

– State Aggressor de�ned by hasChainActorAggressor relationship;

6.4. CYBER-WARFARE 135

– Political Motivation de�ned by hasChainActorAggressorMotivation relation-

ship;

– Disrupt Attack Goal de�ned by hasChainActorAttackGoal relationship;

– Large Network de�ned by hasChainScopeScopeSize relationship;

– Access Asset de�ned by hasChainTargetAsset relationship;

– Operational Loss de�ned by hasChainTargetAssetSabotage relationship;

– Minor Effect de�ned by hasChainTargetAssetSabotageEffectRampup relation-

ship;

– Catastrophic Effect de�ned by hasChainTargetAssetSabotageEffectDamage re-

lationship;

– Corporate Network OR Government Network de�ned by hasScope relationship;

– Network Infrastructure de�ned by hasTarget relationship.

By setting an individual using the properties as above, the automated reasoner HermiT

plug-in for Protégé was able to determine that the Apache.org attacks fall within the

Cyber-Warfare scenario. Protégé output is shown in Figure 6.9, with the automated-

reasoner inferred class shown in yellow at the bottom.

Automated reasoner

infers

Cyber-Warfare

Access Scenario

Individual

Properties

Individual

Name

Figure 6.9: Estonia Attack Inferred a Cyber-Warfare Scenario

6.5. INDUSTRIAL ESPIONAGE 136

6.5 Industrial Espionage

Industrial Espionage refers to network attacks with the goal of stealing secret corporate

information. This information can consist of various types of information such as de�ned

by the FBI (1996). "...�nancial, business, scienti�c, technical, economic or engineering

information, including patterns, plans, compilations, program devices, formulas, designs,

prototypes, methods, techniques, processes, procedures, programs, or codes."

The story that describe the Industrial Espionage Scenario follows (Figure 6.10):

A HackerActor based at [ActorLocation] location with the goal of Stealing Data

sponsored by State or Commercial Aggressor with a Espionage or Financial mo-

tivation. The attack effected [ScopeSize] Corporate scope. A FileServer Target was

attacked via [Vulnerability]. This attack effected Data and resulted in Secret Loss to

Null effect during the Reconnaissance attack phase, to Null OR Minor effect during

the Ramp-up attack phase and to Minor OR Major effect during the Damage attack

phase. During the Reconnaissance phase Open Information was done, during the Ramp-

up phase Scanning was used and during the Damage phase, Exploit was used. These

mechanisms were automated to [AutomationLevel] level.

Attack Goal

Scope

Actor

Aggressor

Attack Mechanism

Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

FileServer

AttackScenario

Industrial

Espionage Hacker

Steal Data
Data

Scanning

Sabotage

Secret Loss

Ram
p-up

Damage

Ramp-up
Damage

Null

Reconnaissance
Ramp-up

Exploit
Open

Information

D
am

age

Reconnaissance

Major

Minor

StateCommercial OR

FinancialEspionage OR

Corporate

Figure 6.10: Industrial Espionage Attack Scenario

6.5. INDUSTRIAL ESPIONAGE 137

The Titan Rain (Section 2.4.14) network attack can be classi�ed as an example of Indus-

trial Espionage (Figure 6.11):

A HackerActor based at Foreign, China location with the goal of Stealing Data

sponsored by State Aggressor with a Espionage motivation The attack effected Large

Corporate scope. A FileServer Target was attacked via [Vulnerability]. This attack

effected Data and resulted in Secret Loss to Null effect during the Reconnaissance attack

phase, to Minor effect during the Ramp-up attack phase and to Major effect during the

Damage attack phase. During the Reconnaissance phase Open Information was done,

during the Ramp-up phase Scanning was used and during the Damage phase, Exploit

was used. These mechanisms was automated to Manual level.

Attack Goal

Scope

Actor

Aggressor

Attack Mechanism

Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

FileServer

AttackScenario

Industrial

Espionage Hacker

Steal Data
Data

Scanning

Sabotage

Secret Loss

Ram
p-up

Damage

Ramp-up

Null

Reconnaissance

Access
Open

Information

D
am

age

Reconnaissance

Major

Minor

State

Espionage

Corporate

Foreign

Titan Rain

Large

Manual

ScanningExploit
Open

Information

Figure 6.11: Titan Rain Industrial Espionage Attack Scenario Example

6.5.1 Industrial Espionage Formal Description

The Industrial Espionage scenario set is de�ned in statements 6.37 to 6.48 (also refer to

Figure 6.10). In Figure 6.10, the sub-classes that are speci�c to the Industrial Espionage

scenario are displayed. This demonstrates which sub-classes are used when the Industrial

6.5. INDUSTRIAL ESPIONAGE 138

Espionage (IE) attack scenario is presented.

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝐸𝑠𝑝𝑖𝑜𝑛𝑎𝑔𝑒 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (6.37)

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝐸𝑠𝑝𝑖𝑜𝑛𝑎𝑔𝑒 = {𝑥|(∃𝑣 ∈ 𝐻𝑎𝑐𝑘𝑒𝑟 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟)∧

(∃𝑤 ∈ OpenInformation ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑒𝑐𝑜𝑛)∧

(∃𝑦 ∈ 𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑠 ∈ 𝐸𝑥𝑝𝑙𝑜𝑖𝑡 ∋ (𝑥, 𝑠) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝐷𝑎𝑚𝑎𝑔𝑒)∧

(∃𝑡 ∈ 𝐶𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒 ∋ (𝑥, 𝑡) ∈ ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒)∧

(∃𝑢 ∈ 𝐹𝑖𝑙𝑒𝑆𝑒𝑟𝑣𝑒𝑟 ∋ (𝑥, 𝑢) ∈ ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡)}

(6.38)

HackerIE ⊆ 𝐻𝑎𝑐𝑘𝑒𝑟 ⊆ 𝐴𝑐𝑡𝑜𝑟 (6.39)

HackerIE = {𝑥|(∃𝑧 ∈ 𝑆𝑡𝑒𝑎𝑙𝐷𝑎𝑡𝑎 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙)∧

(∃𝑦 ∈ (𝐶𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 ∪ 𝑆𝑡𝑎𝑡𝑒) ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙)}
(6.40)

𝐹𝑖𝑙𝑒𝑆𝑒𝑟𝑣𝑒𝑟𝐼𝐸 ⊆ 𝐹𝑖𝑙𝑒𝑆𝑒𝑟𝑣𝑒𝑟 ⊆ 𝑇𝑎𝑟𝑔𝑒𝑡 (6.41)

FileServerIE = {𝑥|∃𝑧 ∈ 𝐷𝑎𝑡𝑎 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡} (6.42)

DataIE ⊆ 𝐷𝑎𝑡𝑎 ⊆ 𝐴𝑠𝑠𝑒𝑡 (6.43)

DataIE = {𝑥|∃𝑦 ∈ 𝑆𝑒𝑐𝑟𝑒𝑡𝐿𝑜𝑠𝑠 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒} (6.44)

SecretLossIE ⊆ 𝑆𝑒𝑐𝑟𝑒𝑡𝐿𝑜𝑠𝑠 ⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 (6.45)

SecretLossIE = ({𝑥|(∃𝑦 ∈ 𝑁𝑢𝑙𝑙 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑒𝑐𝑜𝑛)∧

(∃𝑣 ∈ (𝑁𝑢𝑙𝑙 ∪𝑀𝑖𝑛𝑜𝑟) ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑧 ∈ (𝑀𝑖𝑛𝑜𝑟 ∪𝑀𝑎𝑗𝑜𝑟) ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝐷𝑎𝑚𝑎𝑔𝑒)}

(6.46)

AggressorIE ⊆ (𝐶𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 ∪ 𝑆𝑡𝑎𝑡𝑒) ⊆ 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 (6.47)

AggressorIE = {𝑥|∃𝑧 ∈ (𝐸𝑠𝑝𝑖𝑜𝑛𝑎𝑔𝑒 ∪ 𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙) ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛} (6.48)

6.5.2 Industrial Espionage Individual

The Titan Rain (Section 2.4.14) was inferred as part of the Industrial Espionage scenario.

The Titan Rain attack individual was de�ned in Protégé as follows:

∙ is a member of the Attack Scenario class; and

6.5. INDUSTRIAL ESPIONAGE 139

∙ has at least one:

– Hacker de�ned by hasActor relationship;

– Exploit Attack Mechanism de�ned by hasAttackMechanismDamage relation-

ship;

– Scanning Attack Mechanism de�ned by hasAttackMechanismRampup relation-

ship;

– Open Information Mechanism de�ned by hasAttackMechanismRecon relation-

ship;

– Manual de�ned by hasChainAMAutomationLevel relationship.

– Foreign Actor Location de�ned by hasChainActorActorLocation relationship;

– State Aggressor de�ned by hasChainActorAggressor relationship;

– Espionage Motivation de�ned by hasChainActorAggressorMotivation relation-

ship;

– Steal Data Attack Goal de�ned by hasChainActorAttackGoal relationship;

– Large Network de�ned by hasChainScopeScopeSize relationship;

– Data Asset de�ned by hasChainTargetAsset relationship;

– Secret Loss de�ned by hasChainTargetAssetSabotage relationship;

– Null Effect de�ned by hasChainTargetAssetSabotageEffectRecon relationship;

– Minor Effect de�ned by hasChainTargetAssetSabotageEffectRamp relationship;

– Major Effect de�ned by hasChainTargetAssetSabotageEffectDamage relation-

ship;

– Corporate Scope de�ned by hasScope relationship;

– File Server de�ned by hasTarget relationship.

By setting an individual using the properties as above, the automated reasoner HermiT

plug-in for Protégé was able to determine that the Titan Rain attacks fall within the In-

dustrial Espionage scenario. Protégé output is shown in Figure 6.12, with the automated

reasoner-inferred class shown at the yellow at the bottom.

6.6. FINANCIAL THEFT 140

Automated reasoner

infers

Industrial Espionage

Access Scenario

Individual

Properties

Individual

Name

Figure 6.12: Titan Rain Attack Inferred an Industrial Espionage Scenario

6.6 Financial Theft

The Financial Theft scenario refers to the use of computer networks to steal money, or

hacking directly for money. A famous bank robber, Willie Sutton, is credited with the

following answer to why he robbed banks (Yoder, 1951):

"I rob banks because that's where the money is."

The same motivation holds true in the information age, where computer networks are

used as the means to rob banks or other institutions for �nancial gain.

The story that describes the Financial Theft Scenario follows (Figure 6.13):

An Organised Criminal Group based at [ActorLocation] location with the goal of

Changing Data sponsored by [Aggressor] with a Financial motivation. The attack

effected [ScopeSize] Corporate scope. A ServerTarget was attacked via [Vulnerabil-

ity]. This attack effected Data and resulted in Financial Loss to Null effect during

the Reconnaissance attack phase, to Null OR Minor effect during the Ramp-up attack

phase and to Minor OR Major effect during the Damage attack phase. During the

Reconnaissance phase Open Information was used, during the Ramp-up phase Scan-

ning was used and during the Damage phase, Exploit was used. These mechanisms was

6.6. FINANCIAL THEFT 141

automated to [AutomationLevel] level.

Attack Goal

Scope

Actor

Aggressor

 Attack Mechanism

Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

Server

AttackScenario

Financial Theft Organised

Criminal Group

Change Data

Data

Scanning

Sabotage

Financial Loss

Ram
p-up

Damage

Ramp-up
Damage

Null

Reconnaissance

Ramp-up

Open

Information

D
am

age

Reconnaissance

Major

Minor

Financial

Corporate

Exploit

Figure 6.13: Financial Theft Attack Scenario

The PostBank (Section 2.4.33) network attack can be classi�ed as an example of a Finan-

cial Theft Scenario (Figure 6.14):

An Organised Criminal Group based at Local location with the goal of Changing

Data sponsored by Self Instigator with a Financial motivation. The attack effected

Large Corporate scope. A ServerTarget was attacked via Access Rights Vulnera-

bility. This attack effected Data and resulted in Financial Loss and resulted in Secret

Loss to Null effect during the Reconnaissance attack phase, to Null effect during the

Ramp-up attack phase and to Major effect during the Damage attack phase. During the

Reconnaissance phase Open Information was used, during the Ramp-up phase Scan-

ning was used and during the Damage phase, Physical Access Exploit was used. These

mechanisms was automated to Manual level.

6.6. FINANCIAL THEFT 142

Attack Goal

Scope

Actor

Aggressor

 Attack Mechanism

Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

Server

AttackScenario

Financial Theft,
PostBank SA

Organised

Criminal Group

Change Data
Data

Scanning

Sabotage

Financial Loss

Null

Ram
p-up

Damage

Ramp-up

Null

Reconnaissance

Open

Information

D
am

age

Reconnaissance

Major

Self Instigator

Financial

Corporate

Physical Access

Exploit

Local

Manual

Access Rights

Large

Figure 6.14: Post Bank SA Financial Theft Attack Scenario Example

6.6.1 Financial Theft Formal Description

The Financial Theft scenario set is de�ned in statements 6.49 to 6.60 (also refer to Figure

6.13). In Figure 6.13, the sub-classes that are speci�c to the Financial Theft scenario are

displayed. This demonstrates which sub-classes are used when the Financial Theft (FT)

attack scenario is presented.

FinancialTheft ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (6.49)

FinancialTheft = {𝑥|(∃𝑣 ∈ 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑒𝑑𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙𝐺𝑟𝑜𝑢𝑝 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟)∧

(∃𝑤 ∈ OpenInformation ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑒𝑐𝑜𝑛)∧

(∃𝑦 ∈ 𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑠 ∈ 𝐸𝑥𝑝𝑙𝑜𝑖𝑡 ∋ (𝑥, 𝑠) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝐷𝑎𝑚𝑎𝑔𝑒)∧

(∃𝑡 ∈ 𝐶𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒 ∋ (𝑥, 𝑡) ∈ ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒)∧

(∃𝑢 ∈ 𝑆𝑒𝑟𝑣𝑒𝑟 ∋ (𝑥, 𝑢) ∈ ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡)}

(6.50)

6.6. FINANCIAL THEFT 143

𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑒𝑑𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙𝐺𝑟𝑜𝑢𝑝𝐹𝑇 ⊆ 𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑒𝑑𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙𝐺𝑟𝑜𝑢𝑝 ⊆ 𝐴𝑐𝑡𝑜𝑟 (6.51)

𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑒𝑑𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙𝐺𝑟𝑜𝑢𝑝𝐹𝑇 =

{𝑥|∃𝑧 ∈ 𝐶ℎ𝑎𝑛𝑔𝑒𝐷𝑎𝑡𝑎 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙}
(6.52)

𝑆𝑒𝑟𝑣𝑒𝑟𝐹𝑇 ⊆ 𝑆𝑒𝑟𝑣𝑒𝑟 ⊆ 𝑇𝑎𝑟𝑔𝑒𝑡 (6.53)

𝑆𝑒𝑟𝑣𝑒𝑟𝐹𝑇 = {𝑥|∃𝑧 ∈ 𝐷𝑎𝑡𝑎 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡)} (6.54)

𝐷𝑎𝑡𝑎𝐹𝑇 ⊆ 𝐷𝑎𝑡𝑎 ⊆ 𝐴𝑠𝑠𝑒𝑡 (6.55)

𝐷𝑎𝑡𝑎𝐹𝑇 = {𝑥|∃𝑦 ∈ 𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝐿𝑜𝑠𝑠 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒} (6.56)

𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝐿𝑜𝑠𝑠𝐹𝑇 ⊆ 𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝐿𝑜𝑠𝑠 ⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 (6.57)

𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝐿𝑜𝑠𝑠𝐹𝑇 = ({𝑥|(∃𝑦 ∈ 𝑁𝑢𝑙𝑙 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑒𝑐𝑜𝑛)∧

(∃𝑣 ∈ (𝑁𝑢𝑙𝑙 ∪𝑀𝑖𝑛𝑜𝑟) ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑧 ∈ (𝑀𝑖𝑛𝑜𝑟 ∪𝑀𝑎𝑗𝑜𝑟) ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝐷𝑎𝑚𝑎𝑔𝑒)}

(6.58)

𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝐹𝑇 ⊆ 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 (6.59)

𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝐹𝑇 = {𝑥|∃𝑧 ∈ 𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛} (6.60)

6.6.2 Financial Theft Individual

The PostBank SA (Section 2.4.33) was inferred as part of the Financial Theft scenario.

The PostBank SA attack individual was de�ned in Protégé as follows:

∙ is a member of the Attack Scenario class; and

∙ has at least one:

– Organised Criminal Group de�ned by hasActor relationship;

– Physical Exploit Attack Mechanism de�ned by hasAttackMechanismDamage

relationship;

– Scanning Attack Mechanism de�ned by hasAttackMechanismRampup relation-

ship;

– Open Information Mechanism de�ned by hasAttackMechanismRecon relation-

ship;

– Local Actor Location de�ned by hasChainActorActorLocation relationship;

– Self Instigator Aggressor de�ned by hasChainActorAggressor relationship;

6.6. FINANCIAL THEFT 144

– Financial Motivation de�ned by hasChainActorAggressorMotivation relation-

ship;

– Change Data Attack Goal de�ned by hasChainActorAttackGoal relationship;

– Large Network de�ned by hasChainScopeScopeSize relationship;

– Data Asset de�ned by hasChainTargetAsset relationship;

– Financial Loss de�ned by hasChainTargetAssetSabotage relationship;

– Null Effect de�ned by hasChainTargetAssetSabotageEffectRecon relationship;

– Null Effect de�ned by hasChainTargetAssetSabotageEffectRampup relationship;

– Major Effect de�ned by hasChainTargetAssetSabotageEffectDamage relation-

ship;

– Manual de�ned by hasChainAMAutomationLevel relationship.

– Corporate Scope de�ned by hasScope relationship;

– Server de�ned by hasTarget relationship.

By setting an individual using the properties as above, the automated reasoner HermiT

plug-in for Protégé was able to determine that the PostBank SA attacks fall within the

Financial Theft scenario. Protégé output is shown in Figure 6.15, with the automated

reasoner-inferred class shown in yellow at the bottom.

Automated reasoner

infers

Financial Theft

Access Scenario

Individual

Properties

Individual

Name

Figure 6.15: PostBank SA Attack Inferred a Financial Theft Scenario

6.7. RESOURCE THEFT 145

Attack Goal
Scope

Actor

Aggressor

 Attack Mechanism

Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

AttackScenario

Resource Theft
Hacker

Gain

Resources

System

Scanning

Sabotage

Operational Loss

Ram
p-up

Damage

Ramp-up
Damage

Null

ReconnaissanceRamp-up

Open

Information

D
am

age

Reconnaissance

Major

Minor

Corporate

System Abuse

GovernmentOR

Financial Loss

OR

Figure 6.16: Resource Theft Attack Scenario

6.7 Resource Theft

The Resource Theft scenario refers to gaining control of computer resources. The com-

puter resources can typically be used to attack other computers via DDoS. The main

resources that are targeted are bandwidth, processing power or memory.

The story that describes the Resource Theft Scenario follows (Figure 6.16):

A Hacker based at [ActorLocation] with the goal of Gain Resources is sponsored by

[Aggressor] with a [Motivation] motivation The attack effected [ScopeSize] Govern-

ment OR Corporate network scope. A [Target] was attacked via [Vulnerability].

This attack effected System and resulted in Operational Loss OR Financial Loss

to Minor OR Major effect during Damage attack phase, to Minor OR Null effect

during Ramp-up attack phase, and to Null effect during Reconnaissance attack phase.

During the Reconnaissance phase Open Information was used, during the Ramp-up

phase Scanning was used and during the Damage phase, System Abuse was used.

These mechanisms were automated to [AutomationLevel] level.

The Phone Phreaking (Section2.4.1) incident can be classi�ed as an example of a Resource

Theft scenario (Figure 6.17):

6.7. RESOURCE THEFT 146

A Hacker based at Local with the goal of Gain Resources is sponsored by Self In-

stigator with a Financial motivation The attack effected Large Corporate network

scope. A Industrial Equipment was attacked via Access Rights. This attack effected

System and resulted in Financial Loss to Minor effect during Damage attack phase.

During the Reconnaissance phase Open Information was used, during the Ramp-up

phase Vulnerability Scanning was used and during the Damage phase, System Abuse

was used. These mechanisms was automated to Manual level.

Attack Goal
Scope

Actor

Aggressor

 Attack Mechanism

Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target AttackScenario

Resource Theft
Phone Phreaking Hacker

Gain

ResourcesSystem

Scanning

Sabotage

Financial Loss

Minor

Null

Ram
p-up

Damage

Ramp-up

Null

Reconnaissance

Open

Information

D
am

age

Reconnaissance

Corporate

System Abuse

Manual

Access Rights

Industrial
Equipment

Self Instigator

Financial

Local

Large

Figure 6.17: Phone Phreaking Resource Theft Attack Scenario Example

6.7.1 Resource Theft Formal Description

The Resource Theft scenario set is de�ned in statements 6.61 to 6.69 (also refer to Figure

6.16). In Figure 6.16, the sub-classes that are speci�c to the Resource Theft scenario are

displayed. This demonstrates which sub-classes are used when the Resource Theft attack

scenario is presented.

ResourceTheft ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (6.61)

6.7. RESOURCE THEFT 147

ResourceTheft = {𝑥|(∃𝑣 ∈ 𝐻𝑎𝑐𝑘𝑒𝑟 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟)∧

(∃𝑤 ∈ 𝑂𝑝𝑒𝑛𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑒𝑐𝑜𝑛)∧

(∃𝑦 ∈ 𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑠 ∈ 𝑆𝑦𝑠𝑡𝑒𝑚𝐴𝑏𝑢𝑠𝑒 ∋ (𝑥, 𝑠) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝐷𝑎𝑚𝑎𝑔𝑒)∧

(∃𝑡 ∈ (𝐶𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑒 ∪𝐺𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡) ∋ (𝑥, 𝑡) ∈ ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒)}

(6.62)

HackerResourceTheft ⊆ 𝐻𝑎𝑐𝑘𝑒𝑟 ⊆ 𝐴𝑐𝑡𝑜𝑟 (6.63)

HackerResourceTheft = {𝑥|∃𝑧 ∈ 𝐺𝑎𝑖𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙} (6.64)

𝑇𝑎𝑟𝑔𝑒𝑡 = {𝑥|∃𝑧 ∈ 𝑆𝑦𝑠𝑡𝑒𝑚 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡} (6.65)

SystemResourceTheft ⊆ 𝑆𝑦𝑠𝑡𝑒𝑚 ⊆ 𝐴𝑠𝑠𝑒𝑡 (6.66)

SystemResourceTheft =

{𝑥|∃𝑦 ∈ (𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝐿𝑜𝑠𝑠 ∪𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠) ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒}
(6.67)

𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒ResourceTheft ⊆ (𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝐿𝑜𝑠𝑠 ∪𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠) ⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 (6.68)

𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒ResourceTheft = {𝑥|(∃𝑦 ∈ 𝑁𝑢𝑙𝑙 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑒𝑐𝑜𝑛)∧

(∃𝑣 ∈ (𝑁𝑢𝑙𝑙 ∪𝑀𝑖𝑛𝑜𝑟) ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑧 ∈ (𝑀𝑖𝑛𝑜𝑟 ∪𝑀𝑎𝑗𝑜𝑟) ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝐷𝑎𝑚𝑎𝑔𝑒)}

(6.69)

6.7.2 Resource Theft Individual

The Phone Phreaking (Section 2.4.1) was inferred as part of the Resource Theft scenario.

The Phone Phreaking individual was de�ned in Protégé as follows:

∙ is a member of the Attack Scenario class; and

∙ has at least one:

– Hacker Actor de�ned by hasActor relationship;

– System Abuse Attack Mechanism de�ned by hasAttackMechanismDamage re-

lationship;

– Scanning Attack Mechanism de�ned by hasAttackMechanismRampup relation-

ship;

– Open Information Mechanism de�ned by hasAttackMechanismRecon relation-

ship;

– Manual de�ned by hasChainAMAutomationLevel relationship.

– Local Actor Location de�ned by hasChainActorActorLocation relationship;

6.7. RESOURCE THEFT 148

– Self Instigator Aggressor de�ned by hasChainActorAggressor relationship;

– Financial Motivation de�ned by hasChainActorAggressorMotivation relation-

ship;

– Gain Resources Attack Goal de�ned by hasChainActorAttackGoal relationship;

– Large Network de�ned by hasChainScopeScopeSize relationship;

– System Asset de�ned by hasChainTargetAsset relationship;

– Financial Loss de�ned by hasChainTargetAssetSabotage relationship;

– Null Effect de�ned by hasChainTargetAssetSabotageEffectRecon relationship;

– Null Effect de�ned by hasChainTargetAssetSabotageEffectRampup relationship;

– Minor Effect de�ned by hasChainTargetAssetSabotageEffectDamage relation-

ship;

– Access Rights Vulnerability de�ned by hasChainTargetVulnerability relation-

ship;

– Corporate Scope de�ned by hasScope relationship;

– Industrial Equipment de�ned by hasTarget relationship.

By setting an individual with properties as above, the automated reasoner HermiT plug-

in for Protégé was able to determine that the Phone Phreaking attacks fall within the

Resource Theft scenario. Protégé output is shown in Figure 6.18, with the automated

reasoner-inferred class shown in yellow at the bottom.

Automated reasoner

infers

Resource Theft

Scenario

Individual

Properties

Individual

Name

Figure 6.18: Phone Phreaking Attack Inferred a Resource Theft Scenario

6.8. INDUSTRIAL SABOTAGE 149

6.8 Industrial Sabotage

The Industrial Sabotage scenario refers to using computer networks to damage an indus-

trial complex or product.

The story that describes the Industrial Sabotage Scenario follows (Figure 6.19):

A Hacker based at [ActorLocation] with the goal of Disrupt is sponsored by Commer-

cial OR State with a Criminal motivation. The attack effected [ScopeSize] [Scope]

scope. A Industrial Equipment was attacked via [Vulnerability]. This attack effected

System and resulted in Operational Loss to Catastrophic OR Major effect during

Damage attack phase, to Null OR Minor effect during Ramp-up attack phase, and to

Null effect during Reconnaissance attack phase. During the Reconnaissance phase In-

formation Gathering was used, during the Ramp-up phase Scanning was used and

during the Damage phase, Exploit was used and was automated to [AutomationLevel]

level.

Attack Goal
Scope

Actor

Aggressor

 Attack Mechanism

Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target AttackScenario

Industrial Sabotage
Hacker

Disrupt
System

Scanning

Sabotage

Catastrophic

Ram
p-up

Damage

Ramp-up

Null

ReconnaissanceRamp-up

Information

Gathering

D
am

age

Reconnaissance

MajorOR

Minor

Exploit

State CommercialOR

Criminal

Industrial

Equipment

Operational Loss

Figure 6.19: Industrial Sabotage Attack Scenario

The Stuxnet worm (Section 2.4.29) can be classi�ed as an example of an Industrial Sab-

otage scenario (Figure 6.20):

6.8. INDUSTRIAL SABOTAGE 150

A Hacker based at Foreign with the goal of Disrupt is sponsored by State with a

Criminal motivation. The attack effected Large Government scope. A Industrial

Equipment was attacked via Configuration vulnerability. This attack effected System

and resulted in Operational Loss to Major Loss effect during Damage attack phase,

to Null effect during Ramp-up attack phase, and to Null effect during Reconnaissance

attack phase. During the Reconnaissance phase Information Gathering was used, during

the Ramp-up phase Scanning was used and during the Damage phase, Exploit was used.

was automated to Automatic level.

Attack Goal
Scope

Actor

Aggressor

 Attack Mechanism

Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target AttackScenario

Industrial Sabotage
Stuxnet Hacker

Disrupt
System

Scanning

Sabotage

Null

Ram
p-up

Damage

Ramp-up

Null

Reconnaissance

Information

Gathering

D
am

age

Reconnaissance

Major

Exploit

State

Criminal

Industrial

Equipment

Operational Loss

Government

Foreign

Large

Configuration

Configuration

Figure 6.20: Stuxnet Industrial Sabotage Attack Scenario Example

6.8.1 Industrial Sabotage Formal Description

The Resource Theft scenario set is de�ned in statements 6.70 to 6.81 (also refer to Figure

6.19). In Figure 6.19, the sub-classes that are speci�c to the Industrial Sabotage scenario

are displayed. This demonstrates which sub-classes are used when the Industrial Sabotage

(IS) attack scenario is presented.

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (6.70)

6.8. INDUSTRIAL SABOTAGE 151

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 = {𝑥|(∃𝑣 ∈ 𝐻𝑎𝑐𝑘𝑒𝑟 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟)∧

(∃𝑤 ∈ 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑡ℎ𝑒𝑟𝑖𝑛𝑔 ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑒𝑐𝑜𝑛)∧

(∃𝑦 ∈ 𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑠 ∈ 𝐸𝑥𝑝𝑙𝑜𝑖𝑡 ∋ (𝑥, 𝑠) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝐷𝑎𝑚𝑎𝑔𝑒)∧

(∃𝑡 ∈ 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡) ∋ (𝑥, 𝑡) ∈ ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡)}

(6.71)

𝐻𝑎𝑐𝑘𝑒𝑟𝐼𝑆 ⊆ 𝐻𝑎𝑐𝑘𝑒𝑟 ⊆ 𝐴𝑐𝑡𝑜𝑟 (6.72)

𝐻𝑎𝑐𝑘𝑒𝑟𝐼𝑆 = {𝑥|(∃𝑧 ∈ 𝐷𝑖𝑠𝑟𝑢𝑝𝑡 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙)∧

(∃𝑦 ∈ (𝑆𝑡𝑎𝑡𝑒 ∪ 𝐶𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙) ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟)}
(6.73)

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡𝐼𝑆 ⊆ 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

⊆ 𝑇𝑎𝑟𝑔𝑒𝑡
(6.74)

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡𝐼𝑆 = {𝑥|∃𝑧 ∈ 𝑆𝑦𝑠𝑡𝑒𝑚 ∋

(𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡}
(6.75)

𝑆𝑦𝑠𝑡𝑒𝑚𝐼𝑆 ⊆ 𝑆𝑦𝑠𝑡𝑒𝑚 ⊆ 𝐴𝑠𝑠𝑒𝑡 (6.76)

𝑆𝑦𝑠𝑡𝑒𝑚𝐼𝑆 = {𝑥|∃𝑦 ∈ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠 ∋

(𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒}
(6.77)

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠𝐼𝑆 ⊆ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠

⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒
(6.78)

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠𝐼𝑆 = {𝑥|(∃𝑦 ∈ 𝑁𝑢𝑙𝑙 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑒𝑐𝑜𝑛)∧

(∃𝑣 ∈ (𝑁𝑢𝑙𝑙 ∪𝑀𝑖𝑛𝑜𝑟) ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑧 ∈ (𝐶𝑎𝑡𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑖𝑐 ∪𝑀𝑎𝑗𝑜𝑟) ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝐷𝑎𝑚𝑎𝑔𝑒)}

(6.79)

𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝐼𝑆 ⊆ (𝑆𝑡𝑎𝑡𝑒 ∪ 𝐶𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙)

⊆ 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟
(6.80)

𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝐼𝑆 = {𝑥|∃𝑧 ∈ 𝐶𝑟𝑖𝑚𝑖𝑛𝑎𝑙 ∋

(𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛}
(6.81)

6.8.2 Industrial Sabotage Individual

The Stuxnet (Section 2.4.29) was inferred as part of the Industrial Sabotage scenario. The

Stuxnet individual was de�ned in Protégé as follows:

6.8. INDUSTRIAL SABOTAGE 152

∙ is a member of the Attack Scenario class; and

∙ has at least one:

– Hacker Actor de�ned by hasActor relationship;

– Exploit Attack Mechanism de�ned by hasAttackMechanismDamage relation-

ship;

– Vulnerability Scanning Attack Mechanism de�ned by hasAttackMechanism-

Rampup relationship;

– Information Gathering Mechanism de�ned by hasAttackMechanismRecon re-

lationship;

– Automatic de�ned by hasChainAMAutomationLevel relationship.

– Foreign Actor Location de�ned by hasChainActorActorLocation relationship;

– State Aggressor de�ned by hasChainActorAggressor relationship;

– Political Motivation de�ned by hasChainActorAggressorMotivation relation-

ship;

– Disrupt Attack Goal de�ned by hasChainActorAttackGoal relationship;

– Large Network de�ned by hasChainScopeScopeSize relationship;

– System Asset de�ned by hasChainTargetAsset relationship;

– Operational Loss de�ned by hasChainTargetAssetSabotage relationship;

– Null Effect de�ned by hasChainTargetAssetSabotageEffectRecon relationship;

– Null Effect de�ned by hasChainTargetAssetSabotageEffectRampup relationship;

– Major Effect de�ned by hasChainTargetAssetSabotageEffectDamage relation-

ship;

– Config Vulnerability de�ned by hasChainTargetVulnerability relationship;

– Government Scope de�ned by hasScope relationship;

– Industrial Equipment de�ned by hasTarget relationship.

By setting an individual with properties as above, the automated reasoner HermiT plug-

in for Protégé was able to determine that the Stuxnet worm falls within the Industrial

Sabotage scenario. Protégé output is shown in Figure 6.21, with the automated reasoner-

inferred class shown in yellow at the bottom.

6.9. RUNAWAY MALWARE 153

Automated reasoner

infers

Industrial Sabotage

Scenario

Individual

Properties

Individual

Name

Figure 6.21: Stuxnet Attack Inferred an Industrial Sabotage Scenario

6.9 Runaway Malware

Runaway Malware is malicious software that has the ability to rapidly spread within a

computer network. Such malware often comes in the form of viruses or computer worms,

and has the potential ability to exploit weaknesses in a computer system that will allow

the malware to spread to uninfected machines. The story that describes the Runaway

Malware Scenario follows (Figure 6.22):

A Hacker based at [ActorLocation] with the goal of Spreading is sponsored by Self

Instigator with a Fun motivation. The attack effected Global All networks scope. A

PC OR Server was attacked via [Vulnerability]. This attack effected Network OR

System and resulted in Operational Loss to Minor OR Null effect during Ramp-up

attack phase, and to Minor OR Major effect during Damage attack phase. During the

Ramp-up phase Malware was used and during the Damage phase, Denial-of-Service

was used, and was automated to Automatic level.

The I-LOVE-YOU worm (Section 2.4.12) can be classi�ed as an example of a Runaway

Malware scenario (Figure 6.23):

154

Attack Goal

Scope

Actor

Aggressor

 Attack Mechanism

Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target AttackScenario

Runaway Malware
Hacker

Spreading
System

Malware

Sabotage

Minor

Null

Ram
p-up

Damage

Ramp-up

D
am

age

Major

Denial-of-Service

AM

Self Instigator

Fun

Server

Operational Loss

Automatic

PCOR

Network OR

All Networks

Global

Ramp-up
Damage

Figure 6.22: Runaway Malware Attack Scenario

Attack Goal

Scope

Actor

Aggressor

 Attack Mechanism

Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target AttackScenario

Runaway Malware
I LOVE YOU Hacker

Spreading

Malware

Sabotage

Ram
p-up

Damage

Ramp-up

D
am

age

Major

Null

Self Instigator

Fun

Server

Operational Loss

Automatic

PCOR

Network

All Networks

Global

Foreign

Access Rights

Denial-of-Service

AM

MinorOR

Figure 6.23: I LOVE YOU Worm Runaway Malware Attack Scenario Example

6.9. RUNAWAY MALWARE 155

A Hacker based at Foreign with the goal of Spreading is sponsored by Self Instiga-

tor with a Fun motivation. The attack effected Global All networks scope. A PC

OR Server was attacked via Access Rights Vulnerability. This attack effected Net-

work and resulted in Operational Loss to Major effect during Damage attack phase,

to Minor effect during Ramp-up attack phase. During the Ramp-up phase Malware was

used and during the Damage phase, Denial-of-Service was used, and was automated to

Automatic level.

6.9.1 Runaway Malware Formal Description

The Runaway Malware scenario set is de�ned in statements 6.82 to 6.97 (also refer to

Figure 6.22). In Figure 6.22, the sub-classes that are speci�c to the Runaway Malware

scenario are displayed. This demonstrates which sub-classes are used when the Runaway

Malware attack scenario is presented.

𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (6.82)

𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 = {𝑥|(∃𝑣 ∈ 𝐻𝑎𝑐𝑘𝑒𝑟 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟)∧

(∃𝑦 ∈ 𝑀𝑎𝑙𝑤𝑎𝑟𝑒 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑠 ∈ 𝐷𝑒𝑛𝑖𝑎𝑙𝑂𝑓𝑆𝑒𝑟𝑣𝑖𝑐𝑒 ∋ (𝑥, 𝑠) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝐷𝑎𝑚𝑎𝑔𝑒)∧

(∃𝑤 ∈ 𝐴𝑙𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠 ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒)∧

(∃𝑡 ∈ (𝑆𝑒𝑟𝑣𝑒𝑟 ∪ 𝑃𝐶) ∋ (𝑥, 𝑡) ∈ ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡)}

(6.83)

𝐻𝑎𝑐𝑘𝑒𝑟𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 ⊆ 𝐻𝑎𝑐𝑘𝑒𝑟 ⊆ 𝐴𝑐𝑡𝑜𝑟 (6.84)

𝐻𝑎𝑐𝑘𝑒𝑟𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 = {𝑥|(∃𝑠 ∈ 𝑆𝑒𝑙𝑓𝐼𝑛𝑠𝑡𝑖𝑔𝑎𝑡𝑜𝑟 ∋ (𝑥, 𝑠) ∈ ℎ𝑎𝑠𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟)∧

(∃𝑧 ∈ 𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙)}
(6.85)

𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 ⊆ (𝑆𝑒𝑟𝑣𝑒𝑟 ∪ 𝑃𝐶) ⊆ 𝑇𝑎𝑟𝑔𝑒𝑡 (6.86)

𝑇𝑎𝑟𝑔𝑒𝑡𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 = {𝑥|∃𝑧 ∈ (𝑁𝑒𝑡𝑤𝑜𝑟𝑘 ∪ 𝑆𝑦𝑠𝑡𝑒𝑚) ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡} (6.87)

𝐴𝑠𝑠𝑒𝑡𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 ⊆ (𝑁𝑒𝑡𝑤𝑜𝑟𝑘 ∪ 𝑆𝑦𝑠𝑡𝑒𝑚) ⊆ 𝐴𝑠𝑠𝑒𝑡 (6.88)

𝐴𝑠𝑠𝑒𝑡𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 = {𝑥|∃𝑦 ∈ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒} (6.89)

6.9. RUNAWAY MALWARE 156

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 ⊆ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠 ⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 (6.90)

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 =

{𝑥|(∃𝑦 ∈ (𝑁𝑢𝑙𝑙 ∪𝑀𝑖𝑛𝑜𝑟) ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑧 ∈ (𝑀𝑎𝑗𝑜𝑟 ∪𝑀𝑖𝑛𝑜𝑟) ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝐷𝑎𝑚𝑎𝑔𝑒)}

(6.91)

SelfInstigatorRunawayMalware ⊆ 𝑆𝑒𝑙𝑓𝐼𝑛𝑠𝑡𝑖𝑔𝑎𝑡𝑜𝑟 ⊆ 𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑜𝑟 (6.92)

SelfInstigatorRunawayMalware = {𝑥|∃𝑧 ∈ 𝐹𝑢𝑛 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛} (6.93)

𝐴𝑙𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 ⊆ 𝐴𝑙𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠 ⊆ 𝑆𝑐𝑜𝑝𝑒 (6.94)

𝐴𝑙𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 = {𝑥|∃𝑧 ∈ 𝐺𝑙𝑜𝑏𝑎𝑙 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑆𝑐𝑜𝑝𝑒𝑆𝑖𝑧𝑒} (6.95)

𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 ⊆

(𝐷𝑒𝑛𝑖𝑎𝑙𝑜𝑓𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴𝑀 ∪𝑀𝑎𝑙𝑤𝑎𝑟𝑒) ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚
(6.96)

𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑢𝑛𝑎𝑤𝑎𝑦𝑀𝑎𝑙𝑤𝑎𝑟𝑒 =

{𝑥|∃𝑧 ∈ 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛}
(6.97)

6.9.2 Runaway Malware Individual

The I LOVE YOU (Section 2.4.12) was inferred as part of the Runaway Malware scenario.

The I LOVE YOU individual was de�ned in Protégé as follows:

∙ is a member of the Attack Scenario class; and

∙ has at least one:

– Hacker Actor de�ned by hasActor relationship;

– Denial-of-Service Attack Mechanism de�ned by hasAttackMechanismDamage

relationship;

– Malware Attack Mechanism de�ned by hasAttackMechanismRampup relation-

ship;

– Automatic de�ned by hasChainAMAutomationLevel relationship;

– Foreign Actor Location de�ned by hasChainActorActorLocation relationship;

– Self Instigator Aggressor de�ned by hasChainActorAggressor relationship;

– Fun Motivation de�ned by hasChainActorAggressorMotivation relationship;

– Spread Attack Goal de�ned by hasChainActorAttackGoal relationship;

– Global Network de�ned by hasChainScopeScopeSize relationship;

– Network Asset de�ned by hasChainTargetAsset relationship;

6.9. RUNAWAY MALWARE 157

Automated reasoner

infers

Runaway Malware

Access Scenario

Individual

Properties

Individual

Name

Figure 6.24: I LOVE YOU Inferred a Runaway Malware Scenario

– Operational Loss de�ned by hasChainTargetAssetSabotage relationship;

– Minor OR Null Effect de�ned by hasChainTargetAssetSabotageEffectRampup

relationship;

– Major Effect de�ned by hasChainTargetAssetSabotageEffectDamage relation-

ship;

– All Networks Scope de�ned by hasScope relationship;

– PC OR Server Target de�ned by hasTarget relationship.

– Access Rights Vulnerability de�ned by hasChainTargetVulnerability relation-

ship;

By setting an individual with properties as above, the automated reasoner HermiT plug-in

for Protégé was able to determine that the I LOVE YOU worm falls within the Runaway

Malware scenario. Protégé output is shown in Figure 6.24, with the automated reasoner-

inferred class shown in yellow at the bottom.

6.10. SYSTEM COMPROMISE 158

Attack GoalScope

Actor

Aggressor

 Attack Mechanism
Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target

AttackScenario

System Compromise
Hacker

Gain Control
System

Scanning

Sabotage

Operational Loss

Ram
p-up

Damage

Ramp-up
Damage

Null

ReconnaissanceRamp-up

Open

Information

D
am

age

Reconnaissance

Major

Minor

Exploit

Figure 6.25: System Compromise Attack Scenario

6.10 System Compromise

The System Compromise scenario refers to unauthorised personnel or hackers gaining user

rights out of their scope. A system compromise attack refers to breaking into a single or

multiple computers without authorisation. Such a compromise is often achieved by using

another individual's identi�cation and/or password to achieve privilege escalation and

then compromise the computer system The story that describes the System Compromise

Scenario follows (Figure 6.25):

A Hacker based at [ActorLocation] with the goal of Gaining Control is sponsored by

[Aggressor] with a [Motivation] motivation. The attack effected [ScopeSize] [Scope]

scope. A [Target] was attacked via [Vulnerability]. This attack effected System and

resulted in Operational Loss to Minor OR Major effect during Damage attack phase,

to Minor OR Null effect during Ramp-up attack phase and to Null effect during Recon-

naissance attack phase. During the Reconnaissance phase Open Information was used,

during the Ramp-up phase Scanning was used and during the Damage phase, Exploit

was used. These mechanisms was automated to [AutomationLevel] level.

The Flame malware (Section2.4.34) can be classi�ed as an example of System Compro-

6.10. SYSTEM COMPROMISE 159

mise scenario (Figure 6.26):

A Hacker based at Foreign location with the goal of Gaining Control is sponsored

by State aggressor with a Espionage motivation. The attack effected [ScopeSize] All

Networks scope. PCs were attacked via Access Rights vulnerability. This attack ef-

fected System and resulted in Operational Loss to Major effect during Damage attack

phase, to Minor effect during Ramp-up attack phase and to Null effect during Recon-

naissance attack phase. During the Reconnaissance phase Open Information was used,

during the Ramp-up phase Scanning was used and during the Damage phase, Exploit

was used. These mechanisms was automated to Automatic level.

Attack GoalScope

Actor

Aggressor

 Attack Mechanism

Automation Level

Asset

Actor Location

Motivation

Effect

Vulnerability

Scope Size

Target
AttackScenario

System Compromise
Flame Hacker

Gain Control
System

Scanning

Sabotage

Operational Loss
Null

Ram
p-up

Damage

Ramp-up

Null

Reconnaissance

Open

Information

D
am

age

Reconnaissance

Major

Exploit

Automatic

Access Rights

Foreign

PC

Espionage

State

All Networks

Figure 6.26: Flame System Compromise Attack Scenario Example

6.10.1 System Compromise Formal Description

The System Compromise scenario set is de�ned in statements 6.98 to 6.105 (also refer to

Figure 6.25). In Figure 6.25, the sub-classes that are speci�c to the System Compromise

(SC) scenario are displayed. This demonstrates which sub-classes are used when the

Financial Theft attack scenario is presented.

6.10. SYSTEM COMPROMISE 160

𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (6.98)

𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 = {𝑥|(∃𝑣 ∈ 𝐻𝑎𝑐𝑘𝑒𝑟 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟)∧

(∃𝑤 ∈ OpenInformation ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑒𝑐𝑜𝑛)∧

(∃𝑦 ∈ 𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑠 ∈ 𝐸𝑥𝑝𝑙𝑜𝑖𝑡 ∋ (𝑥, 𝑠) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝐷𝑎𝑚𝑎𝑔𝑒)}

(6.99)

𝐻𝑎𝑐𝑘𝑒𝑟𝑆𝐶 ⊆ 𝐻𝑎𝑐𝑘𝑒𝑟 ⊆ 𝐴𝑐𝑡𝑜𝑟 (6.100)

𝐻𝑎𝑐𝑘𝑒𝑟𝑆𝐶 = {𝑥|∃𝑧 ∈ 𝐺𝑎𝑖𝑛𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙} (6.101)

𝑆𝑦𝑠𝑡𝑒𝑚𝑆𝐶 ⊆ 𝑆𝑦𝑠𝑡𝑒𝑚 ⊆ 𝐴𝑠𝑠𝑒𝑡 (6.102)

𝑆𝑦𝑠𝑡𝑒𝑚𝑆𝐶 = {𝑥|∃𝑦 ∈ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒} (6.103)

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠𝑆𝐶 ⊆ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠 ⊆ 𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒 (6.104)

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑠𝑠𝑆𝐶 = {𝑥|(∃𝑦 ∈ 𝑁𝑢𝑙𝑙 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑒𝑐𝑜𝑛)∧

(∃𝑤 ∈ (𝑁𝑢𝑙𝑙 ∪𝑀𝑖𝑛𝑜𝑟) ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑧 ∈ (𝑀𝑖𝑛𝑜𝑟 ∪𝑀𝑎𝑗𝑜𝑟) ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝑆𝑎𝑏𝑜𝑡𝑎𝑔𝑒𝐷𝑎𝑚𝑎𝑔𝑒)}

(6.105)

6.10.2 System Compromise Individual

The Flame (Section 2.4.34) was inferred as part of the System Compromise scenario. The

Flame individual was de�ned in Protégé as follows:

∙ is a member of the Attack Scenario class; and

∙ has at least one:

– Hacker Actor de�ned by hasActor relationship;

– Exploit Attack Mechanism de�ned by hasAttackMechanismDamage relation-

ship;

– Scanning Attack Mechanism de�ned by hasAttackMechanismRampup relation-

ship;

– Open Information Attack Mechanism de�ned by hasAttackMechanismRecon

relationship;

– Foreign Actor Location de�ned by hasChainActorActorLocation relationship;

– State Aggressor de�ned by hasChainActorAggressor relationship;

6.10. SYSTEM COMPROMISE 161

– Espionage Motivation de�ned by hasChainActorAggressorMotivation relation-

ship;

– Gain Control Attack Goal de�ned by hasChainActorAttackGoal relationship;

– System Asset de�ned by hasChainTargetAsset relationship;

– Operational Loss de�ned by hasChainTargetAssetSabotage relationship;

– Null Effect de�ned by hasChainTargetAssetSabotageEffectRecon relationship;

– Null Effect de�ned by hasChainTargetAssetSabotageEffectRampup relationship;

– Major Effect de�ned by hasChainTargetAssetSabotageEffectDamage relation-

ship;

– Access Rights Vulnerability de�ned by hasChainTargetVulnerability relation-

ship;

– Automatic de�ned by hasChainAMAutomationLevel relationship;

– All Networks Scope de�ned by hasScope relationship;

– PC Target de�ned by hasTarget relationship.

Automated reasoner

infers

System Compromise

Access Scenario

Individual

Properties

Individual

Name

Figure 6.27: Flame Inferred a System Compromise Scenario

By setting an individual with properties as above, the automated reasoner HermiT plug-in

for Protégé was able to determine that the Flame malware falls within the System Com-

promise scenario. Protégé output is shown in Figure 6.27, with the automated reasoner-

inferred class shown in yellow at the bottom.

6.11. CONCLUSION 162

6.11 Conclusion

In this chapter, the stories and formalised descriptions of the remaining attack scenarios

are presented. For each scenario an example individual is presented and it is demonstrated

how the automated reasoner classi�es the individual to its respected attack scenario class.

The following attack scenarios are presented:

∙ Web Defacement,

∙ Unauthorised Data Access,

∙ Cyber-Warfare,

∙ Industrial Espionage,

∙ Financial Theft,

∙ Resource Theft,

∙ Industrial Sabotage,

∙ Runaway Malware and

∙ System Compromise.

This concludes the theoretical part of the thesis. In the next part, the implications of a

near real-time environment are investigated and a prototype system that classi�es network

attacks is developed and tested.

Part III

Near Real-time

163

CHAPTER

SEVEN

EVALUATION OF NEAR REAL-TIME FITNESS

"These blast points – too accurate for sand people. Only imperial

storm troopers are so precise."

Obi-Wan Kenobi – Star Wars

7.1 Introduction

In Part III, the researcher will investigate the e�ect of network attacks in a near real-time

environment. The e�ect of a near real-time environment with the taxonomy developed in

Chapter 4 is explored in this chapter. In the following chapter, a prototype system that

identi�es network attacks is presented. This part concludes with a validation chapter.

In the validation chapter, two test beds are presented according to which the prototype

system was veri�ed.

The degree to which each class can be quanti�ed or measured is determined by investiga-

ting the accuracy of various assessment methods, and then classifying the class as either

de�ned, high, low or not quanti�able. For example, it may not be possible to determine

the instigator of an attack (Aggressor), but only that the attack has been launched by

a hacker (Actor). In addition, modeling malware depends on information reported by

industry, media and academic papers. Thus the full functionality of malware may not

164

7.1. INTRODUCTION 165

be known until much later than its initial discovery. Some classes can only be quanti�ed

with low con�dence or not at all in (near real-time) time. The IP address of an attack can

easily be faked (Bellovin, 1989), thus reducing the con�dence regarding the information

obtained from it, and thus determining the origin of an attack with low con�dence. This

determination itself is subjective. All the evaluations of the classes in this chapter are

subjective, but due to the very basic grouping (high, low or not quanti�able) a subjective

value can be used.

By relaxing the scenario de�nition to only classes that can be quanti�ed in near real-

time, some of the relaxed attack scenario classes were found to be equivalent. Thus the

scenarios are reduced to the following:

∙ Denial-of-Service

∙ Web Defacement

∙ Resource Theft

∙ Unauthorised Data Access

∙ System Comprise

∙ Runaway Malware

Each of the classes and sub-classes can be quanti�ed either directly or indirectly. They

can also be de�ned by the con�guration of the system under attack. Some classes cannot

be quanti�ed in a near real-time environment. This chapter describes the three levels of

quanti�cation wherein each class is placed with respect to measurement. Some classes

are not measured, but de�ned by the nature of the attack. Thus the accuracy of the

quanti�cation is assigned. Three levels of accuracy are assigned: high, low or not quan-

ti�able (Fenz and Neubauer, 2009; Fenz, Tjoa, and Hudec, 2009). Fenz and Neubauer

state:

"Since the threat probability or in in�uencing factors cannot be determined quantita-

tively, a qualitative rating is used in this approach. In contrast to a quantitative rating

with which it is hardly possible to determine the occurrence of a certain threat with a

67% and not with a 68% chance, a qualitative rating (e.g. high, medium, and low)."

Since the accuracy of quantifying the classes can also be de�ned, the researcher also

e�ectively uses three levels of qualitative ratings. In Section 7.2 the quanti�cation of the

classes within the taxonomy is presented. In Section 7.3 a relaxed attack scenarios are

presented formally, and relaxed scenarios which are equivalent are shown.

7.2. TAXONOMY QUANTIFICATION 166

7.2 Taxonomy Quantification

Each of the classes de�ned in Chapter 4 are investigated as to how they can be measured

or quanti�ed in near real-time. Some of the classes are quanti�ed by de�nition and do not

require any sensors to determine their value. These classes are referred to as "de�ned".

For example, the target of an attack is not measured or quanti�ed, but is rather "de�ned"

by the attack. Some attacks are named after the target, such as in the cases of the SCO

and SpamHaus attacks (sections 2.4.18 and 2.4.35). Some classes cannot be measured

in a near real-time environment. The values of these classes only become apparent long

after an attack and even then there is sometimes only speculation. For example, the

Aggressor cannot be determined in a near real-time environment and for some attacks,

the real power behind the attack is never determined or proven.

7.2.1 Actor Quantification

The Group Actor sub-class and its sub-classes Organised Criminal Group, Protest Group

and Cyber Army can be quanti�ed by their IP addresses. An IP address can be used to

�nd the physical location of a Group Actor. Free and subscription geolocation databases

exist, which claim to be capable of identifying the physical location of any IP address

worldwide. Thus looking up IP addresses is considered a direct quanti�cation. The group

that owns/rents that location can be determined from the IP location. By using the IP,

the Group Actor can be determined indirectly. Shavitt and Zilberman (2011) studied

the accuracy of geolocation databases and found that the results of most databases are

similar and that the accuracy cannot be trusted. Errors included wrongful estimation

of distances and incorrect identi�cation of country. IP addresses can be spoofed, and

intermediate computers located anywhere in the world can be used for attack. For these

reasons, using IP to locate the Group Actor is assigned a low accuracy.

The Hacker sub-class and its sub-classes Script Kiddie and Skilled Hacker can be quan-

ti�ed by looking at the pattern of an attack. One of the �rst detailed documented deter-

minations that a system was hacked by a skilled hacker was done by Stoll (1989), where

Stoll determined that the hacker was extremely skilled by printing out all the keystrokes

of the attack. Script Kiddies use standardised tools of which the characteristics (or �nger-

print) are static and can be identi�ed. For example, the pattern of standard Nmap scans

can easily be identi�ed (Staniford, Hoagland, and McAlerney, 2002; Ezzeldin, 2008). By

using an elaborate honeypot, the skill level of a Hacker Actor can also be determined

7.2. TAXONOMY QUANTIFICATION 167

(Ramsbrock, Berthier, and Cukier, 2007; Aliyev, 2010; Kibret, 2011). Script Kiddies will

attack the honeypot directly with standard tools such as Metasploit1 with all the possible

exploits (Sigholm, 2013), whereas skilled hackers will use more subtle techniques and only

targeted exploits and try to hide their origin (Yung, 2002). The skill level of hackers can

also be deduced by the consequences of their attacks. Meyers et al. (2009) stated that

skilled hackers are rare and dangerous, and that information about them is rare. If the

attack was successful in web defacement or a secure server was compromised, it can be

assumed that a skilled hacker was involved. Tripwire2 and other host-based IDSs can

alert system administrators to compromises, although they cannot prevent attacks. They

notify administrators that some secure data has been accessed or modi�ed. Thus the

Hacker Actor can be measured indirectly, and the accuracy is low.

Insider threats can be detected by internally orientated honeypots or telescopes (Spitzner,

2003; Myers, Grimaila, and Mills, 2009; Maybury, Chase, Cheikes, Brackney, Matzner,

Hetherington, Wood, Sibley, Marin, and Longsta�, 2005). These insider honeypots work

according to the same principle as externally orientated honeypots, but reside within a

network and are not accessible from outside. Externally orientated honeypots are con-

nected to external networks and capture tra�c from attackers from outside the scope of

the defender's network. Insider honeypots can detect Normal User, but not Administra-

tor. Administrators have access to most of the network. No network can be made safe

against its own administrators, thus administrators fall within the immeasurable group,

whereas normal users can be measured directly. When such honeypots are triggered, the

odds of it being an insider is low due to possible false positives or attackers masquerading

as insiders. All the sub-classes of the Actor class have low accuracy, thus in summary,

the Actor class accuracy is de�ned as low.

7.2.2 Actor Location Quantification

The Actor Location class and its sub-classes can be measured in a similar way to the Group

Actor sub-class by means of IP location. Only a single look-up in a geolocation database

is required and it is therefore considered to be directly measurable. The values of the

geolocation database are also considered unreliable, with Poese, Uhlig, Kaafar, Donnet,

and Gueye (2011) stating that these geolocation databases are accurate at a country level,

but not at a city level. (Hunter and Irwin, 2011) developed a framework to track malware

1http://www.metasploit.com/
2http://www.tripwire.org/

7.2. TAXONOMY QUANTIFICATION 168

via their IP address. An alternative method to �nd the location of IP addresses is to use

latency measurements (Katz-Bassett, John, Krishnamurthy, Wetherall, Anderson, and

Chawathe, 2006). Katz-Bassett et al. were able to achieve a medium error of 67 km in

optimal circumstances. The same accuracy problems as stated for the Group Actor apply

to the Actor Location sub-classes. Thus the accuracy is considered to be low.

7.2.3 Aggressor, Motivation, Effect and Sabotage Quantification

The Aggressor cannot be quanti�ed in near real-time. In most cases, the aggressor is

only determined months after an attack. For example, it took a few months before the

aggressor behind the Stuxnet attack was con�rmed (Sanger, 2012). The aggressor and

people behind most viruses are di�cult if not impossible to �nd (Shi�man and Gupta,

2013). The Aggressor class and its sub-classes are not considered to be quanti�able. The

same is true regarding the motivation of an aggressor, which can also not be determined in

near real-time. The type of sabotage caused by an attack can only be calculated after the

full impact of the attack is known, and cannot thus be measured in near real time. The

e�ects of an attack can only be quanti�ed with a full investigation into the compromised

systems and assessments of the damage done. Thus the Aggressor, Effect, Motivation and

Sabotage class and its sub-classes cannot be measured in near real-time.

7.2.4 Asset Quantification

The Access and System sub-classes of the Asset class can be measured with automated

testing scripts. These testing scripts simulate human requests at a very basic level and

can thus indicate when access to the system or the system functionally have been al-

tered. Stout (2001) stated that automated testing is critical to a quality website and his

statement holds true for all servers. The scripts directly measure access and the system's

functionality, and the accuracy of these quanti�cations are regarded to be as high.

The Data sub-class of the Asset class can be quanti�ed by host-based IDSs. These

sensors are capable of determining alterations to data. Typically, two main aspects of the

data can be measured, namely unauthorised access or unauthorised manipulation of the

data (Lunt, 1993). These quanti�cations are direct and occur in the Application layer.

Although the possibility of false alarms exists (Tjhai, Papadaki, Furnell, and Clarke,

2008), these quanti�cations are considered to be very accurate.

7.2. TAXONOMY QUANTIFICATION 169

The Network sub-class of the Asset class can be quanti�ed indirectly by considering the

networking performance of devices or testing whether systems in the network can commu-

nicate (Hariri, Qu, Dharmagadda, Ramkishore, and Raghavendra, 2003). Communication

errors, hardware breakdown or system miscon�guration can be possible reasons for disrup-

tion of communication. The accuracy of quantifying an attack on the network is regarded

as high. All the sub-classes of the Asset class are very accurate and thus, in summary,

the accuracy of the Asset class is de�ned as high.

7.2.5 Attack Goal Determination

The Attack Goal can be determined indirectly by ascertaining which asset is under attack.

Similar to the Data sub-class of the Asset class, the Destroy Data, Steal Data, Gain

Control, Spread and Change Data sub-classes can be determined by host-based IDSs

(Lunt, 1993). The Disrupt sub-class can be determined indirectly by looking at the type

of attack that is launched on a honeypot or similarly to the Network sub-class of the

Asset class, by monitoring the network performance (Lunt, 1993; Kuwatly et al., 2004).

The accuracy of determining the goal is considered to be high.

The Gain Resources sub-class of the Attack Goal class can be determined by intercepting

communications that do not �t the normal pro�le. Strayer, Lapsely, Walsh, and Livadas

(2008) developed a system that identi�es networks that support malicious tra�c3. Thus

malicious tra�c bound for addresses listed in their system can be null-routed. The Finding

Rogue Network project has since been discontinued, but similar work is done commercially

by Lastline4. It can be determined if local systems are being used as a springboard for

attacks on others. Since this determination depends on the accuracy of the identi�cation

of malicious networks, and the possibility of miscon�gured networks looking like botnets,

the determination of Gain Control is not considered to be very accurate.

Since �ve out of the six sub-classes are of high accuracy� the Attack Goal class accuracy

is de�ned as high.

7.2.6 Attack Mechanism Determination

The Information Gathering sub-class of the Attack Mechanism class can be indirectly

measured by detecting scans. These scans can be detected by interpreting access logs or

3http://maliciousnetworks.org/
4http://www.lastline.com/

7.2. TAXONOMY QUANTIFICATION 170

Figure 7.1: The Di�erence between False Negative and False Positive

analysing network tra�c (Lee et al., 2003; Bhuyan, Bhattacharyya, and Kalita, 2011).

Port scanning and vulnerability scan determination have a high accuracy rate.

The Brute Force, Escalation, Spoofing, Session Hijack and Buffer Overflow sub-classes

can be identi�ed by network-based IDSs and by looking at access logs. These are directly

identi�ed by matching known methods to observed events. The accuracy of identifying

these attacks mechanisms is high.

The Spear Phishing and Social Engineering sub-classes can be identi�ed by specially

crafted traps that lure such attackers to a fake target (Harley and Lee, 2007; Merritt,

2011). Due to the di�culty of detecting social engineering attacks, detection of such

attack mechanisms have low accuracy.

The Network Based sub-class can be identi�ed indirectly by intercepting strange commu-

nications or by monitoring the amount of tra�c on the system (Heberlein, Dias, Levitt,

Mukherjee, Wood, and Wolber, 1990). Although it is di�cult to distinguish between at-

tacks and innocent network anomalies, it is simple to detect and it is thus highly accurate.

The Malware attack mechanism can be identi�ed either on the Open Systems Intercon-

nection (OSI) Application layer with Antivirus software, or in the OSI Network layer with

IDS software (Christodorescu and Jha, 2004). Malware can be identi�ed directly and the

accuracy of the identi�cation is high with a low false positive rate. False positive refers

to when a classi�er incorrectly classi�ed an item as harmful (Owen, 2010). Malware that

is not detectable is also a concern (Christodorescu and Jha, 2004). False negative refers

to malware that was not detected. In Figure 7.1, the di�erence between False Negative

and False Positive is shown. The detection of Malware is highly accurate.

If a sub-system is abused, it can be measured simply by looking at systems logs. The

processing utilisation and disk usage can be measured directly on systems. A �rewall and

7.2. TAXONOMY QUANTIFICATION 171

some advanced routers can measure the network throughput, thus identifying bandwidth

abuse. The detection of System Abuse is highly accurate.

A Web Application such as a SQL Injection or a Web Crawl attack mechanism can be

detected directly with specially crafted traps or logging of unusual web behaviour (Rietta,

2006; Fu, Lu, Peltsverger, Chen, Qian, and Tao, 2007; Manmadhan and Manesh, 2012).

Error messages can also be used to detect SQL Injection attacks (Ciampa, Visaggio, and

Di Penta, 2010). Win and Htun (2013) used SQL normal queries to identify safe request

and then identity attacks by restricting the allowed queries. Misuse of Web applications

have a high accuracy level.

XSS Web Application attack mechanisms can be detected indirectly by comparing posted

URLs to blacklisted sites (Jim, Swamy, and Hicks, 2007), by identifying typical Cross-

site Scripting (XSS) coding patterns (Mookhey and Burghate, 2004; Scholte, Robertson,

Balzarotti, and Kirda, 2012). The detection and prevention of XSS attacks are di�cult be-

cause of incomplete implementations, inherent limitations, the complexity of development

frameworks and the requirement for run-time compatibility (Rao, 2012). The e�ciency

of this detection method is determined by the quality of the blacklist, and the accuracy

level is low.

Denial-of-Service attack mechanisms can mostly be detected by �ltering incoming network

tra�c (Karig and Lee, 2001; Argyraki and Cheriton, 2005). Mirkovic and Reiher (2004)

present a taxonomy in defences that can be used against DoS attacks, which includes:

system security, protocol security, resource accounting, resource multiplication, pattern

matching, anomaly detection, �ltering, automated recon�guring, rate limiting and agent

identi�cation. The accuracy of detecting DoS attack mechanisms is high.

Since most of the sub-classes of the Attack Mechanism class are of high accuracy, the

accuracy of the Attack Mechanism class is high.

7.2.7 Automation Level Quantification

The Automatic sub-class of the Automation Level class can be indirectly quanti�ed by

observing the scanning pattern and other features with honeypots and other scan detection

sensors. Kuwatly et al. (2004) and Staniford et al. (2002) were able to detect Nmap5

scans by training their detection systems to recognise Nmap-speci�c scan characteristics.

5http://nmap.org/

7.2. TAXONOMY QUANTIFICATION 172

Similarly, it should be possible to detect automated tools by their speci�c behaviour. A

lack of automation can point to the Manual or Semi-automatic automation level. The

accuracy level of these quanti�cations is low since the di�erence between automation and

the other modes is di�cult to determine and thus di�cult to quantify.

7.2.8 Phase Classification

The Phases of an attack are set by the attack scenario. Thus the phase of an attack

is considered to be de�ned rather than quanti�able. The process of determining which

phase of an attack is currently happing is discussed in Section 8.4.1, and is an outcome

of the research presented in this thesis.

7.2.9 Scope and Scope Size Measurement

The target scope and the scope size are de�ned by the entity under attack. These classes

represent physical attributes of the target, which cannot be measured or quanti�ed, and

should rather be considered so as to be de�ned.

7.2.10 Target Monitoring

The Target class and its sub-classes can be monitored indirectly by observing which

systems are not performing as expected. The Network Infrastructure sub-class can be

observed by monitoring network performance in the Network layer. Attacks that a�ect

the PC sub-class can be observed using anti-virus software. The Server sub-class can

be monitored by using heart-beat sensors or data integrity sensors (Bhide, Elnozahy,

and Morgan, 1991). Industrial Equipment is monitored directly via its control software

(Yang, Usynin, and Hines, 2006). Industrial equipment can monitor communications in

the Physical, Network and Application layers. Even though system problems or other

errors can also lead to system failures, monitoring these classes is considered to be highly

accurate.

7.2.11 Vulnerability Identification

The Vulnerability class and its sub-classes can be identi�ed directly using a combination

of IDSs and honeypots (Gula, 2011). Although IDSs can have false positives (incorrectly

7.3. ATTACK SCENARIOS QUANTIFICATION 173

Table 7.1: Summary of the Measurement Taxonomy

Class Quantification Accuracy

Actor Indirect Low
Actor Location Direct Low
Aggressor Not Quanti�able N/A
Asset Direct High
Attack Goal Indirect High
Attack Mechanism Indirect High
Automation Level Indirect Low
E�ect Not Quanti�able N/A
Motivation Not Quanti�able N/A
Sabotage Not Quanti�able N/A
Scope De�ned N/A
Scope Size De�ned N/A
Target Indirect High
Vulnerability Direct High

identify attacks), their accuracy is considered to be high.

7.2.12 Quantification Summary

In Table 7.1, a summary of the required quanti�cation is shown. This table lists all the

classes with respect to quanti�cation methodology and accuracy. Only �ve of the classes

are considered quanti�ed or measurable for high accuracy: Asset, Target, Vulnerability,

Attack Mechanism and Attack Goal. Three classes are considered to have low accuracy:

Automation Level, Actor and Actor Location. Four classes cannot be measured or quan-

ti�ed in a near real-time environment: Sabotage, Effect, Aggressor and Motivation. The

remaining two classes are de�ned: Scope and Scope Size.

7.3 Attack Scenarios Quantification

Not all the attack scenarios that were identi�ed in Chapter 2 and formally described in

Chapter 5 and Chapter 6 can be identi�ed in near real-time. E�ectively, only the Attack

Mechanism, Asset, Target and Vulnerability classes can be quanti�ed to a high accuracy

level in a near real-time environment. In Figure 7.2, the impact of the quanti�cation

options on the ontology is shown. As shown in Figure 7.2; only a subset of the classes

7.3. ATTACK SCENARIOS QUANTIFICATION 174

AttackScenario

Attack GoalScope

Actor

Aggressor

Attack Mechanism Automation Level

Target

Asset

hasA
tta

ck
Goal

(w
ith

 th
e goal)

hasTarget
(was Attacked)

hasAttackM
echanism

(w
as used during phase)

hasAutomationLevel
(automated)

h
asA

sset
(effected

) h
as

Sc
o

p
e

(s
co

p
e)

hasAggressor

(sponsored by)

hasActor
(Actor)

Sabotage

h
asSab

o
tage

(resu
lted

 in
)

Actor Location
hasActorLocation

(based at)

Motivation

hasMotivation

(motevation)

Effect
hasEffect

(effect during phase)

Vulnerability

hasVulnerability
(via)

Scope Size

hasScopeSize

(scopesize)

High Accuracy Low Accuracy Not Quantifiable DefinedMain Class

Figure 7.2: Impact of Quanti�cation on the Ontology

are of signi�cance in a near real-time environment. This environment is referred to as:

relaxed. A relaxed environment only used classes and relationships that are quanti�able

and measurable in near real-time. Thus a scenario will be a subset of the relaxed sce-

nario. In the following sub-sections the relaxed Denial-of-Service and Cyber-Warfare are

explored in detail. These were selected as they demonstrate how two di�erent scenarios'

relaxed versions can be equivalent.

7.3.1 Relaxed Denial-of-Service and Cyber-Warfare Scenarios For-

mal Descriptions

In this sub-section, the formal description of the Denial-of-Service and Cyber-Warfare

scenarios of sections 5.4.4 and 6.2.1 are described with only the classes that have a high

quanti�cation accuracy. Attack scenarios with only the near real-time classes are consid-

ered relaxed attack scenarios. These relaxed scenarios are used to describe scenarios with

only classes that have high accuracy in a near real-time environment. Thus the conditions

for the relaxed scenarios are less strict than the corresponding scenarios.

This relaxed de�nition of the Denial-of-Service scenario, 𝐷𝑜𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑, can formally be

7.3. ATTACK SCENARIOS QUANTIFICATION 175

written as:

𝐷𝑜𝑆 ⊆ 𝐷𝑜𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (7.1)

𝐷𝑜𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑 = {𝑥|(∃𝑣 ∈ 𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝐴𝑐𝑡𝑜𝑟𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙)∧

(∃𝑤 ∈ 𝐷𝑒𝑛𝑖𝑎𝑙𝑜𝑓𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴𝑀 ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑦 ∈ 𝐷𝑒𝑛𝑖𝑎𝑙𝑜𝑓𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴𝑀 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝐷𝑎𝑚𝑎𝑔𝑒)∧

(∃𝑢 ∈ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∋ (𝑥, 𝑢) ∈ ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡)}

(7.2)

NetworkInfrastructure𝐷𝑜𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑 ⊆ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ⊆ 𝑇𝑎𝑟𝑔𝑒𝑡 (7.3)

NetworkInfrastructure𝐷𝑜𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑 = {𝑥|∃𝑧 ∈ 𝐴𝑐𝑐𝑒𝑠𝑠 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡} (7.4)

𝐴𝑐𝑐𝑒𝑠𝑠𝐷𝑜𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑 ⊆ 𝐴𝑐𝑐𝑒𝑠𝑠 ⊆ 𝐴𝑠𝑠𝑒𝑡 (7.5)

ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝐴𝑐𝑡𝑜𝑟𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙 = ℎ𝑎𝑠𝐴𝑐𝑡𝑜𝑟 ∘ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙 (7.6)

The relaxed de�nition of the Cyber-Warfare scenario, CyberWarfare𝑅𝑒𝑙𝑎𝑥𝑒𝑑, can formally

be written as:

CyberWarfare ⊆ CyberWarfare𝑅𝑒𝑙𝑎𝑥𝑒𝑑 ⊆ 𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (7.7)

CyberWarfare𝑅𝑒𝑙𝑎𝑥𝑒𝑑 =

{𝑥|(∃𝑣 ∈ 𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙 ∋ (𝑥, 𝑣) ∈ ℎ𝑎𝑠𝐶ℎ𝑎𝑖𝑛𝐴𝑐𝑡𝑜𝑟𝐴𝑡𝑡𝑎𝑐𝑘𝐺𝑜𝑎𝑙)∧

(∃𝑤 ∈ 𝐷𝑒𝑛𝑖𝑎𝑙𝑜𝑓𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴𝑀 ∋ (𝑥,𝑤) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑅𝑎𝑚𝑝𝑢𝑝)∧

(∃𝑦 ∈ 𝐷𝑒𝑛𝑖𝑎𝑙𝑜𝑓𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴𝑀 ∋ (𝑥, 𝑦) ∈ ℎ𝑎𝑠𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝐷𝑎𝑚𝑎𝑔𝑒)∧

(∃𝑢 ∈ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∋ (𝑥, 𝑢) ∈ ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡)}

(7.8)

NetworkInfrastructureCyberWarfare𝑅𝑒𝑙𝑎𝑥𝑒𝑑 ⊆

NetworkInfrastructure ⊆ 𝑇𝑎𝑟𝑔𝑒𝑡
(7.9)

NetworkInfrastructureCyberWarfare𝑅𝑒𝑙𝑎𝑥𝑒𝑑 =

{𝑥|∃𝑧 ∈ 𝐴𝑐𝑐𝑒𝑠𝑠 ∋ (𝑥, 𝑧) ∈ ℎ𝑎𝑠𝐴𝑠𝑠𝑒𝑡}
(7.10)

7.3.2 Inferring Cyber-Warfare and Denial-of-Service Scenarios

The de�ning statements for the relaxed Denial-of-Service and relaxed Cyber-Warfare are

the same, thus in a near real time environment these scenarios can be merged into a

7.3. ATTACK SCENARIOS QUANTIFICATION 176

single scenario. This deduction is supported by the automatic reasoner. Within the

Protégé editor, the HermiT reasoner was able to infer that the relaxed Cyber-Warfare

and Denial-of-Service scenarios are the same as shown in Figure 7.5. In Figure 7.5,

the automatic reasoner results are shown highlighted, indicating that the Relaxed Cyber-

Warfare and Relaxed Denial-of-Service scenarios are the same. The two scenarios are

shown together in Figure 7.3. In Figure 7.3, the classes that are not used in a near real-

time environment are greyed out, and the classes that can be quanti�ed in near real-time

are left open. E�ectively only the Attack Mechanism, Asset, Target and Vulnerability

classes are used in the relaxed near-real time environment. The subset-relationships were

given in statements 7.2 and 7.7:

CyberWarfare ⊆ CyberWarfare𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (7.11)

𝐷𝑜𝑆 ⊆ 𝐷𝑜𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (7.12)

In Figure 7.3a, Access is the sub-class of Asset for Cyber-Warfare scenario and in Figure

7.3b, Access is the sub-class of Asset for Denial-of-Service scenario. Similarly, both sce-

narios' attack goal is Disrupt and their target is Network Infrastructure. It follows that

the requirements for DoS Relaxed and Cyber-Warfare Relaxed are exactly the same, thus:

𝐷𝑜𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑 ≡ CyberWarfare𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (7.13)

Figure 7.4 displays the relaxed Cyber-Warfare and Denial-or-Service subsets. In Figure

7.4a, the two scenario classes Cyber-Warfare and Denial-of-Service are shown as a sub-

class of the Attack Scenario. These two classes are disjointed (thus they do not overlap).

Each of the sub-classes have individuals � South Ossetia an individual of the Cyber-

Warfare sub-class and SCO an individual of the Denial-of-Service sub-class.

The relaxed sub-classes are shown in Figure 7.4b. The Cyber-Warfare is contained within

the Relaxed Cyber-Warfare class. Similarly, the Relaxed Denial-of-Service fully contains

the Denial-of-Service class. The relaxed classes are thus more encompassing than other

sub-classes. An individual to one of the sub-classes will also be an individual to the related

relaxed class. Thus the SCO individual belongs to the Relaxed Denial-of-Service as well

as the Denial-of-Service sub-classes. Similarly, the South Ossetia individual belongs to

both the Relaxed Cyber-Warfare and Cyber-Warfare classes.

The two relaxed sub-classes were shown to be equivalent in Statement 7.13. This is shown

in �gures 7.4c and 7.4d. In Figure 7.4d, it is shown that the two sub-classes Cyber-Warfare

177

(a) Relaxed Cyber-Warfare Scenario

(b) Relaxed Denial-of-Service Scenario

Figure 7.3: Relaxed Cyber-Warfare and Denial-of-Service Scenarios

178

(a) Cyber-Warfare and Denial-of-Service Subsets

(b) Relaxed and Original Subsets

(c) Relaxed Cyber-Warfare and Denial-of-Service are Equivalent

(d) Relaxed Denial-of-Service Subset

Figure 7.4: Relaxed Cyber-Warfare and Denial-of-Service Subset Visually Presented

7.3. ATTACK SCENARIOS QUANTIFICATION 179

Figure 7.5: Protégé and HermiT Inferring the Relaxed Cyber-Warfare and Denial-of-
Service Scenarios

and Denial-of-Service fall within the single Relaxed Denial-of-Service sub-class. Since the

two relaxed classes are equivalent and the sub-classes are contained within them, they

can be shown as a single sub-class that contains the respective sub-classes.

In Figure 7.4c an individual 𝑧 is shown. Any individuals that are detected in the Relaxed

Denial-of-Service sub-class can either later be shown to be within the Cyber-Warfare or

Denial-of-Service sub-class. It is also possible that the individual 𝑧 is not a member of

either sub-class. Individuals detected in the near real-time environment would fall within

the relaxed sub-class. For example, in the initial states South Ossetia and SCO attacks,

it would be classi�ed within the Relaxed Denial-of-Service sub-class.

The automated reasoner HermiT showed that the Relaxed Cyber-Warfare and Relaxed

Denial-of-Service sub-classes are equivalent. In Figure 7.5, Protégé shows that the Cyber-

Warfare and Denial-of-Service classes are subsets of both Relaxed Cyber-Warfare and

Relaxed Denial-of-Service sub-classes. The relaxed classes are highlighted in blue. Pro-

tégé and the automated reasoner also automatically deduced the �ndings presented in

statements 7.11, 7.12 and 7.13.

The relaxed scenarios are shown as a diagram in Figure 7.3. In Figure 7.3a, the Cyber-

Warfare scenario is shown with all the sub-classes greyed out that cannot be accurately

7.3. ATTACK SCENARIOS QUANTIFICATION 180

determined. Similarly, in Figure 7.3b the Denial-of-Service is shown. Through inductive

reasoning it is clear that the non-greyed-out sub-classes are the same for Cyber-Warfare

and Denial-of-Service scenarios.

7.3.3 Inferring Unauthorised Data Access, Industrial Espionage

and Financial Theft Scenarios

Since the automated reasoner deduction was shown to be correct in detail in Section

7.3.2 its deductions are trusted. The HermiT reasoner is used to determine which of the

remaining relaxed scenarios are equivalent or sub-set of each other. Within the Protégé

editor, the HermiT reasoner was able to infer that the Relaxed Industrial Espionage and

Relaxed Financial Theft scenario are subsets of the Relaxed Unauthorised Data Access

scenario. Since statements 7.14, 7.15 and 7.16 is de�ned as follows:

𝑈𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑠𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑐𝑐𝑒𝑠𝑠 ⊆ 𝑈𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑠𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑐𝑐𝑒𝑠𝑠𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (7.14)

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝐸𝑠𝑝𝑖𝑜𝑛𝑎𝑔𝑒 ⊆ 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝐸𝑠𝑝𝑖𝑜𝑛𝑎𝑔𝑒𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (7.15)

FinancialTheft ⊆ FinancialTheftRelaxed (7.16)

Figure 7.6: Relaxed Unauthorised Data Access, Industrial Espionage and Financial Theft
Scenarios

7.4. SUMMARY 181

It follows that the requirements for FinancialTheftRelaxed and 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝐸𝑠𝑝𝑖𝑜𝑛𝑎𝑔𝑒𝑅𝑒𝑙𝑎𝑥𝑒𝑑

is subsets of 𝑈𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑠𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑐𝑐𝑒𝑠𝑠𝑅𝑒𝑙𝑎𝑥𝑒𝑑 scenario, and in Figure 7.6 displays how

the HermiT automated reasoner was able to infer the following holds:

FinancialTheftRelaxed ⊆

𝑈𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑠𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑐𝑐𝑒𝑠𝑠𝑅𝑒𝑙𝑎𝑥𝑒𝑑
(7.17)

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝐸𝑠𝑝𝑖𝑜𝑛𝑎𝑔𝑒𝑅𝑒𝑙𝑎𝑥𝑒𝑑 ⊆

𝑈𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑠𝑒𝑑𝐷𝑎𝑡𝑎𝐴𝑐𝑐𝑒𝑠𝑠𝑅𝑒𝑙𝑎𝑥𝑒𝑑
(7.18)

7.4 Summary

This chapter investigated how each class can be quanti�ed in near real-time, and how this

in�uences the di�erent attack scenarios. The only classes that can be quanti�ed to a high

accuracy level were: Attack Mechanism, Target, Asset, Attack Goal and Vulnerability.

By relaxing the de�nitions of each scenario to only include these classes, some of the

scenarios could be collapsed. The Relaxed Web Defacement and Relaxed Denial-of-Service

scenarios are equivalent, and the Relaxed Industrial Espionage and Relaxed Financial

Theft scenarios are sub-classes of the relaxed Relaxed Unauthorised Data Access class.

These six scenarios are practically measurable in near real-time. Thus in a near real-time

environment (as de�ned in Section 1.5), only the following scenarios can be measured to

a degree of certainty (as shown in Figure 7.7):

∙ Denial-of-Service (and Cyber-Warfare)

∙ Web Defacement

∙ Resource Theft

∙ Unauthorised Data Access (and Industrial Espionage, Financial Theft)

∙ System Compromise

∙ Runaway Malware

Although the relaxed scenarios are simpler than the original scenarios, they represent how

network attacks behave in a near real-time environment. The most signi�cant deduction

from these relaxed scenarios is that some of these scenarios are equivalent. For example, it

was shown that the Cyber-Warfare and Denial-of-Service scenarios are not distinguishable

in near real-time. This �nding was proven formally, intuitively and deduced via the

HermiT automated reasoner. The formal description proved that the automated reasoner

can be trusted, and thus used for the remaining deductions.

7.4. SUMMARY 182

Figure 7.7: Relaxed Attack Scenarios

The goal of detecting network-based attacks is to mitigate against them. By understand-

ing the type (scenario) of attack, correct mitigation actions can be taken. For example,

the action taken against a Denial-of-Service attack di�ers signi�cantly from a Web De-

facement attack. Mitigation of an attack can only be e�ective if it is done at the start of

the attack, or before signi�cant damage has been done.

Thus in the next chapters, a prototype system was developed that only concentrates on

the scenarios that can be detected in near real-time. In the next part, the prototype

developed is presented. The goal of the prototype is just to verify that network attacks

can be classi�ed according to their scenario and phase, and not act as a comprehensive

and complete system.

CHAPTER

EIGHT

ATTACK ESTIMATION NETWORK EVALUATION

ARCHITECTURE SYSTEM

"I fear the Greeks even when bearing gifts."

Virgil, The Aeneid

8.1 Introduction

In the previous chapter, six attack scenarios were identi�ed that can be detected in

near-real time. These scenarios are: Denial-of-Service, Web Defacement, Resource Theft,

Unauthorised Data Access, System Compromise and Runaway Malware. In Section 4.4, a

temporal attack model was presented. The attack model has the following phases: Target

Identi�cation, Reconnaissance, Attack (Ramp-up, Damage, Residue) and Post Attack.

This chapter demonstrates how to identify attack scenarios by mapping sensor outputs

to the temporal attack model and attack scenarios. A prototype system called Aeneas is

presented in this chapter.

When a computer network is under attack, mitigating actions depend on which type

of attack has taken place. To take mitigating action after the attack has taken place

may protect against the next attack, but it has no use during the attack. Some attack

183

8.2. DESIGN RATIONALE 184

scenarios can only be realistically determined long after an attack has reached its damage

phase, such as the Cyber-Warfare scenario. During the attack, a Cyber-Warfare scenario

is indistinguishable from a Denial-of-Service scenario. Thus the Aeneas system only

tries to detect the relaxed scenarios, which were identi�ed in Chapter 7. The Aeneas was

developed speci�cally to provide early warning of network attacks and relevant information

about the attacks.

In Section 8.2, the rationale of the prototype is explored and a high-level description of

the sub-systems is shown. In sections 8.3 to 8.4.2, the main components of the Aeneas

system are presented. Three sensors that provide the input data for Aeneas are presented

in Section 8.5. The remaining sensors are available in Appendix C.

8.2 Design Rationale

The Aeneas demonstrates how to classify network attacks according to the most probable

attack scenario in near real-time. Network attacks are classi�ed according to their related

scenario and phase. Traditional network sensors such as an IDS and a Network Telescope

do not provide direct information related to the attack scenarios or temporal phases of

an attack. The Aeneas uses the information of sensors by means of Event Query (EQ) to

determine if a scenario-related event has taken place. The Reconnaissance, Ramp-up and

Damage temporal phases map the EQs to each attack scenario. The Target Identi�cation

phase is not mapped because it takes place outside the scope of the targeted network or

is indistinguishable from normal activity. The Residue and Post Attack phases are not

used: Attacks that fall within these phases are rather classi�ed as new attacks.

The Aeneas consists of four main parts: Sensors, Central Information Server (CIS),

Database and Graphic User Interface (GUI), as shown in Figure 8.1.

Figure 8.1: The Aeneas Prototype

The sensors provide raw information, such as network activity, unauthorised access or

malicious activity detected. The sensors include systems that directly detect attacks and

8.3. CENTRAL INFORMATION SERVER 185

systems that monitor network or user activity. They can be very simple devices that report

data received directly or they can have a high level of sophistication, such as Network or

Host IDSs.

The CIS has two main roles: to collate all the sensor data and to determine the state of

the attacks by looking at which events have been triggered. If an event has been triggered,

the CIS determines the state of an attack as follows (Figure 8.2):

∙ Sensors collect data from an attack. They are software based and run independently

from the rest of the Aeneas system. The role of these sensors is to collect raw data

and send it through with minimal processing. A sensor would typically �lter data

to remove the most noise before sending it to the CIS.

∙ The sensor data is sent to the CIS. The data is transmitted through a network via

the TCP/IP protocol. The format of the sensor data is described in Section 8.5.

∙ The CIS determines which Event Query has been triggered and in which phase it

is. By mapping sensors and their outputs to respective phases and scenarios, the

CIS reports back the type and stage of detected attacks. The mapping of an Event

Query and its phases is shown via two examples in Section 8.4.1.

Figure 8.2: Aeneas Prototype Process

8.3 Central Information Server

The CIS has three distinct activities: collecting the data from the sensors, executing the

Event Query and determining in which scenario and phase the attack has been detected.

The Aeneas uses a web server to collect all the sensor data. An Apache1 server was

selected as Aeneas web server. The data is copied directly into a database. The overall

design of the Threat Identi�cation Prototype is shown in Figure 8.3.

1http://www.apache.org/

8.4. SCENARIO ALGORITHM, EVENT QUERIES AND DATABASE 186

Figure 8.3: Attack Estimation Network Evaluation Architecture System

All communication from the sensors only �ow from the sensors to the database: the CIS

does not communicate back to any sensor. The CIS has a service that executes every

�ve seconds. This service determines which Event Query has been triggered and which

scenarios and phase combinations have been detected. Each Event Query's results are

mapped to a scenario (or scenarios) and a phase, as shown in Figure 8.4.

8.4 Scenario Algorithm, Event Queries and Database

In Figure 8.4, all the EQs are shown in relation to the attack scenario and temporal

phases. Each of the blocks in Figure 8.4 represent an Event Query. Each Event Query

uses data from one or more sensors to identify if an attack is in the corresponding state.

To determine if a speci�c scenario and phase have been triggered, their corresponding

Event Query must be set. The ontology reasoner is used to determine which scenarios are

detected by each Event Query.

8.4.1 Event Queries Example

In this section, two Event Querys will be explored in detail, namely Unusual Web Activity

and Port Scan. The Unusual Web Activity and Port Scan Event Queries take place during

8.4. SCENARIO ALGORITHM, EVENT QUERIES AND DATABASE 187

Figure 8.4: Event Queries Mapped to Attack Scenarios and Attack Phases

Listing 1 Unusual Web Activity Question

if Non-human-like activity on the website has been detected. then
Yes, at time 𝑇 , non-human activity has been detected within a given con�dence level.

else

No, at time 𝑇 , no non-human activity has been detected.
end if

the Reconnaissance phase.

The Unusual Web Activity uses the Crawler Detector sensor, which detects non-human-

type web page activity. This sensor is described in detail in Section 8.5.3. This Event

Query (Listing 1) uses only the web-crawler sensor and is triggered directly if the web-

crawler sensor detects any activity. The Unusual Web Activity basically asks the following

question:

The same question rephrased in relation to the ontology in Chapter 5 asks the questions

as follows:

For which Attack Scenario, during the reconnaissance phase has an Attack Mech-

anism, namely Web Crawler, been launched against the Web Server Target?

Thus, for the ontology the question is asked which scenario has the limitations that the

Open Information sub-class of the Attack Scenario class is speci�ed and that the Web

Server sub-class of Target class is speci�ed. The automated reasoner (refer to Section

5.2.1) determines that only the Web Defacement scenario is a match. The result of the

Protégé query is shown in Figure 8.5.

8.4. SCENARIO ALGORITHM, EVENT QUERIES AND DATABASE 188

Listing 2 Port-scans Question

if Network port scans been detected then
Yes, at time T, port scans have been detected from the following IPs on these IPs
and ports.

else

No, at time T, no port scans have been detected.
end if

Figure 8.5: Web Crawler Scan Query Result

In the top textbox, the query that is used, is shown. The result of the query is two descen-

dant attack scenario classes: Web Defacement and Relaxed Web Defacement. Dependant

classes are classes that the automated reasoner determined which comply with the query.

The Port Scan Event Query uses a Network Telescope and a Snort IDS to detect port

scans. Port scans are de�ned as follows(Lee et al., 2003):

"... (They) consist of sending a message to a port and listening for an answer. The

received response indicates the port status and can be helpful in determining a host's

operating system and other information relevant to launching a future attack [p1]."

Port scans are detected when the Network Telescope detects scan-like activities. The

Network Telescope sensor is described in detail in Section 8.5.1. The Port Scan basically

asks the following question (also shown in Listing 2):

The same question rephrased in relation to the ontology (Chapter 5) asks the question as

follows:

Which Attack Scenario, during the reconnaissance phase has an Attack Mechanism,

namely Open Information?

8.4. SCENARIO ALGORITHM, EVENT QUERIES AND DATABASE 189

Listing 3 Tra�c In�ux Event Query

Tra�c In�ux Event Query Start
Load Tra�c In�ux Settings
Retrieve Bandwidth Sensor Data
Calculate Bandwidth used
Calculate Bandwidth Threshold
if Bandwidth exceeds Bandwidth Threshold then
Tra�c In�ux Event Query detected

end if

Tra�c In�ux Event Query End

Using Protégé, the query resulted in identifying that System Compromise, Unauthorised

Data Accesses and Resource Theft (Industrial Sabotage falls outside the scope of this

system and Industrial Espionage is the same as Unauthorised Data Accesses). The result

of the Protégé query is shown in Figure 8.6. The reasoner determined that a port scan

is an indication of a System Compromise, Unauthorised Data Access or Resource Theft

scenario.

Figure 8.6: Protégé Port Scan Query Result

For example, to determine if a Denial-of-Service scenario is in the Ramp-up phase, the

Traffic Influx Event Query will have to be triggered. The algorithm that describes the

Traffic Influx Event Query is shown in Listing 3. The algorithm that is used to determine

the state of the DOS scenario is shown in Listing 5. The Traffic Influx Event Query

determines if the tra�c volume has increased signi�cantly and that the tra�c is above a

speci�ed threshold. The Traffic Influx Event Query uses the SYN and bandwidth sensors.

8.4. SCENARIO ALGORITHM, EVENT QUERIES AND DATABASE 190

Listing 4 Servers Running Event Query

Servers Running Event Query Start
Servers Running Settings
Retrieve IsAlive Sensor Data
Calculate the number of the servers are communicating
if Servers down greater than set threshold OR IsAlive Sensor stopped communicating
then

Servers Running Event Query detected
end if

Servers Running Event Query End

Listing 5 DoS Algorithm

DoS Scenario Start
Execute Traffic Influx Event
Execute Server Running Event
if Traffic Influx is true AND Server Running is false then
DoS Scenario detected
DoS Scenario inRamp-up phase

else if Server Running is true then
DoS Scenario detected
DoS Scenario inDamage phase

end if

DoS Scenario End

To determine if a Denial-of-Service attack has reached the Damage phase, the Servers

Running Event Query will have to be triggered. The algorithm that describes the Servers

Running Event Query is shown in Listing 4. The algorithm that is used to determine

the state of the DOS scenario is shown in Listing 5. The Servers Running Event Query

determines if the servers have stopped communicating. When the servers cannot com-

municate anymore, the IsAlive sensor would communicate this fact, or if the sensor itself

stopped communicating, the Denial-of-Service attack has reached Damage phase. (Refer

to Appendix C.2 for detail about the IsAlive sensor.)

The algorithm that set the Denial-of-Service is shown in Listing 5. The algorithm checks

if the Traffic Influx and Server Running events have been triggered and then sets the

detected scenario accordingly.

For the rest of the scenarios, similar algorithms are executed to determine their state.

These algorithms are presented in Appendix B. The process of executing the Event

Query and determining which scenario and phase of the attack have been detected are

shown in Listing 6.

8.5. SENSORS 191

Listing 6 Threat Identi�cation Prototype Process

while true do
for all Scenarios do
for all Scenario's Events do
Load Event settings
Calculate Event information
Execute Event logic
Set Event state

end for

Execute Scenario logic
if Scenario detected then
Set Scenario �ag

end if

Maintain database
end for

Delay 10 Seconds
end while

8.4.2 Database

The database of the Aeneas has to keep the relevant information for each sensor, the

results of the EQs and some of the system settings. A simple database design was used to

simplify the prototype. The database only has to store incoming sensor data and handle

data requests from the Scenario Service. The output of the Scenario Service is also stored

in the database. The database has three tables:

∙ LiveEventTable

∙ EventDetection

∙ Scenarios

The LiveEventTable collects all the data directly from the sensors. This table is constantly

receiving new data from all of the sensors, and thus grows signi�cantly in time. The

EventDetection table stores the data of each detected event. Scenarios table store the

detected scenarios and their phases. The database was implemented on MySQL2.

8.5 Sensors

The sensors are used by the Event Query to determine if an attack scenario has been

triggered. These sensors do not have to be directly related to security. Some sensors

2http://www.oracle.com/us/products/mysql/overview/index.html/

8.5. SENSORS 192

use security-related software and use IDSs such as Snort and Bro, while others are basic

applications whose outputs can be used to determine a network state.

The sensors were developed by parsing application log �les in the researcher's Standard

Communications Framework (SCF). The SCF was custom-developed for the Aeneas sys-

tem and is used because of its simplicity. Since the Aeneas is only proof of concept, other

frameworks such as Common Event Expression (CEE)3, Splunk4 and similar Security In-

formation and Event Management (SIEM) products were considered to be cumbersome.

The Mosaic Security research group has compiled a list of over 80 SIEM products5. The

SCF uses an Extensible Markup Language (XML) format and has the following data �elds

(also shown in Figure 8.7):

∙ Time

∙ Source IP

∙ Destination IP

∙ Source Port

∙ Destination Port

∙ Message

Figure 8.7: XML Schema

Dickerson and Dickerson (2000) used a similar scheme for their Fuzzy Intrusion Recogni-

tion Engine (FIRE). The FIRE system used TCP control bits, packet length and did not

have �elds to represent the message.

3http://cee.mitre.org/about/
4http://www.splunk.com/
5http://mosaicsecurity.com/categories/85-log-management-security-information-and-event-

management/

8.5. SENSORS 193

8.5.1 Network Telescope Sensor

The Network Telescope's main advantage is to identify probing and other Reconnais-

sance activities (refer to Section 3.5.5). The Network Telescope sensor was developed by

adapting multiple open-source Unix network tools and coding the required functionality.

Figure 8.8 depicts how the Network Telescope sensor is constructed. The Farpd6 software

replies to any Address Resolution Protocol (ARP) request for an IP address. It matches

the speci�ed destination with the hardware Media Access Control (MAC) address of the

speci�ed destination, but only after determining if another host has not already claimed

it.

Figure 8.8: The Network Telescope

Tshark7 is a command-line network protocol analyser that is used to capture data packets.

Thus, as shown in Figure 8.8, the Network Telescope consists of Farpd, Tshark and an IP

�lter. In the Network Telescope text �le, the date, event type and source and destination

IP address, source and destination port are stored. The date is represented in "%b %d

%Y %H:%M:%S.%F" time format (refer to Appendix D). An example of raw data from

the Network Telescope is shown below:

Feb 23, 2013 03:01:24.12531800:10.0.1.13;10.0.1.141;2414;3001;0x06;eth:ip:tcp

Feb 23, 2013 03:01:24.37774400:10.0.1.25;10.0.1.144;35663;3004;0x06;eth:ip:tcp

Feb 23, 2013 03:01:24.46749500:10.0.1.7;10.0.1.229;2411;3008;0x06;eth:ip:tcp

Feb 23, 2013 03:01:24.46750900:10.0.1.7;10.0.1.243;2049;3002;0x06;eth:ip:tcp

8.5.2 Honeypot and IDS Sensor

This sensor uses a combination of an IDS and a honeypot. The honeypot lures the attacks

while the IDS classi�es them. This sensor uses Honeyd8 as the honeypot and Snort9 for

an IDS. Anagnostakis, Sidiroglou, Akritidis, Xinidis, Markatos, and Keromytis (2005)

6http://manpages.ubuntu.com/manpages/hardy/man8/farpd.8.html/
7http://www.wireshark.org/docs/man-pages/tshark.html/
8http://www.honeyd.org/
9http://www.snort.org/

8.5. SENSORS 194

introduced "Shadow Honeypots" that combined features from honeypots and anomaly

detection systems. The work of Anagnostakis et al. inspired this sensor. Honeyd10 was

chosen as the Honeypod sensor. Honeyd is an ideal sensor for the following reasons:

∙ Honeyd is freely available (open-source software).

∙ Honeyd enables a safe FTP and Telnet simulation without endangering the host

operating system.

∙ The FTP, Telnet and SSH simulations are con�gurable.

Snort is an open-source network IDS developed by Source�re11. Combining the bene-

�ts of signature, protocol, and anomaly-based inspection, Snort is one of the most widely

deployed IDS technologies worldwide (Gandhi and Srivatsa, 2008). With millions of down-

loads and nearly 400 000 registered users, Snort has become the de-facto standard for an

IDS. Snort is highly con�gurable and has many specialised rule sets. These rule sets can

be used to detect a speci�c attack or attack phase. Third-party rule sets such as those

developed by Bleeding Snort12 can also be used.

The Honeyd system generates a fake target that is monitored by Snort for suspicious

activity. An attacker will usually try to attack the simplest target �rst. The target

generated by Honeyd therefore lures an attacker into the open before an attack on the

real network is attempted. Figure 8.9 depicts how the Honeyd and Snort combination

sensor is constructed.

Figure 8.9: The Honey Snort Sensor

10http://www.honeyd.org/
11http://www.sourcefire.com/
12http://www.bleedingsnort.com/

8.5. SENSORS 195

Additionally, the Farpd13 application is used to direct tra�c into the honeypot. The

sensor uses the text log �le that the Snort IDS generates in response to any intrusions

detected at the honeypot.

In the Snort raw text �le, the date, source IP, source port, destination IP, destination

port and event type are used. The date is represented in "%m/%d/%y-%H:%M:%S" time

format (refer to Appendix D). The source and destination IPs are represented in Internet

Protocol version Four (IPv4) human readable format. The source and destination ports

are represented by an integer value. The event type is presented by a text string that

indicated a Snort-generated warning. The raw output of the sensor is shown below:

02/25/13-13:20:25.487090 ,10.0.1.4,10.0.1.162,,,,

"(portscan) TCP Portsweep",templogfile (END)

8.5.3 Crawler Detector Sensor

The Crawler Detector sensor uses a custom script to detect if any �les have been accessed

via a web crawler. These scripts are placed in locations that no human user would need

to access. The scripts detect dictionary attacks, web vulnerability scans and crawlers that

speci�cally target contact information. The output of these scripts are logged to a single

log �le. This text �le is shown as follows:

1361772842 10.0.2.8 80 Brute Force crawler Detected

1361772925 10.0.2.8 80 Vulnerability Scan: Nikto Detected

Stored in the log �le is the time, source IP address, source port, destination IP address,

destination port and a description of the crawl event type. The time is stored in Epoch

time format and the IP addresses are in IPv4 format. The web crawler sensor is classi�ed

as a host-type sensor and indicates when hidden web pages have been accessed. The

algorithm used to parse to the web crawler monitor's output is shown in Listing 7.

In Appendix C, the remaining sensors are discussed. Some of the sensors were built on

existing security applications such as Tripwire and Bro IDS. Other sensors used Linux

log �les from which security information could be deduced. The Apache web server and

�rewall were also used as sensors. Custom applications were also developed as sensors.

13http://manpages.ubuntu.com/manpages/hardy/man8/farpd.8.html/

8.6. SUMMARY 196

Listing 7 Crawler Detector Sensor Algorithm

Crawler Detector Sensor Start
if Hidden Web Site Accessed then
Read in Web Defacement Raw Output
Parse Time, Event Type and Destination IP
Parse Crawler Raw Output
Send Parse Output to Aeneas Server

end if

Wait 30 Seconds
Crawler Detector Sensor Start

8.6 Summary

In this chapter, the Aeneas prototype was introduced. The Aeneas prototype consists

of sensors, a Central Information Server and a GUI. The Central Information Server

determines if an attack is in progress by means of an Event Query and sensor data. Each

Event Query was mapped to an attack scenario and phase, thus when an Event Query is

triggered, a speci�c attack scenario is detected in its phase. The sensor data, Event Query

statuses, attack scenario and phase detected were stored and maintained in a database.

Three sensors were presented in detail: the Network Telescope, Honeypot and IDS and

Crawler Detector sensors. The remaining sensors are presented in Appendix C.

In the next chapters, Aeneas is validated with some empirical experimentation. The envi-

ronment in which the Aeneas prototype was tested is presented in the next chapter. This

environment must emulate a topical network and network attacks without endangering

other networks. The Aeneas is validated by verifying each of the Event Queries.

CHAPTER

NINE

EMPIRICAL VALIDATION

"It doesn’t matter how beautiful your theory is, it doesn’t matter

how smart you are. If it doesn’t agree with experiment, it’s

wrong."

Richard P. Feynman

9.1 Introduction

This chapter describes how the Aeneas system was veri�ed. The goal is not to conduct

statistically signi�cant or performance experiments, but rather to look for corrective test-

ing to verify that the principles explored in the previous chapters are valid. The Event

Query de�ned in Section 8.4.1 and Appendix B were tested empirically.

Two main methodologies are used to test the e�ects of computer attacks and defence

mechanisms. One approach is to reproduce the e�ects through simulations. This approach

is useful when simulating large networks (Zeng, Bagrodia, and Gerla, 1998; Baumgart,

Heep, and Krause, 2007). The second approach is to build a test bed on which real

operating systems and applications are installed and used. Although this approach can

only be used on a smaller scale, it presents a more accurate platform for testing. The

challenge in building a test bed is to construct an environment in which tests can be

197

9.2. TEST BEDS 198

repeated from a baseline, and it should also prevent any malware from infecting other

systems.

Two test beds were developed. The �rst test bed implemented virtual computers on an

ESXi server, connected them via a �rewall to the Internet and simulated user tra�c via

randomised tra�c scripts. The goal of this test bed was to recreate a realistic network

in which to test the Aeneas system using a real operating system and hardware. The

second test bed used the Common Open Research Emulator (CORE) tool to simulate the

network environment. The goal of the second testbed is to test how the Aeneas would

perform in a stressful environment such as a DDoS attack. The second test bed used

external tools such as the CORE Emulator and BreakingPoint system to generate a test

environment and test data.

Within the two test environments three kinds of sensors of Event Query combinations were

veri�ed: Interrupt binary sensors, Continuous polling sensors and Interrupt information

sensors. Each of the Event Queries is veri�ed via an empirical test described in this

chapter. In Section 9.2, other available test beds are presented. The design constraints

of the test beds are discussed in Section 9.3, and the implementation of the test beds are

presented in Section 9.4. The performance of the test beds is presented in sections 9.5

and 9.6. Three types of validation for the Aeneas system are discussed in sections 9.7,

9.8, 9.9 and 9.10. The chapter is concluded in Section 9.11.

9.2 Test beds

The test bed section of this chapter is based on work published by van Heerden, Pieterse,

Burke, and Irwin (2013b). Six other test bed environments are presented, which have

shortcomings that prevented their use to validate the Aeneas system.

9.2.1 Global Mobile Information System Simulator

The Global Mobile Information System Simulator (GloMoSim) is a scalable simulation

library that uses parallel execution to e�ectively reduce the simulation time for large com-

munication networks (Zeng et al., 1998; Bajaj, Takai, Ahuja, Tang, Bagrodia, and Gerla,

1999). This simulation environment can simulate large-scale networks linked by a stan-

dard communication structure. This structure includes multicast, asymmetric communi-

cations, multi-hop wireless communications and traditional Internet protocols. GloMoSim

9.2. TEST BEDS 199

supports performance prediction of large-scale network models via parallel execution. Al-

though GloMoSim provides an adequate library for testing purposes, it was not used due

to the complexity associated with it.

9.2.2 User-defined and Organised Network

The User-de�ned and Organised Network (UDON) architecture provide Application Pro-

gram Interfaces (APIs) to control virtual test bed network resources (Horib, Yamamoto,

and Sekiya, 2012). This design allows the test bed to de�ne a virtual experimental net-

work topology, and has the ability to modify speci�c properties and test scenario scripts.

UDON focuses on the topology of the simulated network and provides its users with the

ability to modify their experimental network. Since UDON does not support simulation

of larger quantities of network tra�c it is not an optimal solution as a test bed for Aeneas.

9.2.3 NetSim

NetSim is a simulation architecture that supports distributed cyber-exercises1. NetSim

consists of a collection of applications that include the simulation engine, web servers,

Computer Generated Imagery (CGI) applications, MySQL databases and Perl scripts.

Normal and attack conditions can be simulated. The devices represented in the simula-

tion include workstations, routers, servers, and �rewalls. NetSim provides the required

functionality, but as it is aimed at being used as a cyber-exercise it was not used to test

the Aeneas system.

9.2.4 Network HTTP Simulator

The Network HTTP Simulator (NHS) was developed by the University of Patras, Greece,

and measures the load of HyperText Transfer Protocol (HTTP) tra�c (Aravantinos,

Bouras, and Ganos, 2002). It also acts as a network-stressing tool to evaluate HTTP

requests and responses. The operation of NHS consists of three phases. The �rst phase

provides the user with the ability to select simulation scenarios. The second phase cre-

ates HTTP tra�c. The third phase presents the results of the simulation. NHS o�ers a

stable platform for network simulation, but due to its singular focus on HTTP, it was not

selected as an environment to test the Aeneas system.

1http://www.iseesystems.com/softwares/NetSimWizard.aspx/

9.3. TEST BED DESIGN CONSIDERATIONS 200

9.2.5 Virtual Environment for Learning Networking

The Virtual Environment for Learning Networking (Velnet) provides a secure learning

environment for the teaching of computer networking (Kneale, De Horta, and Box, 2004).

Velnet consist of a host machine, a host operating system, VMware-based virtualisation

and a virtual network. This simulation environment creates a platform aimed at teaching

network architecture to students and was not designed to act as a viable attack platform

to test the Aeneas system.

9.2.6 Real-time Immersion Network Simulation Environment for

Network Security Exercises

The Real-time Immersion Network Simulation Environment for Network Security Exer-

cises (RINSE) simulator supports large-scale network security preparedness and training

exercises (Liljenstam, Liu, Nicol, Yuan, Yan, and Grier, 2006). The goal of RINSE is to

simulate large-scale, real-time human/machine-in-the-loop network architectures with the

focus on security exercises and training. The RINSE architecture consists of the following

components: the network simulator, database, manager, server and network viewers. The

large-scale architecture presented by RINSE is not viable to test the Aeneas system as

the scope is too large.

9.3 Test Bed Design Considerations

In order to test the e�ects of network attack scenarios, a stable re-usable platform is

required. Some of the signi�cant problems with test environments are as follows:

∙ Trade-o� between complexity and size, also referred to as �delity (Rosenblum, Her-

rod, Witchel, and Gupta, 1995). Fidelity represents how real the simulation environ-

ment is. A high-�delity simulation emulates all the communications and computer

interactions within a network, but the simulations are hardware- and processing

power-intensive. Thus, for high-�delity the number of systems emulated is low.

Low-�delity emulates the minimum network communications, but at a bigger scale.

Thus with similar processing power, many more systems and their interactions can

be emulated, but not with the same detail as with a high-�delity simulation.

9.3. TEST BED DESIGN CONSIDERATIONS 201

∙ Preventing malware from escaping and in�uencing the test equipment (Benzel,

Braden, Kim, Neuman, Joseph, Sklower, Ostrenga, and Schwab, 2006; Cavallaro,

Saxena, and Sekar, 2008). The test bed may require a connection to the Internet

or Intranet to emulate such communications. While connecting to other networks,

the test bed itself should not be an infector or spreading agent of malware. If a new

virus/worm's in�uence and behaviour must be tested, the test bed must ensure that

the malware does not spread to surrounding networks. Apart from the damage it

can cause, the test bed tests should also not be in�uenced by malware from outside

their domain.

∙ The ability to reset and redo tests from a standard baseline (Nilsson, O�utt, and

Mellin, 2006; Vigna, Robertson, and Balzarotti, 2004; Kornexl, Paxson, Dreger,

Feldmann, and Sommer, 2005). To ensure that a previous test does not in�uence

the current tests, the test bed must have the ability to restore itself to a clean state

(baseline). For example, a test that determines what the acceptable background

network activity is must not be in�uenced by botnet communications from a previous

test.

To test the Aeneas system, a test bed was developed that represents the environment of a

small software development company. This pseudo company consists of 30 odd computer

users, half of which use Unix, and the other half the Windows Operating Systems (OSs).

The company has three network segments. The �rst segment is used by the users. The

second segment is a Demilitarised Zone (DMZ) that is accessible from the Internet. The

third segment is used to host the internal servers, such as a Subversion repository and

File server. The company also has web, email and File Transfer Protocol (FTP) servers

within the DMZ. All the segments are separated physically by means of a switch and

�rewall. The architecture used for the test bed is shown in Figure 9.1a. This design was

based on the most common DMZ architecture (Bauer, 2001). Bauer architecture di�ers by

separating the DMZ physically from the internal network. This is a more secure method,

but as the goal of the test bed is to test for network attacks, the architecture used in

Figure 9.1a was chosen over the architecture shown in Figure 9.1b.

The test bed only includes appropriate components for the purpose of validation testing.

The size of the network was chosen as a compromise between complexity and the magni-

tude of the network. The size of the text network was constrained by the availability of

hardware, but could still present an environment to test the various scenarios.

202

(a) Implemented Test Bed Architecture

(b) Architecture After Bauer (2001)

Figure 9.1: Test Bed Architecture

9.4. TEST BED IMPLEMENTATION A: ESXI AND FIREWALL 203

9.4 Test Bed Implementation A: ESXi and Firewall

The test bed was implemented with the following hardware:

∙ VMware ESXi Server2

∙ Lucidview Firewall3

∙ Network Switch

∙ Administrator Computer

In Figure 9.2, the physical setup is shown. The workstations and servers are implemented

within the ESXi 5 server. The ESXi server has the following hardware and software:

∙ Memory Capacity: 192 GB

∙ CPU Cores: 8 CPUs x 2.659 GHz

∙ Processor type: Intel (R) Xeon (R) CPU E5640 @ 2.67 GHz

∙ Storage: 2x1 TB, RAID 1 (Mirror)

∙ ESXi 5.0 Operating System

Figure 9.2: Physical Implementation of the Test Bed

2http://www.vmware.com/files/pdf/VMware-ESX-and-VMware-ESXi-DS-EN.pdf/
3http://www.lucidview.net/products-and-services/lucidview-guardian/

9.4. TEST BED IMPLEMENTATION A: ESXI AND FIREWALL 204

The ESXi server is a production-level hypervisor which abstracts computer hardware

such as storage, the processor, and network and memory resources into multiple virtual

computers that can each run their own unmodi�ed operating system. The vSphere client

is used to monitor and control the ESXi server's virtual computers. Through the vSphere

client, virtual computers can be viewed and controlled. Each virtual machine can be

restarted from a saved snapshot. Thus all the computers and servers can be restored to

a base state. The ESXi can be programmed though a script to restore all computers to

a base snapshot. Thus the process of restoring the system to an initial state is trivial.

Snapshots can also be used to store computer and server states after an experiment. These

snapshots can be exported for o�ine external analysis.

Each of the network segments (as shown in Figure 9.1a) are logically separated on a

separate network interface in the ESXi server. The Server, Client and DMZ segments

are all virtualised computers within the ESXi server. Each segment uses its own network

interface and therefore all tra�c between di�erent segments will have to pass through

a physical switch. When the workstations communicate with the servers, physical data

packets are generated, which �ow through a real switch between the virtualised computers.

The Lucidview �rewall has the following main functions:

∙ It only allows access from the Internet to the DMZ.

∙ It acts as an Internet proxy for all the virtualised computers and servers.

∙ It protects the Internet from malware tested on the test bed.

∙ It logs the tra�c �ow between the test bed and the Internet.

The Lucidview �rewall can display the amount of tra�c according to preset de�nitions.

9.4.1 Simulated Network Traffic

The network developed in this section has a signi�cant shortcoming: It does not have any

user tra�c. The only tra�c visible on the network is generated by the operating system,

such as update requests, Microsoft-related DNS queries, etc. No two networks are the

same with respect to their network tra�c (Hassan, Garcia, and Brun, 2005). The tra�c

has temporal, protocol, bandwidth and destination properties that need to be simulated.

A corporate computer network is used mostly during working hours with di�erent pro-

tocols taking precedence at di�erent times. For example, web browsing may be popular

during lunch, and email in the mornings. The temporal aspect of the network tra�c

9.4. TEST BED IMPLEMENTATION A: ESXI AND FIREWALL 205

is dependent on the network users or company culture. Thus the simulation should be

adjustable to represent di�erent usage temporal patterns. Network usage has a certain

aspect of randomness. No two users will reply to their email at the exact same time, and

browse the same websites at the same time.

To compensate for the lack of tra�c, a custom script was developed that generates network

tra�c. This script generates tra�c by performing a network request that is similar to

users on the network. Tra�c is generated by browsing the web, downloading FTP data,

sharing �les and using a repository, which is similar to human users of a network. In the

following section, the tra�c-generating script is presented in more detail.

9.4.2 Network Traffic Type

To simulate network tra�c, the following constraints have to be addressed:

∙ Network Tra�c Type (Protocol) (Rizzo, 1997). Tra�c simulation has to handle

diverse applications deployed on the Internet. These diverse applications can be

simpli�ed by the protocol used. Although there are more than 20 000 protocols used

with TCP/IP networks (Touch, Lear, Mankin, Ono, Stiemerling, Eggert, Melnikov,

and Eddy, 2013), the most Internet-popular ones are HTTP connections (Smith,

Campos, Je�ay, and Ott, 2001).

∙ Temporal Variations (Deng, 1996; Kornexl et al., 2005; Hernández-Campos, Kar-

aliopoulos, Papadopouli, and Shen, 2006). Human temporal behaviour in�uences

the type of tra�c �ow on the network at di�erent times. For example, during

working hours, a company's network should be more active than at night. During

working hours, the behaviour should di�er according to other patterns, such as re-

laying to email during the morning, or saving source code to the repository in the

afternoon.

∙ Data Destination (Barford and Crovella, 1998). Data does not distribute randomly,

but rather according to users' requirements. For example, in South Africa some

sites that receive the most Internet tra�c are: news24.co.za, bidorby.co.za, iol.co.za,

gumtree.co.za and mybroadband.co.za (Enikeev, 2013).

Each network tra�c type is dependent on what the network is used for and what the

users require from the network. For the setup, four network tra�c types were identi�ed

to represent the majority of network tra�c for a small software development company

(Barford and Crovella, 1998):

9.4. TEST BED IMPLEMENTATION A: ESXI AND FIREWALL 206

Listing 8 Network Simulation Algorithm

Start Protocol Speci�c Simulation
Select Destination (IP, Popularity)
Determine Pseudo Time Interval (Temporal map)
if Time Interval has been reached then
Simulate Tra�c

end if

Return to Destination Selection

∙ web browsing (Aravantinos et al., 2002)

∙ email (Zou, Towsley, and Gong, 2007)

∙ subversion4

∙ FTP

∙ Intranet �le access

Web browsing would typically be more active during lunch and after working hours, and

email at the start of the working day (Karlson, Meyers, Jacobs, Johns, and Kane, 2009).

Subversion is a revision control and software-versioning system. Many revision control

and software-versioning applications are used today, but a single small company would

typically standardise to a single system. Intranet �le access should peak at the start and

end of a working day. These assumptions give the test bed a more realistic �avour, but

are not meant to represent de�nitive usage.

9.4.3 Traffic Algorithm

The algorithm in Listing 8 describes how the time interval between network activity is

calculated. The algorithm requires input in the form of a protocol required, destination

address, the popularity of the address and the temporal map.

The tra�c algorithm is used for each required protocol that has to be simulated. Multiple

destinations for the tra�c can be set, and with each destination a popularity can be

assigned. For example, some websites are visited more often and should therefore be

more popular with the simulator. This popularity is demonstrated with the web tra�c

example in Section 9.4.5. The interval between simulated tra�c is set with a temporal

map. Each protocol temporal map di�ers according to its speci�c behaviour pattern. In

Section 9.4.4, an example of the temporal map for web browsing is shown.

4http://subversion.apache.org/

9.4. TEST BED IMPLEMENTATION A: ESXI AND FIREWALL 207

9.4.4 Temporal Map

The temporal map describes the tempo at which network connections are made. When the

temporal map has a higher value, more frequent network connections should be made.

Thus the temporal map allows the simulation of di�erent network temporal patterns

according to the time of day, and time intervals di�er depending on the time of the day.

The pseudo time interval is determined by the value assigned for the hour interval in the

temporal map. In Figure 9.3, the temporal map for web browsing is shown.

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
0

10

20

30

40

50

60

70

80

Time period (hours)

Int
er

va
l T

im
e

Figure 9.3: Web Tra�c Temporal Map

From 20:00 to 07:00 no web tra�c is expected on the network, and thus the interval

value is presented as a zero. The web tra�c peaks at 10:00 and 16:00, representing

active browsing during tea-time and late afternoon. The pseudo random time interval is

determined by using the appropriate temporal map time value, adding a random value

(between -10 and 10) to it and dividing by 60 (minutes in an hour). For example, the

temporal map value at 08:00 is 50 with a random number of 10 the pseudo time interval

will be 1 minute. Thus after a minute, a request will be made to the web page.

9.4.5 Web Traffic Example

To simulate a reasonable representation of websites that are accessed, a list of websites

and their relative probabilities were used: each time a website destination is requested,

9.5. TEST BED A PERFORMANCE 208

Table 9.1: Most Visited Websites (eBizmda.com)

Rank Domain Unique Hits per Month Popularity

1 Facebook.com 9,753,424 20.57
2 Twitter.com 6,471,809 13.65
3 Google.com 6,315,679 13.32
4 Youtube.com 5,213,892 11.00
5 Wordpress.org 4,010,710 8.46
6 Adobe.com 3,883,600 8.19
7 Blogspot.com 3,384,289 7.14
8 Godaddy.com 3,040,779 6.41
9 Wikipedia.org 2,987,226 6.30
10 Wordpress.com 2,349,888 4.96

a website is selected according to popularity. The list and popularity of websites were

obtained at eBizmda.com (April 2013)5. The top 10 websites visited in 2013 (April)

according to Moz.com are listed in Table 9.1.

For each of the selected protocols, a temporal map was made. Thus each protocol has its

own temporal variations. Web browsing, FTP and email tra�c destinations were selected

according to lists. The lists contain the destination and the frequency of choosing the

destination. The FTP and email lists are similar to the list shown in Table 9.1, but

with arbitrary addresses constructed by the researcher. For each new request, a new

destination was selected randomly according to the frequencies. For example, for each

new web browsing request, Facebook will have a 20.57% probability, and YouTube will

have an 11% probability to be selected. Subversion and Intranet File Access do not have

multiple destinations: a single repository server and single �le server were used.

9.5 Test Bed A Performance

The performance of the test bed was evaluated using simulated network tra�c in the

virtualised test bed. The simulation consisted of 30 corporate workstations, of which 15

used Windows and 15 used Unix. Each workstation simulated web, email, subversion and

�le access tra�c types. Each tra�c type has its own temporal map.

The ESXi server CPU load increased from an average of 47% load without simulation

running to 55% load with the simulations running. Thus the CPU load by average only

5http://www.moz.org/top500/

9.5. TEST BED A PERFORMANCE 209

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
0

5

10

15

20

25

30

35

Time period (hours)

Ba
nd

wi
tdh

 (k
by

tes
)

Figure 9.4: Firewall Tra�c Incoming without Tra�c Simulation

increases 8% when the workstations generate tra�c. The ESXi memory use without simu-

lation tra�c averages 34 gigabyte usage and with the simulation 60 gigabyte usage. Thus

the simulation has a signi�cant e�ect on memory usage. 60 gigabyte is still signi�cantly

less than the system's 192 gigabyte capacity.

9.5.1 Firewall Data

The Lucidview �rewall has the ability to log all incoming and outgoing tra�c. The �rewall

has the ability to separate tra�c according to its prede�ned groups. For evaluating the test

bed performance, the experiment focused on the total bandwidth and not the individual

bandwidth usage as the �rewall logging settings were not aligned to the exact protocols

that were simulated. In �gures 9.4 and 9.5, the incoming and outgoing bandwidth into

the test bed are shown.

In Figure 9.4, the maximum tra�c is 32 kilobytes per second. Although no tra�c is

simulated, the tra�c usage still has a form similar to the temporal maps. This shape is

most in�uenced by other entities that try to scan or communicate with the test bed from

the Internet. In Figure 9.5, the maximum tra�c is 26 kilobytes per second. The outgoing

tra�c does not correspond to temporal maps, but rather is �atline, except for an outlier

at 08:00. This represents the base state communications from the Windows and Unix

workstations.

9.6. TEST BED IMPLEMENTATION B: ESXI AND CORE EMULATOR 210

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
0

5

10

15

20

25

30

Time period (hours)

Ba
nd

wi
tdh

 (k
by

tes
)

Figure 9.5: Firewall Tra�c Outgoing without Tra�c Simulation

In �gures 9.6 and 9.7, the incoming and outgoing tra�c through the �rewall with the

simulated tra�c are shown. The red and blue bars show the simulated tra�c at di�erent

dates. This illustrates how the overall pattern of the tra�c is the same, but it still has

subtle di�erences.

The incoming and outgoing tra�c peaks at 350 kilobytes per second. The tra�c shape is

as expected, with usage during o�ce hours much higher than outside o�ce hours, and with

a dip in usage during lunchtime. The dark blue bars have a higher maximum bandwidth

usage, and although the shape di�ers slightly it maintained the expected shape. Thus the

network simulation is successful in generating pseudo tra�c.

9.6 Test Bed Implementation B: ESXi and Core Emu-

lator

Test Bed B di�ers from Test Bed A by using external hardware and software to generate

and shape tra�c. With this test bed, the BreakingPoint system is used to generate

attack-type tra�c. The BreakingPoint system is designed to be used to qualify network

hardware by generating increasing levels of tra�c. This feature is used by the researcher

to emulate DDoS and related attacks.

The BreakingPoint system can simulate millions of users' interaction and tra�c up to

211

Figure 9.6: Firewall Tra�c Incoming with Tra�c Simulation

Figure 9.7: Firewall Tra�c Outgoing with Tra�c Simulation

9.6. TEST BED IMPLEMENTATION B: ESXI AND CORE EMULATOR 212

1 gigabyte line speed on eight physical network ports. The BreakingPoint6 system has

the following features:

∙ It generates up to 4 Gbps of stateful application tra�c.

∙ It conducts 7.5 million concurrent �ows.

∙ It generates 2 100 SSL transactions per second.

∙ It has eight gigabyte Ethernet network ports.

The test bed is implemented within the CORE simulation environment. The CORE

emulation environment allows for the emulation of the e�ect of network devices such as

routers and switches in a controlled repeatable environment. CORE can also emulate

workstations that respond to basic network communications such as ICMP requests. The

CORE emulation environment is used due to its ease of integration and its availability to

the researcher.

Test Bed B was implemented with the following hardware:

∙ VMware ESXi server

∙ CORE server

∙ Breaking Point server

In Figure 9.8, the physical setup for Test Bed B is shown. The ESXi server is similar to

the setup of Test Bed A. The physical CORE server has the following speci�cations:

∙ memory capacity: 32 GB

∙ CPU cores: 8 CPUs x 2.4 GHz

∙ Processor type: Intel R○ Xeon R○ E5-2400 @ 2.4 GHz

∙ Storage: 2x1 TB, RAID 1 (Mirror)

∙ Broadcom 5729 Quad Port 1 GB Network Interface Card (NIC)

∙ Ubuntu 13.04 operating system

The CORE emulator software is used on these servers. This software has been developed

by the Boeing Research and Technology division (also known as Boeing Phantom Works)

(Ahrenholz, Danilov, Henderson, and Kim, 2008). The CORE emulator is freely available

from the Naval Research Laboratory (NRL)7. This emulator is a tool that enables network

emulations on a single or multiple computers. These simulations can also be connected

to live networks, such as the Aeneas system for this test bed.

6http://www.ixiacom.com/pdfs/datasheets/ds-4-port-storm.pdf/
7http://downloads.pf.itd.nrl.navy.mil/core/

9.6. TEST BED IMPLEMENTATION B: ESXI AND CORE EMULATOR 213

Figure 9.8: Core Emulator and ESXi Test Bed

The CORE server emulates a router, three switches, Core virtual computers and their

connections, as shown in Figure 9.8 under the blue label. The ESXi server with its

three segments (servers, workstations and DMZ) are connected via their own network

interface to the CORE emulator. Thus, for network tra�c to �ow between the computers

from di�erent segments of the ESXi server, the data will have to �ow though the CORE

emulator.

The CORE emulator display with BreakingPoint connected to Interface C is shown in

Figure 9.9. Within the CORE display, new network connections and network devices can

be emulated. The setup in Figure 9.9 was used for Test Bed B experimentations, with

the BreakingPoint interface moved to where it was required.

9.6. TEST BED IMPLEMENTATION B: ESXI AND CORE EMULATOR 214

CORE
Emulated
router

CORE
Emulated
switch

BreakingPoint
Interface

CORE Emulated
network
connections

CORE Emulated
hosts (basic
computers)

ESXi
Interface

CORE Emulation
name

Figure 9.9: Core Emulator Display

Test Bed B can be set up to launch the network attacks from four possible connection

points. These connection points are shown as BreakingPoint Interface A to D, in Figure

9.8. The server segment within the ESXi server has production servers and sensors. This

segment is shown in orange in Figure 9.8. The user workstations are within the client

segment of the ESXi server (green segment in Figure 9.8). The email, web servers and

related sensors of the DMZ segment are hosted by the ESXi server DMZ segment and are

shown in red in Figure 9.8.

9.6.1 Traffic Simulation

User tra�c is simulated similar to Section 9.4.1, without the temporal map. One short-

coming is that the simulated Internet tra�c will not be viable, since Test Bed B is not

connected to the Internet, but the tra�c generation abilities of BreakingPoint compen-

sates for it.

The BreakingPoint can simulate typical user tra�c or specialised network attacks. In

Figure 9.10, the main setup screens for BreakingPoint are shown. With BreakingPoint,

the user can set a source and destination IP range, the transmission tempo and type of

network data pro�le. The network data pro�le can be set up from the application to

9.7. VALIDATION 215

data OSI. In Figure 9.10a, the network setup for the BreakingPoint system is shown.

It generates data from the client in Figure 9.10a and sends them via the "Device Under

Test" to the server. The "Device Under Test" is the test bed. If a device has the same

IP as the server, it will try to respond to the tra�c generated by BreakingPoint. For

Figure 9.10a, BreakingPoint will attempt to transmit data from the client side, using the

10.0.3.100/24 source IP addresses and the server-side destination IP address of 10.0.1.8.

Thus the test bed uses 10.0.1.8 as its source IP address, BreakingPoint will generate tra�c

from the client side on the BreakingPoint interfaces to the test bed.

In Figure 9.10b, the type of test and its parameters are shown. The test type is "Session-

Sender", which refers to test attempts to create new network connections (also referred to

as network session). In this setup, the maximum number of sessions per second (�ows) is

set to 900 000. Each �ow is a single network request (also known as a Synchronise (SYN)

request). Within BreakingPoint, every detail of the emulated data can be set. For the

use of BreakingPoint in Test Bed B, only the ability to generate a DDoS attack was used

and the only parameter set was the number of sessions requested per second.

In Figure 9.10c, the temporal pro�le of the test is shown. The top part of 9.10c displays

with a graph how the number of sessions per second will increase and decrease according

to a pattern set in the bottom part of the Figure. In this test, the tests increase the

frequency of the attack every six seconds until a maximum of 900 000 �ows is reached at

60 seconds. After 120 seconds, the test is gradually slowed down, until it stops at 150

seconds.

9.7 Validation

The aim of this research is not to try and build a prediction system, but to validate the

ontology and attack scenarios. In this section, empirical experimentation to validate the

Aeneas system is presented. Each of the Event Queries is validated in sections 9.8 to

9.10.2 by presenting single examples or test cases only. The Event Query used three main

types of sensors:

∙ Interrupt binary sensors. These are sensors that only send data if an event has been

triggered. They usually map directly to an Event Query and to a speci�c phase and

scenario.

∙ Continuous polling sensors. These sensors continuously provide data, and by inte-

grating their output, Event Query could be triggered.

216

(a) BreakingPoint Network Neighbourhood Diagram Screen

(b) BreakingPoint Session Test Setup Screen

(c) BreakingPoint Session Test Profile Screen

Figure 9.10: Breaking Point Screens

9.7. VALIDATION 217

∙ Interrupt information sensors. These sensors only provide data after an event has

been triggered, but the data still has to be integrated by an Event Query before

phase and scenario can be triggered.

Figure 9.11: Three Types of Sensors Used with Event Queries

9.8. EVENT QUERIES THAT USE INTERRUPT BINARY SENSORS 218

Each Event Query sensor type is shown in Figure 9.11. The experiments discussed in this

chapter were not intended to be an exhaustive test of the Aeneas system, but rather a

small sample set of tests designed to prove that the prototype works in principle. Each of

the Event Queries shown in Figure 9.11 are veri�ed only by one test, thus proving that

the mapping of sensor and Event Queries to scenario and phase works. The sensors and

the Event Queries can be optimised and expanded signi�cantly in the future to build an

extensible and robust system.

The experiments were chosen to present realistic attacks on the testbeds. The attacks used

in the experiments range from manual hacking (as used in Section B.9), automated tools

(Section 9.8.1) to crafted malware (Section 9.8.6). By generating examples of attacks, the

Aeneas system could be experimentally veri�ed, and thus by inference the network attack

ontology as well.

9.8 Event Queries that use Interrupt Binary Sensors

Some of the sensors only send data if an event has been triggered. These sensors usually

map directly to an Event Query and to a speci�c phase and scenario. Thus if an interrupt

binary sensor is triggered, the corresponding Event Query should be triggered directly.

In this section, sensors, Event Queries, phases and scenarios that are directly related were

tested. In these tests, interrupt sensors were tested on Test Bed A and Test Bed B. Both

test beds delivered the same successful results.

9.8.1 Unusual Web Activity

By scanning the test bed website with a web crawler, the Unusual Web Activity Event

Query is triggered. This Event Query is triggered directly by the Unusual Web Activity

sensor. The Web Crawler Security8 software was used to scan the test bed website. This

test resulted in a successful indication that a Web Defacement attack scenario is in the

Reconnaissance phase.

8http://sourceforge.net/p/webcrawler-py/wiki/Home/

9.8. EVENT QUERIES THAT USE INTERRUPT BINARY SENSORS 219

9.8.2 Failed Login Attempt

By using incorrect usernames and passwords while trying to log into one of the production

servers in the test bed, the Failed Login Attempts Event Query was triggered. This Event

Query is triggered directly by the failed login sensor. The attempted login was done

from a workstation with Secure Shell (SSH). The test resulted in a successful indication

that the System Compromise and Unauthorised Data Access attack scenarios are in the

Reconnaissance phase. Since it is not possible to determine at this stage of the attack

which of the two scenarios are happening, both were expected to trigger.

9.8.3 Unauthorised Super User

By gaining remote access to an administration server, the Unauthorised Super User Event

Query was triggered. This Event Query is triggered when an administration user (also

known as root) logs into the administration server. This server should only be logged into

from its own terminal (also known as localhost). Any remote logins indicated that the

system has been compromised. The remote login was done from a workstation computer

with SSH using a correct username and password. The test resulted in a successful

indication that the System Compromise attack scenario has entered the Damage phase.

9.8.4 Hidden Data Accessed

The production server has a hidden directory. By accessing this hidden directory, the

Hidden Data Accessed Event Query was triggered. This Event Query is triggered after

access has been obtained to a directory that should never have been accessed, and thus

the data is already compromised. The hidden data was accessed from a workstation with

SSH using a correct username and password. The test resulted in a successful indication

that the Unauthorised Data Accessed attack scenario has entered the Damage phase.

9.8.5 Web Defacement

When any part of the web page (apart from forums) was changed, the Web Defacement

Event Query was triggered. The web page is changed by manually editing the website

Index.html page. This event is triggered independently from the methodology used, for

9.9. EVENT QUERIES THAT USE CONTINUOUS POLLING SENSORS 220

example if the page was altered via SQL Injection, the Web Defacement sensor would still

be triggered. The test resulted in a successful indication that the Web Defacement attack

scenario has entered the Damage phase.

9.8.6 Runaway Malware

The Runaway Malware EQ is triggered by the Network Telescope sensor. The Runaway

Malware: Single gets triggered when the Network Telescope sensor is triggered from a sin-

gle source, and the Runaway Malware: Multiple is triggered when the Network Telescope

sensor is triggered from multiple sources. The test resulted in a successful indication that

the Runaway Malware attack scenario has entered the Ramp-up and Damage phases.

9.9 Event Queries that Use Continuous Polling Sensors

Some sensors provide continuous data, and by integrating their output, Event Query

could be triggered. Such sensors typically monitor a resource such as bandwidth. The

data from the sensor must also be interpreted to determine if the corresponding Event

Query is triggered. The Event Query that uses continuous polling sensors was tested on

Test Bed B.

9.9.1 Traffic Influx

The Traffic Influx EQ uses two sensors to determine if the tra�c has increased to an

out-of-norm level. The Bandwidth and Connections sensors are used to determine if

the amount of tra�c has increased to a level at which the Traffic Influx Event Query

should be triggered. The Bandwidth sensor measures the amount of network tra�c, and

the Connections sensor measures the amount of SYN packets. These sensors are placed

within the Servers and DMZ sections of the test bed and are able to monitor all incoming

tra�c because the ESXi interfaces were set to promiscuous mode.

BreakingPoint was used to generate a DDoS attack called SYN Flood (Trammell and

Manning, 2009). SYN �ood attacks used a �aw in the TCP protocol (Bellovin, 1989; Lau

et al., 2000). The TCP protocol uses a three-way handshake: SYN, SYN/ACK and ACK.

This attack overwhelms a target with SYN packets without acknowledging the SYN/ACK

9.9. EVENT QUERIES THAT USE CONTINUOUS POLLING SENSORS 221

Figure 9.12: Session Attack Experiment 1

packets. Thus in e�ect the target network resources keep waiting for the ACK packets

at a rate slower than incoming SYNs packets, in e�ect preventing any other legitimate

network connections.

The BreakingPoint system was set up to send a maximum of 900 000 SYN requests per

second. BreakingPoint setup is shown in Chapter 9, �gures 9.10a, 9.10b and 9.10c. The

sessions per second are increased stepwise every six seconds by 90 000 connections until

a maximum of 900 000 connections. After two minutes, the attack gradually stopped.

Two experiments were conducted. In the �rst experiment, BreakingPoint was connected to

the DMZ segment and the web server in the same segment was attacked. This represents

a SYN attack from the Internet. The experimental setup is shown in Figure 9.12 and

the CORE emulator display is shown in Figure 9.13. The thicker red lines represent high

bandwidth of the SYN �ood attack.

In Figure 9.14, the bandwidth and SYN packets bandwidth detected are shown with the

�rst experiment. In this attack, a SYN �ood attack is launched directly into the DMZ.

The Event Query (EQ) is set to trigger if the number of SYN connections per �ve-second

interval is more than 500. As shown in Figure 9.14, the bandwidth and SYN packets

in the servers segments are nearly constant. This proves that the SYN �ood attack was

not routed to the servers segment. The DMZ segment bandwidth and SYN packets spike

signi�cantly after 20 seconds, which corresponds to the time at which the BreakingPoint

9.9. EVENT QUERIES THAT USE CONTINUOUS POLLING SENSORS 222

SYN Flood
data

BreakingPoint
Interface

ESXi
Interface for
DMZ segment

Figure 9.13: CORE Emulator Display of SYN Attack Direct DMZ

starts with its �ood attack. After 40 seconds, the DMZ sensors start to fail, with only

the bandwidth sensor recovering after 140 seconds. The SYN �ood attack stopped the

sensors from communicating to the Aeneas server. With this experiment, the Ramp-up

phase of Denial-of-Serive scenario was triggered. For the detection to work, the scenario

must be triggered before the sensors go o�ine due to the severity of the attack. The same

scenario could also be triggered by increasing the bandwidth usage signi�cantly in a short

time.

In the second test, the network used setup as shown in Figure 9.15 and the CORE emulator

display is shown in Figure 9.16. BreakingPoint was used to simulate a DoS attack. The

Session Breaking Point attack was used. This attack simulates a DoS attack by opening

an increasing number of network sessions, until the network is saturated. The attack is

modelled to start slowly and to increase until a maximum session is reached. The tempo

of new sessions is set within BreakingPoint and is shown in Figure 9.10c.

In Figure 9.17, the bandwidth sensors within the DMZ and servers segments are shown

as red and blue lines. The bandwidth stays relatively low, but after 95 seconds, the

communication between the web server (10.0.1.8) and the Aeneas server (10.0.2.2) fails.

The second experiment demonstrates a limitation in the system in that the network

communication failed before a Traffic Influx Event Query (EQ) has been detected. In

223

Figure 9.14: Bandwidth Measured with the Bandwidth and SYN Sensors

224

Figure 9.15: Session Attack Experiment 2

SYN Flood
data

BreakingPoint
Interface

ESXi
 Interface for
Client segment

Figure 9.16: CORE Emulator Display of SYN Attack via Client Segment

9.9. EVENT QUERIES THAT USE CONTINUOUS POLLING SENSORS 225

Figure 9.17: Bandwidth Measurement During Session Attack

this case, the Servers Running Event Query (EQ) is triggered (Section 9.9.2) and the

session attack was able to trigger the Denial-of-Service attack scenario Damage phase.

9.9.2 Servers Running

As soon as one or more servers cannot be contacted (via ICMP), the Servers Running

Event Query is triggered. The IsAlive sensor is used to determine if the servers are

still communicating on the network. When one or more servers were removed from the

network, the test resulted in a successful indication that the Denial-of-Service attack

scenario has entered the Damage phase.

9.9.3 Unusual Bandwidth

This Unusual Bandwidth Event Query (EQ) used the Bandwidth sensor to determine if

the network load is high during non-working hours. If the sensor reports bandwidth used

beyond a threshold during non-working hours, the Unusual Bandwidth Event Query (EQ)

9.10. EVENT QUERIES THAT USE INTERRUPT INFORMATION SENSOR 226

is triggered. The test resulted in an indication that the Resource Theft scenario is in the

Damage phase.

9.10 Event Queries that use Interrupt Information Sen-

sor

In this section, Event Query, phases and scenarios that use interrupt sensor information

Event Queries were tested. These events use sensors that only communicate when data

is available, and the data is to be analysed before the Event Query can be triggered.

9.10.1 Port Scan

The Port Scan Event Query uses the Snort Honeyd sensor to determine if the network is

being scanned. The popular port scan tool, Nmap9 was used to scan the test bed. The

Snort Honeyd sensor was able to detect a port scan in normal and stealth scan mode.

The test resulted in a successful indication that the System Compromise, Resource Theft

and Unauthorised Data Access attack scenarios are in the Reconnaissance phase.

9.10.2 Vulnerability Scan

In this test, a vulnerability scan was launched against a SSH server (IP of 10.0.2.4).

The SSH vulnerability scan was launched from a computer with the Backtrack 5 R310

operating system using the Metasploit11 framework. Once the vulnerability scan has

started, the Snort-Honeyd sensor starts to send data to the Aeneas server. Only after 32

036 messages does the sensor determine that a vulnerability scan is in progress. After the

Snort-Honeyd sensor sent the key message, the System Compromise, Unauthorised Data

Access and Resource Theft scenarios' Ramp-up phases were detected.

The same Vulnerability Scan was also triggered by scanning the Snort and Honeyd sensor

with the popular vulnerability scanner Nessus12. Since Nessus also performs a port scan,

it also triggered the Post Scan Event Query.

9http://nmap.org/
10http://www.backtrack-linux.org/
11http://www.metasploit.com/
12http://www.tenable.com/products/nessus/

9.11. SUMMARY 227

9.11 Summary

Network attacks do not occur in a vacuum, thus two test environments (test beds) are

presented in which network tra�c is generated. On a sterile network it would be a trivial

task to detect anomalies as any spike in tra�c would indicate an attack. The simulated

tra�c described in this chapter simulates fairly accurate tra�c volumes of a small-scale

corporation without the use of complex or expensive packet simulation tools. In the �rst

test bed, real network tra�c is generated by software application within a collection of

virtual computers. The second test bed used a combination of the CORE emulator and

BreakingPoint systems to emulate network attacks.

The Aeneas system presented in Chapter 8 is tested by empirically verifying each of

the Event Queries. The Aeneas system was able to classify attacks according to their

respective scenario and phase. As expected, some attacks, such as a port scan, could not

be narrowed down to a single scenario. The prototype was only tested with a limited

set of attacks as the goal was not to test the system exhaustively, but to prove that the

prediction methodology is viable. The Aeneas system proved that the methodology is

viable and that network attacks can be classi�ed in a near real-time environment.

CHAPTER

TEN

CONCLUSIONS

"Men in general are quick to believe that which they wish to be

true."

Julius Caesar

10.1 Introduction

The primary focus of this thesis was the development, formalisation and validation of

an ontology on network attacks. The ontology was developed by �rstly constructing a

taxonomy. This taxonomy was constructed by building from existing taxonomies by other

researchers and by studying signi�cant historical attacks (van Heerden et al., 2012c).

Along with the taxonomy, a temporal model was developed to describe network-based

attacks. From studying signi�cant historical attacks, ten main network attack scenarios

were identi�ed (van Heerden et al., 2012b). These attack scenarios form the base of the

ontology, and the other classes of the taxonomy are linked via their relationships.

The ontology was developed formally, thus ensuring the Protégé implementation and re-

lated automated reasoner deductions were correct. By utilising an automated reasoner,

the attack scenarios were reduced to ones that are viable in a near real-time environ-

ment. The taxonomy, ontology and related work resulted in the publication of several

international and local papers. These papers are listed in Section 1.4.

228

10.2. RESEARCH REVIEW 229

During the course of this study, a network attack prediction system Attack Estimation

Network Evaluation Architecture System (Aeneas) was developed. Aeneas mapped sensor

output to network attack scenarios and the network attack temporal model. The system

was able to detect attacks and classify them according to the reduced set of attack sce-

narios and the network attack model. The viability of Aeneas was proved with empirical

experimentation.

10.2 Research Review

This section recapitulates the research presented in this thesis.

Chapter 1 presented a summary of the research question and outlined the research

method and research processes followed.

Chapter 2 investigated signi�cant historical computer-based attacks. From this collec-

tion of signi�cant attacks, the following attack scenarios were derived: Denial-of-

Service, Industrial Espionage, Web Defacement, Unauthorised Data Access, Finan-

cial Theft, Industrial Sabotage, Cyber-Warfare, Resource Theft, System Compro-

mise, and Runaway Malware.

Chapter 3 presented a literature study of models, taxonomies, ontologies and sensors re-

lated to network attacks. The models were presented as �ow charts, the taxonomies

and ontologies as class diagrams and the sensor types were listed.

Chapter 4 developed a taxonomy that presented the classes of a computer network-

based attacks from both the point of view of an attacker and a defender. These

classes were: Actor, Actor Location, Aggressor, Asset, Attack Goal, Attack Mecha-

nism, Automation Level, E�ects, Motivation, Phase, Sabotage, Scope, Target, and

Vulnerability. The Phase class was further developed into a temporal network attack

model. The model consisted of �ve main phases: Target Identi�cation, Reconnais-

sance, Attack and Post-Attack Reconnaissance. The Attack Phase was divided into

three sub-phases: Ramp-up, Damage and Residue.

Chapter 5 and Chapter 6 presented an ontology that describes the relationships be-

tween the taxonomy classes formally. The Attack Scenario class formed the base of

the ontology. The ontology was presented in story form, formally and via a software

implementation.

10.3. RESEARCH GOALS ACHIEVED 230

Chapter 7 investigated the quanti�cation and possible measurements of the classes on

the taxonomy in near real-time. By relaxing the scenario de�nition to only classes

that can be quanti�ed in near real-time, some of the relaxed attack scenario classes

were found to be equivalent. The attack scenario was reduced to: Denial-of-Service,

Web Defacement, Resource Theft, Unauthorised Data Access, System Comprise,

Runaway Malware.

Chapter 8 demonstrated how to identify attack scenarios by mapping sensors' outputs

to the temporal attack model and attack scenarios. A prototype system called

Aeneas was presented.

Chapter 9 presented the environment in which the Aeneas system was veri�ed. Two

environments were presented: virtualised systems with a �rewall connected to the

Internet, and virtualised systems within an Internet simulator. Empirical experi-

ments were performed that verify the prototype. Each Event Query was veri�ed to

report the correct phase and scenario. The Event Queries were grouped in three

main types: Interrupt binary sensors, Continuous polling sensors and Interrupt in-

formation sensors.

10.3 Research Goals Achieved

The goals of this research were to formally de�ne network attacks and to investigate how

the detection of network attacks di�ers in near real-time environment.

The �rst goal were achieved by de�ning attack scenarios in a taxonomy. The relationships

between the classes in the ontology were formally de�ned into an ontology. Along with

the scenarios, a temporal model was constructed that describe attack phases. Not all of

the scenarios and phases are relevant in a near real-time environment. The ontology was

evaluated in the near real-time environment and the scenarios were reduced to the ones

that are relevant in near real-time. The ontology was implemented within the Protégé

ontology, and the HermiT-automated reasoner was used to infer which scenarios can be

identi�ed in near real-time. Attack individuals were classi�ed according to their scenario

in the ontology, utilising Protégé and the HermiT-automated reasoner.

Thus the research questions from Section 1.1 are answered:

∙ Di�erent types of computer network attacks were presented in a taxonomy as attack

scenarios (Chapter 4).

10.4. FUTURE WORK 231

∙ Computer network attacks are de�ned in an ontology (Chapter 5 and 6).

∙ A relaxed set of computer attack scenarios that are viable in near real-time are

de�ned in Chapter 7.

A prototype system Aeneas was developed to identify network attacks. This Aeneas

system used various network-related sensors and collated their information into a central

server. The sensors' data was mapped to scenarios and phases via Event Queries. The

automated reasoner mapped the relationship between the network sensors and the Event

Query. The Event Queries were polled to check the status of incoming network attacks.

The Aeneas system was tested on two test beds, and was able to identify and classify

network attacks successfully.

10.4 Future Work

The struggle between those who attack networks and those who defend is never ending.

This struggle can also be considered an arms race, where the weapons (tools) used by both

sides are in continuous development. When these weapons and tools become redundant,

future work will entail updating the taxonomy, ontology and Aeneas.

The taxonomy developed in Chapter 4 can be expanded and updated to keep up to date

with new and future developments. Since the attack and defence struggle is an eternal

arms race, the taxonomy should be updated regularly. For example, some of the sub-

classes of the Attack Mechanism class can be expanded to include the mobile computer

environment. The ontology that links the taxonomy classes should also be updated when

new technologies become available. The ontology and automated reasoner infer binary

results � either an individual is a member of a scenario or not.

The prototype system also only reports on an attack that is in progress, but there is no

con�dence level. The system can be expanded to rather incorporate probabilistic results,

and thus infer pseudo probabilities to which scenario and attack individuals belong.

The prototype would then also report a con�dence level of detected attacks. The Aeneas

prototype can be further developed into a viable network attack prediction system. This

will require extensive testing on live networks so as to reduce the false positives. A

signi�cant challenge would be to verify/train the system and increase the true positive

rate, and this can only be done in the case of real attacks. The approach of using

BreakingPoint may be the only viable method to test via realistic attacks.

REFERENCES

Abdoli, F. and Kahani, M. Ontology-based distributed intrusion detection system. In

The 14th International Computer Conference (CSICC 2009), pages 65�70. IEEE, 2009.

Abou-Assaleh, T., Cercone, N., Keselj, V., and Sweidan, R. Detection of new

malicious code using n-grams signatures. In Proceedings of Second Annual Conference

on Privacy, Security and Trust, pages 193�196. 2004.

Abraham, A. and Thomas, J. Distributed intrusion detection systems: a computa-

tional intelligence approach. Applications of Information Systems to Homeland Security

and Defense. USA: Idea Group Inc. Publishers, 5:105�135, 2005.

Ahrenholz, J., Danilov, C., Henderson, T. R., and Kim, J. H. Core: A real-time

network emulator. In Military Communications Conference (MILCON 2008), pages

1�7. IEEE, 2008.

Akinbode, K. and Longe, O. Constructing ontologies in owl using protégé 4. African

Journal of Computing and ICT, 4(3):23�26, 2011.

Aliyev, V. Using honeypots to study skill level of attackers based on the exploited vul-

nerabilities in the network. Master's thesis, Department of Computer Science and En-

gineering, Chalmers University of Technology, 2010.

Almeida, M. and Mutina, B. Defacements statistics 2010: Almost 1,5 million websites

defaced, what’s happening? Online, June 2011. Accessed 2012/09/22.

URL http://www.zone-h.org/news/id/4737

Alperovitch, D. Revealed: operation shady rat. Technical report, McAfee, 2011. Ac-

cessed 2013/01/01.

URL http://www.mcafee.com/us/resources/white-papers/wp-operation-shady-

rat.pdf

232

REFERENCES 233

Anagnostakis, K., Sidiroglou, S., Akritidis, P., Xinidis, K., Markatos, E., and

Keromytis, A. Detecting targeted attacks using shadow honeypots. In Proceedings of

the 14th USENIX security symposium, volume 144, pages 129�144. 2005.

Andersen, B. Australian admits creating first iphone virus. Online, May 2009. Accessed

2012/12/23.

URL http://www.abc.net.au/news/stories/2009/11/09/2737673.htm

Anderson, J. M. Why we need a new definition of information security. Computers &

Security, 22(4):308�313, 2003.

Anderson, J. P. Computer security threat monitoring and surveillance. Technical Report

215 546-4706, James P. Anderson Company, Fort Washington, Pennsylvania, April

1980. Accessed 2013/06/17.

URL http://csrc.nist.gov/publications/history/ande80.pdf

Antoniou, G. and Van Harmelen, F. Web ontology language: Owl. In Handbook on

ontologies, pages 91�110. Springer, 2009.

Aravantinos, E., Bouras, C., and Ganos, P. Http traffic simulation and evaluation

for multiple users in intranet network. In EUROMEDIA – WEBTEC, pages 63�67.

2002.

Argyraki, K. and Cheriton, D. Active internet traffic filtering: real-time response to

denial-of-service attacks. In Proceedings of the annual conference on USENIX Annual

Technical Conference, pages 10�10. USENIX Association, 2005.

Arjun, K. Key factors impacting on response time of software vendors in releasing

patches for software vulnerabilities. Ph.D. thesis, University of Southern Queensland,

2012.

Armerding, T. The 15 worst data security breaches of the 21st century. Online,

February 2012. Accessed 2012/12/02.

URL http://www.csoonline.com/article/700263/the-15-worst-data-

security-breaches-of-the-21st-century

Attewell, J. Mobile technologies and learning. London: Learning and Skills Development

Agency, 2:1�19, 2005.

Axelsson, S. Intrusion detection systems: A survey and taxonomy. Technical Report

99-15, Dept. of Computer Engineering, Chalmers University of Technology, Sweden,

REFERENCES 234

2000. Accessed 2012/12/24.

URL http://neuro.bstu.by/ai/To-dom/My_research/Paper-0-again/For-

research/D-mining/Anomaly-D/Intrusion-detection/taxonomy.pdf

Aydin, M., Zaim, A., and Ceylan, K. A hybrid intrusion detection system design for

computer network security. Computers & Electrical Engineering, 35(3):517�526, 2009.

Baba, T. and Matsuda, S. Tracing network attacks to their sources. IEEE Internet

Computing, 6(2):20�26, 2002.

Bailey, M., Cooke, E., Jahanian, F., Myrick, A., and Sinha, S. Practical darknet

measurement. In 40th Annual Conference on Information Sciences and Systems, pages

1496�1501. IEEE, 2006.

Bajaj, L., Takai, M., Ahuja, R., Tang, K., Bagrodia, R., and Gerla, M. Glo-

mosim: A scalable network simulation environment. UCLA Computer Science Depart-

ment Technical Report, 990027:213, 1999.

Balakrishnan, N. and Sarma, M. A perspective on the social cognition of hacker

groups and the multi dimensional aspects of web defacements: A fused analysis. Tech-

nical report, Supercomputer Education and Research Center (SERC), 2004. Accesed

2012/12/23.

URL http://www.dli.gov.in/data/HACKING_INFORMATION/

Balasubramaniyan, J., Garcia-Fernandez, J., Isacoff, D., Spafford, E., and

Zamboni, D. An architecture for intrusion detection using autonomous agents. In

14th Proceedings of Annual Computer Security Applications Conference, pages 13�24.

IEEE, 1998.

Bania, P. Evading network-level emulation. Technical report, Packetstormsecurity.net,

2009.

URL http://dl.packetstormsecurity.net/papers/bypass/pbania{-}evading{-

}nemu2009.pdf

Barford, P. and Crovella, M. Generating representative web workloads for network and

server performance evaluation. ACM SIGMETRICS Performance Evaluation Review,

26(1):151�160, 1998.

Baskerville, R. Information systems security design methods: implications for informa-

tion systems development. ACM Computing Surveys (CSUR), 25(4):375�414, 1993.

REFERENCES 235

Bauer, M. Paranoid penguin: Designing and using DMZ networks to protect internet

servers. Linux Journal, 2001:16, 2001.

URL http://www.linuxjournal.com/article/4415

Baumgart, I., Heep, B., and Krause, S. Oversim: a flexible overlay network simu-

lation framework. In IEEE Global Internet Symposium, pages 79�84. IEEE, 2007.

Beaucamps, P. Advanced metamorphic techniques in computer viruses. In International

Conference on Computer, Electrical, and Systems Science, and Engineering. 2007a.

Beaucamps, P. Advanced polymorphic techniques. International Journal of Computer

Science, 2(3):194�205, 2007b.

Beidleman, S. Defining and deterring cyber war. Technical report, DTIC document,

2009. Accessed 2012/12/23.

URL http://www.dtic.mil/dtic/tr/fulltext/u2/a500795.pdf

Bellovin, S. M. Security problems in the TCP/IP protocol suite. ACM SIGCOMM

Computer Communication Review, 19(2):32�48, 1989.

Benzel, T., Braden, R., Kim, D., Neuman, C., Joseph, A., Sklower, K., Os-

trenga, R., and Schwab, S. Experience with deter: a testbed for security research.

In 2nd International Conference on Testbeds and Research Infrastructures for the De-

velopment of Networks and Communities (TRIDENTCOM). IEEE, 2006.

Berghel, H. The code red worm. Communications of the ACM, 44(12):15�19, 2001.

Berners-Lee, T., Hendler, J., and Lassila, O. The semantic web. Scientific Ameri-

can, 284(5):28�37, 2001.

Bhide, A., Elnozahy, E. N., and Morgan, S. P. A highly available network file server.

In Proceedings of the 1991 USENIX Winter Conference, pages 199�205. Citeseer, 1991.

Bhuyan, M. H., Bhattacharyya, D., and Kalita, J. Surveying port scans and their

detection methodologies. The Computer Journal, 54(10):1565�1581, 2011.

Bishop, M. Analysis of the iloveyou worm. Online, May 2000. Accessed 2012/12/23.

URL http://nob.cs.ucdavis.edu/classes/ecs155-2005-04/handouts/iloveyou.

pdf

Bishop, M. and Dilger, M. Checking for race conditions in file accesses. Computing

Systems, 2(2):131�152, 1996.

REFERENCES 236

Bock, J., Haase, P., Ji, Q., and Volz, R. Benchmarking owl reasoners. In Proceedings

of the ARea2008 Workshop. Tenerife, Spain, 2008.

Boerio, J. and McCracken, S. The emerging cyber threat landscape: 2012 and beyond.

Technical report, Information Technology Information Sharing and Analysis Center,

2012. Accessed 2012/12/23.

URL https://www.it-isac.org/files_n/GFIRST_WhitePaper.pdf

Boyd, I. The fundamentals of computer hacking. Technical report, SANS Institute, 2000.

Accessed 2012/12/23.

URL http://www.sans.org/reading_room/whitepapers/hackers/fundamentals-

computer-hacking_956

Bremler-Barr, A. and Levy, H. Spoofing prevention method. In Proceedings of the

24th Annual Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM 2005), pages 536�547. IEEE, 2005.

Brenner, S. and Crescenzi, A. State-sponsored crime: The futility of the economic

espionage act. Houston Journal of International Law, 28:389, 2006.

Bright, P. Anonymous speaks: the inside story of the hbgary hack. Online, 2011.

Accesed 2012/12/23.

URL http://arstechnica.com/tech-policy/news/2011/02/anonymous-speaks-

the-inside-story-of-the-hbgary-hack.ars

Brody, R. G., Mulig, E., and Kimball, V. Phishing, pharming and identity theft.

Academy of Accounting and Financial Studies Journal, 11(3):43�57, 2007.

Buckland, J. 10 worst cybercrimes of the decade. Online, 2011. Accessed 2012/12/02.

URL http://tech.ca.msn.com/photogallery.aspx?cp-documentid=27611570

Burstein, A. Trade secrecy as an instrument of national security–rethinking the foun-

dations of economic espionage. Arizona State Law Journal, 41:933�1167, 2009.

Caltagirone, S. and Frincke, D. The response continuum. In Proceedings from the

Sixth Annual Information Assurance Workshop (IAW’05), pages 258�265. IEEE, 2005.

Cardenas, A., Radosavac, S., Grossklags, J., Chuang, J., and Hoofnagle, C. An

economic map of cybercrime. In 37th Research Conference on Communication, Infor-

mation and Internet Policy (TPRC), George Mason University Law School, Arlington,

VA. September 2010.

REFERENCES 237

Cardoso, J. The semantic web vision: Where are we? IEEE Intelligent Systems,

22(5):84�88, 2007.

Cass, S. Anatomy of malice [computer viruses]. IEEE Spectrum, 38(11):56�60, 2001.

Castillo, C. Effective web crawling. Ph.D. thesis, University of Chile, November 2005.

Catro, D. How much will prism cost the u.s. cloud computing industry? Technical report,

The Information Technology and Innovation Foundation, 2013. Accessed 2013/10/17.

URL http://www2.itif.org/2013-cloud-computing-costs.pdf

Cavallaro, L., Saxena, P., and Sekar, R. On the limits of information flow techniques

for malware analysis and containment. In Detection of Intrusions and Malware, and

Vulnerability Assessment, pages 143�163. Springer, 2008.

CERT-In. Hacking – how they do it? Security Guideline CISG-2003-03, CERT-In, 2003.

Accessed 2013/01/08.

URL http://ittripura.gov.in/Policies/Guidelines/Security/Hacking.pdf

Chaudhri, V., Farquhar, A., Fikes, R., Karp, P., and Rice, J. Okbc: A program-

matic foundation for knowledge base interoperability. In Proceedings of the fifteenth

national/tenth conference on Artificial intelligence/Innovative applications of artificial

intelligence, pages 600�607. AAAI Press, 1998.

Chen, T. and Robert, J. Worm epidemics in high-speed networks. Computer, 37(6):48�

53, 2004.

Chen, T. M. Stuxnet, the real start of cyber warfare? IEEE Network, 24(6):2�3, 2010.

Cheswick, B. An evening with berferd in which a cracker is lured, endured, and studied.

In Proceedings Winter USENIX Conference, San Francisco. 1992.

Choo, K. K. R. Organised crime groups in cyberspace: a typology. Trends in Organized

Crime, 11(3):270�295, 2008.

Choo, K.-K. R. The cyber threat landscape: Challenges and future research directions.

Computers & Security, 30(8):719�731, 2011.

Christodorescu, M. and Jha, S. Testing malware detectors. ACM SIGSOFT Software

Engineering Notes, 29(4):34�44, 2004.

REFERENCES 238

Ciampa, A., Visaggio, C. A., and Di Penta, M. A heuristic-based approach for

detecting sql-injection vulnerabilities in web applications. In Proceedings of the 2010

ICSE Workshop on Software Engineering for Secure Systems, pages 43�49. ACM, 2010.

Clarke, R. A. and Knake, R. K. Cyber war. HarperCollins, 2011.

Cluley, G. Conflict between russia and georgia turns to cyber warfare. Online, August

2008. Accessed 2012/09/05.

URL http://nakedsecurity.sophos.com/2008/08/12/conflict-between-russia-

and-georgia-turns-to-cyber-warfare/

Cohen, P. Sony implicates ’anonymous’ in Playstation network attack. Online, May

2011. Accessed 2012/09/20.

URL http://www.zdnet.com/blog/gamification/sony-implicates-anonymous-

in-playstation-network-attack/369

Colarik, A. and Janczowski, L. Introduction to cyber warfare and cyber terrorism. In

Cyber Warfare and Cyber Terrorism. Hershey: Information Science Reference. 2008.

Conficker Working Group. Conficker working group: Lessons learned. Technical Re-

port FA8750-08-2-0141, Tech. rep., Con�cker Working Group�con�ckerworkinggroup.

org, 2011. Accesed 2012/08/28.

URL http://www.confickerworkinggroup.org/wiki/uploads/Conficker_

Working_Group_Lessons_Learned_17_June_2010_final.pdf

Constantin, L. Ddos attacks against US banks peaked at 60 gbps. Online, December

2012. Accessed 2012/12/21.

URL http://www.cio.com/article/723889/DDoS_Attacks_Against_US_Banks_

Peaked_At_60_Gbps

Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A.,

Wagle, P., Zhang, Q., and Hinton, H. Stackguard: Automatic adaptive detection

and prevention of buffer-overflow attacks. In Proceedings of the 7th USENIX Security

Symposium, pages 346�355. 1998.

Cowan, C., Wagle, P., Pu, C., Beattie, S., and Walpole, J. Buffer overflows:

Attacks and defenses for the vulnerability of the decade. In Proceedings of DARPA In-

formation Survivability Conference and Exposition (DISCEX’00), pages 119�129. IEEE,

Published by the IEEE Computer Society, 2000.

REFERENCES 239

Crosbie, M. and Spafford, G. Active defense of a computer system using autonomous

agents. Computer science technical reports, Purdue University, Department of Com-

puter Science, 1995. Accessed 2012/12/24.

URL http://www.cs.purdue.edu/research/technical_reports/1995/TR\%2095-

008.pdf

Czosseck, C., Ottis, R., and Taliharm, A.-M. Estonia after the 2007 cyber attacks:

Legal, strategic and organisational changes in cyber security. International Journal of

Cyber Warfare and Terrorism, 1(1):24�34, 2011.

Damballa. Anatomy of a targeted attack. Technical report, Damballa, 2008. Accessed

2012/12/24.

URL http://www.damballa.com/downloads/r_pubs/WP_Anatomy_of_a_Targeted_

Attack.pdf

Davies, J., Studer, R., and Warren, P. Semantic web technologies. John Wiley and

Sons, 2006.

Davis, J. Vendors out to get Excel virus. Online, July 1996. Accessed 2012/12/24.

URL http://news.cnet.com/Vendors-out-to-get-Excel-virus/2100-1023_3-

218868.html

Davis, J. Hackers take down the most wired country in Europe. Online, August 2007.

Accessed 2012/12/24.

URL http://www.wired.com/politics/security/magazine/15-09/ff_estonia?

currentPage=all

Day, D., Flores, D., and Lallie, H. Condor: A hybrid ids to offer improved intru-

sion detection. In 11th International Conference on Trust, Security and Privacy in

Computing and Communications (TrustCom), pages 931�936. IEEE, 2012.

Debar, H., Dacier, M., and Wespi, A. A revised taxonomy for intrusion-detection

systems. Annals of Telecommunications, 55(7):361�378, 2000.

Dede, D. Apache.org defaced – security archive case study. Online, March 2010.

Accessed 2012/08/20.

URL http://blog.sucuri.net/2010/03/apache-org-defaced-security-

archive-case-study.html

Deng, S. Empirical model of www document arrivals at access link. In International

Conference on Communications, Conference Record, Converging Technologies for To-

morrow’s Applications., pages 1797�1802. IEEE, 1996.

REFERENCES 240

Deraison, R. The nessus attack scripting language reference guide. Technical report,

Tenable Network Security, Inc, January 2005. Accessed 2012/12/24.

URL http://www.dn-systems.org/boss/doc/nasl_guide-20050103.pdf

Dickerson, J. E. and Dickerson, J. A. Fuzzy network profiling for intrusion detection.

In 19th International Conference of the North American Fuzzy Information Processing

Society (NAFIPS), pages 301�306. IEEE, 2000.

Dietrich, C. J. and Rossow, C. Empirical research of ip blacklists. In ISSE 2008

Securing Electronic Business Processes, pages 163�171. Springer, 2009.

Dolak, J. C. The code red worm. Technical report, SANS Institute InfoSec Reading

Room, 2001. Accessed 2012/12/24.

URL http://www.sans.org/reading_room/whitepapers/malicious/code-red-

worm_85

Drummond, D. A new approach to China. Online, January 2010. Accessed 2012/09/21.

URL http://googleblog.blogspot.com/2010/01/new-approach-to-china.html

Dübendorfer, T. and Plattner, B. Host behaviour based early detection of worm

outbreaks in internet backbones. In Proceedings of 14th IEEE International Workshops

on Enabling Technologies: Infrastructures for Collaborative Enterprises (WET ICE),

pages 166�171. IEEE, 2005.

Durumeric, Z., Wustrow, E., and Halderman, J. A. Zmap: Fast internet-wide

scanning and its security applications. In 22nd USENIX Security Symposium. 2013.

Ebel, H., Mielsch, L., and Bornholdt, S. Scale-free topology of e-mail networks.

Physical review. E, Statistical, nonlinear, and soft matter physics, 66(3):35103, 2002.

Elio, R., Hoover, J., Nikolaidis, I., Salavatipour, M., Stewart, L., and Wong,

K. About computing science research methodology. Technical report, University of

Alberta, 2005.

URL http://webdocs.cs.ualberta.ca/~c603/readings/research-methods.pdf

Enikeev, R. South Africa’s internet, mapped. Online, July 2013. Accessed 2013/08/03.

URL http://mybroadband.co.za/news/internet/83189-south-africas-

internet-mapped.html

Ezzeldin, H. Nmap detection and countermeasures. Online, March 2008. Accesed

2012/09/05.

URL http://haymanezzeldin.blogspot.com/

REFERENCES 241

F-Secure. Virus:boot/brain. Online, May 2012. Accessed 2012/12/31.

URL http://www.f-secure.com/v-descs/brain.shtml

Falliere, N., Murchu, L., and Chien, E. W32. stuxnet dossier. Technical report,

Symantec Corp, 2011. Accessed 2012/12/24.

URL http://www.symantec.com/content/en/us/enterprise/media/security_

response/whitepapers/w32_stuxnet_dossier.pdf

Farivar, C. Snowden says his "sole intention" was to prompt national security debate.

Online, September 2013. Accessed 2013/11/18.

URL http://arstechnica.com/tech-policy/2013/09/snowden-says-his-sole-

intention-was-to-prompt-national-security-debate/

FBI. Economic espionage. Online, 1996. Accessed 2014/04/01.

URL http://www.fbi.gov/about-us/investigate/counterintelligence/

economic-espionage

Felten, E. W., Balfanz, D., Dean, D., and Wallach, D. S. Web spoofing: An

internet con game. Software World, 28(2):6�8, 1997.

Feng, W. The case for tcp/ip puzzles. ACM SIGCOMM Computer Communication

Review, 33(4):322�327, 2003.

Fenz, S. and Neubauer, T. How to determine threat probabilities using ontologies

and bayesian networks. In Proceedings of the 5th Annual Workshop on Cyber Security

and Information Intelligence Research: Cyber Security and Information Intelligence

Challenges and Strategies, page 69. ACM, 2009.

Fenz, S., Tjoa, A., and Hudec, M. Ontology-based generation of bayesian networks.

In International Conference on Complex, Intelligent and Software Intensive Systems

(CISIS’09), pages 712�717. IEEE, 2009.

Fidler, D. P. Was stuxnet an act of war? Decoding a cyberattack. IEEE Security &

Privacy, 9(4):56�59, 2011.

Finkle, J. Insight: Did conficker help sabotage Iran program? Online, December 2011.

Accessed 2012/09/19.

URL http://www.reuters.com/article/2011/12/02/us-cybersecurity-iran-

idUSTRE7B10AP2011120

REFERENCES 242

Finn, P. Cyber assaults on estonia typify a new battle tactic. Online, May 2007.

Accessed 2012/12/24.

URL http://msl1.mit.edu/furdlog/docs/washpost/2007-05-19_washpost_

estonia_cyberattacked.pdf

FIRST-Forum. A complete guide to the common vulnerability scoring system version

2.0. Technical report, FIRST-Forum of Incident Response and Security Teams, 2007.

Accessed 2013/06/17.

URL http://www.first.org/cvss/cvss-guide.pdf

Fitzgibbon, N. and Wood, M. Conficker. c: A technical analysis. Technical report,

SophosLabs, Sophon Inc, 2009. Accessed 2012/12/24.

URL http://www.sophos.com/sophos/docs/eng/marketing_material/conficker-

analysis.pdf

Frye, L., Cheng, L., and Heflin, J. An ontology-based system to identify complex

network attacks. In International Conference on Communications (ICC), pages 6683�

6688. IEEE, 2012.

Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., and Tao, L. A static analysis

framework for detecting sql injection vulnerabilities. In 31st Annual International Con-

ference on Computer Software and Applications (COMPSAC), volume 1, pages 87�96.

IEEE, 2007.

Fyodor, R. Remote os detection via tcp/ip stack fingerprinting. Online, October 1998.

Accessed 2012/11/19.

URL http://nmap.org/nmap-fingerprinting-article.txt

Gadge, J. and Patil, A. A. Port scan detection. In 16th International Conference on

Networks (ICON), pages 1�6. IEEE, 2008.

Gandhi, M. and Srivatsa, S. Detecting and preventing attacks using network intrusion

detection systems. International Journal of Computer Science and Security, 2(1):49�58,

2008.

Gandhi, R., Sharma, A., Mahoney, W., Sousan, W., Zhu, Q., and Laplante,

P. Dimensions of cyber-attacks: Cultural, social, economic, and political. Technology

and Society Magazine, IEEE, 30(1):28�38, 2011.

Garber, L. Melissa virus creates a new type of threat. IEEE Computer, 32(6):16�19,

1999.

REFERENCES 243

Garcia-Teodoro, P., Diaz-Verdejo, J., Macia-Fernandez, G., and Vazquez, E.

Anomaly-based network intrusion detection: Techniques, systems and challenges. Com-

puters & Security, 28(1-2):18�28, 2009.

Geer, D. E. A witness testimony in the hearing, Wednesday 25 April 07, entitled

addressing the nation’s cybersecurity challenges: Reducing vulnerabilities requires

strategic investment and immediate action. Technical report, Subcommittee on Emerg-

ing Threats, Cybersecurity, and Science and Technology, 2007. Accessed 2012/12/31.

URL http://chsdemocrats.house.gov/SiteDocuments/20070425145243-

10189.pdf

Gellers, M., Brant, D., and B., G. Building a secure workforce, guard against insider

threat. Technical Report 100108, Deloitte Federal Consulting Services, 2008. Accessed

2013/06/20.

URL http://www.deloitte.com/assets/Dcom-UnitedStates/Local\%20Assets/

Documents/us_ps_insiderthreat_100108.pdf

Genosko, G. The case of ’mafiaboy’ and the rhetorical limits of hacktivism. Online,

2008. Accessed 2012/12/31.

URL http://nine.fibreculturejournal.org/fcj-057/

Germain, J. M. Mydoom: A wrap-up on the world’s most vicious worm. Online, March

2004. Accessed 2012/11/07.

URL http://www.technewsworld.com/story/33068.html

Geuss, M. Snowden may have persuaded 20 to 25 nsa colleagues to give up their

passwords. Online, November 2013. Accessed 2013/11/17.

URL http://arstechnica.com/tech-policy/2013/11/snowden-may-have-

persuaded-20-to-25-nsa-colleagues-to-give-up-their-passwords/

Glass, R. L. A structure-based critique of contemporary computing research. Journal of

Systems and Software, 28(1):3�7, 1995.

Glenn Greenwald, E. M. and Poitras, L. Edward snowden: the whistleblower behind

the nsa surveillance revelations. Online, June 2013. Accessed 2013/10/15.

URL http://www.theguardian.com/world/2013/jun/09/edward-snowden-nsa-

whistleblower-surveillance

Gliddon, J. Businesses take 7 months to detect intruders. Online, October 2012. Ac-

cessed 2012/12/31.

REFERENCES 244

URL http://www.itnews.com.au/News/319549,businesses-take-seven-months-

to-detect-intruders.aspx

Goertzel, K. M. Software survivability: Where safety and security converge. CrossTalk,

34(6):15�19, 2009.

Gong, H., Guo, J., Yu, Z., Zhang, Y., and Xue, Z. Research on the building and

reasoning of travel ontology. In International Symposium on Intelligent Information

Technology Application Workshops (IITAW’08), pages 94�97. IEEE, 2008.

Gong, L. Optimal authentification protocols resistant to password guessing attacks. In

Proceedings of Computer Security Foundations Workshop, pages 24�29. IEEE, 1995.

Goodchild, J. Social engineering: The basics. Online, January 2010. Accessed

2012/08/28.

URL http://www.csoonline.com/article/514063/social-engineering-the-

basics

Goodin, D. User data stolen in sony PlayStation hack attack. Online, April 2011.

Accessed 2012/12/31.

URL http://www.theregister.co.uk/2011/04/26/sony_playstation_network_

security_breach/

Gostev, A. Mobile malware evolution: An overview, part 1. Online, September 2006.

Accessed 2012/12/31.

URL http://www.securelist.com/en/analysis?pubid=200119916

Gostev, A. The flame: Questions and answers. Online, May 2012. Accessed on

2012/09/20.

URL https://www.securelist.com/en/blog/208193522/The_Flame_Questions_

and_Answers

Govindavajhala, S. and Appel, A. W. Windows access control demystified. Technical

report, Princeton University, 2006.

Grabosky, P. The global dimension of cybercrime. Global Crime, 6(1):146�157, 2004.

Grant, T., Burke, I., and van Heerden, R. P. Comparing models of offensive cyber

operations. In Proceedings of the 7th International Conference on Information-Warfare

& Security (ICIW 2012), pages 108�121. ACI, 2012.

REFERENCES 245

Grant, T. and Kooter, B. Comparing ooda and other models as operational view

architecture. In Proceedings of the 10th International Command & Control Research &

Technology Symposium (ICCRTS’05), 196. US DoD, 2005.

Grant, T., Venter, H., and Eloff, J. Simulating adversarial interactions between

intruders and system administrators using ooda-rr. In Proceedings of the 2007 annual

research conference of the South African institute of computer scientists and information

technologists on IT research in developing countries, pages 46�55. ACM, 2007.

Greenberg, A. Reformed hacker looks back. Online, August 2008. Accessed

2014/04/01.

URL http://www.forbes.com/2008/08/21/mitnick-hackers-security-tech-

security-cx\ag\0821mitnick.html

Greenwald, G. Nsa collecting phone records of millions of verizon customers daily.

Online, June 2013. Accessed 2013/10/16.

URL http://www.theguardian.com/world/2013/jun/06/nsa-phone-records-

verizon-court-order

Groebel, J., Metze-Mangold, V., van der Peet, J., and Ward, D. Twilight Zones

in Cyberspace: Crimes, Risk, Surveillance and User-Driven Dynamics. Stabsabteilung

der Friedrich-Ebert-Stiftung, 2001, 46 pages.

Gross, M. J. Exclusive: Operation shady rat-unprecedented cyber-espionage campaign

and intellectual-property bonanza. Onine, August 2011. Accessed 2012/09/21.

URL http://www.vanityfair.com/culture/features/2011/09/operation-shady-

rat-201109

Gruber, T. R. A translation approach to portable ontology specifications. Knowledge

acquisition, 5(2):199�220, 1993.

Grüninger, M. and Fox, M. Methodology for the design and evaluation of ontologies. In

Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing (IJCAI),

volume 95. 1995.

Gula, R. Correlating ids alerts with vulnerability information. Technical Report Revision

4, Tenable Network Security, May 2011.

URL http://www.tenable.com/sites/drupal.dmz.tenablesecurity.com/files/

uploads/documents/whitepapers/va-ids_0.pdf

REFERENCES 246

Haddox, A. First Excel macro virus discovered, detected and repaired. Online, Sept

1996. Accessed 2012/12/31.

URL http://www.symantec.com/avcenter/reference/newsletter/sarcanuv1i1.

html

Halderman, J. A. and Felten, E. W. Lessons from the sony cd drm episode. In

Proceedings of the 15th USENIX Security Symposium. 2006.

Hall, K. The 7 worst cyberattacks in history (that we know about). Online, September

2010. Accessed 2012/12/02.

URL http://dvice.com/archives/2010/09/7-of-the-most-d.php

Halliday, J. Epsilon email hack: millions of customers’ details stolen. Online, April

2011. Accessed 2012/09/20.

URL http://www.guardian.co.uk/technology/2011/apr/04/epsilon-email-hack

Hancock, B. Recent history of known network breaches. Network Security, 1995(11):6 �

9, 1995. ISSN 1353-4858. doi: 10.1016/1353-4858(96)89764-9.

Hanford, S. Chronology of a ddos: Spamhaus. Online, March 2013. Accessed 2013/05/19.

URL http://blogs.cisco.com/security/chronology-of-a-ddos-spamhaus/

Hansman, S. and Hunt, R. A Taxonomy of Network and Computer Attack Method-

ologies. Master's thesis, Department of Computer Science and Software Engineering

University of Canterbury, 2003.

URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.77.1606

Hariri, S., Qu, G., Dharmagadda, T., Ramkishore, M., and Raghavendra,

C. S. Impact analysis of faults and attacks in large-scale networks. IEEE Security &

Privacy, 1(5):49�54, 2003.

Harley, D. and Lee, A. A pretty kettle of phish. Technical report, ESET ThreatCenter,

June 2007. Accessed 2012/12/31.

URL http://www.nod32.com.sh/download/whitepapers/Phishing\%28June2007\

%29Online.pdf

Harrop, W. and Armitage, G. Greynets: a definition and evaluation of sparsely

populated darknets. In Proceedings of the 2005 ACM SIGCOMM workshop on Mining

network data, pages 171�172. ACM, 2005.

REFERENCES 247

Harter, D. E., Kemerer, C. F., and Slaughter, S. A. Does software process im-

provement reduce the severity of defects? a longitudinal field study. IEEE Transactions

on Software Engineering, 38(4):810�827, 2012.

Hassan, H., Garcia, J., and Brun, O. Generic modeling of multimedia traffic sources.

In IEEE International Workshop on Heterogeneous Wireless Networks: Resource Man-

agement and QoS (HWN). IEEE, 2005.

Heater, B. Malware: A brief timeline. Online, March 2011. Accessed 2012/12/02.

URL http://www.pcmag.com/slideshow/story/261678/malware-a-brief-

timeline

Heberlein, L. T., Dias, G. V., Levitt, K. N., Mukherjee, B., Wood, J., and

Wolber, D. A network security monitor. In Proceedings of Computer Society Sympo-

sium on Research in Security and Privacy, pages 296�304. IEEE, 1990.

Hernández-Campos, F., Karaliopoulos, M., Papadopouli, M., and Shen, H.

Spatio-temporal modeling of traffic workload in a campus wlan. In Proceedings of the

2nd annual international workshop on Wireless Internet, page 1. ACM, 2006.

Hesseldahl, A. and Kharif, O. Cyber crime and information warfare: A 30-year

history. Online, October 2010. Accesed on 2012/09/05.

URL http://images.businessweek.com/ss/10/10/1014_cyber_attacks/1.htm

Higgins, K. J. ’Aurora’ attacks still under way, investigators closing in on malware

creators. Online, February 2010. Accessed on 2012/08/14.

URL http://www.darkreading.com/security/news/222700786

Hlava, M. What is a taxonomy? Online, March 2012. Accessed 2013/01/01.

URL http://www.kmworld.com/Articles/Editorial/What-Is-../What-is-a-

Taxonomy-81159.aspx

Hoepman, J.-H. and Jacobs, B. Increased security through open source. Communi-

cations of the ACM, 50(1):79�83, 2007.

Horib, K., Yamamoto, S., and Sekiya, Y. Udon: User defined and organized network.

In Internet Conference. Toyama, Japan, 2012.

Houle, K. and Weaver, G. Trends in denial of service attack technology. Technical

report, CERT Coordination Center, October 2001. Accessed 2013/01/01.

URL www.cert.org/archive/pdf/DoS_trends.pdf

REFERENCES 248

Hunter, S. O. and Irwin, B. Tartarus: A honeypot based malware tracking and

mitigation framework. In Information Security South Africa. 2011.

Idika, N. and Mathur, A. A survey of malware detection techniques. Technical report,

Purdue University, 2007. Accessed 2013/01/01.

URL http://www.serc.net/system/files/SERC-TR-286.pdf

Irwin, B. A framework for the application of network telescope sensors in a global IP

network. Ph.D. thesis, Rhodes University, 2011.

Jagatic, T. N., Johnson, N. A., Jakobsson, M., and Menczer, F. Social phishing.

Communications of the ACM, 50(10):94�100, 2007.

Jim, T., Swamy, N., and Hicks, M. Defeating script injection attacks with browser-

enforced embedded policies. In Proceedings of the 16th international conference on World

Wide Web, pages 601�610. ACM, 2007.

Jones, S. L. The passion of Bradley Manning: The story behind the wikileaks whistle-

blower. Journal of Military Ethics, 12(2):195�196, 2013.

Joyal, P. Industrial espionage today and information wars of tomorrow. In 19th National

Information Systems Security Conference, pages 139�151. 1996.

Julian. 10 most costly cyber attacks in history. Online, August 2011. Accessed

2012/10/30.

URL http://www.businesspundit.com/10-most-costly-cyber-attacks-in-

history/

Jung, J., Paxson, V., Berger, A. W., and Balakrishnan, H. Fast portscan detec-

tion using sequential hypothesis testing. In Proceedings of Symposium on Security and

Privacy, pages 211�225. IEEE, 2004.

Kabay, M. Industrial espionage. In Network World Fusion Security Newsletter. School

of Graduate Studies / Norwich University, 2008.

Kabay, M. E. Crime, Use of Computers in. Academic Press (Amsterdam), 2003, 15

pages.

Kachirski, O. and Guha, R. Effective intrusion detection using multiple sensors in

wireless ad hoc networks. In Proceedings of the 36th Annual Hawaii International Con-

ference on System Sciences, pages 8�16. IEEE, 2003.

REFERENCES 249

Kaplan, D. Anonymous spokesman on Sony hack: "it wasn’t us". Online, May 2011.

Accessed 2012/09/12.

URL http://www.scmagazine.com/anonymous-spokesman-on-sony-hack-it-

wasnt-us/article/202134/

Karasaridis, A., Rexroad, B., and Hoeflin, D. Wide-scale botnet detection and

characterization. In Proceedings of the first conference on First Workshop on Hot Topics

in Understanding Botnets. Cambridge, MA, 2007.

Karig, D. and Lee, R. Remote denial of service attacks and countermeasures. Techni-

cal Report CE-L2001-002, Princeton University Department of Electrical Engineering,

October 2001. Accessed 2013/01/01.

URL https://www.princeton.edu/~rblee/ELE572Papers/karig01DoS.pdf

Karlson, A. K., Meyers, B. R., Jacobs, A., Johns, P., and Kane, S. K. Working

overtime: Patterns of smartphone and pc usage in the day of an information worker.

In Pervasive Computing, pages 398�405. Springer, 2009.

Katz-Bassett, E., John, J. P., Krishnamurthy, A., Wetherall, D., Anderson, T.,

and Chawathe, Y. Towards ip geolocation using delay and topology measurements. In

Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, pages

71�84. ACM, 2006.

Kayacık, H. G., Zincir-Heywood, A. N., and Heywood, M. I. Can a good offense

be a good defense? Vulnerability testing of anomaly detectors through an artificial arms

race. Applied Soft Computing, 11(7):4366�4383, 2011.

Kent, K. and Souppaya, M. Guide to computer security log management. Technical

Report SP800-92, National Institute of Standards and Technology, 2006.

URL http://csrc.nist.gov/publications/nistpubs/800-92/SP800-92.pdf

Kerber, R. and Bartz, D. Analysis: Epsilon hacking shows new "spear-phishing"

risks. Online, April 2011. Accessed 2012/09/20.

URL http://www.reuters.com/article/2011/04/04/us-hackers-epsilon-

idUSTRE7336DZ20110404

Kibret, W. E. Analyzing Network Security from a Defense in Depth Perspective. Mas-

ter's thesis, Department of Informatics University of Oslo, 2011.

Kim, G. H. and Spafford, E. H. The design and implementation of tripwire: A file

system integrity checker. In Proceedings of the 2nd ACM Conference on Computer and

Communications Security, pages 18�29. ACM, 1994.

REFERENCES 250

Knapp, E. Industrial Network Security: Securing Critical Infrastructure Networks for

Smart Grid, SCADA, and Other Industrial Control Systems. Syngress, 2011.

Kneale, B., De Horta, A. Y., and Box, I. Velnet: virtual environment for learn-

ing networking. In Proceedings of the Sixth Australasian Conference on Computing

Education, pages 161�168. Australian Computer Society, Inc., 2004.

Kolšek, M. Session fixation vulnerability in web-based applications. Technical Report 1,

Acros Security, December 2002.

URL http://www.acrossecurity.com/papers/session_fixation.pdf

Kornexl, S., Paxson, V., Dreger, H., Feldmann, A., and Sommer, R. Building

a time machine for efficient recording and retrieval of high-volume network traffic. In

Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement, pages

23�23. USENIX Association, 2005.

Krebs, B. Study of sony anti-piracy software triggers uproar. Online, November 2005.

Accessed 2014/01/01.

URL http://msl1.mit.edu/furdlog/docs/washpost/2005-11-03_washpost_sony_

drm.pdf

Krebs, B. The scrap value of a hacked pc. Online, May 2009. Accessed 2012/11/07.

URL http://voices.washingtonpost.com/securityfix/2009/05/the_scrap_

value_of_a_hacked_pc.html

Krebs, B. The scrap value of a hacked pc, revisited. Online, October 2012. Accessed

2012/11/07.

URL http://krebsonsecurity.com/2012/10/the-scrap-value-of-a-hacked-pc-

revisited/

Kritzinger, E. and von Solms, S. H. Cyber security for home users: A new way of

protection through awareness enforcement. Computers & Security, 29(8):840�847, 2010.

Kshetri, N. Pattern of global cyber war and crime: A conceptual framework. Journal of

International Management, 11(4):541�562, 2005.

Kurtz, G., McClure, S., and Scambray, J. Hacking Exposed: Network Security

Secrets and Solutions. Computing Mcgraw-Hill, 1999.

Kuwatly, I., Sraj, M., Al Masri, Z., and Artail, H. A dynamic honeypot design for

intrusion detection. In International Conference on Pervasive Services (ICPS), pages

95�104. IEEE, 2004.

REFERENCES 251

Lancor, L. and Workman, R. Using google hacking to enhance defense strategies.

ACM SIGCSE Bulletin, 39(1):491�495, 2007.

Lapsley, P. Phreaking out ma bell. IEEE Spectrum, 50(2):30�35, 2013.

Lau, F., Rubin, S. H., Smith, M. H., and Trajkovic, L. Distributed denial of

service attacks. In International Conference on Systems, Man, and Cybernetics, pages

2275�2280. IEEE, 2000.

Lee, C., Roedel, C., and Silenok, E. Detection and characterization of port scan

attacks. Technical report, Univeristy of California, Department of Computer Science

and Engineering, 2003. Accessed 2013/01/01.

URL http://www.cs.ucsd.edu/users/clbailey/PortScans.pdf

Lee, S. and Shields, C. Tracing the source of network attack: A technical, legal and

societal problem. In Proceedings of the 2001 IEEE Workshop on Information Assurance

and Security, pages 239�246. IEEE, 2001.

Leeson, P. and Coyne, C. The economics of computer hacking. The Journal of Law,

Economics and Policy, 1(1.78):511, 2005.

Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch,

D. C., Postel, J., Roberts, L. G., and Wolff, S. A brief history of the internet.

ACM SIGCOMM Computer Communication Review, 39(5):22�31, 2009.

Levy, S. Hackers: Heroes of the computer revolution, volume 4. Doubleday, 1984.

Lewis, J. A. Assessing the risks of cyber terrorism, cyber war and other cyber threats.

Technical report, Center for Strategic and International Studies, 2002. Accessed

2013/01/08.

URL http://csis.org/files/media/csis/pubs/021101_risks_of_cyberterror.

pdf

Lewis, L. A facelift for defacement: Graffiti as new media. In Society for Information

Technology & Teacher Education International Conference, pages 2687�2691. 2007.

Leyden, J. PC virus celebrates 20th birthday. Online, January 2006. Accessed

2013/01/03.

URL http://www.theregister.co.uk/2006/01/19/pc_virus_at_20/

Leyden, J. Biggest ddos attack in history hammers spamhaus. Online, March 2013.

Accessed 2013/05/18.

URL http://www.theregister.co.uk/2013/03/27/spamhaus_ddos_megaflood/

REFERENCES 252

Li, W. and Tian, S. An ontology-based intrusion alerts correlation system. Expert

Systems with Applications, 37(10):7138�7146, 2010.

Liddinton-Cox, A. Top 10 hacks of all time. Online, May 2012. Accesed 2012/12/02.

URL http://www.businessspectator.com.au/bs.nsf/Article/hacks-IT-

internet-security-email-Google-Sony-pd20110505-GJVTZ

Liljenstam, M., Liu, J., Nicol, D. M., Yuan, Y., Yan, G., and Grier, C. Rinse:

The real-time immersive network simulation environment for network security exercises

(extended version). Simulation, 82(1):43�59, 2006.

Lindqvist, U. and Jonsson, E. How to systematically classify computer security in-

trusions. In Proceedings of Symposium on Security and Privacy, pages 154�163. IEEE,

1997.

Long, J. Google hacking for penetration testers. Syngress Publishing, 2007.

Lunt, T. F. A survey of intrusion detection techniques. Computers & Security, 12(4):405�

418, 1993.

Lunt, T. F. and Jagannathan, R. A prototype real-time intrusion-detection expert

system. In Proceedings of Symposium on Security and Privacy, pages 59�66. IEEE,

1988.

Madigan, D. Statistics and the war on spam. Statistics: A Guide to the Unknown, pages

135�147, 2005.

Magklaras, G. and Furnell, S. Insider threat prediction tool: Evaluating the probability

of IT misuse. Computers & Security, 21(1):62�73, 2001.

Malviya, N., Mishra, N., and Sahu, S. Developing university ontology using protégé

owl tool: Process and reasoning. International Journal of Scientific & Engineering

Research, 2(9):1, 2011.

Mandujano, S. An ontology-supported outbound intrusion detection system. In Pro-

ceedings of the 10th Conference on Artificial Intelligence and Applications. Taiwanese

Association for Arti�cial Intelligence, 2005.

Manmadhan, S. and Manesh, T. A method of detecting sql injection attack to secure

web applications. International Journal of Distributed and Parallel Systems, 3:1�8,

2012.

REFERENCES 253

Mansfield-Devine, S. Hacking the hackers. Computer Fraud & Security, 2009(6):10�13,

2009.

Marca, D. and McGowan, C. SADT: structured analysis and design technique.

McGraw-Hill, Inc., 1987.

Marcus, D. A good decade for cybercrime. Technical report, McAfee, January 2011.

Accessed 2013/01/01.

URL http://www.mcafee.com/us/resources/reports/rp-good-decade-for-

cybercrime.pdf

Markoff, J. Attack of the zombie computers is growing threat. New York Times, 7:1�4,

2007.

Markoff, J. and Barboza, D. 2 China schools said to be tied to online attacks. Online,

Febraury 2010. Accessed 2012/09/21.

URL http://www.nytimes.com/2010/02/19/technology/19china.html?_r=0

Markoff, J. and Perlroth, N. Firm is accused of sending spam, and fight jams

internet. Online, March 2013. Accessed 2013/05/16.

URL http://www.nytimes.com/2013/03/27/technology/internet/online-

dispute-becomes-internet-snarling-attack.html?

Massey, D. Phone phreaking – the telecommunications underground. Online, 2003.

Accessed 2013/10/17.

URL http://www.telephonetribute.com/phonephreaking.html

Maybury, M., Chase, P., Cheikes, B., Brackney, D., Matzner, S., Hether-

ington, T., Wood, B., Sibley, C., Marin, J., and Longstaff, T. Analysis and

detection of malicious insiders. Technical report, DTIC document, 2005. Accessed

2013/01/01.

URL http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA456356

McAfee. Protecting your critical assets lessons learned from "operation aurora".

Technical report, McAfee Labs and McAfee Foundstone Professional Services, 2010.

Accessed 2013/01/01.

URL http://www.mcafee.com/us/resources/white-papers/wp-protecting-

critical-assets.pdf

McDowell, M. Understanding denial-of-service attacks. Online, November 2009. Ac-

cessed 2012/09/22.

URL http://www.us-cert.gov/cas/tips/ST04-015.html

REFERENCES 254

McNamara, P. Melissa virus turning 10 ... (age of the stripper unknown). Online,

March 2009. Accessed 2013/01/01.

URL http://www.networkworld.com/community/node/40059

Mercuri, R. T. and Neumann, P. G. Security by obscurity. Communications of the

ACM, 46(11):160, 2003.

Merritt, D. Spear Phishing Attack Detection. Master's thesis, Air Force Institute of

Technology, March 2011. Accessed 2013/01/01.

URL http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA540272

Meyers, C., Powers, S., and Faissol, D. Taxonomies of cyber adversaries and attacks:

a survey of incidents and approaches. Technical Report LLNL-TR-4190, Lawrence

Livermore National Laboratory, April 2009. Accessed 2013/10/01.

URL https://e-reports-ext.llnl.gov/pdf/379498.pdf

Mezirch, B. The Accidental Billionaires: The Founding of Facebook: A Tale of Sex,

Money, Genius and Betrayal. Random House, 2009.

Miranda, M. The 12 costliest computer viruses ever. Online, August 2010. Accesed

2012/12/02.

URL http://blog.insure.com/2010/08/03/the-12-costliest-computer-

viruses-ever/

Mirkovic, J. and Reiher, P. A taxonomy of ddos attack and ddos defense mechanisms.

ACM SIGCOMM Computer Communication Review, 34(2):39�53, 2004.

Mitnick, K. and Simon, W. The Art of Intrusion: The real stories behind the exploits

of hackers, intruders and deceivers. Wiley, 2005.

Mitnick, K. D., Simon, W. L., and Wozniak, S. The art of deception. Wiley

Indianapolis, 2002.

Mookhey, K. and Burghate, N. Detection of sql injection and cross-site scripting

attacks. Technical Report INFOCUS 1768, Symantec, 2004. Accessed 2013/01/08.

URL http://www.symantec.com/connect/articles/detection-sql-injection-

and-cross-site-scripting-attacks

Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., and Weaver,

N. Inside the slammer worm. IEEE Security & Privacy, 1(4):33�39, 2003.

REFERENCES 255

Moore, D. and Shannon, C. Sco offline from denial-of-service attack. Online, Decem-

ber 2003. Accessed 2012/09/02.

URL http://www.caida.org/research/security/sco-dos/

Moore, D., Shannon, C., Brown, D., Voelker, G., and Savage, S. Inferring

internet denial-of-service activity. ACM Transactions on Computer Systems (TOCS),

24(2):115�139, 2006.

Moore, D., Shannon, C., Voelker, G. M., and Savage, S. Network telescopes:

Technical report. Technical report, Department of Computer Science and Engineering,

University of California, San Diego, 2004.

URL http://ants.iis.sinica.edu.tw/3bkmj9ltewxtsrrvnoknfdxrm3zfwrr/17/

tr-2004-04.pdf

Moshchuk, A., Bragin, T., Gribble, S. D., and Levy, H. M. A crawler-based

study of spyware on the web. In Proceedings of the 2006 Network and Distributed

System Security Symposium, pages 17�33. 2006.

Mudge, R. Live-fire security testing with armitage and metasploit. Online, July 2011.

Accessed 2013/01/01.

URL http://www.linuxjournal.com/article/10973

Mukherjee, B., Heberlein, L., and Levitt, K. Network intrusion detection. IEEE

Network, 8(3):26�41, 1994.

Mulligan, D. K. and Perzanowski, A. K. The magnificence of the disaster: Recon-

structing the Sony BMG rootkit incident. Berkeley Technology Law Journal, 22(3):1157�

1232, 2007.

Murry, P. Network security, the bad, the good, and the quiz. Technical report, Ohio

State University, May 2004. Accessed 2013/01/01.

URL https://kb.osu.edu/dspace/bitstream/handle/1811/5934/

securityhandoutmurray.pdf

Myers, J., Grimaila, M., and Mills, R. Towards insider threat detection using web

server logs. In Proceedings of the 5th Annual Workshop on Cyber Security and Infor-

mation Intelligence Research: Cyber Security and Information Intelligence Challenges

and Strategies, pages 54�58. ACM, 2009.

Myler, C. and Wapping, L. News of the world. Online, 2011. Accessed 2013/01/01.

URL http://medbib.com/News_of_the_World

REFERENCES 256

Nachenberg, C. Hacking. Online, 2012. Accessed 2012/12/23.

URL http://www.bookrags.com/research/hacking-csci-03/

Namuduri, S. Distributed Denial of Service Attacks (DDoS)-Consequences and Future.

Master's thesis, Linköping, November 2006.

Netcraft. November 2012 web server survey. Online, November 2012. Accessed

2013/01/08.

URL http://news.netcraft.com/archives/category/web-server-survey/

Neumann, J. and Burks, A. Theory of Self-Reproducing Automata. University of

Illinois Press, 1966.

Neumann, R. and Parker, C. A summary of computer misuse techniques. In Process-

ings of the 12th National Computer Security Conference, pages 396�407. 1989.

Nilsson, R., Offutt, J., and Mellin, J. Test case generation for mutation-based testing

of timeliness. Electronic Notes in Theoretical Computer Science, 164(4):97�114, 2006.

ISSN 1571-0661.

Noy, N. and McGuinness, D. Ontology development 101: A guide to creating your

first ontology. Technical Report KSL-01-05, SMI-2001-0880, Stanford Knowledge

Systems Laboratory and Stanford Medical Informatics technical report, March 2001.

Accessed 2013/01/01.

URL http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-

noy-mcguinness.pdf

Olivarez-Giles, N. Epsilon hacking exposes customers of best buy, capital one, citi,

jpmorgan chase and others. Online, April 2011. Accessed 2012/09/20.

URL http://latimesblogs.latimes.com/technology/2011/04/epsilon-

cutsomer-files-email-addresses-breached-including-best-buy-jpmorgan-

chase-us-bank-capital-on.html

Ophardt, J. A. Cyber warfare and the crime of aggression: The need for individual

accountability on tomorrow’s battlefield. Duke Law & Technology Review, 3:1�27, 2010.

Oppliger, R. Security at the internet layer. Computer, 31(9):43�47, 1998.

Orman, H. The morris worm: a fifteen-year perspective. IEEE Security & Privacy,

1(5):35�43, 2003.

REFERENCES 257

Owen, D. What is a false positive and why are false positives a problem? Online, May

2010. Accessed 2012/11/21.

URL http://www.sans.org/security-resources/idfaq/false_positive.php

Peddabachigari, S., Abraham, A., Grosan, C., and Thomas, J. Modeling intru-

sion detection system using hybrid intelligent systems. Journal of Network and Com-

puter Applications, 30(1):114�132, 2007.

Perrow, C. Complexity, catastrophe, and modularity. Sociological Inquiry, 78(2):162�

173, 2008.

Poese, I., Uhlig, S., Kaafar, M. A., Donnet, B., and Gueye, B. IP geolocation

databases: unreliable? ACM SIGCOMM Computer Communication Review, 41(2):53�

56, 2011.

Porras, P., Saïdi, H., and Yegneswaran, V. A foray into Conficker’s logic and ren-

dezvous points. In Proceedings of the 2nd USENIX Conference on Large-scale Exploits

and Emergent Threats: Botnets, Spyware, Worms, and More, pages 7�16. USENIX

Association, 2009.

Porras, P., Saidi, H., and Yegneswaran, V. An analysis of the ikee.b iphone botnet.

In Security and Privacy in Mobile Information and Communication Systems, pages

141�152. Springer, 2010.

Porras, P. and Valdes, A. Live traffic analysis of TCP/IP gateways. In Networks and

Distributed Systems Security Symposium. 1998.

Poulsen, K. The decade’s 10 most dastardly cybercrimes. Online, December 2009.

Accesed 2012/12/02.

URL http://www.wired.com/threatlevel/2009/12/ye_cybercrimes/

Prince, M. The ddos that knocked spamhaus offline (and how cloudflare mitigated it).

Online, March 2013. Accessed 2013/06/15.

URL http://www.outlookseries.com/A0989/Security/3856_DDoS_Knocked_

Spamhaus_Offline_CloudFlare_Mitigated.htm

Provos, N. A virtual honeypot framework. In Proceedings of the 13th USENIX Security

Symposium. 2004.

Rahmad, B., Supangkat, S., Sembiring, J., and Surendro, K. Threat scenario

dependency-based model of information security risk analysis. International Journal of

Computer Science and Network Security, 10(8):93, 2010.

REFERENCES 258

Rajagopalan, S. A study of security problems associated with the telephone network.

Technical report, Department of Electrical and Computer Engineering, 2000. Accessed

2013/01/01.

URL http://www.artofhacking.com/Tucops/Phreak/GENERAL/R2.PDF

Ramachandran, A., Dagon, D., and Feamster, N. Can dns-based blacklists keep up

with bots. In Conference on Email and Anti-spam. 2006.

Ramsbrock, D., Berthier, R., and Cukier, M. Profiling attacker behavior following

ssh compromises. In 37th Annual International Conference on Dependable Systems and

Networks, pages 119�124. IEEE/IFIP, 2007.

Rao, T. Defending against web vulnerabilities and cross-site scripting. Journal of Global

Research in Computer Science, 3(5):61�64, 2012.

Razvan, R. Over the sql injection hacking method. In Proceedings of the 3rd International

Conference on Communications and Information Technology, pages 116�118. World

Scienti�c and Engineering Academy and Society (WSEAS), 2009.

Rescorla, E. Security holes... who cares? In Proceedings of the 12th USENIX Security

Symposium, pages 75�90. 2003.

Rescorla, E. Is finding security holes a good idea? IEEE Security & Privacy, 3(1):14�19,

2005.

Richelson, J. T. The snowden affair. Technical report, National Security Archive, 2013.

URL http://www2.gwu.edu/~nsarchiv/NSAEBB/NSAEBB436/

Rietta, F. S. Application layer intrusion detection for sql injection. In Proceedings of

the 44th Annual Southeast Regional Conference, pages 531�536. ACM, 2006.

Rizzo, L. Dummynet: a simple approach to the evaluation of network protocols. ACM

SIGCOMM Computer Communication Review, 27(1):31�41, 1997.

Robson, G. The origins of phreaking. Online, April 2004. Accessed 2013/01/01.

URL http://www.robson.org/gary/a-blacklisted1.php

Rochaeli, T. and Eckert, C. Rbac policy engineering with patterns. In W9: The

Semantic Web and Policy Workshop (SWPW), pages 148�153. 2005.

Rogers, M. K. A two-dimensional circumplex approach to the development of a hacker

taxonomy. Digital Investigation, 3(2):97�102, 2006.

REFERENCES 259

Rosenblum, M., Herrod, S. A., Witchel, E., and Gupta, A. Complete computer

system simulation: The simos approach. IEEE Parallel & Distributed Technology: Sys-

tems & Applications, 3(4):34�43, 1995.

Rounds, M. and Pendgraft, N. Diversity in network attacker motivation: A literature

review. In 2009 International Conference on Computational Science and Engineering,

pages 319�323. IEEE, 2009.

Rouse, M. Definition: Taxonomy. Online, 2005. Accessed 2013/01/01.

URL http://searchcio-midmarket.techtarget.com/definition/taxonomy

Rouse, M. Defintion: Social engineering. Online, October 2006. Accessed 2012/09/12.

URL http://searchsecurity.techtarget.com/definition/social-engineering

Rutherford, M. Report: Russian mob aided cyberattacks on georgia. Online, August

2009. Accessed 2012/09/05.

URL http://news.cnet.com/8301-13639_3-10312708-42.html

Safire, W. The farewell dossier. Online, February 2004. Accessed 2013/01/01.

URL http://www.nytimes.com/2004/02/02/opinion/the-farewell-dossier.html

Sanger, D. Obama order sped up wave of cyberattacks against iran. Online, June 2012.

Accessed 2012/08/24.

URL http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-

wave-of-cyberattacks-against-iran.html

SAPA. Man sentenced for post bank cyber heist. Online, March 2012. Accessed

2013/01/01.

URL http://www.techcentral.co.za/man-sentenced-for-post-bank-cyber-

heist/30448/

Sarwar, U., Ramadass, S., and Budiarto, R. Dawn of the mobile malware: Re-

viewing mobile worms. In Sciences of Electronic, Technologies of Information and

Telecommunications. IEEE, March 2007.

Savona, E. and Mignone, M. The fox and the hunters: How IC technologies change

the crime race. European Journal on Criminal Policy and Research, 10(1):3�26, 2004.

Scharffe, F. and de Bruijn, J. A language to specify mappings between ontologies. In

Proceedings of the Internet Based Systems (SITIS05). IEEE, 2005.

REFERENCES 260

Schartz, N. and Dash, E. Thieves found citigroup site an easy entry. Online, June

2011. Accessed 2013/07/21.

URL http://www.nytimes.com/2011/06/14/technology/14security.html

Scholte, T., Robertson, W., Balzarotti, D., and Kirda, E. An empirical analysis

of input validation mechanisms in web applications and languages. In Proceedings of the

27th Annual ACM Symposium on Applied Computing, pages 1419�1426. ACM, 2012.

Schultze, E. Thinking like a hacker. Technical report, Shavlik Technologies, March 2002.

Accessed 2013/01/01.

URL http://pdf.textfiles.com/security/thinkhacker.pdf

Schwartz, M. J. Who is anonymous: 10 key facts. Online, July 2012. Accessed

2012/08/28.

URL http://www.informationweek.com/security/attacks/who-is-anonymous-

10-key-facts/232600322

Shahzad, M., Shafiq, M. Z., and Liu, A. X. A large scale exploratory analysis of soft-

ware vulnerability life cycles. In 34th International Conference on Software Engineering

(ICSE), pages 771�781. IEEE, 2012.

Shankar, U., Talwar, K., Foster, J. S., and Wagner, D. Detecting format string

vulnerabilities with type qualifiers. In USENIX Security Symposium, pages 201�220.

2001.

Shankland, S. Net attack crushes sco web site. Online, May 2003. Accessed 2012/09/02.

URL http://news.cnet.com/Net-attack-crushes-SCO-Web-site/2100-1002_3-

999584.html

Sharan, R. The five stages of ethical hacking. Online, December 2010. Accessed

2013/01/01.

URL http://hack-o-crack.blogspot.com/2010/12/five-stages-of-ethical-

hacking.html

Sharma, A. The Flame – most powerful malware till date. Online, May 2012. Accessed

2012/09.20.

URL http://www.symantec.com/connect/blogs/flame-most-powerful-malware-

till-date

Sharma, V. An analytical survey of recent worm attacks. International Journal of

Computer Science and Network Security, 11(11):99�103, November 2011.

REFERENCES 261

Shavitt, Y. and Zilberman, N. A geolocation databases study. IEEE Journal on

Selected Areas in Communications, 29(10):2044�2056, 2011.

Shearer, R., Motik, B., and Horrocks, I. Hermit: A highly-efficient owl reasoner.

In Proceedings of the 5th International Workshop on OWL: Experiences and Directions

(OWLED 2008), pages 26�27. 2008.

Shearman, A. Hack the planet. Online, 1999. Accessed 2012/11/03.

URL http://www.thehackademy.net/madchat/reseau/syn.smurf/dos.htm

Shiffman, G. and Gupta, R. Crowdsourcing cyber security: a property rights view of

exclusion and theft on the information commons. International Journal of the Com-

mons, 7(1):93�112, February 2013.

Shimomura, T. and Markoff, J. Takedown: The Pursuit and Capture of Kevin Mit-

nick, America’s Most Wanted Computer Outlaws – by the Man Who Did It. Hyperion

Press, 1st edition, 1995. ISBN 0786862106.

Shin, Y. and Williams, L. Is complexity really the enemy of software security? In

Proceedings of the 4th ACM Workshop on Quality of Protection, pages 47�50. ACM,

2008.

Sigholm, J. Non-state actors in cyberspace operations. Journal of Military Studies,

4(1):1�37, 2013.

Simmonds, A., Sandilands, P., and van Ekert, L. An ontology for network security

attacks. Applied Computing, (2):317�323, 2004.

Smith, F. D., Campos, F. H., Jeffay, K., and Ott, D. What tcp/ip protocol

headers can tell us about the web. ACM SIGMETRICS Performance Evaluation Review,

29(1):245�256, 2001.

Sorin, P. Web server monitoring. Annals of University of Craiova-Economic Sciences

Series, 2(36):710�715, 2008.

Sorkin, A. The social network. Screenplay, 2010. Accessed 2013/07/27.

URL http://flash.sonypictures.com/video/movies/thesocialnetwork/awards/

thesocialnetwork_screenplay.pdf

Spafford, E. The internet worm program: an analysis. ACM SIGCOMM Computer

Communication Review, 19(1):17�57, 1989.

REFERENCES 262

Spafford, E., Heaphy, K., and Ferbrache, D. A computer virus primer. Technical

Report CSD-TR-935, Purdue University, November 1989.

URL http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1794\

&context=cstech

Specht, S. and Lee, R. Distributed denial of service: Taxonomies of attacks, tools, and

countermeasures. In Proceedings of the 17th International Conference on Parallel and

Distributed Computing Systems, pages 543�550. 2004.

Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., and Stiller, B.

An overview of IP flow-based intrusion detection. IEEE Communications Surveys &

Tutorials, 12(3):343�356, 2010.

Spiegelman, I. Cyber terrorists attack Russian news agency. Online, August 2008.

Accessed 2012/09/05.

URL http://gawker.com/5035278/cyber-terrorists-attack-russian-news-

agency

Spitzner, L. Know your enemy. Online, July 2000. Accessed 2012/11/18.

URL http://www.firstnetsecurity.com/library/misc/knowyourenemy1.pdf

Spitzner, L. Honeypots: Catching the insider threat. In Proceedings of the 19th Annual

Computer Security Applications Conference, pages 170�179. IEEE, 2003.

Staniford, S., Hoagland, J., and McAlerney, J. Practical automated detection of

stealthy portscans. Journal of Computer Security, 10(1/2):105�136, 2002.

Steffan, J. and Schumacher, M. Collaborative attack modeling. In Proceedings of the

2002 ACM Symposium on Applied Computing, pages 253�259. ACM, 2002.

Sterling, B. The advanced persistent threat attack. Online, January 2010. Accessed

2013/01/02.

URL http://www.wired.com/beyond_the_beyond/2010/01/the-advanced-

persistent-threat-attack/

Sterne, D. F. On the buzzwordsecurity policy. In Proceedings of Computer Society

Symposium on Research in Security and Privacy, pages 219�230. IEEE, 1991.

Stiawan, D., Idris, M., Ihsan, Z., Hussain, K., and Abdullah, A. Heteroge-

neous parameters for accuracy threat. Journal of Theoretical and Applied Information

Technology, 33(2):142�154, 2011.

REFERENCES 263

Stoll, C. The cuckoo’s egg. Tracking a spy through a maze of computer espionage,

volume 1. Doubleday, 1989.

Stone, H. L. Political strategy for cyber security. Intersect: The Stanford Journal of

Science, Technology and Society, 5:1�15, 2012.

Stout, G. Testing a website: Best practices. Technical report, Reveregroup, 2001.

Accessed 2013/01/02.

URL http://home.comcast.net/~glennastout/test_meth/TestWebsite_Stout.

pdf

Strayer, W., Lapsely, D., Walsh, R., and Livadas, C. Botnet detection based on

network behavior. Botnet Detection, 36:1�24, 2008.

Strickland, J. 10 worst computer viruses of all time. Online, 2008. Accessed 2012/12/02.

URL http://computer.howstuffworks.com/worst-computer-viruses.htm

Subramanya, S. and Lakshminarasimhan, N. Computer viruses. IEEE Potentials,

20(4):16�19, 2001.

Swart, W. ’Inside man’ who sank R30m heist. Online, September 2012. Accessed

2012/12/04.

URL http://www.timeslive.co.za/sundaytimes/2012/09/23/inside-man-who-

sank-r30m-heist

Swart, W. and Afrika, M. It was a happy new year’s day for gang who pulled off

R42m Postbank heist. Online, January 2012.

URL http://www.timeslive.co.za/local/2012/01/15/it-was-a-happy-new-

year-s-day-for-gang-who-pulled-off...r42m-postbank-heist

Sweetman, D. Bradley manning, collateral murder, truth, and power. Technical report,

The School for Con�ict Analysis and Resolution, 2011.

URL http://scar.gmu.edu/magazine-article/bradley-manning-collateral-

murder-truth-and-power

Taylor, P. A. Editorial: Hacktivism. The Semiotic Review of Books, 12(1):1�4, 2001.

Tech Analyser. Best known cyber-attacks of all times. Online, Nov 2011. Accessed

2012/12/02.

URL http://tech-analyser.blogspot.com/2011/11/most-recent-cyber-

attacks-were-laid.html

REFERENCES 264

Teumim, D. Industrial Network Security. International Society of Automation, 2010.

Thomas, K. Playstation network hacked. Online, April 2011. Accessed 2013/01/07.

URL http://www.pcworld.com/article/226128/

Thornburg, D. D. The network is the computer: The changing direction of classroom

computing. Technical report, Thornburg Center for Space Exploration, 2009.

URL http://www.tcse-k12.org/pages/network.pdf

Thornburgh, N. Inside the Chinese hack attack. Online, August 2005. Accessed

2013/06/19.

URL http://www.time.com/time/nation/article/0,8599,1098371,00.html

Tjhai, G., Papadaki, M., Furnell, S., and Clarke, N. Investigating the problem of

ids false alarms: An experimental study using snort. In Proceedings of the IFIP TC 11

23rd International Information Security Conference, pages 253�267. IFIP, 2008.

Touch, J., Lear, E., Mankin, A., Ono, K., Stiemerling, M., Eggert, L., Mel-

nikov, A., and Eddy, W. Service name and transport protocol port number registry.

Technical report, Internet Assigned Numbers Autority, August 2013.

URL http://www.iana.org/assignments/service-names-port-numbers/service-

names-port-numbers.xhtml

Trammell, D. and Manning, T. Simulating distributed denial of service with

breakingpoint. Technical report, BreakingPoint Labs, April 2009.

URL http://druid.caughq.org/papers/Simulating-Distributed-Denial-of-

Service-with-BreakingPoint.pdf

TrendMicro. The Sasser event: History and implications. Technical report, Trendlabs

Research, 2004. Accessed 2013/01/07.

URL http://www.antivirus2u.com/trend/WP02SasserEvent040812US.pdf

Tutănescu, I. and Sofron, E. Anatomy and types of attacks against computer networks.

In 2nd RoEduNet International Conference, pages 265�270. 2003.

Undercoffer, J., Pinkston, J., Joshi, A., and Finin, T. A target-centric ontology for

intrusion detection. In 18th International Joint Conference on Artificial Intelligence,

pages 9�15. 2004.

US-CERT. Smurf ip denial-of-service attacks. Technical Report CA-1998-01, Software

Engineering Institute Carnegie Mellon, 1998.

URL http://www.cert.org/advisories/CA-1998-01.html

REFERENCES 265

van Dijk, P. How we defaced www.apache.org. Online, May 2000. Accessed 2012/08/20.

URL http://www.dataloss.net/papers/how.defaced.apache.org.txt

van Heerden, R., Leenen, L., and Irwin, B. Using an automated reasoner to classify

computer network attacks. In 5th Workshop on ICT Uses in Warfare and the Safeguard-

ing of Peace. November 2013a.

van Heerden, R., Leenen, L., Irwin, B., and Burke, I. A computer network attack

taxonomy and ontology. International Journal of Cyber Warfare and Terrorism, 3:12�

25, 2012a.

van Heerden, R., Pieterse, H., Burke, I., and Irwin, B. Developing a virtualised

testbed environment in preparation for testing of network based attacks. In 5th Workshop

on ICT Uses in Warfare and the Safeguarding of Peace. November 2013b.

van Heerden, R. P., Burke, I., and Irwin, B. Classifying network attack scenarios

using an ontology. In Proceedings of the 7th International Conference on Information-

Warfare & Security (ICIW 2012), pages 311�324. ACI, 2012b.

van Heerden, R. P., Pieterse, H., and Irwin, B. Mapping the most significant com-

puter hacking events to a temporal computer attack model. In International Conference

on Human Choice and Computers (HCC10): ICT Critical Infrastructures and Society,

pages 226�236. IFIP, Springer, 2012c.

Vasiliadis, G., Polychronakis, M., Antonatos, S., Markatos, E. P., and Ioanni-

dis, S. Regular expression matching on graphics hardware for intrusion detection. In

Recent Advances in Intrusion Detection, pages 265�283. Springer, 2009.

Vasudevan, A. and Yerraballi, R. Spike: Engineering malware analysis tools using

unobtrusive binary-instrumentation. In Proceedings of the 29th Australasian Computer

Science Conference, pages 311�320. Australian Computer Society, Inc., 2006.

Verizon RISK Team. 2012 data breach investigations report. Technical report,

Australian Federal Police, Dutch National High Tech Crime Unit, Irish Reporting and

Information Security Service, Police Central e-Crime Unit, and United States Secret

Service, 2012. Accessed 2013/01/07.

URL http://www.verizonbusiness.com/resources/reports/rp_data-breach-

investigations-report-2012_en_xg.pdf

Vigna, G., Robertson, W., and Balzarotti, D. Testing network-based intrusion

detection signatures using mutant exploits. In Proceedings of the 11th ACM conference

on Computer and Communications Security, pages 21�30. ACM, 2004.

REFERENCES 266

Walker, S. Edward snowden: first photo appears since russian asylum granted. Online,

October 2013. Accessed 2013/10/16.

URL http://www.theguardian.com/world/2013/oct/10/edward-snowden-first-

photo-russian-asylum

Wang, K., Chen, X., and Xu, Y. A brief study of trojan. Technical report, Uppsala

Unversitet, 2011. Accessed 2013/01/07.

URL https://www.it.uu.se/edu/course/homepage/sakdat/vt09/pm/programme/

trojans.pdf

Washington, D. Onward cyber soldiers. Time Magazine, 21:1�5, 1995. Accessed

2013/01/07.

URL http://www.time.com/time/magazine/article/0,9171,983318,00.html

Wattanajantra, A. Windows worm could create the ’world’s biggest botnet’. Online,

January 2009. Accessed 2012/09/19.

URL http://www.itpro.co.uk/609562/windows-worm-could-create-the-world-

s-biggest-botnet

White, S., Swimmer, M., Pring, E., Arnold, W., Chess, D., and Morar, J.

Anatomy of a commercial-grade immune system. Technical report, IBM Research,

1999. Accessed 2013/01/08.

URL http://www.research.ibm.com/antivirus/SciPapers/White/Anatomy/

anatomy.html

Whitman, M. and Mattord, H. Principles of information security. Course Technology

Ptr, 2011, 8-9 pages.

Wiggins, G. Living with malware. Technical report, Sans Institute, 2001. Accessed

2013/01/08.

URL http://www.sans.org/reading_room/whitepapers/malicious/living-

malware_48

Win, W. and Htun, H. H. A simple and efficient framework for detection of sql

injection attack. International Journal of Computer & Communication Engineering

Research, 1(2):26�30, 2013.

Wu, S. and Banzhaf, W. The use of computational intelligence in intrusion detection

systems: A review. Applied Soft Computing, 10(1):1�35, 2010.

REFERENCES 267

Xin, J., Dickerson, J., and Dickerson, J. Fuzzy feature extraction and visualization

for intrusion detection. In The 12th IEEE International Conference on Fuzzy Systems

(FUZZ’03), pages 1249�1254. IEEE, 2003.

Yampolskiy, R. V. and Govindaraju, V. Computer security: a survey of methods

and systems. Journal of Computer Science, 3(7):478�486, 2007.

Yang, D., Usynin, A., and Hines, J. W. Anomaly-based intrusion detection for

scada systems. In 5th International Topical Meeting on Nuclear Plant Instrumentation,

Control and Human Machine Interface Technologies (NPIC&HMIT 05), pages 12�16.

2006.

Ying, L., Dinglong, H., Haiyi, Z., and Rau, P. Users’ perception of mobile infor-

mation security. Hacker Journals White Papers, pages 1�5, 2007.

Yoder, R. M. Someday they’ll get Slick Willie Sutton. The Saturday Evening Post,

223(30):17, January 1951.

Yung, K. H. Detecting long connection chains of interactive terminal sessions. In Recent

Advances in Intrusion Detection, pages 1�16. Springer, 2002.

Zeng, X., Bagrodia, R., and Gerla, M. Glomosim: a library for parallel simulation

of large-scale wireless networks. In Proceedings of the Twelfth Workshop on Parallel

and Distributed Simulation (PADS 98), pages 154�161. IEEE, 1998.

Zetter, K. Google hack attack was ultra sophisticated, new details show. Online, January

2010. Accessed 2012/08/12.

URL http://www.wired.com/threatlevel/2010/01/operation-aurora/

Zetter, K. Anonymous hacks security firm. Online, February 2011. Accessed 2013/01/08.

URL http://www.wired.com/threatlevel/2011/02/anonymous-hacks-hbgary

Zetter, K. Google hackers had ability to alter source code. Online, March 2012a. Accessed

2012/09/21.

URL http://www.wired.com/threatlevel/2010/03/source-code-hacks/

Zetter, K. Hacker schools university in grade change caper. Online, Novemeber 2012b.

Accessed 2012/08/28.

URL http://www.wired.com/threatlevel/2011/11/santa-clara-university-

hacked/

REFERENCES 268

Zhai, J., Chen, Y., Yu, Y., Liang, Y., and Jiang, J. Fuzzy semantic retrieval for

traffic information based on fuzzy ontology and rdf on the semantic web. Journal of

Software, 4(7):758�765, 2009.

Zhou, C. V., Leckie, C., and Karunasekera, S. A survey of coordinated attacks and

collaborative intrusion detection. Computers & Security, 29(1):124 �140, 2010.

Zou, C. C., Gao, L., Gong, W., and Towsley, D. Monitoring and early warning

for internet worms. In Proceedings of the 10th ACM conference on Computer and

communications security, pages 190�199. 2003.

Zou, C. C., Gong, W., and Towsley, D. Code red worm propagation modeling and

analysis. In Proceedings of the 9th ACM Conference on Computer and Communications

Security, pages 138�147. ACM, 2002.

Zou, C. C., Towsley, D., and Gong, W. Modeling and simulation study of the

propagation and defense of internet e-mail worms. IEEE Transactions on Dependable

and Secure Computing, 4(2):105�118, 2007.

Appendices

269

APPENDIX

A

DETAIL OF LITERATURE SURVEY OF SIGNIFICANT

COMPUTER-BASED ATTACKS

In this Appendix, the detail of the literature survey of signifcant computer based-attacks

are shown in Table A.1 to Table A.12.

270

271

Table A.1: Malware � a Brief Timeline (Heater, 2011)

Date Malware Brief Description

1971 Creeper Virus Regarded to be one of the �rst viruses.
1982 Eric Cloner One of the �rst self-replicating virus's that a�ected per-

sonal computers. This virus was aimed at Apple II per-
sonal computers.

1986 Brain Virus This virus is considered the �rst self-replicating virus for
MS-DOS. This virus used �oppy disks to transfer itself
between computers.

1986 PC-Write Trojan A trojan that was hidden in shareware.
1988 Morris Worm The Morris worm was one of the �rst Internet-

distributed worms.
1991 Michelangelo Virus This virus erased data on a prede�ned day of the year

(March 6).
1999 Melissa Virus This virus is notable as the �rst mass-mailed virus
2000 I-LOVE-YOU This worm spread itself to all available contacts in an

e-mail client address book.
2003 SQL Slammer In its time, it became the fastest spreading worm ever

seen. It used database �aws to spread.
2005 Commwarrior-A This virus targeted Symbian cell phones.
2005 Koobface This virus used social networks to spread.
2008 Con�cker This complex worm used multiple infection vectors and

in�icted signi�cant damage.
2010 Stuxnet A worm that targeted Iran's nuclear program.

272

Table A.2: Ten Most Costly Cyber-attacks in History (Julian, 2011)

Date Cyber Attacks Brief Description

2011 Citigroup Citigroup customers' information were stolen.
2000 Titan rain Titan rain is the FBI's name for an extensive cyber

spying campaign for US military secrets.
2008 Heartland Payment

Systems
Credit card numbers were stolen from Heartland
servers. An estimated $140 million loss.

2007 Hannaford Bros Over 4 million credit card numbers were stolen
from the Hannaford Bros store servers. Estimated
$252 million loss

2007 TJX Over 45 million credit card numbers were stolen
from the TJX retail company. An estimated $250
million loss.

2004 Sven Jaschan Sven distributed a virus that damaged systems all
over the world and caused damage of appoximate
$500 million.

2000 Michael Calce Michael, also known as Ma�aboy, disabled cor-
porate company's networks (such as Dell, CNN,
Amazon and Ebay) and caused an estimated dam-
age of $1.2 billion.

2011 Sony Playstation Over 100 million Sony Playstation accounts were
breached and credit card information stolen. The
estimated damage was between $1 billion and $2
billion.

2011 Epsilon E-mail addresses of large corporations such as Best
Buy and JP Morgan Chace were stolen when Ep-
silon's e-mail-handling servers was hacked. The
damage is estimated to be between $225 million
and $4 billion.

1982 The Logic Bomb The CIA blew up a Siberian gas pipeline by in-
serting malicious code into the computer systems
controlling the gas pipeline.

273

Table A.3: The 12 Costliest Computer Viruses Ever (Miranda, 2010)

Date Virus Brief Description

1988 Morris Worm The Morris worm was one of the �rst Internet-
distributed worms.

2003 Blaster Worm This worm targeted Microsoft's windowsupdate.com site
and caused Windows PCs to crash as soon as they con-
nected to a network.

2004 Sasser Worm The Sasser worm made use of a bu�er over�ow in the
component LSASS (Local Security Authority Subsystem
Service.

2001 Nimda A Virus that infected though several vectors and thus
caused signi�cant damage.

2003 SQL Slammer In its time, it became the fastest spreading worm ever
seen. It used database �aws to spread.

2001 SirCam A �le-based virus that attacked computers after itself
was opened.

1999 Melissa A virus embedded in a Microsoft Word document.
When opened, the macro in the document mass-e-mailed
itself to the �rst 50 entries in the user's address book.

2001 Code Red The worm exploited a vulnerability in Internet Infor-
mation Services (IIS) from Microsoft, and spread itself
using the bu�er over�ow technique.

2008 Con�cker This complex worm used multiple infection vectors and
in�icted signi�cant damage.

2000 I-LOVE-YOU This worm spread itself to all available contacts in an
e-mail client address book.

2003 SoBig A virus that spread through e-mail attachments.
2004 MyDoom A worm that infected computers and sent spam e-mails.

This worm slowed down the Internet by 10%.

274

Table A.4: The Seven Worst Cyber-attacks in History (That We Know About) (Hall,
2010)

Date Cyber War-

fare

Brief Description

2000 Titan rain Titan rain is the FBI's name for an extensive cyber spy-
ing campaign for US military secrets.

1999 Moonlight Maze Hackers compromised American computer systems
(Pentagon, NASA, the Department of Energy and oth-
ers).

2007 The Estonian
Cyberwar

Estonian computer networks were �ooded and disabled
after the Bronze Soldier of Tallinn statue was removed
and Russian sentiments angered.

2008 Presidential-
level Espionage

Foreign sources successfully used computer attacks
against the computers used by Obama and McCain dur-
ing their presidential campaigns.

2007 China's
"750,000 Ameri-
can zombies"

Paul Strassmann (US information security o�cial)
stated that there were 735,598 compromised computers
"infested by Chinese zombies." (Hall, 2010).

1982 The Logic Bomb The CIA blew up a Siberian gas pipeline by inserting
malicious code into the computer systems controlling
the gas pipeline.

2008 The Most Seri-
ous Breach

A �ash drive was inserted into a military laptop in the
Middle East, creating a digital staging post, from which
data were transferred to servers under foreign control.

Table A.5: The Decade's Biggest Cyber Crime Attacks Exploits (Marcus, 2011)

Date Exploits Brief Description

2004 MyDoom A worm that infected computers and sent spam e-mails.
This worm slowed down the Internet by 10%.

2000 I-LOVE-YOU his worm spread itself to all available contacts in an e-
mail client address book.

2007 Con�cker This complex worm used multiple infection vectors and
in�icted signi�cant damage (Other researchers states
that Con�cker only surfaced in 2008).

2010 Stuxnet A worm that targeted Iran's nuclear program.
2007 Zeus Botnet An information stealing botnet that has been used to

steal Internet Banking details and other identity infor-
mation. Over 700 variants of the Zeus botnet have been
found.

275

Table A.6: The Decade's Biggest Cyber-crime Attacks Scams (Marcus, 2011)

Scams Brief Description

Scareware Fake anti-virus software that is used to induce unsus-
pecting users into installing malware.

Phishing Scams. The art of tricking users into freely giving away personal
information by spoo�ng legitimate information requests.

Phony Websites Fake websites that simulate e-commerce sites such as
banking or auction websites.

Online Dating Scams Fake personal relationships are created in order to steal
information or extract cash.

419 Scam An e-mail message that requests help in moving money
from a foreign country. The scammer asks for an up-
front transfer or other related fees that are then never
returned.

276

Table A.7: Ten Worst Cyber-crimes of the Decade (Buckland, 2011)

Date Cybercrimes Brief Description

2000 I-LOVE-YOU This worm spread itself to all available contacts in an
e-mail client address book.

2000 Michael Calce Michael, also known as Ma�aboy, disabled corporate
companies (such as Dell, CNN, Amazon and Ebay) and
caused an estimated damage of $1.2 billion.

- 419 Scam An e-mail message that requests help in moving money
from a foreign country. The scammer asks for an up-
front transfer or other related fees that are then never
returned.

2004 MyDoom A worm that infected computers and sent spam e-mails.
This worm slowed down the Internet by 10%.

2005 Operation Get
Rich or Die
Trying

Albert Gonzalez and his conspirators stole credit card
information from major global retailers.

2006 The L.A. tra�c
signal attack

Los Angeles' city tra�c signals were changed by a mali-
cious engineer during a strike. That caused tra�c to be
gridlocked for days.

2006 John Dillinger
returns

Credit card thefts were being attributed to alias named
"John Dillinger", a famous Great Depression-era bank
robber. Polish and Romanian criminals were arrested
for selling credit card information.

2008 Con�cker This complex worm used multiple infection vectors and
in�icted signi�cant damage.

2009 Facebook Pro�le
Spy

By promising to let users know who views their facebook
pro�les, this software hacked 500 000 Facebook accounts
and sent out fake "Help! I've been robbed!" phishing
spam.

2006 WikiLeaks Leaked o�cial documents are posted to WikiLeaks.

277

Table A.8: The Decade's Ten Most Dastardly Cyber-crimes (Poulsen, 2009)

Date Cybercrimes Brief Description

2000 Michael Calce Michael, aka Ma�aboy, disabled corporate companies
(such as Dell, CNN, Amazon and Ebay) and caused an
estimated damage of $1.2 billion by attacking their web
services.

2002 California Pay-
roll Database
Breach

A California server housing the state government's pay-
roll database was compromised with names, Social Se-
curity numbers and salary information for 265,000 state
workers.

2003 Sasser Worm The Sasser worm made use of a bu�er over�ow in the
component LSASS (Local Security Authority Subsystem
Service).

2004 Foonet A small ISP hosted in Ohio (US) that was the �rst black-
hat (hackers for hire) hosting company.

2005 Operation Get
Rich or Die
Trying

Albert Gonzalez and his conspirators stole credit card
information from major global retailers.

2006 The L.A. tra�c
signal attack

Los Angeles' city tra�c signals were changed by a mali-
cious engineer during a strike. That caused tra�c to be
gridlocked for days.

2006 Max Vision Max Vision hacked other hackers collections' of stolen
credit card and he opened his own site own site, Carder-
sMarket to sell the numbers.

2008 RBS Worldpay
Heist

Payment processor RBS Worldpay had been hacked and
$9.5 million dollars were stolen by cashiers to slam the
accounts with repeated rapid-�re withdrawals.

2009 Con�cker This complex worm used multiple infection vectors and
in�icted signi�cant damage.

2009 Money Mules Small businesses that use on-line banking are targeted
by trojan horses software that steal credentials and ini-
tiate wire transfers from their accounts.

278

Table A.9: Fifteen Worst Data Breaches (Armerding, 2012)

Date Data Breach Brief Description

2008 Heartland Pay-
ment Systems

134 million credit card numbers were stolen. SQL injec-
tion was used to install spyware.

2006 TJX 94 million credit cards exposed because the corporate
network was not protected by a �rewall.

2011 Epsilon Names and e-mails of millions of customers of retail
stores plus several �nancial institutions were compro-
mised.

2011 RSA An estimated 40 million employee records were stolen as
well as information on the company's SecurID authen-
tication tokens.

2010 Stuxnet A worm that targeted Iran's nuclear program.
2006 Department of

Veterans A�airs
A database with personal information for over 26 million
USA veterans, active-duty military personnel and their
spouses were stolen

2011 Sony Playsta-
tion

Over 100 million Sony Playstation accounts was
breached and credit card information stolen. The es-
timated damage was between $1 billion and $2 billion.

2011 ESTsoft Personal information of 35 million South Koreans were
stolen from ESTsoft database.

2010 Gawker Media 1.3 Million e-mail addresses and passwords were stolen
from popular blogs and the source code from Gawker±
content management system.

2009 Google, ect The Chinese government launched a massive and un-
precedented attack on Google, Yahoo, and several com-
puter and communications companies. A security hole
in an older version of Internet Explorer was used.

2010 VeriSign The incidents only became public after mandatory Se-
curity Exchange �llings listed the network breaches.

2005 CardSystems 40 million credit card accounts numbers were stolen.
2006 AOL More than 20 million private web-page inquiries were

exposed.
2007 Monster.com Personal information of 1.3 million job seekers were

stolen. The information was then used in a phishing
scam.

2007 Fidelity Na-
tional Informa-
tion Services

Information from 3.2 million private customers were
stolen by an employee.

279

Table A.10: Top Ten Hacks of All Time Liddinton-Cox (2012)

Date Hack Brief Description

2011 Sony Playsta-
tion

Over 100 million Sony Playstation accounts were
breached and credit card information stolen. The es-
timated damage was between $1 billion and $2 billion.

2011 Epsilon e-mail addresses of large corporations such as Best Buy
and JP Morgan Chace were stolen when Epsilon's e-
mail-handling servers was hacked. The damage is esti-
mated to be between $225 million and $4 billion.

2000 Titan rain Titan rain is the FBI's name for an extensive cyber spy-
ing campaign for US military secrets by unknown actors.

2009 Google, ect The Chinese government launched a massive and un-
precedented attack on Google, Yahoo, and several com-
puter and communications companies. A security hole
in an older version of Internet Explorer was used.

2004 MyDoom A worm that infected computers and sent spam e-mails.
This worm slowed down the Internet by 10%.

2003 Adrian Lamo Adrian hacked Microsoft, Yahoo, Bank of America, Cin-
gular and Citigroup.

1988 Morris Worm The Morris worm was one of the �rst Internet-
distributed worms.

2006 WikiLeaks Leaked o�cial documents are posted to WikiLeaks.
1995 Kevin Mitnick Famous hacker that was a very skilled social engineer.
2000 Michael Calce Michael, aka Ma�aboy, disabled corporate companies

(such as Dell, CNN, Amazon and Ebay) and caused an
estimated damage of $1.2 billion.

280

Table A.11: Best Known Cyber-attacks of All Time (Tech Analyser, 2011)

Date Cyber Attack Brief Description

1971 Creeper Software that spread through ARPANET and displayed
"I'M THE CREEPER CATCH ME IF YOU CAN".

1982 Eric Cloner A virus that spread through �oppy disks and displayed
a poem.

1986 Brain Virus This virus is considered the �rst self-replicating virus for
MS-DOS. This virus used �oppy disks to transfer itself
between computers.

1988 Morris Worm The Morris worm was one of the �rst Internet-
distributed worms.

1991 Michelangelo
Virus

This virus erased data on a prede�ned day of the year
(March 6).

1995 Macro Macro virus was written in order to prove that macro
viruses can spread

1999 Melissa Virus This virus is notable as the �rst mass-mailed virus
2000 I-LOVE-YOU This worm spread itself to all available contacts in an

e-mail client address book.
2001 Code Red The worm exploited a vulnerability in Internet Infor-

mation Services (IIS) from Microsoft, and spread itself
using the bu�er over�ow technique.

2001 Nimda The Nimda worm used �ve di�erent infection vectors to
spread.

2003 SQL Slammer In its time, it became the fastest spreading worm ever
seen. It used Database �aws to spread.

2003 Blaster Worm This worm targeted Microsoft's windowsupdate.com site
and caused Windows PCs to crash as soon as they con-
nected to a network

2004 MyDoom A worm that infected computers and sent spam e-mails.
This worm slowed down the Internet by 10%.

2004 Sasser Worm The Sasser worm made use of a bu�er over�ow in the
component LSASS (Local Security Authority Subsystem
Service

2007 Storm Botnet
Worm

The Storm Botnet used a Trojan horse that spread
through e-mail spam, and gathered infected computers
into a remotely controlled network of zombied (hijacked)
computers.

2009 July 2009 cyber
attacks

North Korea's telecommunications ministry spread ma-
licious code that copies data to an encrypted �le, and
then overwrites the original �les.

- Autorun This virus use �ash drives as its source of propagation.

281

Table A.12: Ten Worst Computer Viruses of All Time (Strickland, 2008)

Date Malware Brief Description

1999 Melissa Virus This virus is notable as the �rst mass-mailed virus
2000 I-LOVE-YOU This worm spread itself to all available contacts in an

e-mail client address book.
2001 The Klez Virus e-mail virus that spoof the "From" �eld in e-mail head-

ers.
2001 Code Red The worm exploited a vulnerability in Internet Infor-

mation Services (IIS) from Microsoft, and spread itself
using the bu�er over�ow technique.

2001 Nimda The Nimda worm used �ve di�erent infection vectors to
spread.

2003 SQL Slammer In its time, it became the fastest spreading worm ever
seen. It used Database �aws to spread.

2004 MyDoom A worm that infected computers and sent spam e-mails.
This worm slowed down the Internet by 10%.

2004 Sasser Worm The Sasser worm made use of a bu�er over�ow in the
component LSASS (Local Security Authority Subsystem
Service.

2006 Leap-A A virus that targeted Mac Computers (made by Apple
Computers).

2007 Storm Botnet
Worm

The Storm Botnet used a Trojan horse that spread
through e-mail spam, and gathered infected computers
into a remotely controlled network of zombied (hijacked)
computers.

APPENDIX

B

EVENT QUERIES

In this Appendix, Event Queries are described and mapped to their respective Attack

Scenarios. Protégé with the HermiT reasoner (Section 5.2) are used to determine which

scenario is detected by which Event Query. The Traffic Influx and Unusual Web Activity

Port Scan are presented in Section 8.4.1.

B.1 Traffic Influx

The Traffic Influx Event Query determines if the amount of incoming tra�c has increased.

The Firewall Sensor (Section C.3) is used to determine the amount of incoming tra�c.

This Event Query is triggered when the amount of incoming tra�c exceeded a speci�ed

threshold and the amount of data increased signi�cantly.

The algorithm used for the Traffic Influx Event Query is shown in Listing 9 (similar to

the algorithm shown at for Listing 3).

The HermiT automatic reasoner used the following question to determine which scenario

is detected by the Traffic Influx Event Query:

∙ has at least one:

– Disrupt Attack Goal de�ned by hasChainActorAttackGoal relationship

282

B.1. TRAFFIC INFLUX 283

Listing 9 Tra�c In�ux Event Query

Tra�c In�ux Event Query Start
Load Tra�c In�ux Settings
Retrieve Bandwidth Sensor Data
Calculate Bandwidth used
Calculate Bandwidth Threshold
if Bandwidth exceeds Bandwidth Threshold then
Tra�c In�ux Event Query detected

end if

Tra�c In�ux Event Query End

– Access Asset de�ned by hasChainTargetAsset relationship

– Network Infrastructure Device Target de�ned by hasTarget relationship

– Denial of Service Attack Mechanism de�ned by the hasAttackMechanismRam-

pup relationship

Reasoner
question
for Traffic Influx
Event Query

Scenarios Inferred
by Automated
Reasoner

Figure B.1: HermiT automatic reasoner Tra�c In�ux Event Query result

The HermiT automatic reasoner with the Traffic Influx Event Query calculated the the

following scenario:

∙ Cyber-Warfare

∙ Denial-of-Service

∙ Relaxed Cyber-Warfare

∙ Relaxed Denial-of-Service

The Cyber-Warfare and Denial-of-Service scenario have been proven equivalent for near-

B.2. SERVERS RUNNING 284

Listing 10 Servers Running Event Query

Servers Running Event Query Start
Servers Running Settings
Retrieve IsAlive Sensor Data
Calculate the number of the servers that are Communicating
if Servers down greater than set threshold OR IsAlive Sensor stopped communicating
then

Servers Running Event Query detected
end if

Servers Running Event Query End

real time environment (Section 7.3.2), thus this Event Query will be classi�ed within

Denial-of-Service. The phase is de�ned as Ramp-up because the Attach Mechanism in

the query is de�ned as Ramp-up. In Figure B.1, the result of the Traffic Influx Event

Query in Protégé is shown.

B.2 Servers Running

The Servers Running Event Query determines if one can communicate with the servers

through the network. The IsAlive Sensor (Section C.2) is used to test the communications

ability of the servers. This Event Query is triggered when the number of servers that

cannot communicate falls below a speci�ed threshold.

The algorithm used for the Servers Running Event Query is shown in Listing 10 (similar

to the algorithm shown at for Listing 10).

The HermiT automatic reasoner used the following query to determine which scenario is

detected by the Servers Running Event Query:

∙ has at least one:

– Disrupt Attack Goal de�ned by hasChainActorAttackGoal relationship

– Access Asset de�ned by hasChainTargetAsset relationship

– Network Infrastructure Device Target de�ned by hasTarget relationship

– Denial-of-Service Attack Mechanism de�ned by the hasAttackMechanismDam-

age relationship

The HermiT automatic reasoner with the Servers Running Event Query calculated the

the following scenario:

B.3. UNUSUAL WEB ACTIVITY 285

Reasoner question
for Servers Running
Event Query

Scenarios Inferred
by Automated
Reasoner

Figure B.2: HermiT automatic reasoner Servers Running Event Query result

∙ Cyber-Warfare

∙ Denial-of-Service

∙ Relaxed Cyber-Warfare

∙ Relaxed Denial-of-Service

The Cyber-Warfare and Denial-of-Service scenarios have been proven equivalent for the

near real-time environment (Section 7.3.2), thus this Event Query will be classi�ed within

Denial-of-Service. The phase is de�ned as Damage because the Attach Mechanism in the

query is de�ned as Damage. In Figure B.2, the result of the Servers Running Event Query

in Protégé is shown.

B.3 Unusual Web Activity

The Unusual Web Activity Event Query looks for non-human web-crawling type activities.

The Crawler Detector sensor (section 8.5.3) detects if a website has been accessed by a

non-human looking for vulnerabilities. This is typically done with a web crawler. A web

crawler is software that systematically scans and harvests information of a web site. The

algorithm used for the Unusual Web Activity Event Query is shown in Listing 11.

The HermiT automatic reasoner used the following query to determine which scenario is

detected by the Unusual Web Activity Event Query:

B.3. UNUSUAL WEB ACTIVITY 286

Listing 11 Servers Running Event Query

Unusual Web Activity Event Query Start
Load Unusual Web Activity Settings
if Crawler detected unusual activity then
Unusual Web Activity Event Query detected

end if

Unusual Web Activity Event Query End

∙ has at least one:

– Web Server Target de�ned by hasTarget relationship

– Web Crawl Attack Mechanism de�ned by the hasAttackMechanismRec rela-

tionship

Reasoner question
for Unusual Web
Event Query

Scenario Inferred
by Automated
Reasoner

Figure B.3: HermiT automatic reasoner Unusual Web Activity Event Query result

The HermiT automatic reasoner with the Unusual Web Activity Event Query calculated

the following scenario:

∙ Web Defacement

∙ Relaxed Web Defacement

The phase is de�ned as Reconnaissance because the Attach Mechanism in the query is

de�ned as Reconnaissance. In Figure B.3, the result of the Unusual Web Activity Event

Query in Protégé is shown.

B.4. WEB DEFACEMENT 287

Listing 12 Web Defacement Event Query

Web Defacement Event Query Start
Load Web Defacement Settings
Retrieve Deface Sensor Data
Determine if the website has been defaced
if Website was defaced then
Web Defacement Event Query detected

end if

Web Defacement Event Query End

Reasoner question
for Web Defacement
Event Query

Scenario Inferred
by Automated
Reasoner

Figure B.4: HermiT automatic reasoner Web Defacement Event Query result

B.4 Web Defacement

The Web Defacement Event Query is triggered if the website has changed without ap-

proval. The Deface Sensor (Section C.4) is used to detect a vulnerability scan on the web

server. This Event Query triggers as soon as a vulnerability scan on the web server is

detected. The algorithm used for the Web Defacement Event Query is shown in Listing

12.

The HermiT automatic reasoner used the following query to determine which scenario is

detected by the Web Defacement Event Query:

∙ has at least one:

– Web Server Target de�ned by hasTarget relationship

– Change Data de�ned by hasChainActorAttackGoal relationship

B.5. FAILED LOGIN ATTEMPTS 288

Listing 13 Failed Login Attempts Event Query

Failed Login Attempts Event Query Start
Load Failed Login Attempts Settings
Retrieve Failed Logins Sensor Data
Determine an Unsuccessful Occurred
if Unsuccessful Login then
Failed Login Attempts Event Query detected

end if

Failed Login Attempts Event Query End

– Web Crawl Attack Mechanism de�ned by the hasAttackMechanismDamage re-

lationship

The HermiT automatic reasoner with the Web Defacement Event Query calculated the

the following scenario:

∙ Web Defacement

∙ Relaxed Web Defacement

The phase is de�ned as Damage because the Attach Mechanism in the query is de�ned

as Damage. In Figure B.4, the result of the Web Defacement Event Query in Protégé is

shown.

B.5 Failed Login Attempts

The Failed Login Event Query determines if incorrect login attempts have been made.

This can be an indication that an attacker is trying to login, but was unsuccessful. The

Failed Login Attempts sensor (Section C.8) is used to detect unsuccessful logins. The

algorithm used for the Failed Login Attempts Event Query is shown in Listing 13.

The HermiT automatic reasoner used the following query to determine which scenario is

detected by the Failed Login Attempts Event Query:

∙ has at least one:

– Change Data or Steal Data or Gain Control de�ned by hasChainActorAttack-

Goal relationship

– Open Information Attack Mechanism de�ned by the hasAttackMechanismDam-

age relationship

B.6. RUNAWAY MALWARE: SINGLE AND MULTIPLE 289

Reasoner question
for
Failed Login Attempts
Event Query

Scenarios Inferred
by Automated
Reasoner

Figure B.5: HermiT automatic reasoner Failed Login Attempts Event Query result

The HermiT automatic reasoner with the Failed Login Attemps Event Query calculated

the following scenario:

∙ System Compromise

∙ Unauthorised Data Access

The phase is de�ned as Reconnaissance because the Attach Mechanism in the query is

de�ned as Reconnaissance. In Figure B.5, the result of the Failed Login Attempts Event

Query in Protégé is shown.

B.6 Runaway Malware: Single and Multiple

The Runaway Malware: Single and Runaway Malware: Multiple Event Query detects self-

spreading malware. The malware is still limited to a single host, Runaway Malware: Single

is set, if the malware is detected from multiple hosts, and Runaway Malware: Multiple

is set. The Network Telescope Sensor (Section 8.5.1) is used to detected self-spreading

malware.

As soon as the network telescope detects attempted communications from an infected

host the Event Query is triggered. The algorithm used for the Runaway Malware: Single

and Runaway Malware: Multiple EQs is shown in Listing 14.

The HermiT automatic reasoner used the following query to determine which scenario is

detected by the Runaway Malware Event Query:

290

Listing 14 Runaway Malware: Single Event Query

Runaway Malware Event Query Start
LoadRunaway Malware: Single Settings
if Network Telescope Sensor Detects Malware then
if Malware From a Single Host then
Runaway Malware: Single Event Query detected

end if

if Malware From Multiple Hosts then
Runaway Malware: Multiple Event Query detected

end if

end if

Runaway Malware Event Query End

Reasoner question
for
Runaway Malware Alert
(Single and Multiple)
Event Query

Scenario Inferred
by Automated
Reasoner

Figure B.6: HermiT automatic reasoner Runaway Malware Event Query result

B.7. UNUSUAL BANDWIDTH 291

Listing 15 Unusual Bandwidth Event Query

Unusual Bandwidth Query Start
Load Failed Unusual Bandwidth Settings
Retrieve Firewall Bandwidth Monitor Sensor Data
Determine if an Unusual Amount of Bandwidth has been used
if Unusual Amount of Bandwidth then
Unusual Bandwidth Event Query detected

end if

Unusual Bandwidth Event Query End

∙ has at least one:

– Spread de�ned by hasChainActorAttackGoal relationship;

– PC or Server Target de�ned by the hasTarget relationship;

If a host source of malware is detected, the phase is de�ned as Reconnaissance and the

Event Query Runaway Malware Alert: Single is triggered. If multiple most sources of

malware are detected the phase is de�ned as Ramp-up and the Event Query Runaway

Malware Alert: Multiple is triggered. In Figure B.6, the result of the Runaway Malware

Event Queries in Protégé is shown.

B.7 Unusual Bandwidth

The Unusual Bandwidth Event Query is triggered if the amount of bandwidth used is

not within usual parameters. This can occur when an attacker uses network resources to

launch DDoS attacks or hosts a warez site remotely.

The Unusual Bandwidth sensor (Section C.3) is used to detect unsuccessful logins. The

algorithm used for the Unusual Bandwidth Event Query is shown in Listing 15.

The HermiT automatic reasoner used the following query to determine which scenario is

detected by the Unusual Bandwidth Event Query:

∙ has at least one:

– Gain Resources Control de�ned by hasChainActorAttackGoal relationship

– System Abuse Attack Mechanism de�ned by the hasAttackMechanismDamage

relationship

The HermiT automatic reasoner with the Unusual Bandwidth Event Query calculated the

the following scenario:

B.8. UNUSUAL DISK USAGE 292

Reasoner question
for Unusual Bandwidth
Event Query

Scenario Inferred
by Automated
Reasoner

Figure B.7: HermiT automatic reasoner Unusual Bandwidth Event Query result

Listing 16 Unusual Disk Usage Event Query

Unusual Disk Usage Query Start
Load Failed Unusual Disk Usage Settings
Retrieve Unusual Disk Usage Sensor Data
Determine if Disk has been Unauthorised
if Unauthorised Disk Usage then
Unusual Disk Usage Event Query detected

end if

Unusual Disk Usage Event Query End

∙ Resource Theft

The phase is de�ned as Damage because the Attach Mechanism in the query is de�ned

as Damage. In Figure B.7, the result of the Unusual Bandwidth Event Query in Protégé

is shown.

B.8 Unusual Disk Usage

The Unusual Disk Usage Event Query is triggered if the disk space is being used by an

unauthorised actor. This can typically occur when an attacker hosts warez or multmedia

on corporate data storage. The Unusual Disk Usage sensor (Section C.9) is used to detect

unsuccessful logins. The algorithm used for the Unusual Disk Usage Event Query is shown

in Listing 16.

The HermiT automatic reasoner used the following query to determine which scenario is

detected by the Unusual Disk Usage Event Query:

B.9. HIDDEN DATA ACCESSED 293

Figure B.8: HermiT automatic reasoner Unusual Disk Usage Event Query result

∙ has at least one:

– Gain Resources Control de�ned by hasChainActorAttackGoal relationship

– System Abuse Attack Mechanism de�ned by the hasAttackMechanismDamage

relationship

The HermiT automatic reasoner with the Unusual Disk Usage Event Query calculated

the following scenario:

∙ Resource Theft

The phase is de�ned as Damage because the Attach Mechanism in the query is de�ned

as Damage. In Figure B.8, the result of the Unusual Disk Usage Event Query in Protégé

is shown.

B.9 Hidden Data Accessed

The Hidden Data Accessed Event Query is set when data that should never be seen is

accessed. The Tripwire Access sensor (Section C.1) is used to detect unsuccessful logins.

The algorithm used for the Hidden Data Accessed Event Query is shown in Listing 17.

The HermiT automatic reasoner used the following query to determine which scenario is

detected by the Hidden Data Accessed Event Query:

∙ has at least one:

– Change Data or Steal Data de�ned by hasChainActorAttackGoal relationship

294

Listing 17 Hidden Data Accessed Event Query

Hidden Data Accessed Usage Query Start
Load Hidden Data Accessed Settings
Retrieve Tripwire Access Sensor Data
Determine if TripWire Sensor has been Triggered
if TripWire was Triggered then
Hidden Data Accessed Event Query detected

end if

Hidden Data Accessed Event Query End

Reasoner question
for Hidden Data Accessed
Event Query

Scenario Inferred
by Automated
Reasoner

Automated Reasoner
limitation
With Web Defacement
Scenario Inferred

Figure B.9: HermiT automatic reasoner Hidden Data Accessed Event Query result

B.10. UNAUTHORISED SUPER USER 295

Listing 18 Unauthorised Super User Event Query

Unauthorised Super User Query Start
Load Unauthorised Super User Settings
Retrieve Root Login Sensor Data
Determine if Server has been Remotely Accessed
if Server has been Remotely Accessed then
Unauthorised Super User Event Query detected

end if

Unauthorised Super User Event Query End

– Exploit Attack Mechanism de�ned by the hasAttackMechanismDamage rela-

tionship

– Data Asset de�ned by the hasChainTargetAsset relationship;

– Server Target de�ned by the hasTarget relationship;

The HermiT automatic reasoner with the Hidden Data Accessed Event Query calculated

the following scenario:

∙ Unauthorised Data Access

∙ Web Defacement

The phase is de�ned as Damage because the Attach Mechanism in the query is de�ned

as Damage. In Figure B.9, the result of the Unusual Bandwidth Event Query in Protégé

is shown. The Web Defacement attack scenario is identi�ed because a WebServer is a

subset of the Server class. The automated reasoner has the limitation that its query

cannot search match a class without a speci�ed sub-class. This problem can potentially

be corrected by moving the Web Server class out from within Server class.

B.10 Unauthorised Super User

The Unauthorised Super User Event Query is triggered when a server administrator ac-

count is accessed remotely. The server should only be accessed locally. The Root Login

sensor (Section C.9) is used to detect unsuccessful logins. The algorithm used for the

Unusual Disk Usage Event Query is shown in Listing 18.

B.10. UNAUTHORISED SUPER USER 296

Figure B.10: HermiT automatic reasoner Unauthorised Super User Event Query result

The HermiT automatic reasoner used the following query to determine which scenario is

detected by the Unauthorised Super User Event Query:

∙ has at least one:

– Gain Resources Control de�ned by hasChainActorAttackGoal relationship

– System Abuse Attack Mechanism de�ned by the hasAttackMechanismDamage

relationship

The HermiT automatic reasoner with the Unusual Disk Usage Event Query calculated

the following scenario:

∙ System Compromised

The phase is de�ned as Damage because the Attach Mechanism in the query is de�ned

as Damage. In Figure B.10, the result of the Unusual Bandwidth Event Query in Protégé

is shown.

APPENDIX

C

SENSORS

In sections 8.5.2 and 8.5.3, Honeypot and IDS and Crawler Detector sensors are presented.

In this appendix, the remaining sensors that are used by the Aeneas are presented. The

goal of these sensors is to validate the Aeneas system, and not to present any improvements

to the sensors. In sections C.1 to C.10, the remaining sensors are presented.

C.1 Tripwire Access Sensor

Tripwire is a software tool that is used to monitor a designated set of �les and directories

for any change (Kim and Spa�ord, 1994). This tool was �rst made available in November

1992 and is used as a sensor because of its long track record of being secure and automat-

able. Kim and Spa�ord developed it to mitigate break-in activity on the Internet and to

be used as a tool to �nd a backdoor left by hackers.

The Tripwire monitor sensor uses the Tripwire programme1 to detect when hidden �les

have been modi�ed in any way. Tripwire logs any change event, including:

∙ creation of new �les;

∙ deletion of �les;

∙ change of �le content; and

1http://sourceforge.net/p/tripwire/discussion/

297

C.2. IS ALIVE SENSOR 298

Listing 19 Tripwire Sensor Algorithm

Tripwire Sensor Start
if Hidden data Accessed then
Read Tripwire Log File
Parse Tripwire Log
Send Parse Log to Aeneas Server

end if

Wait 1 Second
Return to Tripwire Sensor Start

∙ change of �le permissions.

The output is parsed by a script which extracts the relevant data and outputs it to a text

�le. An example of the log follows:

2013:02:22:10:48:45,Tripped,10.0.3.6

Stored in the raw data �le is the time of the logged event, the event type, as well as the des-

tination IP address. The time is stored in the format of Year:Month:Day:Hour:Minute:Second

and the IP address is in IPv4 format. The Tripwire sensor is a host-type sensor that logs

that hidden data has been accessed. The algorithm used to parse to the Tripwire monitor's

output is shown in Listing 19.

C.2 Is Alive Sensor

The goal of the Is Alive sensor is to determine if servers in a network are still communi-

cating. This sensor veri�es the connectivity of networked devices from a static list using

ICMP (also known as a ping request). A custom script was developed to determine which

of the servers are not responding and to log which severs stopped communicating. The

output of these scripts are logged to a single log �le called alive.log. An example of the

alive.log follows:

2013:02:17:10:31:12 10.0.2.8

2013:02:17:10:31:12 10.0.2.100

Stored in the log �le is the time and the server that has been reported as being down.

The time is stored in the format Year:Month:Day:Hour:Minute:Second. IP addresses are

C.3. FIREWALL BANDWIDTH MONITOR SENSOR 299

Listing 20 IsAlive Sensor Algorithm

IsAlive Sensor Start
Read List of Servers
for all List of Servers do
Verify Server is Communicating

end for

Calculate Number of Servers Communicating
Send Number of Servers Communicating to Aeneas
Wait 30 Seconds
Return to IsAlive Sensor Start

stored in IPv4 format. The IsAlive sensor is a network-type sensor and indicates when

servers no longer respond to remote ping requests. The algorithm used to parse to the

IsAlive sensor's output is shown in Listing 20.

C.3 Firewall Bandwidth Monitor Sensor

The Firewall Bandwidth sensor uses data collected by the Lucidview2 �rewall. The main

feature of this sensor is its ability to log the bandwidth usage over a period of one minute.

These logs of bandwidth usage are then stored in a text �le as follows:

1899.8955078125 1360323780

652.0068359375 1360323840

942.8291015625 1360323931

996.6462484375 1360323992

The following data is stored in the Firewall Bandwidth sensor raw text �le: bandwidth

usage (in kilobytes) per minute intervals, and the time in Epoch format. The �rewall has

the ability to store source and destination IPs as well as the source and destination ports.

This data may be used if need be in the future.

The Bandwidth sensor is a �rewall-type sensor which counts all the raw data retrieved

from the Lucidview �rewall. The algorithm used to parse to the Firewall Bandwidth

sensor's output is shown in Listing 21.

2http://www.lucidview.net/products-and-services/lucidview-guardian/

C.4. WEB DEFACEMENT SENSOR 300

Listing 21 Firewall Sensor Algorithm

Firewall Sensor Start
Request Bandwidth use from the Firewall
Calculate Bandwidth
Send Bandwidth to Aeneas
Wait 30 Seconds
Return to Firewall Sensor Sensor Start

C.4 Web Defacement Sensor

The Web Defacement sensor detects if any of the static �les of a website have been

changed. This sensor retrieves the website with the wget3 utility and them compares the

static parts of the website to verify that no part has changed. Any user content pages are

ignored. The output of this sensor is logged to a single log �le. This text �le is shown

below:

1361777839 10.0.2.8 127.0.0.1 80 Website defaced

1361777978 10.0.2.8 127.0.0.1 80 Website DoS

Stored in the log �le is the time, source IP address, source port, destination IP address,

destination port and a description of the crawl event type. The time is stored in Epoch

time format and the IP addresses are in IPv4 format. The Web Defacement sensor is

a host-type sensor and indicates when the website has been defaced. If the wget utility

can't access the page, it will report that the website cannot be accessed. The algorithm

used to parse to the web defacement monitor's output is shown in Listing 22.

C.5 Bro Connections Sensor

The Bro Connections sensor uses the Bro4 IDS. One of the features of this IDS is to log

all connections that are visible from itself. These connections are stored in text �le as

follows (some �elds were committed below):

1358857747.681339 10.0.3.12 46956 10.0.3.217 80 tcp http

1358857712.125418 10.0.3.10 40853 10.0.3.217 80 tcp

1358857723.964073 10.0.2.100 138 10.0.255.255 138 udp

1358857736.807653 10.0.3.42 8 10.0.3.10 8 icmp

3http://www.gnu.org/software/wget/
4http://www.bro.org/

C.6. ROOT LOGIN SENSOR 301

Listing 22 Web Defacement Sensor Algorithm

Web Defacement Sensor Start
if Static Web Page Not Accessible then
Set DoS Detected

end if

if Static Page Altered then
Set Web Defacement Event

end if

Parse Time, Event Type and Destination IP
Parse Web Defacement Raw Output
Send Parse Output to Aeneas Server
Wait 30 Seconds
Return to Web Defacement Sensor Start

Listing 23 Bro Connections Sensor Algorithm

Bro Connections Sensor Start
Measure Conventions with Bro IDS
Parse Time,Number of Connections, Source IP, Source Port, Destination IP and Des-
tination Port
Send Parse Data to Aeneas Server
Wait 30 Seconds
Return to Web Bro Connections Sensor Start

In the Bro Connection raw text �le, the time, source IP, source port, destination IP,

destination port and event type are logged. The date is represented in Epoch time. The

source and destination IPs are represented in IPv4 human readable format. The source

and destination ports are represented by an integer value. The event type is represented

as the protocol type.

The Bro Connection sensor is a a network IDS-type sensor that indicates the network

load and number of connections available. The Bro Connection sensor algorithm is shown

in Listing 23.

C.6 Root Login Sensor

This sensor was custom written for Aeneas. The sensor monitors the .bashrc �le that

executes every time a user logs in, and it has been modi�ed to execute the rootsensor

bash script. This script checks if the current executing user is a root user. This sensor is

used to detect if hackers gained root (administrator) access to a server. Logs of root user

logins are stored in a text �le as follows:

C.7. SSH LOGIN SENSOR 302

Listing 24 Root Login Sensor Algorithm

Root Login Sensor Start
while .bashrc Changed do
Read .bashrc File
if Root User Detected then
Parse Time, Source IP, Event Type
Send Parse Data to Aeneas Server

end if

end while

Return Root Login Defacement Sensor Start

2013:02:22:09:14:49,Root Detected,10.0.4.30

The date, event type and destination IP address are stored in the Root Logins raw text

�le. The time is stored in human readable time in the following format:

Year:Month:Day:Hour:Minute:Second. The destination IP is stored in human readable

IPv4. The Root Login sensor is classi�ed as a host-type sensor that indicates all root user

logins on a particular host. In Listing 24, the algorithm used by the Root Login sensor is

shown.

C.7 SSH Login Sensor

Similar to the Root Login, this sensor is also custom written for Aeneas. This script

executes every second and uses the linux "who"5 command to determine if any users are

connected via SSH. This sensor determines if someone has logged into a server remotely.

An example of logs of SSH logins are stored in a text �le as follows:

2013:02:22:10:02:55, SSH Login,10.0.4.30,10.0.4.31

In the SSH raw text �le, the date, event type, source IP address and destination IP address

are stored. The date is stored in a similar way to the Root Login sensor and is in the

following format: Year:Month:Day:Hour:Minute:Second. The source and destination IP

addresses are in IPv4 format. The SSH Login sensor is host-type sensor and indicates all

successful SSH logins on the host. The algorithm used by the SSH Login sensor is shown

in Listing 25.

5http://linux.about.com/library/cmd/blcmdl1_who.htm/

C.8. FAILED LOGIN SENSOR 303

Listing 25 SSH Login Sensor Algorithm

SSH Login Sensor Start
Execute "who" command
if SSH User Detected then
Parse Time, Source IP, Destination IP, Event Type
Send Parse Data to Aeneas Server

end if

Wait 1 Second
Return to SSH Login Defacement Sensor Start

Listing 26 Failed Login Sensor Algorithm

Failed Login Sensor Start
Read /var/log/auth.log
if Failed User Detected then
Parse Time, Source IP, Destination IP, Event Type
Send Parse Data to Aeneas Server

end if

Wait 1 Second
Return to Failed Login Defacement Sensor Start

C.8 Failed Login Sensor

The Failed Login sensor is a script that checks the /var/log/auth.log �le for "authenti-

cation failure" entries. This sensor determines if failed attempts have been made to log

into a server. The raw data for the Failed Login sensor is shown below:

2013:02:22:10:02:57, Failed Login,10.0.4.30,10.0.4.31

The raw data is stored in a similar way to the SSH Login sensor entries. The date has the

following format: Year:Month:Day:Hour:Minute:Second. The source and destination IP

addresses are in IPv4 format. The Failed Login sensor is classi�ed as a host-type sensor

and indicates all unsuccessful logins on the host. The algorithm used is shown in Listing

26.

C.9 Unusual Disk Usage Sensor

This sensor uses the "du"6 application to check if the disk usage of a certain directory

has changed. Similar to Tripwire, the output is parsed by a script and then the relevant

6http://linux.about.com/library/cmd/blcmdl1_du.htm/

C.10. BANDWIDTH AND SYN SENSOR 304

Listing 27 Unusual Disk Usage Sensor Algorithm

Unusual Disk Usage Sensor Start
Execute "du" command
if Directory Usage has changed then
Parse Time, Source IP, Event Type
Send Parse Data to Aeneas Server

end if

Wait 1 Second
Return to Unusual Disk Usage Defacement Sensor Start

data is placed into a text �le, as shown as follows:

2013:02:22:10:02:52, Storage Usage,10.0.3.6

This raw data �le contains the time (formatted as Year:Month:Day:Hour:Minute:Second),

the event type and the IPv4 destination IP address. This sensor is classi�ed as a host-

type sensor and indicates if resources in terms of disk usage have been used without

authorisation. The algorithm used is shown in Listing 27.

C.10 Bandwidth and SYN Sensor

The Bandwidth and SYN sensor uses custom-written software to determine the bandwidth

usage detected and the number of SYN packets visible on an interface. The Bandwidth

sensor is similar to the Firewall Bandwidth Monitor sensor (Appendix C.3), except for not

requiring a �rewall. The bandwidth is reported in kilobytes. The SYN sensor is similar to

the Bro Connection sensor (Appendix C.5), except only the number of TCP connections

are detected. ICMP, UDP and other connections that do not use SYN packets are not

counted.

The output of this sensor is logged to two log �les. One �le stores bandwidth, the other

the number of SYN connections. Examples of the logged �les are shown as follows:

1374250912,321,Bandwidth DMZ

1374250912,14,SYN DMZ

The algorithm for the Bandwidth and SYN sensor as shown in Listing 28.

C.11. SUMMARY 305

Listing 28 Bandwidth and SYN Sensor Algorithm

Bandwidth and SYN Sensor Start
Clear Bandwidth and number of SYN connections
while 30 Seconds passed do
Calculate Total Bandwidth usage
Calculate number of SYN connections

end while

Parse Time, Source IP, Event Type
Send Bandwidth u sage number of SYN connections to Aeneas Server
Return to Bandwidth and SYN Sensor Start

C.11 Summary

The sensors used by the Aeneas are presented in this appendix. These sensors were

developed to validate the principles and not to be unique or new sensors.

APPENDIX

D

TIME FORMATS

Formats the given timestamp according to the given format. The format string is used as

a template to format the date and is copied character by character except for the following

special characters, which are replaced by the corresponding value1.

% w - abbreviated weekday (Mon, Tue, ...)

% W - full weekday (Monday, Tuesday, ...)

% b - abbreviated month (Jan, Feb, ...)

% B - full month (January, February, ...)

% d - zero-padded day of month (01 .. 31)

% e - day of month (1 .. 31)

% f - space-padded day of month (1 .. 31)

% m - zero-padded month (01 .. 12)

% n - month (1 .. 12)

% o - space-padded month (1 .. 12)

% y - year without century (70)

% Y - year with century (1970)

% H - hour (00 .. 23)

% h - hour (00 .. 12)

% a - am/pm

% A - AM/PM

1http://www.gnu.org/software/octave/doc/interpreter/Timing-Utilities.html/

306

307

% M - minute (00 .. 59)

% S - second (00 .. 59)

% s - seconds and microseconds (equivalent to %S.%F)

% i - millisecond (000 .. 999)

% c - centisecond (0 .. 9)

% F - fractional seconds/microseconds (000000 - 999999)

% z - time zone di�erential in ISO 8601 format (Z or +NN.NN)

% Z - time zone di�erential in RFC format (GMT or +NNNN)

%% - percent sign

% E - Epoc Time

